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Abstract

This work presents the development of three–dimensional karst evolution models for

various settings and conditions. As karst aquifers are very sensitive to changes of

their hydraulic boundary conditions a comprehensive understanding of the governing

processes inside a karst aquifer is indispensable. Especially if a karst aquifer is

influenced by anthropogenic utilization like e.g. the construction of a dam–site,

the resulting changes inside the aquifer need to be understood as good as possible

to prevent any unpredictable incidents. The use of numerical models to simulate

the development of a karst aquifer is therefore a suitable tool in the preliminary

investigations. It will be shown that simple three–dimensional dam–site models can

be used to evaluate the parameters that control the karst aquifer evolution. Based

on these simple models an enhanced three–dimensional model of a real dam–site

is developed. This model is used to simulate the evolution of the aquifer close to

this dam–site and to expose how the construction of the dam influenced the nearby

bedrock significantly. It is shown that the karstified zone around the dam–site is the

reason for the subsidence of an adjacent highway. The presented numerical results

can be verified by field observations.

Additionally to the dam–site models a three–dimensional model approach is

presented that describes the formation of large collapse dolines. Collapse dolines are

significant surface features of karst landscapes and their evolution which is usually

linked to a subsurface karst system is of high interest in the karst community. To

simulate the evolution and interaction of such a doline system, a three–dimensional

model with several spatially distributed dolines is used. There, based on the concept

of a mechanically weakened crushed zone, the evolution over time is presented. The

applied collapsing mechanism used in this work also allows to estimate the bedrock

removal and surface lowering over time. The determined rates are in good agreement

with values reported in literature.
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Zusammenfassung

Die vorliegende Arbeit beschreibt die Entwicklung von dreidimensionalen Karst

– Evolutions – Modellen für variierende Konfigurationen. Da Karstaquifere sehr

empfindlich auf Veränderungen ihrer hydraulischen Randbedingungen reagieren, ist

ein umfassendes Verständnis der Prozesse innerhalb eines Karstaquifers unverzicht-

bar. Insbesondere bei anthropogener Nutzung eines Aquifers, wie z.B. dem Bau eines

Staudammes, müssen die sich daraus ergebenden Veränderungen so detailliert wie

möglich untersucht werden, um unvorhersehbare Zwischenfälle zu verhindern. Die

Verwendung von numerischen Modellen, um die Entwicklung eines Karstaquifers zu

simulieren, ist daher ein geeignetes Instrument in der Vorerkundung betreffender

Gebiete. Diesbezüglich zeigt diese Arbeit, dass mit Hilfe einfacher dreidimension-

aler Damm Modelle die Parameter, welche die Aquiferevolution steuern, untersucht

werden können. Ausgehend von diesen einfachen Modellen wird ein erweitertes

dreidimensionales Modell eines echten Staudammes präsentiert. Dieses Modell wird

verwendet, um die zeitliche Entwicklung des Aquifers unterhalb dieses Dammes zu

simulieren. Darüber hinaus werden die signifikanten Änderungen am anstehenden

Gestein, verursacht durch den Bau des Staudammes, dargelegt. Es erweist sich, dass

die entstandene verkarstete Verwitterungszone der Auslöser für die Absenkung der

angrenzenden Autobahn ist. Die hier vorgestellten numerischen Ergebnisse stehen

in gutem Einklang mit den Ergebnissen der Geländemessungen.

Zusätzlich zu den Damm Modellen wird ein dreidimensionales Modell, dass die

Entstehung von großen Einsturzdolinen beschreibt, vorgestellt. Einsturzdolinen sind

signifikante Oberflächenmerkmale von Karstlandschaften und von großem Inter-

esse für die Karst Gemeinschaft, da ihre Entwicklung und Entstehung im Regelfall

eng mit unterirdischen Karstsystemen verknüpft ist. Um die Entstehung und In-

teraktion von Einsturzdolinen zu untersuchen, wird ein dreidimensionales Modell

mit mehreren räumlich verteilten Dolinen verwendet. Mit diesem Modell wird,
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basierend auf dem Konzept einer räumlich begrenzten und mechanisch geschwächten

Störungszone als initiale Bedingung für die Entstehung einer Einsturzdoline, ihre

zeitliche Entwicklung präsentiert. Der in dieser Arbeit verwendete Einsturzmecha-

nismus erlaubt eine realistische quantitative Aussage über die durch Lösungsprozesse

entfernte Gesteinsmenge und der daraus resultierenden Oberflächenabsenkung. Die

ermittelten Werte sind in guter Übereinstimmung mit den bekannten Literaturw-

erten.
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Karst landscapes can be found on every continent on Earth and so it is no wonder

that ≈ 25% of the world’s population is dependent on drinking water stored inside

karst aquifers (Ford and Williams, 2007). Therefore, it is natural to assume that

karst landscapes have been the living environment for humans since thousands of

years and that there is an inherent need to understand the processes acting in those

regions. The oldest known explorations of karst landscapes date to the times of

Assyrian kings around 1100 BC (Ford and Williams, 2007) and until today many

questions regarding their development are unanswered. Karst landscapes show very

unique surface characteristics like steep valleys and surface depressions. But without

a doubt the most fascinating karst landscape features are hidden in the subsurface,

the karst caves. The history of karst sciences is closely connected with the discovery

and exploration of karst caves ranging from passages not much higher than a few

decimeter up to large chambers which are several tens of meters high. Most of

the features typical to karst regions, on the surface and subsurface, can be found

on the Kras plateau in southeast Europe. This plateau is not only the linguistic

origin of the name karst, but also for other typical karst landforms like e.g. poljes

(large flat depressions), ponors (flat sinkhole–like swallow holes where a surface

stream disappears into the ground) or dolines (valleys created by e.g (sub)surface

dissolution and / or collapse).

Because karst bedrocks consist of dolostone (dolomite CaMg(CO3)2), gypsum

(CaSO4 · 2H2O), limestone (calcium carbonate CaCO3) or salt (e.g. halite NaCl)

they are all prone to dissolution by water and hence water is the main driving force

for karst landscape evolution. Of course several other parameters beside the pure

presence of water have to be active to create a karst landscape. In the case of e.g.

limestone, which is the major karst bedrock, water has to be enriched by carbon

dioxide (CO2) as the rate of dissolution is controlled by the ternary system calcite–

carbon dioxide–water. For the creation of a karst cave system the host rock should

also have a kind of tectonic history. Water needs sufficiently large pathways (net-

work of fissures) to flow through the rock and enlarge these fissures by dissolution.

Note that sufficiently large is still in the sub–millimeter range. Finally, also the

amount of available water in terms of groundwater recharge is important because

the flow through the bedrock induced by pressure differences is either controlled by

precipitation, so water entering from the surface, or the groundwater level in the

subsurface.
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As karst landscapes are widely spread around the globe they are of course also

influenced by anthropogenic use. Not only in karst regions dam–sites play an impor-

tant role in supplying water to humans, be it as drinking water, for agriculture or

as energy source. But in karst regions the impact of dam–sites on the environment

can be substantial because karst aquifers are heterogeneous geological formations

exhibiting complex hydraulic properties and are very sensitive to environmental

changes (Ford and Williams, 2007). When water is impounded in large reservoirs,

the local aquifer system can change dramatically and a lot of effort is needed to

protect not only the dam structure itself but also the surrounding area and nearby

facilities. If in the pre–construction phase of a dam–site the local karst system is not

thoroughly investigated, constructional faults can lead to hazardous failures of the

dam. The costs caused by these failures may be not only economically high. Often,

the sensitive ecosystem inside a karst aquifer is threatened or even destroyed or, in

the worst case, the loss of human lives is to bemoaned. There are numerous events

in literature documenting the aforementioned consequences e.g. (Milanović, 2000,

2004). Therefore, there is an essential interest to understand the complex interac-

tions inside a karst aquifer and especially when the human impact on this sensitive

system can not be neglected. Generally, only mature karst systems with an acces-

sible cave system can be explored by humans. But because the early evolution of a

karst aquifer, when it cannot be directly investigated, is of substantial importance

for its future development, people have started to study karst aquifers by numerical

means. In the following a short overview on these efforts shall be given.

1.1 Historical abstract on karst evolution modelling

During the last decades, several numerical models concerned with the evolution of

karst aquifers have been developed.

If one wants to model the evolution of a karst aquifer, it is of course necessary

to understand and simulate the dissolution process inside the karst bedrock. In the

early 80’s of the last century Buhmann and Dreybrodt (1985a) have developed a nu-

merical model for the aforementioned ternary system calcite–carbon dioxide–water

that describes the dissolution of calcite. They have shown that for the open system

(carbon dioxide can be exchanged with the atmosphere) as well as for the closed

system (Buhmann and Dreybrodt, 1985b) the dissolution rate depends linearly on
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the calcium concentration in the water. For the open system these results could

be verified experimentally by Dreybrodt et al. (1996). An extension of the work

by Buhmann and Dreybrodt (1985a) has been presented by Kaufmann and Drey-

brodt (2007) which overcomes some limitations of the earlier works. For calcium

concentrations close to equilibrium Plummer et al. (1978) has shown that this linear

dependence no longer holds and the calcium concentration drops by several orders of

magnitude. This was later also experimentally verified by Svensson and Dreybrodt

(1992) (open system) and Eisenlohr et al. (1999) (closed system). In summary this

means that depending on the calcium concentration in the water different linear and

non–linear dissolution rate laws need to be considered (this will be shown in more

detail in chap. 2).

Based on the numerical models for calcite dissolution, one–dimensional models

that describe the evolution of a single channel or fracture have been presented by

e.g. (Huyakorn et al., 1983; Dreybrodt, 1990, 1992, 1996; Palmer, 1991; Groves

and Howard, 1994b; Dreybrodt and Gabrovšek, 2000; Gabrovšek, 2000). These

one–dimensional models have shown the importance of the non–linear high order

dissolution kinetics close to equilibrium for the enlargement of a single channel over

time. By varying the parameters that drive the evolution of a single channel like e.g.

geometry, flow rate, and calcium concentration a relation was found that combined

those parameters and could characterize the evolution of a single channel over time

— the one–dimensional breakthrough equation. This relation which defines the so–

called breakthrough time (Dreybrodt, 1996) will also be explained later in the theory

chapter (chap. 2).

The one–dimensional models were then extended into the second dimension

(Groves and Howard, 1994a; Howard and Groves, 1995; Hanna and Rajaram, 1998;

Siemers and Dreybrodt, 1998; Kaufmann and Braun, 1999, 2000; Kaufmann, 2002,

2003a,c, 2005; Gabrovšek and Dreybrodt, 2000, 2001; Bauer et al., 2002, 2003; Ro-

manov et al., 2003c; Dreybrodt et al., 2005). First, the early evolution of two–

dimensional fracture networks was studied with simple constant head boundary

conditions, while later on also the importance of recharge boundary conditions was

discovered. With these recharge boundary conditions the evolution of more natural

cave networks could be simulated. In the progress of the further development of the

two–dimensional models more complex fracture networks, model setups and bound-

ary conditions were applied. Furthermore, the porous matrix was incorporated into
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several models as it was found that the matrix flow component is also important for

the early evolution of a karst aquifer.

With the increasing availability of computational resources the focus is now

shifted on the three–dimensional modelling (Annable, 2003; Kaufmann, 2009; Kauf-

mann et al., 2010). Introducing a third dimension makes it now possible to take

into account the complex geometry of a karst aquifer system, and therefore create

more realistic model setups. This work is the logical follow up of the latest three–

dimensional models. It shows the development of three–dimensional models for the

evolution of karst aquifers for different models under different conditions.

1.2 Structure of the thesis

Chapter 2 – Theory In this chapter the basic processes governing the simula-

tion of a karst aquifer are explained by means of a single conduit evolution. The

reaction kinetics needed for the dissolutional widening and the resulting change of

flow parameters are explained. In a next step the integration of the single conduit

concept into a three–dimensional network is presented.

Chapter 3 – Conceptual dam–site models This chapter introduces the topic

of three–dimensional karst evolution modelling of reservoirs or dam–sites respec-

tively. First, simple models are presented and the governing model parameters and

their influence on the evolution of the aquifer is investigated by means of a sensitivity

analysis. In a next step the simple 3D models are further enhanced by implementing

non–uniform (statistical) conduit networks and topography. This chapter gives the

theoretical groundwork for the study of a real case scenario.

Chapter 4 – A real dam–site scenario Here, a three–dimensional karst evolu-

tion model is developed for a real dam–site in Switzerland. There, a small dam–site

has caused subsidence of an adjacent highway and the objective is to support the

findings from field observations by means of numerical modelling. Also a possible

future evolution of the aquifer is presented and discussed.

Chapter 5 – Collapse dolines This chapter addresses the three–dimensional

modelling of a typical surface characteristics of karst landscapes — large collapse

dolines. Here, the concept of a breakdown or crushed zone is used to simulate
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the early evolution of such dolines. Furthermore, the material removal rates are

estimated by a novel collapsing mechanism and the interaction of spatial distributed

collapse dolines is examined.

Chapter 6 – Summary & Outlook Finally, this chapter summarizes the find-

ings of this work and gives an outlook on the future development of karst evolution

modelling.

Appendix A Here, the benchmarks that have been carried out to test the per-

formance of KARSTAQUIFER are presented and discussed.

Appendix B Appendix B holds additional plots for chapter 5.

Appendix C The program KARSTTOOL is introduced and its basic use is ex-

emplarily described.
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Basic theory of karst evolution

modelling
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The term karstification generally describes the alteration of a soluble bedrock

such as limestone or gypsum by means of dissolution. Water can penetrate from the

bottom of a reservoir or a river into the bedrock through a fine network of fissures.

With time water circulates through the rock, removes material and therefore the

fissures are widened to fractures or conduits. In general, modelling karstification

can be partitioned into three major sub–steps. The first one is to calculate the

flow of water through the rock depending on the hydraulic conductivity of the rock

and the head pressure of the impounded water. The second step is to calculate the

transport of the dissolved species in the subsurface water. And finally in the last step

the dissolutional widening determined by flow and calcium concentration is derived.

To describe briefly the basic principles of karst evolution modelling this chapter is

structured as follows. First, the evolution of a 1D single conduit is introduced as

it is the foundation on which the 3D modelling is build on. Therefore, the flow

through a conduit and the reaction kinetics that control the chemical dissolution

and therewith the evolution are shown. Finally, the 1D conduit is embedded into

the 3D domain and the simulation process is briefly described.

As only the basic theoretical concepts are shown, references to the relevant lit-

erature is given at the corresponding sections.

2.1 The evolution of a single conduit

The evolution of a 1D single conduit depends on several physical and chemical pa-

rameters. Flow through a conduit is controlled by the pressure difference between

entrance and exit and its hydraulic conductivity which is determined by its geomet-

rical shape. The reaction kinetics of the soluble minerals governs the dissolution

process and therewith the increase of the conduit diameter. The descriptions in this

section follows mainly the structure of Kaufmann (2009) and is given here for a con-

sistent overview of the theoretical principles behind the modelling studies presented

in this work.

2.1.1 Geometry of a single conduit

The use of circular conduits for modelling the evolution of karst aquifers follows

from the idealized concept that the most probable flow paths inside a karst aquifer

are along the junctions of small fissures and bedding planes (see Fig.2.1). These
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conduits are used to simulate the flow trough the aquifer and can be described by

their diameter d [m] and their length l [m]. The cross-sectional area of the conduit

is A = πd2/4 [m2].

Fig. 2.1: Geometrical model of a 1D conduit; The flow path along a junction be-
tween a fissure and a bedding plane can be described by a circular conduit. Modified
after Kaufmann (2009).

2.1.2 Flow in a single conduit

Flow Q [m3 s−1] through the conduit is modelled as fully developed, incompressible

Poiseuille flow with no buoyancy forces. It is driven by the hydraulic pressure

difference between entrance and exit ∆p and the coefficient K ′. Generally ∆p is

expressed as head loss and is given by

∆h =
∆p

ρg
+ ∆z, (2.1)

with ρ [kg m−3] the density of water, g [m s−2] the gravitational acceleration and

∆z [m] the height difference between entrance and exit of the conduit. Flow and

head loss are then related by the power–law equation (Kaufmann, 2009)
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Qn = K ′∆h. (2.2)

where K ′ holds the properties of the conduit geometry and the flow (conduc-

tivity). Although for laminar flow the units of K ′ in eq. 2.2 are [m2 s−1] which

corresponds to a viscosity one may also find in literature the term hydraulic resis-

tance R [m−2 s] which is the reciprocal of K ′.

Laminar flow First laminar flow is assumed. For laminar flow n = 1 in eq. 2.2

and K ′ is derived by the Hagen-Poiseuille law (e.g. Beek and Muttzall (1975))

K ′l =
gd4

40νl
(2.3)

with ν [m2 s−1] the kinematic viscosity of water. Because of u = K∇h the

hydraulic conductivity K l
c [m s−1] of a conduit is given by

K l
c =

gd2

32ν
. (2.4)

Turbulent flow For turbulent flow n = 2 in eq. 2.2 and the non-linear Darcy-

Weissbach law is applied to derive K ′

K ′t =
π2gd5

8fl
. (2.5)

The hydraulic conductivity Kt
c of a conduit is then given by

Kt
c =

2gd

f
. (2.6)

Because the flow trough a conduit can either be laminar or turbulent the Reynolds

number Re is used to distinguish between both cases. The Reynolds number is given

by

Re =
ud

η
, (2.7)

with u = Q/A [m s−1] the Darcy-flow velocity, the conduit diameter d and the

dynamic viscosity η [kg m−1 s−1]. Generally a critical Reynolds number of Rec =

2200 is used, where values smaller than Rec assign a laminar flow rate and values
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larger than Rec = 2200 a turbulent flow rate respectively. It is important to note

that the Reynolds number Re in eq. 2.7 depends on the flow rate Q. Therefore,

first a laminar flow rate is assumed for deriving Re. If Re < Rec then the flow is

laminar and the laminar friction factor is given by

fl =
64

Re
. (2.8)

If Re > Rec the flow is turbulent and has to be recalculated with a turbulent

friction factor f . It is derived by the maximum of

fs = 0.3164Re−0.25,

f−0.5
t = 1.14− 2log(

w

d
+

9.35

Re
f−0.5
t ),

f−0.5
r = 1.14− log(

w

d
),

(2.9)

where fs is smooth turbulence, ft is the transition between smooth and rough

turbulence, fr is rough turbulence and w [m] is the wall roughness. Note that for the

transitional regime ft needs to be derived iteratively (Colebrook-White equation)

whereas for the rough regime fr becomes independent from Re.

Generally, if flow through a given conduit is turbulent, the flow rate is smaller

than the corresponding laminar flow rate (see 2.1.4). So if for larger conduits tur-

bulence is not considered, the flow rates are generally overestimated.

2.1.3 Reaction kinetics

Before modelling the evolution of a single conduit the reaction kinetics within a

karst aquifer have to be known. The chemical part in the removal of karst bedrock

is governed by the dissolution rate or flux rate F [mol m−2 s−1].

The flux rate F as a function of calcium concentration describes the removal

of bedrock per unit area and time and has been intensively studied by Buhmann

and Dreybrodt (1985a,b); Dreybrodt (1988); Eisenlohr et al. (1999); Kaufmann and

Dreybrodt (2007); Plummer et al. (1978); Svensson and Dreybrodt (1992). It can

be described by

F = ki

(
mi −

c

ceq

)ni

, i = 0, n , (2.10)

with ki [mol m−2 s−1] a rate coefficient, c [mol m−3] the actual concentration of
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Ca2+ in the water and ceq [mol m−3] the equilibrium concentration with respect to

the soluble mineral. Furthermore, there are two dimensionless parameters, the coef-

ficient mi [−] and the power-law exponent ni [−]. The calcium equilibrium concen-

tration ceq as a function of carbon–dioxide partial pressure pCO2 and temperature

T is given for the open system after Dreybrodt (1988) by

c3
eq =

K1KCKH

4K2γCa2+γ
2
HCO−3

pCO2, (2.11)

with the equilibrium constants K1, K2, KC and KH and the activity coefficients

γCa2+ for calcium and γ2
HCO−3

for bicarbonate, respectively. For the closed system

pCO2 is reduced according to Dreybrodt (1988) to

pCO2 = piCO2
ceq

KH

(
1 + 1

K0

) , (2.12)

with piCO2 the initial carbon–dioxide partial pressure and the equilibrium con-

stant K0. The given equilibrium coefficients and activity coefficients are given in

Tab. 2.1.

The coefficient ki and the exponent ni in eq. 2.10 are characteristic parame-

ters for the bedrock mineral, and depend on the amount of undersaturation in the

subsurface water. For the initial linear kinetics the parameters k0, m0 and n0 have

been derived by Kaufmann and Dreybrodt (2007) and are given in Tab. 2.1. For

the low–order linear kinetics where i = 1 in eq. 2.10 the coefficients k1, m1 and

n1 are based on theoretical and experimental studies of Buhmann and Dreybrodt

(1985a,b); Svensson and Dreybrodt (1992); Dreybrodt et al. (1996); Eisenlohr et al.

(1999) and k1 is given by

k1 = k
′
1

(
1 +

k
′
1d(t)

6Dceq

)−1

(2.13)

with the rate coefficient k
′
1 and the diffusion coefficientD. For high–order kinetics

a power law according to Palmer (1991); Eisenlohr et al. (1999) is used

k2 = k1

(
1− c1

ceq

)n1−n2

. (2.14)

For a comprehensive summary on calcite dissolution kinetics the reader is referred
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to Kaufmann and Dreybrodt (2007). For gypsum dissolution Jeschke et al. (2001)

derived a similar rate law as shown in eq. 2.10. Details on the derivation of the

equilibrium concentration ceq can be found, e.g. in Dreybrodt (1988). For calcite ceq

is a function of temperature T [◦C] and carbon dioxide partial pressure pCO2 [atm]

(closed system conditions are assumed throughout this thesis). For gypsum ceq can

assumed to be a constant value (see Tab. 2.1 for the reference parameters).
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initial linear kinetics
low−order linear kinetics
high−order non−linear kinetics

low−order linear kinetics
high−order non−linear kinetics

a) Flux rates F for calcite CaCO3 b) Flux rates F for gypsum CaSO4

Fig. 2.2: Flux rates F for calcite (a) and gypsum (b); a) initial linear kinetics
(black line) show fast drop in flux rates, low–order linear kinetics (green line) show
slow drop in flux rates whereas with high–order non–linear kinetics (red line) rates
drop with a power–law relation; d = 0.1 [mm], Ca2+

eq = 2.1 [mol m−3], T = 10 [◦C],
pCO2 = 0.05 [atm]; b) low–order linear kinetics (green line) show a fast drop in flux
rates until the switch to high–order non–linear kinetics (red line) where the rates
drop with a power-law relation; d = 0.1 [mm], Ca2+

eq = 15.4 [mol m−3].

Fig. 2.2a shows the relation between calcium saturation Ca2+/Ca2+
eq and flux

rate F for calcite. The values have been calculated for a conduit diameter of d =

0.1 [mm] and a calcium equilibrium concentration of Ca2+
eq = 2.1 [mol m−3] (T =

10 [◦C], pCO2 = 0.05 [atm]). For the initial linear kinetics at high undersaturation

(black line) the rate drops very fast over almost on order of magnitude. For the slow

low–order linear kinetics (green line) the rate also drops linearly but much slower

than for the initial kinetics (eq. 2.13). If the calcium concentration increases above

the switch concentration cs (cs = 0.9ceq for calcite) the system exhibits higher–order

kinetics (red line) where the rate becomes non–linear and the coefficients m2, k2,

and n2 are used (eq. 2.14).

A similar behaviour can be seen for gypsum flux rates in Fig. 2.2b. The con-

duit diameter is again d = 0.1 [mm] and the calcium equilibrium concentration is
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Ca2+
eq = 15.4[mol m−3]. For gypsum there is only one low–order linear regime (green

line). Here the rate drops significantly over one order of magnitude until the switch

concentration (cs = 0.95ceq for gypsum) is reached. Note that the flux rates for

gypsum are one order of magnitude higher than for calcite.

The consequences from the flux rate law in eq. 2.10 are manifold and can be

found in the aforementioned literature. They are only briefly summarized here. The

rates for calcite depend not only on the diameter d but also on temperature T and

carbon dioxide partial pressure pCO2. For diameters below d < 0.1 [mm] the rates

are controlled by the surface dissolution rates and the CO2–conversion. For larger

diameters the rate limiting effect of diffusion D (eq. 2.13) becomes more important.

Furthermore, the warmer the solution the less calcium can be dissolved whereas with

increasing pCO2 the dissolution rates increase (Kaufmann, 2009).

The linear kinetics are responsible for high dissolution rates close to the entrance

of the conduit where the solution is strongly undersaturated with respect to calcite

/ gypsum. With increasing saturation the non–linear part becomes significantly

important for the evolution of pre–mature karst aquifers. The reduced rates allow

for a solution close to equilibrium to penetrate deep into the aquifer and maintain

the dissolution process (Gabrovšek, 2000).

2.1.4 Dissolutional widening

With the formulations in 2.1.2 and 2.1.3 the evolution of a single conduit can be

simulated by numerical means. Several authors have studied the evolution of single

fractures or conduits. For a comprehensive summary on karst evolution modelling

see the references given in 1.1 or e.g. Dreybrodt et al. (2005) and the references

therein.

The increase of the conduit diameter d can be derived from

d(ti) = d(ti−1) + F
MMIN

ρMIN
(ti − ti−1). (2.15)

Here ti−1 and ti are two consecutive time steps, F is the flux rate as described

in 2.1.3, MMIN [kg mol−1] is the molar mass and ρMIN [kg m−3] the density of the

soluble mineral (calcite or gypsum), respectively. For each time step the conduit is

subdivided into smaller portions ∆lj as described in Groves and Howard (1994a).

For each of these portions the calcium concentration, the wall retreat (removal of
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dissolved calcium) and the new radius ∆rj is calculated following the procedure

given in Kaufmann and Braun (1999). The new effective conduit diameter de after

this process is given according to Groves and Howard (1994a)

d4
e =

l
n∑

j=1

∆lj
(2∆rj)4

. (2.16)

0.01 0.1 1 10 100 1000
0

0.2

0.4

0.6

0.8

1

conduit length [m]

C
a2+

/C
a2+ eq

 

 

0.01 0.1 1 10 100 1000
−4

−3

−2

−1.3

conduit length [m]

co
nd

ui
t d

ia
m

et
er

 1
0

x  [m
]

 

 

0 1000 2000 3000 4000 5000
−5

−3

−1

1

time [a]

di
am

et
er

 1
0

x  [m
]

 

 

0 1000 2000 3000 4000 5000
−12

−8

−4

0

4

8

time [a]

flo
w

 r
at

e 
10

x  [m
3  s

−1
]

 

 
CaCO

3

CaSO
4

LCaCO
3

TCaCO
3

LCaSO
4

TCaSO
4

2500
3000
3010

2500 3000 3010

a) Conduit diameters over time for CaCO3 & CaSO4 b) Lam. & turb. flow rates for CaCO3 & CaSO4

c) Calcium saturation during evolution for CaCO3 d) Conduit diameters during evolution for CaCO3

Fig. 2.3: Single conduit evolution; see sub–captions for description; the colors in
c and d are according to Fig. 2.2a and mark the different kinetics regimes for the
three different time steps.

Fig. 2.3 shows the evolution of a single conduit for calcite and gypsum respec-

tively. The initial diameter of each conduit is d0 = 0.2[mm], its length is l = 1000[m]

and the head difference between entrance and exit is ∆h = 50 [m]. In Fig. 2.3a the

increase of the conduit diameter d over time is shown. The black curve represents the

calcite conduit the red curve the gypsum conduit respectively. Both conduits show

only little growth for the first 1000 years. A significant increase is visible for the

gypsum conduit at ≈ 1800 years. Here the diameter increases rapidly over almost



CHAPTER 2. BASIC THEORY OF KARST EVOLUTION MODELLING 16

four orders of magnitude. A similar behaviour can be seen for the calcite conduit

later in time. Here the rapid increase of the diameter happens at ≈ 3000 years and

is a little less then three orders of magnitude. After this jump the diameters of both

conduit grow constantly on a slower pace. An identical behaviour can be seen in

Fig. 2.3b where the evolution of flow rates are shown. Black curves represent again

the calcite conduit and red curves the gypsum conduit respectively. Like for the

diameters in Fig. 2.3a also the flow rates show this significant jump over several

orders of magnitude. Note that the solid lines represent flow rates if only laminar

flow is considered. For the dashed lines turbulent flow is activated if the Reynolds

number is above the critical threshold Re > Rec. From Fig. 2.3b can be seen that

turbulent flow decreases the flow rate in a conduit (see 2.1.2).

The short time interval when the strong increase of diameter and therewith also a

strong increase of flow rates occur is called breakthrough time TB and was introduced

by Dreybrodt (1996). The breakthrough time is a characteristic parameter for the

growth of a single conduit and is given by

TB = 1.77× 10−8 (d)−3 (l)
8
3 (∆h)−

4
3 (ceq)

− 4
3 (k1)

1
3 . (2.17)

It depends on the geometry of the conduit (d,l), the chemical parameters of the

reaction kinetics (ceq,k1) and the head difference ∆h. The breakthrough time also

marks the transition between non–linear and linear kinetics inside the conduit (see

2.1.3). This is exemplarily shown for the calcite conduit in Fig. 2.3c+d. In Fig. 2.3c

the calcium saturation for three snapshots in time along the conduit is shown. Fig.

2.3d shows the corresponding diameter along the conduit. The dotted line represents

the conduit at the year 2500. The colors correspond to the color scale in Fig. 2.2a

and mark the kinetics regime. Black color represents the initial linear kinetics, green

the low–order linear kinetics and red the high–order non–linear kinetics respectively.

For the conduit at 2500 years both linear regimes are only active up to the first meter

(note that the x–axis is in log–scale). In the remaining part of the conduit the non–

linear kinetics are active and allow for small dissolution rates and little diameter

growth. Note the funnel shape of the conduit diameter in Fig. 2.3d. The new

effective diameter after the dissolution process for this time step is calculated with

eq. 2.16. Shortly before breakthrough, at 3000 years (dashed line), the linear kinetics

are active almost along the entire conduit. Here the dissolution rates are moderate

and the funnel shape of the conduit is not that pronounced anymore. Right after
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the breakthrough occurs at 3010 years (solid line) the low–order linear kinetics are

active along the entire conduit. A lot of calcium is dissolved at high rates as the

solution is highly undersaturated along the whole conduit and the diameter grows

almost linearly at a constant pace. A similar behaviour can be observed for a conduit

under gypsum dissolution kinetics. The only differences are the missing initial fast

linear kinetics and the about one order of magnitude higher dissolution rates (see

2.1.3 and Fig. 2.2).

2.2 Modelling a 3D domain

The program KARSTAQUIFER, used in this work, is a development of the research

group of Prof. Kaufmann from the Free University of Berlin. It applies the concept of

a discrete fracture approach as described by e.g. Huyakorn et al. (1983); Kaufmann

and Braun (2000). Therefore, the fractures / conduits are directly incorporated

into the modelling domain which allows for a consistent modelling of flow inside

the aquifer. The program has been so far applied to study different karst evolution

scenarios presented in Kaufmann (2009); Kaufmann et al. (2010).

The flow of water through a fissured and fractured aquifer can be described by

a transient continuity equation

∂

∂x

(
K(t)

∂h

∂x

)
+

∂

∂y

(
K(t)

∂h

∂y

)
+

∂

∂z

(
K(t)

∂h

∂z

)
= S

∂h

∂t
, (2.18)

where, K(t) [m s−1] is the time–dependent hydraulic conductivity, S [m−1] the

specific storage and h [m] the hydraulic head. Furthermore, x [m], y [m] and z [m]

denote the spatial coordinates, and t [s] is time. In a three–dimensional domain

eq. 2.18 gives a set of N equations corresponding to N nodes that needs to be

solved for the unknown heads h1,N . Therefore, the finite element method is applied

with three–dimensional parallelepipedal elements that represent the rock matrix and

two–dimensional bar elements that represent the conduit network respectively. Fig.

2.4 shows a idealized model of one matrix element. There, the conduits around the

matrix element E1 are defined along the edges of the element between the nodes

N1,8. The system of N equations to calculate the heads is solved by a finite–element

method as described e.g. in Istok (1989). The flow through the domain changes

over times because the hydraulic conductivity of the domain changes. In eq. 2.18

K(t) consists of
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Fig. 2.4: Idealized geometrical model of an element inside the 3D domain; the
element is created by 8 grid nodes and represents the rock matrix, the edges of the
element (the connection between the nodes) represent the conduit network respec-
tively.

K(t) = Km +Kc(t), (2.19)

where Km is the invariant hydraulic conductivity of the matrix and Kc(t) the

hydraulic conductivity of the conduits, respectively. Km is fixed to a constant value

throughout the entire numerical simulation. From eqs. 2.4 and 2.6 follows, that

the hydraulic conductivity of the conduits Kc(t) changes over time due to their

dissolutional widening. The general procedure when modelling the evolution of a

three–dimensional karst aquifer is described below.

1. Assembling of the finite element grid with the 3D and 2D elements

2. Applying initial parameters to the elements (Km,d0,c0 etc.)
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3. Applying the boundary conditions (constant head, fixed flow, recharge, etc.)

4. Solving the system of equations to get the hydraulic heads h at all nodes N

(when turbulence is active an iterative approach is used)

5. Sort the nodes according to the calculated hydraulic heads in descending order

6. Calculate the flow rate through each conduit (laminar or turbulent) and apply

the corresponding flux rate law

7. Calculate the wall retreat, the new effective diameter de and the calcium con-

centration c for all conduits

8. Update Kc(t) and start from 3. until the end of the model run

These are the basic steps when modelling karst evolution in three dimensions.

For complex model setups it is possible to assign every element and every conduit

different initial parameters. The model can either consist of a homogeneous / uni-

form initial conduit diameter network or a statistical one. If the latter is applied the

initial conduit diameter distribution is created with a log–normal distribution with a

mode of d̂ln and a standard deviation σn for the corresponding normal distribution.

First, the mean of the normal distribution is calculated by

µn = ln(d̂ln) + σ2
n. (2.20)

Then the normal distribution is given by

Nn(µn, σ
2
n) = µn + σnDn, (2.21)

where Dn [0, 1] is a standard normal distribution. The log–normal distribution

finally is

Nln = exp(Nn). (2.22)

As an example two log–normal distributions are shown in Fig. 2.5. The black

curve has parameters d̂ln = 0.1 [mm] and σn = 0.5 whereas the red curve has

parameters d̂ln = 0.3 [mm] and σn = 1 respectively. The influence of the statistical

conduit network parameters on the evolution of a three–dimensional karst aquifer

has been shown by Kaufmann et al. (2010). The wider the distribution the more
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enlarged conduits are initially present to create a preferential flow path. In this

way a wide distribution acts similar to a model setup that has been used e.g. by

Gabrovšek and Dreybrodt (2001); Gabrovšek et al. (2004). There, a secondary

percolation network of larger fractures is superimposed on a finer network of small

fissures.
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Fig. 2.5: Two log-normal distributions with different statistical parameters

This chapter has presented the theoretical principles and modelling basics that

are the theoretical framework of this thesis. To give an in–depth analysis of the

individual parts would be way beyond the scope of this work. The interested reader

is therefore referred to the given references.
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Parameters Symbol Unit Value(s)

Gypsum chemistry:
Molar mass M kg mol−1 0.1722
Density ρ kg m−3 2320
Linear kinetic exponent n1 1
High-order kinetic exponent n2 4.5
Linear rate constant k1 mol m−2 s−1 1.1 × 10−5

Calcium concentration c mol m−3 cin < c < ceq
Calcium equilibrium concentration ceq mol m−3 15.4
Initial calcium concentration cin mol m−3 0
Calcium switch concentration cs mol m−3 0.95ceq

Limestone chemistry:
Molar mass M kg mol−1 0.1001
Density ρ kg m−3 2700
Linear kinetic exponents n0 = n1 1
High-order kinetic exponent n2 4
Intercept constant m0 0.3
Intercept constants m1 = m2 1
Initial rate constant k0 mol m−2 s−1 4 × 10−6

Linear rate constant k
′
1 mol m−2 s−1 4 × 10−7

Diffusion coefficient D m2 s−1 10−9

Calcium concentration c mol m−3 cin < c < ceq
Initial calcium concentration cin mol m−3 0
Calcium switch concentration cs mol m−3 0.9ceq
Temperature T ◦C 10
Partial pressure of carbon dioxide pCO2 atm 0.05

Ion activity I mol l−1 3c
Debye–Hückel coefficient A 0.4883 + 8.074 × 10−4T
Debye–Hückel coefficient B 0.3241 + 1.600 × 10−4T

Activity coefficient log γCa2+
−4A

√
I

1+5.0B
√
I

Activity coefficient log γ
HCO−3

−1A
√

I

1+5.4B
√
I

Equilibrium constant log K0 K5/K1

Equilibrium constant log K1 mol l−1 −356.3094 − 0.06091964T +
21834.37/T +
126.8339 log T − 1684915/T

Equilibrium constant log K2 mol l−1 −107.8871 − 0.03252849T +
5151.79/T+38.92561logT−
563713.9/T

Equilibrium constant log K5 mol l−1 1.707 × 10−4

Equilibrium constant log KC mol2 l−2 −171.9065 − 0.077993T +
2839.319/T + 71.595 log T

Equilibrium constant log KH mol l−1 atm−1 108.3865 + 0.01985076T −
6919.53/T−40.45154logT+
669365/T

Table 2.1: Dissolution kinetics parameters for gypsum and limestone used in this
work.
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The development of 3D karst

evolution dam–site models
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Often, large water reservoirs and dam–sites are built in karst areas to provide

people with drinking water, water for agriculture and / or to produce hydroelec-

tric power. While natural karstification normally proceeds on time scales of several

100 000 years, close to dam–sites or other man–made structures this can change

considerably. The water that is impounded by the reservoir increases the hydraulic

gradients and thereby the local hydraulic boundary conditions significantly. Some-

times, depending on the size of the dam–site and the local geology, this change

can be by several orders of magnitude compared to the natural pre–dam situation.

Then, this high hydraulic gradients accelerate the karstification considerably, thus

reducing the time scales of enlargement of fractures and fissures to only 10 − 100

years.

The impounded water poses several threats to the structure of the dam–site:

1. sediment–filled channels can be opened and result in increased leakage of the

reservoir,

2. small fissures are rapidly enlarged by dissolution and can bypass the dam struc-

ture through the reservoir bottom or the valley flanks to provide alternative

flow paths,

3. enlarged voids underneath or aside of the dam can become structurally weak

enough to result in collapses, possibly damaging the dam structure itself.

These processes not only put the economic functionality of the dam–site at risk

due to the critical leakage, they also increase the threat of a structural failure of the

dam–site. Examples of catastrophic failures can be found throughout the literature,

see e.g. Milanović (2000, 2004) for a comprehensive summary. DeWaele (2008);

Johnson (2008); Malkawi and Al-Sheriadeh (2000); Unal et al. (2007) give examples

on the problems arising from increased leakage around dam–sites.

Because of the high risks accompanied by dam–sites in karst regions, numer-

ous scientifical and technological efforts are needed to investigate areas of interest,

preferably before the dam is build. This pre–construction phase should contain e.g.

geological, hydrological, geophysical and geotechnical observations. Of course the

aforementioned tasks are not limited to the pre–construction phase and are generally

also considered during the lifetime of a dam. If a mature karst system is already

present, intensive technical measures, often associated with high costs, have to be
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carried out to stabilize and support the dam–site and its surroundings (Malkawi and

Al-Sheriadeh, 2000; Karimi et al., 2007; Mohammadi and Raeisi, 2007; Unal et al.,

2007). Here, the most common leakage prevention technique is the construction of a

grout curtain around the dam to seal the surrounding bedrock. Unfortunately, the

construction of grout curtains poses new threats to the sensitive karst environment.

Examples for the ecological and environmental impact of grouting measures espe-

cially in the Dinaric karst region are given e.g. by Bonacci et al. (2009); Bonacci

and Josip (2009). The authors state that even when a lot of grouting has been done,

it is not guaranteed that the reservoir is sealed. Furthermore, the grouting material

itself can have a long lasting negative effect on the sensitive ecosystem that is found

in karst regions.

Understanding the complex interrelations and interactions of hydrogeological

processes in karst areas, was and still is a challenging task for the science community.

The objective of the next two chapters is to show the advantages of the ability to

simulate the evolution of complex karst aquifer systems close to dam–sites. As an

entry point, this chapter presents the development of simple 3D dam–site models.

After the conceptual model setup is explained, pseudo–3D models are used to test

the 3D program against earlier 2D dam–site models. Then, the evolution of a 3D

dam–site model is shown and a sensitivity analysis is carried out to estimate the

dependency of the breakthrough time TB on the model parameters. Finally, the

model complexity is increased by using a non–uniform (statistical) conduit network

and topography.

The essential results of this chapter have been presented in Hiller et al. (2011).

The figures here are redrawn to comply with the color scale layout of this work.

3.1 The model setup

3.1.1 Conceptual model

The simplified dam–site models used in this work are based on the conceptual model

shown in Fig. 3.1. The basic setting consists of a dam–site A that impounds a

reservoir D in a narrow valley. The bedrock F in the valley flanks and below the

reservoir is assumed to be a karst bedrock such as limestone or gypsum. This bedrock

is already interspersed by a fine network of fissures and voids. The river E that was

blocked by the dam continues on the bottom of the downstream part. Especially



CHAPTER 3. 3D DAM–SITE MODELS 25

A

B
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C

D
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F

Fig. 3.1: Conceptual model of a 3D dam-site; A dam wall; B horizontal grout
curtains; C vertical grout curtain; D reservoir; E river; F karst bedrock.

when built in a karst region, it is sometimes necessary to extent a dam horizontally

and vertically by so called grout curtains (B and C) into the bedrock. This is done

to prevent water to flow from the reservoir through the network of fissures or a

preexisting fault system into deeper parts of the bedrock and consequently around

the dam. If such flow paths are established, leakage rates can increase dramatically

and engineering measures need to be carried out to ensure the structural safety of

the dam–site.

Based on the conceptual model in Fig. 3.1 a 3D model domain was created to

simulate the karstification process around a dam–site. The model domain as shown

in Fig. 3.2 consists of limestone bedrock and is discretized by parallelepipedal finite

elements. The dam–site itself is assumed impermeable and is characterized by its

width W (the width across the river channel), length L (the length along the river

channel) and height H. As it will be shown later the dam height H also corresponds

to the reservoir depth H. For simplicity the dam is of rectangular shape. The

dam width W accounts for the horizontal grout curtains and the dam length L
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Fig. 3.2: Model domain developed on the basis of the conceptual model shown in
Fig. 3.1; W dam width; L dam length; G grout depth; H reservoir depth / dam
height.

for a sealing apron at the valley bottom respectively. The vertical grout curtain is

implemented by an impermeable wall centered below the dam-site with a certain

extent in depth G. If not stated differently the grout curtain has the same width

as the dam–site. The standard domain parameters can be found in Tab. 3.1. The

largest model used in this chapter has an extent of 500 m × 500 m × 350 m and a

grid resolution of dx = dy = dz = 6.25 m. This gives a total of 373, 977 grid nodes,

358, 400 matrix elements and 1, 093, 176 conduit elements.

The chemical parameters for the limestone dissolution are according to Tab. 2.1.

For the sensitivity analysis in 3.2.2 geometrical and chemical parameters may vary,

but this will be stated there.

3.1.2 From 2D to 3D – the pseudo–3D model

Before starting with a real 3D model the results of earlier 2D dam–site models shall

be reproduced with KARSTAQUIFER. This is done to test the 3D implementation

of the program. For this evaluation, models generated with the 2D code shown in e.g.

Kaufmann and Braun (1999, 2000); Kaufmann (2003c); Kaufmann and Romanov

(2008) are used.
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Parameters Symbol Unit Value(s)

Model domain:
Length X m 500
Width Y m 500
Height Z m 250, 350
Discretization dx, dy, dz m 6.25, 12.5
Matrix conductivity Km m s−1 1 × 10−6

Matrix specific storage Sm m−1 1 × 10−5

Initial conduit diameter d0 m 3 × 10−4

Dam-site:
Length L m 25 − 175
Width W m 25 − 500
Grout depth G m 37.5 − 150
Reservoir depth – hydraulic head H,∆H m 25 − 250
Matrix and conduit conductivity Km,Kc m s−1 1 × 10−15

Table 3.1: Standard domain parameters for the 3D dam–site models.

To compare a 2D program with 3D program one needs to “blank out” the ad-

ditional third dimension. This is generally achieved by so-called pseudo–3D models

which are basically 2D models in a 3D domain. The implementation of such a

pseudo–3D model is shown in Fig. 3.3. The difference to the conceptual model

in 3.2 is obvious. The dam and the vertical grout curtain are extended across the

whole domain in y–direction. This is also done for the reservoir (blue face) in the up-

stream part of the dam, where a constant head boundary condition H = zmax +∆H

is imposed. Consequently also the river or resurgence (red face) in the downstream

part of the dam is extended across the whole domain. There, also a constant head

boundary condition H = zmax is imposed to achieve a head difference ∆H between

the upstream and downstream part of the dam. All other domain boundaries are

no flow boundaries.

Technically, there is now difference in whether to create a thin or wide pseudo–

3D model. Every possible x–z–plane (as shown e.g. in Fig. 3.3b) taken along the

y–direction could serve as a 2D model, as well as the whole block serves as a wide

2D model. The arrows in Fig. 3.3a+b indicate that for this comparison several

different grout depths G were simulated for the 2D model and the pseudo–3D model

respectively.

Fig. 3.4 exemplary shows the evolution of one pseudo–3D model with a grout

depth of G = 50 m. The dam length is L = 100 m and the hydraulic head difference

between upstream and downstream part is ∆H = 100m. The hydraulic conductivity
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Fig. 3.3: Pseudo–3D dam–site model setup with varying grout depth G; blue face
represents area of constant head BC with H = zmax + ∆H [m] (reservoir), red face
represents area of constant head BC H = zmax [m] (river / resurgence); a) 3D–view;
b) front view; c) top view.

of each matrix element is Km = 1× 10−6 m s−1 and in the uniform conduit network

the initial diameter is d0 = 0.3 mm. For all elements inside the dam Km and d0 are

several orders of magnitude smaller to achieve impermeability.

The four snapshots in time in Fig. 3.4 show the evolution of the karst aquifer

beneath the dam–site. In Fig. 3.4a the initial situation is shown. for better visibility

only the outlines of the dam are plotted. The grey faces are isosurfaces of constant

head colored from light grey (low head) to dark grey (high head). Initially, they are

radially aligned around the dam. Fig. 3.4b shows the evolution after 70 years shortly

before breakthrough. The colored conduits correspond to an increase of the initial

conduit diameter from a factor of 5 (blue) to a factor of ≥ 100 (orange) respectively.

It can be seen that several competing horizontal pathways have developed from

the vertical enlarged conduits close to the dam. Due to the high hydraulic gradients

the upper of this horizontal paths is further enlarged while the lower ones are so far

abandoned. The “winning” horizontal pathway develops close to the lower end of the

grout curtain. The tips of the foremost conduits (blue color) of this horizontal path,

follow the strong gradients and grow towards the downstream part of the dam. The

increase of the gradient can also be seen by the shift of the isosurfaces of constant

head from the upstream part to the downstream part of the dam (dark surfaces
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Fig. 3.4: Evolution of the pseudo–3D model; Plotted are the isosurfaces of constant
head from 250 m (light grey) to 350 m (dark grey) values and the relative increase of
the conduit diameter compared to the initial diameter on a log–scale from 5 (blue)
to ≥ 100 (orange); a) initial situation – isosurfaces of constant head are radially
spread around the dam; b) at t = 70 yr: conduits started to enlarge close to the
dam–site and grow below the dam towards the downstream part; c) at t = 90 yr:
conduits have reached the downstream part, flow is now turbulent in the connecting
pathways; d) at t = 200 yr: evolved network of widened conduits, high flux rates
and rapid enlargement of conduit diameters.

beneath the downstream apron of the dam). 20 years later (Fig. 3.4c) breakthrough

has already occurred. The upstream part is connected to the downstream part by a

continuous path of enlarged conduits (grown by a factor of ≈ 30). The isosurfaces

of constant head started to rebound to their initial position. For simplicity it is as-

sumed that the reservoir provides enough water to fulfill the constant head boundary

condition. In reality however, at this point the leakage rates would be so high that

the dam could no longer impound the reservoir. Because after the breakthrough

the linear kinetics are established along the whole enlarged conduit pathway, large

amounts of bedrock are removed at a constant pace. The situation after 200 years
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is shown in Fig. 3.4d. The karstification has created a dense network of enlarged

conduits around the dam–site with a growth factor of ≥ 100. The head isosurfaces

are now almost back in their initial position. If the calculation would not be stopped

this process would continue until the whole bedrock is removed.

The fact that this pseudo–3D model behaves almost like a perfect 2D model

can be seen in Fig. 3.4 by the symmetrical distribution of head isosurfaces and

enlarged conduits around the dam-site for all snapshots in time. Only at the domain

boundaries at Y = 0 m and Y = 500 m little deviations can be recognized which

may be caused by numerical instabilities.
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Fig. 3.5: a) flow curves for the pseudo–3D models with varying grout depths G
(37.5 − 150m) with typical breakthrough behaviour; b) breakthrough time TB as
a function of grout depth for real 2D models (green curve) and pseudo–3D models
(black curve).

This simulation is now repeated for different grout depths G. Fig. 3.5a shows

the flow rates for the different pseudo–3D models with grout depths ranging from

G = 37.5m to G = 150m. The flow rate is calculated by the amount of discharge

through all resurgence nodes in the downstream part (red face in Fig.3.3). Like for

the single conduit in 2.1.4 (Fig. 2.3b) the evolution of flow rates can be divided in

three phases. In the initial phase the flow rates only slightly increase and stay almost

at a constant base level. Then, depending on the grout depth G and therewith the

length of the breakthrough path, the flow rates start to increase rapidly over several

orders of magnitude (breakthrough). Finally the increase in flow is again slowed

down. In literature one may find different ways of determining the breakthrough

time TB, e.g. onset of turbulent flow inside the conduit or calculating the average

head in the model domain for every time step and choosing the time where the
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average head is maximum as breakthrough time (Kaufmann et al., 2010). All of

these approaches have in common to exploit the typical shape of the flow curve with

its rapid increase in rates. Therefore, the breakthrough time TB is determined here

at the steepest point of the flow curve by using the first order derivative. In Fig.

3.5a can be seen that for a grout depth of G = 37.5m breakthrough occurs at ≈ 65

years. If the grout depth is doubled to G = 75m (green solid line) breakthrough

occurs at ≈ 100 years and for the deepest grout (G = 150m, green dashed line)

TB ≈ 190 years respectively.

Fig. 3.5b shows the breakthrough time as a function of grout depth for the real

2D models (green curve) and the pseudo–3D models (black curve) respectively. For

the real 2D models only three different grout depths were available. Nevertheless, it

can be seen that the results a comparable and the curves differ only between 2% and

15%. For a rough evaluation these results are sufficient enough. The 3D program

produces generally the same results as the 2D program if the model setup is as close

to 2D as possible. This was also shown by Kaufmann et al. (2010) where pseudo–3D

models of a standardized benchmark model have been evaluated. It shows that the

extension of the original program into the third dimension was successful and that

KARSTAQUIFER can now be used for comprehensive 3D karst evolution modelling.

3.2 The 3D evolution models

3.2.1 The standard model

Now real 3D model setups are considered. Fig. 3.6 shows the standard dam–site

layout which from now is referred to as the standard model. The standard model is a

simplification of the model domain shown in Fig. 3.2 where the topography (valley)

is cut off. This layout is simple enough to study the behaviour of a 3D dam–site

model.

For the standard model the dam width W and length L as well as the grout

depth G are set to W = L = G = 100 m. As the topography is missing the dam

is always located on top of the model domain at Z = 250 m. The model domain

is represented by a grid of 41 × 41 × 21 nodes to achieve a grid discretization of

dx = dy = dz = 12.5m. This gives a total of 35301 nodes, 32000 matrix elements and

99220 conduit elements respectively. The sealing apron of the dam is a 100×100m2

block in the center of the model domain (see Fig. 3.6c). Due to the discretization the
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Fig. 3.6: Standard 3D dam–site model setup; blue face represents location of
constant head BC with H = zmax + ∆H [m] (reservoir), red face represents location
of constant head BC H = zmax [m] (river / resurgence); a) 3D–view; b) front view;
c) top view.

grout curtain is slightly shifted from the dam center to X = [250 m, 262.5 m]. The

grout has the same width W [m] as the dam. The impounded reservoir extends from

X = 0 m to the dam border and is two blocks (25 m) wide (Fig. 3.6 blue face). For

the standard model the depth of the reservoir is 100 m which consequently yields a

head difference to the downstream part of the dam of ∆H = 100 m. The resurgence

area (river – red face in Fig. 3.6) has the same width as the reservoir, and extends

from the dam border to X = 500 m. The water in the reservoir is under saturated

with respect to calcium (cin = 0 mol m−3), its temperature is T = 10 ◦C, and it

has a carbon–dioxide partial pressure of pCO2 = 0.01 atm. All remaining domain

boundaries are again no flow boundaries. The hydraulic conductivity of the matrix

Km and the initial conduit diameter d0 are again uniform throughout the entire

model domain. For their values see Tab. 3.1.

Fig. 3.7 shows four snapshots in time in the evolution of the standard model.

The initial situation is shown in Fig. 3.7a. For better visibility, only the outlines

of the dam–site are plotted. From now on, when describing the model figures, we

refer to the domain between Y = 0 m and Y = 200 m as right side of the dam–site

and between Y = 300 m and Y = 500 m as left side of the dam–site respectively.

Colors for the isosurfaces of constant head range from light grey (250 m) to dark

grey (350 m). Like for the pseudo–3D models one can see that the hydraulic heads

are initially radially aligned around the dam center.
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Fig. 3.7: Evolution of the standard model; Plotted are the isosurfaces of constant
head from 250 m (light grey) to 350 m (dark grey) and the relative increase of the
conduit diameter compared to the initial diameter on a log–scale from 10 (blue) to
≥ 100 (orange); a) initial situation – isosurfaces of constant head are symmetrically
spread around the dam; b) at t = 75 yr: conduit enlargement evolved vertically in
front of the dam grout and horizontally around the dam flanks; c) at t = 80 yr:
breakthrough has occurred at the downstream part directly behind the dam; head
distribution starts to return to initial stage; d) at t = 200 yr: evolved network of
widened conduits, high flux rates and rapid enlargement of conduit diameters – end
of model run.

Fig. 3.7b depicts the evolution of the aquifer shortly before breakthrough at

75 years. Several conduits have enlarged symmetrically around the dam. The color

code of the conduits ranges from blue (increase by a factor of 10) to orange (increase

by a factor of ≥ 100). Initially, the conduits enlarge equally below the reservoir.

Because of the high hydraulic gradients close to the dam the foremost conduits

are enlarging faster. Until ≈ 50 years the vertical and horizontal conduits close

to the dam–site are equally enlarged. Due to the much shorter horizontal paths
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(Lc
xy = W +L = 200 m < Lc

z = 2G+L = 300 m), the first breakthrough is likely to

take place along the horizontal pathways on the right and left side of the dam–site.

The evolution of the aquifer after 80 years is shown in Fig. 3.7c. Breakthrough

has occurred on both sides of the dam and the enlarged conduits reach the down-

stream part. The main flow through the domain is now through the horizontal

conduits, which establish the breakthrough path. The head contours start to re-

bound to their initial position. This rebounding is clearly visible when looking on

the dark grey isosurfaces for heads between 325 m and 350 m in Figs. 3.7b and 3.7c

respectively. Like it was done before for the pseudo–3D model, it is assumed that

there is enough water in the reservoir to keep the constant head boundary condition

until the end of the model run at 200 years (Fig. 3.7d). Since the flow through the

conduits increases after breakthrough, consequently also the flux rates increase and

a dense network of enlarged conduits (orange) is established around the dam.

The general evolution of the aquifer beneath the dam seems at a first glance not

much different from the pseudo–3D model shown above. But the inherent difference

and obviously also the main advantage of a 3D model over the classical 1D and

2D models is the possibility that breakthrough paths can establish in any spatial

direction around the dam. Depending on the 2D model, breakthrough path evolution

is limited to either vertical or horizontal direction whereas this limitation does not

exist in 3D.

3.2.2 Parameter Study

From the basic principles in 2.1 and the standard model shown in 3.2.1 the main

parameters that drive the karstification process can be distinguished. The hydraulic

head is strongly affected by the dam–site structure and reservoir depth, which leads

to a set of different possible geometries to be investigated. Also the effect of the initial

carbon–dioxide partial pressure on the karst aquifer evolution as part of the chemical

parameters can be examined. In the 3D model setup the hydraulic conductivity of

the domain depends strongly on the diameters of the conduit network. So the effect

of different initial conduit diameters and / or their distribution is of considerable

interest and can also be investigated. This is done by a sensitivity analysis or

parameter study respectively. A similar parameter study has been carried out for

2D dam–site models by Romanov et al. (2003b) to evaluate the influence of the

several parameters on the evolution of the karst aquifer.
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3.2.2.1 Varying grout depth G
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Fig. 3.8: 3D dam–site model setup with varying grout depth G; blue face represents
location of constant head BC with H = zmax+∆H [m] (reservoir), red face represents
location of constant head BC H = zmax [m] (river); a) 3D–view; b) front view; c)
top view.

To study the dependence of the breakthrough time TB on the grout depth G, the

dam width W of the standard model is extended to 225 m (see Fig. 3.8 – the arrows

indicate which parameter is varied). Therefore, the vertical pathway Lc
z = 2G+L of

conduit enlargement around the grout curtain is always shorter than the horizontal

one Lc
xy = W + L. This ensures that breakthrough will always occur along the

vertical path.

The flow curves in Fig. 3.9a show the typical behaviour of the flow rates as

already known from pseudo–3D models (3.1.2). The initial flow rates are almost

constant for all different models and then increase rapidly over several orders of

magnitude. After breakthrough the increase slows down significantly, but does not

reach a constant level, due to fact that always a constant head boundary condition

is kept, even after breakthrough. To save computational time the calculations were

again stopped several time steps after the breakthrough occurred. That is why

the upper level is not shown in the plots. Fig. 3.9b is a double logarithmic plot

and shows the breakthrough time TB as a function of grout depth G. As expected

the breakthrough time increases with increasing grout depth due to the extended

pathway length.



CHAPTER 3. 3D DAM–SITE MODELS 36

10 50 100 200
−8

−6

−4

−2

0

2

time [a]

flo
w

 r
at

e 
10

x  [m
3  s

−1
]

 

 

30 50 100 120
50

100

200

grout depth G [m]

br
ea

kt
hr

ou
gh

 ti
m

e 
T

B
 [a

]G =   37.5m
G =   50.0m
G =   62.5m
G =   75.0m
G =   87.5m
G = 100.0m

a) flow rates b) breakthrough time TB

Fig. 3.9: a) flow curves for the 3D models with varying grout depths G (37.5 −
100m) with the typical breakthrough behaviour; b) breakthrough time TB as a
function of grout depth G follows a power–law with TB ∝ G0.75.

Comparing this result with the parameter study of Romanov et al. (2003b) it can

be seen that a symmetric 3D model with a uniform conduit network (as used here)

shows almost the same breakthrough behavior as a 2D model. The curve in Fig.

3.9b and therewith the dependence of the breakthrough time on the grout depth can

be well approximated by a power–law with TB ∝ G0.75.

3.2.2.2 Varying dam width / length W + L

Now the effect of the horizontal dimensions of the dam on the breakthrough time

is examined. If the 3D model has a uniform conduit network the influence of dam

width W and dam length L should be similar to the one of the grout depth. To

test this the grout depth was fixed to G = 100 m and the dam length was varied

(see Fig. 3.10 – the arrows indicate that L is varied). Because the conduit network

is uniform and the dam–site layout is symmetric the horizontal directions can be

treated together as horizontal pathway W + L.

The effect of the length of the horizontal path on which breakthrough occurs is

shown in Figs. 3.11a+b. In Fig. 3.11a, the flow curves for the different models are

plotted, and in Fig. 3.11b the corresponding breakthrough time as a function of the

horizontal path length W+L. The first model in this set, with a path length of 100m

(W = L = 50m) is quite unrealistic within the coarse discretization, but is shown

for completeness. The breakthrough times increase from TB ≈ 40 years for a path

length of 125m to TB ≈ 160 years for a path length of 300m. This relationship again

obeys a power–law but this time with an exponent of 1.6 so that TB ∝ [W + L]1.6
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Fig. 3.10: 3D dam–site model setup with varying dam width / length W +L; blue
face represents location of constant head BC with H = zmax + ∆H [m] (reservoir),
red face represents location of constant head BC H = zmax [m] (river); a) 3D–view;
b) front view; c) top view.
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Fig. 3.11: a) flow curves for the 3D models with varying horizontal pathway
W +L (50− 300m) with the typical breakthrough behaviour; b) breakthrough time
TB as a function of horizontal pathway length W + L follows a power–law with
TB ∝ [W + L]1.6.

3.2.2.3 Varying reservoir depth ∆H

Another crucial parameter is the depth of the impounded reservoir and therewith

the hydraulic head. The dam–site geometry parameters W,L,G are fixed for this

test. In Fig. 3.12 the blue face and the arrows indicate the change of reservoir

depth. The model domain is not extended in z–direction only the head boundary
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condition at the nodes on top of the domain Z = 250m is adjusted.
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Fig. 3.12: 3D dam–site model setup with varying reservoir depth ∆H; bottom
of blue face represents location of constant head BC with H = zmax + ∆H [m]
(reservoir), red face represents location of constant head BC H = zmax [m] (river);
a) 3D–view; b) front view; c) top view.

The results of this test are shown in Figs. 3.13a+b. Because of the different

constant head boundary conditions, the base–flow component (the initial flow) of

the flow curves in Fig. 3.13a differs from each other. With increasing head, of course

the base–flow component increases and the breakthrough time therefore decreases

proportionally. For a reservoir depth of 25m, breakthrough happens at TB ≈ 350

years. If the reservoir depth increases to 250m the breakthrough time decreases to

TB ≈ 40 years. From Fig. 3.13b, one can see that the head dependency can almost

be perfectly approximated by a power–law TB ∝ H−1.

3.2.2.4 Varying carbon-dioxide partial pressure pCO2

Figs. 3.14a+b show the influence of the carbon–dioxide partial pressure in the wa-

ter on the evolution of the karst aquifer system for the standard model. Kaufmann

(2003c) has also shown the influence of carbon–dioxide partial pressure on the evo-

lution of leakages rates beneath dam–sites. There the author used a 2D model and

varied the partial pressures of CO2 within the reservoir to drive the karstification

by mixing corrosion. One of the models presented there had comparable properties
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Fig. 3.13: a) flow curves for the 3D models with varying reservoir depth / hy-
draulic head difference ∆H (25 − 250m) with the typical breakthrough behaviour;
b) breakthrough time TB as a function of hydraulic head difference ∆H follows a
power–law with TB ∝ H−1.
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Fig. 3.14: a) flow curves for the 3D models with varying carbon–dioxide partial
pressure pCO2 (0.001−0.1atm) with the typical breakthrough behaviour; b) break-
through time TB as a function of carbon–dioxide partial pressure pCO2 follows a
power–law with TB ∝ pCO−0.8

2 .

(dam width, grout depth, calcium input concentration and pCO2) and showed a

similar breakthrough behaviour as the model tested here (red curve in Fig. 3.14a).

Here, the input concentration was always set to cin = 0 and the carbon–dioxide

partial pressure was varied over two orders magnitude from 0.001atm to 0.1atm. For

lower values of pCO2, the calculation time had to be extended to 1000 years to fully

cover the breakthrough event. The breakthrough time for pCO2 = 0.1atm (yellow

curve) is slightly shifted from the ideal TB ∝ pCO−0.8
2 approximation in Fig. 3.14b.

This appears to be a numerical artifact due the very fast breakthrough within a few
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time steps in combination with the coarse discretization.

3.2.2.5 Varying initial conduit diameter d0

As stated by the authors who investigated the breakthrough behaviour of 1D, 2D

or 3D karst models, the conductivity affected by the conduit diameters inside the

modelling domain is a crucial criterion for determining the breakthrough time. Fig.

3.15b shows the breakthrough time as a function of the initial conduit diameter d0

on a double logarithmic scale. Decreasing d0 from 0.3mm in the standard model to

d0 = 0.1 mm increases the breakthrough time by more than one order of magnitude

to ≈ 2500 a. This dependence can be quite well approximated by a power–law with

TB ∝ d−3
0 , which corresponds also to the 1D and 2D results shown e.g. by Dreybrodt

(1996); Siemers and Dreybrodt (1998); Dreybrodt and Gabrovšek (2000) (1D), and

Romanov et al. (2003b) (2D). In Fig. 3.15a, one can see how the initial conduit

diameter of the network directly controls the conductivity of the whole modeling

domain. Due to the higher conductivity, the base–flow component of the flow curves

increases by almost three orders of magnitude.
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Fig. 3.15: a) flow curves for the 3D models with varying initial conduit diameter
d0 (0.1 − 0.5mm) with the typical breakthrough behaviour; b) breakthrough time
TB as a function of initial conduit diameter d0 follows a power–law with TB ∝ d−3

0 .

With the proportionality parameters derived from the simulations described

above, it is now possible to compare the results with the 1D breakthrough equa-

tion 2.17. Incorporating all power–law approximations one gets
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T 3D
B ∝

[
(W + L)1.6G0.75

H

]
︸ ︷︷ ︸

1

· d−3
0︸︷︷︸
2

· pCO2
−0.8︸ ︷︷ ︸

3

. (3.1)

The first part of this relation applies to the geometric parameters of the 3D

model, the second part to the conduit network, and the third part to the partial

pressure of carbon–dioxide respectively. This relation can of course not be taken as

a universal formula to determine the breakthrough time of an arbitrary 3D dam–site

model. It is given here to show that for simple setups the 3D models behave in a

similar way as the 2D and 1D models presented in the past. Actually the conclusion

should be reversed. The parameter study accomplished here shows, that the 1D and

2D models used in the past, even with the lack of the spatial dimensions have been

a good approximation for simple (symmetrical) 3D models.

3.2.3 Non–uniform / statistical network

The next step in approaching realistic scenarios is to implement a statistical or non–

uniform distribution of the initial conduit diameters d0 of the network. An example

of such a distribution has already been given in 2.2 (Fig. 2.5).

When using a statistical network, the model is now a real 3D model because

there is no symmetry in any dimension and the three spatial dimensions are there-

fore completely independent from each other. A statistical 3D model can no longer

be compared directly to 2D and 1D models. When using a statistical network, the

preferential breakthrough path or the breakthrough time, even for simple dam–site

models cannot be predicted by the shape of the dam–site. It depends strongly on

the spatial distribution of conduit diameters inside the network. This was already

shown for 2D networks, e.g. by Hanna and Rajaram (1998); Romanov et al. (2003b),

and Siemers and Dreybrodt (1998). Of course in regimes close to equilibrium (high

order kinetics) and / or small hydraulic gradients the evolution is more dominated

and controlled by the dissolution chemistry i.e. by the saturation of the subsurface

water. For instance, if two solutions with different equilibrium concentrations and

saturated with respect to calcite are mixed, the solution becomes again undersat-

urated and aggressive and can therefore dissolve calcite. This mechanism is called

mixing corrosion and described e.g. in Bögli (1980); Gabrovšek and Dreybrodt

(2000, 2010).
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In most cases described in literature concerned with karst evolution modelling,

a log–normal distribution is chosen. This is also done here. To show the influence

of a statistical network a log–normal distribution is added to the standard model

from 3.2.1. The assignment of the initial conduit diameter is random within the

model domain and therewith the diameters do not correlate spatially. The log–

normal distribution in the example shown here has parameters d̂0 = 0.3 mm and

σn = 0.2 mm and is created as described in 2.2.
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Fig. 3.16: Evolution of the standard model with a statistical conduit diameter
distribution (d̂0 = 0.3 mm, σn = 0.2 mm); a) flow curves of the standard model
(blue) and statistical model (red), for the statistical model the breakthrough time
is decreased by ≈ 20 years; b) after 50 years asymmetrical conduit enlargement at
the upstream part of the dam, preferential pathway due to larger initial conduit
diameters on the right side of the dam will be taken for breakthrough; c) after
55 years breakthrough has occurred only on the right side of the dam, the head
distribution has already started to return to its initial stage; d) after 65 years the
enlarged conduits on the left side of the dam have also reached the downstream part.
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Analyzing the flow rates in Fig. 3.16a, it is obvious that due to the influence of

the statistical network the breakthrough time is significantly decreased from ≈ 75

years to ≈ 55 years, compared to the standard model. Furthermore, the flow of the

statistical network model has a slightly higher base component, due to the preex-

isting larger conduits and therefore higher hydraulic conductivity. In Fig. 3.16b,

the evolution after 50 years is shown. One difference from the standard model plot

in Fig. 3.7 is that the isosurfaces of constant head are no longer smooth planes.

Because of the non–uniform network they are slightly distorted. Clearly visible now

is the asymmetric enlargement of the conduits due to their statistical distribution.

The initially wider conduits started to evolve at three main locations, irregularly

spread along the reservoir. Furthermore, one can see the evolving pathway on the

right side of the dam–site which in this model is the breakthrough pathway. Fig.

3.16c shows the evolution of the aquifer at 55 years right after breakthrough. Break-

through has now occurred on the right side of the dam, and the isosurfaces of the

head distribution have already started to rebound, whereas the path on the left side

of the dam is still evolving. In Fig. 3.16d, the situation at 65 years is shown. The

conduit enlargement on the left side of the dam has now also reached the down-

stream part, as indicated by the rebounding isosurfaces. The evolution continues

from now on similar to the standard model, enlarging all conduits around the dam,

so that the picture after 200 years of evolution would be comparable to Fig. 3.7d.

3.2.4 Model with topography

In the last part of this chapter topography is implemented into the 3D model, which

is a necessary step when modeling real case scenarios. For this reason, the standard

model is extended to 350 m height and a simple valley structure is added (Fig. 3.17a).

This layout is close to the conceptual model domain shown in 3.1.1. Note that the

different brown colors of the valley in Fig. 3.17 represent different topographic

heights and not a layering of the bedrock structure. The valley itself is 100 m deep

with a bottom width of the reservoir of 12.5 m and increasing upwards to a top

width of 75 m. The dam as a simple rectangular structure with a sealing apron of

100× 100 m2 and a total height of 100 m to be comparable to the standard model.

The grout has a depth of 100 m and is centered below the dam block. For this

topographic setup the resolution of the grid is doubled compared to the standard

model to 81 × 81 × 57 nodes, yielding a discretization of dx = dy = dz = 6.25 m.
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a) 3D-view

b) front view

c) top view
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Fig. 3.17: 3D dam–site model setup with topography; blue face represents location
of constant head BC with H = zmax+∆H [m] (reservoir), red face represents location
of constant head BC H = zmax [m] (river); a) 3D–view; b) front view; c) top view.

With this high resolution the model now consists of 373 977 nodes, 358 400 matrix

elements and almost 1.1 million conduits. Such high resolution models make high

demands on the applied software for the numerical simulation as well as on the

applicable hardware. The fast computer development in the last 30 years has laid

the foundation of simulating complex physical systems by numerical means. The

influence of the chosen model size on the computation time and storage requirements

was also investigated during this work. For a summary on the performance of

KARSTAQUIFER see appendix A.

The boundary conditions for the topography model are the following. At the

upstream part, the reservoir (blue – constant head boundary) has a depth of 100 m

in the center of the valley. At the downstream part the river is a constant head

boundary of 1 m above the valley bottom. Under real conditions construction mea-

sures would be carried out to prevent the water from discharging through the valley

flanks. This could either be sealing the valley flanks close to the dam–site or hori-

zontally grouting in addition to the vertical grout. For simplicity the valley flanks in

the downstream part are assumed to be no flow boundaries. All domain parameters

are identical to the standard model. The initial conduit diameters d0 of the network

are again log–normally distributed without any spatial correlation with d̂0 = 0.3mm
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and σn = 0.2 mm.
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Fig. 3.18: Evolution of the standard model with topography and a statistical
conduit diameter distribution (d̂0 = 0.3mm, σn = 0.2mm); a) initial situation, heads
are symmetrically distributed around the dam–site b) after 20 years of evolution
initial channels have started to grow horizontally from the valley flanks and vertically
in front of the grout; c) after 35 years the horizontal paths have almost reached the
downstream part of the dam–site d) after 45 years breakthrough has occurred and
the upper and deeper conduit paths have connected.

Fig. 3.18a shows the initial head distribution. The heads are almost symmetri-

cally distributed around the dam-site but again slightly distorted due to the statis-

tical network, as it can be seen from the grey shaded isosurfaces. The color code for

the head isosurfaces is the same as for the previous models. Fig. 3.18b shows the

evolution after 20 years. Clearly visible are several irregular pathways of enlarged

conduits. Two main horizontal paths at ≈ 325m height on both sides of the dam–
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site, one horizontal path at ≈ 250m height, evolving from the valley bottom around

the right side of the dam, and a bigger cluster of enlarged conduits at the upstream

part of the dam–site in front of the dam grout. These four pathways are competing,

where probably one of the first three will be the initial breakthrough path. The

evolution of the aquifer after 35 years is shown in Fig. 3.18c. The conduit paths

continued to evolve and have now almost reached the downstream part of the dam.

What is hardly visible due to the 3D view is, that the downstream ends of the en-

larged horizontal pathways on the right side of the dam–site are at X ≈ 300m. Fig.

3.18d shows the evolution of the aquifer after 45 years. From the rebounding of

the head isosurfaces (dark grey colors) one can see that breakthrough has already

occurred. The breakthrough short–circuit was closed first at the lower horizontal

pathway on the right side of the dam–site. After the breakthrough event, the con-

duits from the upper horizontal pathway have connected with the deeper conduits.

Calculating the model further would lead to continuously evolving conduit network

(like for the standard model before) inside the whole domain due to the fixed head

boundary conditions.

3.3 Conclusions

In this chapter a 3D model of the evolution of a karst aquifer system beneath a dam–

site was presented. It was demonstrated that the new program KARSTAQUIFER

(Kaufmann, 2009; Kaufmann et al., 2010) is well suited for 3D karst evolution mod-

eling of dam–sites and reservoirs. The model domain consists of a homogeneous

limestone block. It contains a network of initially fine fractures / conduits which

are widened during the evolution by dissolution of calcite from the bedrock. The

diameters of the conduit network can be uniformly or statistically distributed. The

insoluble dam–site was positioned in the center at the top of the domain with the

inflow nodes (reservoir) in the upstream part and the outflow nodes (river) in the

downstream part of the dam respectively. The possibility of incorporating topo-

graphic models into high resolution 3D model setups was shown also.

When using very simple and symmetrical 3D models, they can be compared to

previous 2D or even 1D models. For these special cases all three setups show a

common inherent evolutionary behavior, so that to a certain degree the effect of

different model parameters on the evolution is also analogous. This effect could be
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clearly shown with the pseudo–3D models.

So one of the main conclusions of this chapter refers to the 1D and 2D models

for the evolution of karst aquifers beneath dam–sites. They have been proven and

tested tools to simulate basic interactions of reservoir properties (geometry) and

aquifer evolution. But they are of course limited to very simple layouts and model

geometries. As real dam–sites and reservoirs can be arbitrarily complex, there is

obviously a need for 3D karst evolution models that can cope with this complexity

to a certain extent.

This chapter has shown that the program KARSTAQUIFER can be used to

simulate karst evolution models in 3D. It is possible to create very complex models

in terms of varying geological and hydrogeological parameters. That this is an

important fact for considering real world examples will be shown in the next chapter,

where the evolution of karst aquifer below a real dam–site is presented.



Chapter 4

A 3D karst evolution model of a

real dam–site – The Birs weir
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After the conceptual models and simple 3D dam–site scenarios have been pre-

sented in the previous chapter, now a real dam–site is considered. Here, the 3D

karst evolution model is applied to the Birs weir1 in Switzerland. This location

is chosen, because there is already a lot of experience gained with e.g. integrated

hydrogeological modelling and 2D karst evolution modelling. The development of a

3D karst evolution model is the consequential extension of the previous works and

the attempt to overcome some of their inherent limitations. For instance the 3D hy-

drogeological model (3DHGM) presented by Epting et al. (2009a,b) uses a standard

porous flow model to simulate the groundwater flow through the aquifer. By this it

lacks essential characteristics, like fractures and their temporal evolution, that are

very important for understanding the hydraulics of karst aquifers. Also the 2D karst

evolution models by Romanov et al. (2010, 2012) only give a fractional view of the

Birs aquifer system. Though they account for the temporal evolution of the aquifer,

they lack the influence of the third spatial dimension. It will be shown that the

Birs weir aquifer is a heterogeneous 3D karst system. For the first time a 3D karst

evolution model is used, to describe the temporal evolution of an aquifer beneath a

real dam–site.

The Birs weir is a small dam–site built in the 1890’s, which is still used to support

a small power plant with water (Golder, 1984). Despite its small extent it had and

still has a significant effect on the local aquifer system. In the 1960’s a highway was

constructed close to the eastern river bank. Starting with small subsidence events of

the highway and the weir itself, the vertical movements increased and in the 1980’s

several sinkholes developed beneath the highway (Epting et al., 2009a). To stabilize

the highway and to prevent further karstification, extensive construction measures

have been carried out between 2006 and 2007. Alongside with these measures, several

geological, hydrogeological and geophysical field studies provided a large amount

of data and were therefore the foundation of the previous works and the current

modelling approach. An integrated interpretation of 3D hydrogeological modelling,

ERT geophysics and 2D karst evolution modelling can be found in Epting et al.

(2009b).

This chapter presents the development of a 3D model for the evolution of the

Birs aquifer after the construction of the Birs weir. This development includes the

incorporation of available field data into the setup of the model and the calibra-

1For simplicity the location of interest is referred to as Birs weir throughout this work.
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tion of the model parameters to the given boundary conditions. It is shown that

roughly one hundred years are enough to alter the local aquifer system significantly.

The combination of the local Gipskeuper bedrock and the increased hydraulic head

caused by the weir are most likely the main source of the observed subsidence. At

the end of this chapter it will be shown that a reasonable model is found that re-

produces the evolution of the aquifer and its geometry. Finally, an outlook on the

possible future evolution of the aquifer after the remedial measures is given also.

The essential findings of this chapter have been presented in Hiller et al. (2012b).

4.1 The model setup

4.1.1 Site description

Location The Birs weir is located≈ 5km upstream the Birs river from the junction

to the river Rhine, south of the Swiss city of Basel close to the German border (Fig.

4.1a). For a few hundred meters around the Birs weir the Birs river flows parallel to

the four–lane highway H18 connecting Basel with Delemont (Fig. 4.1b). The height

difference between the impounded water in the upstream part and the river in the

downstream part is ≈ 7 m. The water in the upstream part infiltrates through the

quaternary riverbed (5 − 10 m thickness) into the bedrock and flows vertically and

horizontally around the weir and exfiltrates back into the river in the downstream

part (Epting et al., 2009a). The bedrock mainly consists of Triassic Gipskeuper

which is composed of alternating thin layers of gypsum and marls (Fig. 4.2c; darker

areas in the picture refer to marls, brighter areas to gypsum respectively).

Weathered Zone – WZ On its way through the bedrock the aggressive water

dissolves the gypsum parts and has therewith created a weathered zone (WZ) with

increased hydraulic conductivity. In Figs. 4.2a+b this WZ is schematically drawn

with cyan color. Note that the WZ in Fig. 4.2a extents horizontally towards East

below the highway and does not follow the topography (Because of the perspective

of the figure the reader may misleadingly assume the latter.). The extent of the WZ,

especially below the highway, is quite well known due to many observation wells and

construction works around the Birs weir. The WZ reaches depths of ≈ 20 − 30 m

2http://openstreetmap.de/karte.html?zoom=14&lat=47.52407&lon=7.
62408&layers=B0000TT

http://openstreetmap.de/karte.html?zoom=14&lat=47.52407&lon=7.62408&layers=B0000TT
http://openstreetmap.de/karte.html?zoom=14&lat=47.52407&lon=7.62408&layers=B0000TT
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a) b)

c) d)

Fig. 4.1: The Birs weir site; a) map2 showing the location of the Birs weir (red
arrow); b) Photo showing the highway and the Birs weir from direction North; c)
Photo showing the Birs weir from direction North; the water is overflowing the weir
on the east part d) 3D hydrogeological model; b,c+d from Epting et al. (2009b).

and extends ≈ 250 m parallel to the Birs river below the highway with maximum

widths of ≈ 70 − 80 m to the East. Below the river the extent of the WZ is rather

speculative. ERT measurements parallel to the river close to the road, as well as

underwater ERT measurements in the upstream part of the river have been carried

out to gather more information about the site. The interpretation of the ERT

measurements indicates karstified zones below the upstream part of the river as well

as below the weir itself (Epting et al., 2009a, 2012). Nevertheless, the WZ can not

be considered as a homogeneous block of higher hydraulic conductivity. It is rather

a zone were field experiments and observations found an increased number of karst

features such as voids, conduits and caves (Epting et al., 2009a).
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While the gypsum content in the non-weathered bedrock reaches up to 50 %,

the gypsum content of the WZ ranges between 5 % and 15 % (information derived

from borehole descriptions). The 3DHGM presented by Epting et al. (2009b), used

groundwater head data from observation wells to calibrate the hydraulic parameters

of the aquifer. In situ hydraulic conductivity values for Gipskeuper range between

K ≈ 1 × 10−14 m s−1 and K ≈ 1 × 10−7 m s−1 (NAGRA, 2002). If the Gipskeuper

is weathered it becomes highly heterogeneous and the hydraulic conductivity of the

aquifer can significantly change on a local scale. For the 3DHGM the calibrated

hydraulic conductivities are K ≈ 1 × 10−5 m s−1 for the non–weathered bedrock,

K ≈ 1×10−4 m s−1 for the WZ and K ≈ 1×10−3 m s−1 for the quaternary riverbed.

These conductivity values give the rough framework for this study and will be used

for the matrix conductivity Km and the conduit conductivity Kc respectively. For

a detailed description of the characteristics of the Birs site the reader is referred to

Epting et al. (2009a,b) and the references therein.

4.1.2 Modelling domain

The model domain in this work is a 250 m × 350 m × 200 m Gipskeuper block.

It is created by a grid of 51 × 71 × 41 nodes to achieve a grid discretization of

dx = dy = dz = 5 m. This gives a total of 148, 461 nodes, 140, 000 matrix elements

and 429, 640 conduit elements. With this resolution the computational time for one

single run is kept on an acceptable level. Every element (matrix and conduit) can

be assigned with individual properties. As it can be seen from Fig. 4.2c the gypsum

layers (lenses) are not uniformly distributed. It is assumed that this holds true for

the whole domain and not all conduits inside the model may cross soluble layers.

To account for this and the general gypsum content of 50 % for the Gipskeuper

bedrock, only 50 % of all conduits are randomly marked soluble. The remaining

conduits are insoluble and therefore their initial diameter d0 will not change during

the evolution. This concept was already used by Romanov et al. (2010, 2012) to

consider the heterogeneity of the karst bedrock. The initial conduit diameters are

created with a log-normal distribution (see 2.2).

For 2D models Romanov et al. (2010) showed, that for a heterogeneous bedrock

like Gipskeuper, it is necessary to consider also the limited widths of the soluble

layers when modelling the evolution of such an aquifer. They introduced a parameter

alim that assigned every single fracture inside the domain a maximum aperture
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width to which it could grow. When this maximum was reached the growth of the

fracture was stopped. Thereby larger amounts of undersaturated solution were able

to penetrate into the bedrock. The limited widening presented for their 2D models

had a decisive effect on the evolution of a gypsum karst aquifer, especially close

to a dam–site. With the standard unlimited widening scheme only the fractures

close to the entrance were growing and no breakthrough occurred. In contrast, the

limited widening scheme was able to create karstified zones and even preferential

(breakthrough) pathways around the dam structure.

According to the current knowledge that most of the Gipskeuper around the Birs

weir is composed as shown in Fig. 4.2c, the limited widening approach by Romanov

et al. (2010) is also used here. Like for the initial conduit diameters, the maximum

conduit diameters are also drawn from a log–normal distribution. Both distributions

are then statistically spread to all conduits in the domain. If within one time step

of a calculation a conduit diameter grows so that3 dj(ti) ≥ djmax, then dj(ti) = djmax

is set and the conduit is marked insoluble for the remaining calculations.

The model domain also accounts for the local topography (brown–green face in

Figs. 4.2a+b). This may be of importance as close to the highway a small hill

elevates (see Fig. 4.1b). Generally, using a topography is a great improvement

compared to the 3DHGM and the 2D karst evolution models. The topography in-

formation is extracted from SRTM data and interpolated onto the grid discretization

(Farr et al., 2007). Due to the 5 m× 5 m× 5 m element size the topography data for

the riverbed and the highway had to be smoothed. In the model the riverbed has

a constant elevation of 260 m.a.s.l. and the road a constant elevation of 270 m.a.s.l.

respectively. The quaternary riverbed extends from 250 − 260 m.a.s.l., all conduits

there are insoluble and the initial diameter d0 is increased to account for a hydraulic

conductivity of K ≈ 1× 10−3 m s−1.

Like for the dam–site models in 3 the flow through all weir elements and conduits

is blocked to achieve impermeability.

4.1.3 Boundary conditions

With a 3D karst evolution model it is possible to account for the complex boundary

conditions at the Birs weir location. As the processes that drive karstification are

well understood, the objective is to find a model setup that can explain the present

3j here denotes an individual conduit index
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day situation around the Birs weir within reasonable boundary conditions.

River and West boundary From the field studies it is known that the western

bank of the riverbed consists of Triassic Schilfsandstein and is therefore assumed

impermeable and insoluble for all presented model setups. The western no flow

boundary is marked with a yellow face in Figs. 4.2a+b. The upstream and down-

stream parts of the river are constant head boundary conditions (blue faces in Figs.

4.2a+b), where the downstream part has a constant head value of 0.4 m above the

riverbed. The upstream part has a constant head value of 7.7 m to account for the

average seasonal head difference of 7.3 m between up– and downstream part. The

river water is assumed to be aggressive with respect to gypsum and therefore the

calcium input concentrations at the river nodes is set to cin = 0 mol m−3.

Local flow regime The regional groundwater flow is from South to North parallel

to the river. Locally, the small hill in the east part of the domain elevates the water

table. Therewith the hill induces a flow component towards the river in a way that

the flow is from East to West. From field studies it is known that this westward flow

does not hold true for the entire region around the Birs weir. Further downstream

(outside of our model domain) there are also parts where the water infiltrates into

the bedrock due to the local geology. In our model domain the impounded water in

the upstream part creates a flow component from West to East opposed to the flow

from the hill. Both waters then meet in a convergence somewhere in the center of

the domain. This convergence is of course not locally fixed but moves eastwards and

westwards due to seasonal changes of the river water table and the annual rainfall.

This quite complex flow regime was successfully modelled with a 3DHGM in Epting

et al. (2009b).

Flow boundary conditions To account for the local flow regime we use constant

flow boundaries on the South, North and East parts of the domain. Red faces in

Figs. 4.2a+b mark constant flow boundary conditions. The red arrows indicate

the direction of flow. The South and East faces are constant inflow boundaries, the

North face is a constant outflow boundary, respectively. To get comparable results

the North and South flow boundaries are calibrated to the hydraulic heads of the

3DHGM presented by Epting et al. (2009b). This means that the flow values along

these boundaries are kept small enough (� 1ls−1) to assure that the calculated heads
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do not exceed the hydraulic heads from the 3DHGM and therewith are in agreement

with the groundwater head data from the observation wells. The reader may notice

the no flow boundary parts along the South and North boundary directly below

the river (yellow faces in Figs. 4.2a+b). They are implemented for pure technical

reasons. If constant flow conditions would be used there, the head gradient between

the river and the boundary would have artificially increased and / or short cuts

between the river and the boundary would have established. With the no flow

boundary condition there, the constant head boundary condition of the river can be

assured.

Calibration of the East flow boundary was done in a way that for all calcu-

lated model runs the convergence described above was established. The resulting

flow values (≥ 10 ls−1) are also comparable to the boundary conditions used in

the 3DHGM. From the chosen flow values one can already speculate that the East

boundary and its interaction with the flow from the river, may have a stronger effect

on the evolution of the WZ compared to the North and South boundaries.

For all three flow boundaries it is assumed that water entering the domain

through these boundaries is already saturated and therefore cin = ceq.

Topography boundary conditions Also the topography is a domain boundary.

Here, the mean annual precipitation of 946 mm/a is distributed to all surface nodes.

Because nothing is known about the unsaturated / vadose zone, it is assumed that

there are already some enlarged fractures in the bedrock that provide flow paths to

the water table. The rain water that enters the bedrock flows along these paths,

dissolves the bedrock and its calcium concentration is increased. Because the cross-

ing of the vadose zone is assumed to be rather fast, the water that finally reaches

the water table is still slightly undersaturated with respect to calcium and therefore

still able to dissolve gypsum. Considering this concept, the calcium input concen-

tration of the rain (effectively the additional water at the water table) is set to

cin = 0.99ceq mol m−3. 2D models presented e.g. by Gabrovšek and Dreybrodt

(2001); Kaufmann (2003b) show the interaction between recharge (precipitation),

the vadose zone and the phreatic zone. They show the evolution of karst features

along the water table if the water that reaches the water table is not yet completely

saturated with respect to calcium. The effect of the topography boundary and the

precipitation for the Birs weir is shown in 4.2.1.4.
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4.2 Results

First the model calibration is explained and then the model complexity is stepwise

increased to show a reasonable present–day situation. Finally, this optimal present–

day model is used to give a future outlook of the Birs site. Therefore, the remedial

measures (sealing pile wall – see Epting et al. (2009b)) towards the highway are

added to the model and their influence is studied.

4.2.1 Present

4.2.1.1 Model calibration

In a first step the model is calibrated to the 3DHGM. So far the 3DHGM was only

used to calibrate the boundary conditions.

The matrix conductivity for every element is set to Km = 1× 10−5 m s−1, which

is the value used in the 3DHGM for the non–weathered Gipskeuper (Epting et al.,

2009b). As the global hydraulic conductivity is composed of matrix conductivity

Km and conduit network conductivity Kc, an initial conduit diameter distribution

needs to be found that represents the hydraulic conductivity of the non–weathered

Gipskeuper. Therefore, a reference block is defined with the 3DHGM, that has

a homogeneous conductivity of Km = 1 × 10−5 m s−1 and a fixed head gradient.

Then the flow through this reference block is calculated. Because for this setup

only the hydraulic conductivity is determining the flow, this flow can be used to

calibrate the hydraulic conductivity of the 3D model to the hydraulic conductivity

of the 3DHGM. Therefore, the same reference block with the same parameters and

a uniform conduit network was created. Changing the conduit diameters of the

network in the reference block of course changes the amount of flow through this

block. By this iterative procedure the flow through the model is calibrated to the

flow of the 3DHGM and consequently also to its hydraulic conductivity. The value

found for the initial conduit diameter distribution is d̂0 = 5× 10−5 m.

4.2.1.2 Initial model

The initial model incorporates all previously mentioned standard domain properties

and boundary conditions. The mode of the initial conduit diameter distribution

and the maximum conduit diameter distribution is d̂0 = 5 × 10−5 m (yellow curve

in Fig. 4.5a) and d̂max = 0.009 m (black curve in Fig. 4.5a), respectively. The
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hydraulic conductivity of the matrix is set to Km = 1 × 10−5 m s−1. The head

difference between up- and downstream part is ∆h = 7.3 m. North, South and East

boundaries are constant flow boundaries (N: � 1 ls−1 out; S: � 1 ls−1 in; E: 10 ls−1

in) as shown in Figs. 4.2a+b with red faces and arrows. The model run, as all other

model runs for the present day scenario, is calculated for 110 years to cover the time

between 1890 to 2000.

Fig. 4.3a shows the results for the initial model after 110 years of evolution.

Plotted are the isosurfaces of constant head from dark (low head) to light grey (high

head) and the increase of the conduit diameter compared to the initial conduit

diameter d/d0 on a log–scale. Dark blue colors represent no change d/d0 = 100 = 1,

red colors an increase by a factor of d/d0 ≥ 103 = 1000 or more. Furthermore, the

current approximate extent of the WZ is plotted with a dotted line in all evolution

plots. It is obvious that when plotting the final conduit network, it is not suitable

to plot every single conduit. Especially in a 3D domain no information would be

visible. Therefore, only conduits that have grown above a certain threshold are

plotted. In Fig. 4.3 this threshold is d/d0 ≥ 2 as indicated by the color scale. It is

pointed out here again that this threshold is used only for enhancing the visibility

of the grown conduits. There are of course also active conduits that have increased

by less than a factor of d/d0 = 2. They are not shown in the plots as they would

conceal the larger conduits which characterize the karstified WZ. Below Fig. 4.3a

the anisotropy factor Fa = 1 is given. The anisotropy and the anisotropy factor Fa

are introduced and explained in 4.2.1.3. Here they are just given for completeness

of Fig. 4.3. Actually, in the definition used here, an anisotropy factor of 1 means

that there is effectively no anisotropy.

Fig. 4.3a shows that the conduit diameter distribution with the calibrated mode

from the 3DHGM causes only little evolution. Just a few conduits close to the weir

and horizontally along the river have significantly increased in diameter. But the

enlarged (karstified) zone does not reach the extent of the real WZ. In a way this

result is to be expected considering the drawbacks of the 3DHGM. As stated before

the 3DHGM does not incorporate the temporal evolution of the aquifer. Because

the 3DHGM is calibrated to the present–day state of the hydraulic heads in the

observation wells, one would assume that the evolution should actually be much

more pronounced in 3D karst evolution model. Obviously, this is not the case and

therefore another approach has to be used to model the evolution of the Birs aquifer.
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Nevertheless, the calibrated mode of the conduit diameter distribution will be used

as a starting point for the following procedure.

4.2.1.3 Initial model with anisotropy

To find an optimal initial conduit diameter distribution, the characteristic anisotro-

pic properties of the Gipskeuper are now used. In the Gipskeuper sample in Fig.

4.2c a fracture between the gypsum and the marl layer which is ≈ 0.5 mm wide

can be seen and is marked with white arrows. It needs to be stated here that the

sample shown in Fig. 4.2c is plotted in such a manner to illustrate the natural

bedding of these layers. It is known from the field that the gypsum lenses are more

or less horizontally oriented. Consequently, also fractures between gypsum and

marl layers are horizontally oriented. To account for this geological characteristic,

anisotropy information is introduced to the initial conduit diameter distribution.

This is achieved by an anisotropy factor Fa. This factor Fa scales all horizontal

conduits (x– and y–direction) relative to the vertical conduits (z–direction) inside

the model domain and makes them initially a little larger and therefore a little more

conductive to horizontal flow. Consequently, this allows more aggressive solution to

penetrate horizontally deeper into the bedrock.

Several arguments support this implementation of anisotropy. As mentioned

before, the most obvious one is the rock sample in Fig. 4.2c with the horizontal

fracture between the gypsum and the marl layer. Furthermore, the Birs weir location

is tectonically characterized by the Eastern Rhinegraben Master fault and tectonic

structures can be found in the immediate vicinity (Epting et al., 2009b). It is

reasonable to assume that fissures grow along lithological, sedimentological and /

or stratigraphical discontinuities as these are naturally weakened zones inside the

bedrock. Therefore, the horizontal bedding of the sediments around the Birs weir

provides a natural anisotropic fissure distribution inside the domain. It is also known

from historical documents and investigations that the Birs river has been more or less

in its current riverbed for more than 3000 years (Golder, 1984). It is not unlikely that

the groundwater system changed periodically from effluent to influent conditions and

by this triggered the evolution of small karstified zones or slight fissure enlargement

close to the river (Romanov et al., 2012). Nevertheless, rather moderate values for

Fa were chosen.

Initially, at very early times, the flow regime is equal for all runs with or without
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anisotropy because of the dominating matrix conductivity. Only the impounded

water in the upstream part of the river is determining the direction of flow, which is

vertical into the quaternary riverbed and therefore perpendicular to the anisotropy.

When the evolution sets in, the flow adapts according to the growing conduits

(affected by the anisotropy) and the global hydraulic conductivity is becoming

anisotropic which is thereby much closer to reality but by this also much more

difficult to estimate.

Because the real anisotropy factor is of course not known, an iterative approach is

used here. Different values of Fa will be tested and the model that shows a karstified

zone, that is in good agreement with the known extent of the real WZ will be chosen

as the optimal model.

The effect of the anisotropy factor Fa is shown in Fig. 4.3. From Fig. 4.3b to Fig.

4.3f the values for Fa increase from 1.5 to 3.5. Because only the horizontal conduits

are scaled the initial diameter distributions change from unimodal to bimodal. In

Fig. 4.5a the different distributions are plotted. Whereas the distribution for a factor

of Fa = 1.5 (blue curve) is still shaped unimodal with a mode of ˆdxy0 ≈ 7.5×10−5 m,

the distribution for a factor of Fa = 3.5 (pink curve) is clearly bimodal with a mode

for the horizontal conduits of ˆdxy0 ≈ 1.8 × 10−4 m. The anisotropy models in Figs.

4.3b–f have the same standard domain properties and boundary conditions as the

initial model in Fig. 4.3a. Only the inflow from the East boundary is scaled to

account for the increasing horizontal conduit diameters. Like for the initial model

all subplots from Figs. 4.3b–f show the relative increase of the conduit diameters

after 110 years of evolution.

For factors 1.5 (Fig. 4.3b) and 2 (Fig. 4.3c) the effect is rather small and larger

conduits have only grown close to the weir. Both setups do not cover enough of the

WZ in horizontal direction and also the increase inside the WZ is not too significant.

For factors 2.5 to 3.5 (Figs. 4.3d–f), the conduit evolution captures the whole

WZ below the highway parallel to the river. In all three models the true maximum

depth of the WZ (determined by observations) is reliably resolved. Increasing the

factor Fa, more conduits grow towards the East, the North and below the upstream

part of the river. Considering the resolution of the real WZ and especially the eastern

boundary of the WZ, the model with an anisotropy factor of Fa = 2.5 (Fig. 4.3d)

is chosen to be the optimal model. This model also shows sufficient features below

the upstream part and close to the weir to support the geophysical ERT findings
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(Epting et al., 2012).

Models with an anisotropy factor of Fa = 3 (Fig. 4.3e) and Fa = 3.5 (Fig. 4.3f)

show a stronger evolution to the East but also to the North of the domain, especially

below the downstream part of the river. This evolution is discussed later for the final

model (see 4.2.1.5). The intention here, is so far only to show the general effect of

anisotropy on the evolution of a WZ around the Birs weir. The choice of the model

with Fa = 2.5 is a good trade–off between extent of the WZ, sufficiently large karst

features below the highway and remaining gypsum content inside the WZ. The latter

is shown and discussed when presenting the final model in 4.2.1.5 and the future

model in 4.2.2.

It was shown that it is possible to implement the local rock anisotropy of the

Gipskeuper around the Birs weir into the model. This is a major improvement over

the 2D karst evolution models and allows for a much more realistic model setup.

For the Birs weir model an anisotropy factor Fa = 2.5 was found which generates a

WZ that is in a good agreement with field observations and the 3DHGM.

4.2.1.4 Initial model with precipitation
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Before discussing the final model, a short detour is made and another feature of
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the 3D models is presented, the implementation of precipitation. For the presenta-

tion here, a model without anisotropy will be used.

In Fig. 4.4a the result for a model where the topographic boundary is deactivated

(no rain) is shown. In Fig. 4.4b the same model is presented but with rain. Again

the evolution after 110 years is shown. Note the different plot threshold indicated

by the color scale in Fig. 4.4. Now all conduits that have at least grown by a factor

of d/d0 = 1.01 are plotted. Comparing Figs. 4.4a+b shows that if precipitation on

the topographic boundary is activated, conduit enlargement is clearly visible along

the water table. The evolution below the upstream part of the river in Fig. 4.4b

is similar to the run without precipitation in Fig. 4.4a. This is due to the strong

influence of the constant head boundary condition of the impounded river on this

particular model. For the setup and time scale (only 110 years) used here, the effect

of precipitation may be not that decisive for the evolution of karstified zone below

the Birs weir, but it is nevertheless clearly visible along the water table.

From the engineering perspective it may be sufficient to note that the effect of

the weir on the evolution of the weathered zone is much stronger than that of the

rain. But only for the last 110 years after the construction of the weir. In fact, this

result shows the potential for much more possible karst features further east from

the river induced by the precipitation. Due to the inflow boundary condition the

enlarged conduits in the east part of the domain grow towards the river. Because it

can be assumed that the Birs river is in its current riverbed for ≈ 3000 years (Epting

et al., 2009b; Romanov et al., 2012) the aquifer has evolved under this quasi constant

conditions until the weir was built. If the bedrock below the hill, east of the river

also consists of soluble material it is not unlikely that one may find prominent karst

features along or below the water table created by the natural karstification. This

possible influence is so far not studied for the Birs weir location. To study this effect

a 3D model with topography and precipitation as presented here in a rudimentary

form is needed.

It is well known that in some karst regions precipitation is the major source of

inflow to create karst features. Only with a 3D model it is possible to take into

account the effect of the local topography on the evolution of a karst aquifer (hills,

valleys, plateaus etc.) To include a topographic surface with realistic precipitation

values together with the possibility to create complex model setups, are therefore

necessary requirements for modelling real case scenarios in three dimensions.
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4.2.1.5 Final model with anisotropy and precipitation

The final optimal model is now presented. It is only final in terms of marking the end

of this modelling study for the Birs weir aquifer and is of course only one possible

representation of reality.

For the final model an anisotropy factor of Fa = 2.5 for the conduit diameter

distribution is chosen and rainfall is activated on the topographic boundary. The ini-

tial conduit diameter distributions are shown in Fig. 4.5b. The blue line represents

all horizontal conduits, the red line all vertical conduits respectively. Both distri-

butions are thinner and therefore more homogeneous than the distribution of the

maximum diameters (black line). By this wider distribution of maximum diameters,

karst features are allowed to develop that can be up to the meter scale.

The boundary conditions are the following: For the East inflow boundary the

calibrated value from the 3DHGM of 10 l s−1 (Epting et al., 2009b) is used. The

North and South flow boundaries are as described in 4.1.3 as well as the rainfall

and the constant head boundary for the river. The evolution of the final model is

shown in Fig. 4.6 and Fig. 4.7. Because it is very difficult to show all information

in one plot, the presentation of the results is split into two figures. In Fig. 4.6 the

head distribution and the relative increase of conduit diameters is shown like in the

figures before. In Fig. 4.7 the calcium concentration and the calcium flux rate for

the same snapshots in time as in Fig. 4.6 are shown. For Figs. 4.7b–f slices marked

with A, B and C are used to show the calcium concentration instead of isosurfaces.

This is done for a better visibility as it is sufficient enough to show the calcium

concentration along these cut–out planes or slices.

The initial situation at 1890 is shown in Figs. 4.6a and 4.7a for the whole mod-

elling domain. The isosurfaces of constant head in Fig. 4.6a are almost symmetri-

cally distributed around the Birs weir and only show slight inner–surface distortions

due the statistical conduit network. The calcium concentration in Fig. 4.7a is zero

inside the river because of the boundary condition there and reaches equilibrium

already very close to the river. For all other snapshots in time from Figs. 4.6b

and 4.7b to Figs. 4.6f and 4.7f, it is closer zoomed into the domain to focus on the

changes around the weir and within the WZ.

In Figs. 4.6b and 4.7b the evolution after 10 years is shown. From the flow curve

in Fig. 4.5d one can see that at ≈1900 a first local breakthrough event occurred

(indicated by the jump in the flow curve). When looking on Fig. 4.6b only a few
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Fig. 4.6: Conduit network evolution for the final model for different snapshots in
time; Below each subplot the year is given; Subplots b to f are zoomed in for better
visibility; Plotted are the isosurfaces of constant head from low (dark grey) to high
(light grey) values and the relative increase of the conduit diameter compared to the
initial diameter on a log–scale from 2 (blue) to ≥ 1000 (orange); In subplots e and
f the location of two wells is indicated by thick black lines marked with W.
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Fig. 4.7: Calcium concentration and flux rates for the final model for different snap-
shots in time; Below each subplot the year is given; Subplots b to f are zoomed in and
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is indicated by thick black lines marked with W.
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conduits have grown horizontally and close to the weir. One gets a similar picture

when looking at slices B+C in Fig. 4.7b. The calcium concentration and the flux

rate also indicate that the evolution has just started horizontally along the river.

But there is also a visible connection between the upstream and the downstream

part of the river horizontally along the weir, indicated by low flux rates. It is possible

that the statistical distribution of the initial conduit diameters has created a small

pathway of connected conduits which can already capture enough flow to be regarded

as a small breakthrough event. Therefore it is marked with a square in Fig. 4.5d to

distinguish it from the two other evolutional events occurring later in time.

The next breakthrough event in the model is at ≈1920 (see Fig. 4.5d). In Fig.

4.6c a clearly visible horizontal pathway has established horizontally around the weir.

One can see that the conduits creating this pathway have at least grown by a factor

of d/d0 = 50 and the hydraulic head gradients increased close to the weir. This

pathway allows for more aggressive water to enter the bedrock (Fig. 4.7c slice C)

and creates therefore the preferential pathway. But there is a significant difference

in the breakthrough behaviour of this model and the dam–site models presented in

3. There, the models always used the standard unlimited widening scheme, implying

that a conduit or fracture can grow up to a maximum diameter or aperture width

defined only by the grid discretization. With this implementation it was assured

that always enough soluble material was present to be dissolved and therefore the

diameters and flow rates could constantly increase. These models were especially

distinguished by the strong increase in flow rates indicating the breakthrough event

(see e.g. the flow curves in 3.2.2). As already mentioned in 4.1.2, here for this setup,

the limited widening approach presented by Romanov et al. (2010) is used. The

artificial limiting of conduit diameters to a maximum value and therewith preventing

the typical strong increase in flow rates causes the small jumps in the flow curve in

Fig. 4.5d. So these small jumps can in a way be regarded as local breakthrough

events.

The third breakthrough event visible in Fig. 4.5d occurs around 1950. Whereas

the flow continuously increases between 1920 and 1945 due to the ongoing kars-

tification horizontally around the weir, around 1950 also a vertical pathway has

established. This can be seen by the increased conduits in Fig. 4.6d in the cen-

ter of the river below the weir connecting the upstream and the downstream part.

This connection is also visible in the calcium concentration slice A in Fig. 4.7d. The
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dark colors show the low calcium concentration of the aggressive water flowing along

this path. Ongoing from 1950 these two major pathways continuously develop and

increase the permeability of the bedrock around and underneath the Birs weir.

With this final model we also want to study another interesting effect revealed

by the field observations: Several karst features like large conduits and cavities

have been found along the bottom of the WZ during the drilling campaign, which

took place before and during the construction measures to stabilize and support

the highway (Fig. 4.1d and/or Epting et al. (2009a)). It is assumed that several

boreholes drilled in the 1980’s have possibly established a shortcut between shallower

and deeper layers of the Gipskeuper. To test the influence of these boreholes two

wells are implemented on the eastern bank of the river. Their locations are taken

from Epting et al. (2009a) and they are put to the model for the year 1980 (Figs. 4.6e

and 4.7e). The wells are established by setting the constant head value from the river

also at the nodes at the end of the wells. With these two artificially created wells it

is tested if the model can represent some of the found features. The location of the

wells is shown in Figs. 4.6e+f and 4.7e+f as thick black lines marked with W. When

comparing the two snapshots in time in Figs. 4.6e+f and 4.7e+f, respectively, the

effect of the wells becomes visible. Slice B in Fig. 4.7f shows that aggressive water

is carried through the wells towards the bottom of the WZ and conduits close to the

wells start enlarging due to the injected aggressive water. By taking into account

the effect of such artificial shortcuts in the Gipskeuper, it can be shown that within

just 20 years (1980-2000), the potential of these artificially created pathways on the

gypsum karst evolution can be significant.

The results for the year 2000 of the final model are plotted in Figs. 4.6f and 4.7f.

In addition, the initial and final conduit diameter distributions for all active conduits

are plotted in Fig. 4.5c. The dend distribution (red curve) shows the evolution of

conduit diameters and therefore the increase in conductivity over almost three orders

of magnitude. The biggest conduits are up to 0.2 m.

Fig. 4.6f shows how the evolved conduits capture the WZ, especially below

the upstream part of the river and horizontally below the highway. As mentioned

earlier when discussing the implementation of anisotropy, there is also a karstified

zone below the downstream part of the river. Because there are no field observations

in this part of the river this finding of the model can so far not be verified. It needs

to be emphasized here that the model runs may overestimate the total amount



CHAPTER 4. THE BIRS WEIR 70

of available gypsum in parts of the domain. Therefore, the results shown in the

downstream part just indicate the potential for karst features. The model setup

assumes Gipskeuper inside the whole domain and the geology is implemented by the

distribution of soluble conduits only. From field observations further downstream

(outside of the model domain) it is known that the geology there is quite complex and

heterogeneous and shows changes from Gipskeuper to Schilfsandstein. Therefore, it

is possible that there is much less karstified Gipskeuper further downstream than

directly close to the weir.

The plausibility of the model is also supported by the distribution of calcium

concentration inside the WZ (Fig. 4.7f). This plot shows that the calcium concen-

tration is around c ≈ 0.4ceq inside the WZ, which is in good agreement with the

chemical analysis of the subsurface water samples (Epting et al., 2009b). The flux

rates in Fig. 4.7f also show that the karstification is still active especially below the

river. The reader may notice that Figs. 4.6f and 4.3d are almost identical in terms

of conduit evolution. This is of course expected as both runs have similar initial

conduit diameter distributions and only differ in the Eastern flow boundary. But

what this actually also shows is that for the creation of the WZ the effect of the

weir is of much greater importance than the effect of the flow boundaries, especially

the Eastern inflow boundary. Several test runs with different Eastern inflow values

and even a no flow boundary were additionally calculated. The shape of the created

karstified zone was almost identical in all cases. This underlines the importance of

the anisotropy and the limited conduit widening for the Birs weir scenario.

The presented 3D model shows a reasonable evolution of the Birs weir aquifer.

It pursued the findings of the 3D hydrogeological model (Epting et al., 2009b) and

extends the 2D karst evolution models (Romanov et al., 2010, 2012) into the third

dimension. By this it essentially helped to understand the complicated hydrology

around the Birs weir.

4.2.2 Future

Now the temporal evolution of the Birs aquifer after the year 2000 is discussed, thus

when construction of the grout curtain (sealing pile wall) has been conducted. Note

that for simplicity and continuity reasons the construction measures are assigned to

the year 2000 within this model study, whereas they have been carried out between

2006 and 2007 (Epting et al., 2009a).
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It was already shown in Fig. 4.7f, that the calcium concentration in the WZ is

around c ≈ 0.4ceq in the year 2000. This fact becomes interesting when looking on

Figs. 4.8a+b: These two plots show for the year 2000, how close the active conduits

(the ones at least grown by a factor of d/d0 ≥ 1.1) are to their maximum diameter

allowed by the Gipskeuper layer thickness. Fig. 4.8a shows the percentage of all

active conduits while in Fig. 4.8b a threshold of 50% is used (only active conduits

that have grown up to 50% of its maximum diameter). Particularly the conduits

close to the bottom of the river and below the highway have reached already their

maximum. But there are still enough conduits in the deeper layers and in the East

part of the WZ that can evolve. This is also in good agreement with the field

observations as they have shown that the gypsum is not yet completely removed

from the WZ (see 4.1.1). As indicated in 4.2.1.3, when using anisotropy factors of

Fa = 3 or Fa = 3.5 too many conduits would have reached their maximum diameter

in the year 2000 and there would not be enough soluble gypsum to comply with the

field observations.

Fig. 4.8c shows the implementation of the grout curtain or the sealing pile wall

respectively. It is achieved by adding an insoluble and impermeable layer vertically

along the eastern bank of the upstream river. The sealing wall is vertically extended

into the non–weathered bedrock to block any flow from the WZ towards East. The

initial distribution of conduit diameters is taken from the final time step (year 2000)

from the final model of the above section.

In Fig. 4.8d, the head distribution and the evolved conduits are shown after

50 years of evolution. Note that the relative increase of the conduit diameters is

calculated by the initial conduit diameter distribution of the future model (year

2000) and not the final model (year 1890). Figs. 4.8e+f show the same picture as

Fig. 4.8d in a front and top view respectively. The active conduits in the lower part

of the WZ continued to evolve along the whole river as expected from Figs. 4.8a+b.

In this idealized setup the sealing wall effectively prevents any further karstification

below the highway close to the weir (Fig. 4.8f).

This future model shows that the highway may be protected by the sealing pile

wall. But because of the active parts in deeper layers of the WZ the karstification

continues below the weir. If the fact is considered that the whole weir structure is

already tilted due to karstification processes below the structure (see Fig. 4.1c and

Epting et al. (2009a)), it may be necessary to carry out more construction measures
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to further stabilize it.

4.3 Conclusions

In this chapter a realistic 3D karst evolution model for the Gipskeuper aquifer of

the Birs weir at the river Birs close to the city of Basel in Switzerland was pre-

sented. Here, in the 1980’s a nearby highway as well as the weir itself showed strong

subsidence and even the formation of sinkholes. These karst–related hazards raised

the need for extensive investigation and construction measures, such as observation

boreholes, geophysical measurements, 3D hydrogeological modelling, 2D karst evo-

lution modelling, and finally the construction of a grout curtain. The results from

these investigations identified the reason for the subsidence: a weathered zone of

karstified Gipskeuper along the river below the highway.

The intensive monitoring and modelling results provided the boundary conditions

for the 3D model setup presented here. According to the current knowledge, this is

the first time that the evolution of a karst aquifer beneath a real dam–site is modelled

in three dimensions. The implementation of the local Gipskeuper bedrock properties

in terms of available gypsum and anisotropy was presented here. Furthermore, a

topographic boundary with precipitation values based on field data was used. It

could be shown that the anisotropy of the local bedrock had a decisive effect on the

evolution of the Birs weir aquifer, whereas the effect of the rainfall is not so strong

for the considered time scale. The use of precipitation and a realistic 3D topography

revealed the potential for further karstified regions east of the Birs river. The basic

scenario presented here can easily adopted for more complex setups.

The final optimal model was not only able to describe the evolution of the Birs

weir aquifer over the last 110 years, it also could reproduce the weathered zone in

terms of horizontal and vertical extent. Additionally, also the residual calcium con-

centration distribution is in good agreement with the chemical analysis of the aquifer

water. The model showed a karstified zone below the river along the whole domain.

The developed zone below the upstream part can be supported by underwater ERT

measurements (Epting et al., 2012). For the downstream part, so far no such field

data is available.

Also a prediction on the possible evolution of the aquifer after the construction

of a sealing pile wall to support the highway was made. It was shown that under the
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assumption that the sealing wall is impermeable and reaches deep enough into the

non–weathered bedrock, it effectively prevents aggressive water to enter the bedrock

horizontally below the highway. By this it suppresses further karstification below

the highway. In agreement with the field observation that even in the weathered

zone ≈ 15% of the gypsum in the Gipskeuper is still available, the model showed

that the potential for further karstification in deeper layers of the weathered zone is

still present, and this might represent a future risk.

Of course the presented future scenario is only one of many possible realizations,

therefore it is important to continue to observe the Birs aquifer and its vicinity care-

fully with a wide range of hydrogeological, geotechnical and geophysical methods.

The 3D karst evolution model presented here can only give a rough idea (in terms

of a future outlook) of the potential risks that may threaten the Birs weir structure.

Finally, this chapter has shown, that based on the conceptual models in the

previous chapter, it is possible to create complex 3D karst evolution models. These

models can be integrated into a wide range of available applied methods to study

highly heterogeneous karstification processes close to man–made structures.
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After in the previous chapter a practical application of karst evolution modeling

was presented, the focus is now shifted to the investigation of one of the most

impressive and significant surface karst features — large collapse dolines.

A doline is along with poljes and uvalas one of the characteristic karst depressions

in the Dinaric karst (Kranjc, 2006). Like many terms used in karst science also the

term doline has its roots in the Slavic language and originates from the words dol

(down) and dolina (valley). The size and shape of dolines is as manifold as their

origin and ranges from a few meters to hundreds of meters both in diameter and

depth. Fig. 5.1 shows six major types of dolines after Waltham et al. (2005) which

may occur in nature as a pure form or as a combination of them depending on the

local geology. Here, the focus is put to large collapse dolines which are characterized

by steep walls or cliffs, debris and breakdown material on the bottom and a cave

or passage on the bottom or below the ground level. Generally, the topographic

location of a collapse doline relates to underground water flow or more precisely a

large underground river (Kranjc, 2006).

Fig. 5.1: The six different doline types, modified after Waltham et al. (2005).

A special subtype of very large collapse dolines are Tiankengs (heavenly pits)

that can be found in the karst regions of China. In terms of genesis a Tiankeng

is similar to a collapse doline but has become its own characteristic term in karst
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science (Zhu and Waltham, 2006). The major distinction is made by its size because

a Tiankeng has to be at least 100 m deep and wide. Fig. 5.2 shows four examples

of large collapse dolines and Tiankengs respectively.

a) b)

c) d)

Fig. 5.2: Large collapse doline examples; a) Crveno Jezero (Red Lake) doline,
Croatia from (Kranjc, 2006); b) Sótano de las Golondrinas (Cave of Swallows),
Mexico from (Raines, 1967); c) Dashiwei Tiankeng, China; d) Xiaozhai Tiankeng,
China, c+d from (Zhu and Chen, 2006).

Fig. 5.2a shows the collapse doline Crveno Jezero (Red Lake) in Croatia. It is

528 m deep and is filled with water up to 287 m. Large cave entrances have been

found on the floor that allow water to flow through the doline. It’s upper rim is

≈ 450 m× 400 m and its volume is estimated between 25× 106 m3 and 30× 106 m3

(Kranjc, 2006). Fig. 5.2b shows Sótano de las Golondrinas (Cave of Swallows) a

doline in the karst mountains of Sierra Madre Oriental, Mexico. It is considered to be

an immature Tiankeng because of its overhanging walls that have not collapsed yet

(Waltham, 2006; Zhu and Waltham, 2006). The surface opening is only 65 m× 50 m

whereas its floor dimensions are 130 m× 250 m. The depth is ≈ 400 m with fissures

ranging down to 512 m indicating a large amount of breakdown debris. Its volume

is estimated with ≈ 5 × 106 m3. Unlike for other large collapse dolines there is no

knowledge of a subsurface river or cave system so far (Waltham, 2006). Figs. 5.2c+d
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show two typical Chinese Tiankengs, Dashiwei (c) and Xiaozhai (d), respectively.

The Dashiwei Tiankeng is the largest Tiankeng in the Dashiwei group located in the

Leye karst (Guangxi province). It is 600 m long and 420 m wide and its maximum

depth is 613 m giving a total volume of ≈ 75 × 106 m3. Its floor is covered by

100 m thick debris which itself is covered by a secondary forest. The cave river can

be entered at the lowest point of the Tiankeng (Zhu and Chen, 2006). The largest

Tiankeng discovered so far is the Xiaozhai Tiankeng near the city of Xinlong (Fengje

county) with a diameter ranging from 537m to 626m and a maximum depth of 662m.

It has a double nested structure with a plateau in 320m depth and a total volume of

≈ 120×106 m3. Across the floor of Xiaozhai the cave river has a maximum discharge

of 175 m3 s−1 making it a strong source of erosion and material removal (Zhu and

Chen, 2006).

These four examples are only a small portion of the known and discovered large

collapse dolines of the world. A general overview can be found in Waltham et al.

(2005) also with a focus on practical implications close to collapse features in karst.

Kranjc (2006) gives an overview on large collapse dolines in the Dinaric karst whereas

Waltham (2006) concentrates on large collapse dolines and / or Tiankengs through-

out the world. Zhu and Chen (2006); Zhu and Waltham (2006) focus on Tiankengs

especially in China. Summarizing the given references, there are a few characteris-

tics typical for large collapse dolines. A large collapse doline is typically a few tens

to a few hundreds of meters wide and deep. The walls are very steep or close to

vertical and the floor of the doline can be covered with breakdown debris but don’t

necessarily has to. A large river is either flowing on the floor of the doline or below

the ground but not too deep (tens of meters). Collapse dolines can appear in groups

all belonging to the same active subsurface cave system (e.g the Dashiwei group or

the dolines of the slovenian Škojcanske jama). The age of some Dinaric collapse do-

lines is assumed to be in the range of millions of years (Gabrovšek, 2011 – personal

communication) whereas for Tiankengs less than 200 000 years are suggested (Zhu

and Chen, 2006; Zhu and Waltham, 2006).

Small dolines can be created by a subsidence event or collapse of a cave ceiling.

On the contrary the processes for the generation of large collapse dolines has to be

more complex as large collapse dolines are generally two orders of magnitude bigger

than the largest known cave chambers (Gabrovšek and Stepǐsnik, 2011). An expla-

nation of the creation of large collapse dolines has been given by Palmer and Palmer
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(2006). There, the authors suggested that the hydraulic processes in a collapse or

crushing zone is responsible for the creation of large collapse dolines. Collapsing

material blocks a subsurface river, increases therewith the hydraulic gradients and

consequently increases the dissolution / flux rates and erosional forces. This concept

was adapted by Gabrovšek and Stepǐsnik (2011) with a 2D karst evolution model to

estimate the material removal in such a crushed zone. This approach is now taken

one step further into the third dimension.

First, the 2D setup of the crushed zone from Gabrovšek and Stepǐsnik (2011) is

rebuilt with the 3D program KARSTAQUIFER to compare the evolution of both

models and to find a comparable basis. Then the model is extended into 3D and

the crushed zone is embedded into a 3D domain. The evolution of the models is

mainly investigated in terms of material removal. As so far erosional forces are not

implemented into KARSTAQUIFER the creation of the collapse doline in terms of

surface lowering is simulated by a collapsing mechanism. The major part of this

chapter is to study the interaction of several spatially distributed crushed zones

within one domain. Because in nature large collapse dolines often appear in groups,

the investigation and understanding of their interaction (if any) is of high interest

to the scientific community. To study these interactions, first the evolution of a

single crushed zone is considered and then the amount of activated crushed zones is

successively increased.

The essential findings of this chapter have been presented in Hiller et al. (2012a).

5.1 The model setup

The conceptual model of a collapse doline is shown in Fig. 5.3. A is the karst

bedrock in which the collapse doline B is going to evolve. One of the necessities to

create a collapse doline are fault zones inside the bedrock which somehow mark the

boundaries of a mechanically unstable crushed zone. These fault planes are indicated

by the dashed lines in Fig. 5.3. Another necessity in the presented concept is a

subsurface passage or stream were water can enter (D1) and leave (D2) the domain.

As this passage crosses the faulty bedrock it is intercepted and blocked by collapsed

material inside the crushed zone C. Due to the crushed zone, the hydraulic gradient

increases and allows for the creation of alternating widened channels through this

highly fissured part of the domain. Then the dissolved material is transported out
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A

B

C

D1

D2

Fig. 5.3: Conceptual model of the doline model; A karst bedrock; B collapse doline;
C crushed zone; D1 subsurface passage / stream (input); D2 subsurface passage /
stream (output); the dashed lines represent fault planes inside the bedrock; modified
after Gabrovšek and Stepǐsnik (2011).

of the crushed zone through the output passage. Because the crushed zone is a

mechanically unstable zone the removal of the bedrock induces a lowering of the

surface and therefore the creation of a collapse doline. This lowering is indicated

by the thin lines below the doline cylinder in Fig. 5.3. Note, that in this approach

the bedrock is only removed by dissolution so far. It does not account for the real

mechanical properties of the bedrock as well as erosion processes that might remove

collapsed material from the bottom of the crushed zone. The lowering of the surface

is approximated with KARSTAQUIFER and explained later in more detail (see

5.2.4).

Because the model domain changes during this model study, the domain prop-

erties are explained in the corresponding sections.

5.2 Prerequisites

5.2.1 2D Model calibration

As this doline model is inspired by Gabrovšek and Stepǐsnik (2011) and is conse-

quently a 3D expansion of their 2D approach, the first objective is to compare the

2D results with the 3D program used here. First, only the crushed zone itself is
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considered, later this crushed zone is embedded into a 3D domain.

5.2.1.1 Model domain and boundary conditions
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Fig. 5.4: Model domain and boundary condition of the calibration models; water
enters the crushed zone from the left through the channel / passage with a calcium
concentration of cin = 0.9ceq and leaves the domain at the right side; the hydraulic
head difference is ∆H = 10 m; the conduit network is indicated by thin grey lines.

Gabrovšek and Stepǐsnik (2011) used a 2D fracture network with a size of 200×
200 m2 to simulate the evolution inside the crushed zone. The fracture spacing was

2 m and their height was 1 m respectively. They applied a dual fracture network

which means that a dense network of 2 m long fractures is superimposed by a sparse

randomly distributed network of 20 m long fractures. The fractures in the dense

network have aperture widths ranging from 0.1mm to 0.4mm whereas the fractures in

the coarser network have aperture widths ranging from 0.4mm to 0.8mm respectively.

The water enters through a channel on one side of this crushed zone and leaves on

the opposite side respectively. The head difference is ∆H = 10 m and the input

concentration of the water is cin = 0.9ceq.

This setup is rebuild with KARSTAQUIFER in terms of geometry and boundary

conditions as shown in Fig.5.4. There, a top view of the model domain is shown

which has only one element (two nodes) in z–direction. Out of this one–element

layer, only the lower of the two conduit layers is activated to get an almost perfect
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2D setup. The objective of the calibration is to get a comparable evolution behaviour

for the 2D and the 3D code and to find therewith the initial diameter distribution for

this study. Therefore, only the breakthrough time TB will be considered as the flow

rates will obviously be different due to the different implementation of the network

(fractures in the 2D model – conduits in the 3D model). To mimic the dual fracture

network of the 2D approach conduit diameter distributions with different statistical

parameters will be used.

5.2.1.2 Calibration results

0 500 1000 1500 2000 2500 3000

10
−4

10
−2

10
0

10
2

Year

Q
ou

t [m
3 /s

]

 

 

0 500 1000 1500 2000 2500 3000

10
−4

10
−2

10
0

10
2

Year

Q
ou

t [m
3 /s

]

 

 

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

200

400

600

800

1000

1200

Diameter [m]

F
re

qu
en

zy
  [

−]

 

 

0 500 1000 1500 2000 2500 3000

10
−4

10
−2

10
0

10
2

Year

Q
ou

t [m
3 /s

]

 

 
d̂0 = 0.3mm & σ = 0.35

d̂0 = 0.3mm & σ = 0.5

d̂0 = 0.3mm & σ = 0.75

d̂0 = 0.3mm & σ = 1.0

d̂0 = 0.3mm & σ = 0.35

d̂0 = 0.3mm & σ = 0.5

d̂0 = 0.3mm & σ = 0.75

d̂0 = 0.3mm & σ = 1.0

2D

d̂0 = 0.3mm & σ = 0.35

d̂0 = 0.3mm & σ = 0.5

d̂0 = 0.3mm & σ = 0.75

d̂0 = 0.3mm & σ = 1.0

2D

nz=2 dz=1.0m

nz=3 dz=0.5m

nz=5 dz=0.25m

nz=6 dz=0.2m

nz=9 dz=0.125m

nz=11 dz=0.1m

nz=17 dz=0.0625m

2D

c) flow curves for calibration models dx = dy = 5m d) flow curves for 3D calibration models

a) d0 distrib. for calibration models b) flow curves for calibration models dx = dy = 2m

Fig. 5.5: Doline model calibration; a) initial diameter distributions for different
models to calibrate the 3D code to the 2D model; b) corresponding flow curves to a
plus the 2D flow curve; c) flow curves for calibration models with a coarser network
(dx = dy = 5 m); d) flow curves for the extended 3D calibration models.

Fig. 5.5a shows a set of the tested conduit diameter distributions. All distri-

butions have a mode of d̂0 = 0.3 mm and a varying standard deviation σ. The

wider the distribution gets the more non–uniform the conduit network will be. For
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σ = 0.35 (black curve) the distribution spans about one order of magnitude, whereas

for σ = 1 (green curve) it spans four orders of magnitude respectively. In Fig. 5.5b

the corresponding flow curves are plotted for 3000 years of evolution together with

the 2D flow curve (dashed black curve) from Gabrovšek and Stepǐsnik (2011). The

breakthrough times of the red curve with σ = 0.75 and the 2D curve are almost iden-

tical. Also the amount of flow before and after breakthrough of these two curves

does not differ much and is within one order of magnitude. Additionally, Fig. 5.6

shows the conduit evolution of the calibrated model. There, four snapshots in time

are shown for the evolution of the calibrated model with d̂0 = 0.3 mm and σ = 0.75.

The colors correspond to the relative increase of the initial diameter from a factor

of 1.5 (blue) to a factor of ≥ 1000 (orange) respectively. For a better visibility all

conduits that have grown by less than a factor of 1.5 are not shown. The hydraulic

heads are shown by colored contour lines from low head (blue) to high head (red)

respectively. After 100 years (Fig. 5.6a) the enlarged conduits have captured one

third of the crushed zone. After 200 years (Fig. 5.6b) the enlargement zone is fur-

ther increased and after ≈ 300 years (Fig. 5.6c) breakthrough has occurred (see also

Fig. 5.5b). When the simulation is continued the enlargement zone also increases

in the y- direction and would finally capture the whole domain (Fig. 5.6d). This

behaviour is similar to a classical 2D model as e.g. presented by Bauer et al. (2003);

Kaufmann (2003a); Romanov et al. (2003a) and corresponds almost perfectly to the

evolution of the 2D model by Gabrovšek and Stepǐsnik (2011).

Because in this study the interaction of several crushed zones (dolines) is consid-

ered, it is not feasible to stick to the 2 m grid discretization for the whole domain.

This would lead to model sizes in the range of 400× 400× 25 nodes. From a tech-

nical point of view this means that the huge amount of data which these models

create cannot be handled in a practicable way. Additionally, also the computational

time would drastically increase. As it was also stated in 3.2.4 when dealing with a

highly discretized dam–site model, the reader is referred to appendix A were sev-

eral benchmark test have been carried out to find a practicable range of domain

sizes. To cope with this limitation the resolution of the crushed zone is decreased

to dx = dy = 5 m. To check if this coarsening has an effect on the evolution of

the model, it is also simulated with the same conduit diameter distributions and

boundary conditions as the model with dx = dy = 2 m discretization from above.

The resulting flow curves are shown in Fig. 5.5c. Also for the coarser network the
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model with σ = 0.75 (red curve) fits the 2D curve as well as for the dense network

and is therefore feasible to use.
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Fig. 5.6: Evolution of the doline calibration model with d̂0 = 0.3 mm and σ = 0.75
(red curve in Figs. 5.5a,b+c); a) evolution after 100 years; b) evolution after 200
years; c) evolution after 300 years - breakthrough has occurred; d) evolution after
600 years.

5.2.2 Extension into the third dimension

The next step in approaching a 3D doline model is to add the third dimension to

the calibration model from the previous section. Therefore, the number of vertical

layers is increased. Because in the 2D fracture network the fractures have a height
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of 1 m, the crushed zone model is also only extended to 1 m in z–direction but with

varying layer thicknesses or dz values respectively. Fig. 5.5d shows the flow curves

of these extended calibration models. The model with two nodes in z–direction and

dz = 1 m is effectively the same model as in the calibration before but with the

top conduit layer also activated. Due to the added layer the flow rates are higher

also, but the breakthrough time is still comparable to the calibrated model. By

adding more vertical layers, the global hydraulic conductivity of the crushed zone

is increased and consequently also the flow through the domain. This can be seen

from the increased flow rates in Fig. 5.5d. Because the main flow direction in this

setup is along the x–direction, the breakthrough time is not that much effected by

the increase of vertical layers (perpendicular to the flow direction).
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Fig. 5.7: Removal rates for the calibration models with dx = 2m (black), dx = 5m
(blue) and the extended calibration models with 2 (red), 3 (green), 6 (cyan) and 11
(magenta) layers.

For the model with nz = 17 vertical layers the flow rate do not increase after the

breakthrough at ≈ 1000 years. This is a pure technical effect because the conduits

have reached the maximum diameter, determined by the vertical discretization of

dz = 62.5 mm. At this point the enlargement of the conduits has stopped and

consequently the flow rates stay constant.

A three dimensional crushed zone with a certain amount of vertical layers allows

for more flow and therewith has a higher potential for removing collapsed material

from the crushed zone. This effect is shown in Fig. 5.7. There, the removal rates
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are plotted for the calibrated models with d̂0 = 0.3 mm and σ = 0.75 for the finer

network with dx = dy = 2 m (black curve) and the coarser network dx = dy = 5 m

(blue curve) as well as for some extended models with more vertical layers. As

more conduits and / or more layers come into play and therewith a larger surface

for dissolution of course the removal rates increase. But even with more layers the

extended 3D conduit model does not remove more material than the 2D fracture

model. Obviously, this is due to the geometry of the fracture, that always captures

the full height of 1 m and has therefore a bigger dissolution surface.

To effectively simulate the creation of a collapse doline and at the same time

not to increase the model size to an impracticable extent, a mechanism has to be

introduced that allows to remove material from the surface also with these quite

low removal rates. Furthermore, this mechanism should not be a pure tuning pa-

rameter but somehow justified by the implementation of the conduit network in

KARTSQUIFER itself. This mechanism is shown in 5.2.4.

5.2.3 3D model domain and boundary conditions

The general model domain that is used for the doline modelling is shown in Fig. 5.8.

For a better comprehension the parameters are also summarized in Tab. 5.1.
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boundary condition of H = 0 m; b) green frame marks enlarged part from a, note
that here the grid is out of scale.
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The model domain for the 3D doline models is a 500 × 500 × 50 m3 limestone

block. The discretization varies between dx = dy = 5 m inside the crushed zones

and dx = dy = 25 m outside of the crushed zones. The vertical discretization varies

between dz = 1m and dz = 5m respectively. Due to the use of a regular network and

thus a constant amount of grid nodes in each spatial direction, the crushed zones are

not implemented as pure local grid refinements (see Fig. 5.8). This leads of course

to domain regions with a higher spatial resolution than necessary (e.g. between the

crushed zones) and has to be considered in the interpretation of the results. The

chemical parameters are according to the standard domain properties for limestone

in Tab. 2.1. The hydraulic conductivity of the matrix is Km = 1× 10−5 m s−1 and

the conduit diameter distribution for the whole domain has parameters d̂0 = 0.05mm

and σ = 0.75 which represents a quite intact (or immature) and only slightly fissured

karst bedrock. The blue face in Fig. 5.8a marks the region where a constant head

BC condition (H = 10 m) is applied. On the opposite domain boundary (not visible

in Fig. 5.8a) a constant head BC of H = 0 m is applied to induce flow through the

domain in x–direction.

Name x-extent y-extent z-extent network
(dx) (dy) (dz)

Domain size 500 m 500 m 50 m d̂0 = 0.05 mm, σ = 0.75
(5 − 25 m) (5 − 25 m) (1 − 5 m)

Crused zones (CZ):

CZ1 75 − 175 m 325 − 425 m 0 − 5 m d̂0 = 0.3 mm, σ = 0.75

CZ2 75 − 175 m 75 − 175 m 0 − 5 m d̂0 = 0.3 mm, σ = 0.75

CZ3 325 − 425 m 325 − 425 m 0 − 5 m d̂0 = 0.3 mm, σ = 0.75
(5 m) (5 m) (1 m)

Passages:
P1 0 − 500 m 375 m 0 m d0 = 0.13 m
P2 0 − 500 m 125 m 0 m d0 = 0.13 m

Table 5.1: Doline model parameters.

The domain is intersected by two subsurface streams / passages (black lines in

Fig. 5.8a) passing through the model in x–direction at z = 0 m. The passages have

an initial conduit diameter of d0 = 0.13 m to establish flow rates between 1 m3 s−1

and 5m3 s−1 depending on the chosen setup. These flow rates are in agreement with

values reported from the field (e.g. Gabrovšek and Stepǐsnik (2011); Palmer and

Palmer (2006)).

If a crushed zone is activated, its hydraulic conductivity is increased by assigning
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the conduits inside the crushed zone new initial conduit diameters. Therewith, the

mechanical weakening (enlarged fissures and fractures are already present) of the

crushed zone is taken into account. The distribution parameters for these conduits

are d̂0 = 0.3 mm and σ = 0.75 and are according to the calibration shown in 5.2.1.2.

5.2.4 Crushed zone – collapsing mechanisms

a) b) c)

Fig. 5.9: Simulated mechanical collapse of the doline above the crushed zone;
a) initial situation of the conduit network inside the crushed zone; b) horizontal
conduits have reached a certain critical diameter; c) the horizontal conduits have
collapsed and the topography is accordingly lowered.

Before investigating the evolution of the different 3D doline models the collaps-

ing mechanisms that were applied are presented. Gabrovšek and Stepǐsnik (2011)

used two mechanisms to mimic the processes in a crushed zone. The first one called

continuous infilling is similar to the limited widening scheme shown in the previous

chapter or e.g. by Romanov et al. (2010). If a fracture reaches a critical aperture

width Alim then its enlargement is stopped but the dissolution is still active. There-

fore, material is removed in a every time step but the fracture diameter is always

reset to Alim. Therewith, a continuous infilling by soluble material is assumed and

a more or less constant flux rate (removal rate) is active. The second one called

discontinuous collapsing resets the fracture aperture width to the initial or smaller

aperture if a critical aperture is reached. After this reset the growth of the fracture

starts again.

As collapsing is a more intuitive approach when considering collapse dolines,
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three different collapsing mechanisms are applied in this work. The general imple-

mentation is exemplary shown in Fig. 5.9. Fig. 5.9a shows a portion of the model

domain with the initially small conduits inside the crushed zone on the bottom of the

limestone block. These conduits are enlarged over time by dissolution (Fig. 5.9b)

and collapse back to a smaller conduit when a critical diameter dcrit is reached. The

smaller diameter is derived by the same statistical parameters d̂0 and σ that are

initially used for the conduits in the corresponding crushed zone. The difference

between the critical and the small diameter after collapsing is used as the maximal

possible value for surface lowering (Fig. 5.9c).

Blocky collapsing If the blocky collapsing is applied then four conduits that

enclose one grid-element (see Fig. 2.4 - all conduits created by nodes N1−4 or N5−8)

inside the crushed zone have to reach the critical diameter dcrit before they are reset

to a smaller conduit diameter. As in this model conduits represent fractures (see Fig.

2.1) it is more natural that a limestone block collapses (moves virtually downward)

if all four bordering fractures (conduits) have reached a critical size.

Layered collapsing Layered collapsing is the extension of the blocky collapsing.

Here, 75% of all conduits inside one depth layer have to reach the critical diameter

dcrit before the crushed zone collapses along this layer and all conduit diameters in

that layer are reset.

Total collapsing Consequently, total collapsing is the extension of the layered

collapsing and implies that 75% of all conduits inside the crushed zone have to reach

the critical diameter dcrit before the entire crushed zone collapses and all diameters

in the crushed zone are reset.

5.3 3D Results

Now the results for the 3D doline models are presented. Four different layouts are

tested where the complexity of the model increases from model 1 to model 4. Models

1 to 3 should be regarded as introduction to the domain layout, the evolution of a

single doline and the test of the different collapse mechanisms. Whereas the final

model 4 focuses on the interaction of a doline group.
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5.3.1 Model 1 – one passage, one active crushed zone
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Fig. 5.10: Model setup for doline model 1; implemented are one subsurface passage
(black line) and one active crushed zone CZ1 (green circle); the green circle also
indicates that only conduits inside the circle are treated as crushed zone conduits;
for the parameters used see Tab. 5.1.

The setup of the first doline model that is presented is shown in Fig. 5.10. One

passage crosses the domain at Y = 375 m (black line) and one crushed zone CZ1

(green circle) is active that blocks this passage. Consequently, this model shows

the “undisturbed” evolution of a 3D doline model. The domain and crushed zone

parameters are summarized in Tab. 5.1 and the applied collapsing mechanism is the

blocky collapsing (see 5.2.4). CZ1 initially blocks the passage, hence the simulation

sets in after the first collapsing of CZ1 has already happened. Figs. 5.11 and

5.12 show the evolution of the conduit diameters and flux rates of model 1 for six

snapshots in time. The simulation for model 1 and all following 3D doline models

was done for 6000 years. For this first 3D doline model the evolution of conduit

diameters will also be shown for introductory and continuity reasons. For all further

3D doline models only the flux rates are shown, because the main objective of this

study is to investigate how much material is removed from the crushed zone and

thereby estimating the possible surface lowering. Nevertheless, the conduit diameter

evolution plots can be found in appendix B. In addition to Figs. 5.11 and 5.12, Fig.

5.13 shows the evolution of several relevant model parameters over time and will be

simultaneously used for the interpretation.

The hydraulic heads in Figs. 5.11 and 5.12 are again shown as isosurfaces of

constant head with a grey color scale from dark grey (low head) to light grey (high
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head) respectively. The increase of the conduit diameter compared to the initial

conduit diameter d/d0 is plotted on a log–scale where dark blue colors represent no

change d/d0 = 100 = 1 and red colors an increase by a factor of d/d0 ≥ 103 = 1000

or more. Like for previous figures only conduits increased above a certain threshold

are plotted as indicated by the color scale. The flux rates are plotted on a log–scale

in the range from 10−12 [mol m−2 s−1] (dark blue) to 10−7 [mol m−2 s−1] (red). For

better visibility conduits with smaller flux rates than given by the color scale are

not shown.

Figs. 5.11a and 5.12a show the initial situation for model 1. From the head

isosurfaces it can be seen that CZ1 initially blocks the passage and therefore in-

creases the hydraulic gradient inside CZ1. Parallel to the flow direction up to

≈ 100 m in x-direction small flux rates around 10−12 [mol m−2 s−1] (blue) have

established (Fig. 5.12a). Due to higher flow inside the passage, there the flux rates

are around 10−10 [mol m−2 s−1] (cyan). These higher flux rates are also visible in-

side CZ1 because there the diameters are initially larger compared to the rest of the

domain. In the entry part of CZ1 between 75 m and 100 m even higher flux rates of

10−9 [mol m−2 s−1] (yellow) are already visible.

In Fig. 5.11b after 300 years of evolution one can see that the conduits inside

CZ1 have already grown by a factor of ≈ 10 (cyan), in the central part along the

passage even more by a factor of ≈ 75 (green / yellow). In contrast to the initial

setup in Fig. 5.11a, the head isosurfaces are now almost parallel inside the crushed

zone. This indicates the connection of the entrance and the exit of the crushed zone

by a an enlarged conduit path and can therefore be considered as a somewhat local

breakthrough event. This can also be seen in Fig. 5.13a where the flow rate at

the output node of passage 1 increases rapidly at ≈ 150 years also indicating the

breakthrough similar to the dam–site models in 3 and 4. Fig. 5.12b shows that the

highest flux rates have established inside the passage and inside CZ1 (orange). The

flux rates up– and downstream are still low (blue colors) but capture a zone with

the same width (along the y–direction) as CZ1 up to x ≈ 250 m. However, the most

material is mainly removed from inside the crushed zone.

Figs. 5.11c and 5.12c show the model after 1300 years. The conduits inside CZ1

have further increased in diameter up to a factor of ≥ 100 (yellow). But also the

conduits along the domain boundary at x = 0 m as well as conduits downstream of

CZ1 have enlarged. This is also visible in the flux rates in Fig. 5.12c. The flux rates
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in the zone around CZ1 have slightly increased and this zone has penetrated deeper

into the domain.
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Fig. 5.11: Conduit diameter evolution of the 3D doline model 1 for different
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Fig. 5.12: Flux rate evolution of the 3D doline model 1 for different snapshots in
time; Below each subplot the year is given; plotted are the isosurfaces of constant
head from low (dark grey) to high (light grey) values and the flux rates inside
the conduit on a log–scale from 10−12 [mol m−2 s−1] (blue) to 10−7 [mol m−2 s−1]
(orange).

Furthermore, Fig 5.12c shows that the flux rates in the center of CZ1 have

partially decreased (cyan). At these spots the conduits around one grid element have

collapsed and a smaller diameter has been reset. The collapsing event is also visible

in Fig. 5.13. In Fig. 5.13a the effect is not that much pronounced and only a small
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kink at ≈ 1300 years is visible in the flow curve. In Fig. 5.13b the drop in removal

rates due to the established smaller conduit diameters shows much better the effect

of the beginning collapse. The simulated surface lowering induced by the collapsing

of the conduits is visualized in Figs. 5.13c+d. Fig. 5.13c shows the evolution of the

surface along a profile above passage 1 over time. The abscissa represents the length

in x–direction at y = 375 m and the ordinate the time respectively. Color coded is

the topography along this line from 50 m (orange) to 48 m (blue) respectively. In

Fig. 5.13c it can also be seen that the first surface lowering starts at ≈ 1200 years.

The direct indicator for the onset of collapsing is Fig. 5.13d. There, the estimated

cumulative loss of surface volume above the crushed zone is shown. For the presented

simulations always the maximal possible value of collapsing is assumed, so that the

volume that is removed from the surface for each block Vb is calculated by

Vb = ab (dcrit −mean(db)) , (5.1)

with a = dx = 5 m, b = dy = 5 m and db [m] the new reset conduit diameters

of the four conduits surrounding one single block. As explained in 5.2.4 this pro-

cedure accounts for the representation of fractures (discontinuity planes inside the

bedrock) by conduits in the KARSTAQUIFER model. Thereby, a limestone column

can only move dcrit −mean(db) m virtually downward. Within the model the loca-

tion of the nodes inside the crushed zone are not changed, the height difference is

directly applied to the surface nodes. Of course the direct correlation of collapsing

conduits (fractures) and surface lowering is not given in reality. But here it allows

for good estimation of surface material removal especially considering the fact that

no erosional or mechanical forces are implemented into the model. Note that the

curve in Fig. 5.13d is a cumulative curve and not a rate per year. Like Fig. 5.13c

also Fig. 5.13d indicates the onset of collapsing at ≈ 1200 years.

Figs. 5.11d and 5.12d show the model after 1400 years of evolution. Now the

collapsing inside the crushed zone is also visible in the conduit evolution in Fig.

5.11d whereas the surrounding domain has not much changed. A similar picture

can be seen in Fig. 5.12d where the decreased flux rates inside the crushed zone

indicate the collapsing. Some more information can be gained from Fig. 5.13d where

one can see that this first collapsing era ends at ≈ 1500 years as now almost every

block inside the crushed zone has been affected. For the next 1000 years there is

no significant surface lowering because the conduits inside CZ1 have not reached
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their critical diameter yet. The next collapsing era starts at ≈ 2500 years and ends

at ≈ 2800 years. Then there is again a plateau stage expanding over ≈ 900 years.

From ≈ 3700 years on the collapsing is a rather continuous process than marked

by clear collapsing events. This can be expected as the collapsing mechanism acts

individually on a single block inside the crushed zone. Therewith, the effect of a

single block on the lowering of the whole doline is leveled out during the evolution.

A similar picture is drawn by Figs. 5.13a+b. The flow rates (Fig. 5.13a) increase

steadily as the diameter of the passage is steadily increased. And due to the now

continuous collapsing the flow rate shows no jumps or kinks because there is always

a preferential path of enlarged conduits available that connects the entrance of CZ1

with its exit and so keeping a constant flow rate. After≈ 3700 years the removal rates

inside the conduits of CZ1 is also rather constant at ≈ 10−2 m3 a−1 (green curve in

Fig. 5.13b) whereas the rates increase for the continuously enlarging conduits inside

the domain (black curve).

Later stages in the evolution of model 1 are shown in Figs. 5.11e+f and 5.12e+f

after 3000 and 6000 years respectively. After 3000 years the enlarged conduits have

grown further downstream along the passage and also significantly increased along

the input boundary. After 6000 years this increase is even more pronounced. The

crushed zone more or less acted like a flow–distributor and has therewith created a

wide zone of enlarged conduits parallel to the passage. Necessarily, this enlargement

is also reflected by the increased flux rates. In Figs. 5.12e+f one can see that the

highest flux rates correspond to the strongly increased conduit diameters and vice

versa. Actually, if CZ3 downstream of passage 1 (see Fig. 5.8) would have been

activated in this model, some blocks would have started to collapse already (this

interaction is shown later in model 4).

Figs. 5.13b–d show that after 6000 years of evolution the yearly removal rate

inside the crushed zone is ≈ 10−2 m3 a−1. Due to the implementation of the collaps-

ing mechanism it is possible to simulate a surface lowering to ≈ 48.7 m above the

crushed zone from these small removal rates. This surface lowering corresponds to

a removal of material in the range of ≈ 104 m3 after 6000 years.

5.3.2 Model 2 – two passages, one active crushed zone

Now the effect of a second passage crossing the domain at Y = 125 m (Fig. 5.14) is

investigated. All other domain parameters are identical to model 1. Furthermore,
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Fig. 5.13: Results for 3D doline model 1; a) flow rates at the output of passage 1;
b) removed material per year for all conduits (black curve) and only conduits inside
crushed zone CZ1 (green); c) height spectra along a surface profile above passage
1 showing the surface lowering over time; d) estimated cumulative loss of surface
volume for CZ1.

also the effect of the different collapsing mechanisms as introduced in 5.2.4 is pre-

sented. For explaining the evolution of the different models only the flux rate is used

now as the information in the conduit diameter evolution plots is somehow redun-

dant. However, for completeness the figures showing the evolution of the conduit

diameters can be found in appendix B.1.

5.3.2.1 Model 2 with blocky collapsing mechanism

The effect of a second passage added to the doline model is shown in Figs. 5.15 (flux

rates) and 5.16 (flow rates, surface loss etc.).
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Fig. 5.14: Model setup for doline model 2; implemented are two subsurface passages
(black lines) and one active crushed zone CZ1 (green circle); the green circle also
indicates that only conduits inside the circle are treated as crushed zone conduits;
for the parameters used see Tab. 5.1.

When comparing the subplots in Figs. 5.12 (model 1) and 5.15 no significant

change is visible for the part containing the crushed zone. The highest rates are

established along passage 1 and inside CZ1. The local breakthrough inside CZ1

happens again at ≈ 150 years (see Fig. 5.16a). The collapsing of single blocks inside

CZ1 sets in at ≈ 1300 years which is identical to model 1. Furthermore, in Fig.

5.16d one can again clearly see the two collapsing eras marked by the two jumps in

the curve showing the cumulative surface volume loss.

Obviously, model 2 only differs significantly from model 1 in regions where the

second passage is crossing the domain. Already at the beginning, the highest rates

are established inside passage 2 (Fig. 5.15a). Due to the unblocked passage 2 calcium

aggressive water is transported deep into the domain and in contrast to passage 1 low

flux rates are also established along the passage. At later time steps the influence

of passage 2 becomes even more pronounced. After 6000 years of evolution high

rates are established up to x ≈ 150 m whereas for model 1 the flux rates always are

orders of magnitude smaller. Also visible is the connection between the two passages

at x ≈ 350 m in terms of low flux rates. Note that in the figures this effect may

be over–pronounced due the high grid resolution along the passages and inside the

virtual crushed zone regions. But even if the grid would be completely regular, the

second passage would still allow much more aggressive water to flow deeper into the

domain and accelerate the evolution there.
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Because passage 2 is already quite large from the beginning and not blocked

by a crushed zone, the flow rate increases steadily over time (Fig. 5.16a – green

curve). After 6000 years of evolution the flow rate inside passage 1, although it is

temporarily blocked, is ≈ 10 % higher than in passage 2. The reason for this is that

the enlarged zone along passage 1 with its high flux rates acts like a wide single

channel on its way to a global breakthrough. More fresh water can be transported

downstream and therewith more material can be removed. Like already stated for

model 1, if CZ2 or CZ3 would have been mechanically activated, several collapsing

events would be visible after 6000 years.
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Fig. 5.15: Flux rate evolution of the 3D doline model 2 (blocky collapsing) for
different snapshots in time; Below each subplot the year is given; plotted are the
isosurfaces of constant head from low (dark grey) to high (light grey) values and
the flux rates inside the conduit on a log-scale from 10−12 [mol m−2 s−1] (blue) to
10−7 [mol m−2 s−1] (orange).
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Fig. 5.16: Results for 3D doline model 2 (blocky collapsing); a) flow rates at the
output of passage 1 (black) and passage 2 (green); b) removed material per year
for all conduits (black curve) and only conduits inside crushed zone CZ1 (green); c)
height spectra along a surface profile above passage 1 showing the surface lowering
over time; d) estimated cumulative loss of surface volume for CZ1.

5.3.2.2 Model 2 with layered collapsing mechanism

Now the effect of the different collapsing mechanism on the evolution of the doline

model is investigated. All parameters are identical to model 2 with blocky collapsing

but now the layered collapsing is applied (see 5.2.4). Initially the models are of

course inherently the same and show the same evolution. Whereas for the model

with blocky collapsing the onset of collapse is at ≈ 1300 years nothing has happened

for the model with layered collapsing. This is of course to be expected because the

criteria for a collapse event is that 75 % of all conduits inside one depth layer of

the crushed zone have to reach the critical diameter dcrit. The collapsing starts at
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≈ 1400 years and happens for all layers within 10 years of evolution. Due to this

quite abrupt collapsing the whole crushed zone is reset and the passage is blocked.

Note the high head gradients inside the crushed zone in Fig. 5.17d after the collapse.

Due to the blocking of CZ1, no material is removed from the region downstream of

CZ1 right after the collapse (compare Figs. 5.15d and 5.17d).

The influence of the layered collapse mechanism can best be seen in Fig. 5.18.

The collapse event is clearly visible by sharp cuts in the flow curve (Fig. 5.18a –

black curve) and removal rate curve (Fig. 5.18b – green curve) respectively. After

the first collapse at ≈ 1400 years the collapsing happens periodically every ≈ 1300

years. This periodicity is of course determined by the critical diameter dcrit which

is from a mechanical point of view rather small within this model but chosen for

practical reasons. Here, dcrit = 0.05m and allows therefore for at least four collapsing

events within the presented 6000 time steps. If a larger value for dcrit would have

been chosen the time until the first collapse and therefore the calculation time would

have been unnecessarily increased. Due to the fact that always the maximal possible

value for the surface lowering is used the effect of a larger dcrit is similar to the smaller

dcrit and a shorter time scale.

The layered collapsing of course also changes the evolution of the topography. As

now the collapsing happens along one depth layer simultaneously Fig. 5.18c shows

the evolution of the topographic height over time for the whole crushed zone and not

only along a profile like in Figs. 5.13c and 5.16c. After 6000 years the topography

above CZ1 is lowered to ≈ 48.7 m and ≈ 9 500 m3 of material are removed from the

surface (Fig. 5.18d).

However, after 6000 years of evolution the two collapsing mechanisms differ only

slightly from each other in terms of domain evolution. In Figs. 5.15f and 5.17f one

can see slight differences in the flux rates in the region of the not activated CZ3 and

between the two passages at x ≈ 350 m but generally their evolution is identical.

These small differences are also visible in the conduit evolution plots (Figs. B.1 and

B.2). As in a way to be expected the different collapse mechanism has no influence

whatsoever on the flow rate inside the second passage (see Fig. 5.18a).
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Fig. 5.17: Flux rate evolution of the 3D doline model 2 (layered collapsing) for
different snapshots in time; Below each subplot the year is given; plotted are the
isosurfaces of constant head from low (dark grey) to high (light grey) values and
the flux rates inside the conduit on a log-scale from 10−12 [mol m−2 s−1] (blue) to
10−7 [mol m−2 s−1] (orange).



CHAPTER 5. GENESIS OF LARGE COLLAPSE DOLINES 103

0 1000 2000 3000 4000 5000 6000
10

−3

10
−2

10
−1

10
0

10
1

10
2

time [a]

flo
w

 [m
3  s

−1
]

 

 

passage1
passage2

0 1000 2000 3000 4000 5000 6000
10

−7

10
−5

10
−3

10
−1

time [a]

re
m

ov
al

 r
at

e 
[m

3  a
−1

]

 

 

all
only CZ

0 100 200 300 400 500

0

1000

2000

3000

4000

5000

6000

length [m]

tim
e 

[a
]

 

 

Height [m]

48

49

50

0 1000 2000 3000 4000 5000 6000
0

2000

4000

6000

8000

10000

time [a]

cu
m

. s
ur

f. 
vo

lu
m

e 
[m

3 ]

 

 

CZ

a) b)

c) d)

Fig. 5.18: Results for 3D doline model 2 (layered collapsing); a) flow rates at the
output of passage 1 (black) and passage 2 (green); b) removed material per year
for all conduits (black curve) and only conduits inside crushed zone CZ1 (green); c)
height spectra along a surface profile above passage 1 showing the surface lowering
over time; d) estimated cumulative loss of surface volume for CZ1.

5.3.2.3 Model 2 with total collapsing mechanism

Because the total collapsing mechanism is basically nothing more than a combined

layered collapse, the domain evolutions are nearly identical. Therefore, also Figs.

5.17 and 5.19 are almost identical. A slight difference is only visible in Figs. 5.18 and

5.20. Because the crushed zone is instantaneously blocked by the total collapsing

mechanism the flow and removal rates decrease a little stronger. A similar fact

holds for the evolution of the topography. There, the final surface lowering is a little

smaller compared to the layered collapse due to lesser collapse events (the collapse

criteria is yet not reached for the total collapsing mechanism). Effectively, the height
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difference between both collapse mechanisms is ≈ 20 cm which means that in the

time range considered only 4 layers more have collapsed with the layered collapse

model.
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Fig. 5.19: Flux rate evolution of the 3D doline model 2 (total collapsing) for
different snapshots in time; Below each subplot the year is given; plotted are the
isosurfaces of constant head from low (dark grey) to high (light grey) values and
the flux rates inside the conduit on a log–scale from 10−12 [mol m−2 s−1] (blue) to
10−7 [mol m−2 s−1] (orange).
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Fig. 5.20: Results for 3D doline model 2 (total collapsing); a) flow rates at the
output of passage 1 (black) and passage 2 (green); b) removed material per year
for all conduits (black curve) and only conduits inside crushed zone CZ1 (green); c)
height spectra along a surface profile above passage 1 showing the surface lowering
over time; d) estimated cumulative loss of surface volume for CZ1.

5.3.3 Model 3 – two passages, two active crushed zones

In model 3 now a second crushed zone (CZ2) is activated along passage 2 to inves-

tigate if and how the two crushed zones interact in their evolution (Fig. 5.21). For

this model only the layered collapsing mechanism is considered. The figure showing

the evolution of the conduit diameters can be found in appendix B.2.

For the first 1300 years the evolution of model 3, in particular the evolution of the

domain along the two passages, is comparable to the evolution of passage 1 in model

2. Both passages in Fig. 5.22a are initially blocked by the crushed zones and it takes

again ≈ 150 years for the local breakthrough to occur. As for model 2 the highest
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Fig. 5.21: Model setup for doline model 3; implemented are two subsurface passages
(black lines) and two active crushed zones CZ1 and CZ2 (green circles); the green
circles also indicate that only conduits inside the circles are treated as crushed zone
conduits; for the parameters used see Tab. 5.1.

flux rates and therewith the fastest evolution are established inside the passages

and the crushed zones, respectively. The first collapse event occurs for both crushed

zones after ≈ 1430 years of evolution as shown in Fig. 5.22d. Generally, as it can

be seen from Figs. 5.22 and 5.23 both passage compartments evolve simultaneously.

The collapse period is for both crushed zones ≈ 1400 years and after 6000 years of

evolution the surface above both crushed zones has lowered to ≈ 48.7 m (see Fig.

5.23c). When comparing later stages in the evolution of model 2 (Figs. 5.17e+f)

and model 3 (Figs. 5.22e+f) one can see that there are less horizontal connections

between both passages. This is again due to the wide single channel behaviour of

the regions around both passages. They act like two competing channels on their

global breakthrough paths as it is known from e.g. Bauer et al. (2003); Kaufmann

(2003a); Romanov et al. (2003a) for their 2D benchmark models.

Generally, both passages and both crushed zones evolve independently from each

other. Furthermore, as they have similar properties in terms of initial conduit diam-

eter distribution, they evolve in a similar way. It seems that the distance between

both passages / crushed zones is too big to have any effect. In B.2.1 another layout

for model 3 is presented. There, both crushed zones are connected horizontally. But

also this layout has no effect on the general evolution of model 3. This is due to

the fact, that both passages / crushed zones start from similar initial conditions but

more importantly they are placed in parallel regarding the main direction of flow.
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So the geometry or layout of the crushed zones has to be further extended.
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Fig. 5.22: Flux rate evolution of the 3D doline model 3 (layered collapsing) for
different snapshots in time; Below each subplot the year is given; plotted are the
isosurfaces of constant head from low (dark grey) to high (light grey) values and
the flux rates inside the conduit on a log-scale from 10−12 [mol m−2 s−1] (blue) to
10−7 [mol m−2 s−1] (orange).
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Fig. 5.23: Results for 3D doline model 3 (layered collapsing); a) flow rates at the
output of passage 1 (black) and passage 2 (green); b) removed material per year for
all conduits (black curve) and only conduits inside crushed zones CZ1 (green) and
CZ2 (red); c) height spectra along surface profiles above passage 1 (top) and passage
2 (bottom) showing the surface lowering over time; d) estimated cumulative loss of
surface volume for CZ1 (green) and CZ2 (red).

5.3.4 Model 4 – two passages, three active crushed zones

Fig. 5.24 shows the setup for model 4. There are again two passages but the

number of active crushed zones is increased to three. CZ3 is situated along passage

1 downstream of CZ1. Domain parameters and boundary conditions are again similar

to models 1 to 3. The figure showing the relative increase of the conduit diameters

can be found in appendix B.3. Here, again only the flux rates are used for describing

the domain evolution and only the layered collapsing mechanism is applied.

Due to the interaction of crushed zones CZ1 and CZ3 positioned along passage 1,
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Fig. 5.24: Model setup for doline model 4; implemented are two subsurface passages
(black lines) and three active crushed zones CZ1,CZ2 and CZ3 (green circles); the
green circles also indicate that only conduits inside the circles are treated as crushed
zone conduits; for the parameters used see Tab. 5.1.

the evolution of model 4 is more complex compared to the models presented before.

Locally, the initial state of the three crushed zones is quite similar. Each crushed

zone blocks their corresponding passage and due to the higher conduit diameters

inside the crushed zones, compared to the rest of the domain, the flux rates there are

one to two orders of magnitude higher. After 300 years of evolution (Fig. 5.25b) the

situation is twofold. For passage 2 and crushed zone CZ2 the evolution is comparable

to model 2 and 3. After ≈ 150 years the local breakthrough event has occurred and

high flux rates are established inside the whole crushed zone and along passage

2. The local breakthrough is again clearly visible in Fig. 5.26a (green curve). In

contrast to this, higher flux rates are so far only established directly inside passage

1 and along a central region in CZ1. Moderately increased flux rates are also visible

in CZ3 but more horizontally spread compared to CZ1. From the head isosurfaces

it is clearly visible that inside CZ3 higher gradients have established. Although a

central region in CZ1 has evolved, the gradients are so low that the evolution there

is much slower compared to CZ3. At first, a local breakthrough occurs in CZ3 and

the head gradients are decreasing. Due to the rebounding of the head isosurfaces the

gradients inside CZ1 increase and the local breakthrough occurs there too. When

the heads are evenly distributed along passage 1 both crushed zones evolve at a

constant pace.
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Fig. 5.25: Flux rate evolution of the 3D doline model 4 (layered collapsing) for
different snapshots in time; Below each subplot the year is given; plotted are the
isosurfaces of constant head from low (dark grey) to high (light grey) values and
the flux rates inside the conduit on a log-scale from 10−12 [mol m−2 s−1] (blue) to
10−7 [mol m−2 s−1] (orange).

Fig. 5.25c shows the evolution after 1430 years. The horizontal layers inside

CZ2 have collapsed and passage 2 becomes temporary blocked. Note that every

time passage 2 is blocked by a collapse water can flow from passage 1 in direction

of passage 2 due to the changed head field. After 1680 years of evolution also the
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layers inside CZ3 collapse and passage 1 is blocked there (see Fig. 5.26a – black

curve). The reason that CZ3 collapses before CZ1 is due to the initial phase, when

higher gradients are established inside CZ3 and therefore the conduit enlargement

is accelerated.
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Fig. 5.26: Results for 3D doline model 4 (layered collapsing); a) flow rates at the
output of passage 1 (black) and passage 2 (green); b) removed material per year
for all conduits (black curve) and only conduits inside crushed zones CZ1 (green),
CZ2 (red) and CZ3 (cyan); c) height spectra along surface profiles above passage 1
(top) and passage 2 (bottom) showing the surface lowering over time; d) estimated
cumulative loss of surface volume for CZ1 (green), CZ2 (red) and CZ3 (cyan).

The cyan curve in Fig. 5.26d also shows the onset of collapse for CZ3. But in

contrast to CZ1 and CZ2 much less material is removed from the surface. This is due

to the fact that only the three lowermost layers have collapsed. Only directly after

the bottom layer of CZ3 collapses and the passage is blocked, the head gradients
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increase and the upper layers of the crushed zone are activated and can evolve. The

increase in head gradients can be seen by the distribution of the head isosurfaces in

Fig. 5.25d.

After 1850 years of evolution, the layers inside CZ1 collapse (Fig. 5.25e). As

here the heads are generally higher due to the boundary condition all layers inside

CZ1 collapse and the surface is lowered by almost the same amount as CZ2. Now

the gradients inside CZ3 are so small that only the bottom layer is evolving which

is also visible in Fig. 5.25e by the small flux rates inside CZ3.

The final stage of this model after 6000 years of evolution is shown in Fig.

5.25f. Material is removed from the crushed zones at high rates, so the system

is apparently in between collapse events. Due to the widening of the conduits in

between the crushed zones CZ1 and CZ3 and downstream of CZ2 respectively the

flux rates are also high there. In contrast to model 3 (Fig. 5.22f) where both

passages evolved more or less independently, the region between CZ1 and CZ2 is

now more evolved. This may be due to the interaction of both passages caused

by their aperiodic blocking. This effect of this aperiodicity is clearly visible in the

curves in Fig. 5.26. After 6000 years the surface above CZ1 and CZ2 has lowered to

≈ 48.7 m, whereas the surface above CZ3 has only lowered to ≈ 49.4 m due to the

less active layers and therefore less often collapsing events.

Also for model 4 an alternative setup was simulated. It is similar to model 3b

(B.2.1) where now in model 4b CZ1 and CZ3 are connected and is shown in appendix

B.3.1. The results are in a way expected as for model 4b both connected crushed

zones act like an elongated single crushed zone. The aperiodicity of the collapsing

events is still there but due to the higher heads inside CZ3 all layers can collapse

and similar amounts of material compared to CZ1 can be removed.

5.4 Conclusions

In this chapter a 3D model for the creation of large collapse dolines was presented.

Here, the concept presented by Palmer and Palmer (2006) of a collapsing zone,

where local breakdowns of material increase the hydraulic gradients inside a cave

passages below an evolving doline was used. The increased gradients lead to an

increased dissolution of bedrock material and over time again to a local break-

down. These periodic breakdowns or collapses were simulated with the 3D program



CHAPTER 5. GENESIS OF LARGE COLLAPSE DOLINES 113

KARSTAQUIFER. A 3D model domain was created containing one or more crushed

zones, representing regions of local bedrock collapses. The breakdowns were imple-

mented by resetting the conduit diameters of the conduit network inside the crushed

zone to a smaller diameter when a certain critical diameter dcrit was reached. By this

procedure constant high flux rates were established inside the whole crushed zone.

Three different collapsing mechanisms were applied and their effect on the evolution

was studied. As all three a rather simple mechanisms, their effect is straightforward

in terms of temporal and spatial evolution. The larger the collapsing zone / crite-

ria (blocky, layered and total) the fewer events happen. In future studies of (real)

collapse dolines, the mixture of different collapsing mechanisms within one model

and the automatic activation of crushed zones over time may enhance the modelling

results. With the presented collapsing mechanism the surface lowering inside the

doline could be simulated. This collapsing mechanism together with the collapsing

parameters could simulate the surface lowering of a doline with a diameter of ≈ 100m

in the range of ≈ 0.22 mm a−1. This rate leads to a collapse doline with 100 m in

depth after ≈ 460 000 years. This is an acceptable time frame for the creation of

a large collapse doline. Note that Dinaric collapse dolines may have formed within

in a longer time range, whereas for the large Tiankengs also much shorter creation

times are supposed.

Also the interaction of several crushed zones parallel to the major flow direction

and / or along one subsurface river was studied. When starting from similar initial

conditions, dolines located parallel to the major flow direction (model 3) evolve more

or less independently and in a similar way, no matter if they are almost connected

or farther away from each other. This effect, however, may be due to the still quite

coarse grid discretization and regular grid layout. When a second doline is situated

along the same subsurface river then these two dolines show a complex interaction

in their evolution. These interaction is characterized by aperiodic collapsing events.

Whereas the downstream doline evolves faster up to the first collapsing event, this

evolution is slowed down in the advancing simulation. Due to the periodic collapsing

of the upstream doline the downstream doline exhibits alternating phases of activity

and inactivity due to the changed head field. Also a nearby doline parallel to the

major flow direction is effected by this interaction. For this setup, the evolved

subsurface conduits between the parallel dolines are more pronounced than without

the third downstream doline. This three doline setup (model 4) is clearly the most
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interesting one and shows that already in such a basic model setup as presented

here, the interaction between dolines appearing in a group can be very complex.

The scenarios shown here can easily be extended and used to further study the

interaction of groups of collapse dolines especially when considering the constantly

increasing computational power.

Like every model also this model has some drawbacks. These are mainly the

lack of erosional processes on the bottom of the doline, a correct implementation

or estimation of the mechanical properties and so far no climatology influences.

Whereas the implementation of some realistic climate data and erosional processes

should be a straightforward undertaking, the implementation of correct mechanics

could be rather complicated. Nevertheless, this model can be used as a basis for

future simulations on the (early) creation of collapse dolines.



Chapter 6

Summary & Outlook
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This work has shown the development or application respectively of the pro-

gram KARSTAQUIFER for simulating the evolution of karst aquifer systems in

three dimensions under various conditions. The essential findings shall be shortly

summarized here.

As the need for a comprehensive understanding of the processes governing the

evolution of karst aquifers especially close to dam–sites is obvious, the results pre-

sented here are intended to support our understanding of this complex system.

Chapter 3 has shown the application of the 3D program for modelling the evolu-

tion of karst aquifers beneath dam–sites. Based on a conceptual model, first simple

dam–site models have been simulated to understand the influences of several critical

parameters on the evolution of the aquifer.

In Chapter 4, the evolution of an aquifer beneath a small dam–site in Switzer-

land was simulated. As the local bedrock is composed of highly soluble gypsum, the

dam–site and the associated change of the aquifer hydraulics has caused severe sub-

sidence of an adjacent highway. The presented model is the first 3D evolution model

of a karst aquifer close to a dam–site. The model could show that the dam–site is

indeed the major source for the creation of a weathered zone that was identified in

the field as the cause for the subsidence. The spatial extent as well as the chemi-

cal properties of this weathered zone could be successfully reproduced. Therefore,

the model incorporated real topography data, precipitation values from field mea-

surements and realistic boundary conditions. The boundary conditions themselves

were constrained by a 3D hydrogeological model and hydraulic head data from well

observations. Furthermore, the complex geology of the local bedrock namely the

Gipskeuper was successfully implemented by an anisotropic statistical conduit di-

ameter distribution. To give a possible outlook on the evolution of this aquifer a

future model for the next 50 years was presented. This model showed that the reme-

dial measures that were carried out to protect the highway can prevent the highway

from further subsidence. However, as the dam structure itself may also already be

threatened by subsidence the model showed that there is still the potential for the

creation of larger voids and fissures below the dam and therefore a risk for this

dam–site cannot be excluded.

Finally, in Chapter 5 a natural karst phenomenon that recently has attracted

notice by karst scientists working with numerical modelling, has been investigated

— large collapse dolines. Especially with a focus on the initial creation of these
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large karst surface depressions. The models presented here, simulate the creation of

large collapse dolines in limestone bedrock by breakdown events in a mechanically

weak zone named here crushed zone. These breakdowns ensure that a subsurface

river or passage, a necessary criteria for the development of large collapse dolines,

is effectively blocked and the local hydraulic head is increased. Furthermore, the

breakdown ensures that high dissolution rates are established inside the crushed

zone over the entire calculation time. In addition, the interaction of spatially dis-

tributed dolines (crushed zones) was investigated and presented. It was shown that,

if connected via the same subsurface river two dolines interact in a way, that parts

of the downstream doline become periodically active or inactive respectively. This

is especially interesting when considering the fact that it is not unlikely to find large

collapse dolines occurring in groups in nature and that they are bound to the same

karst system. Also simulated by the breakdown or collapsing events was the surface

lowering over time. Even if mechanically not correct reasonable lowering rates could

be estimated.

The presented modelling studies have shown the large capabilities of the 3D

program KARSTAQUIFER and the possibility of its application to a wide range of

problems occurring in karst science. It was shown that nowadays were computational

power is widely accessible, large and complex three dimensional karst evolution mod-

els can be treated. The focus in the interesting field of numerical modelling can be

shifted to several topics in future development. As nature can of course be arbitrar-

ily complex it may be advantageous to implement irregular finite element grids and

networks. Therewith it is possible to model and focus on complex geometries with

high resolution without loosing the ability to model large scale domains. This would

be essentially helpful regarding man–made structures in karst. From a process–based

perspective the implementation of dissolution inside the matrix and not only along

discrete fractures / conduits and their combined interactions is an approach worth

to pursue. Furthermore, the complete integration of the vadose zone and the karst

processes there, would allow modelling an additional wide range of natural karst

systems.

I hope that this work can be taken as one stepping stone for future numerical

studies of complex karst systems in three dimensions.
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One aspect that has to be considered in 3D modelling is the performance of

the available simulation program. The program has to be able to handle large

models in an acceptable time. For karst evolution modelling the possible limitations

in terms of needed computational effort are twofold. The first one deals with a

typical aspect of finite element modelling, the solution of large sparse matrices.

Therefore, two well known and established solver routines (PARDISO and MUMPS)

are tested and benchmarked on different hardware platforms. The second one is

implicitly given by the dissolution process. The dissolution has to be calculated

sequentially for every single conduit due to the transport of the dissolved material.

Thereby, the calculation of the dissolution has also a significant influence on the

overall computational performance. Both effects are discussed here.

A.1 On the performance of KARSTAQUIFER

To estimate the general performance of KARSTAQUIFER the main steps for sim-

ulating a karst evolution model need to be reconsidered (see 2.2). These are

1. Reading the input data & Initialization (finite element grid, parameters, etc.)

2. Assembling & solving the system of equations (large sparse matrices) to get

the hydraulic heads

3. Apply the dissolution process (flow rate → flux rate → increase diameter →
transport)

4. Saving results.

Point 1 needs only to be done once when starting the simulation. For a saturated

groundwater flow model point 2 needs to be done at least once in every time step.

Depending on the applied solving routine this process can be parallelized. When

turbulence is activated and / or an unsaturated groundwater flow model is consid-

ered, point 2 has to be performed several times per time step until convergence is

reached. Therefore, the simulation may benefit from parallelization. The dissolu-

tional conduit widening in point 3 is per default a sequential process and can not

be parallelized. It also needs to be performed in every time step. Depending on the

simulated karst evolution model it may be possible to save the results (point 4) less

frequent than every time step. For instance for a natural karstification model that
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simulates several hundred thousand of years of evolution the data could be saved

every 500 or 1000 time steps.

So the two crucial parts when performing karst evolution modelling are solv-

ing the linear system of equations (parallel) and conduit dissolution (sequential)

respectively. Their impact on the simulation is shown in the next sections.

A.1.1 Model size vs. calculation time

First, the overall performance of KARSTAQUIFER is tested on different hardware

platforms (see Tab. A.1). These are a normal desktop computer with an AMD

Athlon X2 processor, a workstation with an AMD Opteron processor and a com-

puter cluster based on Intel Xeon processors. To estimate the dependency of the

computation time on the grid discretization, several models were generated. For a

list of the models see Tab. A.2.

Platform CPU No. of cores Main memory - RAM

Desktop Computer - PC AMD Athlon X2 2 3 GB

Workstation - WS AMD Opteron 2 8 GB

Server - SRV Intel Xeon 8 8 GB

Cluster - CLU (24 nodes) Intel Xeon 192 192 GB

Table A.1: Hardware platforms

For all models the number of nodes in x, y and z direction are given. Further-

more, the corresponding number of total grid nodes Nn, number of parallelepipedal

elements Ne and number of conduits Nc are given. In the last column of Tab. A.2 the

number of non–zeros NNZ in the global element matrix is given as this is a measure

for the sparsity of the problem. As the first models a rather small only one node of

the computer cluster is used (SRV in Tab. A.1). Generally, it is expected due to the

sequential nature of any karst evolution model that also for KARSTAQUIFER the

calculation time depends mainly on the processor clock. For a first comparison the

sequential version of the PARDISO solver was used. As the computer cluster was

not used for this test model12 and model13 had to be excluded due to insufficient

memory.

Fig. A.1 shows the results for this first test for model1 to model11. In Fig. A.1a

the needed disk space for saving the data of one time step is shown as a function

of grid nodes. In Fig. A.1b the corresponding calculation time is shown for the

desktop computer (PC – blue line), the Workstation (WS – black line) and one
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Name nx ny nz Nn Ne Nc NNZ ([%])
model1 13 7 7 637 432 1 680 13 357 (3.292)
model2 17 9 9 1 377 1 024 3 744 30 625 (1.615)
model3 21 11 11 1 541 2 000 7 040 58 621 (0.908)
model4 25 13 13 4 225 3 456 11 856 99 937 (0.560)
model5 31 16 16 7 936 6 750 22 560 192 556 (0.306)
model6 41 21 21 18 081 16 000 52 080 450 241 (0.138)
model7 61 31 31 58 621 54 000 171 120 1 498 861 (0.044)
model8 81 41 41 136 161 128 000 400 160 3 528 481 (0.019)
model9 101 51 51 262 701 250 000 775 200 6 863 101 (0.010)
model10 101 61 61 375 821 360 000 1 111 420 9 861 061 (0.007)
model11 121 61 61 450 241 432 000 1 332 240 11 826 721 (0.006)
model12 121 61 76 560 956 540 000 1 661 655 14 767 066 (0.005)
model13 121 76 76 698 896 675 000 2 072 520 18 438 436 (0.004)

Table A.2: Models used for KARSTAQUIFER performance tests; nx, ny, nz
number of nodes in x, y, z direction; Nn total number of nodes; Ne total number
of parallelepipedal elements; Nc number of conduits; NNZ number of non–zeros in
global element matrix (percentage)

server (node) of the computer cluster (SRV – green line). Note that the axes in

both plots are logarithmically scaled. For very small model sizes (model1 to model5)

the disk space as well as the calculation time does not exceed 10 [MB] and 10 [s]

respectively. The required disk space increases linearly up to 340 [MB] for model11.

For the calculation time a similar behaviour can be observed. The calculation time

for one time step increases more than linearly with increasing nodes. The hardware

platform also has a significant effect on the calculation time. The PC has for all

models the longest calculation time and could only be used up to model8 due to

insufficient memory (see. Tab. A.1). The workstation is for all models a factor of

≈ 1.2 faster than the PC and needs ≈ 18 minutes for one time step of model11.

The server performs even better and is for bigger models (≥ model8) more than 1.5

times faster than the workstation. The difference between server and workstation

increases with increasing model size and model11 only takes ≈ 10 minutes.

The dashed vertical lines in Fig. A.1a+b mark the range where model size,

required disk space and calculation time are sufficiently balanced and have been

applied in this work. Whereas the calculation time for large model sizes may be in

an acceptable range (1000 time steps for model11 take ≈ 1 week), the corresponding

required disk space is impractically high (≈ 330GB).
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Fig. A.1: a) disk space for storing simulation results as a function of model size;
b) calculation time as a function of model size for three different hardware platforms

A.1.2 Influence of the sparse solvers

A.1.2.1 Solving the linear system of equations

To determine the hydraulic heads the sparse system of equations Ax = b based

on 2.18 has to be solved. As A and b are given the solution x (head) needs to

be found. This can either be done by a direct method or an iterative method,

respectively. Generally, the use of direct methods is preferred as they don’t need

preconditioning prior to solving, which can be computationally expensive. For an

overview on available direct solvers see e.g. Gould et al. (2005). Generally, all direct

methods apply the following routines:

1. Ordering that exploits the sparsity structure of the matrix A to determine a

pivot sequence.

2. Analysis / symbolic factorization that uses the pivot sequence to establish the

data structures for factorization.

3. Numerical factorization of A into upper and lower triangular matrices A = LU

where U = LT .

4. Solving by forward elimination Ly = b and backward substitution Ux = y.

In this list the numerical factorization is the computationally most expensive one.

For this study, the two well established sparse solvers PARDISO and MUMPS1 are

1Multifrontal Massively Parallel Solver
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tested. PARDISO by Schenk and Gärtner (2004, 2006) is a shared–memory multi-

processing parallel direct sparse solver that uses a combination of left– and right–

looking for factorization. MUMPS by Amestoy et al. (2001, 2006) was originally

designed for distributed–memory computers (clusters) and uses a multifrontal ap-

proach for factorization. For a detailed description of the algorithms implemented

by the solvers the reader is referred to the given references. The benchmark tests

done here are rather to get an idea on the overall computation requirements for

KARSTAQUIFER than to intensively compare both solvers against each other. For

performance tests of several direct solvers the reader is referred to Gould et al. (2005)

and the references therein.

A.1.2.2 Parallelizing the solving routine

Now the effect of parallelizing the matrix solving routine is examined. In a next step

the two matrix solvers are tested.

First the parallel fraction of the program KARSTAQUIFER needs to be deter-

mined. In theory this can be done by the use of Amdahl’s law (Bauke and Mertens,

2006)

1 = S + P, (A.1)

where S is the sequential fraction of a program that cannot be parallelized and P

is the parallel fraction respectively. Then the speedup SU achieved by parallelization

is

SU =
1

S + P
N

≤ 1

S
, (A.2)

with N the number of processors used for the parallel fraction. It is clear from

A.2 that the speedup is limited by the sequential fraction of the program and cannot

exceed 1/S, no matter how many processors are used. Furthermore, A.2 is of course

highly idealized as the term P/N cannot become zero in reality. Actually, for a given

program with a given parallel fraction the speedup decreases again with increasing

N . This is due to the produced overhead from interprocess communication and data

transfer. Therefore A.2 extends to
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SU =
1

S + P
N + Θ(N)

≤ 1

S
, (A.3)

where Θ(N) is a linear function depending on the number of processors N .

KARSTAQUIFER speedup To get a rough estimate on the parallel perfor-

mance of KARSTAQUIFER timing routines were implemented into the program.

The total calculation time of one time step as well as the time needed by the solver

was measured for different amounts of processors N . The calculations were per-

formed on one cluster node (SRV in Tab. A.1) and the PARDISO solver was used.

When using only the sequential version of the solver (N = 1) it should be possible

with A.1 and A.2 to empirically estimate the parallel fraction P of the program and

therefore also derive the maximum possible speedup SUmax = 1/S. By increasing

the number of processors N available to the solver, the real speedup SU(N) can be

obtained. The results are shown in Tab. A.3

Name T (1)[s] TP (1)[s] (P [%]) SUmax SU(2) SU(4) SU(6) SU(8)
model1 0.308 0.008 (2.4) 1.025 0.998 1.000 1.002 0.927
model2 0.688 0.021 (3.0) 1.031 1.007 1.005 1.010 0.969
model3 1.330 0.048 (3.6) 1.037 1.000 1.010 1.006 1.005
model4 2.311 0.108 (4.7) 1.049 1.010 0.974 1.012 1.015
model5 4.324 0.261 (6.0) 1.064 1.015 1.019 0.952 1.022
model6 10.744 0.978 (9.1) 1.100 1.026 0.949 1.044 1.046
model7 39.284 7.118 (18.1) 1.221 1.073 1.122 1.130 1.132
model8 109.719 34.489 (31.4) 1.458 1.144 1.244 1.260 1.259
model9 250.894 124.689 (49.7) 1.988 1.263 1.485 1.511 1.462
model10 464.681 248.916 (53.6) 2.154 1.296 1.510 1.556 1.534
model11 614.791 354.465 (57.7) 2.362 1.328 1.605 1.624 1.599

Table A.3: Results of the KARSTAQUIFER speedup test for different model sizes;
T (1) calculation time (total) for one time step and one processor; TP (1) calculation
time (only solver) for one time step and one processor; SUmax theoretical maximum
speedup; SU(N) real speedup for different amounts of processors (N)

T (1) is the total sequential calculation time2 for one time step and correspond

to the values already shown in Fig. A.1 (SRV). In the third column the time needed

by the solver TP (1) is given. As this is essentially the parallel fraction P of the

program, the corresponding percentage is also given. As the total calculation times

2The number 1 denotes that only one processor was used and therefore the program runs in sequen-
tial mode.
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increase from ≈ 0.3 [s] for model1 to ≈ 615 [s] for model11 also the parallel fraction

of the program increases significantly. For the larger models (≥model7) the parallel

fraction increases from ≈ 18 [%] to almost 58 [%]. Because the small models only

have very little parallel fractions the theoretically possible speedup SUmax ≤ 1.1 is

also very small. On the other hand, also for the largest model the maximum possible

speedup is only SUmax ≈ 2.4 and can be expected to be even lower in reality.

The last four columns show the measured speedups for N = 2, N = 4, N = 6

and N = 8 processors respectively. For the small models (≤model6) the use of

more processors shows now significant improvement. Actually, due to the overhead

produced by using more cores, the parallel performance can be even worse than the

sequential one with SU(N) smaller than 1. The highest speedup for every model is

marked with red color in Tab. A.3. For the larger models (≥model8) the speedup

increases with the increase of available processors up to N = 6. If more processors

are used the speedup drops again which can be due to internal friction losses caused

by the increased costs for interprocess communication.

Tab. A.3 also shows what is know in computational science as Gustafson’s law

Bauke and Mertens (2006)

SU(N) = S +N · P, (A.4)

which is an extension of Amdahl’s law in A.1. It states that the speedup increases

linearly with increasing N , as long as also the parallel fraction of a program increases

and therewith consequently the model size has to increase. The rows of Tab. A.3

correspond to the consequences of Amdahl’s law that the speedup for a given problem

is limited by the sequential fraction of the program. Whereas the columns of Tab.

A.3 correspond to Gustafson’s law, that if the model size increases also the speedup

increases.

PARDISO performance To evaluate the parallel performance of the PARDISO

solver Fig. A.2a shows only the speedup of the parallel fraction of the program,

the solver routine. The speedup is shown as a function of available processors N

for models ≥model7. For all shown models the speedup increases significantly when

using two processors instead of one. The speedup is close to the ideal speedup

(dashed line) and is for models ≥model8 ≈ 1.7. Increasing the number of processors

to four the speedup still increases significantly. For model7 and model8 it is less
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Fig. A.2: a) PARDISO parallel performance (speedup as a function of processors);
b) MUMPS parallel performance (speedup as a function of processors / nodes); c)
comparison of calculation times (only for the solver) as a function of grid nodes, for
different hardware platforms and sparse solvers; d) comparison of total calculation
times for one time step as a function of grid nodes, for different hardware platforms
and its best performing sparse solver; For the model parameters (a+b) see Tab.
A.2, for the abbreviations (c+d) see Tab. A.1

pronounced but still noteworthy. For models ≥model9 the speedup is ≈ 3 and

therewith 75% of the ideal speedup. For N = 6 the speedup almost remains static

with only a slight increase and for N = 8 the speedup already decreases for the

larger models (≥model9).

MUMPS performance A similar speedup test was done for the MUMPS solver

and the results of its parallel performance are shown in Fig. A.2b. Note that because

MUMPS is used on a computer cluster, the number of processors now corresponds to

the number of cluster nodes. For all models shown here, the speedup increases when

using two nodes instead of one but is smaller compared to PARDISO (maximum
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of ≈ 1.4 for model11). For N = 4 nodes the speedup decreases for all models but

model10 and increases again when N = 8. Generally, excluding model7 as it is too

small to gain from more nodes, the larger the model size the higher is the speedup,

even though it is quite small.

At a first glance these results look much worse compared to the PARDISO solver

but they can be explained quite well with the inherent differences of both solvers. As

PARDISO runs on shared memory machines (one computer) and MUMPS preferably

on distributed memory machines (X computers), the bottleneck when increasing the

number of processors is the communication between them. This is of course orders

of magnitude slower when done over the network (MUMPS) and not internally

(PARDISO). But this network limiting effect levels out and even switches when the

model size is significantly increased. This effect is shown in Fig. A.2c. There, the

calculation times for the two solvers and the four hardware platforms are compared.

The abbreviations correspond to the ones given in Tab. A.1 and PX and MX refer

to PARDISO and MUMPS with X processors respectively. For small model sizes

(grid with ≤ 2 · 104 nodes) the PARDISO solver on one computer is always faster

than MUMPS on a computer cluster due to the communicational friction losses.

Furthermore, the PARDISO performance is strongly platform dependent and the

speedup for the solver routine can increase up to a factor of 3 when using N = 6

processors. When the model size increases (grid with ≥ 105 nodes) the MUMPS

solver is already faster with two nodes than PARDISO with N = 6. And this

difference increases with increasing model size and available nodes. For model13

MUMPS with two nodes is as fast as PARDISO with two cores for model10 but

both models differ by a factor of two. Note that the two largest models (model12

and model13) could only be solved on the computer cluster.

A.1.3 Summary of KARSTAQUIFER benchmark tests

The results of the above described benchmark tests are summarized in Fig. A.2d.

There the calculation time for one time step is shown for the four different hardware

platforms each with the fastest (possible / tested) solver implementation. It was

shown that KARSTAQUIFER can be used on a variety of hardware platforms and

that even a normal desktop computer can be used to simulate averagely sized karst

evolution models in a reasonable amount of time. For the model sizes used in this

work with grid sizes between ≈ 30 000 and ≈ 1 000 000 nodes the use of a server or



APPENDIX A. TECHNICAL ASPECTS 154

cluster is recommended as there the calculation is up to three times faster.

There is no significant difference in using one server and the PARDISO solver

(green line) or a computer cluster with the MUMPS solver (red line). The relatively

high speedup due to parallelization of the PARDISO solver (Fig. A.2a) compared to

the MUMPS solver (Fig. A.2b) is leveled out by the better performance of MUMPS

for large models (≥ 105 nodes, Fig. A.2c) and the communicational friction losses

due to a limited network bandwidth. Note that when the simulations are performed

on the computer cluster, the data for storing the results has also to be transported

over the network which additionally slows down the overall calculation time.

The limiting criteria for the model size in this work especially for the models

shown in chapters 4 and 5, was the needed disk space for storing the simulation

results and exploiting the data. Nevertheless, it was shown that KARSTAQUIFER

has the capabilities of handling large models and can therewith benefit from future

hardware and software improvements.
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Additional 3D doline plots
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B.1 Model 2 – two passages, one active crushed zone

B.1.1 Model 2 – blocky collapsing
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Fig. B.1: Conduit diameter evolution of the 3D doline model 2 (blocky collapsing)
for different snapshots in time; Below each subplot the year is given; plotted are the
isosurfaces of constant head from low (dark grey) to high (light grey) values and
the relative increase of the conduit diameter compared to the initial diameter on a
log–scale from 2 (blue) to ≥ 1000 (orange).
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B.1.2 Model 2 – layered collapsing
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Fig. B.2: Conduit diameter evolution of the 3D doline model 2 (layered collapsing)
for different snapshots in time; Below each subplot the year is given; plotted are the
isosurfaces of constant head from low (dark grey) to high (light grey) values and
the relative increase of the conduit diameter compared to the initial diameter on a
log–scale from 2 (blue) to ≥ 1000 (orange).
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B.1.3 Model 2 – total collapsing
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Fig. B.3: Conduit diameter evolution of the 3D doline model 2 (total collapsing)
for different snapshots in time; Below each subplot the year is given; plotted are the
isosurfaces of constant head from low (dark grey) to high (light grey) values and
the relative increase of the conduit diameter compared to the initial diameter on a
log–scale from 2 (blue) to ≥ 1000 (orange).
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B.2 Model 3 – two passages, two active crushed zones
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Fig. B.4: Conduit diameter evolution of the 3D doline model 3 (layered collapsing)
for different snapshots in time; Below each subplot the year is given; plotted are the
isosurfaces of constant head from low (dark grey) to high (light grey) values and
the relative increase of the conduit diameter compared to the initial diameter on a
log–scale from 2 (blue) to ≥ 1000 (orange).
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B.2.1 Model 3b – two passages, two active crushed zones
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Fig. B.5: Conduit diameter evolution of the 3D doline model 3b (layered collaps-
ing) for different snapshots in time; Below each subplot the year is given; plotted
are the isosurfaces of constant head from low (dark grey) to high (light grey) values
and the relative increase of the conduit diameter compared to the initial diameter
on a log–scale from 2 (blue) to ≥ 1000 (orange).
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Fig. B.6: Flux rate evolution of the 3D doline model 3b (layered collapsing) for
different snapshots in time; Below each subplot the year is given; plotted are the
isosurfaces of constant head from low (dark grey) to high (light grey) values and
the flux rates inside the conduit on a log–scale from 10−12 [mol m−2 s−1] (blue) to
10−7 [mol m−2 s−1] (orange).
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Fig. B.7: Results for 3D doline model 3b (layered collapsing); a) flow rates at the
output of passage 1 (black) and passage 2 (green); b) removed material per year
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and CZ2 (red); c) height spectra along a surface profile above passage 1 showing the
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B.3 Model 4 – two passages, three active crushed zones
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Fig. B.8: Conduit diameter evolution of the 3D doline model 4 (layered collapsing)
for different snapshots in time; Below each subplot the year is given; plotted are the
isosurfaces of constant head from low (dark grey) to high (light grey) values and
the relative increase of the conduit diameter compared to the initial diameter on a
log–scale from 2 (blue) to ≥ 1000 (orange).
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B.3.1 Model 4b – two passages, three active crushed zones
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Fig. B.9: Conduit diameter evolution of the 3D doline model 4b (layered collaps-
ing) for different snapshots in time; Below each subplot the year is given; plotted
are the isosurfaces of constant head from low (dark grey) to high (light grey) values
and the relative increase of the conduit diameter compared to the initial diameter
on a log–scale from 2 (blue) to ≥ 1000 (orange).



APPENDIX B. ADDITIONAL 3D DOLINE PLOTS 165

0
100

200
300

400
500

0

100

200

300

400

500
0

50

Y [m]

X [m]
0

100
200

300
400

500

0

100

200

300

400

500
0

50

Y [m]

X [m]

0
100

200
300

400
500

0

100

200

300

400

500
0

50

Y [m]

X [m]
0

100
200

300
400

500

0

100

200

300

400

500
0

50

Y [m]

X [m]

0
100

200
300

400
500

0

100

200

300

400

500
0

50

Y [m]

X [m]
0

100
200

300
400

500

0

100

200

300

400

500
0

50

Y [m]

X [m]

flux rate [mol m −2 s−1]

10x −12 −11 −10 −9 −8 −7

Head [m]
0 2 4 6 8 10

a) year: 0 b) year: 300

c) year: 1300 d) year: 1420

e) year: 3000 f ) year: 6000

Fig. B.10: Flux rate evolution of the 3D doline model 4b (layered collapsing) for
different snapshots in time; Below each subplot the year is given; plotted are the
isosurfaces of constant head from low (dark grey) to high (light grey) values and
the flux rates inside the conduit on a log-scale from 10−12 [mol m−2 s−1] (blue) to
10−7 [mol m−2 s−1] (orange).
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Fig. B.11: Results for 3D doline model 4b (layered collapsing); a) flow rates at the
output of passage 1 (black) and passage 2 (green); b) removed material per year
for all conduits (black curve) and only conduits inside crushed zones CZ1 (green),
CZ2 (red) and CZ3 (cyan); c) height spectra along surface profiles above passage 1
(top) and passage 2 (bottom) showing the surface lowering over time; d) estimated
cumulative loss of surface volume for CZ1 (green), CZ2 (red) and CZ3 (cyan);
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The Karst model creator –

KARSTTOOL
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When dealing with 3D modelling without a commercial software, a practical way

of handling large models is often not available. The program KARSTAQUIFER,

used in this thesis is an internal development and based on a 2D program that was

extended into the third dimension. See e.g. Kaufmann and Braun (1999, 2000);

Kaufmann (2002, 2003a,b,c); Kaufmann and Romanov (2008) for earlier 2D appli-

cations and Kaufmann (2009); Kaufmann et al. (2010) for 3D models respectively.

From a certain model size on, together with a certain degree of model complex-

ity it is no longer feasible to create the model setup manually. The process has

to be automated and all input parameters have to be easily checkable before the

time consuming computations are started. For this purpose the software KARST-

TOOL was developed. The following pages give a little overview of the capabilities

of KARSTTOOL.

C.1 KARSTTOOL – introduction & layout

KARSTTOOL is written in the MATLAB programming language and needs there-

fore the MATLAB computing environment installed on a local desktop computer or

workstation. It can easily be started by typing

>> k a r s t t o o l

at the MATLAB command prompt. The opening screen is shown in Fig. C.1.

The layout is based on a tabbed document interface. Here, tabs are used to switch

between different parts of the GUI within the same main program window. The red

frame A marks the menu bar of the GUI were global settings can be applied. The

menu entries are explained in Tab. C.1.

The red frame B in Fig. C.1 marks the tab panel where the user can switch

between the different GUI panels to define the model properties. These modifiable

properties are the domain and topography properties, the boundary conditions, the

network and the material properties, respectively. To check the created model the

show / plot panel is used. On the examine results panel the user can load the

simulation results and examine the various calculated properties like e.g. the head

distribution inside the domain, the increase of the conduit diameter or the calcium

flux rate. In the following sections, every tab panel is briefly explained on the basis

of an example of a 3D model for simulating the evolution of a collapse doline (see

chap. 5).
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Main menu Sub menu Purpose

Create CREATE Karstdata set starts creation of the model after all
parameters are set

SET default GUI data resets the GUI to the default pa-
rameters

Import LOAD Karstdata set loads a previously saved Karstdata
set

LOAD Boundary Condition set loads a previously saved boundary
condition set

LOAD Network property set loads a previously saved network
property set

Export WRITE Karstdata Input Files writes the KARSTAQUIFER input
files to disk (needs CREATE)

SAVE Karstdata set saves Karstdata set to disk (needs
CREATE)

SAVE Boundary Condition set saves the boundary condition set to
disk

SAVE Network property set saves the network property set to
disk

Show Domain opens a figure window with the do-
main layout (needs CREATE)

Boundaries opens a figure window with the
boundary conditions (needs CRE-
ATE)

Network Statistics opens a figure window with the net-
work properties (needs CREATE)

Table C.1: KARSTTOOL; menu bar entries and their utilization

C.2 KARSTTOOL – domain & topography

In Fig. C.1 the red frame C marks the fields were the basic domain properties

like domain extent and discretization are set. North is always in increasing x–

direction. Since parallelepipedal elements are used the discretization is fixed in the

corresponding direction. Each direction can be independently discretized. Every

time one of the fields is edited the information section in frame E is updated. In

the example in Fig. C.1 the domain is 500 m × 500 m × 50 m with a horizontal

discretization of 25 m and a vertical discretization of 5 m respectively. As one can

see in Frame C there are more nodes n[−] in each direction as the given discretization

requires. This is due to the setting dolina crushed zone in frame D. When modelling

the evolution of dolines (see chap. 5) the discretization inside the doline can be

locally increased. This feature is of course not fixed to a doline model only. Any

region inside the domain can be assigned with a higher resolution. In frame D the

first value corresponds to the horizontal discretization the second value to the vertical
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discretization, respectively. Frame D also allows for two other special properties to

be set. Per default the top z–layer of conduits is excluded as no horizontal conduits

can evolve on the surface. For testing purposes however, the top z–layer can be

included. Furthermore, all nodes can be shook, which means that the elements

themselves can have an irregular shape.

Fig. C.1: KARSTTOOL; opening view is the DOMAIN & TOPOGRAPHY tab;
red frame A marks the menu bar; red frame B the tab panel respectively; red frames
C to F show the different property settings (see C.2 for explanation)

Frame F allows to set the topography of the model. If no topography is set a

flat surface at the top layer is assumed. Topography data can be imported in two

ways. The first one is by importing a local SRTM1 data file. Then the topography

is linked to the domain via assigning the local coordinates (X,Y ) to the global

coordinates (E,N) which have to be given as easting and northing values. The

Topography values at the surface grid nodes are then interpolated with a cubic

1Shuttle Radar Topography Mission – provides freely available topography data (see Farr et al.
(2007))
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spline interpolation. The second method is to generate a desired topography in

advance and save it as a MATLAB mat–file (data file). The saved topography has

to have the same horizontal discretization as given in the basic properties in frame

C otherwise an error message is displayed.

C.3 KARSTTOOL – boundary conditions (BC)

The various BC can be set on the boundary conditions panel (Fig. C.2). Frame A

marks the panel for editing the BC. The extent or position of the desired BC is set

by the fields xmin [m] to zmax [m]. If a value outside the domain is given the field

is reset to the minimal or maximum value of the domain respectively. The boundary

type can be one of the following and is chosen via a drop–down list:

• head (constant head BC in [m])

• inflow / outflow (constant flow BC in [l s−1])

• calcium (calcium concentration BC, Ca2+ in [mol m−3])

• rain (precipitation on the surface in [mm a−1])

• dam (extent of dam nodes, elements and conduits will be blocked)

• sand (extent of sand nodes, conduits between two sand nodes will be insoluble

per default).

The fields value, Ca [mol/m3], T [◦C] and pCO2 [atm] have to be set according to

the chosen BC. For instance constant head and constant flow BC can also have an

initial calcium concentration but for a fixed calcium BC the value field is obsolete.

With the LOAD button a previously saved BC file can be loaded (only for one single

BC). The tag field is for assigning a unique name to the BC within the BC data

set. This name is shown in the list box (frame B). The comment field is for storing

comments for the chosen BC. The ADD / UPDATE button adds a newly defined BC

to the local set or updates an edited already existing BC. For loading a previously

stored BC set the LOAD SET button is used. It has the same function as the IMPORT

menu bar. Respectively, SAVE SET is used to save the BC set to the disk. By this

feature predefined BC sets can easily be applied to the model. The list box in frame

B provides a context menu to either load the chosen BC to the editable field in frame
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Fig. C.2: KARSTTOOL; BOUNDARY CONDITIONS tab; red frame A marks
the edit panel where the boundary conditions properties can be set; red frame B is
a list box where the created boundary conditions are shown by their tag name; red
frame C is the information panel where all information for the marked boundary
condition (frame B) is shown; (see C.3 for explanation)

A or to delete it. The example in Fig. C.2 shows two BC named head and res. Both

are constant head BC and the information for the head BC is shown in frame C.

Here, the constant head BC head extends along the South boundary of the domain

(xmin = xmax = 0 m; ymin = 0 m and ymax = 500 m) between zmin = 0 m and

zmax = 10 m. The hydraulic head is 10 m and the input calcium concentration is

0.9ceq [mol m−3]. Temperature and carbon–dioxide partial pressure are the standard

values as given in Tab. 2.1.

C.4 KARSTTOOL – network properties

The network properties of the model can be set in the network panel (Fig. C.3).

The layout is similar to the boundary conditions panel with three major parts. The
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edit panel (frame A), the list box (frame B) and the information panel (frame C).

The position of the network property is again set by the fields xmin [m] to zmax [m]

in frame A. The properties can either be set to all conduits in a given 3D part of

the domain or to the conduits in a 2D layer. Also a 1D conduit path can be defined

like e.g. a subsurface channel or stream. Again, several conduit properties can be

set via a drop–down list:

• homogen. (uniform initial network; all conduits get the same value)

• statistical (statistical initial network; created with log–normal distribution)

• homogen. lim. (uniform network for maximum diameter; all conduits get the

same value)

• statistical lim. (statistical network for maximum diameter; created with log–

normal distribution)

• insoluble (marker for insoluble conduits)

• crushed zone (in conjunction with the settings on the domain tab (C.2) defines

a region with special properties)

• anisotropxy (factor for diameter of conduits in xy–direction)

• anisotropz (factor for diameter of conduits in z–direction).

The fields mode [m], std and insol. [%] change their meaning and are enabled

or disabled according to the chosen property. Like for all editable elements in

KARSTAQUIFER, tool tips provide the user with the necessary information. The

difference from the boundary conditions tab is the ability to use GSLIB2 by Deutsch

and Journel (1997) for creating spatially correlated conduit properties. If GSLIB

is activated via the check box, in the three adjacent fields the axes lengths of the

correlation ellipse can be given. With the LOAD button a previously saved network

property file can be loaded (only for one property). The tag and comment fields are

for assigning a unique name to the network property within the property data set

and for comments, respectively. Like before, the tag name is shown in the list box

(frame B). There, also a context menu is provided for loading the chosen property

2Geostatistical Software Library – GSLib needs to be installed additionally on the computer
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Fig. C.3: KARSTTOOL; NETWORK tab; red frame A marks the edit panel
where the network properties can be set; red frame B is a list box where the created
network properties are shown by their tag name; red frame C is the information
panel where all information for the marked network property (frame B) is shown;
(see C.4 for explanation)

to the edit panel or to delete it. The ADD / UPDATE button adds a newly defined

network property to the local set or updates an edited one. For loading a previously

stored property set the LOAD SET button is used. It has the same function as the

IMPORT menu bar. Respectively, SAVE SET is used to save the network property

set to the disk. By this it is easy to apply different predefined properties to the

model.

The first three entries inside the list box init, lim and insol are predefined network

properties. They can be edited but not deleted as they are required for any basic

Karst evolution model simulated with KARSTAQUIFER. All other properties are

superimposed on these three default properties and overwrite the according values.

For instance the fourth entry in Fig. C.3 (frame B) passage1 defines a subsurface

passage or stream that has a certain increased conduit diameter compared to the
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initial network. At the given locations the initial diameters d0 defined in init (here a

statistical network created by a log–normal distribution with d̂0 = 0.05mm and σn =

0.75) are replaced by the values given in passage1. As in the given example in Fig.

C.3 the insoluble property of the whole domain insol is also randomly distributed.

The property passage1insol ensures that the passage1 can evolve by dissolution. The

same counts for the passage2 property. The properties dolina1 to dolina3 define zones

in the domain with different initial conduit diameters and maximum diameters.

There the discretization is increased due to the special property dolina crushed zone

on the domain tab panel (Fig. C.1 in C.2)

C.5 KARSTTOOL – parameters

Fig. C.4: KARSTTOOL; PARAMETERS tab; red frame A marks the panel where
different timing parameters can be set; in red frame B simulation relevant parameters
are set; in red frame C material properties can be defined; (see C.5 for explanation)

The parameter tab consists of three main elements (Fig. C.4). On the time
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panel (frame A) the start time, end time and the time step can be set. Furthermore,

a time interval for updating the KARSTAQUIFER log file as well as time intervals

for storing the simulation results on disk (in different data formats) can be set. In

frame B the number of iterations to solve the unsaturated groundwater flow equation

(optional) can be given. If turbulence is activated the number of iterations can also

be set. Furthermore, it is possible to chose between a steady–state or transient

groundwater flow model and to chose between PARDISO and MUMPS as sparse

matrix solvers. For a comparison of the two solvers see A.1.2.

The material panel (frame C) allows to globally switch the rock type between

limestone and gypsum. With a drop–down list predefined material settings can be

chosen. Finally, the horizontal and vertical components of the matrix hydraulic

conductivity Km can be defined. In a future version it is planned to assign these

material properties also on a local scale. So far this was not needed and is open for

future work.

If all settings are made the creation of the Karstdata input set can be started

either with the CREATE DATA button in Fig. C.4 (frame B) or via the Create menu

in the menu bar. The command prompt provides the user with status information

about the generation of the data and when the process is finished. The WRITE FILES

button stores the input files on disk and uses therefore the given dataset name as

folder name. If the folder already exists a warning messages appears to avoid an

accidental deleting of previously generated files.

C.6 KARSTTOOL – show / plot

The show / plot tab allows for a visual cross check of the various input parameters

before they are used for the simulation with KARSTAQUIFER. It consists of two

main elements, the control and the plot panel respectively. According to the settings

in frame A one of the three domain cross sections can be plotted in the plot panel

(frame D) to visualize the grid layout of the model. As an example a small scale

picture of KARSTTOOL (E) is shown on top of frame D that shows the current

grid layout of the xy–plane. Note the increased horizontal resolution for the regions

defined by dolina1 to dolina3 on the network tab panel (Fig. C.3 in C.4). So far as

a regular grid / mesh is used the increased discretization is mapped to the whole

domain. In a future version the use of irregular meshes is planned.
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E

Fig. C.5: KARSTTOOL; SHOW / PLOT tab; red frame A is for plotting the grid
layout of the domain; red frame B is for plotting the different BC; red frame C is for
choosing the network property to be shown; (see C.6 for explanation)

With the radio buttons in frame B it is possible to check the location of the BC

inside the model domain. The network properties are visualized with histograms,

like e.g. in Fig. C.5 the initial conduit diameter distribution Nln(d̂0 = 0.05mm, σn =

0.75).

C.7 KARSTTOOL – examine results

Finally, the simulation results can be visualized on the examine results panel. When

pressing the LOAD button in frame A a dialog box appears for selecting the directory

where the simulation results are stored. The slider is automatically updated with

the start and end time of the simulation and is used for selecting the snapshot in

time that is shown. This time can also be set in the adjacent field. In the given

example 3000 years of evolution have been simulated and the final snapshot in time
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Fig. C.6: KARSTTOOL; EXAMINE RESULTS tab; in red frame A the simulation
results data set is loaded, the snapshot in time can be chosen and it can be zoomed
to a certain part of the domain; in red frame B the node data can be chosen for
visualization; in red frame C the corresponding conduit data can be chosen; red
frame D contains the plot panel (see C.7 for explanation)

is chosen for visualization. The fields Domain Extent allow for zooming into a certain

part of the model.

In frame B the data that was simulated at the nodes of the model (head, calcium

concentration or flow) can be chosen via a drop–down list. As this data is plotted

along isosurfaces the number of isosurfaces that are linearly spread between the

minimum and maximum value can be set. Because normally also some conduit data

is plotted the isosurfaces have to be transparent. The value can be set between 0 –

completely transparent and 1 – no transparency. In the example 20 isosurfaces of

constant head are shown with a transparency of 0.15. The minimum is 0 m (blue)

and the maximum 10 m (orange). Every time one of the two UPDATE buttons is

pressed the figure in frame D is redrawn.

The conduit data to be plotted is chosen in frame C. This can be one of the



APPENDIX C. THE KARST MODEL CREATOR – KARSTTOOL 179

following:

• current conduit diameter d [m]

• relative increase of conduit diameter d/d0 [−]

• current conduit diameter in regard to the maximum diameter d/dmax [%]

• hydraulic conductivity Kc [m s−1]

• flow rate Q [m3 s−1]

• flux rate F [mol m−2 s−1]

If one of the settings is activated the corresponding fields are enabled. Below

the left field the minimum and below the right field the maximum values are given,

respectively. There, the desired data range can be defined. Only conduits within

this data range are plotted (per conduit and colored according to the color scale).

Below the radio buttons a drop–down list allows to select whether all conduits, only

the horizontal conduits or only the vertical conduits are plotted. A special feature

is the possibility to select more than one conduit property to be shown. If two

or more properties are chosen they are connected via a logical conjunction. For

instance d∩ (d/d0) means that only conduits that fulfill both conditions are shown.

In the given example only conduits that have at least grown by a factor 2 are

shown. Because the given upper limit is bigger than the maximum value virtually

all conduits with d ≥ 2d0 are shown. This is also expressed by the right color scale

in frame D where all values smaller than 2 are blanked out.
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