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Abstract

Plasmonic nanoparticles are a promising technology for increasing the absorption in thin

film solar cells. This thesis uses optical simulations to understand and optimise the role

that plasmonics can play in thin film solar cells.

The basics of plasmonics may be covered using the analytical Mie theory which describes

a plane wave interacting with a spherical object. This can be extended to include core-

shell spherical objects. A key finding is that if the shell refractive index is higher than

the surrounding medium refractive index, the plasmonic scattering and near field will

be enhanced compared to shells with a lower refractive index.

In order to investigate more complex geometries the finite element method is introduced.

In particular the method is used to simulate arrays of particles on a substrate to build

the link between simulation and experiment. Simulations of large area arrays are very

computationally expensive, therefore statistical averaging of single particle responses is

performed. Using this method the experimental response of a particle array was able to

be reproduced in simulations.

Ultra-thin film solar cells are then introduced and some of the issues surrounding these

devices are investigated via the scattering matrix method. It is shown that moving away

from a metallic back contact to a transparent contact with a separated metallic back

reflector increases the absorption in the absorbing layer.

Having studied both plasmonics and ultra-thin film solar cells in isolation, they are

then combined firstly using the finite element method. The effect of particle placement

within the device structure is investigated. The result is that the best performance

enhancement comes from particles integrated directly inside the absorbing layer.

Finally the previous methods of Mie theory for particle simulations and scattering matrix

for layered stack simulations are combined to create a coupled method capable of rapid

simulation of devices with integrated plasmonic nanoparticles. This model is then used

to assess many different device structures with the optimum being found for Ag core /

AlSb shell nanoparticles integrated into the absorbing layer of a device with a transparent

back contact and an incoherent Ag back reflector. This ultra-thin device is able to reach

93% of the current of a conventional thin film while only using 20% of the absorber

material.
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Plasmonische Nanoteilchen sind eine vielversprechende Technologie für die Erhöhung

der Absorption bei Dünnschichtsolarzellen. Diese Dissertation verwendet optische Sim-

ulationen um die Rolle von Plasmonen für Dünnschichtsolarzellen zu verstehen und zu

optimieren.

Die Grundlagen der Plasmonik können mit der analytischen Mie-Theorie erfasst werden,

die die Wechselwirkung zwischen einer ebenen Welle und einer Kugel beschreibt. Die

Theorie kann auch auf Kern-Hülle-Teilchen erweitert werden. Ein zentraler Befund

ist, dass bei einer Hülle mit einem Brechungsindex, der höher als der des umgebenden

Mediums ist, die Streuung und das Nahfeld im Vergleich zu einer Hülle mit einem

niedrigeren Brechungsindex erhöht sind.

Um komplexere Geometrien zu untersuchen wird die Finite-Elemente-Methode eingeführt.

Die Methode wird eingesetzt um Teilchenverteilungen auf einem Substrat zu simulieren,

um eine Verbindung zwischen Simulationen und Experimenten aufzubauen. Simula-

tionen von großen Flächen sind rechnerisch sehr teuer, deshalb wird eine statistische

Mittelung von Einzelpartikel-Reaktionen verwendet. Durch diese Methode konnte die

experimentelle Reaktion einer Teilchenverteilung mit Simulationen wiedergegeben wer-

den.

Ultradünnschichtsolarzellen werden vorgestellt und einige die Solarzellen betreffenden

Probleme werden mit der Streumatrixmethode untersucht. Es wird gezeigt, dass der

Wechsel von einem metallischen Rückkontakt zu einem transparenten Rückkontakt mit

einem zusätzlichen metallischen Rückreflektor die Absorption der Absorberschicht erhöht.

Nachdem die Plasmonik und Ultradünnschichtsolarzellen isoliert betrachtet wurden,

werden sie dann zuerst in der Finite-Elemente-Methode kombiniert. Die Wirkung der

Teilchenstellung innerhalb der Solarzellenstruktur wird untersucht. Das Ergebnis ist,

dass die stärkste Leistungsverbesserung durch in der Absorberschicht integrierte Teilchen

erreicht wird.

Schließlich werden die vorherigen Methoden der Mie-Theorie für Teilchensimulationen

und die Streumatrixmethode für Simulationen von geschichteten Stapeln kombiniert,

um eine Methode zu entwickeln, die schnelle Simulationen von Solarzellen mit inte-

grierten plasmonischen Nanoteilchen ermöglicht. Dieses Modell wird dann genutzt,

um viele unterschiedliche Solarzellenstrukturen zu untersuchen. Es wurde eine opti-

male Struktur gefunden, die aus in die Absorberschicht integrierten Nanoteilchen mit

einem Ag-Kern / einer AlSb-Hülle und einem transparenten Rückkontakt mit einem

inkohärenten Ag-Rückreflektor besteht. Diese Ultradünnschichtsolarzelle erreicht 93

Prozent der Stromstärke eines gewöhnlichen Dünnfilms und nutzt dabei nur 20 Prozent

des Absorbermaterials.
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Chapter 1

Introduction

One of the biggest challenges that the human race faces is that of energy production.

Generating useful forms of energy is the basis of civilisation; when Prometheus created

mankind he gifted us fire, energy in its purest form, that we might elevate our status

above that of beasts. This myth has persisted in our cultural consciousness because of

the fundamental role that energy plays in everything that we do. In modern society it

is easy to forget, but without exploitation of energy we would not have food, warmth,

shelter, society, art or even love. In short without energy, we would not be human.

But as Prometheus learnt, energy can also be dangerous. While he was punished by

the gods for releasing the gift of fire, we mere mortals punish ourselves and our future

Figure 1.1: The worldwide CO2 emissions due to human activities (red) and the 5
year rolling average global surface temperature (blue).
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generations with current forms of energy production. Fossil fuel burning and the asso-

ciated release of carbon dioxide into the atmosphere has unequivocally been shown to

cause global warming. Figure 1.1 shows the global CO2 emissions due to human activ-

ities [1], which has been exponentially increasing in the modern era. In the same time

period the global average surface temperature [2] has increased at an astounding rate.

Climate science has ruled out other contributing factors as being the dominant source

of this global temperature increase, we are left with only one conclusion: our energy

production is literally costing us the Earth.

The solution to this problem cannot come from any one course of action. The problem

is so multifaceted that it must be dealt with in all areas of society. Having said that,

turning away from fossil fuels for energy production towards a clean form of energy

would certainly help to reduce carbon emissions. Carbonless energy sources essentially

fall into two main categories, nuclear energy and renewable energy. Nuclear fission has

been employed to produce energy since the 1950’s, despite the lack of carbon production

this technology suffers from fundamental problems which limit its use as a basis for our

energy supply. Nuclear fission produces dangerous radioactive waste with a half life of

millions of years which is difficult if not impossible to store in a safe way. Furthermore

the potential for a catastrophic failure is much higher with this technology than for

others, the recent tragedy in Fukushima being a prime example.

The methods for large scale energy production listed so far have all involved extracting

something from the Earth, be it coal, oil, gas or uranium, and then consuming that

resource for energy production. All of these sources are practically speaking finite ones,

one day they will run out. Although the production of fossil fuels will continue as long as

there is life on Earth, the rate at which they are created is so far below the rate of usage

as to make it almost nonexistent. If we instead turn our attention away from the ground

beneath us to the sky above, we may find an energy source which is practically infinite.

The sun provides an average 1000 W of power to each square meter of the Earth’s

surface. This energy has been used by humans to grow crops since the beginning of

the agricultural era. Moreover, all complex life on Earth ultimately draws energy from

the sun via photosynthesis. This immense source of power is extremely underutilised,

taking the surface area of the Earth into account, the total power supplied to Earth

is 173,000 TW, which completely dwarfs the current world power consumption of 17.7

TW averaged over the year. This means that if only a small fraction of this power can

be utilised, it would comfortably fulfill our energy needs. Figure 1.2 shows the spatial

distribution of the solar irradiance on the Earth’s surface including the day-night cycle

and the effect of cloud cover, averaged over three years. If the land areas highlighted

with black circles were completely covered with photovoltaics with a mere 8% energy

conversion efficiency, they would produce 18 TW of electrical power, more than the
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Figure 1.2: The spatial distribution of solar irradiance at the Earth’s surface taking
into account the day night cycle and cloud cover, averaged over three years. The black
dots represent the fraction of land that could be covered in 8% efficient solar cells in

order to supply the world energy demand. Image courtesy of Matthias Loster.

world power consumption. In real terms energy production from solar energy would

not be concentrated into just six power plants worldwide. In fact one of the advantages

of solar energy is that large power plants are not required, solar panels distributed on

residential rooftops can significantly contribute to the world energy supply.

Drawbacks to solar energy exist; the limitation of the day-night cycle, seasonal varia-

tions in irradiance and the ability to only generate electricity are major hurdles. However

many solutions to these problems already exist and are being actively developed. En-

ergy storage via flywheels, supercapacitors or conversion to hydrogen are just some of

the options available. Other forms of renewable energy are able to contribute to the en-

ergy supply, however none of them have the same potential in terms of possible energy

production as that of solar, even though other forms such as wind currently produce

more renewable energy than solar. Figure 1.2 already proves that with current technol-

ogy a solar revolution could occur, the principle roadblock is purely an economic one.

Although solar will become cheaper than conventional energy sources in the long term,

in the here and now solar energy still has to compete with the likes of coal, gas and oil.

In order to make solar energy competitive, we wish to produce solar cells with higher

efficiencies at lower costs.
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Although different technologies exist for producing solar energy, in almost all cases a

key trade-off to be made is between the optical and electric properties of the device. In

terms of optical properties, even a very poorly absorbing material could come close to

complete absorption if it is thick enough. However as we shall see, absorbing light is the

first step, the electrons and holes generated from the absorption must also be electrically

collected. Due to this a device is limited in the thickness that can be used in order to be

able to collect the generated carriers. Improving the electrical properties in order to be

able to increase the thickness is generally very difficult to achieve. Therefore the only

remaining solution is to increase the absorption in the layer. To this end we propose the

use of novel optical designs to trap light inside the absorbing layer thereby increasing

the absorption.

That is where the topic of this thesis comes in, here we analyse the potential for plas-

monics as a light management technique. This will be conducted by simulating the

performance of solar cells with integrated plasmonic concepts.

The thesis is laid out in the following manner. The second chapter reviews the literature

present on light trapping as a concept, the conclusion to this will motivate the focus

on plasmonics as a light trapping concept. The chapters from chapter three onwards

follow a distinct patten, the odd chapters focusing on theoretical concepts while the

even chapters show applications of the theoretical frameworks presented in the previous

chapter.

Chapter 3 introduces Mie theory as a framework for simulating the light interaction

with single spherical nanoparticles. This leads to the investigation of different material

comparisons in chapter 4, in particular the optimum implementation of plasmonic core /

dielectric shell type particles which could be key for successful device integration. Since

metallic particles usually need to be electrically and chemically isolated from the device

a dielectric shell should be incorporated. Dielectric materials which have a higher and

lower refractive index than the surrounding material are compared, with the result that

a shell with a refractive index higher than the surrounding will enhance the plasmonic

resonance compared to shells with a lower refractive index. This result informs the

choice of particle geometry and material choice in later chapters.

We then expand the toolbox of methods for simulating plasmonics to including the finite

element method in chapter 5. This can then be used to simulate different geometries

of single particles and also two particle interactions and arrays of particles in chapter

6. This chapter builds the link between the plasmonic simulations and experimental

measurements. We compare measurements of reflection, transmission and absorption

for Ag nanoparticle arrays on glass substrates to the simulated values. Since large arrays

of particles are very computationally expensive we turn to using a statistical average
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of different single particle simulations. When including the effect of multiple reflections

inside the glass substrate, the simulations are shown to be in good agreement with the

experimental data.

Having developed a strong basis in the area of plasmonics we move to thin and ultra-

thin film solar cells, first presenting the scattering matrix method for simulating layered

media in chapter 7. This is then used to analyse and optimise ultra-thin film chalcopyrite

solar cells without the addition of nanoparticles in chapter 8. The parasitic absorption

in the Mo back contact is identified as a key source of loss, therefore simulations are

introduced to verify if changing the back contact to a transparent conducting oxide and

a separate back reflector can reduce the optical losses. This can be implemented in a

coherent way in which there is only a thin film between the solar cell device and the

back reflector, or in an incoherent way if the back reflector is separated by a thick glass

substrate. Although the coherent integration might possibly provide a higher absorption

benefit due to certain resonances, the tolerance with which the coherent structure would

need to be fabricated may not be physically realisable, therefore we focus more on

the incoherent back reflector. Both types of back reflector are shown to increase the

absorption compared to the standard Mo back contact.

We then move to bringing together the physical insight built from the previous chapters

in order to simulate ultra-thin film solar cells with integrated plasmonic particles in

chapters 9 and 10 using the finite element method. We show that particle integration

directly inside the absorbing layer leads to the largest absorption enhancement.

We also present in chapters 11 and 12 a method that brings not just the physical insight

but also the analytical techniques from chapters 3 and 7 together, this culminates in a

coupled method capable of simulating solar cells with integrated plasmonics very rapidly.

This method also provides a fast way to simulate devices which contain both incoherent

layers and nanoparticles. Due to the speed of this method we use it to optimise the

device with integrated nanoparticles, reaching 93% of the thin-film current with only

20% of the material usage.

Finally a conclusion as well as an extended publication list are given.



Chapter 2

Light Management - A Review of

the Literature

Now that we have established the goal of developing a light management strategy for

photovoltaics, it will be useful to review the literature on light management. Since the

majority of the work on light management has been done on various material classes,

we focus on the different concepts as they can, in principle, be applied to any material.

Since different solar cell types have slightly different configurations in terms of layers,

we present in fig. 2.1 a schematic of a generic solar cell device in order to explain the

goal of light trapping. The solar cell principally consists of a layer of an absorbing

semiconductor with electric contacts above and below the absorbing layer. In order

to allow a current to flow through the device, a pn-junction is usually present in the

absorbing layer or at an interface with one of the contacts. Light can come from either

above or below depending on design, however the electric contact which is on the side

of the incident light should be transparent.

Figure 2.1: A schematic image of the principle layers required for a solar cell.
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2.1 Geometrical Optics

From the perspective of a ray model of light (geometrical optics), the light path inside of

a photovoltaic absorber can be increased by using the laws of refraction. For normally

incident light onto a flat surface, the resulting light ray will still travel normally to the

surface. The surface of the solar cell device may then be microstructured causing angled

surfaces to be present at the macroscopically flat surface. Depending on the device

this will mean structuring the transparent contact or the absorbing layer itself. A ray

normally incident to the macroscopic surface will then be incident at an angle to the

microscopic surface. This means it will be refracted when passing into the absorber layer,

which will increase the angle of propagation inside the absorber layer. Although there

will nominally be a higher reflection at this microsurface due to the higher incident

angle, the reflections are likely to be reflected into the solar cell for sufficiently steep

microstructuring, ensuring a net gain in absorption. This approach to light trapping

has been successfully implemented in c-Si solar cells via selective etching of the (100)

crystal planes leaving square based pyramids from the (111) planes [3]. Methods which

seek to exploit geometrical optics clearly need to have feature sizes large compared to

the wavelength in order for the geometrical limit to apply. For the case of thin films and

especially ultra-thin films, these kinds of methods will not be applicable since the film

thickness is of the same order of magnitude as the wavelength.

2.2 Wave Optics

For the case of thin film solar cells, we require concepts grounded in the wave optics

regime. This is not a limitation, indeed as we shall discover, wave optical approaches

are capable of providing light path enhancements above and beyond those of ray optical

approaches due to interesting light matter interactions. Many of the wave optical con-

cepts can be applied to both metallic and dielectric materials. The underlying physics

in each case may be substantially different, nevertheless they will be presented together

under a unified device heading (i.e. Grating for both a dielectric and metallic grating).

2.2.1 Random Texturing

One of the earliest works on the optical nature of rough surfaces comes from Rayleigh

who described the effect of subwavelength microstructure on the scattering of light [4].

Chinmayanandam tackled the question more quantitatively by introducing the idea of

phase shifts introduced by the varying propagation length in the two different materials
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at an interface caused by the roughness [5]. This idea was further developed by iden-

tifying the rough surface as a stochastic process, see for example Davies [6], Beckmann

and Spizzichino [7], and Harbeke [8].

The use of surface roughness scattering for light management in solar cells has been

suggested since at least 1982 when Yablonovitch and Cody presented a statistical model

describing perfectly randomising surface textures. Such textures would lead to a 4n2

enhancement in the absorption where n is the refractive index of the absorbing layer.

Practical applications include a-Si:H solar cells [9][10][11], where the front Al doped

ZnO contact is structured. Although Al:ZnO will have free carriers necessary for a

good conductivity, the amount is still much less than for a metal, therefore we can

consider this close to being a dielectric material at visible wavelengths. The coupling

between a random front surface texture and SPP modes on a metallic back contact has

been considered for thin film c-Si [12], however losses in the metal where predicted to

outweigh absorption enhancement due to SPP propagation in the silicon.

Texturing metallic surfaces is not beneficial for front side applications since, the metal

cannot cover the entire front surface due to absorption in the metal (the case of extraordi-

nary transmission through metal will be treated later) and roughness on the front surface

will introduce surface plasmon polaritons which are not likely to be helpful as they would

weakly couple to the underlying absorber layer. This is because the surface plasmon po-

laritons would be excited at the air/metal interface instead of the metal/absorber layer

interface where they could potentially be beneficial. Random surface texturing has also

been used as an intermediate reflector for the case of tandem a-Si:H / µ-Si solar cells

[13], where an intermediate layer of typically SiO2, Si3N4 or ZnO may be used [14] [15]

[16].

Random Texturing of metallic back contacts is more promising than front contacts, since

they can cover the entire back surface and the structured part is directly in contact

with the absorber layer, meaning a high coupling between the metal and the absorber

layer. This has been employed as the back contact for a-Si:H solar cells [17], which

can show improvement over a flat surface for weakly absorbing cells. However, there

is also extensive literature discussing how to remove the parasitic plasmonic absorption

from randomly nanostructured metallic back contacts, which suggests that the benefits

of coupling to SPP modes is outweighed by the absorption inside the metal [18].

2.2.2 Periodic Texturing or Gratings

Periodic texturing on the order of the wavelength of light allows for diffraction effects,

which is the coherent version of the scattering from random surfaces. Due to the coherent
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nature, this will generally lead to scattering which is stronger for single wavelengths, but

which is much more wavelength and angle dependent than for random surfaces. The

limits of a grating structure for absorption enhancement have been discussed [19] [20], by

placing a dielectric grating on a layer with an extremely low single pass absorption and

calculating the absorption enhancement. It was found that 2D dielectric gratings can

overcome the Yablonovitch limit over a large range of wavelengths for normal incidence,

but for oblique incidence the absorption enhancement falls below the Yablonovitch limit,

thus the generalised Yablonovitch limit of 4n2/ sin(θ) is not overcome when considering

all angles.

A periodic structure developed with a form of nanosphere lithography has been shown

to perform equally to the highest performing random texture for a-Si solar cells [21].

Additionally numerical strategies for the optimisation of 1D gratings have been presented

[22].

A grating-like photonic crystal (a 1D grating comprising of two different material lay-

ers) has been theoretically compared to an embedded metallic grating for organic solar

cells [23]. The result was that the plasmonic grating achieved a higher absorption en-

hancement, however since electric performance was not considered, the photonic crystal

is likely to achieve a higher photocurrent in reality, due to recombination at the metal

surface. MIM structures and plasmonic waveguides have also been shown to beat the

Yablonovitch limit for organic materials [24] [25].

Silicon and GaAs nanowires have also been shown to be able to focus light into modes

inside the material, causing a possible reduction in material consumption [26] [27].

2.2.3 Pseudoperiodic Texturing

As we have seen from the previous two examples, periodic texturing can provide a very

high light path enhancement in certain wavelength regions, corresponding to geomet-

rically resonant conditions. Whereas random texturing leads to an effect with a lower

single wavelength response, which is however present at a broad range of wavelengths.

This opens up an interesting question, namely, is it possible to combine the effects of

periodic and random texturing to obtain a strong and spectrally broad light path en-

hancement? In recent years, there has been work in this direction [28, 29] that shows

that the combination can indeed provide higher absorption enhancement than for either

single concept.
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2.2.4 Nanoparticles

Generally there is some crossover between the usage of the term nanoparticle and 2D

grating, since a regular arrangement of identically shaped particles forms a grating.

More generally nanoparticles may also form unordered structures and may have a range

of size and shape distributions. The development of the usage of nanoparticles for light

management in solar cells has been reversed compared to periodic structures with respect

to material selection. Metallic nanoparticles were the first to be discussed [30–32], with

dielectric nanoparticles becoming a subsequent research focus [33–35].

Ag plasmonic particles have shown to match the performance of surface textured back

contacts in a-Si solar cells [36, 37] as long as the particles are isolated using a dielectric

material. Embedding the particles inside the silicon has been investigated theoretically

[38], while the absorption enhancement available is considerable, the likely recombination

losses due to extra surfaces caused by the particle may outweigh the potential optical

gains.

Ag particles have been integrated into organic solar cells [39], the result was that particles

integrated on the front surface gave the best performance, while particles integrated into

the absorber layer gave a higher optical absorption but a worse performance (due to a

worse electric performance).

In conclusion there are many diverse and promising optical concepts for light trapping.

We focus on a single concept in this thesis in order to follow that concept from basic

principles to full integration. Due to this we are able to take advantage of the knowledge

base gained earlier to speed up the process of finding an optimum device later in the

thesis. Here we have chosen to focus on plasmonic nanoparticles since they have a

large potential in absorption increase but also come with downsides which must be

minimised in order to be successfully integrated. Therefore they present a challenging

and interesting problem with a potentially large benefit.



Chapter 3

Mie Theory

This chapter will describe the analytical method of Mie theory which can be used to

obtain the interaction of light with spherical nanoparticles.

3.1 Mie Theory

The most influential work on the interaction between light and metallic nanoparticles

comes from Gustav Mie who in 1908 formulated a complete solution to Maxwell’s equa-

tions for a plane wave incident to a spherical geometry. This solution is typically referred

to as ’Mie Theory’ [40]. The path to a solution comes from expressing the incident, scat-

tered and internal fields in terms of a summation of orthonormal basis functions called

the spherical vector harmonics. The weighting of each function is determined by the

boundary conditions at the surface of the sphere which depend on the sphere size and

the interior and exterior dielectric functions. The boundary conditions at the sphere sur-

face are the continuity of the tangential E field and the normal D field. These weightings

are called the Mie coefficients.

We will now present some of the most important results regarding Mie theory, these

are taken from the book of Bohren and Huffmann [41]. As mentioned previously, the

geometry considered has a spherical symmetry, meaning that the scattered and internal

fields are well described by the spherical vector harmonics. The difficult part is to also

describe the incident field using the same basis functions in order to know the incident

amplitude for each mode of oscillation (i.e. each order of spherical vector harmonic).

Even though an incident plane wave does not possess spherical symmetry, it is still

possible to describe the incident fields in terms of the spherical vector harmonics.

11
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Since we are free to orientate our axis at will, due to the spherical symmetry, let the

incident plane wave be travelling parallel to the z axis with the E field pointing along

the x direction

Einc = E0e
ikzzêx. (3.1)

Where E0 is the incident field amplitude, i is the imaginary unit, kz is the z component

of the wave vector, z is the distance along the z axis and êx is the unit vector of the x

axis. We wish to re-express Einc in terms of the spherical vector harmonics which we

shall now briefly describe. The spherical vector harmonics are vector functions which

solve the vector wave equation generated from scalar functions which solve the scalar

wave equation. Therefore we first review the solution to the scalar wave equation. The

scalar wave equation, without specifying a coordinate system, is

∇2ψ + k2ψ = 0. (3.2)

The solution to this equation in spherical coordinates can be obtained by separation of

variables and yields the following result

ψemn = cos(mφ)Pmn (cos θ)zn(kr), (3.3)

ψomn = sin(mφ)Pmn (cos θ)zn(kr). (3.4)

We have an even (subscript e) and an odd (subscript o) solution depending on the sym-

metry of the function for the azimuthal (φ) angle. The even form contains the even

function cos while the odd form contains the odd function sin. Furthermore these az-

imuthal functions are dependent on the integer m. The associated Legendre polynomials

Pmn (cos θ) determine the polar angle θ dependence and depend on both the integers m

and n. The last part which gives the radial dependence of the solution is actually a

placeholder for other functions. These functions are the suite of spherical Bessel func-

tions, jn(ρ), yn(ρ), h1n(ρ) and h2n(ρ), which are the spherical Bessel function of the first,

second, third and fourth kind, respectively. The first and second kind form a pair of

linearly independent solutions to the Bessel differential equations, while the third and

fourth kind offer a different possibility for linearly independent solutions. Two linearly

independent solutions are required not only for these functions to form a complete set,

but also for physical reasons. The different spherical Bessel functions have different

limits at the origin ( jn(ρ) is finite while yn(ρ) is divergent) meaning that only jn(ρ)
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can describe fields at the origin. In cases where we do not need to consider the origin

(e.g. for the scattered field) we cannot a priori rule out either one of jn(ρ) or yn(ρ).

However it turns out that we can simplify things by using the third and fourth spherical

Bessel functions. In the asymptotic limit, these two functions describe an outgoing and

incoming spherical wave respectively. Since the scattered wave is purely outgoing, we

only need to use h1n(ρ) in the expansion. Therefore only the functions jn(ρ) and h1n(ρ)

are needed for the Mie theory expansions containing the origin or infinite exterior.

Finally there is one more distinction to be made and that is how the spherical vector

harmonics are generated from the spherical harmonics. There are two orthogonal choices

for the generation of the vector functions

M = ∇× (cψ), (3.5)

N =
∇×M

k
, (3.6)

where c stands for any constant, k is the wave number and ψ is the solution to the scalar

wave equation. This turns out to be more than a mathematical necessity, the different

choices represent physically different modes. The M type fields describe modes with

no radial magnetic field components, these are referred to as electric type or transverse

magnetic modes. The transverse magnetic part is due to the magnetic field only having

transverse components, the electric name refers to these modes describing the effects

of electric multipoles (e.g. dipole, quadrupole). The N type fields describe magnetic

modes which have no radial electric components, and describe magnetic multipoles.

Considering the two different vector functions M and N and the fact that they both

have an odd and even form and that two different spherical bessel functions can be used

as generating functions we have in total 2x2x2 = 8 different functions needed to specify

the vector fields in Mie theory. While this may seem like a lot of functions, it will end

up with the expressions for the electric and magnetic fields being pleasingly simple.

Since the scattered and internal fields are dependent on the incident field, the first thing

to describe using spherical vector harmonics is the incident field

Einc = E0

∞∑
n=1

in
2n+ 1

n(n+ 1)
(M1

o1n − iN1
e1n), (3.7)

Hinc =
−k
ωµ

E0

∞∑
n=1

in
2n+ 1

n(n+ 1)
(M1

e1n + iN1
o1n), (3.8)
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where ω and µ are the frequency of the wave and the permeability of the surrounding

medium, respectively. Note that a sum over all m values is not required since the

expression vanishes for all m 6= 1. This infinite series does not have to be evaluated

directly, since the expression for the incident field is only used inside of expressions for

the scattered and interior fields.

The expression for the scattered field in terms of the incident field is given by

Es =
∞∑
n=1

Einc(ianN
3
e1n − bnM3

o1n), (3.9)

Hs =
k

ωµ

∞∑
n=1

Einc(ibnN
3
o1n − anM3

e1n). (3.10)

Einc and Hinc are the nth coefficients of the expansion for the incident field. The an and

bn are called the Mie coefficients and their values are determined by boundary conditions

at the interface of the sphere. A similar expression for the interior fields is given by

Ei =

∞∑
n=1

Einc(cnM
1
o1n − idnN1

e1n), (3.11)

Hi =
−ki
ωµi

∞∑
n=1

Einc(dnM
1
e1n + icnN

1
o1n), (3.12)

where ki and µi are the wave number and permeability inside the sphere, respectively.

The only remaining step is to define the a,b,c and d coefficients used in these expansions.

In order to simplify these expressions as much as possible, we first assume that the

permeability inside and outside the sphere is unity, which is valid for non-magnetic

materials. Secondly we introduce the Riccati-Bessel functions

ψn(x) = xj1n(x), (3.13)

ξn(x) = xh1n(x). (3.14)
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Given these simplifications, the Mie coefficients can be written as

an =
mψn(mx)ψ

′
n(x)− ψn(x)ψ

′
n(mx)

mψn(mx)ξ′n(x)− ξn(x)ψ′n(mx)
, (3.15)

bn =
ψn(mx)ψ

′
n(x)−mψn(x)ψ

′
n(mx)

ψn(mx)ξ′n(x)−mξn(x)ψ′n(mx)
, (3.16)

cn =
mψn(x)ξ

′
n(x)−mξn(x)ψ

′
n(x)

ψn(x)ξ′n(x)−mξn(x)ψ′n(mx)
, (3.17)

dn =
mψn(x)ξ

′
n(x)−mξn(x)ψ

′
n(x)

mψn(mx)ξ′n(x)− ξn(x)ψ′n(mx)
. (3.18)

The two arguments involved in these coefficients are the size parameter x and the relative

refractive index m which are defined as

x = kr, (3.19)

m =
np
n
, (3.20)

where r is the sphere radius and np and n are the refractive index of inside and outside

the sphere, respectively. Returning to the previous definition of n as the summation

subscript for the expansion, we see that as the value of n increases, the value of all

of these coefficients will eventually become negligible, meaning that the infinite sums

for the fields can be evaluated since above a cutoff value for n, all the coefficients are

negligible.

We now have the complete description of the fields inside and outside of the sphere. For a

comparison to far field measurements, the cross sections in the far field are needed. These

follow naturally from the definitions of the fields given; the scattering and extinction

cross section for a sphere are

Qsca =
2

x2

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2), (3.21)

Qext =
2

x2

∞∑
n=1

(2n+ 1)<(an + bn). (3.22)

These are both a sum of contributions from the electric type (an) and the magnetic

type (bn) modes for different multipole orders (n). The absorption cross section can be

obtained using the optical theorem as Qabs = Qext−Qsca. There is no simple expression

for the absorption cross section, for a single particle this is not a problem, however for

a particle with multiple layers, this will become problematic. This will be discussed

later in the chapter. We also take a moment to mention that in contrast to the standard

definition of optical cross section C which has units of area, we instead use the normalised

cross section Q which is unitless. The relationship between the two is Q = C/(πr2)
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where r is the particle radius. This means that we normalise the cross section to the

geometrical area perpendicular to the direction of incidence. This value is sometimes

called the efficiency, however this terminology is confusing because usually an efficiency

cannot become larger than one, which is not true for Q. Additionally we reserved the

term efficiency to refer to the fraction of light converted into a particular channel, either

scattering or absorption, e.g. the scattering efficiency is given by Qsca/Qext.

Finally since we are also interested in the near field intensity we also would like to

calculate the near field cross section, which is defined as [42]

Qnf =
2

x2

∫ 2π

0

∫ pi

0
Es ·E∗s sin θdθdφ

∣∣∣∣
R=a

, (3.23)

which is simply the scattered field intensity evaluated at the sphere surface. This can

be calculated by first computing Es at points on the sphere surface and numerically

integrating the result. A quicker method has been presented which uses the fact that

we are in the near field to simplify the integral to the following expression in terms of

the Mie coefficients

Qnf = 2
∞∑
n=1

|an|2
[
(n+ 1)|h2n−1(x)|2 + n|h2n+1(x)|2

]
+ |bn|2

[
(2n+ 1)|h2n(x)|2

]
, (3.24)

where h2n(x) is the second spherical Hankel function (spherical Bessel function of the

fourth kind).

3.2 Core Shell Particles

For practical applications to optoelectronic devices, nanoparticles embedded directly

into a device material may be deleterious. This is due to two principle reasons:

• The nanoparticle may be chemically unstable, meaning that it will diffuse or oth-

erwise cause some chemical reaction during the device processing which harms

device performance.

• The nanoparticle may act as an electric loss center. Even for materials with low

optical losses, the electrical loss due to recombination at the surface of the metal

may be unacceptable.
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Figure 3.1: The simulation geometry for core shell particles.

To overcome both these challenges we can use instead a core-shell type structure. The

core of the particle is metallic which provides the desired optical properties, while a

thin shell of a different material, typically an isolator, is used to both provide chemical

stability and electrical isolation. This idea for the implementation of core-shell particles

into solar cell devices has already been studied in the literature. However until now the

shell material was chosen to fulfill the previous aims but was not optimised for optical

performance. We have instead taken the approach of looking for more exotic materials

which, while being more difficult to prepare, may offer significant optical gains when

device implementation is taken into account.

The first step to studying the properties of core-shell particles is to extend the Mie theory

in order to account for shell layers. Since the problem remains in this case spherically

symmetrical, most of the groundwork used in the formulation of the standard Mie theory

still applies. We need only determine coefficients for the expansion of the scattered and

two internal fields in terms of spherical vector harmonics.

Consider a plane wave incident onto a core-shell particle as shown in fig. 3.1. The particle

has a core radius r1 and a shell radius r2 resulting in two size parameters x1 = kr1 and

x2 = kr2 where k is the wave vector in the surrounding material. The refractive indices

of the two materials will be n1 and n2 and the relative refractive indices are m1 = n1/n

and m2 = n2/n where n is the refractive index of the surrounding material. Like with the

single sphere, we may take the scalar generating solution inside the core to be expanded
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only in jn(r) terms (due to yn(r) being divergent at the origin) and the scattered field

solution to be expanded only in h1n(r) since this describes an outgoing spherical wave.

For the fields inside the shell (E2 and H2) we cannot simplify in this way and we must

keep the whole field expansion

E2 =
∞∑
n=1

Einc(fnM
1
o1n − ignN1

e1n + vnM
2
o1n − iwnN2

e1n), (3.25)

H2 =
−k2
ωµ2

∞∑
n=1

Einc(gnM
1
e1n − ifnN1

o1n + wnM
2
e1n − ivnN2

o1n). (3.26)

By applying the usual boundary conditions at the interfaces between core and shell, and

shell and exterior, we obtain eight equations for the variables an, bn, cn, dn, fn, gn, vn

and wn. By once again assuming that all materials are non magnetic (µ1 = µ2 = µ = 0)

and introducing another Riccati-Bessel function

χn(ρ) = −ρyn(ρ), (3.27)

the system of equations can be solved for the various coefficients allowing for all the

interior and scattered fields to be described. However, our definitions for the different

cross sections (scattering, absorption, extinction and near-field) only required the a and

b coefficients, that is, the coefficients associated with the scattered wave. Therefore for

calculations of the scattering cross sections, we only need these two coefficients. The

resulting value for the absorption cross section will be valid for the entire core-shell

particle. It will not be possible to distinguish between absorption in the core from

absorption in the shell using only the a and b coefficients. In order to separate out the

two, we have to numerically integrate the fields inside the volume of the core and shell.

This process is much more computationally demanding than evaluating just a and b.

Therefore we consider only the case of nonabsorbing shell materials, meaning that all of

the absorption can be attributed to the plasmonic core.



Chapter 4

Plasmonics with Symmetry

This chapter will be devoted to discussing analytical solutions to Maxwell’s equations

that are relevant to the field of plasmonics. Most of the chapter is focused on the optical

properties of nanoparticles, in particular the localised surface plasmon resonance which

is the most relevant to absorption enhancement in solar cells.

4.1 Maxwell’s Equations

Plasmonics is essentially the study of solutions to Maxwell’s equations with materials

bearing free charge carriers, i.e. metals. Therefore we begin by stating the macroscopic

Maxwell equations [43]

∇.D =ρf , (4.1)

∇.B =0, (4.2)

∇×E =− ∂B

∂t
, (4.3)

∇×H =Jf +
∂D

∂t
. (4.4)

The macroscopic form differs from the microscopic form via the inclusion of the D and

H fields. These fields incorporate not only the E and B fields, respectively, but also the

polarisation P and magnetisation M which depend on the material in which the field

is being evaluated. In real terms the macroscopic Maxwell equations describe the effect

of electric and magnetic fields on matter made up of atoms, whereas the microscopic

equations describe the effect of electric and magnetic fields on the constituents (electrons,

protons) of atoms. This is a viable approach because the net effect of all the individual

charges that make up the atoms in matter can be conveniently described by a single

19
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dielectric function. This function describes all the quantum effects which would have

to be included explicitly in an approach using the microscopic equations. Thus the

macroscopic equations, while exact from a mathematical view, are an approximation

of reality, albeit a very good one. We should keep in mind that for length scales (of

geometrical objects or of the wavelength of light) on the order of a few atoms, materials

may no longer be well described by a dielectric function.

4.2 Dielectric Functions of Materials

Dielectric functions will allow us to classify materials and are essential to solving the

macroscopic Maxwell equations. Here we state the general properties of the dielectric

function for a dielectric material and state some analytical models for both dielectrics

and metals. For further information on the topic see [44].

4.2.1 General Dielectric Function

Figure 4.1 shows the dielectric function of a generic dielectric material. The dielectric

function otherwise known as the relative permittivity εr has a real and an imaginary

part, εr = ε
′
r + iε

′′
r . The real part describes the polarisation charge density in the

material, while the imaginary part describes optical loss in the material (conversion of

radiative energy to thermal energy in the material). Since we are interested in the optical

properties of materials, we shall mainly focus on the dielectric function on the far right

of fig. 4.1 which includes the near infrared, visible and ultra-violet spectrum. However

a short description of the other processes will give us a more detailed understanding

of dielectric functions. The general dielectric function is split up into contributions

from different physical processes which each operate on their own timescale. Starting

at the lowest end of the frequency spectrum on the left hand side, we see that ε
′
r has its

maximum value, this is because at low frequencies all the possible contributions to the

permittivity are present.

The atomic and electronic contributions come from dipoles induced by incident fields.

The atomic or lattice contributions come from distortion in the positions of atoms in the

crystal lattice which causes a dipole to form opposing the incident field. This dipole acts

as a restoring force leading to simple harmonic motion for an oscillating incident field.

The electronic contributions are similar but describe the distortion of the electronic cloud

of the atoms themselves, which again induces a dipolar restoring force on the electron

cloud. These kind of simple harmonic motions can be well described using the Lorentz

oscillator model.
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Figure 4.1: The general features of the complex dielectric function of a dielectric ma-
terial. Contributions from ionic, dipolar, atomic and electronic resonances are shown.

Figure 4.2: The complex permitivitty ε = ε
′
+ iε

′′
of a Lorentz oscillator as a function

of the Lorentz natural frequency ω0. Three frequency regions are highlighted: below
resonance (pink), at resonance (light green) and above resonance (purple).

4.2.2 Lorentz Oscillator

If we assume that all other contributions to the dielectric function are negligible at optical

frequencies, then we need only describe the electronic contribution. The simplest model

for the permittivity of dielectric materials is the Lorentz oscillator. This model assumes

that each atom can be described as a sum of harmonic oscillators with the electrons

behaving like masses on a spring where the restorative force is given by the Coulomb

force. Although this is a simple model, it gives a good conceptual basis for understanding

dielectric materials. The equation of motion for the position of the electron x(t) can be
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Figure 4.3: The complex permitivitty ε = ε
′

+ iε
′′

of a Drude metal as a function
of the plasma frequency ωp. Two frequency regions are highlighted: below the plasma

frequency (light green) and above the plasma frequency (purple).

written as

m
d2x

d2t
= −mω0x+ qEx −mγ

dx

dt
, (4.5)

where m is the electron mass, ω0 is the natural frequency of the electron oscillations, q

is the electronic charge, Ex is the applied electric field and γ is the damping. On the left

hand side of the equation, we have mass times the acceleration of the electron, therefore

on the right hand side we assemble the forces acting on the electron. Firstly we have the

restorative force of the nucleus which is described by the natural oscillation frequency.

Secondly is the applied electric field. Thirdly we have the friction like force induced by

losses that is proportional to the velocity of the electron. If we then assume that both

the applied field and the motion of electron are time harmonic (i.e. the time dependence

is given by e−iωt), then the solution for the electronic position is

x(t) =
q

m

1

(ω2
0 − ω2)− iωγ

Ex. (4.6)

There are three distinct modes of motion depending on the frequency of the applied field

ω. At low frequencies there is a medium response from the electron to the applied field

and the motion of the electron is in phase with the applied field. When the frequency

reaches the value which minimises the denominator of equation 4.6, called the resonance

frequency, which for small damping γ is given by

ωr = ω0, (4.7)
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the oscillations will become very large in magnitude and a phase shift will occur with

the oscillations moving from in phase to antiphase with respect to the applied electric

field. At the resonance frequency the phase difference between the applied field and the

motion of the electron will be exactly π/2. At frequencies above the resonant frequency,

the amplitude of oscillations tends towards zero and the oscillations and driving force are

in anti-phase. This is the general description for a resonant process involving a driven

harmonic oscillator, and will come up again in the discussion of plasmonic resonances.

So far we have only described the position of the electron with time, to obtain the

dielectric function we must convert this to a resulting permittivity. To do this we use

the definition of the permittivity and polarisation

D = εrε0E, (4.8)

D = ε0E + P, (4.9)

P = Nqx. (4.10)

Where N is the density of oscillators per unit volume. Using these relationships leads

directly to the Lorentz equation for permittivity

εr = 1 +
ω2
p

(ω2
0 − ω2)− iγω

, (4.11)

ω2
p =

Nq2

ε0m
. (4.12)

ωp is the so called plasma frequency, the physical meaning of the plasma frequency

will be discussed in the following section. Figure 4.2 shows the frequency response of

the Lorentz dielectric function. The three regions discussed have been highlighted, the

pink region shows the low frequency in-phase response. This region has little loss (ε
′′
)

and far away from the resonance frequency the real part of the permittivity is close to

constant. This means that later we can use constant values of permittivity with zero

absorption as a model for dielectric materials far below their resonant frequencies. The

green region shows the resonance position where there is a shift from normal dispersion

(ε
′

increases with frequency) to anomalous dispersion where ε
′

decreases with frequency.

This region also has significant absorption which can be seen from the high value of ε
′′
.

To understand why there is a strong absorption at this frequency, the general idea of a

resonant process must be understood. In a driven harmonic oscillator, at the resonant

frequency, the driving force gives energy to the resonator during every cycle. At the

resonant frequency this energy builds up during each cycle of the harmonic driving

force, if there were no loss in the system (γ = 0) then the energy would keep building

up infinitely. However since we do have some losses, the energy in the resonator builds

up until the energy added by the driving force is exactly equaled by the dissipation
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from the losses. This is why absorption is significant at the resonant frequency, since

only at this frequency does energy build up in the resonator. At frequencies above

the resonant frequency the dielectric function tends towards the dielectric function for

vacuum (ε
′

= 1, ε
′′

= 0) which means there is no response to the driving force.

4.2.3 Drude Model

We now move to the standard model for the permittivity of metals, the Drude model.

This model shares a lot of mathematical similarities with the Lorentz model, but the

physical picture is quite different. The Drude model assumes that there is no restorative

force from the ions, i.e. the electrons are really free electrons. If we return to the

equation of motion used in the Lorentz model and remove the restoring force, we are

left with

m
d2x

d2t
= qEx −mγ

dx

dt
. (4.13)

By following the same steps as for the Lorentz oscillator, we will again arrive at the

permittivity given by

εr = 1−
ω2
p

ω2 + iγω
, (4.14)

ω2
p =

Nq2

ε0m
. (4.15)

This can be achieved by allowing ω0 → 0 in the Lorentz oscillator model, which will also

become apparent when plotting the Drude dielectric function. In fig 4.3 the Drude model

permittivity is sketched. This time there is no below resonance region, since the resonant

region is shifted to zero frequency. This means that for free electrons, the maximum

energy is transferred from the driving field to the electrons when the driving field is

static. This makes intuitive sense, since there is no restorative force, simply accelerating

the electrons in one direction will give them more energy than oscillating back and forth.

The loss in this case comes from scattering processes and limits how much energy the

electrons can be given (how much they can be accelerated). The reason this deserves

a classification separate from the Lorentz model (other than historical reasons) is that

the repercussions of a zero resonance frequency drastically change the optical properties.

For the example given in fig. 4.3 the absorption (ε
′′
) only starts to significantly increase

below 0.5ωp. If we assume that ωp lies in the optical region then the Drude model predicts

low absorption for metals, which is true, the main cause for absorption in metals in the

optical regime comes from sources not taken into account in the Drude model. The most
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impactful of these sources is the inter-band transition, in which an electron from a lower

energy band than the conduction band is optically promoted to the conduction band.

This will then decay non-radiatively causing a net absorption in the metal.

The real part of the permittivity is below zero for frequencies below ωp and between zero

and one for frequencies above ωp. This gives a stark change in the optical behaviour of

the metal, for ω < ωp the metal will be highly reflective. This is because any incident

electromagnetic wave will cause the free electrons to oscillate in such a way that they

produce a secondary wave that destructively interferes with the incident wave. The

result is no transmitted wave and only a reflected wave. For ω > ωp the oscillations

become faster than the electrons can respond, this is because ωp is the natural frequency

of motion of the free electrons. For these frequencies, we move to the bulk plasmon

description.

4.3 Bulk and Surface Plasmon

Having discussed the Drude model, we have already covered the concept of the bulk plas-

mon since it is an integral part of the model. Figure 4.4 shows the dispersion relation

for three kinds of plasmon: the bulk plasmon, the surface plasmon polariton and the

localised surface plasmon resonance. Also shown is the light line (dashed line) which is

crucial to understanding the relationship between a bulk and surface plasmon. The bulk

plasmon frequency is shown as a horizontal line labeled ωBP , this line represents the

longitudinal oscillations of charge density which are usually referred to as a bulk plas-

mon. Likewise the surface plasmon frequency is also shown as a horizontal line. This

corresponds to longitudinal charge density oscillations that occur at a metal surface

propagating parallel to the surface. They are lower in energy than the bulk plasmons

since the region above the surface which does not contain plasma does not contribute

to the restoring force present in the Drude model. The weaker restoring force for elec-

trons oscillating parallel to the surface means that less energy is required to excite the

oscillations.

The figure also shows the dispersion of two modes in solid black lines. These modes

are the bulk plasmon polariton (upper) and surface plasmon polariton (lower), the word

polariton means that the longitudinal mode has been coupled to the light. The dispersion

of the bulk plasmon and surface plasmon polariton are both formed due to the no

crossing principle. Light is a transverse wave while charge oscillations are a longitudinal

wave. However since charged particles may also be affected by electromagnetic fields,

the two types of oscillation may be coupled together. Generally in physics where there

exists a system of two weakly coupled modes (e.g. two masses on springs which are
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Figure 4.4: (a) The dispersion of the bulk plasmon and surface plasmon polariton
are shown in solid black lines, the lightline is shown as a diagonal dashed line. The
three horizontal lines refer to the frequencies of the three kinds of plasma resonance,
the bulk plasmon (ωBP ), the surface plasmon polariton (ωSP ) and the localised surface
plasmon resonance also known as the particle plasmon (ωPP ). (b) the physical charge
distribution for each plasmon type, the bulk and surface plasmon are coupled transverse

and longitudinal travelling waves, the particle plasmon is a standing wave.

connected by a third spring) the dispersion of the two modes will seemingly repel each

other leading to an avoided crossing with a gap forming between the modes. In this

case, the light mode and the electron density mode avoid crossing each other, leading

to a higher energy mode called the bulk plasmon since it propagates inside the metal,

and the surface plasmon polariton since it propagates at the surface between the metal

and the surrounding medium. The slight difference being that the limiting longitudinal

frequency for the surface plasmon polariton is reduced to ωSP compared to ωBP for the

bulk plasmon. For both types of wave, when the dispersion moves closer to one of the

two horizontal lines, the oscillations become more longitudinal in nature. Conversely

when the dispersion curves move closer to the light line, the transverse components

of the E field will dominate over the longitudinal ones. Since bulk plasmons involve
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propagation purely inside the metal, they are of little use to absorption enhancement in

solar cells, therefore we move onto the surface plasmon polariton which is more suitable

for this application.

Consider a planar interface between a metal and dielectric in the x-y plane at z = 0.

We wish to find a solution to Maxwell’s equations for a wave travelling along the surface

that is also bound to the surface. That means that it decays exponentially when moving

away from the surface. The symmetry that is exploited in order to obtain an analytical

solution is in the x-y plane. The dielectric and metal are homogeneous in the upper and

lower half space, respectively, meaning the only discontinuity in permittivity is at z = 0.

By using the continuity of the transverse E field components and the normal D field

component it is possible to show that a mode can exist if there is a sign change in the

real part of the permittivity between the two materials. From the analysis of the Drude

and Lorentz models, we can directly observe that for large frequency regions, a metal

will have a negative real part to the permittivity, while a dielectric will have a positive

part so long as it is below the Lorentz resonant frequency. If that is the case then the

dispersion for the in plane component of the k vector for the wave (i.e. the propagation

constant) will be given by [45]

k =
ω

c

(
ε1ε2
ε1 + ε2

)
. (4.16)

Where ω is the frequency of the wave, c is the speed of light in free space and ε1 and ε2 are

the permittivities of the metal and dielectric, respectively. The physical interpretation

of this bound mode is a coupling between the longitudinal charge density oscillations

and the transverse electromagnetic wave. This dispersion is plotted in fig. 4.4, the

dispersion line changes from being very close to the light line for low frequency, until it

is asymptotically horizontal as we increase towards the surface plasmon frequency. How

close the dispersion is to either one of these limits determines the relative strength of

the components; the transverse ones dominate near the light line, while the longitudinal

ones dominate close to ωSP . In fact ωSP can be calculated by rearranging 4.16 and

letting the wave vector k → ∞. Assuming a lossless Drude model for the dispersion of

the metal and vacuum for the surrounding medium we obtain

ωsp =
ωp√

2
. (4.17)

The reason that such modes are not excited when shining light onto a metallic surface

is that the momentum of a SPP mode is higher than that of a photon in the dielectric

medium where the SPP mode should form. This can be understood by looking at the
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dispersion curve of a photon and SPP mode. Figure 4.4(a) shows the dispersion of a

photon (solid black line) and a SPP mode (dot dashed black line) as well as the SPP

resonance frequency (ωsp). The SPP mode lies to the right of the light line for all

frequency values, this means that it has a higher wavevector and therefore momentum.

One solution to exciting this kind of plasmonic mode is to use evanescent coupling,

similar to the concept of quantum tunneling for electrons. In a simple prism, for certain

incident angles, light will be totally internally reflected. At the total internal reflection

interface an evanescent wave will occur, meaning that the totally internally reflected

wave decays exponentially outside the prism. If a metallic surface is brought close

(typically less than 100 nm) to the prism, then the evanescent wave can excite a SPP

mode propagating at the air/metal interface. This is because the prism has a higher

permittivity than the air, meaning that light inside the prism has a higher k vector and

therefore more momentum. If the k vector parallel to the interface matches kspp given

by equation 4.16 calculated using the metal and air permittivity, then a SPP mode will

be excited. This can be imaged by measuring the reflection from the prism, which will

drop when coupling to the SPP occurs. This setup for measuring a SPP mode is called

the Otto configuration.

Other methods exist for coupling to a SPP mode that are more practical for photovoltaic

applications. A grating structure formed in the metal can provide the extra momentum

to incident light in order to couple to SPP modes. The diffraction orders tend to be

narrowband and angle dependent, therefore could provide difficulties in covering the

whole spectrum and for devices without tracking. Devices that are more tolerant to a

range of incident angles can be formed using localised surface plasmon resonances.

4.4 Localised Surface Plasmon Resonance

The third and final type of plasmon is the localised surface plasmon resonance (LSPR),

also called particle plasmon. This kind of plasmon is excited in nanoparticles and for

the case of a spherical nanoparticle, Mie theory can be used to compute the solution

which was shown in chapter 3. Note that for the LSPR we do not obtain the dispersion

for a type of travelling wave as in the case of bulk and surface plasmon. This is because

a nanoparticle has a finite extent in all three directions. Therefore the coupled charge

density oscillations cannot travel anywhere and they form a kind of standing wave at

the particle boundary. Since the resonance frequency is independent of the incident

wavelength, there is no dispersion curve for the LSPR, as long as the light line passes

through the frequency of the LSPR, it will be able to excite an LSPR.
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This has the implication that there is no momentum matching condition necessary to

excite a LSPR, as long as the frequency of light matches the LSPR frequency (ωPP in

fig. 4.4) the resonance will be excited. To understand why momentum does not need

to be conserved in more detail we rely on Noether’s theorem. The theorem states that

every differentiable symmetry of the action of a physical system has a corresponding

conservation law, which means that symmetries in physical systems lead to conservation

laws. In the case of SPP modes, we assumed that the interface is infinitely extended

in the x − y plane, meaning that any translation in the x − y plane would leave us

with exactly the same system. That is why the kx and ky wave vector components

are conserved in exciting a SPP mode (Note kz is not conserved because there is no

continuous symmetry in the z direction). Likewise for the particle, the system is not

symmetric with respect to translations in any direction due to the particle’s finite extent,

thus meaning that there is no momentum conservation requirement.

Typically when measuring the optical behaviour of nanoparticles, the extinction cross

section is used as the figure of merit. The extinction is the total of both scattering and

absorption. To measure extinction means to pass light through a solution containing

nanoparticles and measure the intensity of the directly transmitted beam, meaning that

light scattered into different angles is not measured, the reduction in light intensity

in the transmitted beam is equal to the extinction. The measured extinction should

be equal to the distance the light has to travel through the sample, multiplied by the

concentration of particles in the sample and by the extinction cross section Cext. This

is valid for low concentrations where the effect of multiple particle interactions may be

neglected.

The frequency at which the resonance occurs can be obtained by looking at the extinc-

tion cross section. Although an expression for the exact extinction cross section was

introduced in chapter 3, we refer here to a simplification in order to make the origin

of the LSPR resonance frequency clearer. The extinction cross section for a spherical

particle in the dipole approximation is given by

Cext = 9
ω

c
ε3/2m V

ε
′′

(ε′ + 2εm)2 + (ε′′)2
. (4.18)

Where V is the particle volume, ε
′

and ε
′′

are the real and imaginary parts of the metal

nanoparticle dielectric function and εm is the dielectric function of the surrounding

medium. This quantity will be maximised if the denominator of the fraction tends

towards zero, in which case we say a resonance has occurred. If we assume a lossless
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Drude model (ε
′′

= 0) with vacuum surrounding the particle, then the frequency at

which the resonance will occur is

ωpp =
ωp√

3
, (4.19)

which is lower than the surface plasmon frequency (ωSP =
ωp√
3
) for the same choice of

materials.

4.5 Near Field and Far Field

For sources of radiation it is convenient to make a mental separation between the near

and far field. The far field refers to field components which have a non-negligible ampli-

tude at a distance far from the source, i.e. using conventional detectors this is the field

which will be measured. The condition for a non-negligible amplitude is that the electric

field should not decay more rapidly than 1/r, where r is the distance from the source.

With this dependence, the intensity (which is measured by detectors) decays with 1/r2.

A thin shell surrounding the particle will have a surface area of 4πr2, which means that

the intensity integrated over the shell area will be constant given a 1/r2 dependence.

Thus the total intensity of light does not decrease when moving away from the source,

it simply spreads out over a larger surface area. As long as we take into account the

angular fraction of light hitting the detector, the measurement will be independent of

the distance from the source.

The near field refers to field components which decay quicker than 1/r. In the vicinity of

the source, these field components will dominate in magnitude compared to the far field

components. In contrast to the far field, the measured intensity will strongly depend

on the distance from the source since the angular integrated intensity decreases with

distance from the source. The question of how to measure the intensity of the near

field is difficult, since anything which will interact with the near field will change the

surrounding of the source, thereby changing the near field produced. Therefore the goal

is to measure the near field intensity while having the smallest impact possible on the

source. This can be achieved by placing a secondary source (e.g. a fluorescent molecule)

close to the source. The secondary source intensity is dependent on the excitation

intensity which comes from the near field. This idea is exploited for the detection of

extremely low concentrations of molecules in the method of surface enhanced Raman

spectroscopy (SERS). In this case, since a Raman process is a two photon process, the

signal is proportional to the square of the exciting field. The result is that the high
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near fields are further magnified, allowing signal boosts in the range of thousands to

millions. Another option is that of a shielded tip of a waveguide near the particle. The

evanescent fields of the particle can couple into the waveguide through the tip, whereas

radiative waves are prevented from coupling due to the below wavelength tip diameter.

This is the principle behind scanning near field microscopy (SNOM). Until now we have

described a SNOM device in collection mode, however it is also possible to run a SNOM

in illumination mode. By sending light into the waveguide, the tip itself will become a

source for near fields. These fields can then excite the nanoparticle causing it to emit far

field radiation which is then detected. For either mode, the tip is raster scanned near

the particle to gain a complete image of the near field strength.

The actual value for the near field found via measurements will vary strongly upon

the position with respect to the particle. In general we desire a single figure of merit

that describes the near field surrounding the nanoparticle. For sensing applications the

highest field enhancement in the near field might be used, even though this is dependent

on position near the particle. For photovoltaic applications, we are more interested in

the average field enhancement surrounding the particle since the absorption in a material

is based on the volume integral of the electric field in that material. The average field

strength in a thin shell surrounding the particle could be used, however the results will

depend strongly on the shell thickness. Therefore to keep the figure of merit equal

for different particles, we evaluate the field strength only at the particle surface. That

means integrating the field over the surface of the particle. This is the definition of

the near field cross section which will be used during the present work. This might

correspond to the measured value if it could be integrated over a very thin shell around

the particle, however the measurement device is unlikely to be able to measure the

field strength directly at the particle surface. Therefore the near field cross section is

a purely theoretical concept used to quickly evaluate the near field strength around a

nanoparticle.

4.6 Plasmonic Materials

Using the theoretical description of the optical properties of isolated spherical particles

from chapter 3, we move on to looking at the realistic choices available for optically

active plasmonic materials. The principle restriction is simply to have a high density

of free charge carriers, leading to a localised surface plasmon resonance in the optical

regime. This describes most metallic materials therefore we impose further criteria in

order to find the most useful materials. The criteria are (listed in order of importance

from most to least):
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Figure 4.5: The normalised extinction cross section Qext decomposed into absorption
Qabs (dark grey) and scattering Qsca (light grey) as a function of wavelength, for three
different materials. The materials and radii are Al r = 30 nm (left), Ag r = 50 nm
(middle) and Au r = 80 nm (right). The particles are in vacuum. The inset in each

case shows the scattering efficiency over the same wavelength range.

• Low losses due to inter-band transitions in the optical region.

• Good chemical stability.

• Abundant/low cost.

Depending on the application these criteria may be more or less important. For exam-

ple sensing applications may not require low cost materials if it means outperforming

other sensing techniques. However for the application to solar energy, all three of these

criteria are critical. Unfortunately no one material can fulfill all these criteria. The

most important criterion for optical applications is the first one since if there are high

inter-band transition losses, they will heavily damp the plasmonic resonance, meaning

that the desired plasmonic effect cannot be reached. This rules out most transition

metals since the filling of the d shell leads to a large amount of inter-band transitions

[46]. The alkali metals avoid this problem but fall at the next hurdle, they are extremely

reactive with both air and water, meaning that integration in realistic devices would be

extremely challenging . The final column of transition metals contains the noble metals

Al, Cu, Ag and Au. These four materials avoid inter-band transitions in at least part

of the optical spectrum. They are relatively stable (Au being superbly stable, while Al,

Ag and Cu are prone to forming self limiting oxide layers). Of these four materials, Ag

and Au have the most desirable optical properties (low losses) which is the reason why

most plasmonic research has been conducted on particles made from one of these two

materials [47–49]. However they are both rare elements and carry with them a high cost.

Cu and Al which may not perform as well are significantly less expensive which may

end up being crucial for realistic device applications. Al has a high plasma frequency

meaning that it might be useful for different applications compared to Ag and Au. Cu

however has a similar plasma frequency to Au, but with higher losses it can be generally

considered a cheaper but worse version of Au.
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Figure 4.5 shows the normalised extinction cross section for the materials Al, Ag and Au,

decomposed into the scattering (light grey) and absorption (dark grey). The insets show

the scattering efficiency for each material, that is the ratio of scattering to extinction.

For the application to photovoltaics, we desire for the scattering efficiency to be as high

as possible. For the case of Al the resonance lies primarily in the UV region, this is due

to the high density of free charge carriers in Al. Although redshifting of the resonance

is possible, which will be discussed in detail later, it should be noted that a plasmonic

resonance in Al will always be at a higher frequency compared to Ag and Au. The

inset shows the scattering efficiency, which while high at the surface plasmon resonance

wavelength at around 200 nm, drops in the optical region and near infrared due to

an inter-band transition centered around 800 nm. Ag shows a plasmonic resonance at

around 400 nm wavelength, with both a high scattering efficiency and a high total value

for the extinction. This means that Ag has the strongest interaction with light at optical

frequencies and explains why this material is heavily studied in the literature. Below 350

nm inter-band transitions drop the scattering efficiency from over 90% to less than 50%

meaning that Ag is not a good material for applications in the UV region. The behaviour

for Au looks comparable to Ag, with a plasmonic resonance around 550 nm and inter-

band transitions beginning at wavelengths below this. Therefore for applications that

require the complete optical region, Au might be unsuitable due to optical losses at

wavelengths below 500 nm. For applications in the red/ near infrared, Au can be a very

good material providing lower losses than Ag due to a higher conductivity.

4.7 Nanoparticle Radius

As previously alluded to, the wavelength of the plasmonic resonance can be shifted. One

of the possibilities for doing this lies in the particle size. Figure 4.6 shows the normalised

scattering cross section for an Ag nanoparticle in air as a function of both wavelength

and particle radius. Starting with the smallest particle radii the spectral behaviour is

relatively simple, there is a single resonance peak at around 350-400 nm. Since the

particle is small compared with the wavelength, the dipole approximation is valid and

we obtain a dipole response. As the radius increases and becomes comparable with the

wavelength, the Mie theory size parameter will also increase. For a larger size parameter,

the Mie coefficients for higher order multipoles will become significant. This is visible as

an extra peak emerging in the scattering cross section, firstly at a radius of around 100

nm (the quadrupole mode) and another at around 150 nm (the octupolar mode). These

modes appear due to the boundary conditions which determine the Mie coefficients

being dependent on the size parameter of the nanoparticle. We can also observed that

each individual resonance is redshifted due to the increasing particle radius. This is a
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Figure 4.6: The normalised scattering cross section (Qsca) for a spherical Ag particle
in vacuum as a function of both the particle radius and wavelength.

retardation effect and is a consequence of the particle having a finite size, this will be

discussed in more detail in the following chapter on numerical methods where the optical

shifting is decomposed into particle size increases in different directions with respect to

the light incidence and polarisation vectors. For now it is enough to know that particle

resonances can be redshifted by increasing their size and that this kind of shifting tends

to broaden the resonance and decrease the peak intensity.

4.8 Surrounding Material

Another option for shifting the plasmonic resonance is by changing the surrounding

medium. All the results shown until now were for a surrounding medium of air which

is unlikely to be encountered in reality. Figure 4.7 shows a plot similar to 4.6, with

the radius dependence being replaced by a dependence on the surrounding medium re-

fractive index. In this case the behaviour is simpler, the resonance position is linearly

redshifted with an increase in the surrounding medium refractive index. The resonance

also increases in strength as it is redshifted, this is opposite to the behaviour seen with

the radius dependence where redshifting leads to a decrease in the resonance intensity.

This underlies the different physical description for the source of the redshifting. For

the case of the surrounding material refractive index, the reason can be understood by

returning to the simplest model of dielectric media. In this model we assume that each
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Figure 4.7: The normalised scattering cross section (Qsca) for a spherical radius 50
nm Ag particle as a function of both the surrounding medium refractive index and

wavelength.

atom in the dielectric medium is represented by a single dipole. When the plasmonic

resonance occurs, there will be associated surface charges at the sphere/outer medium

interface. These surface charges are able to polarise the surrounding medium. That

means where there is positive surface charge, the negative ends of the dipoles are at-

tracted to the particle and the positive ends are repelled, and vice versa for negative

surface charge. The net effect of the polarisation charge and the surface charge is that

they will partially cancel out, and the more polarisation charge there is, the more they

are able to cancel each other out. More polarisation charge means that the dielectric

material has a higher number of dipoles per unit volume which is equated to a higher

refractive index. Therefore we can say that a higher refractive index causes the surface

charge to be more compensated for during a plasmonic oscilation. Now we return to the

dynamics of the plasmonic oscillation, the restoring force for the LSPR is the surface

charge build up on the other side of the particle. If that surface charge is reduced, then

the restoring force will be weakened. In any system of simple harmonic motion, a weaker

restoring force leads to lower frequency and higher amplitude oscillations, which fits in

this case since we observed a redshifting and increase in Qsca.
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Figure 4.8: The spectrally integrated normalised scattering cross section (Qsca) for
a radius 35 nm spherical Ag core 10 nm thickness shell in vacuum as a function of
the refractive index of both the shell and surrounding medium. The spectrum was
integrated over the wavelength range 500 nm to 1100 nm, and normalised to the same

range.

4.9 Core Shell Particle

As discussed in chapter 3, it may be necessary to use plasmonic core - dielectric shell

particles for successful integration of plasmonic particles into devices. The shell also

provides further design parameters which we can use to optimise the system. We first

investigate a core-shell particle consisting of a radius 35 nm Ag core surrounded by a

radius 45 nm shell giving a total shell thickness of 10 nm. The geometry has been

previously shown in fig. 3.1. The shell refractive index and the outer medium refractive

index will be varied from one to four in order to investigate the effect on the plasmonic

resonance of different combinations. Since plasmonic effects are resonant, they will

always work in a limited spectral region. Depending on the application this can be a

limitation or a benefit. For the application proposed here, that of solar energy we require

a broadband resonance covering a large spectral region. For ultra-thin chalcopyrite

photovoltaics, the region lies between 500 nm and 1100 nm wavelength. Thus we have

chosen this spectral region to evaluate our results.

Figure 4.8 shows the spectrally integrated normalised scattering cross section (Qsca) for

both shell and surrounding medium refractive index varying from one to four. This gives

the average value of Qsca within the spectral region and is calculated via
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Figure 4.9: The spectrally integrated normalised near field cross section (Qnf ) for
a radius 35 nm spherical Ag core 10 nm thickness shell in vacuum as a function of
the refractive index of both the shell and surrounding medium. The spectrum was
integrated over the wavelength range 500 nm to 1100 nm, and normalised to the same

range.

< Qsca >=

∫ λmax
λmin

Qsca(λ)dλ∫ λmax
λmin

dλ
. (4.20)

Similarly fig. 4.9 shows the spectrally integrated normalised values of Qnf for varying

shell and surrounding medium refractive index. The near field cross section is evaluated

at the outermost particle boundary, in this case the outer shell boundary. Since the range

of refractive indices simulated are identical, it means that the upper left half corresponds

to cases where the shell material refractive index is higher than the surrounding medium

refractive index. The opposite will be true for the lower right half of the image. The

general trend is that we see a larger integrated value in both Qnf and Qsca if the shell

has a higher refractive index than the surrounding material.

In order to investigate the cause of this effect in more detail, we present also the near

fields for two core-shell particles which exemplify the trend. Figure 4.10 shows the

electric field strength around an Ag/dielectric core/shell particle in a dielectric medium.

In part (a) the medium has a higher refractive index compared to the surrounding (3

compared to 1) with the result being that the resonance is largely extracted outside of

the shell. This will lead to a higher near field cross section but also a higher scattering
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Figure 4.10: The total electric field strength in the plane of polarisation for an Ag/di-
electric core/shell particle in a dielectric medium. In part (a) the shell has a refractive
index of 3 and the medium a refractive index of 1. In Part (b) these values are reversed

with the shell being 1 and the medium being 3.

as the near field corresponds to the dipole source which extends into the far field. In

Part (b) the roles are reversed, the shell has a refractive index of 1 while the medium

has a refractive index of 3. In this case the plasmonic resonance is strongly confined

inside the shell, thus lowering both the near field and far field scattering cross sections.

To understand where this comes from, consider the electrostatic case shown in fig. 4.11.

First we consider the electric field applied to pure dielectric particles in a dielectric

background. In part (a) the particle has a high refractive index with a low surrounding

medium refractive index, while in part (d) the two refractive indices are reversed. In part

(a) the surface charge produced will act against the applied field, thereby lowering the

total field inside the particle. Likewise the opposite is true in part (d), where the lower

refractive index will enhance the field inside the particle due to surface charges aligned

with the applied field. We now move to part (b) and (e), surface charge on the metallic

particle always acts to screen the electric field inside the particle. Finally we come to

the core shell particles shown in (c) and (f). Clearly in the case of (a) and (b), the

surface charges are aligned with each other therefore the fields act in the same direction

inside the particle, meaning that the net effect of the plasmonic core will be amplified by

the dielectric shell. However for (d) and (e) the surface charges have opposite polarity

therefore the fields are antiparallel and will act against each other, meaning that the

net effect of the core shell particle will be to lessen the effect of the plasmonic core.

Since these surface charges are the source of the dipole radiation outside the particle,

the scattering will also be enhanced or lowered by the presence of the dielectric shell.
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Figure 4.11: The response to an applied electric field for different core shell particles
in the electrostatic regime. Parts (a-c) show a low index background with a high index
shell, while parts (d-f) show a high index shell with a low index background. Parts (a)
and (d) show the response of dielectric particles without a metallic core. Parts (b) and
(e) show the result of the metallic core without the dielectric shell. Parts (c) and (f)

show the net combination of parts (a-b) and (d-e) respectively.

Extending this outside of the electrostatic regime, the effect of an applied oscillating

field on solid dielectric particles will be to create oscillating dipoles which are either in

phase with the applied field (for a particle with a higher n than the surrounding) or

it will be in antiphase with the applied field (for a particle with a lower n than the

surrounding). The dipole radiation from the shell then interacts with dipole radiation

from the plasmonic core providing either constructive or destructive interference. Higher

order modes of both the shell and the core will also follow the same trend.

The normalised near field cross section has its highest integrated value for a very large

value of m2 = nshell/nsurrounding, peaking at m2 = 2.2. The maximum value for the

Qsca comes at a smaller value of m2 = 1.28, however this could be due to the scattering

resonance being more strongly redshifted by a higher local refractive index, meaning

that for high values of m2, the plasmonic resonance is shifted out of the spectral re-

gion of interest therefore no longer contributing to the integrated value. This could
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Figure 4.12: The normalised near field cross section (Qnf ) for a spherical Ag core 10
nm thickness shell in vacuum as a function of the core radius and wavelength for two
different shell materials. The two different materials are AlSb (left) and SiO2 (right).

The colour scale is logarithmic.

be counteracted by using either a smaller particle, or a material with a higher plasma

frequency.

Given this insight into the general properties of core shell particles, we turn to look

at more concrete examples. The idea of using an isolating dielectric shell for metallic

particles has been proposed in the literature typically with SiO2 [50] or TiO2 [51, 52],

however more exotic materials have been used depending on the application [53–55].

However, it seems that until now little thought has been given to the optical proper-

ties of the isolating layer. We have shown that the optical performance of plasmonic

nanoparticles is significantly enhanced when surrounded by a shell with a higher refrac-

tive index than the surrounding material. For the case of organic photovoltaics and dye

sensetised solar cells, where the use of plasmonic particles has shown to be promising,

this is fairly easy to achieve. That is due to organic materials typically having a low

refractive index compared to inorganics. If we instead consider nanoparticles in direct

contact with chalcopyrite material, the choice of shell material becomes more limited.

This is because CIGSe has a refractive index ranging from 2.8 to above 3 in the visible

region. Typical isolating shell materials like SiO2 or TiO2 will have a significantly lower

refractive index than the surrounding CIGSe, limiting the scattering and near field cross

sections. Casting the net for available shell materials a little wider, we turn to the ma-

terial AlSb, which is a semiconductor with a band gap in the blue optical region and a

high refactive index throughout the optical region.

This is demonstrated in fig. 4.12 where the near field cross section is shown as a function

of core radius and wavelength for both an AlSb and an SiO2 shell. A 10 nm shell thickness

is used for all core radii, in order to properly isolate the metallic core. The outer medium
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Figure 4.13: The normalised scattering cross section (Qsca) for a spherical Ag core
10 nm thickness shell in vacuum as a function of the core radius and wavelength for two
different shell materials. The two different materials are AlSb (left) and SiO2 (right).

is assumed to be CIGSe without absorption, this is an approximation necessary since

the outer medium for a Mie theory calculation must be non-absorbing, however in the

weakly absorbing regime it is a good approximation. The colour scale showing the value

of Qnf is logarithmic, meaning that the values of Qnf achievable using the AlSb shell

are orders of magnitude higher than those reachable using a SiO2 shell. Since we are

varying the radius of the plasmonic core, we see the typical resonances due to different

orders of multipole arising due to the increased particle size. The dipole mode shows the

strongest resonance, however it may be more beneficial to use a slightly larger particle

to exploit multiple resonances for a broadband effect. Similarly in fig. 4.13 the same

comparison is made between the two different shells but for Qsca instead of Qnf . In this

case the scale is linear since the difference between the Qsca for AlSb and SiO2 is smaller.

Within the spectral region of interest, the AlSb shell still shows a value of Qsca that is

one to six times larger than for the SiO2 shell. It is clear that whatever the optimal

value for the core radius, the values of Qnf and Qsca will be much larger using an AlSb

isolating shell.

The previous analysis can equally be performed with other material systems. The fast

Mie theory implementation developed as part of the current work allows for the kinds

of multidimensional data sets presented in this chapter to be evaluated in a few seconds

on a standard desktop computer. We believe that organic and inorganic optoelectronic

systems involving the use of plasmonic core/isolating shell particles can greatly benefit

from this kind of optical optimisation. For a quantitative prediction of the actual ab-

sorption enhancement obtained using these nanoparticles requires a simulation of the

entire integrated device. Therefore we move on to the second chapter where we discuss

a numerical approach to solving plasmonics problems that no longer contain symmetry.



Chapter 5

Finite Element Method

The key tool to solving the equations describing plasmonics in the first chapter was

exploiting the symmetry of the problem. Real devices may not have such symmetries and

therefore a more robust method of solving Maxwell’s equations needs to be developed.

Thus we turn away from analytical solutions to the world of numerics. We first discuss

some of the most prominent numerical methods for nanooptical applications, then focus

on our method of choice, the finite element method. The following chapter is devoted

to examples of this method including novel techniques used to speed up simulations.

5.1 Finite Element Method

The most visible part of finite elements is the discretisation of the computational domain

into elements, be they triangular, rectangular or any manner of shape. However this does

not emphasise the mathmetical underpinning of the method. In fact we can imagine the

computational domain being discretised with a single element. Therefore even though

the breakdown into individual elements is one of the strongest advantages of the finite

element method, we will leave it until the end of the section. We firstly try to understand

the mathematics behind the method.

The first step is to understand the difference between the operational form and varia-

tional form of a problem. The operational form is the standard form for a differential

equation, e.g. we want to find the function u(x) that follows the following differential

42
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equation

− d

dx

(
p(x)

d

dx

)
u(x) + q(x)u(x) =f, (5.1)[

− d

dx

(
p(x)

d

dx

)
+ q(x)

]
u(x) =f, (5.2)

Lu(x) =f. (5.3)

Where all of the differential parts and other functions (here p(x) and q(x) are arbitrary

functions) are contained in the operator L. This is a convenient way to write all of the

difficult parts of the equation. To describe the variational form we first need to remind

ourselves of the definition of the inner product

〈φ, ψ〉 =

∫
φψ∗dΩ. (5.4)

This is the functional equivalent of the scalar product for vectors. With that definition

in mind, we define the following functional

I(v) = < Lv, v > −2 < f, v > . (5.5)

The special feature of this functional is the following: I(v) is minimised for v = u

only if the first derivative vanishes there. The condition for the derivative to vanish is

the original equation Lu = f . Thus the problem of minimising I and inverting L are

equivalent. To see this, let us assume that L, v and f are real numbers

I(v) =Lv2 − 2fv, (5.6)

dI

dv
|v=u =2(Lu− f) = 0, (5.7)

→ Lu =f. (5.8)

Notice that this is only true if L is a positive number, otherwise the minimum is at

v = −∞. If we return to the world of functions and operators, this is equivalent to

ensuring that the operator L is positive definite. Now assume that the functional I has

a minimum at v = u, if we add any vector to u then we must arrive at a value of I larger

than I(u) since it is the minimum value. For any constant number ε and any vector v,
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the following must be true

I(u) ≤ I(u+ εv) = < L(u+ εv), (u+ εv) > −2 < f, (u+ εv) >, (5.9)

= < Lu, u > + < Lεv, εv >

+ < Lu, εv > + < Lεv, u >

−2 < f, u > −2 < f, εv) >, (5.10)

=I(u) + 2ε[< Lu, v > − < f, v >] + ε2 < Lv, v > . (5.11)

Since ε can be positive or negative, and the rhs must be larger than the lhs, it must be

true that the coefficient of ε vanishes which establishes

< Lu, v > − < f, v >= 0. (5.12)

This is the standard motivation for the finite element method. In this case the example

partial differential equation (5.1) was equivalent to the Helmholtz equation from physics,

however we wish to solve Maxwell’s equations. For the case of Maxwell’s equations

L is not a positive definite or even self adjoint matrix. However it has been shown

that equation 5.12 can still be solved [56], allowing us to obtain solutions to Maxwell’s

equations.

Equation 5.12 looks fairly innocuous, but it changed things significantly. The problem

is now stated in the so called weak formulation. It is called weak since we no longer

require Lu = f , instead requiring < Lu, v >=< f, v > for all v. To understand this

difference we reference an example from physics, the so call Dirac delta function. This

function can be used to discribe the charge distribution of a single point source. It has

the following properties

δ(x) =∞, x = 0, (5.13)

δ(x) =0, x 6= 0, (5.14)∫ ∞
−∞

δ(x)dx =1. (5.15)

We might ask, how can this function be used in physics, since it gives the value of the

charge distribution as being infinite at the origin, something that is clearly unphysical.

However this function is only ever evaluated with respect to an integral over a region

of space, giving a defined value. In this same sense, the solutions obtained from the

weak formulation only make sense in the integral form, meaning that there are fewer

restrictions on the types of functions used. This step is not necessary to solving the

problem in principle, in practice it is essential since it allows us to consider trial functions
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with less strict boundary conditions. This is crucial to obtaining a tractable and efficient

solution.

Until now we have described the variational principle which is used in the finite element

method. Remember that we introduced a trial function made up from basis functions.

If we choose functions which are defined over the whole computational domain, it may

be quite difficult to obtain a basis which comes close to approximating the real solution.

Therefore the finite element approach is to subdivide the computational domain into

elements. Each element defines a geometrical region and a particular local function

which can be expected to approximate the full solution within the geometrical region.

Typically polynomial functions are used for their simplicity.

The great advantage of finite elements over other methods is that the elements do not

have to be layed out on a structured grid. That means that irregular and curved sur-

faces can be very accurately reproduced without stair-casing errors. Additionally, the

resolution of the elements can be increased in regions of high field gradients, meaning

that computational effort is used efficiently by having a fine approximation where it is

needed, and a rougher approximation where it is sufficient.

As we have seen, Maxwell’s equations need to be expressed as a functional to minimise,

in order to use the finite element method. By applying the time harmonic ansatz we

may reduce Maxwell’s equation to one differential equation [57]

1

ε0εr
∇× 1

µ0
∇×E− ω2E = 0. (5.16)

We then multiply this with the test function Φ̄ and integrate over the computational

domain to obtain a functional∫
Φ̄ ·
[

1

ε0εr
∇× 1

µ0
∇×E

]
− ω2Φ̄ ·Ed3r = 0. (5.17)

We then minimise the integral with respect to variations in the test function Φ̄.

The first approach to increasing the accuracy of a finite element computation is to use

smaller elements. If any curved surfaces are involved in the geometry, this will help

to better resolve those surfaces. More importantly the polynomial basis functions are

able to better describe the full solution over a smaller region. The second approach to

increasing the accuracy is to use a higher order of polynomial basis function. If there is

some variation in the full solution over the region of a particular element, then it can be

expected that a higher order element is able to better resolve this variation.

The particular finite element solver used during this work is JCMsuite [57]. Which is an

adaptive finite element solver especially suited to problems in nano-optics. In particular,
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it provides features such as the ability to evaluate scattered fields in the far field and

to couple FE simulations to scattering matrix simulations in order to extend the size of

domain capable of being simulated by the FEM. This will be covered in more detail in

chapter 11

5.2 Boundary Conditions

The choice of boundary conditions when performing FEM simulations is crucial. For

the scattering problem, three principle boundary conditions are useful. These are pe-

riodic Floquet type, perfect electric /magnetic conductor type and perfectly matched

layer (PML) type. Periodic boundary conditions are used to turn a finite simulation

into an infinitely extended one, by periodically repeating the simulated unit cell. For

nanostructured solar cells, the dimensions of the device in the x-y plane are so much

larger compared to the nanoscale, it is a good approximation to assume that the device

extends infinitely in these directions. For the case of a structure that contains a geomet-

ric periodicity, these kinds of boundary conditions perfectly describe the system. For

systems with a geometry that is continuously varying in the x-y plane, often in a ran-

dom fashion, periodic boundary conditions must be used carefully. Generally periodic

boundary conditions may still be imposed, with the caveat that the domain be large

enough in the x-y plane such that artifacts of the periodicity are sufficiently small. If

the period of repetition is sufficiently large then any diffraction effects will be minimal.

The second kind of boundary condition is the perfect electric or magnetic conductor.

When placed in a plane perpendicular to the electric or magnetic polarisation, respec-

tively, these act as perfect mirrors. These boundary conditions can be useful in order

to reduce the computational effort required on a simulation by exploiting the symmetry

present in the system. This is achieved by placing the perfect conductor conditions

at mirror planes in the system and simulating only the reduced geometry. A similar

boundary condition that exploits symmetry is the cylindrical boundary condition. This

assumes that the geometry has rotational symmetry around a central axis. In this case

the geometrical distribution in the r z plane defined by a particular θ can be converted

to a 2D problem in the x-y plane. The θ dependence is expanded into a set of basis

functions valid for cylindrical symmetry and the 2D problem is solved repeatedly in or-

der to obtain the expansion coefficients. Due to the reduced complexity of 2D problems

in comparison to 3D ones, this method is much less computationally expensive, despite

the need for multiple 2D simulations compared to a single 3D one.
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The final boundary condition that needs to be considered is a specific form of the trans-

parent boundary condition called the perfectly matched layer. The transparent bound-

ary condition seeks to allow outgoing fields to leave the computational domain without

any artificial reflections at the computational domain boundary. The perfectly matched

layer achieves this aim by an analytic continuation of the real valued position into the

complex domain [58]. To demonstrate in a simplified way how this works in one dimen-

sion, consider the electric field of a wave propagating in the x direction with polarisation

in the y direction that we wish to be attenuated

E(x) = êyexp

[
ix(n+ ik)2π

λ

]
, (5.18)

E(x) = êyexp

[
ixn2π

λ

]
exp

[
−xk2π

λ

]
, (5.19)

where n and k are the real and imaginary parts of the refractive index of the material and

λ is the wavelength. A material which has k > 0 will be attenuated due to absorption,

as can be seen in the second term in the second equation. In contrast, a material with

k = 0 will not be attenuated at all. Gain materials with k < 0 are not considered.

Typically the attenuation offered by the k value is not enough to prevent unwanted

boundary reflections and we would like a framework in which materials with k ≥ 0 can

be attenuated. This can not be accomplished by increasing the value of k since this

would cause a boundary between a material where the k value was lower and a material

where the k value was higher, such a material interface would again lead to unwanted

reflections.

The argument of the exponential in equation 5.18 is mainly determined by the product

of the imaginary unit, the position and the (complex) refractive index. The product

of the imaginary part of the refractive index with the imaginary unit produces the real

exponential decay which causes attenuation of the wave. If we now consider that not

only the refractive index but also the position could be a complex quantity, we can

redefine the position as x̃ = x+ iχ. Given this definition, the expression for the electric

field becomes

E(x) = êyexp

[
i(x+ iχ)(n+ ik)2π

λ

]
, (5.20)

E(x) = êyexp

[
i(xn+ χk)2π

λ

]
exp

[
−(xk + χn)2π

λ

]
, (5.21)

meaning that an extra source of attenuation is introduced due to the χn term. Using

this method the computational domain is slightly enlarged due to the need to also sim-

ulate the fields inside the PML. PML boundary conditions allow us to simulate isolated
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systems, this means that the response of single nanoparticles can be investigated. An

additional advantage is that the Fourier transform of the outgoing wave has a continuous

range of k values meaning that the angular scattered field distribution can be obtain for

all angles. This allows the far field scattered distribution to be obtained from isolated

systems.

5.3 Random Particle Arrays

As stated earlier, one method to deal with random particle arrays is to simulate a large

number of particles and apply periodic boundary conditions in the x-y plane. This has

the problem that artificial periodic effects may nevertheless occur, and that the size in

the x-y plane is limited due to computational constraints. This means that only a small

number of particles may be simulated which will give a very poor approximation to the

actual statistical distribution of particles present.

In contrast a method which seeks to fully utilise the complete statistical distribution

of particles is that of averaging single particles. This method involves performing a

statistical analysis of an image of particles. In this instance, only the size and shape of

the particle is important. After the statistical distribution describing the size and shape

has been obtained, a simulation of a single particle of each size and shape is performed.

Finally to obtain the average response of the array we calculate the expectation value

taking into account the statistical distribution. As an example, if the reflection for

each wavelength (λ) and particle size (x) is known, and the particle size is normally

distributed with a known mean (µ) and variance (σ2) then the expected reflection will

be

< R(λ) >=
1

σ
√

2π

∫ ∞
−∞

R(x, λ)e
(x−µ)2

2σ2 dx. (5.22)

Since R(x, λ) is an unknown function which can only be evaluated pointwise, this integral

must be evaluated numerically. The advantages of this approach are as follows

• For axisymmetric particles, the simulation geometry can be significantly simplified

using cylindrical boundary conditions, allowing for faster calculations

• The statistical distribution for the particle size and shapes may be arbitrarily well

approximated

• Other statistical distributions can be trivially calculated providing R(x,λ) is known.

Let us now examine these points in more detail. If the effects of interparticle inter-

actions are negligible, perfectly matched layer boundary conditions are appropriate for
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simulating the single particle response. If the particle has a further symmetry around

the axis of rotation, a cylindrical coordinate system may be imposed. This means that

although many different particle sizes must be simulated, the combined time to simulate

the different sizes may be less than the time to simulate a single array of particles. The

isolated method allows the statistical distribution to be arbitrarily well approximated.

Returning to our previous example, if R(x, λ) is evaluated for more values of (x) then

the numerical integral will converge towards the analytical integral shown in equation

5.22.

Once the various optical responses as a function of particle size R(x, λ), T (x, λ) and

A(x, λ) are known, the probability density function describing the probabilities to find

a particle for each size x can be easily changed by choosing a new analytical form

for the probability density function. The effort required involves only reevaluating the

integral. When simulating a 3D array of particles, as soon as the statistical distribution

of the particles changes the entire area of particles must be simulated again using the

new statistics. This means it is very time consuming to compare different statistical

distributions when simulating the whole array.

The main disadvantage of the averaging method is that the inter-particle interactions

are neglected. These kind of interactions may be categorised in three main ways, near

field coupling, far field interference and quenching of optical cross sections. Near field

coupling is expected to occur when a significant fraction of particles have an inter-particle

distance (edge to edge) small compared to the wavelength. Inter-particle coupling has

been shown to strongly affect the optical response of metallic nanoparticles, therefore

systems where this kind of coupling is significant will not be well approximated by the

averaging method. Far field interference means in this case that the radiation emitted

by each particle interacts with other particles. This will usually not have a fixed phase

relationship leading to a measurable interference pattern, due to the random nature of

the particle distributions. However as we shall see, the presence of internal reflection in

layers above or below the particles can enhance this kind of coupling.

The final kind of interaction is optical cross section quenching. The scattering and

absorption cross section of metallic nanoparticles may be many times larger than their

geometrical cross section at resonance. The physical interpretation of this is that the

particle bends the propagation of light in its vicinity causing the particle to interact

with an area of light larger than the particle. However if two particles are arranged

with overlapping optical cross sections, both particles attempt to bend the light towards

themselves. This reduces the amount of light which both particles can interact with

meaning a lower optical cross section. This effect will be reduced for sparse arrays of

particles, and also for arrays with a wide distribution of sizes (since each size will have a
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different resonance frequency, and quenching is only significant when the particles have

a similar resonant frequency.

Taking these effects into account, we can conclude that for sparse random arrays of

nanoparticles, the isolated method should be able to give a good approximation to the

experimental optical response.

5.4 Obtaining the Statistical Distribution

To obtain the statistical distribution some experimental data needs to be obtained.

Typically a top down SEM image of the nanoparticles will provide information about

the particle sizes in the x-y plane and also the distance between particles. The size,

orientation and position of each particle can be extracted via standard image processing

software, e.g. ImageJ [59]. Once the particle sizes are known, a frequency histogram

of those sizes can be generated. A probability density function has the defining feature

that the integral of the function over the real domain should be normalised to unity [60]

1 =

∫ ∞
−∞

PDF (x)dx. (5.23)

Therefore in order to fit the probability density function to the histogram, we first

numerically integrate the frequency histogram, then divide all values by the integrated

value

N =

∫ ∞
−∞

h(x)dx, (5.24)

h̃(x) =
h(x)

N
. (5.25)

where h(x) is the original frequency distribution and h̃(x) is the normalised frequency

distribution. This ensures that integrating the frequency histogram gives the value of

one. After this a standard least squares fitting technique can be used to find the param-

eters of the analytical probability density function best fit to the normalised frequency

histogram.

5.5 Substrate Far Field Coupling

In the following chapter we will simulate particles that are on a glass substrate. In this

case light which is scattered by the particles into the glass substrate can be totally inter-

nally reflected inside the substrate. This causes it to interact with the particle array for
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a second time where it can either be scattered out of the substrate, absorbed by the par-

ticle or remain trapped in the substrate. In the isolated single particle simulations used

for the averaging method here, it is not possible to include these secondary interactions

with the nanoparticle array. A simple way to take this effect into account is to take a

portion of the transmitted light and convert this to reflection and absorption. In order

to determine how much should be converted we can estimate the amount of trapped

light by looking at the angular distribution inside the glass substrate. By integrating

the angular distribution for angles higher than the angle of total internal reflection, this

will give a lower bound on the amount of trapped light. It is only a lower bound because

a fraction of the light will also be internally reflected for lower angles.
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Symmetry Breaking Plasmonics

6.1 Nanoparticle Shape Effects

Now that we have discussed the numerical methods themselves, we can begin to apply

them to simulate things beyond the scope of analytical simulations. First we return

to looking at a nanoparticle as a function of its size. In 4.6 we showed the scattering

cross section dependence on the particle size. However with respect to the principle

axes of the incident light, i.e. the direction of propagation and the directions of electric

and magnetic polarisation, we have made a change in the particle in all three directions

simultaneously. To better understand the effects of particle dimensions with respect

to these axes we can instead elongate the particle along each axis separately. Figure

6.1 shows the extinction cross section for four different cases. Firstly a spherical Ag

particle with radius 50 nm is taken as a reference. This particle is then elongated while

keeping the surface curvature constant, that is, we end up with a cylindrical object with

hemispherical faces which have the same radius of curvature as the sphere. This is done

to isolate purely the effect of elongation. This elongated particle is then orientated along

three different axes, parallel to k, parallel to E and parallel to H. Figure 6.2 shows the

same scenarios, but instead of cross section, the electric field strength surrounding the

particle in the k-E plane is shown. The wavelength used in each case is the wavelength

of peak Qsca intensity from fig. 6.1.

We first consider the elongation in the direction parallel to the incident light (parallel

to k). The total intensity of the resonance is greatly increased, this should be expected

since our normalisation is to the particle area cross section as seen by the incident light.

In this case, the incident light only sees one of the hemispherical faces of the cylinder,

meaning that we normalised to an area which is the same size as the sphere, but in

52
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Figure 6.1: The normalised scattering cross section (Qsca) for four different scenarios.
A spherical Ag particle of radius 50 nm (solid line) is compared to an elongated Ag
particle with length 200 nm orientated along three different axes. As shown in the
insert the axes are: parallel to k (dotted line), parallel to E (dash dotted line) and

parallel to H (dashed line).

this case we have a much larger volume of particle, which should have a strong light-

matter interaction leading to more scattering. The shape of the resonance changes as

well as the total intensity. For the sphere we see a peak in Qext at around 410 nm

due to the dipole resonance with a shoulder to the resonance at around 380 nm caused

by a second resonance there (the quadrupole resonance). For the case of the elongated

particle, the peak and shoulder have been reversed, the higher intensity comes at the

lower wavelength and can be associated with the quadrupole mode, while the shoulder

at the higher wavelength comes from the dipole mode. If we move to the near field

picture, the same effect is observed. Figure 6.2(a) shows a typical dipole field pattern

which has been distorted slightly to the forwards direction due to the presence of the

electric quadrupole mode. Part (b) instead shows the elongation along the k direction,

the field pattern looks noticeably different with four prominent high field intensity lobes

suggesting a mainly quadrupolar type resonance.

We move on to consider the elongation in the direction of the electric polarisation (par-

allel to E). In fig. 6.1 we observe that the resonance is strongly redshifted, increased in
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Figure 6.2: The near fields for the particles shown in figure 6.1, in each case the
wavelength used is the peak resonance wavelength taken from the extinction cross

section.

intensity and the shape changes. These are all due to a retardation effect. Figure 6.3

shows schematically the position of an electron in an incident field in the non-retarded

and retarded regime. If there is no retardation, the driving and restoring forces are in

phase. The sinusoidal electric field (the driving force) pushes the electron away from the

center line, in the case of a nanoparticle, this leads to positive charge build up on the

opposite surface which generates a restoring force. This force is maximised when the

driving force is also maximised. If the length of the particle is increased in the direction

of polarisation, i.e. the direction of the driving force, then the time taken for the restor-

ing force to reach the electron will also be increased. If this time becomes significant,

the electrons will feel a restoring force which is much weaker than in the non-retarded

case. This leads to a redshift and increase in intensity of the resonance.

Finally, elongation in the direction parallel to the magnetic polarisation (parallel to

H) causes the resonance to be reduced in intensity. This is due to dephasing of the

resonance, as the particle elongates, the electric field acting on the particle no longer has
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Figure 6.3: Schematic view of the retardation effect which causes the resonance of
large particles to redshift.

Figure 6.4: The angular scattering distribution for a radius 50 nm Ag hemisphere at
an air/substrate interface. The substrate has in each case a different refractive index,
(a) n = 1, (b) n = 2 and (c) n = 3. The substrate is the lower half of the image while
the air is the upper half, light is incident from the air side. Dashed lines show the angle

for total internal reflection inside the substrate.

a homogeneous phase across the whole particle. This will lead to the driven oscillations

to become out of phase with each other, resulting in the reduced resonance intensity.

6.2 Interface Properties

In chapter 3, the resonance of a plasmonic particle was decomposed into different mul-

tipoles using Mie theory. In particular, for small metallic particles the electric dipole
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response tends to dominate. Schmid et al. used the solution for the emission of an

electric dipole source near to a planar interface between two materials with different

permittivities to predict the enhancement seen by placing small plasmonic nanoparticles

in a solar cell device [61]. The solution predicts that more light tends to be directed into

the material with a higher permittivity. The physical significance of this is that the emis-

sion rate of a dipole source is strongly affected by the density of states in the surrounding

medium, therefore a material with a higher permittivity which has an associated higher

density of states will receive more emission from the dipole.

Figure 6.4 demonstrates this principle by showing the angular scattering distribution for

a hemispherical Ag plasmonic particle at a planar interface between two dielectrics. In

all cases the upper dielectric is air, while the lower dielectric will be varied in refractive

index from 1 (air) to 3 in order to show the effect of increasing optical density of states

in the substrate. In each case the angle of total internal reflection inside the substrate

is shown in a dashed line. This line represents the highest angle at which light can

propagate inside the substrate if it is incident from the upper half space without the

presence of nanoparticles. That means that emission into angles higher than this due

to the nanoparticle represents coupling of light into modes trapped within the substrate

due to total internal reflection if the interface on the other side of the substrate is also

air. If we consider that for a high absorption there will be some kind of reflector on

the rear side (typically a metal layer) of the device, it means that light will be trapped

within the device, since it cannot escape when returning to the air/dielectric interface

after being reflected from the back reflector. For the highest absorption enhancement,

we desire for the light to be trapped solely within the absorbing layer rather than inside

the multilayer stack. To do this using the concept of plasmonic particles at an interface

requires that the nanoparticles be placed at an interface including the absorber layer.

However this may come with significant electrical drawbacks, therefore a tradeoff must

be found.

The question remains how this generalises to magnetic dipole moments and to higher

order electric and magnetic multipole orders. For the case of plasmonic particles mag-

netic resonances are not excited very efficiently meaning that we can neglect the effect of

an interface on those orders. The higher order electric resonances (e.g. quadrupole) can

be efficiently excited in larger particles and in a homogeneous medium they typically

show forwards scattering behaviour, therefore higher order modes may not be useful for

particles that should mainly scatter the light backwards into trapped modes.
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Figure 6.5: The peak scattering (a) and peak wavelength (b) for two radius 60 nm Ag
spheres in air as a function of the edge to edge separation between the particles. The
inset shows the orientations of the TM and TE polarisations as well as the separation

between particles.

6.3 Two Particle Interactions

So far we have considered only a single particle, for integration of particles into a device

multiple particles will need to be considered. In order to understand what kind of

interactions may occur, we first consider the interaction between two spherical particles.

Figure 6.5 shows the peak scattering and peak wavelength from two spherical Ag particles

as a function of the edge to edge distance between the two particles. The scattering is

normalised to twice the scattering from a single particle, therefore in the limit of no

interaction this should give a value of unity. Here we will only consider light incident

perpendicular to the axis formed by the two particles, since we are interested in how

particles interact on a surface when light is incident perpendicular to the surface. In

the case of perpendicular incidence, two different polarisations must be considered, light

can be polarised with the magnetic field normal to the particle axis which we refer to

as transverse magnetic (TM) or it can be polarised with the electric field normal to the

particle axis, which we refer to as transverse electric (TE). The two polarisations are

depicted in the inset of fig. 6.5.

Both polarisations follow a general trend in that the total scattering and the peak

wavelength oscillate with the separation distance due to far field coupling. For short

distances (< 200 nm) the oscillations give way to more extreme behaviour, this is due

to the near field coupling present when particles are close together. The total scattering

is reduced when near field coupling is present. That is because the envelope of light
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which the particle interacts with, which is larger than the geometrical cross section of

the particle, overlaps between particles which are close together. These overlapping

envelopes compete for the incident light, meaning that both particles interact with less

light than if they were isolated. When the particles are far enough away from each

other, the envelopes do not overlap meaning there is no reduction in the amount of

light interacted with. The resonance position is also strongly shifted in the near field

region. This can be understood by viewing the two particle system as a single composite

particle in the near field coupling region. This coupled particle will be elongated along

the axis between the two particles. Previously in this chapter, the effects of elongation

on particle resonances have been discussed. The elongation present for light incident

with a TM polarisation causes a redshift to the resonance, while light incident in the

TE polarisation will be blueshifted.

The far field coupling causes separation dependent oscillations on the order of the inci-

dent wavelength. This is because the total light incident to each particle includes the

incident plane wave plus the scattered field from the other particle. The scattered field

changes with phase on the order of a wavelength and interacts coherently with the in-

cident plane wave. This causes either constructive or destructive interference meaning

that the total scattering will be greater or lesser than twice the scattering of an isolated

particle. This will change the wavelength of the peak scattering, if we imagine that the

interference between two particles is maximally constructive for a certain wavelength and

separation, then if the separation is increased slightly, a slightly increased wavelength

will bring the interference back into maximum coherency. The far field interference is

more pronounced for the TE polarisation because the far field radiation from an electric

dipole is very low parallel to the dipole axis (actually equal to zero for the limit of being

exactly on axis). Therefore when the polarisation is TM the electric dipoles are collinear

to each other and interact only weakly, but when the polarisation is TE the dipoles are

parallel but not collinear meaning that they interact with each other relatively strongly.

For both cases this interaction reduces with further separation since the field produced

by the particles becomes weaker with increasing separation (only the value of the field

integrated over all angles remains constant).

Based on the coupling of two single particles, we can extract some implications for

the case of particle arrays. We will consider ordered and unordered particle arrays.

Ordered particle arrays will have a well defined inter-particle edge to edge spacing and

polarisation. This means that a specific point on the curves shown in fig. 6.5 will be

met, causing red/blueshifting and increase/decrease in scattering strength depending on

the exact separation. The scattering will also be highly polarisation dependent as can

be seen in the difference between the TE and TM modes shown in the figure. On the

other hand, an unordered or random array will have a variable particle separation. If
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Figure 6.6: SEM image of a periodic nanoparticle array. The particles are coloured
after their plasmonic resonance wavelength for the particular particle size in air.

that variation in edge to edge separation is very narrow, we will see a similar result as

that for the periodic array. However if the variation in separations is quite large, then

many different points along the curves in fig. 6.5 will be sampled. Since the curves

are oscillating if at least one whole period of oscillation (with respect to separation) is

uniformly sampled, the net effect will be to obtain the average scattering, which is always

twice the isolated particle scattering for the given two particle system. This means that

a random array with a large variation in inter-particle separations will behave similarly

to isolated particles, since the constructive/destructive interference from other particles

tends to cancel out. This will be discussed further in the following sections.

6.4 Periodic Arrays of Nanoparticles

There are many methods capable of producing periodic arrays of nanoparticles. For

example, e-beam lithography, nanosphere lithography and nanoimprint lithography to

name but a few. Periodic arrays are characterised by having uniformly shaped and sized

particles with a fixed interparticle spacing. This means that for light incident with a

coherence length longer than the interparticle spacing, the particles will react coherently

to the light. This may or may not be beneficial to device design.

We choose to study particles fabricated using nanosphere lithography due to the relative

ease and low cost in fabrication compared to other techniques. This comes at the cost

of not having full control over the size and density of nanoparticles. Figure 6.6 shows a

SEM image of the nanoparticles prepared using nanosphere lithography. In order to show
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Figure 6.7: The reflection, transmission and absorption for the particle array shown
in fig. 6.6. Part (a) compares full 3D simulations with periodic boundary conditions
to the experimental values. Part (b) instead compares the method of averaging single

particle responses to the experimental data.

the relationship between particle size and spectral resonance position, the particles are

coloured by their resonant frequency, calculated via Mie theory for a spherical particle of

the same radius shown in the SEM image but in air. The fact that they are all the same

colour (apart from some defects) hints at the relatively narrowband response produced

by such an array. This is further enhanced by the fact that the particles are small, as

we have seen, the dipole resonance broadens significantly when increasing particle size,

therefore smaller particles have a narrowband response.

Figure 6.7 shows the reflection, transmission and absorption from the nanoparticle array

shown in fig. 6.6. Part (a) compares the experimental data to simulated data using fully

3D periodic boundary FEM simulations. Similarly part (b) compares the experimen-

tal data to simulated data using an average of isolated cylindrical boundary condition

problems as outlined in chapter 5. The fully 3D periodic boundary conditions should

in principle give a very good agreement to the experimental data due to the periodic

nature of the array. However, as is visible in fig. 6.6 the sample contains considerable

imperfections, such as larger particles and missing particles. We can also infer the pres-

ence of sections of solid Ag film on the sample due to the long wavelength reflection

being higher than that of glass. No plasmonic activity is expected in this spectral region

and the reflection is almost constant with wavelength which can only be described by

a solid film. Therefore a 10% Ag film has been included into the simulated data based

on empirical matching of the long wavelength spectra. Due to the sample imperfections

the resonance is significantly broadened and redshifted in the experimental case com-

pared to the simulations. This is to be expected due to two contributing factors, that is
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Figure 6.8: The particle size distribution extracted from fig. 6.6 used in the simu-
lations in fig. 6.7(b). The bars represent the measured statistical distribution while
the red line is a fit to the data. The green bar represents the size used in the full 3D

simulations in 6.7(a).

that larger particles tend to have broader resonances, and the presence of different sizes

(and associated resonance wavelengths) will broaden the overall response even if each

individual resonance would be narrow.

Since the presence of imperfections is unavoidable, we may instead try to simulate the

range of nanoparticle sizes present. Figure 6.8 shows the distribution of particle sizes

present taken from the SEM image in fig. 6.6. The bars represent the probability

histogram of sizes taken from the image, while the curve shows the fitted log-normal

probability density function. The green bar shows the single particle diameter used in

the 3D FEM simulation. This distribution takes into account the range of sizes present

in the sample but does not include extreme outliers in size. In fig. 6.7 part (b) we

see that the resulting transmission, reflection and absorption curves are much broader

than the simulation in part (a). The results from the averaging of isolated simulations

is in good agreement with the experimental results which supports the validity of this

approach.

In chapter 5 we introduced corrections to the averaging isolated simulations due to

reflections from the rear side of the substrate. In this case such corrections did not give

better agreement with the results. This could be due to bare areas of the sample not
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Figure 6.9: SEM image of a random nanoparticle array. The particles are coloured
after their plasmonic resonance wavelength for the particular particle size in air.

contributing to the particle scattering, meaning that the overall scattering is reduced.

In this case introducing the internal reflection corrections would cause the predicted

scattering to be greater than the scattering seen experimentally. This is supported by

the fact that the resonance intensity in fig. 6.7 is very weak compared to the one shown

in fig. 6.11 (a-c) even though the particle sizes in each case are similar.

6.5 Random Arrays of Nanoparticles

Similarly to periodic arrays, there are also multiple ways to create a disorderd or random

array of nanoparticles. Chemical methods which fabricate nanoparticles in solution

before finally depositing them onto a substrate typically end with random positioning

of the particles. An even simpler method is that of thermal growth used to prepare

the particles presented here. In this method a very thin solid film of metal is first

evaporated, followed by thermal annealing which melts the film and causes the formation

of nanodroplet-like nanoparticles. An example of the kind of particles that can be

produced using this method is shown in fig. 6.9. The particles are randomised in their

shape, size, orientation and inter-particle spacing. The particles have been coloured

by their resonance frequency, calculated via Mie theory for a spherical particle of the

same radius shown in the SEM image but in air, particles that are left grey represent

resonance frequencies outside of the visible spectrum (IR for large particles). The variety

of different colours suggests the broadband response of the array. The resonance will be

further broadened due to the fact that the resonance of each individual particle will be

broad due to the large size of the particles.
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Figure 6.10: The effect on the reflection of an isolated Ag particle of two shape param-
eters. Part (a) shows the variation in particle height with constant contact angle, while
part (b) shows a constant height and varying contact angle. The various combinations

of height and contact angle are shown as the particle schematics in the graphic.

The particles are more irregularly shaped than for the case of the periodic particles.

Although in general the particles seem circular from above, meaning equal a and b axis

lengths, the c axis length is relatively unknown. To completely describe the particles

on the substrate requires two parameters additional to the a and b axis lengths. In

this case we chose the ratio of the height compared to the diameter in the x-y plane,

and the contact angle to the substrate. These parameters were chosen since they are

the most realistically obtainable from the point of view of characterising the particles

experimentally.

Figure 6.10 shows the reflection curves for different particle shapes for the particle size

distribution given by the array in fig. 6.9. In part (a) the height ratio (the ratio between

the particle’s total height and the diameter in the x-y plane) is varied between 0.2 and

0.6 while the contact angle is kept constant at 100◦, the legend shows cross sectional

images of the particles in the x-z plane. As the particle height increases the reflection

curves increase in intensity and redshift, with the quadrupole resonance becoming more

prominent. The first two properties can be inferred directly from fig. 6.1, the intensity

of the resonance increases since there is more volume of material for scattering but

the same area is used when taking into account the coverage. Therefore the volume

increases while the coverage remains the same. Secondly due to the elongated shape,

the quadrupolar mode is able to be excited. The dipolar mode will be more heavily

confined to the interface for the larger particles and will thus be redshifted due to a

stronger interaction with the higher index substrate.
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Initially it could be assumed that since increasing the contact angle causes the particle to

have a higher radius of curvature in the x direction that this would cause the resonance

to redshift. However this effect is dominated by the fact that increasing the contact

angle decreases the effect of the substrate on the particle. In the limit as the contact

angle tends to 180◦ i.e. a point contact, the particle will behave similarly to being in

air. Therefore increasing the contact angle causes the resonance to blue shift. The

intensity of the resonance will also increase since the dipolar mode will move away from

the interface with increasing contact angle, due to destructive interference of the incident

and reflection beams from the glass, it is usually beneficial to have the dipole be further

away from the surface [62].

With these basic results in mind we move to comparing the simulations obtained from

averaging isolated simulations to experimental results. We present the results for two

different samples with different nanoparticle size distributions in fig. 6.11. Parts (a)

and (d) show the size distribution (bars) of the samples with their corresponding fitted

probability density functions (red line). In both cases a log-normal distribution is in good

agreement with the experimental distribution. These distributions were then used to

calculate the reflection, transmission and absorption curves shown in (b-c) and (e-f) using

the method detailed in chapter 5. The figures in (b) and (e) use the method of averaging

isolated simulations without taking into account light trapping in the substrate. These

each assume a different shape for the particles, with the shape (i.e. height/diameter

ratio and contact angle) were chosen by fitting the resonance to the experimental data.

The results in fig. 6.10 showed that the resonance could be redshifted or blueshifted

depending on the particular shape chosen. However resonance position is still predom-

inantly determined by the size distribution chosen, rather than the particular shape at

a given size distribution. Due to this, although the shape has been chosen to give the

best possible fit to the experimental data, the approach of using the statistical size dis-

tribution is still somewhat verified since a different size distribution would not be able

to fit the data for any given particle shape.

Despite the fact that the broadness and peak position of the resonance fit for the par-

ticle shape chosen, the total intensity of the curves is not in good agreement with the

experimental data. Generally the simulated resonances are not as intense as the experi-

mentally measured ones. This can be explained by the fact that the isolated simulations

assume a semi-infinite glass substrate, meaning that all light which is transmitted to

the substrate enters the results as ’transmitted’. For light which is transmitted at an

angle close to normal incidence this is a good approximation since there will be little

reflection at the glass rear side. However for higher angles the internal reflection will

increase. Previously in this chapter we showed that a high proportion of the light which
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Figure 6.11: statistical distribution and reflection, transmission and absorption for
two different random nanoparticle arrays. The first array covers (a-c) while the sec-
ond array covers (d-f). The first row shows the measured size distribution and fitted
statistical distribution as well as a SEM image of the array as an inset. The second
row compares a simulation using averaging of isolated simulations to the experimental
data. The bottom row additionally takes into account total internal reflection inside

the glass substrate.
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Figure 6.12: The angular distribution of the light transmitted from a spherical particle
with radius 100 nm at an air/glass interface at a wavelength of 600 nm. The blue area
represented light that will be transmitted out of the substrate, while the green area

represents light trapped in the substrate.

is transmitted into a substrate will be at high angles, even at angles higher than the

angle of total internal reflection. Correcting for the total internal reflection as outlined

in chapter 5 gives the simulated curves in parts (c) and (f) which show good agreement

with the experimental data. In calculating these curves we assume that 50% of the

transmitted light is trapped within the substrate and that 60% of this light is converted

to reflection and 40% is converted to absorption in the particle. The 50% trapping as-

sumption can be inferred from fig. 6.12, in which we plot the angular distribution of

the transmitted light for a radius 100 nm Ag particle at an air/glass interface. In this

case 0◦ corresponds to directly transmitted light, while 90 ◦ would be light scattered

perpendicular to the incident beam. The values contain a sin θ factor to account for the

fact that the values are azimuthally integrated. The two areas are roughly equivalent

with slightly more light being trapped than transmitted. This leads to the assumption

that 50% of the incident light is trapped within the substrate. The amount of trapped

light that is converted to reflection and transmission is not so easy to predict. However

since the scattering cross section is larger than the absorption cross section for such

particles, it is reasonable to assume that more light is scattered than absorbed.

Generally the amount of trapped light and the fraction of trapped light that goes to

reflection and absorption will be a function of the wavelength. However even assuming

that these are constant with wavelength as we have done here leads to results which

match the experimental data well. The problem is that this precludes having accurate

simulations of the particles based purely on the SEM image data, since the amount of

light trapped inside the substrate is difficult to simulate using isolated simulations.
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This chapter has shown that simulating arrays of particles can be very complicated,

especially for the case of random particles. Although the method of averaging managed

to predict the correct resonance wavelength, it was not shown to be quantitatively

predictive due to significant internal reflection inside the substrate. This, however, is

itself promising from the point of view of light trapping applications in solar cells. The

method of statistical averaging can therefore be used to rapidly optimise the optical

resonance position based on the nanoparticle distribution, which can then be used as a

starting point for rigorous simulations including all particle interactions.
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Scattering Matrix Method

Light propagation through a layered stack such as the one presented in fig. 7.1 can be

solved analytically. This is because we can orientate our axis to simplify the system, if

we assume that the layer boundaries all lie in the x-y plane with the material transitions

occurring in the z direction To do this we assume that the layers are infinitely extended

in the x-y plane due to the fact a solar cell will have dimensions orders of magnitude

larger than the wavelength in the x and y directions. This means that components

of light propagating in the x or y directions do so in a homogeneous medium with

associated plane wave solutions. Therefore we only need to calculate how the components

propagating in the z direction are affected by the layered stack. The boundary conditions

for electric and magnetic fields at an interface can be used to determine the amplitudes of

Figure 7.1: A schematic example of a layered stack system. The layers are infinitely
extended in the x-y plane.

68
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Figure 7.2: The incoming and outgoing fields at the interface between the N th ma-
terial and the N + 1th material.

fields on either side of an interface. If the amplitudes of fields incident from above, below

or both are known, the fields interior to the layered stack can be calculated by repeated

application of the boundary conditions and propagation in a homogeneous medium.

7.1 Comparison to Transfer Matrix

The formalism used to calculate field amplitudes interior and exterior to the layered stack

is called the transfer matrix or scattering matrix depending on how field amplitudes on

either side of an interface are related. The transfer matrix (T matrix) takes field values

of forward and backwards traveling waves on one side of an interface and gives the field

values on the other side of the interface. The scattering matrix (S matrix) formalism

takes the incoming waves on both sides of the interface and gives the outgoing waves on

each side of the interface. Figure 7.2 shows the field values on either side of an interface

inside of a layered stack. The T matrix links the field values as following[
E+
N

E−N

]
=

[
T11 T12

T21 T22

][
E+
N+1

E−N+1

]
. (7.1)

Whereas the S matrix links the values as following[
E−N

E+
N+1

]
=

[
S11 S12

S21 S22

][
E+
N

E−N+1

]
. (7.2)

The T matrix formulation can be unstable for absorbing media. Although the interface

condition shown here remains perfectly fine, the problem arises when calculating the

propagation through an absorbing layer. Consider propagation through the N th layer

which will be absorbing. We begin with field values of the forwards and backwards

propagating waves inside of layer N at the interface to the N − 1 layer, we then wish to

apply a propagation matrix to obtain the field values inside the N th layer at the interface

to the N + 1 layer. This propagation matrix will multiply the forwards traveling wave

by a factor exp(i(n + ik)2πt/λ) = exp(−k2πt/λ)exp(in2πt/λ), where n + ik is the
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complex refractive index of layer N , t is the thickness of layer N and λ is the vacuum

wavelength. As the value of the absorption in layer N given by the k value increases,

this propagation term will tend towards zero due to presence of the negative exponential

term. We now consider the propagation of the backwards traveling wave. This will

be multiplied by a factor exp(−i(n + ik)2πt/λ) = exp(k2πt/λ)exp(−in2πt/λ). For

increasing k value this will increase exponentially which causes a major instability in

the algorithm. The S matrix formalism avoids this error since incoming waves are always

directly related to outgoing waves, this ensures that we always use the propagation factor

exp(i(n+ ik)2πt/λ) thereby avoiding exponentially increasing numbers. For this reason

we employ the S matrix formalism in this work.

7.2 Scattering Matrix Formalism

We present here a short overview of the S matrix formalism as it is presented in [63]. We

begin by considering Maxwell’s equations for the E and H fields in linear homogeneous

isotropic media

∇×E = k0µrH̃, (7.3)

∇× H̃ = k0εrE, (7.4)

where k0 is the magnitude of the wave-vector in free space and µr and εr are the relative

permeability and permittivity of the medium, respectively. We have replaced the mag-

netic field H by the normalised magnetic field H̃ = iH/(ε0c) where i is the imaginary

unit, ε0 is the permittivity of free space and c is the speed of light in vacuo. This keeps

the values of H̃ and E at the same order of magnitude increasing numerical stability.

As previously mentioned, the x and y components are assume to have a plane wave form

due to homogeneity in these directions. That means that partial differentials in these

dimensions can be replaced

∂

∂x
= ikx, (7.5)

∂

∂y
= iky. (7.6)
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Inserting these into 7.3 and 7.4 gives six coupled equations

ikyEz −
dEy
dz

= k0µrH̃x, (7.7)

dEx
dz
− ikxEz = k0µrH̃y, (7.8)

ikxEy − ikyEx = k0µrH̃z, (7.9)

ikyH̃z −
dH̃y

dz
= k0εrEx, (7.10)

dH̃x

dz
− ikxH̃z = k0εrEy, (7.11)

ikxH̃y − ikyH̃x = k0εrEz. (7.12)

We can eliminate the z components of the fields via substitution

dEx
dz

=
kxky
εr

H̃x +

(
µr −

k2x
εr

)
H̃y, (7.13)

dEy
dz

=

(
k2y
εr
− µr

)
H̃x −

kxky
εr

H̃y, (7.14)

dH̃x

dz
=
kxky
µr

Ex +

(
εr −

k2x
µr

)
Ey, (7.15)

dH̃y

dz
=

(
k2y
µr
− εr

)
Ex −

kxky
µr

Ey. (7.16)

Note that we have normalised the lengths scales such that ki/k0 → ki, i = x, y, z and

k0z → z. These four equations can be written more compactly as two matrix equations

d

dz

[
Ex

Ey

]
=

1

εr

[
kxky µrεr − k2x

k2y − µrεr −kxky

][
H̃x

H̃y

]
, (7.17)

d

dz

[
H̃x

H̃y

]
=

1

µr

[
kxky µrεr − k2x

k2y − µrεr −kxky

][
Ex

Ey

]
. (7.18)

Since these 2x2 matrices will be used often, we given them the labels P̂ and Q̂

d

dz

[
Ex

Ey

]
= P̂

[
H̃x

H̃y

]
, (7.19)

d

dz

[
H̃x

H̃y

]
= Q̂

[
Ex

Ey

]
. (7.20)
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Finally we differentiate equation 7.17 and substitute 7.18 into it to obtain a single second

order differential matrix equation

d2

dz2

[
Ex

Ey

]
= P̂ Q̂

[
Ex

Ey

]
, (7.21)

d2

dz2

[
Ex

Ey

]
− Ω̂2

[
Ex

Ey

]
=

[
0

0

]
, (7.22)

Ω̂2 = P̂ Q̂. (7.23)

This is the system of equations that needs to be solved. We require the eigenvector

matrix Ŵ and the eigenvalue matrix λ̂2 of the matrix Ω̂2. For the case of a simple layered

stack these are analytically available. For more complex geometries where layers are not

homogeneous in the x-y plane, these eigenvectors and eigenvalues must be computed

numerically leading to the method known as rigorous coupled wave analysis (RCWA).

Since Ŵ and λ2 are known, we may immediately write the solution for both the E and

H̃ fields 
Ex

Ey

H̃x

H̃y

 =

[
Ŵ Ŵ

V̂ V̂

]
,

[
e−λ̂z 0̂

0̂ eλ̂z

][
c+

c−

]
, (7.24)

V̂ = Q̂Ŵ λ̂−1. (7.25)

We have already stated that Ŵ is the eigenvector matrix for the electric field, we have

now introduced V̂ as the eigenvector matrix for the magnetic field. The matrix expo-

nentials describe the propagation of a forwards and backwards propagating wave. The

column vectors c+ and c− are the amplitudes of forwards and backwards propagating

eigenvectors, that is they must be multiplied by the eigenvector matrices to obtain the

physical fields.

Given that the eigenvectors and eigenvalues can easily be calculated for each layer,

the remaining problem is to determine the amplitude coefficients (c+ and c−) within

the individual layers of the stack. In order to do this we employ scattering matrices.

Previously we characterised scattering matrices as a way to formalise the boundary

conditions for fields at a single interface between two materials. However scattering

matrices can also be formulated to describe not interfaces (inherently a property of two

materials) but individual layers (a property of a single material). The advantage being

that if certain materials are used multiple times in the layer stack, the same scattering

matrix may be used each time, independently of the surrounding materials. A further
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advantage is that each individual 4x4 scattering matrix will be symmetric, meaning that

only eight from sixteen components need to be calculated. Typically a scattering matrix

for a single layer will involve the surrounding layers, meaning it is a property of three

different materials. This can be circumvented by the use of infinitesimal layers (thickness

= 0) of some other medium that we place in between all physical layers. As long as this

material has zero thickness and has a refractive index n 6= 0, this will have no physical

effect on the computation.

In order to convince the reader of the validity of this approach, we will shortly digress to

prove this using the Fresnel coefficients. We will consider the reflection Fresnel coefficient

at normal incidence, however the following analysis is equally valid for the transmission

coefficient or for angular incidence. We consider the reflection from a two layer system

in which the layers are labeled 1 and 3. We will then compare this to a three layer

system with labels 1, 2 and 3, where layer 2 will have zero thickness. The layers 1, 2

and 3 are all considered to have different material refractive indices n1, n2 and n3.

The reflection Fresnel coefficient for a two layer system is

r13 =
n1 − n3
n1 + n3

, (7.26)

while the reflection coefficient for a three layer system is given by

r123 =
r12 + r23e

−2iδ

1 + r12r23e−2iδ
, (7.27)

where δ is the phase shift given by a single pass through layer 2. In the case that t2 = 0,

this implies δ = 0. In that case the reflection coefficient simplifies to

r123 =
r12 + r23
1 + r12r23

, (7.28)

=

(n1−n2)(n2+n3)
(n1+n2)(n2+n3)

+ (n2−n3)(n1+n2)
(n1+n2)(n2+n3)

(n1+n2)(n2+n3)
(n1+n2)(n2+n3)

+ (n1−n2)(n2−n3)
(n1+n2)(n2+n3)

, (7.29)

=
(n1 − n2)(n2 + n3) + (n2 − n3)(n1 + n2)

(n1 + n2)(n2 + n3) + (n1 − n2)(n2 − n3)
, (7.30)

=
n1n2 + n1n3 − n22 − n2n3 + n2n1 + n22 − n3n2 − n3n1
n1n2 + n1n3n22 + n2n3 + n1n2 − n1n3 − n22 + n2n3

, (7.31)

=
2n1n2 − 2n2n3
2n1n2 + 2n2n3

, (7.32)

=
n1 − n3
n1 + n3

, (7.33)

= r13. (7.34)
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Having justified the validity of the approach we will describe how to generate the scat-

tering matrices for single layers.

The scattering matrix will always describe one finite layer surrounded by two infinite

layers. In the following the infinite layer will be labeled with 1 and 3 while the finite

layer is labeled with 2. Therefore the 4x4 scattering matrix for layer 2 will have the

following general form [
c+1

c−1

]
=

[
Ŝ2
11 Ŝ2

12

Ŝ2
21 Ŝ2

22

][
c+3

c−3

]
. (7.35)

Therefore we need to determine the values of Ŝ2
11,Ŝ

2
12,Ŝ

2
21 and Ŝ2

22 We begin with the

case where the infinite layers do not have the same refractive index and then simplify to

the case of symmetric refractive indices used for the S matrix of a single layer.

The boundary conditions for the eigenvector coefficients at the first and second interface

of layer 2 are

[
Ŵ1 Ŵ1

V̂1 −V̂1

][
c+1

c−1

]
=

[
Ŵ2 Ŵ2

V̂2 −V̂2

][
c+2

c−2

]
, (7.36)

[
Ŵ2 Ŵ2

V̂2 −V̂2

][
e−λ̂2t2 0̂

0̂ eλ̂2t2

][
c+2

c−2

]
=

[
Ŵ3 Ŵ3

V̂3 −V̂3

][
c+3

c−3

]
. (7.37)

Where ti is the normalised thickness of layer i. We then use 7.36 and 7.37 to eliminate

the coefficients c+2 and c−2 , and rearrange to give the same form as 7.35. Resulting in

the following forms for the scattering coefficients

Ŝ2
11 = (Â21 − X̂2B̂23Â

−1
23 X̂2B̂21)

−1(X̂2B̂23Â
−1
23 X̂2Â21 − B̂21), (7.38)

Ŝ2
12 = (Â21 − X̂2B̂23Â

−1
23 X̂2B̂21)

−1X̂2(Â23 − B̂23A
−1
23 B23), (7.39)

Ŝ2
21 = (Â23 − X̂2B̂21Â

−1
21 X̂2B̂23)

−1X̂2(Â23 − B̂23A
−1
23 B23), (7.40)

Ŝ2
21 = (Â23 − X̂2B̂21Â

−1
21 X̂2B̂23)

−1(X̂2B̂21Â
−1
21 X̂2Â23 − B̂23), (7.41)

Âij = Ŵ−1i Ŵj + V̂ −1i V̂j , (7.42)

B̂ij = Ŵ−1i Ŵj − V̂ −1i V̂j , (7.43)

X̂i = e−λ̂iti . (7.44)

For the case where refractive index of layer 1 and layer 3 are equal, the scattering

parameters for layer 2 simplify to
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Ŝ2
11 = Ŝ2

22 = (Â21 − X̂2B̂21Â
−1
21 X̂2B̂21)

−1(X̂2B̂21Â
−1
21 X̂2Â21 − B̂21), (7.45)

Ŝ2
12 = Ŝ2

21 = (Â21 − X̂2B̂21Â
−1
21 X̂2B̂21)

−1X̂2(Â21 − B̂21A
−1
21 B21). (7.46)

To compute the propagation through the entire layer stack requires the combination of

the single layer matrices. To combine scattering matrices together we use the Redheffer

star product

[
Ŝij11 Ŝij12

Ŝij21 Ŝij22

]
=

[
Ŝi11 Ŝi12

Ŝi21 Ŝi22

]
⊗

[
Ŝj11 Ŝj12

Ŝj21 Ŝj22

]
. (7.47)

The individual 2x2 matrices are given by

Ŝij11 = Ŝi11 + Ŝi12

[
Î − Ŝj11Ŝ

i
22

]−1
Ŝj11Ŝ

i
21, (7.48)

Ŝij12 = Ŝi12

[
Î − Ŝj11Ŝ

i
22

]−1
Ŝj12, (7.49)

Ŝij21 = Ŝj21

[
Î − Ŝi22Ŝ

j
11

]−1
Ŝi21, (7.50)

Ŝij22 = Ŝj22 + Ŝj21

[
Î − Ŝi22Ŝ

j
11

]−1
Ŝi22Ŝ

j
12. (7.51)

Now we have a way to combine scattering matrices, and we can calculate the scatter-

ing matrix for the case of equal and unequal surrounding media, we can combine the

scattering matrices to get the scattering matrix for a complete stack. Figure 7.3 shows

schematically how the scattering matrices are combined into the full stack matrix.

This allows the scattering matrix for the entire system to be calculated. The system

scattering matrix allows the reflection and transmission of the entire stack to be deter-

mined. Since the application to solar cells also required the absorption in each layer to

be calculated separately, we introduce our own formalism not covered by [63] in order

to determine the absorption in each layer.

The absorption inside of a layer can be calculated by comparing the Poynting vector of

both outgoing waves to that of the incoming waves

Ai =
[
|S+
i+1|+ |S

−
i−1| − |S

+
i−1| − |S

−
i+1|
]
/Sinc, (7.52)

Si =

√
εirk

i
z

|ki|
|Ei|2. (7.53)
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Figure 7.3: The combination of scattering matrices of individual layers, and two extra
scattering matrices for the reflection and transmission region combine to make the full

stack matrix.

Where Si is the Poynting vector of the ith layer, Sinc is the Poynting vector of the incident

field, εir is the relative permittivity of the ith layer, kiz and |ki| are the z component and

norm of the k vector in the ith layer, respectively. Therefore only the field values in the

zero thickness medium surrounding each material need to be known in order to calculate

the absorption. We can calculate these using the field values at either side of the layer

stack and one of the following sets of recurrence relations

E−j =
[
Sij12

]−1 [
E−i − S

ij
11E

+
i

]
, (7.54)

E+
j = Sij21E

+
i + Sij22E

−
j , (7.55)

E+
j = Sij21

[
Sij21

]−1 [
E−i − S

ij
12E

+
i

]
, (7.56)

E+
j = Sij21E

+
i + Sij22E

−
j . (7.57)

7.3 Incoherent Layer with S Matrix

Two different methods can be used to obtain incoherency in an S matrix or general

transfer matrix simulation. The two methods are intensity coupling and phase averaging,

we will now discuss them both in turn.

7.3.1 Intensity Coupling

The intensity of light is the square conjugate of the complex electric field
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I = E†E. (7.58)

This means that the intensity is a scalar quantity compared to vector electric field. More

importantly for the current discussion the intensity is a real number compared to the

complex value of the electric field. This means that no phase information is contained

in the intensity. Without phase information there cannot be any interference between

two overlapping intensity distributions compared to two overlapping field distributions.

The implementation of the S matrix algorithm presented here was for the propagation

of fields through a layered stack. This could be changed to the propagation of intensities

by modifying the boundary conditions and propagation inside of a layer. However we

typically wish to include both coherent and incoherent layers inside of a simulation. To

achieve this we split the layered stack to be simulated into two different simulations.

The simulations contain either all layers above the incoherent layer or all the layers

below the incoherent layer. If both simulations take the incoherent layer to be one of

the exterior layers of the simulation, and the intensities are calculated in the incoherent

layer, then the two can be coupled together incoherently. The topic of coupling two

different simulations together will be discussed in more detail in chapter 11. This method

is limited in convergence by the tolerance of the iterative coupling.

7.3.2 Phase Averaging

The second method by which an incoherent layer can be simulated is via phase averaging.

In this method the simulation is repeated N times, each time using a different phase

in the incoherent layer. The final result is then obtained by taking the average of the

individual simulations. For example, the reflection would be obtained via

< R >=
1

N

N∑
n=1

Rn. (7.59)

Where Rn is the reflection calculated for the nth phase. In order to modify the phase in

the incoherent layer, the phase can either be directly modified in the S matrix algorithm

by adding an extra phase term to the propagation of light through the incoherent layer,

or by varying the thickness of the incoherent layer or the incident wavelength of light

in a small region which will also change the phase slightly. However those two methods

can also have physical consequences if e.g. the incoherent layer is absorbing or the

material properties of any of the layers vary with the wavelength. Therefore directly
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adding a phase factor is preferred where possible. It has been shown that evenly spaced

phase factors covering the range from 0 to 2π give the fastest convergence towards

an incoherent result [64–66], compared to randomised phase factors. This method is

limited in convergence by the total number of phase factors used, this means that for

a well converged result a large number of simulations N may be required, which can

significantly increase the computational effort required.



Chapter 8

Ultra-Thin Photovoltaics

Until now the results presented have focused on modelling nanoparticles, whether single

or multiple, in free space or at an interface. The thesis being presented here is that

these particles can beneficially affect ultra-thin film solar cells. In order to evaluate the

veracity of this thesis, we now turn to simulations of particles integrated into solar cell

devices. In order to better understand how the integration can work, we begin by briefly

presenting the basics of solar cells.

8.1 Solar Cell Basics

All solar cells are devices which convert the energy from sunlight into a useable form

of energy. Until now the most successful solar cells have been made from inorganic

materials and have been based off of the photovoltaic principle. Therefore we will focus

exclusively on these types of solar cells, even though technologies like dye sensitised

and organic solar cells, and solar fuel cells could potentially also benefit from the work

presented in this thesis.

8.1.1 Photovoltaic Effect

The photovoltaic effect is the conversion of photons to voltage. In order to achieve this,

a semiconductor is first required that is capable of absorbing optical photons [67]. These

photons create electron hole pairs which can be extracted at conducting contacts. In

order for this process to create a voltage we need to ensure that the electrons accumulate

at one contact while the holes accumulate at a different contact. To do this we add

directionality to the device by introducing a pn-junction.

79
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Figure 8.1: The formation of a pn-junction. Part a) shows separated p and n type
materials. Part b) shows the initial diffusion of majority carriers from both sides to the
opposite side. Part c) shows the subsequent formation of a space charge region due to
the ionic cores left behind after diffusion, this sets up a drift current which balances

out the diffusion current in equilibrium.

A pn-junction is formed from two adjoining semiconductors, one with p type doping

(i.e. an excess of holes) the other with n type doping (i.e. an excess of electrons). In

this case the excess electrons and holes will naturally diffuse into the semiconductor of

the opposite type. When some of the excess charge carriers have diffused out of their

respective host semiconductor, they leave behind a region of localised charge with the

opposite polarity. For example an n type semiconductor contains dopant atoms with one

more electron in their outer shell than the surrounding atoms. The dopant is however,

initially still electrically neutral. The extra electron is able to be separated from the

dopant atom purely due to thermal effects, allowing the electron to diffuse across the

pn-junction to the p type material. This leaves behind the ionised dopant core which will

be positively charged. Thus the n type material starts to build up positive charge at the



Chapter 8. Ultra-Thin Photovoltaics 81

interface while the p type region builds up a region of negative charge at the interface.

This charge distribution has an associated electric field causing electrons or holes in the

vicinity to drift in opposite directions. The drift effect will counteract the diffusion of

excess carriers across the pn-junction. This eventually reaches an equilibrium where the

forces of drift and diffusion are equal and opposite. The region of charge build up at the

pn-junction is referred to as the space charge region.

Now we add in the generation of electron hole pairs inside of the space charge region due

to incident photons, the charge carriers will drift in opposite directions due to the electric

field. This ensures that we have directionality in the device meaning that different charge

carriers are collected at different contacts. By applying an external load, the current

flowing from one contact to the other can be utilised. This is the photovoltaic effect.

8.1.2 Quantum Efficiency

When reducing the thickness of the absorbing layer of a solar cell, the main problem

which arises is the incomplete absorption of light. This is particularly a problem for

indirect band gap semiconductors like Si, which have a very low absorption coefficient

near the band edge, typically necessitating light trapping even for very thick devices.

However even for direct band gap materials which will have a comparatively higher

absorption coefficient close to the band gap, the absorption may be incomplete for ultra-

thin layers, which again necessitates a light trapping concept.

The incomplete absorption is spectrally dependent, however in general long wavelengths

will suffer more from incomplete absorption due to the combined effect of longer wave-

lengths having a shorter path length per unit wavelength in the material, and also due

to the fact that for most absorber materials, the absorption coefficient reduces close to

their band gap. In order to optimise for the absorption of light in the solar cell, the

main goal of our simulations will be to calculate the spectrally resolved absorption in

the absorbing layer of the solar cell. This information is not available experimentally,

however a close analogue of the absorption can be measured which is the external quan-

tum efficiency. The external quantum efficiency measures how many electron hole pairs

were extracted at the contacts for each incident photon. Thus it includes not only the

absorption of light leading to electron hole pairs, but also the probability that these

electron hole pairs may be separated and collected at the contacts without recombin-

ing. In order to compare experimental values of quantum efficiency to our absorption

results requires either a coupled optical/electrical simulation which is beyond the scope

of the current work, or an assumption of the collection probability of charge carriers.

In this work we assume 100% collection of generated charge carriers, simply because
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any other assumption is very dependent on the individual electrical properties of the

cell and would be highly subjective. Since we are presently interested in optimising the

optical aspects of the solar cell this will not present any particular problem. However it

should be kept in mind that the absorption spectra shown in this work relate to the best

possible EQE, and that realistic EQE values would be lower than those predicted by

simulation. Although we do not specifically optimise the electrical properties, we also

seek to rule out cases that will obviously negatively effect electrical performance. This

is discussed in more detail in sec. 10.1 where the concepts for nanoparticle integration

are considered.

With regards to photogenerated carriers, a solar cell is typically characterised by the

total current produced from the carriers when illuminated by the solar spectrum, as

opposed to the individual response at each wavelength. As the total current will also be

a function of the area of the solar cell, typically the current density with no external load,

called the short circuit current density Jsc is used to compare the absorption ability of

solar cells. To obtain the value of Jsc from the EQE curve, which we assume is equivalent

to the absorption curve that we simulate, means multiplying the absorption by the solar

spectrum, normalising the energy and integrating over the spectral range

Jsc =

∫ ∞
−∞

Φ(λ)EQE(λ)
qλ

ch
dλ. (8.1)

Where Φ(λ) is the solar spectrum, q is the fundamental unit of charge, λ is the wave-

length, c is the speed of light in vacuo and h is Plank’s constant.

8.1.3 Chalcopyrite Solar Cells

Now that the operating principle of photovoltaic solar cells has been described, we will

move on to describing in detail the features of a chalcopyrite solar cell. The typical

device structure for this kind of solar cell is the following (from front to back) [68],

• Front Contact - ZnO. Typically the front contact contains two separate layers,

one is aluminium doped zinc oxide (Al:ZnO) with the other being intrinsic ZnO.

This is done in order to optimise both the conductivity and the transmission of

light into the layers below. Since the optical properties of Al:ZnO and ZnO differ

significantly, we will explicitly state the thickness of each layer contained in the

front contact.

• N Doped Layer - CdS. The purpose of this layer is twofold: firstly it provides

one half of the pn-junction and secondly it has a good band alignment with the
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Figure 8.2: Schematic diagram of the layers in a standard thin film chalcopyrite solar
cell. The window layer contains three individual layers. light is incident from above.

absorbing layer underneath. The band alignment is crucial to avoiding interface

recombination at the physical junction between p and n type materials, due to this

providing an intermediate between the absorbing layer and the front contact, this

layer is often referred to as the buffer layer. In addition this layer should have a

band gap higher than the operating wavelengths of the solar cell. This is because

we do not want light to be absorbed in this layer. In principle since the space

charge region is also present in this layer, electron hole pairs generated here could

also contribute to the current. In practice this is undesirable since holes generated

in this layer have a high chance to recombine at the CdS/ZnO interface before

they drift to the p type layer due to the space charge region.

• P Doped Layer - Cu(InxGa1−x)Se2 (CIGSe). The eponymous material of the solar

cell is the absorbing layer. The purpose of this layer is to absorb as much light as

possible. Electron hole pairs generated in this layer can easily be separated by the

space charge region. This is because the space charge region extends throughout

most of the layer due to a lower doping in this layer compared to CdS. Additionally

since the layer is relatively much thicker than the CdS layer, very few electrons

will diffuse to the back contact meaning interface recombination there is low.

• Back Contact - Mo. The transition metal molybdenum is used as the back contact

material since it provides a good electrical conductivity and also a good electrical

contact to the CIGSe layer. This is again a matter of band alignments, Mo hap-

pens to form a very thin layer of MoSe2 at the interface which reduces interface

recombination. For the standard solar cell, the fact that Mo has a poor reflectivity
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is not important due to almost all of the light being absorbed in the absorbing

layer. However as we move from thin film to ultra-thin film, this issue will grow

in importance.

• Substrate - Glass. In the case of chalcopyrite cells, the choice of substrate can

make a significant difference, even though it is not optically or electrically active.

For the case of a glass substrate diffusion of Na atoms from the glass into the

CIGSe layer during the high temperature CIGSe deposition can be beneficial for

the CIGSe layer. However in more recent times the Na has been blocked from

diffusing from the substrate and is instead added in a controlled manner after the

CIGSe deposition, therefore broadening the choice of substrates.

The uppermost three layers, Al:ZnO, ZnO and CdS, limit the amount of light which is

incident to the absorbing layer. This has been heavily optimised during the development

of the standard chalcopyrite solar cell. If the absorbing layer is reduced in thickness then

this will not impact the amount of light coupled into the absorbing layer. In the case

that light is reflected back from the rear of the solar cell and is not trapped inside the

absorbing layer, the window layers could play a role in determining the amount of light

absorbed. This is because the layer thicknesses will effect the path length of light inside

the solar cell device, thus affecting the Fabry-Perot resonance wavelengths created by

multiple internal reflections. Nevertheless, these layers will not be the dominant source

of losses in the long wavelength spectral region, so we do not seek to optimise the

thicknesses of these layers, but it should be understood that some amount of optical

optimisation could be performed on the layers, at the risk of effecting the carefully

balanced electrical properties. With this in mind, in the following results, we will group

together the optical losses caused by the uppermost three layers under the term window

layer.

8.2 Simulation of Thin Film Chalcopyrite Solar Cells

In chapter 7 we have developed the correct framework of S matrices, we can use this

to calculate the reflection, absorption and transmission of a solar cell as a function of

the incident wavelength. We take the standard thin film chalcopyrite solar cell as our

first example, this will provide a reference value for absorption which we would ideally

like to reach or even surpass with the ultra-thin film. Figure 8.3 shows an area plot of

the absorption and all losses in a CIGSe solar cell with absorber layer thickness 2 µm.

The hatched area with the white background shows the absorption that happens in the

absorbing layer, i.e. the useable absorption. The rest of the area is taken up by reflection
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Figure 8.3: The reflection, transmission and absorption in a CIGSe solar cell with a
2 µm thick absorbing layer. The back contact is a 200 nm Mo layer resulting in zero

transmission for this solar cell.

or absorption in other layers which are treated as loss. The absorption curve for the

CIGSe layer comes close to the ideal ’top hat’ function with a sharp increase in absorption

between 400 and 500 nm due to the window layer band gap followed by a sharp decrease

between 1100 and 1200 nm due to the CIGSe layer band gap. If the absorption curve is

taken to be equivalent to an external quantum efficiency measurement, which means we

assume perfect collection of photogenerated electron-hole pairs, then the expected short

circuit current density can be calculated using equation 8.1. For this thin film solar cell

we obtain an expected value of 31.16 mAcm−2, which is comparable to the actual short

circuit current density for high performance solar cells [69].

In the short wavelength regime (300 - 500 nm), the absorption in the window layer

is the dominant form of loss. However since the solar spectrum does not have a very

high photon flux density, the effect on cell performance is minimal. For most of the

operational wavelengths (500 - 1000 nm) the solar cell is able to absorb between 85-95%

of the incident light with the only losses being reflective, which could be further reduced

by the inclusion of a standard anti-reflection coating. In the longest wavelength region

(1000 - 1200 nm) significant optical losses due to the Mo back contact become apparent.

For this thin film solar cell, these losses are not too critical since the solar flux density

is also relatively low in this spectral region.

If we transition to looking at the same data but for a CIGSe solar cell with a 400 nm

CIGSe layer, shown in fig. 8.4 we see a marked difference. The short wavelength response

remains the same, due to the fact that all of the light will be absorbed before reaching

the Mo back contact. However the back contact already shows significant losses in the
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Figure 8.4: The reflection, transmission and absorption in a CIGSe solar cell with a
400 nm thick absorbing layer. The back contact is a 200 nm Mo layer resulting in zero

transmission for this solar cell.

central spectral region which increase with increasing wavelength. Even the light that is

reflected from the back contact cannot be totally absorbed by the ultra-thin absorbing

layer and will leave the cell becoming a reflection loss which is significant around 900

nm. Figure 8.5 shows the absorption curve and losses for the same ultra-thin film

CIGSe solar cell, but with the Mo layer replaced by an Ag layer. There are very low

losses present in the back contact in this case. The absorption also shows more clearly

characteristic coherency patterns, with a lower absorption at 800 nm and much higher

absorption at 900 nm, this is due to destructive or constructive interference of multiple

internal reflections inside the CIGSe layer. However at wavelengths higher than 900 nm

the absorption still falls rapidly, this suggests that even for an ideal back reflector like

Ag, a light trapping concept would still be necessary. Ag as a back contact would also

be impractical due to the poor electrical contact with CIGSe and the likelihood of Ag

diffusion into the CIGSe layer during deposition.

Since a back contact that has a high reflectivity and good electrical properties may be

difficult to find, we will look into decoupling the two concepts. For this we require a

transparent conducting back contact which will transmit the light to a highly reflective

surface which does not electrically interact with the solar cell device. An example for

this concept would be a transparent conducting oxide back contact, like ITO which has

been shown to provide comparable electrical properties to a Mo back contact, with a Ag

back reflector behind the ITO layer.

Since the Ag reflector is not required to be in contact with the ITO, we are free to

add a spacer layer in between the ITO and Ag layers. As long as the spacer layer
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Figure 8.5: The reflection, transmission and absorption in a CIGSe solar cell with a
400 nm thick absorbing layer. The back contact is a 200 nm Ag layer provides a higher

reflectivity than the conventional Mo back contact.

is non-absorbing in the relevant wavelength range, the only effect will be to change

the coherent interference of light inside the layer stack. This can be used to optimise

the absorption in the CIGSe layer given a certain thickness of ITO required for good

electrical conductivity. Furthermore a spacer layer helps to block diffusion of Ag that

may happen during the high temperature CIGSe deposition. The downside to adding a

spacer layer is that it may harm the growth and conductivity of the ITO layer, although

it may equally be beneficial compared to growing ITO on Ag, dependent on the material

chosen as a spacer layer.

In order to eliminate the possibility of diffusion altogether, we can use the glass substrate

as the spacer layer. This will effectively mean that the back reflector is separated from

the cell device by a millimeter or more of glass. This will have a different effect than

placing the back reflector within a few hundred nanometers of the absorber layer. In

this case the light returning from the rear side of the substrate will be incoherent with

respect to the incident light. For the thin substrate we observe peaks and troughs in

the absorption profile over the spectral range of tens or hundredths of nanometers due

to Fabry-Perot oscillations (i.e. multiple internal reflections). Such peaks and troughs

will still be present for a thick substrate in principle, however they will occur within a

few hundreds of a nanometer. Therefore when attempting to measure the absorption

profile with a real light source, the spectral bandwidth of the source must be taken

into account. This bandwidth will be much larger than the few hundred nanometers

of the Fabry-Perot oscillations meaning that a measurement will effectively average out

such oscillations. Therefore, while a perfectly monochromatic source might be able to
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Figure 8.6: The short circuit current density (Jsc) for a coherent back reflector concept
relative to an incoherent concept as a function of both the absorber layer thickness

(CIGSe) and the back contact thickness (ITO).

measure the phase oscillations present in a thick substrate, for practical purposes we

can consider the light there to be incoherently reflected.

This has two repercussions that need to be discussed. The first a physical one: an

incoherent back reflector will not change the coherency pattern of light inside the so-

lar cell device. That means that the absorption of light inside the CIGSe layer cannot

be optimised by changing the glass substrate thickness. Furthermore, it means that

any increase in absorption in the CIGSe layer will be wavelength independent and also

independent on the CIGSe layer thickness. The second repercussion has to do with mod-

elling an incoherent system. The simulation methods presented so far have assumed full

coherency of the light involved. With regards to FEM simulations, an incoherent layer

is not possible to simulate due to the fact that it is many hundreds or even thousands

of times larger than the wavelength of light. Therefore FEM simulations need to be

coupled to an S matrix simulation in order to simulate incoherency. The topic of that

coupling will be discussed in chapter 11. For now we will describe only how the S matrix

method can simulate incoherency since that is adequate for the current topic (incoherent

back reflector).

8.3 Decoupled Back Reflector

We will first compare the coherent to incoherent back reflector in the absence of a

dielectric spacer. Figure 8.6 shows the relative short circuit current density (Jsc) for the

coherent reflector compared to the incoherent one. In both cases the wavelength range
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Figure 8.7: The short circuit current density (Jsc) for a coherent back reflector concept
relative to an incoherent concept as a function of the dielectric spacer layer (SiO2)

thickness. The ITO thickness is 200 nm while CIGSe thickness is 400 nm.

used for integration to obtain Jsc was λ = 300 to 1200 nm. The incoherent results in

this section were obtained via phase averaging. The relative Jsc is then obtained via

Jrelsc = Jcohsc − J incohsc , therefore it is positive when the coherent case outperforms the

incoherent case and negative when it performs worse. The limit for the coherent case

outperforming the incoherent one can be clearly seen in the figure, the ITO must be

less then 100 nm for very thin CIGSe layers, increasing up to 200 nm for 400 nm of

CIGSe before decreasing again for even thicker CIGSe layers. However the scale of the

performance improvement is also important. For very thin CIGSe films and very thin

ITO films the Jsc can be improved by over 1 mAcm−2 which is a significant improvement.

This will be partly due to the fact that it is easier to gain a relatively large increase in

performance for a cell with an initially worse absorption. While it is true that a thinner

ITO will always be beneficial optically due to loss in the ITO layer, if we assume that at

least 200 nm is required for good enough electric conductivity, then the incoherent case

seems to be almost universally more beneficial in this case. However it is also visible

from the figure that the coherent case is capable of outperforming the incoherent one

quite significantly. Therefore we now employ a spacer layer in between the ITO and Ag

back reflector where we hope to increase the absorption above the level of the incoherent

back reflector.
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Figure 8.7 shows the relative absorption increase of a coherent back reflector with a

dielectric spacer layer compared to an incoherent back reflector. In both cases the CIGSe

and ITO layer thicknesses were 400 nm and 200 nm, respectively. Due to the absence

of a spacer layer in the incoherent case, the same reference spectrum was used for the

incoherent Jsc in each case. The value of the relative Jsc at a spacer thickness of zero

corresponds to the tile in fig. 8.6 for CIGSe and ITO at 400 and 200 nm, respectively.

As the spacer layer thickness increases we observe peaks and troughs in the Jsc relative

to the incoherent back reflector. The trend indicates that increasing the spacer layer

to thicknesses even beyond 1000 nm can be beneficial to the absorption in the solar

cell. However this also has problems associated with it, as the spacer layer thickness

increases, not only do the coherent enhancement peaks become narrower, but also in

a practical sense, the possibility for fine control over the spacer layer thickness reduces

with increasing spacer thickness. This is due to relative error having a larger absolute

impact on thicker spacer layers. For this reason we choose to stop the optimisation at

a spacer thickness of 1000 nm. Inside of the range presented, the largest increase in Jsc

is found for a spacer layer thickness of 860 nm with a relative increase of 2.2 mAcm−2

compared to the incoherent case. However as discussed, a 5% error in the thickness of

the spacer layer could lead to thicknesses of 817 and 903 which both provide only a 0.2

mAcm−2 increase. Compare this to the peak at spacer thickness of 344 nm providing

an increase in 1.1 mAcm−2. In this case a 5% thickness error leads to thicknesses of 327

and 361 which provide increases of 0.9 and 0.7 mAcm−2 respectively. Thus the peak at

860 nm spacer thickness provides a higher optimum value, but the peak at 344 nm is

more robust to spacer layer thickness errors.

The reason why the coherent case can outperform the incoherent case for certain pa-

rameters has to do with the peaks and troughs in absorption present in the coherent

spectrum. The incoherent spectrum essentially averages out these peaks and troughs,

meaning that if an equal number of peaks and troughs are present in the coherent case,

the coherent and incoherent absorption should agree. However it is possible to engineer

the system such that one more peak is present than the number of troughs, meaning

that the coherent case has a net increase. Additionally since the solar spectrum is not

equal for different wavelengths, peaks at certain wavelengths may be more beneficial

than others, further allowing for optimisation.

8.4 Conclusion

To conclude this section on ultra-thin devices before the nanoparticle integration is

introduced we summarise three different absorption curves in fig. 8.8. The first curve is
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Figure 8.8: The absorption curves for three different devices that have been covered
in this section. The standard thin film device with 2 µm of CIGSe material, the ultra-
thin device with 400 nm CIGSe and finally the optimised ultra-thin film with the Mo

exchanged for ITO/SiO2/Ag with thicknesses 200/860/200.

that of the thin film solar cell with a 2 µm absorber layer thickness with an associated

Jsc of 31.16 mAcm−2 this is the target to be reached or even surpassed by our ultra-thin

devices. Secondly we show how the absorption drops when moving to an ultra-thin

device with only 400 nm absorber layer thickness without making any other changes.

Due to the low reflectivity of the Mo layer, significant losses in the Mo lead to a large

reduction in absorption, providing only 24.63 mAcm−2 of current density. Finally we

show how this can be improved without the use of nanostructuring by decoupling the

back contact and back reflectors. By changing the Mo for a stack of ITO/SiO2/Ag we

can increase the absorption resulting in a Jsc of 26.80 mAcm−2. For any nanostructuring

concept to be worthy of implementation, it needs to be able to beat this result obtained

without nanostructuring.



Chapter 9

3D Modelling of Photovoltaics

9.1 Modelling Layer Growth

The finite element method allows excellent control over the simulation geometry. This

is not limited to including particles inside a layered stack system, but also extends to

modelling the effect the particle has on the layers. All layers which are deposited on top

of the particles will be deformed due to the presence of the underlying particles. To model

precisely how this growth takes place is beyond the scope of this work, however we can

appeal to experiment to at least give an understanding of whether the growth is typically

conformal or normal [70]. Conformal growth means that the underlying structure is

exactly reproduced in the overlying structure, this can be achieved by allowing the

surface to grow directly upwards. Normal growth means that all surfaces grow in the

direction of their local surface normal. Confusingly in the literature, conformal growth

is often used to mean a mix of both proper conformal growth and normal growth. Both

of these cases and any combination can be analytically described for ellipsoidal particles.

Due to this analytical description the final geometry is determined by the union of an

enlarged particle and the flat layer that should be grown. A schematic of the process is

shown in fig. 9.1. The enlarged particle relates to the original particle upon which the

layer is deposited via

P (a, b, c, x0, y0, z0)→ P
′
(g + a, g + b, g + c, x0, y0, h+ z0), (9.1)

where a, b and c are the three radii of the ellipsoid, x0, y0 and z0 are coordinates of the

center point of the particle, g is the amount of growth in the normal direction and h is

the amount of conformal growth.

92
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Figure 9.1: Calculating the resultant surface S determined from growth of a layer on
top of a nanoparticle using the intermediary surfaces P

′
, F

′
and F

′′
. The conformal

growth h and the normal growth g are shown.

The final surface is then obtained via

S =
{
P
′ ∪ F ′

}
∩ F ′′ . (9.2)

Where F
′

is the flat layer with a lower surface at z = zmin which is the height of the

flat surface upon which the particle rests (i.e. the substrate). The upper surface of

F
′

is determined by z = zmin + g + h since all normal growth for the flat layer is also

conformal growth. A final intersection must then be made between the resultant object

and a further flat layer (F
′′
) with the same lower surface at z = zmin and with the

upper surface of the computational domain. This ensures that the layer cannot grow

in a negative direction, i.e. below zmin without limiting the upward growth. This can

easily be extended to multiple particles

S =

{
N⋃
i=1

P
′ ∪ F ′

}
∩ F ′′ . (9.3)

Where N is the number of particles upon which the layer is to be grown. This union

between the projected ellipsoids means that when particles are relatively close together,

such that their projected ellipsoids would overlap, the projected ellipsoid with the highest

z value for each x and y value takes priority.

This process will be used in all the following simulations of particles integrated into the

solar cell. This allows for a meaningful comparison to cases without nanoparticles, since

the volume of absorbing material is kept constant in each case.
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9.2 Statistical Distribution

Chapter 6 showed the immense effort required to simulate random arrays of nanopar-

ticles. This is further complicated when trying to include these particle arrays into a

layered system. The approach presented in chapter 6, that of using isolated simulations,

will not be useable in this case. That is because for the isolated simulations at a single

interface, it was not important whether light left the computational domain along the

z boundary or the boundaries in x and y, it was either transmitted or reflected in both

cases. Inclusion inside a layered system means that the distinction between light leaving

the layer/computational domain along z or x and y is crucial. Light which leaves the

computational domain through the x or y walls of the domain will no longer be propa-

gated and therefore it will not be determined which fraction of this light is absorbed by

the absorber layer of the solar cell device. Since the goal of the nanoparticle integration

is to increase scattering into directions parallel to the x-y plane, we can assume that

this will cause difficulties if proceeding with the isolated simulations.

Periodic simulations take these plane parallel propagations into account. The two prin-

ciple downsides are that they model only a single particle size, although this could be

overcome by simulating a range of sizes as with the isolated simulations in chapter 6.

Secondly they may introduce artifacts due to the fixed phase relationship between neigh-

boring particles, meaning that inter-particle interactions will be coherent in the periodic

case whereas they would be assumed incoherent for a random array. In the cases pre-

sented here, generally the particles are placed in an absorbing medium, thereby damping

any inter-particle interactions. Additionally the low coverage means that inter-particle

interactions are generally negligible thereby allowing the use of periodic simulations to

approximate randomised arrays.

For a periodic unit cell we choose the hexagonal close packed arrangement. This will

maximise the inter-particle spacing for a specific coverage thereby reducing any artificial

inter-particle interactions. It should be noted that chemically produced particles which

are deposited onto a layer in the solar device may also form in the hexagonal close packed

arrangement, albeit likely with a higher coverage.

9.3 Generating a Periodic Surface

Generally periodic boundary conditions are preferable for simulating particle arrays. As

long as no particles are touching the computational domain boundary, the boundary will

remain periodic. What is more likely is that the surface grown on top of the particles will

touch the computational domain boundary. In this case steps must be taken to ensure
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the periodicity of this surface. To do this we copy and translate the original particle

array eight times such that a single central array is surrounded by itself, essentially

creating a three by three supercell. We then grow the surface on this supercell, which

is not any more computationally demanding than for a single cell, since the analytical

method presented here is extremely efficient. Finally the center of the surface grown on

the supercell is extracted and forms the periodic surface that was initially desired.



Chapter 10

Photovoltaics with Integrated

Plasmonic Nanoparticles

10.1 Possibilities for Nanoparticle Integration

We have already presented the capabilities of plasmonic nanoparticles to localise and

scatter light. Now we consider the possible ways in which these capabilities can be

exploited by integration in the solar cell. The first property we consider is the localisation

of light. Near to the nanoparticle, light intensity is much higher than in the surrounding

leading to an increased absorption in material surrounding the particle. As outlined

in the previous section, only light absorbed in the CIGSe layer can contribute to the

current, therefore to take advantage of this property requires that the particles be very

close to or in some way touch the CIGSe layer. Three possible scenarios exist for such

close integration, either the particles touch the front or rear side, or they are integrated

directly inside the absorbing layer. Direct integration inside the absorbing layer presents

significant difficulties, the finely tuned deposition process of the CIGSe layer would

need to be stopped mid process to allow for the deposition of the nanoparticles then

restarted afterward. It is to be expected that this would seriously negatively affect the

material quality of the CIGSe and would potentially need a lot of effort to reoptimise

the deposition process. Therefore we rule out this mode of integration for chalcopyrite

cells, while noting that for organic solar cells, or solar cells with less stringent deposition

procedures, direct integration may be the most beneficial method as the entire particle

near field can be exploited.

Considering instead the particle integration at either the rear or front side of the CIGSe

layer we can again make some assumptions as to the effectiveness of these two options.

The two most popular plasmonic materials, Ag and Au both have interband transitions
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Figure 10.1: The five positions in the cell where nanoparticle integration could be
profitable. Either at the very front or rear of the device in order to maintain electrical
quality or integrated into the absorbing layer. In the absorbing layer the particles can

be situated in the bulk or at the front or rear surface.

starting at wavelengths 350 nm and 500 nm, respectively. These transitions cause major

absorption losses in the particles for wavelengths shorter than these. Additionally the

fraction of light scattered compared to absorbed also in the plasmonic regime tends to

be lower for shorter wavelengths. Taken together, this means that plasmonic particles

tend to have higher absorption losses at short wavelengths in terms of the operating

wavelengths of a CIGSe solar cell (300 nm to 1100 nm). If the particles are integrated on

the front side of the absorbing layer, they will tend to absorb this short wavelength light

before it can be absorbed by the CIGSe layer. Conversely if the particles are integrated at

the rear side, the absorbing layer acts as a natural optical filter, stopping the wavelengths

where the particle features high loss from reaching the particle. Therefore the integration

of particles on the rear side of the CIGSe layer seem to be the most promising. The

only difficulty is that light scattered by larger particles tends to be more directed in the

forward direction, which in this case would be away from the absorbing layer. However

due to the presence of the interface, the angular scattering spectrum of the particle will

be significantly distorted anyway. In this case the rear side integration may still offer a

useful absorption enhancement.

The other two places for integration worth considering are at the front or back of the

entire device. The idea being that we place the particles in such a way as they have
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minimal impact on the electrical properties of the cell. Either they can act as an anti-

reflection coating on the front side or they lie underneath the back contact, necessitating

a transparent back contact. Due to the lack of close contact to the CIGSe layer, the

localisation of light will not be exploited in this case, only the scattering of light and

associated light path length increase will be utilised. Due to the previously mentioned

problem of short wavelength absorption in plasmonic nanoparticles, front side particles

do not seem particularly promising. Even if we consider a particle with low losses, the

increase in path length of light due to the scattering will be present in the various parts

of the window layer as well as in the absorber layer. This means that any parasitic losses

in the window layer will also be increased due to the longer path length of light in the

window layer. Based on this rear side integration may have more potential. The rear

side integration has similar problems in that an increased path length will also increase

parasitic absorption in the rear contact. However it retains the advantage that the solar

cell will filter out shorter wavelengths, thereby nullifying any increase in parasitic losses

at least in the short wavelength range.

Due to the previous analysis, we will focus our attention on particles integrated at the

rear side of the solar cell, either directly touching the absorbing layer or integrated

behind the back contact.

10.2 Integration with Mo Back Contact

In chapter 8 we have already seen that while Mo provides good electric properties for

the solar cell, the optical properties are somewhat lacking. We already introduced the

idea of decoupling reflector and contact via changing to ITO. However nanoparticles

may also lead the way to a decoupling process. If the nanoparticles are integrated at the

the CIGSe/Mo boundary, then they can act as a reflector without interfering strongly

with the electrical contact. This is because the space in between the particles should

provide ample contacting area for the solar cell device, and if the nanoparticles can

be electrically isolated via a shell layer, then they should not deleteriously effect the

electrical operation of the device. On the other hand they can bring a large benefit to

the optical side of the device, if the majority of the light can be reflected by the particles

without interacting with the Mo, it would greatly reduce a significant loss channel in

the solar cell. In order to see if this is the case we wish to model the light scattering of

a core shell particle at the interface.

As we have already seen in chapter 6, the scattering and near fields of a particle are

heavily affected by the presence of an interface. In order to get a feeling for how much

of an effect this can have on the overall absorption, we simulate a core shell plasmonic
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Figure 10.2: Three different ways to model a particle at an interface. (a) shows the
particle close to but not touching the interface (b) shows the particle making contact
with the interface but keeping the spherical shape, while (c) shows a particle deformed

at the interface, note that the shell thickness is kept constant in this case.

Figure 10.3: The absorption spectrum for the three cases shown schematically in
10.2, including a reference without particle.

nanoparticle integrated at the CIGSe/Mo interface of an ultra-thin film chalcopyrite solar

cell. The core material is Ag and the shell material is AlSb, the reasons for choosing these

materials were discussed in detail in chapter 4. We will simulate the absorption for three

cases, firstly if the particle is artificially placed inside the CIGSe layer a few nanometers

above the interface, secondly if the particle is touching the interface with a finite extent

while remaining perfectly spherical and finally if the particle is touching the interface

and is deformed. The exact deformation that occurs in realistic particles is difficult to

determine experimentally, especially for the case of the core-shell particles were the core

cannot be conveniently probed. Therefore we assume that a deformed core-shell particle

will have a total geometry similar to the particles presented in chapter 6, and that the

shell core is deformed in the same way, such that the shell thickness remains constant

over the whole particle. Figure 10.2 shows the different setups schematically.



Chapter 10. Photovoltaics with Integrated Plasmonic Nanoparticles 100

Figure 10.3 shows how the absorption curves change depending on the particle posi-

tion/shape. The difference between the spherical particle above the interface and at the

interface is particularly visible at the peak in absorption around λ = 780 nm for both

cases and the second peak around λ = 875 nm which is only visible for the case of the

particle above the surface. These differences can be understood by looking at the field

strength averaged in the x-y plane of the FEM unit cell for different depths z inside the

solar cell as shown in fig. 10.4. The dashed black lines trace the electric field strength

peaks inside the absorber layer. For the first two cases, that of the particle above and

at the interface, the peaks both intersect the upper boundary of the absorber layer at

a wavelength of around 780 nm causing the increase shown in the absorption at that

wavelength in fig. 10.3. Since the field strength profile is oscillatory due to the effect of

multiple reflections inside the absorbing layer it means that if a trough in field strength

is excluded from the absorber region with the associated peak remaining, the average

field strength inside the absorber layer will be increased. This is more pronounced for

the cases with integrated nanoparticles compared to flat Mo back contact because the

nanoparticles are more reflective than the Mo back contact. If the back contact is not

reflective then there will not be the multiple internal reflections necessary to create the

peaks and troughs for this effect to be visible. For the third case, the particle is signifi-

cantly deformed from a sphere, which causes a redshifting of the resonance meaning that

no absorption enhancement is observed in fig. 10.3 due to the resonance being redshifted

out of the region of interest. The final point to be noted is why the particle above the

interface significantly outperforms the particle at the interface at the wavelength 875

nm. As can be seen in fig. 10.4 at this wavelength, a field strength peak in the absorber

layer is intersecting with the nanoparticle at the rear of the absorbing layer. Due to

this the intensity peak is able to more completely cover the particle above the interface

which has a slightly higher z position than the particle at the interface. This means that

the particle interacts more strongly with the incident light boosting the reflectivity of

the nanoparticles causing the absorption increase seen in fig. 10.3.

With regards to particle positioning the differences in simulation results are rather mini-

mal. This is largely due to the fact that since we have a core-shell particle, the plasmonic

core is isolated from the effect of the interface. The biggest difference was visible from

changing the shape of the particle from a sphere to a more realistic shape. The results in

chapter 6 show how important the realistic particle shape can be to accurate simulations,

therefore we will base the following simulations on the more realistic shape. It should

therefore be kept in mind that a slightly smaller particle may be necessary compared

to the spherical shape in order to counteract the redshifting induced from moving to a

more ellipsoidal shape.
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Figure 10.4: Part (a) shows the ultra-thin device with integrated nanoparticles. Parts
(b-d) show the x-y plane averaged electric field strength inside the solar cell as a function
of wavelength for the three cases shown schematically in 10.2. The layer interfaces are
marked with solid black lines, dashed black lines are a guide to the eye for the dispersion
of Fabry-Perot peaks inside the layers. The electric field strength is normalised to the

incident field.
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Despite the differences in the absorption coming from different placements of the nanopar-

ticle at the interface, the only case that provided a marginal increase in short circuit

current density was that of particle above the interface which increased Jsc to 24.91

mAcm−2 compared to without a particle (24.65 mAcm−2). The other two cases decrease

the overall short circuit current density to 24.30 mAcm−2 for the spherical particle at the

interface and 24.24 mAcm−2 for the realistically shaped particle at the interface. This

suggests that while the particles are able to increase the long wavelength reflectivity,

the loss in absorption at the relatively shorter wavelengths is too large a disadvantage

to be overcome. This loss in absorption is replaced not with increased Mo absorption,

but with higher reflectivity of the overall device. This suggests that the particles are

acting as a good reflector, but they are acting to shorten the total cavity thickness,

if that thickness is measured from the top of the particle to the upper surface of the

absorbing layer. This means that less light can be absorbed due to the cavity being

shorter. Therefore the particles are reflecting but are not scattering into higher angle

modes which would increase the path length significantly thereby reducing reflection.

The other possibility is that the shaping of the layers above the absorber layer due

to the underlying nanoparticle causes there to be a higher reflection from these layers.

This could be possible due to the fact that light is hitting the surface at a more oblique

angle due to the curved surface there. However in the case presented here, since the

particle is much smaller than the layer thickness, the effect on shape of the above layers

is minimal, meaning they are very close to flat. Figure 10.5 shows the reflection of three

different devices. As a reference the reflection for the case of no particle is included.

The reflections for the cases of shaped and flat layers above the particle provide almost

identical reflections. Especially in the wavelength region 600 to 750 nm where the

reflection is higher than without a particle. Therefore we can assume that the effect of

layer shaping is minimal on the overall device performance.

In order to minimise the negative impacts of incorporating the nanoparticles directly

into the absorbing layer we also consider integration into a device with an ITO back

contact and an Ag back reflector.

10.3 Integration with ITO Back Contact

In chapter 8 we have shown that an ITO back contact with an Ag back reflector and an

optimised intermediate layer can provide a more efficient ultra-thin device than with the

standard Mo back contact. We now investigate whether the inclusion of nanoparticles

into this device can further boost the performance.
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Figure 10.5: The reflection for three different ultra-thin film solar cell devices. Shaped
layers refers to the case where the layers above the nanoparticle are deformed due to
the particle presence, flat layers assumes that all layers above the particle remain flat.

We again present three different cases. In each case the particle is given a realistic

shape and is in contact with the interface. The three different interfaces as well as

the layer thicknesses of the CIGSe/ITO/SiO2/Ag layers are shown in fig. 10.6. At the

CIGSe/ITO interface a shell for the plasmonic particle will be necesssary as has been

discussed in the previous section. Although the particles integrated underneath the ITO

and SiO2 layers would be isolated from the CIGSe layer, we include the shell also for

these cases in order to maintain comparability between the different simulations.

Figure 10.7 shows the absorption curves for the three different cases compared to a

reference without nanoparticles. Due to the large thickness of SiO2 present in all cases,

the spectra have an extremely large amount of resonances, however conclusions may

still be drawn. When the nanoparticle is not situated inside the absorber layer, the two

absorption spectra look very similar. Whether the particle is above or below the SiO2

spacer layer does not seem to play a large role. This suggests that either the particles not

situated inside the absorber layer do not interact strongly with the incident light, or that

particles at the ITO/SiO2 interface are scattering strongly into the forwards direction,

so that the light can still interact with the spacer layer. Contrast this to the case of

the particles integrated into the CIGSe layer, here fewer resonances are observed, this is

because a significant proportion of the light is reflected back by the particles and does

not reach the underlying SiO2 spacer which would increase the number of resonances.
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Figure 10.6: Nanoparticle integration into the ultra-thin device with ITO back con-
tact can be principally applied in three different locations. The CIGSe/ITO interface,

the ITO/SiO2 interface or the SiO2/Ag interface.

Figure 10.7: Absorption spectra for the three cases of integrating nanoparticles into
an ITO back contact device as described in fig. 10.6. The legend indicates the two

materials which form the interface where the particles are situated.
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The mode structure when viewed in the form of the electric field strength distribution

per wavelength gives some insight in to the absorption curves. Figure 10.8 shows intense

Fabry-Perot resonance in the ITO/SiO2 layers at wavelengths of around 840 and 1040

nm. That is because the most highly reflective interfaces are the Ag back reflector

and the ITO/CIGSe interface due to the large jump in refractive index between these

two materials. This will cause a cavity to form surrounding the ITO and SiO2 layers.

The mode structure makes it clear that these layers contain the intense resonance not

only because the intensity in those layers is highest, but also the resonance wavelengths

occur when a node in the intensity is at the CIGSe/ITO interface. Since there is always

a node at the SiO2/Ag interface due to reflection, when a node is also present at the

CIGSe/ITO interface it means an exact number of half wavelengths fits inside the cavity

(ITO + SiO2) which is the Fabry-Perot resonance condition. Unfortunately these intense

resonances are not contained inside the CIGSe layer and are mainly detrimental to

the CIGSe absorption since a lot of light is absorbed in the ITO. Correspondingly the

intensity contained in the CIGSe layer drops significantly at exactly the Fabry-Perot

resonance wavelength. In contrast the nanoparticle provides a relatively broadband

intensity enhancement as long as a node does not pass through the particle position

meaning that almost no light can interact with the particle.

It is also visible that the mode bands bend significantly at certain wavelengths. The

mode bands will tend to bend when moving from material to material based purely from

the refractive index. They have a steeper gradient with respect to wavelength in lower

index materials and a lower gradient in higher index materials, this is purely due to

the wavelength in the material changing and the resonance either being compressed or

stretched out in different materials. However other more extreme bending is visible at

the Fabry-Perot resonance wavelengths. In this case the modes in the CIGSe rapidly

change structure when moving through the resonance wavelength. This effect is most

visible in part (b) at 1040 nm wavelength. The sudden change in the mode structure

suggests a phase shift being introduced. The same general trend as with the Mo back

contact is visible in that when a resonant intensity peak is on the edge of leaving the

absorber layer, the total absorption also peaks at that wavelength.

The device structure without the presence of nanoparticles reaches 26.80 mAcm−2. By

including the particles this changes to 26.34, 25.93 and 25.44 mAcm−2 for the particle

inside the CIGSe, ITO and SiO2, respectively. This points to the fact that the nanopar-

ticle can adversely effect the delicate coherent enhancement present by slightly changing

the mode structure inside the solar cell. It also appears that having the particles placed

directly inside the absorbing layer is beneficial, probably due to better light trapping

and the ability to exploit near field enhancement.



Chapter 10. Photovoltaics with Integrated Plasmonic Nanoparticles 106

Figure 10.8: Part (a) shows the ultra-thin device with integrated nanoparticles and
coherent back reflector. Parts (b-d) show the x-y plane averaged electric field strength
inside the solar cell as a function of wavelength for the three cases shown schematically
in 10.6. The layer interfaces are marked with solid black lines, dashed black lines are a
guide to the eye for the dispersion of Fabry-Perot peaks inside the layers. The electric

field strength is normalised to the incident field.
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The results presented in this section have shown that there is a large potential gain

to be made by engineering the coherency of light inside the solar cell device. The risk

that comes with this potential gain is that the increase is very tightly coupled to all

variables in the system. Practically speaking, small variations in layer thicknesses or

even just changing the incident angle can cause the same coherency effects to instead

give a decrease in absorption. Adding the nanoparticles into the equation, even in

the case shown here for periodically arranged identical particles, tends to perturb the

coherency effects so strongly that it is a difficult task to try and optimise for the coupled

system. Furthermore, taking into account that realistic particles may be randomised in

their geometrical properties as well as their positions and orientations, it seams that it

may be unrealistic to aim for a coherent enhancement when nanoparticles are involved.

The question still remains as to whether serious gains can be made by incorporating the

nanoparticles in an incoherent fashion, which will be the topic of the following chapters.



Chapter 11

Coupling Methods

11.1 Coupling Methods for Nanooptical Simulations

In this work we have already presented multiple simulation methods (Mie Theory, FEM,

Scattering Matrix) which have been able to give us useful results on their own. Now

we seek to combine these simulations together by the exchange of information between

the different simulations. Due to the FEM being a very general method, it is capable of

simulating exactly the same things as the scattering matrix method and as Mie theory.

However since the method is relatively computationally expensive, we desire to use the

FEM only when strictly necessary. Therefore the proposed coupled simulations are:

• Coupling between scattering matrices and Mie theory.

• Coupling between scattering matrices and the FEM.

The first proposal is in order to dispense with the laborious FEM step altogether. This

has the potential to greatly increase the speed of computation, at the risk of loosing

physical accuracy. The second proposal is partly to speed up the simulation for regions

where the problem is effectively one dimensional, but also to overcome a weakness of the

FEM, namely the difficulty with handling length scales much larger than the wavelength.

11.2 Coupled Scattering Matrix Simulation

We first discuss the method by which a different arbitrary simulation can be coupled to a

scattering matrix simulation. As we have previously seen, the scattering matrix method

condenses the presence of a layered stack system into a matrix that describes how electric

108
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Figure 11.1: Block diagram form of the algorithm used to iteratively couple between
an S matrix simulation and some other anonymous simulation.

or magnetic fields incident on either side of the layered stack are mapped to outgoing

fields on either side of the layered stack. Therefore the principle method for coupling

to an S matrix simulation is to provide field values on either side of the layered stack,

along with the associated k vector. Likewise a scattering matrix simulation can couple

to some other simulation by providing the outgoing fields and associated k vectors.

We first imagine coupling the S matrix simulation to an anonymous simulation that

simply takes in field values at one edge of the layered stack and returns field values that

should be used as the input for a second S matrix simulation. The process can either

begin with the S matrix or the anonymous simulation, however for this example we will

begin with the S matrix simulation.

Figure 11.1 shows the iterative coupling process between an S matrix simulation and an

anonymous simulation. The coupling algorithm begins with an initial S matrix simula-

tion which provides the initial conditions for the coupling process. An iterative process

then begins where the S matrix and anonymous simulations are run one after the other,

passing the fields from each simulation to the input fields of the following simulation.

This iterative process has a termination condition, which is typically a tolerance for

the total field strength being passed from one simulation to the other. When the field
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Figure 11.2: Schematic for the coupled simulation of core-shell plasmonic nanoparti-
cles integrated into an ultra-thin CIGSe solar cell using the Mie + SM method.

strength value is below the tolerance value the coupled process terminates. During each

step the results of each simulation need to be saved and the total solution is found by

combining the results for each step.

The algorithm relies on the total field strength being passed between the two simulations

reducing over the course of many iterative steps. This will be true as long as the total

losses in the system are more than the gains in the system. For the case of solar cells and

plasmonic materials, this will always be fulfilled since all materials have an imaginary

refractive index (k value) greater or equal to zero. If however gain materials were

included which have a negative k value, careful attention should be paid as to whether

the algorithm still converges. Other sources of loss are the outgoing fields on the side

of the layered stack which is not coupled to the anonymous simulation, and any losses

introduced by the anonymous simulation itself. This ensures that the algorithm also

converges for non-absorbing media, so long as the outgoing field from the layered stack

on the non-coupled side is greater than zero.

A schematic image of the algorithm is shown in fig. 11.2 for the system of plasmonic

core-shell particles integrated into an ultra-thin CIGSe solar cell. The flat layers are

handled by the SM simulation, while the scattering and absorption due to the particles

is handled by a Mie theory simulation. A range of coupling angles is shown for coupling

between the simulations, note that these coupling angles are independent of the angle

of incidence.

Given this basic algorithm, there are two methods that can be used to couple the simu-

lations together, each with its own physical meaning. The coherent method couples the

actual complex field values at edges of the layered stack. In this case the anonymous

function takes on a three component complex vector field with an associated k vector

for each coupling angle and returns the same. To ensure the coherency of the final result

the fields inside and at the edges of the layered stack are coherently summed, with the



Chapter 11. Coupling Methods 111

reflection, transmission and absorption inside the layered stack being calculated from

these fields. The incoherent method is a simplification to this process. We first convert

the outgoing fields from the layered stack into intensities I = |E|2 with an associated

angle as measured from normal to the layered stack. For instance, in the initial sim-

ulation, where no light has been scattered, only one of the coupling angles will have

a non-zero intensity (the one which corresponds to the angle of incidence). However

after light has interacted with a scattering object, other coupling angles may contain a

non-zero intensity, meaning that all of the coupling angles need to be calculated.

Since the intensity is a real valued positive scalar quantity it does not contain information

on the phase or polarisation state of the outgoing wave. In this case the anonymous

function takes in the intensity and returns an intensity for each coupling angle. Since

phase information does not carry over between iteration steps, each S matrix simulation

can separately compute the reflection, transmission and absorption, with the final result

being the summation of the results for each individual simulation. It should be noted

that each individual simulation is fully coherent inside of itself, only that iteration steps

do not coherently interfere with each other. Additionally it is implicitly assumed that

the polarisation state of the light is not changed by the anonymous simulation, meaning

that each S matrix simulation step has the same polarisation.

The advantage to the incoherent coupling method is that the anonymous simulation

can be simplified or even come from experimental data. Experimentally it is typical to

measure intensities such as the reflection R instead of the reflected field Er. Therefore

if the anonymous function is generated from experimental data, it will likely only be

able to provide intensity inputs for the S matrix simulation. The obvious downside to

the incoherent coupling is that it is not able to simulate coherency effects. As a specific

example, if we wish to simulate nanoparticles placed into a layered stack, the question

as to whether it lies at a node or anti-node of the oscillating electric field or somewhere

in between, will greatly effect how the particle reacts to the incident field. However if

we consider that in realistic cases the particle position may vary quite significantly from

particle to particle, the coherency effect may not be relevant to the simulation. In this

case it may be appropriate to use the incoherent coupling which is significantly easier

to implement without a great loss of accuracy.

11.2.1 Test Cases - Perfect Reflector and Transmitter

As test cases for the iterative coupling algorithm, we present results for two simple cases:

a perfect reflector and transmitter. These cases do not require the use of an iterative

coupling method, therefore we can verify the results by comparing to standard S matrix
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Figure 11.3: The absorption contribution from each iteration of the coupled SM
simulation with a perfect reflector coupler and field matching boundary conditions.

simulations. To motivate the later transition to modelling solar cells, we will implement

these simple cases also in a solar cell. We first consider a standard ultra-thin film

chalcopyrite solar cell, the details of which are given in chapter 8. The only difference

is that instead of the typical Mo back contact/back reflector used in chalcopyrite solar

cells, we will instead use a theoretical perfect reflector. For the case of an S matrix

simulation, this is trivially achieved by setting the refractive index of the transmission

region to be n = 0, k → ∞. This is equivalent to a perfect reflector also called perfect

electric conductor, to understand this we have to look at the permittivity instead of the

refractive index. The permittivity given by this complex refractive index will have a

negative and infinite real part and zero imaginary part. This means that the material

is able to reduce the field inside the material to zero due to the real permittivity and

will have zero losses due to the imaginary part of the permittivity. In the case of the

coupled simulation, the anonymous simulation will take the electric field given in the

transmission region and return it to the S matrix simulation at the same angle, including

a phase shift by π.

Figure 11.3 shows the different iteration steps for the absorption in a 250 nm thick CIGSe

layer integrated into the aforementioned solar cell. The reference value calculated from

a single S matrix simulation (i.e. without coupling) by including a perfect reflector

material is also shown. The first iteration simulates only a single pass through the

absorbing layer (with no reflections at the rear side) therefore the result lacks any peaks

and valleys that result from multiple reflections inside the absorbing layer. The second

iteration already adds significant structure to the spectrum resulting from light being

reflected at the perfect reflector back contact and a small fraction being reflected at the
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CIGSe/CdS interface. This means that the second iteration includes both the second

and third passes of light through the solar cell. Subsequent iterations further refine the

peak structure, with the peaks visibly converging to the reference value for increasing

number of iterations. Due to the need for multiple iteration steps, the coupled approach

reaches the result slower than the direct approach. To further test the formalism and

to present an example where the coupled approach can outperform the direct approach

we move on to the perfect transmitter.

The second test case is a perfect transmitter. The transmitter will be used to couple

two different S matrix simulations. The algorithm presented in section 11.2 can be

extended to include a further S matrix simulation below the initial one. In this case the

anonymous simulation must be capable of taking input angles from 0 to π and returning

output values at these angles. The inputs for the anonymous simulation on the range

0 to π/2 come from the upper S matrix simulation while the lower simulation provides

the inputs from π/2 to π.

We move now to a more realistic solar cell example, using a transparent conducting oxide

(ITO) as the back contact. Since the material is transparent, light will be transmitted

into the glass substrate. If an Ag back reflector is then placed on the rear side of

the glass substrate, it will be able to reflect the light back into the solar cell. We have

already discussed in chapter 7 the fact that macroscopically thick layers such as the glass

substrate here must be treated incoherently. To reiterate, a fully coherent treatment of

the propagation of light through a structure with a macroscopic thickness will include

the Fabry-Perot resonances that would theoretically form in such a structure. However

the bandwidth of these resonances is much less than a single nanometer. There are

many reasons why these resonances are not detected in practice, very slight variations

in the substrate thickness, on the order of nanometer variations, will tend to shift peaks

and troughs of the resonances. These peaks and troughs will tend to become blurred

out since they are each shifted a small amount compared to each other. Another way

to understand this incoherence is that any light source used to measured the reflection,

transmission and absorption will itself have a finite bandwidth. If the bandwidth is

larger than the bandwidth of the Fabry-Perot resonance, then it will not be capable of

resolving this resonance.

Simulating this incoherency can be easily achieved using the coupled method we have

presented. In this case we do not couple the field values between the two different S

matrix simulations but the intensities. Thus we split the solar cell into an upper simula-

tion including the layers Air/AZO/ZnO/CdS/CIGSe/ITO/Glass and a lower simulation

including the layers Glass/Ag/Air. The anonymous simulation in this case couples an

incoming Intensity at an angle of θ to the same outgoing angle. Therefore the input
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Figure 11.4: The absorption contribution from each iteration of the coupled SM sim-
ulation with a perfect transmitter coupler and intensity matching boundary conditions.

intensity to the interface will pass through without any change, as an analogy to the

perfect reflector we call this behaviour the perfect transmitter.

The other approach to simulate incoherency which was covered in chapter 7, is to take

the average of repeated simulations where each time the phase of the light inside the

incoherent layer (here the glass substrate) is varied. It however requires multiple simula-

tion steps to take into account the different phases. Therefore depending on the amount

of phases necessary, and the amount of iterations necessary in the coupled approach to

reach convergence, this method of achieving incoherency can be outperformed by the

coupled approach.

In fig. 11.4 the absorption of the 250 nm CIGSe layer in the solar cell setup previously

described is shown. The absorption calculated using the coupled method is subdivided

by area into the amount of light absorbed during each iteration step. The reference dots

were calculated using the phase average of multiple S matrix simulations. In contrast

to the previous coherent example, the structure of the spectrum is essentially present

already after the first pass through the absorbing layer (iteration 1). This is because since

the iterations are incoherent with one another no coherency effects due to interference

between forwards and backwards propagating waves can arise. With an increase in the

number of iteration steps the total absorption converges to the reference value. This

was verified at every wavelength, even though only certain wavelengths for the reference

value are shown for readability.

The two results presented seem to show convergence to their respective reference values,

however for a more in depth look we turn to analysing the convergence at a single
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Figure 11.5: The convergence of the residual error for the coupled method compared
to the direct method for a selected wavelength in figures 11.3 and 11.4.

wavelength. In doing so we will choose the wavelengths which seem to show the worst

convergence based on figs. 11.3 and 11.4. Figure 11.5 shows the normalised residual error

∆ = |ACoupled−ADirect|/ADirect, between the absorption at a particular wavelength using

the coupled approach compared to the direct approach which should be exact. The x axis

shows the coupling tolerance, this value determines when the iterative coupling process

terminates. When the total intensity being passed from the S matrix simulation(s) to

the anonymous simulation, or vice versa, is less than the tolerance, the coupling process

terminates. This means that the residual error calculated should be bounded by the

coupling tolerance.

In the case of the transmitter the coupling is incoherent, meaning that more iterations

always increase the total value of e.g. absorption. This leads to the expected behavior

that the residual stays bounded by the tolerance at all orders of magnitude. Here we

show the convergence at 1000 nm wavelength which seems to required the most iterations

based on the graph. In this case we do indeed see that the residual error stays below

the given tolerance.

For the case of the reflector the coupling is coherent, meaning that further iterations can

either increase or decrease total values e.g. absorption, due to interferences. Therefore

individual iterations may not significantly move the total result closer to the reference

result, even though the total coupling intensity will decrease with each iteration. This

can be seen in fig. 11.3 at wavelengths around 800 nm the 2nd iteration causes the ab-

sorption to jump above the reference value meaning that the residual is not significantly
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decreased while the intensity will have decreased significantly due to the increased ab-

sorption. Therefore we investigate the convergence properties at this wavelength since

they can be expected to be worse due to the reason just mentioned. In fig. 11.5 although

the residual error for the reflector stays mainly underneath the tolerance, at certain val-

ues it can actually rise slightly above the tolerance value given. At these points the

coherency effect meant that the absorption did not move significantly closer to the ref-

erence value compared to the previous value. However, in general the residuals for the

reflector on average are below the given tolerance and show the same behaviour with

respect to the tolerance. The important thing to note about this result is that when

using amplitude coupling, a lower tolerance value should be given than for intensity

coupling in order to ensure the same level of convergence.

11.3 Coupling S Matrix to FEM

The coupling between the S matrix method and the FEM is relatively straightforward

[71]. The S matrix simulation requires field amplitudes and associated k vectors of

incoming waves at the simulation boundaries and provides the same for the outgoing

waves. Although the FEM can take arbitrary sources, it is most convenient to limit

this to a plane wave incident source since that is the output of the S matrix simula-

tion. Given this source the FEM will calculate the electric field at all points in the

computational domain. In order to couple to the S matrix simulation we need to ex-

press the outgoing wave along the domain surface coupling to the S matrix in terms of

plane waves. To achieve this the Fourier transform of the outgoing wave is taken, this

naturally decomposes the outgoing wave into a plane wave basis.

This can then be included in the previously discussed coupling algorithm, with the FEM

simulation taking the place of the anonymous simulation. Note that the iteration loop

can start with either the FEM simulation or the S matrix simulation. For the case a

nanostructured chalcopyrite cell, incident light will first interact with the nanostructured

layers, i.e. the layers where using the FEM is necessary, therefore the coupling process

will begin with an FEM domain. The iterative coupling process for which we now present

results had already been implemented into the FEM software package JCMsuite which

has been used for FEM simulations in this work. Due to this, the FEM simulations were

not integrated directly into the previously outlined iterative coupling algorithm, however

we have shown how this can in principle work and note that the actual implementation

in JCMsuite is very similar to the proposed coupling method presented here.

Since the principle advantage to coupling an S matrix simulation to an FEM simulation

is to be able to simulate incoherent layers, we will focus entirely on results containing
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such layers. Incoherent layers have already been introduced earlier in this chapter. Note

that even a fully coherent modelling of such thick layers would be impossible due to

the thickness being many thousands of times the wavelength. In this case a coupling

between FEM and S matrices can be used in order to simulate the thick glass block.

11.3.1 Single Thin Film and Glass Substrate

We first look at an example that can be treated without use of the FEM in order to

verify the approach. As our test case we look at a thin film on a glass substrate. The

thin film has a thickness of 300 nm and a refractive index of n = 3. The glass substrate

has a thickness of 1 mm and a refractive index of n = 1.5, and light is incident normally

to the film. The FEM computational domain is 2D consisting of a layered system

of PML/air/film/substrate/PML where only 200 nm of the glass substrate is included

inside the FEM domain. Coupled to this is the 1D simulation of the remaining substrate

e.g. 1 mm including the semi-infinite lower half space of air below the substrate. The

thickness of the substrate will be varied as

t = t0(
9

10
+

n

5(N − 1)
), (11.1)

n = 0, 1, 2, ..., N − 1. (11.2)

Where N is the total number of thicknesses to be included. This gives a variation in

thickness of ±10% that includes N steps. Since the problem is effectively 1D in nature,

this can be easily calculated using intensity coupling and the S matrix to obtain the

phase averaged result, this provides a reference solution to compare the FEM results to.

Figure 11.6 shows the reflection from the film/substrate structure for two different phase

averaging amounts. The upper image shows the reflection where only two different thick-

nesses are used for the phase averaging process. Due to the low number of thicknesses

used, the reflection appears very noisy compared to the reference solution. This is due

to the phase accumulated in passing through the 1 mm glass substrate, which interferes

coherently with the light inside of the film. In reality this light would be incoherent

with respect to the light in the thin film, thus the phase accumulation is unrealistic.

By increasing the amount of thicknesses used to twenty as shown in the lower image,

the coupled FEM reflection is in much better agreement with the reference reflection.

Generally the agreement seems to be within 1%, however at certain wavelengths the

agreement is as poor as 5% although these wavelengths are exceptions. It means that

mean deviation between the FEM result and the S matrix result converges rapidly while
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Figure 11.6: The reflection curve from a simple system of a single 300 nm thin film
with refractive index n = 3 on a glass block with thickness 1 mm. T is the amount of
thicknesses used in each case, the upper image shows phase averaging with two different

thicknesses, the lower image uses twenty different thicknesses.

the maximum single wavelength deviation converges at a much slower rate. However

this is not problematic since we are optimising for the short circuit current density Jsc

which is derived from an integration over all wavelengths, therefore as long as the mean

response for all wavelengths converges well, the value of Jsc will also converge well with

the number of thicknesses.

11.4 Coupling S Matrix to Mie Theory

In using Mie theory as the anonymous simulation in fig. 11.1 some approximations must

be made. That is because Mie theory expresses results in a spherical wave basis, while

the S Matrix simulations propagate light through the layered stack in a plane wave basis.

The spherical wave expansion can be approximated as a plane wave expansion in the far

field limit. Therefore we assume that the far field limit can be used to obtain the angular

distribution of light being scattered from the particle. This limit tells us how much light

intensity is scattered into each angle, however the phase cannot be determined since the

scattered light will not actually be a plane wave inside the thin film. Due to the inability

to incorporate the phase of the plane waves into the simulations we instead use intensity
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Figure 11.7: The reflection, transmission and absorption for the random array of
particles introduced in chapter 6, the simulated data is calculated using the SM + Mie

method.

coupling. This means that effects present due to the phase of the plane waves locally at

the nanoparticle position will be neglected. However it also means that we do not need

to worry about artificial periodic effects for particles having a fixed phase relationship

between each other in the simulation (i.e. due to periodic boundary conditions) when

no such relationship exists in reality.

Given these approximations we cannot expect that the results obtained using this

method will converge towards the FEM method results, since they are simulating differ-

ent physical systems. In order to justify the use of this method we instead reintroduce

the experimental results from chapter 6. There we simulated the response of random

particle arrays on a glass substrate. We now simulate the same situation using the SM

+ Mie theory. In chapter 6 we used a statistical distribution to obtain the correct res-

onance shape, however for the SM + Mie method we take only the mean value of the

size distribution. The particle resonance is heavily influenced by the presence of the

air/glass interface, however Mie theory is only valid for an isolated particle away from

any interfaces. In order to bring these two factors together we simulate the particles in

a thin film of n = 1.3 material in order to simulate the redshift induced by the glass sub-

strate. Additionally we use the experimental coverage value of 18%. Figure 11.7 shows

the comparison between the experimental values and the SM + Mie result. Although

the SM + Mie result slightly overestimates the resonance intensity and does not show

the broadening on the long wavelength region, many of the essential features are present
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in the simulated spectra. This gives us confidence that the SM + Mie method is able to

semi-quantitatively predict the response of a random array of particles and can be used

for the simulation of solar cells containing such particle arrays.



Chapter 12

Simulating Incoherent Light

We turn in this chapter away from abstract examples to more practical ones. One of

the principle reasons for introducing coupled methods was in order to simulate solar cell

devices with integrated nanoparticles and incoherent back reflectors. Therefore the first

example will be a comparison of simulations for such a device using both FEM + SM

and Mie + SM. Figure 12.1 shows a schematic image of the proposed solar cell device.

The core-shell Ag-AlSb nanoparticles are integrated directly into the CIGSe layer close

to the interface with the ITO back contact. The particle has a core radius of 50 nm and

a shell radius of 60 nm meaning a 10 nm shell thickness. The layer thicknesses are the

same as those given in chapter 8 for the incoherent device.

12.1 Comparing FEM to Mie+SM

Using the results of the previous section, we can predict the required number of substrate

layer thicknesses to use for well converged results. We then simulate the solar cell device

shown in figure 12.1. The FEM domain contains all the layers above the glass substrate

and 200 nm of the glass substrate. PML boundary conditions are used along the z

axis, hexagonal periodic boundary conditions are used in the x-y plane. The hexagonal

domain width, i.e. the inter-particle spacing, was set to 180 nm providing a particle

coverage of 18%. This is a typical value of coverage for the particle arrays presented in

chapter 6.

The results from ten different substrate thicknesses equally spaced from 0.9 to 1.1 mm

were used to obtain the absorption and losses found in fig. 12.2 part (a). The absorption

in the CIGSe is generally high up until around 900 nm where it then begins to rapidly

decrease. Although some noise is visible due to the finite number of substrate thicknesses

121
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Figure 12.1: Schematic image of the ultra-thin solar cell with incoherent back reflector
and integrated nanoparticles.

Figure 12.2: The reflection and absorption in a CIGSe solar cell with 400 nm thick
absorbing layer. The back contact is a 200 nm ITO layer with an Ag back reflector
separated by the 1 mm glass substrate. Ag/AlSb core/shell nanoparticles are integrated
at the CIGSe/ITO interface. The device is shown schematically in fig. 12.1. Part (a)

simulated with FEM, part (b) with the Mie+SM method.
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Figure 12.3: The absorption in the CIGSe layer of an ultra-thin solar cell device. The
reference does not include nanoparticles or a back reflector. The Mie + SM simulation

is performed on the full structure with nanoparticles and a back reflector.

used in the averaging process, the main quantity of interest is the CIGSe absorption

which seems relatively free of noise. Additionally wavelength integration will tend to

decrease the impact of the noise. In contrast part (b) which shows the same device

simulated using the SM + Mie method proposed in this thesis is relatively free of noise.

In general results for absorption and reflection appear to agree quite well with the

results obtained using the FEM. The major difference is that the particle absorption at

resonance is higher in the SM + Mie case but also the overall absorption enhancement

due to the nanoparticle is larger. This is due to the fact that interference effects from

light reflecting from the ITO interface are absent for the SM + Mie simulation, therefore

at wavelengths between 700 and 850 nm where the particle is resonant, a large increase

in absorption can be seen.

The differences in absorption between the FEM and Mie + SM simulations are more

visible in fig. 12.2 where the absorption curves are directly compared. The curves shown

in the image are the following,

1. The ultra-thin device with an ITO back contact and an infinite glass layer below,

i.e. without a back reflector. Simulated using the SM method.

2. Same as in 1 but with the addition of integrated nanoparticles in the CIGSe layer.

Simulated with FEM.
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3. Same as in 2 but with an incoherent Ag back reflector. Simulated using FEM

coupled to SM.

4. Same as in 3 but simulated using the SM + Mie coupled method.

Beginning with the device without back reflector or nanoparticles, the absorption curve

shows only very slight peaks and troughs in the wavelength range between 600 and 800

nm. These are due to the slight amount of reflection at the CIGSe/ITO interface which

will cause a weak Fabry-Perot resonance without the absorber layer. Due to a large

fraction of light being transmitted into the infinite glass, the Jsc for this device is only

23.59 mAcm−2. When the nanoparticles are introduced, the reflection at this interface

is increased significantly which increases the absorption in the CIGSe layer. The peaks

and troughs also become more well defined especially around the particle resonance at

800 nm. The interaction between the particle resonance and the Fabry-Perot resonances

causes two peaks at 750 nm and 850 nm to form. The effect of the nanoparticles is to in-

crease the Jsc to 24.90 mAcm−2. In chapter 10 we saw that combining the particles with

the coherent back reflector leads to absorption spectra with a lot of different resonances,

which was challenging to interpret. In this case the interpretation is much easier since

the incoherent back reflector does not add any additional resonances, instead it simply

increases the absorption in the CIGSe by about 5% at each wavelength compared to the

case of no back reflector providing a Jsc of 26.12 mAcm−2

The result from the Mie + SM simulation does not show any of the peaks and troughs

present in the FEM simulations as already stated. It can be seen that in the region 600

to 850 nm wavelength the Mie + SM result gives the average value of the FEM result

if the peaks and troughs of the FEM result were removed. This gives us confidence in

the Mie + SM method since it is showing the same overall enhancement just without

the presence of the coherency peaks which may be the case in experimental spectra due

to incoherencies introduced in e.g. the particle position. At wavelengths higher than

this, the Mie + SM method shows a higher absorption in the CIGSe layer compare

to the FEM. To understand why this is we need to consider the effect of coherency

inside the device. Some effects of coherency are wavelength dependent, the peaks and

troughs of a Fabry-Perot resonance for instance, provide an increased light interaction

with the particle at some wavelengths and a decrease at others. However some effects

are wavelength independent, the phase shift in reflections at the CIGSe/ITO interface

will be largely independent of wavelength. This phase shift (which would be π for a

perfect reflector) means that close to the interface destructive interference causes the

light interaction with the particle to always be lower. This destructive interference is

absent in the Mie + SM simulations due to the incoherent coupling meaning that it

systematically overestimates the absorption in the CIGSe compared to the FEM. The
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Figure 12.4: The Jsc obtained from the Mie+SM method for a solar cell devices with
incoherent back reflector and integrated core-shell nanoparticles. The core radius is
varied by the values given on the x axis while the shell remains at a constant 10 nm
thickness. The nanoparticles used are Ag/AlSb, Al/AlSb and Au/TiO2. The Al core

particle has an Al back reflector while the other two have an Ag back reflector.

overestimated absorption leads to a Jsc of 26.81 which is slightly higher than the value

predicted by the FEM.

Overall the SM + Mie theory gives results similar to the those produced using the FEM.

Especially the resonance position of the particles is the same in both cases. The SM

+ Mie theory tends to overestimate the absorption in the CIGSe layer due to a lack

of destructive interference close to a reflecting interface. Nevertheless, the advantage

of the SM + Mie theory method is the extreme speed with which calculations can be

performed. If we assume that the SM + Mie method systematically overestimates the

absorption, an optimisation can still be performed, since the optimum value for the SM

+ Mie and for the FEM should still coincide.

12.2 Optimisation Using S Matrix + Mie Theory

Having developed the Mie+SM method and shown that it agrees fairly well with the

FEM, we move to applying the method to optimising the incoherent solar cell device

structure. Firstly we consider the device from the previous section with core-shell parti-

cles integrated into the absorber layer with an additional incoherent back reflector and

try to answer the question of what the optimal core radius should be. This can be

performed for different materials and here we revisit the materials introduced in chapter

4, namely Ag, Al and Au. The Ag device with an AlSb shell has already been discussed.

Since an Al particle will need a strong redshift to bring the resonance to the optical
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regime, we choose again the AlSb shell since it is a high refractive index shell. The

Au core on the other hand has a relatively long wavelength resonance to begin with,

therefore we choose a lower refractive index shell in TiO2 which will keep the resonance

within the spectral region of the CIGSe. We vary the particle radius from 15 to 75 nm

while keeping the shell thickness a constant 10 nm. For each case a coverage of 10% is

used. The value was chosen since it means there should be no near field interactions

between particles which would invalidate the independent particle approximation used

in the SM + Mie method.

The same trend can be seen for each of the different materials, the larger particles provide

a higher Jsc which saturates for larger radii. Apart from that the Ag outperforms the

other two materials for larger radii. The reason that the Jsc increases for larger particles

is that the resonance is redshifted to longer wavelengths. Due to the lower absorption

at these wavelengths the particles can have a higher impact, also the particles interact

less with the shorter wavelength (600 - 700 nm) light, which is good since the reflection

from the particles in this wavelength region can reduce the path length of light in the

device due to the fact that the particles are actually in the absorbing layer, assuming

that the angular scattering is low. Therefore it is better for the light to be reflected by

the incoherent back reflector since it is separated from the absorber layer meaning it

does not reduce the path length of light.

As the size increases from 15 nm the total Jsc rapidly rises as the nanoparticle resonance

redshifts into the region where the solar cell is poorly absorbing. This effect saturates

around a value of 45 nm radius for Ag and 60 nm for Au and Al, after which the

resonance becomes very broad and will slowly decrease in effectiveness for larger radii.

At 45 nm radius the Ag particle with a 10 nm thickness AlSb shell in a medium of non-

absorbing CIGSe has a peak dipole resonance wavelength of 1000 nm and a quadrupolar

resonance at 766 nm. These two resonances both contribute to boosting the absorption

of the ultra-thin solar cell.

Once the optimum resonance position has been found by changing the particle size, a

further step is to try and optimise the particle coverage. Particles with a lower scattering

may benefit from having a higher coverage in order to maximise their scattering.

Figure 12.5 shows the Jsc obtained for different values of particle coverage. The particle

core sizes are taken from the maximum value found in 12.4, namely 45 nm for the

Ag particle and 60 nm for the Au and Al particles. All three particle types show an

increase in the Jsc for increasing particle coverage before saturating. The Ag and Au

cases saturate quicker compared to the case of the Al particles. This is due to the strong

absorption band in Al at 800 nm which means the scattering does not increase as fast

relative to the parasitic particle absorption compared to the low loss Ag and Au. Again
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Figure 12.5: The Jsc obtained from the Mie+SM method for a solar cell device with an
incoherent back reflector and integrated core-shell nanoparticles. The particle coverage
is varied by the values given on the x axis. The particle core radii are taken from the
maximum values found in 12.4 with a 10 nm shell thickness. The nanoparticles used
are Ag/AlSb, Al/AlSb and Au/TiO2. The Al core particle has an Al back reflector

while the other two have an Ag back reflector.

Ag shows the best performance which justifies the focus on this material throughout the

thesis.

Questions can be raised regarding the accuracy of the results for such high values of

coverage. The Mie solution for an isolated particle is no longer valid for the case of strong

particle interactions which may be present when particles have a coverage higher than

30%. In fact the saturation of Jsc is due to this fact. Although the particle interactions

are not modeled using this method, the fact that the product of the normalised extinction

cross section and the coverage cannot exceed unity is included. This means that as

particles come closer together, the envelopes in which they collect light start to overlap

meaning that particles cannot interact with as much light as when they are totally

isolated. This effect stops the scattering from rising as the coverage keeps increasing.

The optimum device found for Ag particles reaches a Jsc of 28.98 mAcm−2 for a 60 nm

Ag core radius at 30% particle coverage. Although we cannot verify that this is the

maximum value using the FEM since it would be too computationally expensive, we can

simulate this exact configuration using the FEM in order to compare the Jsc obtained.

In general other parameters may also be optimised. The coverage, particle size and ma-

terial, layer thickness and material of other layers can also be optimised. The method

presented here, while only being applicable in the limit of low coverage, provides a very

quick method of obtaining the absorption for photovoltaics with integrated nanopar-

ticles. It should be used in conjunction with experimental work in order to quickly
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appraise device designs, thus greatly reducing the experimental effort required to obtain

a large absorption enhancement for ultra-thin photovoltaics.

In conclusion we present the Jsc for some of the most promising devices simulated.

The most optimal structure was the one shown in the current chapter, that of core-

shell particles embedded into the absorbing layer with an additional Ag back reflector.

The reason this provides the highest absorption enhancement is that the wavelength

independent absorption enhancement provided by the incoherent back reflector does

not provide any strong coherency phase oscillations inside the absorbing layer where

the nanoparticle is situated, which cause the nanoparticle to have a reduced intensity

meaning that less light will be scattered by the nanoparticle.
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Chapter 13

Conclusion

The aim of this thesis was to assess plasmonics as a technology for improving solar cells

via simulations. Despite the focus on technology, the work cannot be categorised as

engineering in which we seek only to find the best possible device, but rather as a work

of science, in which we seek to understand why some devices fail while others succeed.

To this end a lot of time has been spent modelling and understanding the fundamental

building blocks that go into a plasmonically enhanced solar cell. In fact plasmonic

integration only begins in chapter 10. However the work that occurred previous to this

was crucial to the process of understanding.

Chapters 3 and 4 focus on the fundamental questions of plasmonics. Firstly reviewing

types of dielectric function, we can associate plasmonic resonances with metallic per-

mittivities. From this starting point we move through bulk and surface plasmons to

the most technologically relevant localised surface plasmon (LSPR). The LSPR can be

analysed using the Mie theory framework introduced in chapter 3. The first question

to be addressed is that of which metals can be used for plasmonics, therefore we weigh

the relative strengths and weaknesses of commonly employed plasmonic metals. For the

application of chalcopyrite solar cells, Ag is shown to be the optimal material since it

has a plasmonic resonance in the optical region and low optical losses. After the choice

of material has been made, the two further levers available in order to control the LSPR

are the surrounding material refractive index and particle radius. Increases in both

of these factors cause a redshift in the LSPR, but for very different reasons: damping

charges for the surrounding material and retardation effects for the particle radius. The

main contribution of these chapters (apart from the mathematical framework revisited

in chapter 12) is the study of metallic particles with dielectric shells. Although these

systems have already seen use in the literature, the optical optimisation of the complete

three material system of metal core/dielectric shell/dielectric outer medium system has

130
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seldom been performed. We present results which support the position that the choice

of shell material, even for thin shells, is of paramount importance to the device. The

interplay between the modes of the dielectric shell and the plasmonic core means that

if the shell has a higher refractive index than the surrounding medium, the plasmonic

activity of the core will be enhanced, while the opposite is true if the shell has a lower

refractive index compared to the outer medium. Since plasmonic particles typically need

a shell material in order to electrically and chemically isolate them from the surrounding

optoelectronic device, this is a key insight for device optimisation which has not been

presented in a clear manner in the literature.

Chapters 5 and 6 move from the idealised case of the single spherical particle to more

general cases. Firstly identifying the effects due to distortions in the shape of spherical

particles. Moving onto the interaction between two particles and finally simulating

experimentally fabricated arrays of nanoparticles. The most important contribution in

this chapter is the novel approach to simulating arrays of random nanoparticles. Due

to the presence of a size distribution it can be expensive to construct a simulation

large enough to accurately reflect this distribution. We instead took the approach of

simulating isolated particles and averaging the response of different particles using the

experimentally obtained size distribution. This proved to be successful for reproducing

the resonances of the particle array when assuming a certain particle shape, as long as

substrate corrections were included.

In order to extend these results the shape of the particles should be obtained via surface

topology measurements, this would allow the results to be truly predictive instead of fit-

ting the particle shape to the resonance. Furthermore the effect of light trapping in the

substrate should be included in a more rigorous manner, this could be achieved by itera-

tive coupling of the particle simulations to a layered media simulation for the substrate.

This would mean extending the coupling to include isolated FEM simulations since it is

currently only available for FEM simulations with periodic boundary conditions in the

x-y plane.

Chapters 7 and 8 introduce the ultra-thin film device structure and the S matrix tech-

nique for modelling layered media. The necessity of a different back contact for the

ultra-thin device is demonstrated due to poor reflection from Mo even in the presence of

nanoparticles. This leads to replacing the back contact with a transparent conducting

oxide with a back reflector behind the back contact. The distance between back contact

and back reflector could be optimised in order to increase the absorption in the absorber

layer. This is the first example of an optically optimised flat layer ultra-thin CIGSe

device with a transparent back contact and extra back reflector.
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The step of integrating plasmonic nanoparticles into the solar cells is reached in chapters

9 and 10. It was shown that the resonance of particles at an interface may be slightly

detrimental due to a lower field intensity close to the interface due to the interference

between incident and reflected light. Different positions for integration inside the device

with a transparent contact were compared, with the result that integration directly

within the absorbing layer offers the highest overall enhancement, due to better light

trapping and utilisation of near field effects.

The final set of chapters 11 and 12 is the culmination of the thesis, bringing together

the different parts that have previously been presented. First the general framework

for coupling between different kinds of simulations in an iterative manner is established.

This framework is then used to extend the finite element method used in chapters 6

and 10 to incoherent layers. Furthermore the coupling of Mie theory first introduced

in chapter 3 with the scattering matrix method from chapter 7 is presented in order

to reach qualitatively similar results to the more rigorous approach in a fraction of the

time. This novel approach can be used to quickly estimate the impact of plasmonic

integration to solar cell devices which is hugely important given the vast number of

parameters which need to be optimised for successful absorption enhancement.

In order to extend the work presented in these chapters we recommend extending the

coupled approach in order to take into account light coherency effects inside the solar

cell which proved to be the major difference between the FEM and Mie theory + S

matrix results. Ultimately the approaches presented here for modelling solar cells with

integrated plasmonics must also be verified by experiements, which means fabricating

the devices proposed.
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14.1 Design Principles for Plasmonic Nanoparticle Devices

Many of the results in chapters 3-6 were presented in a contribution to the book Progress

in Nonlinear Nano-Optics, which despite the name, also included results from linear

nano-plasmonics. The contribution focuses on the finite element method and uses this

to explain a lot of fundamental physical concepts involved in plasmonics, in the context

of controlling the plasmonic resonance for optical applications, in particular absorption

enhancement in ultra-thin film solar cells. Figure 14.1 shows the spectral absorption

profile for both a standard thin film and an ultra-thin film solar cell. The thin film

has a high absorption (above 80%) for most of the spectral region from 300 to 1100

nm wavelength. The ultra-thin film has a much reduced absorption, particularly at

longer wavelengths due to the reduced path length of light in the absorbing layer. The

Figure 14.1: The absorption curves for a solar cell with CIGSe thickness 2µm (solid
grey curve) and 450 nm (dashed grey line). Also shown are the normalised scattering
cross sections for four different Ag nanoparticles: a 60 nm diameter particle in air (solid
black curve), a 100 nm diameter particle in air (dotted black line), a prolate ellipsoid
with axis lengths 200/100/100 nm in air (dot-dash black line) and an oblate ellipsoid
with axis lengths 200/200/100 at an air/Al:ZnO surface (dashed black line). Left hand

axis is for the absorption curves while the right hand axis is for the cross sections.
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Figure 14.2: The normalised electric field distribution for an SiO2 particle with radius
values of a) 1 µm, b) 2 µm and c) 3 µm at a wavelength of 700 nm. The shape of the
sphere is marked for clarity as well as the back focal length calculated from geometrical
optics (cross); d) gives the point of maximum intensity with respect to the sphere’s rear

surface normalised to its radius and plotted as a function of the radius.

same figure shows the normalised scattering cross sections of various Ag nanoparticles.

In order for the plasmonic resonance of the particle to match the spectral region in

which it is needed, we should consider the geometrical and material properties of the

nanoparticle and surrounding. The initial small nanoparticle with only 60 nm diameter

is first increased to a 100 nm diameter in order to show the redshifting effect induced by

this. By replacing this particle with an ellipsoidal particle which is elongated parallel

to the polarisation such that the axis length is now 200 nm, the resonance is further

redshifted and increases in intensity. Considering now the application to a front side

scatterer, we take an oblate ellipsoidal particle with axis lengths of 200 nm parallel to the

electric and magnetic polarisation and 100 nm parallel to the wave vector. This particle

is then placed at an inteface between air and Al:ZnO to act as an anti-reflection layer

with added light trapping properties. This causes the resonance to be further redshifted

due to the higher index of Al:ZnO compared to air. In this image we can see the seeds of

the coupled method presented in chapter 12 where a layer stack simulation is combined

with Mie theory simulations to rapidly predict the absorption enhancement due to light

scattering from integrated nanoparticles.

14.2 Enhancing Solar Cell Efficiency by Lenses on the Nano-

and Microscale

Previous work had already described the major optical differences between metallic

and dielectric nanoparticles, here we extend this comparison to larger dielectric spheres

which may be used as micro-lenses. Since the lenses have a size which is larger than the

wavelength in the optical region, we look at the comparison to geometrical optics which

is valid for objects much larger than the wavelength. Figure 14.2 shows the near field

distribution for three different dielectric sphere radii. The field above the sphere is clearly

a plane wave distorted due to back scattering from the sphere. The width of the peaks
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and troughs of the plane wave becomes smaller in each image because the wavelength

remains constant while the image is effectively zoomed out to make the particle have

equal size in each image. Below the particle the field distribution is drastically different,

the light is converted to a high intensity beam. for the smallest sphere the maximum

intensity point of the beam resides at the particle boundary. For smaller particles (near

field not shown) this point shifts inside the particle while for larger particles it shifts to

outside the particle as shown in part (d) where the point of maximum intensity (PMI)

normalised to the particle radius is shown as a function of the particle radius. In all of

the images there is a deviation between the geometrical optics focal point and the point

of maximum intensity. In chapter 10 of the current work we discussed the possibilities

for plasmonic nanoparticle integration, ruling out front side integration due to strong

losses in metals for shorter wavelengths. The work from this paper shows that dielectric

particles may well offer an alternative to plasmonic particles with the localised forward

scattering shown in fig. 14.2.

14.3 Nano- and Microlenses as Concepts for Enhanced

Performance of Solar Cells

The concept of the dielectric nano- or microparticle as a lense for solar applications was

further explored in this paper. The major difference compared to macroscopic lenses

is exemplified in fig. 14.3 where the Poynting flux lines are shown for a plane wave

incident onto a microparticle lense on top of a nano solar cell. The flux lines show the

diffraction of light around the particle, smaller particles can diffract light which is not

directly incident onto the particle. This is equivalent to having a normalised extinction

cross section (introduced in chapter 4) larger than unity. As the particle becomes larger

the effect lessens; in the macroscopic limit, only light which is directly incident to the

particle will be diffracted. The trade-off then becomes: the larger sphere leads to a higher

intensity inside the solar cell, whereas the smaller sphere provides a lower intensity but

is able to guide light from a larger area compared to its size. This might mean that

an array of smaller particles is able to achieve the same overall focusing effect as the

larger spheres but at a reduced weight. The relationship between a particle’s normalised

extinction cross section and the envelope of light with which that particle interacts was

a crucial part of the Mie + SM model presented in chapter 12. The model assumes that

the particles are low enough concentration that these envelopes do not overlap, allowing

the particles to be considered isolated.
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Figure 14.3: Heat map of the Poynting flux density for a plane wave incident to an
SiO2 sphere on top of a micro chalcopyrite solar cell. White lines show the geometrical
boundaries of the particle and solar cell layers but also the Poynting flux lines. The
diameters of the particles are a) 0.5 µm, b) 1.5 µm and c) 3 µm, the solar cell diameter

is kept at 0.5 µm for each case.
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Figure 14.4: The normalised back scattering cross section for an Ag nanoparticle
at a CIGSe/glass interface with different thicknesses of ITO overcoating (as shown in
the inset). The thicknesses of the ITO overcoats are 0 nm (circles), 5 nm (triangles),
20 nm (diamonds) and 100 nm (ties). The wavelength range shown is the operational

wavelength of a CIGSe solar cell.

14.4 Light Extraction from Plasmonic Particles with Di-

electric Shells and Overcoatings

The results presented at the end of chapter 4 surrounding core-shell particles and their

integration into chalcopyrite solar cells went towards this publication. In particular the

specific near field decay of the dipole mode for different shell/surrounding combinations

was investigated. This lead towards the explanation for why a shell with a higher refrac-

tive index than the surrounding medium is beneficial for plasmonics which is presented

in chapter 4. Additionally overcoatings were simulated as a possible replacement for

core-shell particles as shown in fig. 14.4. It was found that coherency effects could be

utilised to increase the back reflection of nanoparticles for very thin ITO layers. This

concept was revisited in chapter 10 where nanoparticle integration inside the ITO layer

is simulated.

14.5 Plasmonic and Photonic Scattering and Near Fields

of Nanoparticles

Not only plasmonic particles but also dielectric particles may be useful for light man-

agement in solar cells. In order to understand the fundamental differences between the

two, both kinds of particles were investigated theoretically in this work. The theoretical
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Figure 14.5: Part (a) shows the normalised scattering cross section for a radius 170
nm dielectric particle with a constant refractive index of 2 in air. The scattering is
decomposed into the component multipole orders. Part (b) shows the near fields at the

peak of the resonances in part (a) given by the same line markings.

frameworks of Mie theory (chapter 3) and the FEM (chapter 5) were both used, Mie the-

ory being able to decompose the scattering in different multipole orders while the FEM

being able to simulate particles placed at an interface. This modal decomposition is

shown in fig. 14.5 for a radius 170 nm dielectric particle with a constant refractive index

of 2. The near fields show a mix of electric type behaviour, which has been presented

in chapter 6 but also magnetic type behaviour which is unique to dielectric particles.

The results in chapter 6 detailing the angular scattering distribution for plasmonic par-

ticles at interfaces with different refractive indices were widened in this work to include

dielectric particles at the same interfaces. Dielectric particles at a planar interface were

shown to have similar or even better high angle scattering, but with a reduced scatter-

ing cross section compared to plasmonic particles. Semiconducting particles were also

investigated, however for typical semiconductors the free carrier response is in the deep

infrared, meaning that the plasmonic type response is not able to be exploited in the

visible regime. Highly doped semiconductors may offer a way to combine dielectric and

plasmonic scattering.

14.6 Integration of Plasmonic Ag Nanoparticles as Back

Reflector in Ultra-Thin CIGSe Solar Cells

In order to verify plasmonics as an optical concept for CIGSe solar cells we fabricate

devices with integrated plasmonic nanoparticles. Figure 14.6 (a) shows the device in

question, an ultra-thin film CIGSe solar cell which will have plasmonic Ag nanoparticles

integrated at the Al2O3/glass interface. Part (b) then compares the absorption in the

CIGSe layer and in the solar cell overall with and without the particles from simulations
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Figure 14.6: Part a) shows the device structure simulated with a hemispherical Ag
nanoparticle in a hexagonal lattice. Part b) shows the absorption in the CIGSe layer
and in the solar cell overall, for the two cases of with integrated nanoparticles and

without.

based on the work in this thesis. The wavelength dependent increase in absorption has

been shown in chapter 10 to be caused by the interaction between Fabry-Perot resonances

inside the layered stack and the nanoparticles. The integration of the nanoparticles was

able to show an absorption increase, in this case it did not translate to an increase in

device performance due to poor electric properties. It is not suspected that this comes

from the diffusion of the particles since measurements of the chemical composition of

the CIGSe surface after deposition do not indicate the presence of Ag. However the

patterning of the layers above the particles is believed to have caused the poor electric

properties. This was a successful demonstration of the optical benefits of plasmonic

nanoparticles, but it also emphasises the need for complete optimisation of the entire

device not just the optical properties.

14.7 An Efficient Method for Calculating the Absorption

Enhancement in Solar Cells with Integrated Plas-

monic and Photonic Nanoparticles

This paper presents the coupling method which combines layer stack simulations with

Mie theory which was detailed in chapter 12. Figure 14.7 part (a) shows a schematic

image of the coupling method. Light incident to the layer stack is first incorporated into

an S matrix simulation that handles the propagation of light up until the nanoparticles.

The transmission from this stack is then handed to a Mie theory simulation which

determines how much light is absorbed by the particle and also the angular distribution
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(a) (b)

Figure 14.7: (a) Schematic of the simulation procedure for coupling together S matrix
and Mie theory calculations. (b) Simulated absorption in the chalcopyrite layer of a
solar cell. The reference absorption without integrated nanoparticles is calculated via
the S matrix. The plasmonically enhanced absorption is calculated via either the finite

element method or the coupled Mie theory + S matrix method.

of light scattered by the particle. This then acts as an input for S matrix simulations

both above and below the nanoparticles. This process is iterated until all the light has

been reflected or absorbed inside the solar cell. Part (b) shows results obtained using this

method compared to results obtained using the finite element method. Both of these

methods predict a slight absorption enhancement compared to the reference without

nanoparticles (but still having an incoherent back reflector). The Mie theory + SM

method predicts a larger absorption enhancement likely due to the incoherent coupling

between simulations used. This may accurately reflect the enhancement achieved by

particles with a range of z center positions, which could be achieved also by particles of

different sizes. Experimental data is needed to confirm the validity of each approach.

14.8 Influence of Substrate and its Temperature on the

Optical Constants of CIGSe Thin Films

The method presented in appendix A for obtaining the refractive index of layers in a

multilayer stack via reflection and transmission measurements was used in this work.

The ability to obtain the refractive index of a material inside the layer stack using a

destructive process was invaluable to investigating the difference compared to the same

material outside of the layer stack. Figure 14.8 highlights the kind of difference that this

can make for a CIGSe layer where the n and k values have been measured for different

substrates. The deposition on ITO produces films with a higher absorption (k value)

and associated slightly different n values. Being able to obtain accurate refractive index

values for use in the simulations containing layered media in chapters 8,10 and 12 was
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Figure 14.8: The n and k values for a CIGSe film deposited on three different sub-
strates.

crucial to making these simulations realistic. Although this paper is mainly experimental

in nature, my main contribution was the analysis tool used to obtain the refractive index

results.

14.9 A Method for Calculating the Complex Refractive

Index of Inhomogeneous Thin Films

This work builds on the results of the previous publication on refractive index deter-

mination. Here we extend the previous methods for dealing with rough surfaces, which

were already common in the literature, to dealing with voids inside of a thin film. The

model relies on statistical data gathered from SEM images of the surface of the sample

in order to generate a 3D distribution of voids inside the layer. Figure 14.9 shows the

result of applying image analysis to a SEM image of the voids: a 3D distribution which is

statistically similar to the original SEM image. The 3D distribution is used to generate

a series of layer stack simulations which, if combined with the correct weightings, cor-

rectly describe the propagation of the specular beam inside the layer. This can be used

to determine the homogeneous refractive index of an inhomogeneous material. While

no inhomogeneous materials were used in this thesis, the use of many different materials

has been proposed. Typically new materials are difficult to prepare in a homogeneous

film and extracting the homogeneous refractive index from an inhomogeneous film is

extremely useful. This is true for materials such as the chalcopyrite system discussed in

chapter 7 but also the popular Perovskite material which has shown incredible growth
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Figure 14.9: The 3D distribution of voids inside a thin film layer. The red objects
represent the voids while the translucent bounding box is the thin film.

in solar cell research in recent years. A more detailed explanation of the method is given

in appendix A.
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Appendix A

Modelling the Refractive Index of

Materials

All the simulations presented in this work require the refractive index or permittivity

of the materials contained inside the simulation to be known. Since all our simulations

use the time harmonic ansatz, meaning that we solve in the frequency domain instead

of the time domain, we do not necessarily need an analytical model for the permittivity

which would be necessary for time domain simulations. This is very beneficial from the

point of view of obtaining simulations which come as close as possible to reality. That

is because we can use experimental data to obtain the permittivity of materials directly

without fitting a specific model to the data. This is important because many of the most

important materials used in this work, such as Ag and CIGSe, have very complicated

optical responses. Finding an analytical model which is able to represent the response

for these materials could be the subject of an entire thesis. In this appendix we present

the methods by which the permittivity can be extracted from experimental data, as well

as the innovations developed in order to obtain the permittivity in non-ideal samples.

Although the permittivity and complex refractive index are equivalent, we will work

with the refractive index during this appendix.

A.1 Obtaining the Refractive Index of a Thin Film

In order to obtain the complex refractive index of a thin film, we can compare the

experimentally obtained reflection and transmission of the film to simulated values. The

scattering matrix method presented in chapter 7 allows the propagation of light through

a thin film stack to be simulated if the refractive indices of the constituent layers are

already known. If a single thin film is simulated, the only inputs to the simulation would
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Figure A.1: The multiple solution branches that appear when determining the re-
fractive index ñ by comparison to experimental measurements. Three solution sets are
shown, one for a smooth sample, one for a rough sample, and one for a rough sam-
ple with surface roughness included in the model. The green symbols represent the

extracted physically meaningful solution.

need to be the n and k of the thin film (assuming air above and below). Using the S

matrix method the reflection and transmission (Rsim and Tsim) can be obtained from

the thin film. These can be compared to the reflection and transmission measured from

an actual sample of the material (Rexp and Texp). By varying the real and imaginary

parts of the permittivity of the film in the simulation until the R and T match those

obtained in the experiment, we can determine the refractive index of the thin film

find n and k such that |Rexp −Rsim(n, k)|+ |Texp − Tsim(n, k)| → 0. (A.1)

Practically speaking, we use a minimisation routine that minimises the difference be-

tween the experimental and simulated reflection and transmission by varying n and k.
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This is repeated at each wavelength in order to obtain the wavelength dependent re-

sponse. The drawback to this method is that the solution to equation A.1 is not unique,

there may be mathematically many different solutions for n and k at a certain wave-

length, while only one of them is physically reasonable. It is not possible beforehand to

know which solution is the physically correct one. In order to select the correct solu-

tion, we first compute all the solutions for each wavelength and then select those which

appear physically reasonable. Figure A.1 shows the complicated nature of the pattern

of solutions for the n value of a CGSe layer, taken from [72]. Although many solution

branches exist with a strong anomalous dispersion, the weak normal dispersion of the

central line which is highlighted with green symbols is clearly the physical n value. The

green symbols also represent the extracted values for the n value, note that at certain

wavelengths, the extracted values do not overlap with any of the values determined by

the minimisation routine. These so called branch gaps appear at extrema of Fabry-Perot

resonances where the model fits particularly poorly due to sample imperfections being

magnified by multiple internal reflections. However we assume that the real n value

is a function which varies slowly with wavelength, therefore interpolating the physical

n value in these regions between two different regions where the model fits well. The

criteria used to select the correct solutions can be summarised as,

• Those solutions which give the refractive index in the correct magnitude (e.g. the

refractive index for CIGSe may be between 2.7 and 3.0, but it cannot be 0.8 or

6.8).

• Normal dispersion away from resonances (i.e. if the k value is zero, the n value

should show normal dispersion).

• k begins to increase at a wavelength around the band gap if the band gap is known.

We developed a unique interface in which the originally calculated n and k solutions are

plotted and a user may place nodes directly on the graph in order to choose the correct

n and k data. Using this interface the physical complex refractive index (equivalent to

the permittivity) can be extracted quickly and easily.

Another factor which should be considered is that this method relies on having both

the reflection and the transmission from the layer. If the layer is absorbing and all of

the light is absorbed resulting in zero transmission, this method will not give accurate

results for the refractive index. This can be remedied by either fabricating ultra-thin

samples in order to reduce the absorption, or by using the method of spectroscopic

ellipsometry. Ellipsometry measures the phase and amplitude of the reflected beam,

therefore only reflection is required to obtain the refractive index. The ability to fit

ellipsometric measurements has also been implemented into the available program.
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A.2 Substrate

In reality a thin film is always supported by a substrate. The method we have presented

for determining the refractive index of a layer can only work for a single unknown layer.

However arbitrarily many other layers may be included as long as their refractive index

is already known. Therefore the process involved in obtaining the refractive index of a

thin film is thus:

• Measure R and T for a bare transparent substrate (e.g. glass).

• Use equation A.1 to determine n and k for the substrate.

• Deposit the thin film onto the substrate.

• Measure R and T for the thin film on the transparent substrate.

Using this process, the refractive index of layers integrated into a multilayer stack (which

may be different to the layers isolated from other layers) can be determined. for more

information on this process we refer the reader to our previous publication on the topic

[73].

A.3 Surface Roughness

When light propagation through a layered stack is calculated analytically, it is assumed

that the interfaces between layers are perfectly flat. In reality a certain amount of surface

roughness is usually unavoidable. This surface roughness will tend to scatter the light

which will affect the R and T spectra. If the model does not take this light scattering

into account then an incorrect value for the refractive index will be obtained. To take the

light scattering into account we use the scalar scattering theory. This theory assumes

that the surface roughness height distribution is a random process that can be described

analytically. Typically a Gaussian distribution is used. Furthermore we assume that the

gradient of height distribution is small, i.e. that the surface roughness is small compared

to the wavelength, this justifies the use of a scalar theory of diffraction [74]. In this case

the Fresnel coefficients (r12,r21,t12 and t21) for reflection and transmission at an interface
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between layers with subscripts one and two can be replaced by the following terms [72]

r′12 = r12exp

(
−2

[
2πn1σ

λ

]2)
, (A.2)

r′21 = r21exp

(
−2

[
2πn2σ

λ

]2)
, (A.3)

t′12 = t12exp

(
−1

2

[
2π(n1 − n2)σ

λ

]2)
, (A.4)

t′21 = t21exp

(
−1

2

[
2π(n2 − n1)σ

λ

]2)
. (A.5)

(A.6)

Where n1 and n2 are the real parts of the refractive index of layers one and two, σ is

the root mean square (rms) roughness at the interface and λ is the wavelength. This

models the loss of light from the specular reflection/direct transmission which will be

present instead as diffuse reflection and transmission or trapped/absorbed inside the

layered stack. Therefore it is important to compare the values of R and T calculated

using these modified coefficients to measurements of the specular reflection and direct

transmission, instead of the total values.

A.4 Inhomogeneous Layers

The simple analytical expression for the scattering of light given in the previous section

allows for rapid calculation of light propagation in the presence of surface roughness.

We turn now to the problem of internal roughness, if a layer has voids or inclusions of

another material inside it, this violates the assumption present in the S matrix method

that the layers are homogeneous. One method to deal with this problem is to assume

an effective medium, one which has a permittivity based on the permittivities of the

host and inclusion. This approach was not applicable for the samples investigated in the

current work due to the following reasons,

• Effective medium is fully coherent, it does not take into account the partial co-

herency caused by scattering of light from the voids.

• Effective medium changes the host n value to the effective n value which will

change the peak positions of Fabry-Perot oscillations. In fact we do not expect

these peak positions to shift compared to a homogeneous medium, since light does
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Figure A.2: Schematic image of the method for simulating an inhomogeneous layer.
Upper left shows an image of a possible void distribution viewed in the x-z plane. The
two images underneath show how this distribution is then discretised onto a rectangular
grid. Each unique column of the grid must then be simulated via scattering matrix
simulations. The voids are included as separate layers with rough interfaces modelled

using the scalar scattering theory.

not travel through the voids but is scattered by them, meaning that the n value

determined from the peak positions should be the homogeneous one.

Due to this a method needs to be developed which can take these factors into account.

Rigorous simulation of light propagation in an inhomogeneous sample would be prefer-

able, however given the fact that during minmisation process, the reflection and trans-

mission will be calculated hundreds of times per wavelength with different refractive

index values in the inhomogeneous film, rigorous approaches are not applicable in this

case due to the extremely slow speed compared to analytical techniques. Therefore we

seek an analytical technique that can simulate the light propagation in inhomogeneous

thin films.

We consider a thin film which is extended in the x-y plane, light will be normally incident

to the film in the z direction. The distribution of voids in a 2D slice in the x-z plane

is shown in the upper left of fig. A.2. This distribution is then discretised onto a

rectangular grid with the process of discretisation shown in the two images underneath.

Each column of the final discretised distribution is then extracted to be used as an S

matrix simulation. A key distinction may now be drawn between the columns with the

presence of voids and those without. The columns that do not contain voids are treated

normally as fully coherent simulations, however columns which do contain voids can be

treated incoherently. This is because the scattering of the randomly positioned voids

causes the light which interacts with the voids to become incoherent with respect to the
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Figure A.3: The process of obtaining a statistical distribution from SEM images of
the sample. Part (a) shows the original SEM image of the top and side surfaces of a
sample containing voids. Part (b) shows the same image with void regions identified
in black and all other regions in white, allowing for the statistical distribution to be
measured via image analysis. Part (c) shows the top and side surface taken from a 3D

model which uses the same statistical distribution as obtained from part (b).

incident light. Due to this, it will not matter if a 1 µm film is divided into 300/200/500

film/void/film or 500/200/300 film/void/film, the end result will be the same due to the

simulation being incoherent. Additionally the layered stack 400/200/400 film/void/film

will also give the same result, this is because the total amount of film and void has

been conserved. Therefore we only need to determine the average amount of film to

void, or to put it another way, the average void size. Note that the layered stack

300/100/200/100/300 film/void/film/void/film would not give the same result, since the

total amount of interfaces has not been conserved, and each interface brings significant

losses due to scattering. Therefore we must perform one simulation for each number of

interfaces (fig. A.2 shows the cases for 1, 2 and 4 interfaces) using the average layer

thicknesses determined from the discretised grid, and weight each simulation by the total

frequency with which that number of interfaces occurred, which is also extracted from

the discretised grid. For more detailed information on the method we refer the reader

to the relevant publication [75].

The void distribution inside the layer and also the roughness at void/film interfaces is

given by a 3D model of the void distribution inside the layer, based on the distribution

visible at the top and side surfaces. Figure A.3 shows the process of obtaining the

statistical distribution from SEM images. Each part shows the top surface view above
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Figure A.4: The n (left) and k (right) value extracted from experimental measure-
ments of reflection, transmission and absorption of a thin film sample. For each value
three different results are shown, the values obtained from a homogeneous sample (ho-
mogeneous), the values for the inhomogeneous sample of the same material using stan-
dard methods (uncorrected) and the values for the inhomogeneous sample of the same

material using the method presented here (corrected).

with the side surface view below. Part (a) shows an unmodified SEM image of the

experimental sample. Part (b) shows the result of image analysis applied to the image

in part (a). A threshold technique for the pixel brightness is used in order to determine

the areas containing voids which are shown in black. From this an edge finding algorithm

can determine the size shape and orientation of the void slices present. These can then

be binned into a parameter range producing a histogram. The histogram can then be

fitted by a statistical distribution. The distribution is then used to generate an artificial

surface which is statistically similar to the experimental one which is shown in part (c).

The total 3D distribution must also be constructed in order to obtain the required

void distribution inside the thin film. Constructing this 3D distribution is typically

the most time consuming step in the simulation process, depending on the fraction of

voids present. However this step typically takes only a few minutes and is therefore

still quicker than rigourous methods. Additionally this step must only be performed

once before any S matrix simulations. That means that the speed of determining the

refractive index of materials is not significantly reduced when using this method.

A comparison of this model to standard methods can be seen in fig. A.4. Here we

plot the results of the n and k value of a thin film layer determined using the method

described in section A.1. Firstly the results for a homogeneous film are shown, these

results are taken as the reference for the inhomogeneous sample. The inhomogeneous
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sample has an almost identical chemical composition to the homogeneous one, therefore

it is assume that the refractive index of the crystal itself is identical to the homogeneous

case. Using the standard methods where we only take into account the front surface

roughness, we see a large difference between the n and k values of the homogeneous and

inhomogeneous samples. The inhomogeneous sample predicts a higher k value at all

wavelengths, even for wavelengths below the band gap. This is because light which has

been scattered by the voids will not reach the transmission detector meaning that less

light is detected. The standard method interprets this as absorption meaning a higher

k value. Secondly the n value in the spectral region 750-1250 nm is underestimated

compared to the homogeneous case. This is because the reflection of the experimental

sample is reduced in this region due to scattering from voids at or near the surface.

The standard approach interprets the reduction in reflection as a lower n value. In the

transparent spectral region (>1250 nm) this effect is not pronounced, this is because

the n value is more strongly determined by the period of Fabry-Perot oscillations in

the sample than for the total reflection values. These oscillations are not present when

the film is absorbing because no light is able to reflect from the rear side due to high

absorption. The period of these oscillations will agree with the homogeneous case since

only light which did not hit a void will contribute to the Fabry-Perot oscillation (void

scattering makes the light incoherent with the incident light), therefore the reflected light

which contributes to the oscillations only sees the homogeneous parts of the sample.

The final set of results shown in fig. A.4 are the n and k values determined using the

model for inhomogeneous layers presented in this chapter. By using this model we obtain

n and k values much closer to the homogeneous values. This is because the optical effect

of void scattering is directly included in the model. This reduces the overall transmission,

meaning that the k value agrees with the homogeneous case and it reduces the reflection

in the absorption region which gives good agreement with the homogeneous case. In the

short wavelength region the homogeneous and corrected inhomogeneous cases start to

differ in n value. This could be due to the scalar scattering theory breaking down since

the size of the voids is becoming comparable to the wavelengths of light incident onto

them. However as long as the scalar scattering theory remains valid, this approach is

able to correctly determine the refractive index of inhomogeneous materials.
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