6 Anhang

6.1 Abkürzungsverzeichnis

A	Adenin
a	Jahre
Abb.	Abbildung
ACE	Angiotensin Converting Enzyme
AD	autosomal dominant
ARVCM	Arrythmogene rechtsventrikuläre Kardiomyopathie
AS	Aminosäure
ATP	Adenosintriphosphat
BMI	Body Mass Index
BNP	Brain natriuretic peptide
Вр	Basenpaare
bzgl.	bezüglich
bzw.	beziehungsweise
С	Cytosin
C.elegans	Caenorhaditis elegans
СаМК	Calcium/Calmodulin abhängige ProteinKinase
cGMP	cyclisches 3'-5'Guanosinmonophosphat
CHORD	Cystidin-Histidin-reiche Domäne
chp1	CHORD-enthaltendes Protein 1
CMD	Dilatative Kardiomyopathie
СМН	Hypertrophische Kardiomyopathie
CS 1	Calsarcin-1
d.h.	das heißt
dATB	Desoxyadenosin-5'-Triphosphat
DCM	Dilatative Kardiomyopathie
dCTB	Desoxycytidin-5'-Triphosphat

dGTB	Desoxyguanosin-5'-Triphosphat
DNA	Desoxyribonukleinsäure (deoxy-ribonucleic acid)
dNTB	Desoxyribonukleosid-5'-Triphosphat
DRM	Desmin-related cardiomyopathy
dTTB	Desoxythymidin5'-Triphosphat
ECM	Extrazelluläre Matrix
EDTA	Ethylendiamin-Tetracetat
EKG	Elektrokardiogramm
EPU	elektrophysiologische Untersuchung
ERK	Extrazellulär regulierte Kinasen
et al.	et alii
FAK	Fokaladhäsionskinase
FS	Fractional shortening
G	Guanin
GDB	Genome database
GSK	Glycogen-Synthase-Kinase
НСМ	Hypertrophische Kardiomyopathie
HSF	Heat Shock Transcription Factor
Hsp	heat shock protein (Hitzeschockprotein)
ICM	Ischämische Kardiomyopathie
ILK	Integrin-linked-Kinase
IVS	Interventrikuläres Septum
JNK	c-Jun N-terminale Kinase
kDa	Kilo-Dalton
LA	Linkes Atrium
LDL	low density lipoprotein
LVAD	Left Ventricular Assist Device (Linksventrikuläres Unterstützungssystem)
LVEDD	Linksventrikulärer Enddiastolischer Durchmesser
LVEF	Linksventrikuläre Ejektionsfraktion
LVESD	Linksventrikulärer EndSytolischer Durchmesser

LVW	Linksventrikuläre Wanddicke
МАРК	Mitogen Activated Protein Kinase
MEK	Mitogenaktivierte ERK-aktivierende Kinase
min	Minuten
MLP	Muskuläres LIM-Protein
mM	milliMol
mRNA	messenger Ribonukleinsäure
mTOR	mammalian target of rapamycin
Mw	Mittelwert
MYBPC	Myosin-Bindungs-Protein C
n	Anzahl
n.b.	nicht bekannt
NCBI	National Center for Biotechnology Information
NFAT	nuclear factor of activated T cells
NKCM	Nichtklassifizierbare Kardiomyopathie
NYHA	New York Heart Association
р	Wahrscheinlichkeit
PCR	Polymerase-Kettenreaktion
PDE	Phosphodiesterase
PI3K	Phosphoinositide 3-kinase
РКС	Proteinkinase C
RCM	Restriktive Kardiomyopathie
RNA	Ribonukleinsäure
RV	Rechter Ventrikel
RVEDD	Rechtsventrikulärer enddiastolischer Durchmesser
S	Standardabweichung
S.	Seite
S.	siehe
SAC	stretch activated channel
SDS	Natriumdodecylsulfat

Anhang

SEM	standard error of the mean
SERCA	Sarcoplasmic reticulum Calcium-ATPase
sHsp	small heat shock protein (kleines Hitzeschockprotein)
SR	Sarkoplasmatisches Retikulum
SSCP	Single Strang Conformation Polymorphism
Т	Thymin
Tab.	Tabelle
TAC	Transversale Aortencoarctation
TBE	Tris-Borat-EDTA-Puffer
TEMED	N, N, N', N'-Tetramethylethylendiamin
Tn	Troponin
TNF	Tumor necrosis factor
u.a.	unter anderem
UTR	Untranslatierte Region
WHO	World Health Organisation
z.B.	zum Beispiel

6.2 Tabellenverzeichnis

Seite

- Tab. 1.1Übersicht über bekannte Genorte und Gene der hypertrophischen Kar-
diomyopathie; CMH (hypertrophische Kardiomyopathie); AD (auto-
somal-dominant); GDB (Genome database)6
- Tab. 1.2Übersicht über bekannte Genorte und Gene der dilatativen Kardiomy-
opathie CMD (dilatative Kardiomyopathie); AD (autosomal-
dominant); X (X-chromosomal), GDB (Genome database); n.b. (nicht
bekannt)
- Tab. 2.1Klinische und echokardiografische Parameter von Patienten der19HCM-Gruppe, angegeben sind jeweils die Mittelwerte ± SEM. Die
unterschiedlichen Anzahlen n resultieren aus den verzeichneten Anga-
ben in den Krankenakten der Patienten19

Tab. 2.2	Klinische und echokardiografische Parameter von Patienten der DCM-Gruppe, angegeben sind jeweils die Mittelwerte \pm SEM. Die unterschiedlichen Anzahlen n resultieren aus den verzeichneten Angaben in den Krankenakten der Patienten	20
Tab. 2.3	Übersicht verwendeter Chemikalien und Bezugsquellen	21
Tab. 2.4	Übersicht verwendeter Geräte und Bezugsquellen	23
Tab. 2.5	Übersicht verwendeter Verbrauchsmaterialien und Bezugsquellen	24
Tab. 3.1	Verwendete Primer mit optimierter Annealing-Temperatur und zuge- hörige Länge der mittels PCR erhaltenen Amplifikate	31
Tab. 3.2	Zur Amplifikatkontrolle verwendete Restriktionsenzyme mit erwarte- ten Fragmentgrößen	32
Tab. 3.3	Gefundene und nach Hardy-Weinberg erwartete Häufigkeiten in Pro- zent für die gefundene Mutation in Exon 1 bei den untersuchten weib- lichen HCM-Probanden ($n = 41$), T-Mutationsallel, C-Wildtypallel.	36
Tab. 3.4	Gegenüberstellung der beobachteten und erwarteten Allelfrequenzen nach dem Hardy-Weinberg-Gesetz für die Basenpaarsubstitution C zu T an Position 37 bei weiblichen HCM-Patientinnen	36
Tab. 3.5	Gefundene und nach Hardy-Weinberg erwartete Häufigkeiten in Pro- zent für die gefundene Mutation in Exon 1 bei den untersuchten weib- lichen HCM-Probanden ($n = 41$), T-Mutationsallel, C-Wildtypallel.	37
Tab. 3.6	Gegenüberstellung der beobachteten und erwarteten Allelfrequenzen nach dem Hardy-Weinberg-Gesetz für die Basenpaarsubstitution C zu T an Position 37 bei weiblichen HCM-Patientinnen	37
Tab. 3.7	Fragmentgrößen Exon 1 nach Restriktionsverdau mit Rsa I	40
Tab. 3.8	Echokardiografische Daten der Indexpatientin im Alter von 52 und 53 Jahren	42

43

Tab. 3.10	Echokardiografische Daten des Bruders der Indexpatientin	43
Tab. 3.11	Fragmentgrößen 3'-UTR Troponin T nach Restriktionsverdau mit HpyCH4V	45
6.3	Abbildungsverzeichnis	
		Seite
Abb. 1.1	Hypertrophieformen des Herzens (aus Marx 2003), in der Mitte ist ein normales Herz zu sehen, links ein HCM-Herz mit verdickten Ventri- kelwänden, rechts ein deutlich vergrößertes DCM-Herz	2
Abb.1.2	Expressionsmuster des Melusin in menschlichem Gewebe (aus Bran- caccio et al. 1999)	9
Abb.1.3	Integrinassoziierte Signal-wege nach mechanischer Druckbelastung des Herzens. (aus Tarone <i>et</i> Lembo 2003)	11
Abb. 1.4	Aufbau eines Sarkomers, Anordnung der kontraktilen Proteine und von Strukturproteinen (nach Deetjen <i>et al.</i> 1999, S. 156)	12
Abb. 1.5	Interaktion von Calcium, dem Troponinkomplex und den kontraktilen Proteinen Aktin und Myosin (aus Ganten <i>et al.</i> 1998, S. 84)	13
Abb. 1.6	Schema der wichtigsten die Z-Scheibe bildenden Proteine (nach Hayas- hi <i>et al.</i> 2004) PKC: Proteinkinase C, CS1: Calsarcin-1	14
Abb. 3.1	Gradienten-PCR Exon 6, erste Spur: 100 bp-Marker, Spuren 2-13 PCR- Produkt (227 bp) bei unterschiedlichen Annealing-Temperaturen (siehe Text)	30
Abb. 3.2	Restriktionsverdau Exon 9 und 10, Spur 1: Exon 9 unverdaut (254 bp), Spur 2: Exon 9 verdaut (88 bp, 166 bp), Spur 4: Exon 10 unverdaut (222 bp), Spur 6: Exon 10 verdaut (92 bp, 130 bp)	33

Echokardiografische Daten der Kinder der Indexpatientin

Tab. 3.9

Abb. 3.3	Ausschnitt aus Vorwärtssequenzierung Exon 3	33
Abb. 3.4	Laufverhalten im SSCP-Gel bei 4 °C links, rechts bei Raumtemperatur, als Beispiel wurde das Amplifikat (273 bp) von Exon 8 gewählt. Die vermeintlich unterschiedliche Größe der Gele resultiert aus der differierenden Laufstrecke bei den beiden gewählten Temperaturen.	34
Abb. 3.5	Laufverhalten im SSCP bei 4 °C, Exon 1. Spur mit Probe D1 zeigt eine Bande weniger als die benachbarte Spur mit Probe D2	34
Abb. 3.6	SSCP Exon 1 bei Raumtemperatur, durch den Pfeil markiert ist eine Spur, in der eine zusätzliche dritte Bande zu sehen ist	38
Abb. 3.7	Ausschnitt aus der Rückwärtssequenzierung der markierten Probe aus Abb.3.6 für das Exon 1, der Pfeil zeigt auf einen Doppelpeak im Chro- matogramm – es ist sowohl ein Signal für Guanin (schwarz), als auch ein darunterliegendes schwächeres Signal für Adenosin (grüngelb) zu erkennen.	38
Abb. 3.8	SSCP-Gel von Exon 6, in der mit dem Pfeil markierten Spur, erkennt man eine im Vergleich zu den benachbarten Spuren weiter im Gel ge- wanderte Bande	40
Abb. 3.9	Ausschnitt aus der Sequenzierung von Amplifikat für Exon 6, oben zu sehen ein Ausschnitt aus der Vorwärtssequenzierung, unten aus der Rückwärtssequenzierung, mit Pfeil markiert ist jeweils die mutierte Position	41
Abb. 3.10	Restriktionsverdau Exon 1 mit <i>Rsa</i> I, in den einzelnen Spuren zu sehen von links nach rechts Marker (100bp)-1, Indexpatientin-2, ihr Ehemann-3, Sohn(2)-4, Tochter-5, Sohn(1)-6, Bruder-7. Die Bande bei 52 bp ist aufgrund ihrer Kürze aus dem Gel herausgelaufen und demzufolge im Bild nicht zu erkennen	44
ALL 211	Doctrilitionaryondon Evon 1 mit Dag I. Angeshaitt and Vantrall-	A A

Abb. 3.11Restriktionsverdau Exon 1 mit *Rsa* I, Ausschnitt aus Kontrollgruppe mit44Sohn(2) in Spur 1 und Indexpatientin in Spur 2, es wurde ein 100 bp44Marker verwendet44

- Abb. 3.13 Alignment Exon 1, dargestellt ist die Aminosäuresequenz von Melusin
 48 und verwandten Proteinen aus verschiedenen Spezies, dahinter jeweils
 die Accessionnumber (NCBI)
- Abb. 3.14 Genetische Konservierung des Exon 1 des Melusin, angegeben ist jeweils die Accessionnumber (NCBI) **1** AAH53137.1 Exon1, **2** AF123249_1 Exon1, **3** NP_036256.1 Exon1, **4** NP_036410.1 Exon1, **5** NP_038740.1 Exon1, **6** NP_080120.2 Exon1, **7** XP_228553.2 Exon1, **8** XP_235878.2 Exon1, **9** XP_301128.1 Exon1
- Abb. 3.15 Phylogenetischer Baum des Exon 1 des Melusins, angegeben ist jeweils 49 die Accession-number (NCBI) der jeweiligen Spezies
- Abb. 3.16 Genetische Konservierung des Melusin, angegeben ist jeweils die Accessionnumber (NCBI) **1** AAH53137.1, **2** AF123249_1, **3** NP_036256.1, **4** NP_036410.1, **5** NP_038740.1, **6** NP_080120.2, **7** XP_228553.2, **8** XP_235878.2, **9** XP_301128.1
- Abb. 3.17 Phylogenetischer Baum des Melusins, angegeben ist jeweils die Accessionnumber (NCBI) der jeweiligen Spezies
- Abb. 4.1 Schema zur Akt/ GSK-3β Hypertrophieregulation, (Akt hemmt GSK-3β, GSK-3β hemmt die NFAT, welche wie mTOR direkt die Hypertrophie stimulieren)
- Abb. 4.2Schema zur Regulation des Wnt-Signalweges über GSK-3β (von J.69Hülsken,Quelle:http://www.em2.molmed.uni-erlangen.de/de/Projekte/Proj_wnt_dt.htm)
- Abb. 4.3 Schematische Darstellung eines hypothetischen Signalweges nach mechanischer Belastung. Melusin diffundiert aufgrund erhöhten Calciumspiegels vom Integrin ab und interagiert mit Hsp90, welches über Akt-Aktivierung zur Induktion von Hypertrophie beiträgt