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Short Abstract

During the last years, sequencing throughput increased dramatically with the introduc-
tion of so-called high-throughput sequencing. It allows the production of billions of base
pairs (bp) per day in the form of reads of length 100 bp and more, and current develop-
ments promise the personal $1,000 genome in a couple of years. These advances in se-
quencing technology demand for novel approaches and ef icient data structures specif-
ically designed for the analysis of mass data. One such data structure is the substring
index, that represents all substrings or substrings up to a certain length contained in a
given text.

In this thesis, we present three different substring indices and their applications in
the analysis of high-throughput sequencing data. Our contribution is threefold: irst, we
extend the indices which were originally designed to index a single sequence to be appli-
cable to datasets consisting of millions of multiple strings. Further, we implement algo-
rithms for the internal memory construction of each index and devise ef icient external
memory algorithms for indexing large datasets, e.g. multiplemammal genomes. Tomake
all indices easy-to-use we provide a uniform framework for accessing the generalized
suf ix tree and use it to exemplarily implement three iterators for searching repeats. For
the exact and approximate string matching problem we provide index based iltering al-
gorithms and algorithms recursively descending suf ix trees.

Second, we present RazerS, a read mapper that aligns millions of single or paired-
end reads of arbitrary lengths to their potential genomic origin using either Hamming or
edit distance. Our tool can work either lossless or with a user-de ined loss rate at higher
speeds. Given the loss rate, we present a novel approach that guarantees not to losemore
reads than speci ied. This enables the user to adapt to the problem at hand and provides
a seamless tradeoff between sensitivity and running time. We develop two index based
ilters and a banded variant of Myers’ bit-vector algorithm to ef iciently reduce the align-
ment search space and use OpenMP for shared-memory parallelism. We compare RazerS
with other state-of-the-art readmappers and show that it has the highest sensitivity and
a comparable performance on various real-world datasets.

Third, we propose a general approach for frequency based string mining, which has
many applications, e.g. in contrast data mining. Our contribution is a novel and light-
weight algorithm that is based on a deferred index data structure and is faster and uses
less memory than the best available algorithms. We show its applicability for mining
multiple databases with a variety of frequency constraints. As such, we use the notion of
entropy from information theory to devise the entropy substringmining problemwhich is
amultiple database generalization of the emerging substringmining problem. In addition
we evaluate the algorithm rigorously using various string domains, e.g. natural language,
DNA, or protein sequences. The experiments demonstrate the improvement of our algo-
rithm compared to recent approaches.

All data structures, algorithms, and tools proposed in this thesis are part of SeqAn
the generic C++ template library for sequence analysis, which is publicly available under
http://www.seqan.de/ and supports Linux, Mac OS X, and Windows.

http://www.seqan.de/
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Zusammenfassung

In den letzen Jahren konnte der Sequenzierdurchsatzmit Einführung sogenannter Hoch-
durchsatz-Sequenziertechnologien dramatisch gesteigert werden. Sie erzeugenmehrere
Milliarden Basenpaare pro Tag in Form von Reads der Länge 100 bp undmehr und aktu-
elle Entwicklungen versprechendas persönliche 1000-Dollar-Genom indenkommenden
Jahren. Diese technologischen Fortschritte erfordern neue Ansätze und ef iziente Daten-
strukturen, die speziell für die Analyse vonMassendaten konzipiert sind. Eine solche Da-
tenstruktur ist der Substring-Index, welcher alle Substrings oder Substrings bis zu einer
festen Länge repräsentiert, die in einem Text vorkommen.

In dieser Arbeit präsentieren wir drei verschiedene Substring-Indizes und Anwen-
dungen in der Analyse von Hochdurchsatz-Sequenzierdaten. Die ursprünglich auf eine
einzelne Sequenz beschränkten Indizes werden zunächst für die Indizierung mehrerer
MillionenSequenzen erweitert.Weiter implementierenwirAlgorithmenzumAu bauvon
Indizes im Hauptspeicher und entwickeln ef iziente Sekundärspeicheralgorithmen für
die Indizierung großer Datensätze, bspw. mehrerer Säugetiergenome. Zur einfachen Be-
nutzbarkeit stellen wir ein Framework zur Verfügung, das einen einheitlichen Zugriff auf
den verallgemeinerten Suf ixbaum erlaubt und benutzen jenes, um exemplarisch 3 Itera-
toren zur Repeatsuche zu implementieren. Außerdem stellen wir Algorithmen bereit zur
exakten und approximativen Stringsuche mittels indexbasierten Filteralgorithmen oder
dem rekursiven Abstieg in Suf ixbäumen.

Ferner, stellenwir RazerS vor—ein Programm, das einfache oder gepaarte Reads be-
liebiger Länge an ihren potentiellen genomischen Ursprung aligniert. RazerS kann ent-
weder vollsensitiv odermit einer spezi iziertenVerlustrate undhöhererGeschwindigkeit
verwendetwerden.Wir stellen einen neuenAnsatz vor,mit demeine geforderteMindest-
sensitivität garantiert werden kann. So wird dem Benutzer ein nahtloser Trade-off zwi-
schen Sensitivität und Laufzeit ermöglicht. Um den Alignment-Suchraum zu verkleinern,
habenwir zwei indexbasierte Filter und eine optimierte Variante vonMyers’ Bitvektoral-
gorithmus implementiert, und benutzen OpenMP zur Parallelisierung. Wir vergleichen
RazerS mit aktuellen Read-Alignment Programmen und zeigen auf verschiedenen Real-
datensätzen, dass es die höchste Sensitivität bei vergleichbarer Geschwindigkeit erzielt.

Zuletzt stellen wir einen generischen Ansatz für das frequenzbasierte String Mining
vormit Anwendungen bspw. im kontrastiven DataMining. Unser Beitrag ist ein neuer Al-
gorithmus, der einen dynamisch aufgebauten Suf ixbaum verwendet und schneller und
speichersparender ist als die besten verfügbaren Algorithmen. Wir zeigen die Anwend-
barkeit für das String Mining mehrerer Datenbanken an Hand einer Reihe von Suchpro-
blemen. Als ein solches führen wir das entropiebasierte String Mining Problem als Ver-
allgemeinerung des Emerging String Mining Problems ein. Wir bewerten unseren Algo-
rithmus auf verschiedenen Datenbasen, bspw. natürlichsprachlichen Texten, DNA- und
Proteinsequenzen. Die Experimente demonstrieren die Verbesserung unseres Algorith-
mus gegenüber existierenden Ansätzen.

Alle Datenstrukturen, Algorithmen und Programme in dieser Arbeit sind Teil von
SeqAn, der generischen C++ Template-Bibliothek für Sequenzanalyse, verfügbar unter
http://www.seqan.de/ und unterstützen Linux, Mac OS X und Windows.

http://www.seqan.de/
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“More engineering work has to be done to improve the practical perfor-
mance of these index structures (…) These implementations should be grouped
under a common interface in libraries (…) One such library-project (…) is the
SeqAn library.”

Vyverman et al. [2012]
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1 Introduction

1.1 Preface

In February 2001, press releases announced that two groups, the publicly funded Hu-
man Genome Project [Lander et al., 2001] and the private company Celera Genomics
[Venter et al., 2001], independently completed a mammoth project whose challenging
aim was nothing less than decoding the entire human genome, i.e. the sequence of the
3,000,000,000 nucleotides contained in the nucleus of each of our cells, de ining the
shape of our body or our susceptibility to certain diseases.

Sequencing a DNA of that scale was only possible with improvements of the original
Sanger sequencing technology, like the automated capillary electrophoresis. However,
while it took 10 years and $300–$1000 million to sequence the human genome in those
days, the same amount of data can nowadays be sequenced with commercially available
high-throughput sequencers in a couple of days for less than $10,000, and current devel-
opments of sequencing technologies promise the personal $1,000 genome in a couple of
years.

The sequence of the whole genome, the set of all DNA molecules in a cell, provides
insights into the mechanisms of inheritance and evolutionary history of an organism.
Comparison studies of human genomes allow to detect single nucleotide polymorphisms
(SNPs) or large structural variations and to associate them with speci ic diseases. Those
associations allow to improve diagnoses, to earlier detect genetic predispositions to com-
mon diseases, and to develop gene therapies or personalized medicine.

DNA is a double-stranded polymer, two chains that entwine in the shape of a double
helix. The chains are composed of four building blocks, the nucleotides adenine (A), cyto-
sine (C), guanine (G), and thymine (T). The nucleotides in both strands are complementary
and form base pairs (bp) via hydrogen bonds, i.e. A is linked to T and C is linked to G, see
Figure 1.1a. Thus, one strand can be reconstructed from the other, which is done to repli-
cate DNA during cell division. The strands have a direction and are antiparallel. Each is
read from ive prime (5’) to three prime (3’) end, referring to the ifth and third carbon
atom in the sugar rings of the DNA backbone. In cells of human and other diploid organ-
isms theDNA is organized in chromosomepairs (23 in human) consisting of recombinant
maternal and paternal chromosomes.

The DNA is the carrier of all genetic information and consists of thousands of genes,
the blueprints of protein molecules. Proteins play an important role in almost all cell
functions, e.g. as enzymes that catalyze metabolic pathways, as signal transducers, or as
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(a) DNA (b) protein synthesis

Figure 1.1: TheDNA (a) consists of two anti-parallel strands of complementary nucleotides
(base pairs). DNA is transcribed to mRNA and outside the cell nucleus trans-
lated into proteins (b).

contractile proteins involved in muscle contraction. When a protein needs to be syn-
thesized, the corresponding genes are transcribed into RNA, a single-stranded polymer
consisting of the same building blocks as DNA except for thymine which is replaced by
uracil (U). After non-coding parts are removed (splicing), the RNA is prepared and trans-
ported outside the cell nucleus, where it is then translated into a chain of amino acids, the
building blocks of proteins. Besides its function as a messenger (mRNA) that encodes a
protein, RNA is responsible for regulating the expression of genes or the transport of
amino acids (tRNA) during protein synthesis, see Figure 1.1b.

High-throughput RNA sequencing (RNA-seq) reveals the sequence and relative quan-
tity of RNA molecules present in a speci ic cell, tissue, or organ. It provides insights into
the mechanisms of gene regulation and how these mechanisms are disturbed in tumor
cells. Furthermore, RNA-seqenables identi icationof novel genes anddifferent transcript
isoforms, i.e. different variants how exons of a gene are spliced into mRNA and the dif-
ferent protein isoforms they encode. RNA molecules can be sequenced with any DNA
sequencing technology after a prior synthesis of themissing complementary strandwith
the enzymes DNA polymerase and reverse transcriptase.

1.2 Sanger sequencing

The foundation for today’s DNA sequencing methods was laid by Sanger et al. [1977].
Sanger and coworkers invented a sequencing method based on chain-terminators that
stop the polymerase chain reaction (PCR). DNA polymerase is an enzyme involved in
the replication of DNA during cell division. After the double-stranded DNA is unwound
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technology instrument run time yield read length costs error rate
[Mb/run] [bp] [$/Mb] [%]

Sanger 3730xl (capillary) 2 h 0.06 650 1500 0.1–1
Illumina HiSeq 2000 8d 200,000 2 × 100 0.10 ≥ 0.1
SOLiD SOLiD 4 12d 71,400 50 + 35 0.11 > 0.06
Roche/454 FLX Titanium 10h 500 400 12.4 1
SMRT™ PacBio RS 0.5–2 h 5–10 860–1100 11–180 16
HeliScope™ Helicos N/A 28,000 35 N/A N/A

Table 1.1: Approximate run times, yields, read lengths, costs, and sequencing error rates of
different high-throughput sequencing technologies by mid 2011 [Glenn, 2011].

and dehybridized into two single strands, polymerase replicates the complementary of
each strand by sequentially incorporating complementary nucleotides. For the irst time,
Sanger et al. utilized terminating nucleotides that immediately stop the replication after
incorporation. The DNA template is irst replicated multiple times (ampli ication) and
then replicated in four solutions (A, C, G, and T) each of which contain all nucleotides and
one terminating nucleotide in low concentration. After that, each solution contains en-
tire copies and partial copies that end with the known terminating nucleotide, e.g. the
solution with all four nucleotides and the terminating C contains pre ixes of the comple-
mentary template strand that end with a C. A subsequent gel electrophoresis of the four
sets is used to separate the pre ixes by their lengths and directly reveals the template se-
quence. In the gel, a molecule migrates with a speed inversely proportional to its length.
Thus the maximal read length that can be sequenced by the Sanger method is limited to
300–1000 nucleotides; for longer reads the relative length difference of one nucleotide
is not accurately measurable.

In DNA sequencing by capillary electrophoresis, as used for sequencing the human
genome, the four terminating nucleotides are marked with four luorescent dyes such
that only one instead of four separate reactions are necessary per template. Capillaries
illedwith gel replace the slab gel used in Sanger sequencing and enable sequencingmany
templates in parallel. At the end of each capillary, a laser and detector determines the
terminating nucleotide of the molecules that leave the capillary in the order of their size.

1.3 High-throughput sequencing technologies

During the last years, sequencing throughput increased dramatically with the introduc-
tion of so-called high-throughput sequencing (HTS), also known as deep sequencing or
next generation sequencing (NGS). It allows the production of billions of base pairs (bp)
per day in the form of reads of length 100 bp and more. Since 2004, when 454 Life
Sciences released the irst commercially available HTS sequencing machine, throughput
continues to increase and new technologies provide longer reads than currently avail-
able. Moreover, the sequencing costs decrease more rapidly than the costs for hard disk
storage or Moore’s law for computing costs [Stein, 2010].

Currently available high-throughput sequencing platforms are ABI SOLiD (Life Tech-
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nologies Corp.), HeliScope™ (Helicos Biosciences Corp.), Illumina (Illumina Inc.), SMRT™

(Paci ic Biosciences Inc.), and Roche/454 (Roche Diagnostics Corp.). See Table 1.1 for
a comparison of their throughputs, run times, and expendable costs. Compared to se-
quencing by gel electrophoresis, a key improvement is to cycle and image the incor-
poration of nucleotides or to detect the incorporation in real time. Replacing the gel
tremendously reduced the sequencing costs and has made it possible to miniaturize and
parallelize sequencing. Common to all technologies is that the DNA is irst fractionated
into smaller double-stranded fragments, which are optionally ampli ied, and then se-
quenced in parallel from one end. Additionally, most of the technologies provide a so-
called paired-end sequencing protocol in which the fragments are sequenced from both
ends. Moredetails about the technologiesmentionedabove canbe found inAppendixA.1.

One of the largest publicly available databases for nucleotide-sequence data is the Eu-
ropeanNucleotide Archive [Leinonen et al., 2011]. It contains the Sequence ReadArchive
[Kodama et al., 2012] which was established in 2009 for the purpose of providing access
to raw data from high-throughput sequencing platforms for the wider research com-
munity. In 2011 the amount of publicly available sequencing data exceeded 100 tril-
lion base pairs of which 84% account for the Illumina platform, whereas ABI/SOLiD and
Roche/454 comprised 12% and 2% respectively.

1.4 Applications of high-throughput sequencing

High-throughput whole-genome sequencing has become an invaluable technology for a
multitude of applications, e.g. the detection of SNPs [Hillier et al., 2008; Bentley et al.,
2008; Ley et al., 2008; Wang et al., 2008] and large structural genome variations [Chen
et al., 2008], or for reference guided [Wang et al., 2008] and de novo genome assembly
[Li et al., 2010; Simpson and Durbin, 2012]. Sequencing environmental samples makes
it possible to detect the contained organisms in metagenomic assays [Huson et al., 2007;
Rodrigue et al., 2010]. The RNA-seq protocol, in which RNA is reverse transcribed into
cDNA and sequenced, enables the identi ication of genes and alternative splicing events
either annotation based [Richard et al., 2010; Roberts et al., 2011] or de-novo [Robertson
et al., 2010; Adamidi et al., 2011; Schulz et al., 2012], and to quantify their abundance and
analyze gene expression levels [Mortazavi et al., 2008; Montgomery et al., 2010; Trapnell
et al., 2010]. Chromatin-immunoprecipitation of DNA followed by high-throughput se-
quencing (ChIP-seq) provides information on interactions between proteins and DNA,
e.g. to identify transcription factor binding sites [Schmidt et al., 2010], histone modi ica-
tion patterns [Barski et al., 2007], or methylation patterns [Meissner et al., 2008].

A common challenge in all these applications is to ef iciently compare large amounts
of sequences against each other, be it to search for the genomic origin of sequenced reads
in a reference genome (read mapping), to ind overlaps between sequenced reads (se-
quence assembly, read error correction), or to ind sequencemotifs that either have been
conserved in different organisms (genome alignment) or are speci ic for a certain organ-
ism, disease, or transcription factor (frequency string mining). Depending on the type of
sequences, the comparison can either be exact or needs to be tolerant to different types
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of errors.
The irst type of errors are sequencing errors resulting from wrong base calls. All

technologies that use clusters for signal ampli ication (Illumina, SOLiD, Roche/454) re-
quire that each cluster contains thousands of identical molecules which are sequenced
synchronously. In a synchronization loss the combined signal of one cluster consists of
the sum of signals of the current base and their neighbors in the DNA template and leads
to an increase of mis-calls towards the end of the reads. Technologies that use the sig-
nal intensity (Roche/454) or length (SMRT™) to determine the length homopolymer runs
cannot reliably detect the length of large runs due to the resolution limit or speed varia-
tions of the DNA polymerase. Such technologies typically produce reads with insertions
or deletions in homopolymer runs. Deletions of bases may also occur in technologies
that omit a prior template ampli ication (HeliScope™, SMRT™) due to undetected signals.
However, errors in the sequencing process can be discerned by using base-call quality
values and redundancy like a high base coverage, e.g. 20 and higher [Dohm et al., 2008].

The second type of error results from variations in the DNA between different or-
ganisms or between different cells of the same organism. These variations can be due to
mutations in DNAwhich are part of the evolutionary process. Errors in the replication of
DNA cause substitutions, deletions and insertions of nucleotides.

The recent advances in sequencing technology demand for novel approaches and ef-
icient data structure speci ically designed for the ef icient analysis of mass data. In this
work, we propose such data structures, called (substring) indices, that represent all sub-
strings or substrings up to a certain length contained in a given text. Indices have applica-
tions in almost all above-mentionedHTS applications. Weuse them in ilters to ef iciently
discard dissimilar regions and reduce the number of costly sequence alignments in DNA
read mapping [Weese et al., 2009, 2012], short RNA read mapping [Emde et al., 2010],
structural variation detection [Emde et al., 2012], fast local alignment [Kehr et al., 2011],
or reference guided assembly [Rausch et al., 2009]. Their applicability to repeat search
in multiple large sequences allows us to ef iciently ind identical, conserved regions and
extend them tomultiple genome alignments [Rausch et al., 2008]. We use their suf ix tree
representation to ef iciently count frequencies inmultiple databases for frequency based
stringmining [Weese and Schulz, 2008], to anchor readswith identical substrings to cor-
rect sequencing errors without a reference genome [Weese et al., 2013], or to construct
variable order Markov chains [Schulz et al., 2008a].

1.5 Overview

In this thesis, we describe the design and implementation of three different index data
structures and prove their applicability in two HTS applications. Chapter 2 gives fun-
damental mathematical de initions required throughout this thesis. Beginning with es-
sential de initions of strings and alphabets in Section 2.1, we de ine orders on them in
Section 2.2. Section 2.3 introduces the suf ix tree, a fundamental index of all substrings
of a single string or multiple strings. To be able to compare substrings with errors, we
de ine string distances and how to ef iciently compute them in Section 2.4. Finally, we
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de ine the approximate pattern matching problem in Section 2.5 and how to ind all text
occurrences of a pattern within a given string distance via dynamic programming. The
subsequent parts cover our owncontributions, wherebyPart II proposes three indexdata
structures for high-throughput sequencing and Part III shows how to apply them to de-
velop ef icient HTS applications that can compete with available state-of-the-art tools.

All data structures, algorithms, and tools proposed in this thesis have been integrated
into SeqAn [Döring et al., 2008] the generic C++ template library for sequence analysis,
which is publicly available under http://www.seqan.de/ and supports Linux, MacOS X, and
Windows.

1.5.1 Index data structures

The suf ix tree, irst proposed by Weiner [1973], plays an important role in sequence
analysis and comparative genomics. It represents all substrings of a text of length 𝑛 in
𝒪(𝑛)memory, can be constructed in𝒪(𝑛) time¹ [Weiner, 1973], and supports exact string
searches in optimal time. In the following years, practically faster linear-time construc-
tion algorithms were proposed that use less memory [McCreight, 1976] or read the text
in a sequential scan [Ukkonen, 1995]. However, its space consumption of roughly 20𝑛
bytes makes it inapplicable to large analyses of whole genomes.

In Chapter 3,wedescribe the enhanced suf ix array [Abouelhoda et al., 2002a], amore
memory ef icient representation of the suf ix tree, and de ine in Section 3.1 and 3.2 the
three contained tables: suf ix array, lcp table, and child table. In the following sections
(3.3–3.5), we show how to construct them in linear time and contribute new algorithmic
variants for texts consisting of multiple strings and the ef icient construction of large in-
dices in external memory. In Section 3.6, we describe how to search the enhanced suf ix
array and contribute an easy-to-use iterator interface that allows traversing and access-
ing the suf ix tree represented by the enhanced suf ix array. We additionally provide
three application-speci ic iterators for searching repeats.

The second index is the lazy suf ix tree [Giegerich et al., 2003], a deferred data struc-
ture proposed in Chapter 4. This deferred data structure is top-down constructed on de-
mand and amore ef icient alternative to the enhanced suf ix array for applicationswhere
only an upper fraction of the suf ix tree needs to be traversed. After proposing the origi-
nal lazy suf ix tree data structure and its construction algorithm in Sections 4.1 and 4.2,
we introduce a new lazy suf ix tree which is applicable to multiple strings and creates
suf ix tree nodes in lexicographical order. Providing the same suf ix tree iterator inter-
face we make it a transparent replacement of the enhanced suf ix array in Section 4.3.
Moreover, it enables to sample the suf ixes used for the suf ix tree construction, e.g. to
construct a radix tree of multiple strings. At the end of the chapter, we show how to use
two suf ix trees in parallel for multiple approximate pattern matching.

Much simpler but adequate for many applications is the 𝑞-gram index introduced in
Chapter 5. Its functionality is limited to counting and retrieving all occurrences of ixed-
length patterns but it can be constructed and accessedmuch faster than the two previous

¹ assuming a constant-sized alphabet

http://www.seqan.de/
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indices. We irst de ine contiguous and gapped 𝑞-grams in Section 5.1 and how to com-
pute their ranks, which are required to address buckets of the direct addressing 𝑞-gram
index described in Section 5.2. Since the 𝒪(|Σ| )memory footprint of the direct address-
ing index may become prohibitive for large alphabets or large values of 𝑞, we introduce
the open addressing 𝑞-gram index in Section 5.4 which has a memory consumption lin-
ear in the size of the text. The chapter concludes with applications of 𝑞-gram indices in
Section 5.5. We describe two ilters based on 𝑞-gram counting capable of accelerating
approximate pattern matching algorithms.

1.5.2 Read mapping

One of the challenges imposed by the new sequencing technologies is the so-called read
mapping problem which is the irst fundamental step in almost all sequencing-based as-
says. It is to ind the genomic position of each sequenced read in a known, so-called
reference, genome. Knowing the genomic origins of all reads enables in further down-
stream analyses the identi ication of structural variations (Figure 1.2), e.g. SNPs can be
detected and distinguished from sequencing errors given a suf iciently high coverage
[Dohm et al., 2008]; analyzing the read coverage of the reference reveals regions that
have been deleted or repeated in the sequenced genome; and unmapped or partially
mapped reads may indicate an insertion in the sequenced genome. In RNA-seq or ChIP-
seq experiments the read coverage can be used to detect unknown exons or protein-
DNA-interactions. Mapping reads sequenced from environmental samples to a database
of different reference genomes allows detection and abundance estimation of the con-
tained organisms from individual coverages. In the reference guided assembly, reads
that overlap in the reference are used to determine contiguous sequences (contigs) of
the sequenced genome.

Solving the read mapping problem requires to overcome numerous related issues:

• To incorporate errors between reads and reference, resulting from base miscalls
and differences between reference and sequenced genome, the reads have to be
aligned semi-globally while tolerating a certain number of mismatches and indels.

• As sequenced reads typically stem from both DNA strands, theymust be aligned to
the forward strand and its reverse complement.

• Some reads originate from repetitive regions of the DNA and cannot uniquely be
aligned to a single position in the reference. In this case, all possible positions
should be reported.

The yield of hundreds of gigabases per sequencing run makes traditional alignment pro-
grams like BLAST [Altschul et al., 1990] or the most ef icient tools for mapping capillary
reads like SSHAHA [Ning et al., 2001] and BLAT [Kent, 2002] impractical to use.

In the last yearsmany tools have been published formapping short reads (30–60 bp)
that exploit characteristics of a speci ic sequencing technology, e.g. the low indel error
rate [Cox, 2006] or high-quality bases at the 5’-ends of Illumina reads [Li et al., 2008a],
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to outperform classic alignment tools in terms of speed. However, these tools often sac-
ri ice accuracy for speed and are only applicable to the technology they were developed
for. As a consequence, current read mappers have dif iculties to map long reads with a
high number of errors with a high sensitivity. Moreover, many use heuristics that lack a
clear de inition of the problem they solve, are hard to parametrize according to a speci ic
biological problem, or output only best matches under complicated and hardwired rules
[Li et al., 2008a; Li and Durbin, 2009].

We give a detailed overview of existing readmappers and their characteristics in Sec-
tion 6.1. In the subsequent sections, we formally de ine the read mapping problem we
consider and propose the algorithmic ideas of RazerS, an ef icient readmapping tool that
allows the user to align single or paired-end reads of arbitrary length using either Ham-
ming distance or edit distance. Our tool can work either lossless or with a user-de ined
loss rate at higher speeds. Given the loss rate, we present an approach that guarantees
not to lose more reads than speci ied. This enables the user to adapt to the problem at
hand and provides a seamless tradeoff between sensitivity and running time. RazerS uti-
lizes the𝑞-gram index and 𝑞-grambased ilters, whichwedescribe in Chapter 5, a banded
variant ofMyers’ [1999] bit-vector algorithm, andmulti-core parallelization. Weevaluate
the performance of our approach in comparison to other state-of-the-art read mapping
tools in various real-world experiments in Section 6.10.

1.5.3 Frequency string mining

The storage of sequences in databases alone does not guarantee that all hidden informa-
tion is readily available. A promising approach for knowledge discovery in databases
is to mine frequent patterns, which was reviewed by Han et al. [2007]. This general
paradigm can be applied in many application domains. For example, Hu and Liu [2004]
search for frequent patterns to condense opinions of customers from positive and nega-
tive product reviews, whereas others suggest mining of customer data to optimize mar-
keting strategies [Berry and Linoff, 1997]. Kobyliński and Walczak [2009] utilize fre-
quent patterns in the context of image classi ication by mining vertical, horizontal, and
diagonal sequences of discretized color and texture features of images. In [Birzele and
Kramer, 2006] frequent patterns are used as features for classi ication of protein sec-
ondary structures. Other applications are the design of microarray probes that allow
differentiation of groups of sequences under investigation [Fischer et al., 2005] or the
discovery of binding motifs of transcription factors [Mitašiūnaitė et al., 2008].

A gene is regulated by proteins, so-called transcription factors, that bind to its pro-
moter sequence. A commonapproach is to contrast promoter sequences of genes that are
believed to be regulated by the same factor with promoters of unrelated genes to detect
the transcription factor’s bindingmotif. The rationale behind this is to ind sequencemo-
tifs that are representative (frequent) for one set of sequences and absent (infrequent)
in another, a method called discriminatory or contrast data mining [Redhead and Bailey,
2007; Fischer et al., 2005; Han et al., 2007].

In Chapter 7, we focus on string mining under frequency constraints and de ine in
Section 7.2 predicates that evaluate solely the frequency of a pattern, i.e. the number of
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Figure 1.2: Multiple read alignment. Blue and red arrows represent reads mapped to the
forward or reverse strand of a reference sequence (top line). The arrows are
interspersed by dots or bases indicating gaps or mismatches in the alignment.
The example shows an insertion of AATT supported by half of the overlapping
reads indicating amutation in one of the two diploid chromosomes. The second
mutation is a SNPwhere a C in the reference was replaced by G in the sequenced
genome.

distinct sequences in a database that contain the pattern at least once. Frequency string
mining was motivated by approaches for mining sets of items [Agrawal et al., 1993; Han
et al., 2004]. There have beendifferent de initions of the string domains being sought, e.g.
gapped strings [Ji et al., 2007] or approximate strings [Mitašiūnaitė et al., 2008], while in
this work we consider exact substrings of sequences.

Various algorithmic approaches to frequency stringmining have been published over
the last years. The irst optimal algorithm was proposed by Fischer et al. [2006]. It is
based on enhanced suf ix arrays and quite fast in practice. We explain the fundamental
idea and memory ef icient variants in Section 7.4. In 2008, we presented a conceptually
much simpler algorithm which is based on a lazy suf ix tree, practically faster, and uses
less memory at the same time [Weese and Schulz, 2008]. We give an in-depth presenta-
tion of this algorithm in Section 7.5 and show how to use it on multiple databases with a
variety of frequency constraints. As such, we use the notion of entropy from information
theory to devise the entropy substring mining problem (Section 7.2) which is a multiple
database generalization of the emerging substring mining problem [Chan et al., 2003]. In
Section 7.6, we evaluate the performance of our implementation in comparison to other
approaches on real-world datasets of various string domains, e.g. natural language, DNA,
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or protein sequences. The experiments demonstrate the improvement of our algorithm
in terms of running time and applicability to arbitrary frequency predicates on multiple
databases.



C

2 Mathematical Preliminaries

This chapter introduces data structures that we will use throughout the thesis. First,
Section 2.1 gives some fundamental notations, whereas Section 2.2 introduces the lexi-
cographical order which we will use to de ine the suf ix tree in Section 2.3 and the suf ix
array in Chapter 3. Section 2.4 de ines alignments, transcripts, and distances that are
fundamental to read mapping and our sensitivity estimation approach in Chapter 6.

2.1 Notations

Let Σ be a non-empty, inite alphabet. A string over Σ is a inite sequence of characters
from Σ. Σ denotes the set of all strings of length 𝑛 over the alphabet Σ. Moreover, we
de ine Σ∗ ∶= ⋃ Σ the set of all inite strings over Σ where Σ = {𝜖} and 𝜖 is the empty
string. For 𝑠 ∈ Σ we denote the length of 𝑠 by |𝑠| = 𝑛. The concatenation of two strings
𝑠 and 𝑡 is denoted by 𝑠𝑡 or 𝑠 ⋅ 𝑡. We de ine an array or a table to be a string over the
alphabet ℕ , the set of non-negative integers. Strings of length 𝑞 are also called 𝑞-tuples
or 𝑞-grams. In the following, we use a zero-based indexing and de ine:

De inition 2.1 (substrings). Let 𝑠 ∈ Σ be a string and 𝑖, 𝑗 ∈ ℕ with 𝑖 ≤ 𝑗.

• 𝑠[𝑖] denotes the (𝑖 + 1)’th character of 𝑠.

• [𝑖..𝑗] ∶= {𝑖, 𝑖 + 1,… , 𝑗}

• [𝑖..𝑗) ∶= [𝑖..𝑗 − 1]

• 𝑠[𝑖..𝑗] ∶= 𝑠[𝑖]𝑠[𝑖 + 1]… 𝑠[𝑗] is called substring or in ix of 𝑠.

• 𝑠[𝑖..𝑗) ∶= 𝑠[𝑖..𝑗 − 1]

• 𝑠 ∶= 𝑠[𝑖..𝑛) is called suf ix of 𝑠. We may also write suf(𝑠, 𝑖).

• 𝑠[0..𝑖) is called pre ix of 𝑠.

• [𝑗..𝑖 − 1] ∶= ∅, 𝑠[𝑗..𝑖 − 1] ∶= 𝜖.

For two strings 𝑠, 𝑡 ∈ Σ∗ we write 𝑠 ⪯ 𝑡 if 𝑠 is a substring of 𝑡, and 𝑠 ≺ 𝑡 if 𝑠 ≠ 𝑡
holds in addition. For single characters 𝑥 ∈ Σ, we write 𝑥 ∈ 𝑠 equivalently to 𝑠 contains
a character 𝑥. Analogously to the notation in [Dementiev et al., 2008a] we canonically



14

extend the set de inition to strings, e.g. 2𝑖+1 𝑖 ∈ [0..5) denotes the stringof increasing
odd numbers between 0 and 10.

De inition 2.2 (longest common pre ix). Given a non-empty set of strings 𝒮 ⊂ Σ∗. The
string 𝑝 ∈ Σ∗ is a common pre ix of 𝒮, if for every 𝑠 ∈ 𝒮 there exists a string 𝑞 ∈ Σ∗ such
that 𝑠 = 𝑝𝑞. The longest common pre ix of 𝒮 is uniquely de ined and denoted by lcp 𝒮.

2.2 Relations

De inition 2.3 (Cartesian order). Given orders< and< on the sets𝑀 and𝑀 . Unless
otherwise stated, we de ine < an order on the Cartesian product 𝑀 × 𝑀 such that for
any (𝑎 , 𝑎 ), (𝑏 , 𝑏 ) ∈ 𝑀 ×𝑀 holds:

(𝑎 , 𝑎 ) < (𝑏 , 𝑏 ) ⇔ (𝑎 < 𝑏 ) ∨ (𝑎 = 𝑏 ∧ 𝑎 < 𝑏 ). (2.1)

For the Cartesian product𝑀 ×𝑀 ×…×𝑀 of more than 2 sets we de ine< recursively
such that for any (𝑎 , 𝑎 , … , 𝑎 ), (𝑏 , 𝑏 , … , 𝑏 ) ∈ 𝑀 ×𝑀 ×… ×𝑀 holds:

(𝑎 , 𝑎 , … , 𝑎 ) < (𝑏 , 𝑏 , … , 𝑏 ) ⇔ 𝑎 , (𝑎 , … , 𝑎 ) < 𝑏 , (𝑏 , … , 𝑏 )). (2.2)

Let < be a strict total order de ined on Σ, i.e. for any 𝑎, 𝑏 ∈ Σ exactly one of 𝑎 < 𝑏,
𝑏 < 𝑎 or 𝑎 = 𝑏 holds. We will now transform the relation over characters to a relation
over strings.

De inition 2.4 (lexicographical order). Let 𝑠, 𝑡 ∈ Σ∗ ⧵{𝜖} be two strings. The lexicograph-
ical order<lex on Σ∗ is recursively de ined as follows:

¬ 𝜖 <lex 𝜖 , (2.3)
𝜖 <lex 𝑠, (2.4)

¬ 𝑠 <lex 𝜖 , (2.5)
𝑠 <lex 𝑡 ⇔ 𝑠[0], 𝑠 < 𝑡[0], 𝑡 . (2.6)

With this de inition< becomes a strict total order on Σ∗, the lexicographical order. In
addition to the lexicographical order we de ine the so-called lexicographical pre ix order
that compares at most the irst 𝑞 characters as< .

De inition 2.5. For a 𝑞 ∈ ℕ the lexicographical pre ix order< is de ined on Σ∗ such that
for 𝑠, 𝑡 ∈ Σ∗ holds:

𝑠 < 𝑡 ⇔ 𝑠 0..min(𝑞, |𝑠|) < 𝑡 0..min(𝑞, |𝑡|) , (2.7)
𝑠 = 𝑡 ⇔ 𝑠 0..min(𝑞, |𝑠|) = 𝑡 0..min(𝑞, |𝑡|) . (2.8)

For any< order we de ine corresponding orders>,≤, and≥ as follows:
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De inition 2.6. For an order < on a set 𝑀 and any 𝑠, 𝑡 ∈ 𝑀 the orders >, ≤, and ≥ are
de ined as:

𝑠 > 𝑡 ⇔ 𝑡 < 𝑠, (2.9)
𝑠 ≤ 𝑡 ⇔ 𝑠 < 𝑡 ∨ 𝑠 = 𝑡, (2.10)
𝑠 ≥ 𝑡 ⇔ 𝑠 > 𝑡 ∨ 𝑠 = 𝑡. (2.11)

The lexicographical order allows us to associate each element of a set of strings with
its rank:

De inition 2.7 (lexicographical naming). Given a inite set of strings 𝒮 ⊆ Σ∗. A function
𝜏 ∶ 𝒮 → [0, |𝒮|) is called a lexicographical naming of 𝒮, if for any 𝑠, 𝑡 ∈ 𝒮 holds:

𝑠 <lex 𝑡 ⇔ 𝜏(𝑠) < 𝜏(𝑡). (2.12)

The function 𝜏 is bijective and uniquely de ined by the lexicographical order. For a
string 𝑠 ∈ 𝒮we call 𝜏(𝑠) the lexicographical name or rank of 𝑠 (in𝒮). The following lemma
allows to reduce the lexicographical order of concatenated tuples to the lexicographical
order of strings of tuple names, the fundamental idea of the suf ix array construction
algorithm in Section 3.3.

Lemma 2.1. Given a set 𝒮 ⊆ Σ of strings having length 𝑞 and a lexicographical naming 𝜏
for 𝒮. Let 𝑋 ,… , 𝑋 ∈ 𝒮 and 𝑌 ,… , 𝑌 ∈ 𝒮 be strings from 𝒮. The lexicographical relation of
the concatenated strings 𝑋 ⋅ 𝑋 ⋯𝑋 and 𝑌 ⋅ 𝑌 ⋯𝑌 equals the lexicographical relation
of the strings of names:

𝑋 ⋅ 𝑋 ⋯𝑋 <lex 𝑌 ⋅ 𝑌 ⋯𝑌
⇔ 𝜏(𝑋 )𝜏(𝑋 )… 𝜏(𝑋 ) <lex 𝜏(𝑌 )𝜏(𝑌 )… 𝜏(𝑌 ). (2.13)

Proof. Trivial proof by induction over 𝑘 and 𝑙 using the de inition of the lexicographical
order.

Example 2.1. Assume Σ = {a, b}, 𝒮 = {aa, ab, ba, bb}, and the lexicographical naming
𝜏(aa) = 0, 𝜏(ab) = 1, 𝜏(ba) = 2, and 𝜏(bb) = 3. Now any concatenation of strings in
𝒮 can be compared by comparing the concatenation of names:

abaababaab <lex abaabbaa
⇔ 10221 <lex 1030. (2.14)

2.3 Suf ix tree

A suf ix tree is a data structure that represents all substrings of a string. To well-de ine
the suf ix tree of a string over the alphabet Σ it is necessary to append a (virtual) sentinel
character that is smaller than every other alphabet character and not contained in the
string to prevent a suf ix from occurring more than once in 𝑠. This character is virtual as
it not used in any implementation described in this thesis.
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Figure 2.1: The suf ix tree of 𝑠 = banana (a) and the generalized suf ix tree of the strings
𝑠 = abab and 𝑠 = babb (b). In this example, the leaves are labeled with string
positions 𝑖 or (𝑗, 𝑖) representing the suf ixes suf(𝑠$, 𝑖) or suf(𝑠 $ , 𝑖).

De inition 2.8 (suf ix tree). The suf ix tree 𝑆𝑇(𝑠) of a string 𝑠 ∈ Ψ is a rooted treewhose
edges are labeledwith strings overΣ ∶= Ψ∪{$}, where $ is a sentinel characterwith $ ∉ Ψ
and ∀ ∈ $ < 𝑥. The suf ix tree ful ills the following properties:

1. Each internal node is branching, i.e. it has at least two children.

2. For branching nodes the labels of outgoing edges begin with distinct characters.

3. The suf ix tree has 𝑛 + 1 leaves numbered from 0 to 𝑛. The concatenation of edge
labels from the root to leaf 𝑖 yields the suf ix suf(𝑠$, 𝑖).

As a consequence of property 2 every tree node 𝑣 can uniquely be identi ied by the
concatenation of edge labels on the path from the root to 𝑣. For a node 𝑣, we denote this
string by concat(𝑣) and call it the concatenation string or representative of 𝑣. Vice versa
we denote with 𝛼, if existent, the tree node whose concatenation string is 𝛼. Implemen-
tations of suf ix trees can take advantage of edge labels being substrings by storing only
begin and end positions. In this way, suf ix trees of strings with length 𝑛 can be stored in
𝒪(𝑛)memory. A suf ix trie is de ined by omitting property 1 in De inition 2.8 and labeling
edges with characters instead of strings.

We will now extend the de inition of the suf ix tree from one to multiple strings and
de ine the so-called generalized suf ix tree. Again it is necessary to introduce a distinct
sentinel character $ for every string.

De inition 2.9 (generalized suf ix tree). The (generalized) suf ix tree 𝑆𝑇(𝑠 , … , 𝑠 ) of
multiple strings 𝑠 , … , 𝑠 ∈ Ψ∗ is a rooted tree whose edges are labeled with strings over
Σ ∶= Ψ ∪ {$ , … , $ }, where $ is a sentinel character with $ ∉ Ψ and $ < $ < … <
$ < 𝑥 for all 𝑥 ∈ Σ. The generalized suf ix tree ful ills the following properties:

1. Each internal node is branching.

2. For branching nodes the labels of outgoing edges begin with distinct characters.

3. Leaves are labeled with pairs (𝑗, 𝑖) such that 𝑗 ∈ [1..𝑚] and 𝑖 ∈ [0..|𝑠 |]. The con-
catenation of edge labels from the root to a leaf (𝑗, 𝑖) yields the suf ix suf(𝑠 $ , 𝑖).
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Analogously to the suf ix tree for one string, edge labels can be stored by string po-
sitions which is a string number and pair of begin and end position in the string. Figure
2.1 shows a suf ix tree of one string and a generalized suf ix tree of two strings. Please
note that the implementations described in this thesis store only non-empty suf ixes of
𝑠, i.e. suf ix tree nodes whose concatenation strings are sentinels are implicitly removed
from the suf ix tree.

2.4 Transcripts and alignments

In this section, we de ine distance and similarity measures on strings and show how to
ef iciently compute them. As introduced in the Section 1.4, basemiscalls during sequenc-
ing or mutations between sample and reference genome require to tolerate errors, e.g.
when searching a sequenced read in the reference genome, or comparing homologous
genes or whole genomes of different organisms.

This can be done by tolerating a certain number of edit operations, i.e. replacements,
deletions, and insertions, to transform the read into a genomic substring. We de ine a
transcript as a sequence of matches and edit operations to transform one string into an-
other, see Figure 2.2.
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Figure 2.2: A transcript from string 𝑠 to string 𝑡. The upper and lower sequences are the
two rows of the corresponding alignment matrix.

De inition 2.10 (transcript). For two strings 𝑠, 𝑡 ∈ Σ∗, a (edit) transcript from 𝑠 to 𝑡 is
a string over the alphabet Φ = {𝙼, 𝚁, 𝙳, 𝙸} that describes a transformation between the
two strings. The transcript is read and applied from left-to-right to single characters of 𝑠
to produce 𝑡, whereby 𝙼, 𝚁, 𝙳, and 𝙸 correspond to a match (no change), a replacement,
a deletion, and an insertion of a character in 𝑠.

For any transcript 𝑇 we de ine ‖𝑇‖E = {𝑖 | 𝑇[𝑖] ∈ {𝚁, 𝙳, 𝙸}} , the number of errors in
𝑇. The edit distance, also called Levenshtein [Levenshtein, 1966] distance, between two
strings is the minimum number of errors in transcripts between these strings. A special
case is the Hamming transcript withΦ = {𝙼, 𝚁}. It is de ined uniquely for two strings of
equal length and the Hamming distance is the number of errors in it. The distances are
metrics and for strings 𝑠 and 𝑡 we denote the edit distance as 𝑑E(𝑠, 𝑡) and the Hamming
distance as 𝑑H(𝑠, 𝑡). As we will show in the following, there is a one-to-one relationship
between global pairwise alignments and transcripts.

De inition 2.11 (alignment). For strings 𝑠 , … , 𝑠 ∈ Σ∗, a (global) multiple alignment is
an𝑚-row matrix 𝐴 = (𝑎 ) such that:
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1. All matrix elements 𝑎 are characters from Σ ∪ {-}.

2. The 𝑖-th matrix row is the string 𝑠 interspersed with gap characters -.

3. There is no column with gaps in all rows.

The elements of an alignment column are aligned to each other and as there is no
column containing only gap characters, the alignment has at most ∑ |𝑠 | columns.

De inition2.12 (transcript-alignment-equivalence). An alignment𝐴 of two sequences 𝑠
and 𝑠 , also called pairwise alignment, corresponds to a transcript 𝑇 from 𝑠 to 𝑠 if the
following holds:

1. The transcript length is the same as the number of matrix columns.

2. For each matrix column ( ) the corresponding transcript character is:

𝑇[𝑗 − 1] =
⎧⎪
⎨⎪⎩

I, if 𝑎 = -
D, if 𝑎 = -
M, if 𝑎 = 𝑎
R, else.

(2.15)

It is obvious to see that transcripts are only a different representation of pairwise
alignments and De inition 2.12 can be used to construct a valid transcript from a valid
alignment and vice versa. The number of edit operations can also be de ined for a pair-
wise alignment 𝐴. It is the sum of errors over all columns:

‖𝐴‖E = 𝛿(𝑎 , 𝑎 ), where 𝛿(𝑥, 𝑦) = 0, if 𝑥 = 𝑦
1, else. (2.16)

Hence the edit distance can also be de ined using alignments:

𝑑E(𝑠, 𝑡) = min
, an alignment of ,

‖𝐴‖E. (2.17)

For two strings of length𝑚 and 𝑛, with𝑚 < 𝑛, the edit distance and the corresponding
transcripts can be computed by the well-known alignment algorithm proposed by Sell-
ers [1980] in 𝒪(𝑚𝑛) time and space. The algorithmic idea goes back to the more general
algorithm by Needleman and Wunsch [1970] which computes alignments with maximal
similarity in 𝒪(𝑚𝑛 ) time and 𝒪(𝑚𝑛) space allowing for arbitrary gap costs that depend
on the gap length. If only the edit distance needs to be determined, the space consump-
tion of Sellers’ algorithm can be reduced to𝒪(𝑚) by onlymaintaining a single column in-
stead of thewhole DPmatrix. Myers [1999] proposed an approachwhich can be adapted
to compute the edit distance and is practically faster than both algorithms by exploiting
bit-level parallelism to compute the edit distance in𝒪 +𝑚 ⋅ |Σ| time and𝒪 ⋅ |Σ|
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space, where 𝑤 is the processor word size. The fundamental idea of all edit distance al-
gorithms is the following recurrence which holds for any two strings 𝑠 and 𝑡:

𝑑E 𝜖, 𝜖 = 0, (2.18)
𝑑E 𝑠[0..𝑖], 𝜖 = 𝑖 + 1, (2.19)
𝑑E 𝜖, 𝑡[0..𝑗] = 𝑗 + 1, (2.20)

𝑑E 𝑠[0..𝑖], 𝑡[0..𝑗] = min
𝑑E 𝑠[0..𝑖 − 1], 𝑡[0..𝑗] + 𝛿(𝑠[𝑖], -),
𝑑E 𝑠[0..𝑖], 𝑡[0..𝑗 − 1] + 𝛿(-, 𝑡[𝑗]),
𝑑E 𝑠[0..𝑖 − 1], 𝑡[0..𝑗 − 1] + 𝛿(𝑠[𝑖], 𝑡[𝑗]).

(2.21)

It uses the observation that the set of alignments of 𝑠[0..𝑖] and 𝑡[0..𝑗] is the union of 3 sets
of alignments ending with either ( [ ]

- ), ( -
[ ]), or ( [ ]

[ ]). If we cut off their last column, all
possible alignments between 𝑠[0..𝑖 − 1] and 𝑡[0..𝑗], 𝑠[0..𝑖] and 𝑡[0..𝑗 − 1], and 𝑠[0..𝑖 − 1]
and 𝑡[0..𝑗 − 1] remain. Thus the overall minimal number of errors equals the minimum
ofminimal number of errors in each of the 3 remaining sets plus errors in its cut column.
Dynamic programming (DP) allows to ef iciently compute 𝑑E 𝑠[0..𝑖], 𝑡[0..𝑗] for each pair
(𝑖, 𝑗) and to store in a traceback matrix which of the 3 values reach the minimum.

Figure 2.3 shows the traceback matrix for two strings 𝑠 and 𝑡. The 3 arrows ←, ↑,
and ↖ indicate that optimal alignments of 𝑠[0..𝑖] and 𝑡[0..𝑗] end with ( [ ]

- ), ( -
[ ]), or ( [ ]

[ ]).
Optimal alignments between 𝑠 and 𝑡 correspond to paths along arrows beginning in the
bottom-right corner of the tracebackmatrix. Following a path and reverse concatenating
the columns that correspond to each arrow yields an optimal alignment. The example
shows that there are two optimal alignments both having 2 insertions, 1 replacement
and 1 deletion in their respective transcripts from 𝑠 to 𝑡. They differ only in which of the
two A’s is deleted from CAAG to CAG.

2.5 Approximate matching

With the de initions above we are now able to de ine the problem of inding a pattern
in a text tolerating a limited number of errors. For the read mapping problem where all
possible genomic origins of a read should be determined, we focus on edit and Hamming
distance to incorporate sequencing errors and small variations between the reference
and the sequenced genome as these well-established distances yield the most effective
algorithms. There exist more complex models that consider additional transcript oper-
ations like transpositions [Damerau, 1964], the signi icance of a match [Altschul et al.,
1990], or positional error probabilities [Li et al., 2008a]. Many of thesemodels can easily
be integrated as a post- ilter to edit or Hamming distance based algorithms.

De inition 2.13 (𝑘-error match). Given two strings, a text 𝑡 and a pattern 𝑝, and a ixed
number 𝑘. A 𝑘-error match of 𝑝 is a substring 𝑡 ⪯ 𝑡 with 𝑑E(𝑡 , 𝑝) ≤ 𝑘.

The 𝑘-error problem is to ind all 𝑘-error matches of 𝑝 in 𝑡. Analogously to [Gus ield,
1997]we de ine a 𝑘-mismatch to be a substringwithHamming distance atmost 𝑘 and the
𝑘-mismatch problem to ind all 𝑘-mismatches of 𝑝 in 𝑡. Whilst 𝑘-mismatches always have
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Figure 2.3: The traceback matrix of an edit distance alignment between 𝑠 and 𝑡 from
Fig. 2.2. The arrows indicate paths of minimal errors. Optimal global align-
ment traces are depicted by dark arrows whereas the solid path corresponds to
the transcript of Fig. 2.2 and the dotted path is part of an alternative optimal
trace.

length |𝑝|, 𝑘-error matches can have different lengths between |𝑝| − 𝑘 and |𝑝| + 𝑘 even
with the same text end position. To reduce the number of 𝑘-errormatches from𝒪(𝑘𝑛) to
𝒪(𝑛)we irst concentrate on inding all end positions of 𝑘-error matches.

To decide whether a 𝑘-error match ends at position 𝑖 and determine its minimal dis-
tance for each 𝑖 ∈ [0..𝑛)would take 𝒪(𝑘𝑚𝑛) time with a brute force algorithm that com-
putes edit distances. Sellers [1980] proposed an approach that takes only 𝒪(𝑚𝑛) time
to ind all end positions of approximate matches independent of 𝑘. The DP algorithm
adapts the edit distance recurrence of the previous section in order to allow a match to
start anywhere in the text. The recursive function computes 𝑉 𝑝[0..𝑖], 𝑡[0..𝑗]), the mini-
mal edit distance between 𝑝[0..𝑖] and all suf ixes of 𝑡[0..𝑗], and sets 𝑉 𝜖, 𝑡[0..𝑗] = 0 as the
empty pattern matches the empty substring at any text position without error:

𝑉 𝜖, 𝜖 = 0, (2.22)
𝑉 𝑝[0..𝑖], 𝜖 = 𝑖 + 1, (2.23)
𝑉 𝜖, 𝑡[0..𝑗] = 0, (2.24)

𝑉 𝑝[0..𝑖], 𝑡[0..𝑗] = min
𝑉 𝑝[0..𝑖 − 1], 𝑡[0..𝑗] + 𝛿(𝑝[𝑖], -),
𝑉 𝑝[0..𝑖], 𝑡[0..𝑗 − 1] + 𝛿(-, 𝑡[𝑗]),
𝑉 𝑝[0..𝑖 − 1], 𝑡[0..𝑗 − 1] + 𝛿(𝑝[𝑖], 𝑡[𝑗]).

(2.25)

A 𝑘-error match of 𝑝 ends at position 𝑗 in 𝑡 iff 𝑉(𝑝, 𝑡[0..𝑗]) ≤ 𝑘. Analogously to the edit
distance computation the original 𝒪(𝑚𝑛) space consumption can be reduced to 𝒪(𝑚).
Ukkonen [1985] reduced the running time from 𝒪(𝑚𝑛) to 𝒪(𝑘𝑛) on average by comput-
ing the DP matrix column-wise from the topmost to the last active cell. A cell is called
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active if it has a value at most 𝑘 and the value of each active cell solely depends on active
cells. Myers’ [1999] bit-parallel approach has a running time of 𝒪 +𝑚 ⋅ |Σ| and can
be combined with the idea of Ukkonen [1985] yielding an ef icient algorithm for approx-
imate pattern matching with 𝒪 +𝑚 ⋅ |Σ| running time.

In Section 6.6.2, we propose a modi ication of this algorithm that computes 𝑉 on a
diagonal band of theDPmatrix yielding the practically fastest banded approximate string
matching algorithm.
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3 Enhanced Suf ix Array

The enhanced suf ix array (ESA) was irst proposed in [Abouelhoda et al., 2002a] as a
memory ef icient replacement for suf ix trees. In general it consists of 3 tables: the suf ix
array, the lcp table, and the child table. Each table is a string of the text length 𝑛 over
the alphabet [0..𝑛) and thus requires 𝒪(𝑛 log 𝑛) bits of memory without compression.
After de ining the 3 tables and their relation to suf ix trees, we propose construction
algorithms and our extensions to multiple sequences and the use of external memory.
On different arti icial and real-world datasets we analyze the performance of our con-
struction algorithms and demonstrate their applicability to large datasets comprising of
multiple mammal genomes (Tables 3.3–3.7). At the end of the chapter, we describe and
compare different search algorithms and propose an interface that easily allows to access
the enhanced suf ix array like a suf ix tree and provide 3 application-speci ic suf ix tree
iterators.

3.1 De initions

3.1.1 Suf ix array

The suf ix array is a space-ef icient representation of all non-empty suf ixes 𝑠 of a string
𝑠 in lexicographical order [Manber and Myers, 1993]. As strings of different lengths are
different by de inition 2.4 on page 14, each suf ix 𝑠 of a string 𝑠 can be uniquely identi ied
by its begin position 𝑖 and the set of suf ixes can be uniquely ordered lexicographically.
The sequence of begin positions of suf ixes in lexicographical order is called the suf ix
array of 𝑠.
De inition 3.1 (suf ix array). Given a string 𝑠 of length 𝑛, the suf ix array 𝗌𝗎𝖿𝗍𝖺𝖻 of 𝑠 is a
string of length 𝑛 over the alphabet [0..𝑛). For every 𝑖, 𝑗 ∈ [0..𝑛) holds:

𝑖 < 𝑗 ⇔ 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] <lex 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] . (3.1)
For a suf ix array 𝗌𝗎𝖿𝗍𝖺𝖻 the inverse suf ix array 𝗌𝗎𝖿𝗍𝖺𝖻 is a string over the alphabet

[0..𝑛)with 𝗌𝗎𝖿𝗍𝖺𝖻 𝗌𝗎𝖿𝗍𝖺𝖻[𝑖] = 𝑖 for each 𝑖 ∈ [0..𝑛).

3.1.2 LCP table

The lcp table stores the lengths of the longest-common pre ix between every consecutive
pair of suf ixes in 𝗌𝗎𝖿𝗍𝖺𝖻.
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De inition 3.2 (lcp table). Given a string 𝑠 of length 𝑛 and its suf ix array 𝗌𝗎𝖿𝗍𝖺𝖻, the lcp
table 𝗅𝖼𝗉 of 𝑠 is a string of length 𝑛+1 over the alphabet [0..𝑛). For every 𝑖 ∈ [1..𝑛) holds:

𝗅𝖼𝗉[0] = −1, (3.2)
𝗅𝖼𝗉[𝑖] = lcp 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ], 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] , (3.3)
𝗅𝖼𝗉[𝑛] = −1. (3.4)

For the sake of simplicity, we extended the lcp table by two boundary values (−1)
which are implicitly needed by some algorithms, e.g. Algorithms 3.9 and 3.10, if the text
does not end with a $-character. However, they are not explicitly required in the imple-
mentations of these algorithms. We call the table entries lcp values and 𝗅𝖼𝗉[𝑖] the lcp value
of 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] or the 𝑖-th lcp value. Manber and Myers [1993] introduced the lcp table and
how to construct it as a byproduct of the 𝒪(𝑛 log 𝑛) suf ix array construction. The irst
optimal algorithm proposed in [Kasai et al., 2001] constructs the lcp table for a text and
a given suf ix array in linear-time.

3.1.3 Child table

Besides the linear-time algorithm to construct 𝗅𝖼𝗉, Kasai et al. proposed a method to tra-
verse the suf ix tree 𝑆𝑇(𝑠) in a bottom-up fashion by solely scanning 𝗅𝖼𝗉 from left to right
and updating a stack that represents the path from the traversed node to the root. This
method is used in [Abouelhoda et al., 2002a] to construct the child table 𝖼𝗅𝖽, which con-
tains links to the siblings and children of a node and thus represents the structure of the
suf ix tree. To understand the child table we irst need to introduce lcp-intervals.

De inition 3.3 (lcp-interval). An interval [𝑖..𝑗) ⊆ [0..𝑛) with 𝑖 + 1 < 𝑗 is called an lcp-
interval of value ℓ or ℓ-interval [𝑖..𝑗) if the following holds:

1. 𝗅𝖼𝗉[𝑖] < ℓ,

2. 𝗅𝖼𝗉[𝑗] < ℓ,

3. ∀ ∈( .. ) 𝗅𝖼𝗉[𝑘] ≥ ℓ,

4. ∃ ∈( .. ) 𝗅𝖼𝗉[𝑘] = ℓ.

For completeness, we also de ine [𝑖..𝑖+1) to be a (singleton) ℓ-intervalwith ℓ = |𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ]|
and 𝑖 ∈ [0..𝑛).

With an ℓ-interval [𝑖..𝑗)we associate the set of suf ixes 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ], 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ], …, 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ].
Then the following holds: (1) The longest-common pre ix 𝜔 of these suf ixes has length
ℓ by properties 3 and 4 and we also call this ℓ-interval an𝜔-interval. (2) A non-singleton
ℓ-interval [𝑖..𝑗) is maximal by properties 1 and 2, i.e. every extension to the left or right is
no longer an ℓ-interval.

Lemma 3.1 (node-interval-duality). For every suf ix tree node 𝑣 in 𝑆𝑇(𝑠) there is an 𝜔-
interval [𝑖..𝑗) and vice versa. If 𝑣 is an inner node it holds 𝜔 = concat(𝑣) and otherwise
𝜔$ = concat(𝑣).
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Figure 3.1: Suf ix array and lcp table of ttatctctta.

Proof. For each singleton𝜔-interval holds: 𝜔 is a suf ix of 𝑠 and hence there is a leaf 𝑣 in
the suf ix tree of 𝑠 with concat(𝑣) = 𝜔$. Analogously, for each leaf there is an𝜔-interval.
Now, we consider non-singleton 𝜔-intervals and their corresponding inner nodes 𝑣.

(→) For every inner node 𝑣 of the suf ix tree 𝑆𝑇(𝑠) there is a set of suf ixes of 𝑠 be-
ginning with concat(𝑣). Let 𝑆(𝑣) denote this set. The suf ixes in 𝑆(𝑣) correspond to the
leaves in the subtree rooted at 𝑣. As an inner node, 𝑣 has at least two outgoing edges
beginning with 𝑎, 𝑏 ∈ Σ ∪ {$} and 𝑎 ≠ 𝑏. Therefore there are at least two suf ixes in
𝑆(𝑣) that begin with concat(𝑣)𝛼 and concat(𝑣)𝛽, where 𝛼, 𝛽 ∈ Σ ∪ Σ and 𝛼 ≠ 𝛽. Thus
the longest-common pre ix of 𝑆(𝑣) is concat(𝑣). As all suf ixes beginning with a common
pre ix are stored in a contiguous interval, there are 𝑖 and 𝑗, such that 𝗌𝗎𝖿𝗍𝖺𝖻[𝑖..𝑗) stores the
begin positions of all suf ixes in 𝑆(𝑣). Suf ixes that are not included in 𝑆(𝑣) are not in the
subtree rooted at 𝑣 and do not begin with concat(𝑣). Therefore 𝗅𝖼𝗉[𝑖] < ℓ and 𝗅𝖼𝗉[𝑗] < ℓ
and [𝑖..𝑗) is an 𝜔-interval with 𝜔 = concat(𝑣).

(←) Let [𝑖..𝑗) be a non-singleton 𝜔-interval and 𝑇(𝜔) denote the set of suf ixes of 𝑠
beginning with 𝜔. By de inition holds {𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ], … , 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ]} ⊆ 𝑇(𝜔). As the 𝜔-interval
is maximal it follows 𝑇(𝜔) = {𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ], … , 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ]}. By property 4 exists a 𝑘 such that
𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] and 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] begin with 𝜔𝛼 and 𝜔𝛽, where 𝛼, 𝛽 ∈ Σ ∪ Σ and 𝛼 ≠ 𝛽. As a
consequence, the lowest common ancestor (lca) of the leaves representing these suf ixes
is a branching node 𝑣 with concat(𝑣) = 𝜔 and 𝑆(𝑣) = 𝑇(𝜔).

In the following, we consider the suf ix tree 𝑆𝑇(𝑠) and for each node 𝑣 denote with
𝑆(𝑣) the suf ixes represented by the leaves below 𝑣.

Corollary 3.1. Every suf ix tree node 𝑣 can be identi ied by an lcp-interval [𝑖..𝑗) and both
represent the same set of suf ixes 𝑆(𝑣) = 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ], 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ], …, 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ].

Let 𝑣 be an inner suf ix tree node with children𝑤 ,… ,𝑤 . W.l.o.g. let concat(𝑤 ) <lex

concat(𝑤 ) <lex … <lex concat(𝑤 ). Obviously the sets 𝑆(𝑤 ), 𝑆(𝑤 ), …, 𝑆(𝑤 ) form a
partition of the set 𝑆(𝑣). As a consequence of Corollary 3.1, the lcp-intervals of the chil-
dren (child intervals) are subintervals that form a partition [𝑙 ..𝑙 ), [𝑙 ..𝑙 ), …, [𝑙 ..𝑙 )
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(c) linked ℓ-indices

i u. d. n. 𝖼𝗅𝖽
0 2 ..10 ..10
1 ..1
2 ..1 3 ..4 ..4
3 ..3
4 ..3 ..6 ..6
5 ..5
6 ..5 7 ..8 ..8
7 ..7
8 ..7 ..9 ..9
9 ..2

10 ..2

.

(d) child table

Figure 3.2: Suf ix tree (a) and lcp-interval tree (b) of 𝑠 = ttatctctta. The bold numbers
between lcp-interval nodes (b) are ℓ-indices of the parent interval above. The
child table (d) stores for every ℓ-index 𝑖 the 𝗎𝗉, 𝖽𝗈𝗐𝗇, and 𝗇𝖾𝗑𝗍ℓ𝖨𝗇𝖽𝖾𝗑 values
(compare with c), which are the irst ℓ-indices in the lcp-interval left of 𝑖, right
of 𝑖, or the next ℓ-index in the same lcp-interval, respectively. After the removal
of redundant 𝖽𝗈𝗐𝗇 links, the three columns (d) can be stored as a single string
𝖼𝗅𝖽 of length 𝑛.
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of the ℓ-interval [𝑖..𝑗) of 𝑣, where 𝑙 = 𝑖 and 𝑙 = 𝑗. The length of the longest-common
pre ix of suf ixes from different child subtrees is ℓ = |concat(𝑣)|, whereas the lcp-length
of suf ixes from the same subtree is greater than ℓ. Thus for 𝑥 ∈ [𝑖, 𝑗) it holds 𝗅𝖼𝗉[𝑥] = ℓ
only if 𝑥 ∈ {𝑙 , … , 𝑙 } and 𝗅𝖼𝗉[𝑥] > ℓ, otherwise. The indices 𝑙 , … , 𝑙 uniquely de ine
the partition into subintervals and are called ℓ-indices of the lcp-interval [𝑖..𝑗). The set
{𝑙 , … , 𝑙 } is denoted by ℓ-indices(𝑖, 𝑗).

The parent-child relationship of lcp-intervals corresponds to the parent-child rela-
tionship of suf ix tree nodes and constitutes the so-called lcp-interval tree [Abouelhoda
et al., 2002a], compare Figure 3.2a and Figure 3.2b. The child table is a linked list of
ℓ-indices and stores for each ℓ-index so-called 𝗎𝗉, 𝖽𝗈𝗐𝗇, and 𝗇𝖾𝗑𝗍ℓ𝖨𝗇𝖽𝖾𝗑 values, see Fig-
ure 3.2c. It can be represented as 3 subtables which are strings of length 𝑛 + 1 over the
alphabet [0..𝑛] (columns u, d, and n in Figure 3.2d).

For 𝑙 ∈ ℓ-indices(𝑖, 𝑗), 𝗇𝖾𝗑𝗍ℓ𝖨𝗇𝖽𝖾𝗑(𝑙 ), if existent, is the next greater ℓ-index 𝑙 in
the set ℓ-indices(𝑖, 𝑗). 𝗎𝗉(𝑙 ) and 𝖽𝗈𝗐𝗇(𝑙 ), if existent, are the smallest ℓ-indices in the
sets ℓ-indices(𝑙 , 𝑙 ) and ℓ-indices(𝑙 , 𝑙 ). For an arbitrary ℓ-index 𝑖, the values 𝗎𝗉,
𝖽𝗈𝗐𝗇, and 𝗇𝖾𝗑𝗍ℓ𝖨𝗇𝖽𝖾𝗑 can formally be de ined as follows [Abouelhoda et al., 2002a]:

𝗎𝗉(𝑖) = min{𝑞 ∈ [0..𝑖) | 𝗅𝖼𝗉[𝑞] > 𝗅𝖼𝗉[𝑖] ∧ ∀ ∈( .. )𝗅𝖼𝗉[𝑘] ≥ 𝗅𝖼𝗉[𝑞]} , (3.5)
𝖽𝗈𝗐𝗇(𝑖) = max{𝑞 ∈ (𝑖..𝑛] | 𝗅𝖼𝗉[𝑞] > 𝗅𝖼𝗉[𝑖] ∧ ∀ ∈( .. )𝗅𝖼𝗉[𝑘] > 𝗅𝖼𝗉[𝑞]} , (3.6)

𝗇𝖾𝗑𝗍ℓ𝖨𝗇𝖽𝖾𝗑(𝑖) = min{𝑞 ∈ (𝑖..𝑛] | 𝗅𝖼𝗉[𝑞] = 𝗅𝖼𝗉[𝑖] ∧ ∀ ∈( .. )𝗅𝖼𝗉[𝑘] > 𝗅𝖼𝗉[𝑖]} . (3.7)

It is easy to see how the child table can be used to enumerate all child intervals for
an arbitrary lcp-interval and we will devise an iterator in Section 3.6.2 that can go down
and go right in the suf ix tree.

3.2 Representation

As explained above, the enhanced suf ix array can be represented as strings of length
𝒪(𝑛) over the alphabet [0..𝑛] and thus has a memory consumption of 𝒪(𝑛 log 𝑛) bits in
total. There exist different approaches, called succinct indices, compressed indices, or
self-indices, which have a memory consumption linear to the size of the uncompressed
text (succinct), the compressed text (compressed), or even replace the text (self-index)
by providing functionality to ef iciently reproduce any text substring. Each of the ap-
proaches compresses the tables of the enhanced suf ix array at the expense of practical
access time. We will not go into details and instead refer the interested reader to [Grossi
et al., 2003; Sadakane, 2003; Navarro and Mäkinen, 2007].

Abouelhoda et al. proposed an easy and elegantway to reduce thememory consump-
tion of the child table by two-thirds. We decide to use their representation as it is coupled
with only a small increase in access time. Instead of using 3 strings of length 𝑛 + 1, they
merge the 3 subtables into a single string 𝖼𝗅𝖽 of length 𝑛 over the alphabet [0..𝑛]. Their
method bene its from the following two observations:

Observation 3.1. Each de ined value 𝗇𝖾𝗑𝗍ℓ𝖨𝗇𝖽𝖾𝗑(𝑖) can be stored at 𝖼𝗅𝖽[𝑖]. For the last
ℓ-index 𝑖 in every lcp-interval 𝗇𝖾𝗑𝗍ℓ𝖨𝗇𝖽𝖾𝗑(𝑖) is unde ined and the entry 𝖼𝗅𝖽[𝑖] can be used
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to store 𝖽𝗈𝗐𝗇(𝑖) instead. For all other ℓ-indices the 𝖽𝗈𝗐𝗇-value equals the 𝗎𝗉-value of its
successor and needs not to be stored explicitly.

Proof. Trivial.
Observation 3.2. For every ℓ-index 𝑖 that has a de ined 𝗎𝗉-value, 𝑖 − 1 is an ℓ -index with
unde ined values for 𝖽𝗈𝗐𝗇 and 𝗇𝖾𝗑𝗍ℓ𝖨𝗇𝖽𝖾𝗑. Thus the 𝗎𝗉-value can be stored at 𝖼𝗅𝖽[𝑖 − 1].
Proof. Let𝑞 ∶= 𝖼𝗅𝖽[𝑖].𝗎𝗉be the𝗎𝗉-value of 𝑖. By the formal de initionholds 𝗅𝖼𝗉[𝑞] > 𝗅𝖼𝗉[𝑖]
and 𝗅𝖼𝗉[𝑘] ≥ 𝗅𝖼𝗉[𝑞] > 𝗅𝖼𝗉[𝑖] for every 𝑘 ∈ (𝑞..𝑖). It especially holds 𝗅𝖼𝗉[𝑖 − 1] > 𝗅𝖼𝗉[𝑖] and
thus the values 𝖽𝗈𝗐𝗇(𝑖 − 1) and 𝗇𝖾𝗑𝗍ℓ𝖨𝗇𝖽𝖾𝗑(𝑖 − 1) are unde ined as for all 𝑞 ≥ 𝑖 + 1 and
𝑘 = 𝑖 + 1 the necessary condition 𝗅𝖼𝗉[𝑘] > 𝗅𝖼𝗉[𝑞] ≥ 𝗅𝖼𝗉[𝑖] is violated.

Abouelhoda et al. showed how to retrieve the original three values from the merged
child table 𝖼𝗅𝖽:

𝗎𝗉[𝑖] = 𝖼𝗅𝖽[𝑖 − 1], if 𝑖 > 0 and 𝗅𝖼𝗉[𝑖 − 1] > 𝗅𝖼𝗉[𝑖]
⊥, else, (3.8)

𝖽𝗈𝗐𝗇[𝑖] = 𝖼𝗅𝖽[𝑖], if 𝗅𝖼𝗉[𝖼𝗅𝖽[𝑖]] > 𝗅𝖼𝗉[𝑖]
⊥, else, (3.9)

𝗇𝖾𝗑𝗍ℓ𝖨𝗇𝖽𝖾𝗑[𝑖] = 𝖼𝗅𝖽[𝑖], if 𝗅𝖼𝗉[𝖼𝗅𝖽[𝑖]] = 𝗅𝖼𝗉[𝑖]
⊥, else. (3.10)

For each non-singleton lcp-interval [𝑖..𝑗) either 𝖽𝗈𝗐𝗇[𝑖] or 𝗎𝗉[𝑗] is de ined and equals
the irst ℓ-index 𝑙 . The other ℓ-indices can be determined by 𝑙 = 𝗇𝖾𝗑𝗍ℓ𝖨𝗇𝖽𝖾𝗑[𝑙 ].

3.3 Construction of the suf ix array

Constructing a suf ix array differs from ordinary sorting of strings in that suf ixes are
overlapping substrings of a single text of length 𝑛. Generic string sorting algorithms
cannot bene it from this information and alone for inspecting all suf ix characters need
Ω(𝑛 ) time in the worst case. In the last 20 years plenty of more ef icient suf ix array
construction algorithms were published that avoid redundant character comparisons by
reusing the relation of already compared suf ixes in subsequent comparisons. Manber
andMyers [1993] not only irst introduced the concept of suf ix arrays but also proposed
the irst 𝒪(𝑛 log 𝑛) construction algorithm. It uses pre ix-doubling that in 𝒪(log 𝑛) steps
doubles the pre ix length the suf ixes are sorted by. The algorithm was superseded by
many more, practically faster algorithms in the following years summarized in [Puglisi
et al., 2007]. By reducing the comparison-based sorting problem [Knuth, 1998] to the
problem of sorting suf ixes, it can be shown that an 𝒪(𝑛 log 𝑛) running time is optimal
for arbitrary alphabets. For integer alphabets, i.e. subsets of integers from a linear-sized
range, the rank of a character can directly be used like in radix sort [Cormen et al., 2001]
instead of comparing two characters. Independently from each other, in 2003 three algo-
rithms were proposed that bene it from using character ranks to construct a suf ix array
in optimal Θ(𝑛) time [Ko and Aluru, 2005; Kim et al., 2005; Kärkkäinen et al., 2006]. In
the following, wewill discuss one of them, the skew algorithm¹ [Kärkkäinen and Sanders,

¹ The skew algorithm is called DC3 (for Difference Cover modulo 3) in [Kärkkäinen et al., 2006].
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2003]. We choose it as the default suf ix array construction algorithm in SeqAn as it is
fast, robust, and generic. Furthermore, its simplicity enables it to be adapted to obtain
an optimal algorithm for external memory [Dementiev et al., 2008a].

At irst, we describe the original skew algorithm and afterwards we propose our ex-
tension by difference covers, external memory variants and an adaptation to multiple
sequences.

3.3.1 The linear-time algorithm by Kärkkäinen et al.

The skewalgorithmproposed in [Kärkkäinen andSanders, 2003; Kärkkäinen et al., 2006]
is a recursive algorithm for integer alphabets that consists of the following 3 steps, which
we explain in detail below:

1. Construct the suf ix array 𝗌𝗎𝖿𝗍𝖺𝖻 of suf ixes starting at positions 𝑖 ≢ 0 (mod 3).
This is done by a recursive call of the skew algorithm for a string of two thirds the
length of the text.

2. Construct the suf ix array 𝗌𝗎𝖿𝗍𝖺𝖻 of the remaining suf ixes using the result of the
irst step.

3. Merge the two suf ix arrays into one.

Step 1: Construct the suf ix array 𝗌𝗎𝖿𝗍𝖺𝖻

Given a text string 𝑠 of length𝑛. Let $ be a character smaller than any character in the text.
Consider the triples 𝑠[𝑖..𝑖+2] starting at positions 𝑖 ≢ 0 (mod 3) in the text for 0 < 𝑖 < 𝑛.
Append $$$ to 𝑠 to obtain well-de ined triples also for 𝑖 ∈ [𝑛 − 2..𝑛]. For 𝑛 ≡ 1 (mod 3)
the appended triple 𝑠[𝑛..𝑛 + 2] is also considered. Determine a lexicographical naming
(see De inition 2.7 on page 15) of the triples and assign 𝜏 the rank of the triple 𝑠[𝑖..𝑖 +2].
This can be done in a linear scan after sorting the triples in linear time with three passes
of radix sort (see Figure 3.3).

If the triple names are pairwise distinct, set 𝗌𝗎𝖿𝗍𝖺𝖻 [𝜏 ] ∶= 𝑖 and step 1 is done. Oth-
erwise, recursively construct 𝗌𝗎𝖿𝗍𝖺𝖻 , the suf ix array of the text:

𝑠 = 𝜏 | 𝑖 ≡ 1 (mod 3) ⋅ 𝜏 | 𝑖 ≡ 2 (mod 3)

= ..𝜏 𝜏 … 𝜏 ( ). ⋅ ..𝜏 𝜏 … 𝜏 ( ). , with 𝑛 = 𝑛 − 𝑗
3 . (3.11)

𝑠 is a string of length 𝑛 +𝑛 = over the alphabet 0..|𝑠 | , where 𝑛 is the number
of triples starting at positions 𝑖 ≡ 𝑗 (mod 3) that overlap with the irst 𝑛 text characters.
There is a one-to-one correspondence between suf ixes of 𝑠 and the (possibly empty)
suf ixes 𝑠 with 𝑖 ≢ 0 (mod3). In case𝑛 ≢ 1 (mod3), the last name in 𝑡 is unique in 𝑠 and
corresponds to a triple ending with $ or $$. To ensure that a lexicographical comparison
between suf ixes of 𝑠 never exceed the end of 𝑡 , the extra triple $$$ is included into the
set of considered triples in case 𝑛 ≡ 1 (mod 3) ⇔ 𝑛 − 𝑛 = 1. Therefore 𝑡 consists of
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𝑖 𝑠[𝑖..𝑖 + 2]

1 tat
2 atc
4 ctc
5 tct
7 tta
8 ta$

10 $$$

radix
pass⟶

𝑖 𝑠[𝑖..𝑖 + 2]

8 ta$
10 $$$
7 tta
2 atc
4 ctc
1 tat
5 tct

radix
pass⟶

𝑖 𝑠[𝑖..𝑖 + 2]

10 $$$
8 ta$
1 tat
5 tct
7 tta
2 atc
4 ctc

radix
pass⟶

𝑖 𝑠[𝑖..𝑖 + 2] 𝜏

10 $$$ 0
2 atc 1
4 ctc 2
8 ta$ 3
1 tat 4
5 tct 5
7 tta 6

Figure 3.3: Skew step 1. Sort the triples of the text 𝑠 = ttatctctta. The three radix passes
stably sort the triples by their last, middle, and irst character. After that, the
lexicographically sorted triples can be named in a linear scan. If non-unique the
names are recursively extended to names of suf ixes and used to create 𝗌𝗎𝖿𝗍𝖺𝖻 .
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Figure 3.4: Skew step 2. Suf ix start positions 𝑖 + 1 with 𝑖 + 1 ≡ 1 (mod 3) are extracted
from 𝗌𝗎𝖿𝗍𝖺𝖻 and stored as 𝑖 in the same order. A radix pass stably sorts them
by the irst suf ix character 𝑠[𝑖] (shown below the boxes) and creates 𝗌𝗎𝖿𝗍𝖺𝖻 .

𝑛 +(𝑛 −𝑛 ) = 𝑛 triple names and the ranks of suf ixes starting in 𝑡 are not in luenced
by their 𝑡 tail. By Lemma 2.1 on page 15 the lexicographical rank of suf ix 𝑠 with 𝑖 ≢
0 (mod 3) equals its corresponding suf ix of 𝑠 . Thus 𝗌𝗎𝖿𝗍𝖺𝖻 can be transformed into
𝗌𝗎𝖿𝗍𝖺𝖻 as follows:

𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖] = 1 + 3𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖], if 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖] < 𝑛
2 + 3(𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖] − 𝑛 ), else. (3.12)

Step 2: Construct the suf ix array 𝗌𝗎𝖿𝗍𝖺𝖻

The remaining suf ixes 𝑠 with 𝑖 ≡ 0 (mod3) can be sorted by sorting the pairs (𝑠[𝑖], 𝑠 ).
As the order of the suf ixes 𝑠 is implicitly given in 𝗌𝗎𝖿𝗍𝖺𝖻 , 𝗌𝗎𝖿𝗍𝖺𝖻 can be constructed
by extracting entries 𝑖+1, with 𝑖+1 ≡ 1 (mod 3), from 𝗌𝗎𝖿𝗍𝖺𝖻 andwriting the entries 𝑖
in the same order into 𝗌𝗎𝖿𝗍𝖺𝖻 . Afterwards stably sort them by 𝑠[𝑖] in a single radix pass.
These steps are shown in Figure 3.4.
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Step 3: Merge 𝗌𝗎𝖿𝗍𝖺𝖻 and 𝗌𝗎𝖿𝗍𝖺𝖻

Finally, the two sorted suf ix arrays need to be merged into the complete suf ix array
𝗌𝗎𝖿𝗍𝖺𝖻 of 𝑠. This can be done by scanning them simultaneously and comparing suf ixes
from 𝗌𝗎𝖿𝗍𝖺𝖻 with suf ixes from 𝗌𝗎𝖿𝗍𝖺𝖻 . If 𝑛 ≡ 1 (mod 3), the irst suf ix of 𝗌𝗎𝖿𝗍𝖺𝖻 rep-
resents the empty suf ix and must be skipped. The suf ix comparison can be reduced to
𝒪(1) character comparisons and a rank comparison of suf ixes from 𝗌𝗎𝖿𝗍𝖺𝖻 . To deter-
mine the ranks in 𝒪(1) time, we construct 𝖱𝟣𝟤, the inverse suf ix array of 𝗌𝗎𝖿𝗍𝖺𝖻 , such
that 𝖱𝟣𝟤 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖] = 𝑖 holds. Two suf ixes 𝑖 ∈ 𝗌𝗎𝖿𝗍𝖺𝖻 and 𝑗 ∈ 𝗌𝗎𝖿𝗍𝖺𝖻 can now be
compared in 𝒪(1) time as follows:

𝑠 <lex 𝑠 ⇔ 𝑠[𝑖], 𝖱𝟣𝟤[𝑖 + 1] < 𝑠[𝑗], 𝖱𝟣𝟤[𝑗 + 1] , if 𝑗 ≡ 1 (mod 3)
𝑠[𝑖..𝑖 + 1], 𝖱𝟣𝟤[𝑖 + 2] < 𝑠[𝑗..𝑗 + 1], 𝖱𝟣𝟤[𝑗 + 2] , if 𝑗 ≡ 2 (mod 3). (3.13)

Figure 3.5 shows themerging step and both comparison cases. It is easy to verify that
the rank comparison is possible in both cases. Neglecting the recursion, each step of the
skew algorithm takes 𝒪(𝑛). The overall running time can be estimated by a geometric
series with an asymptotic upper bound in 𝒪(𝑛).

3.3.2 Difference covers

The general idea of the skewalgorithm is to partition the set of suf ixes into two (ormore)
subsets such that from every pair of suf ixes 𝑠 , 𝑠 a certain pre ix of length Δ , ∈ 𝒪(1)
can be cut and the remaining suf ixes 𝑠 , , 𝑠 , are from one subset. The skew al-
gorithm partitions the suf ixes according to their start positions into subsets of residue
classes modulo 𝑚 = 3. In Section 5 in [Kärkkäinen et al., 2006] the authors theoreti-
cally describe an extension of their algorithm to arbitrary natural numbers 𝑚 based on
difference covers [Haanpää, 2004] of the residue class ring ℤ .

Their proposal considers the set of integers ℤ and ℤ = {0, 1, … ,𝑚 − 1}, the residue
class ring modulo𝑚, where each element 𝑖 represents the residue class 𝑖+𝑚ℤ, the set of
integers congruent 𝑖 modulo𝑚. Under addition ℤ is a inite cyclic abelian group.
De inition 3.4 (difference cover). Given a inite abelian group 𝐺 and a subset𝐷 ⊆ 𝐺. 𝐷 is
called a difference cover of𝐺, if for every 𝑥 ∈ 𝐺 there exist𝑑 , 𝑑 ∈ 𝐷 such that 𝑥 = 𝑑 −𝑑 .

The following lemma shows that the third step of the skew algorithm is always feasi-
ble, if in step 1 suf ixes are sorted that start at positions in residue classes of a difference
cover of ℤ . In that case, arbitrary suf ixes can be compared by comparing 𝒪(𝑚) charac-
ters and ranks of suf ixes from the irst step.
Lemma 3.2. Given a difference cover 𝐷 of a inite abelian group 𝐺. For any 𝑥, 𝑦 ∈ 𝐺 there
exists a Δ ∈ 𝐺, such that 𝑥 + Δ ∈ 𝐷 and 𝑦 + Δ ∈ 𝐷.
Proof. For any 𝑥, 𝑦 ∈ 𝐺 let 𝑧 ∶= 𝑥 − 𝑦. As 𝐷 is a difference of 𝐺 and 𝑧 ∈ 𝐺, there exist
𝑎, 𝑏 ∈ 𝐷 such that 𝑎 − 𝑏 = 𝑧. For Δ ∶= 𝑎 − 𝑥 holds:

(𝑥 + Δ) = 𝑥 + (𝑎 − 𝑥) = 𝑎 ⇒ (𝑥 + Δ) ∈ 𝐷, (3.14)
(𝑦 + Δ) = 𝑦 + (𝑎 − 𝑥) = 𝑎 − (𝑥 − 𝑦) = 𝑎 − 𝑧 = 𝑏 ⇒ (𝑦 + Δ) ∈ 𝐷. (3.15)
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Figure 3.5: Skew step 3. The empty suf ix is removed from 𝗌𝗎𝖿𝗍𝖺𝖻 and the two sorted ar-
rays aremerged into the inal suf ix array. Depending on the residue class of the
suf ix in 𝗌𝗎𝖿𝗍𝖺𝖻 either one or two characters and a rank in 𝖱𝟣𝟤 are compared.

As a consequence, it is suf icient to compute 𝖱 , such that 𝖱 [𝑙] is the lexicographical
rank of suf ix 𝑠 in the set of suf ixes starting at positions⋃ ∈ 𝑋. We can then determine
Δ , ∈ [0..𝑚)with the above lemma such that for arbitrary suf ixes 𝑠 and 𝑠 holds:

𝑠 <lex 𝑠 ⇔ 𝑠 𝑖..𝑖 + Δ , , 𝖱 𝑖 + Δ , < 𝑠 𝑗..𝑗 + Δ , , 𝖱 𝑗 + Δ , . (3.16)

As the problem size decreases in every recursion step by a factor of 𝜆 = | | , we are
for a given𝑚 interested in minimal difference covers and for a ixed size |𝐷| the maximal
group ℤ that can be covered. A difference cover 𝐷 is called minimal for a group if there
is no other difference cover of smaller cardinality. By combinatorics the size of a group
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𝐺 = ℤ
𝐷 = {1, 2}

0 = 1 − 1
1 = 2 − 1
2 = 1 − 2

(a) difference cover of ℤ

| | minimal difference cover of

2 ℤ {𝟏, 𝟐} 0,6666…
3 ℤ {𝟏, 𝟐, 𝟒} 0,4285…
4 ℤ {𝟏, 𝟐, 𝟒, 𝟏𝟎} 0,3076…
5 ℤ {𝟏, 𝟐, 𝟕, 𝟗, 𝟏𝟗} 0,2380…
6 ℤ {𝟏, 𝟐, 𝟒, 𝟗, 𝟏𝟑, 𝟏𝟗} 0,1935…
7 ℤ { , , , , , , } 0,1794…
8 ℤ {𝟏, 𝟐, 𝟏𝟎, 𝟏𝟐, 𝟏𝟓, 𝟑𝟔, 𝟒𝟎, 𝟓𝟐} 0,1403…
9 ℤ {𝟏, 𝟐, 𝟒, 𝟖, 𝟏𝟔, 𝟑𝟐, 𝟑𝟕, 𝟓𝟓, 𝟔𝟒} 0,1232…
10 ℤ {𝟏, 𝟐, 𝟖, 𝟏𝟕, 𝟐𝟖, 𝟓𝟕, 𝟔𝟏, 𝟔𝟗, 𝟕𝟏, 𝟕𝟒} 0,1098…
11 ℤ { , , , , , , , , , , } 0,1157…
12 ℤ {𝟏, 𝟐, 𝟑𝟑, 𝟒𝟑, 𝟒𝟓, 𝟒𝟗, 𝟓𝟐, 𝟔𝟎, 𝟕𝟑, 𝟕𝟖, 𝟗𝟖, 𝟏𝟏𝟐} 0,0902…

(b)minimal difference covers

Table 3.1: Difference cover used in the original skew algorithm (a). The right table (b)
shows the maximal cyclic groups that can be covered by difference covers from
size 2 to 12 [Haanpää, 2004]. The difference covers in bold are perfect.

𝐺 that can be covered by 𝐷 is limited to:

|𝐺| ≤ 2 ⋅ |𝐷|
2 + 1 = |𝐷| − |𝐷| + 1. (3.17)

We call a difference cover 𝐷 perfect, if the equality |𝐺| = |𝐷| − |𝐷| + 1 holds. Table 3.1b
shows themaximal groups for difference covers of sizes 2,…,12 [Haanpää, 2004] and cor-
responding values of 𝜆. Note that there is no perfect difference cover of size 7 or 11.

3.3.3 Our algorithms

The original skew algorithm uses a perfect difference cover of ℤ and is hence called DC3
in [Kärkkäinen et al., 2006]. In SeqAn we implemented a generic variant of DC3, that
works with arbitrary alphabets and no longer requires the alphabet to contain a smallest
$ characterwhichmust only appear as a $$$ triple behind the text. Additionally, we for the
irst time implemented the skew algorithm for the next greater perfect difference cover
𝐷 = {1, 2, 4} of the group ℤ . To distinguish our implementations from the original DC3
algorithm, we call them 3 and 7. In the following, we describe both algorithms
as well as our external memory and multiple sequence extensions.

3

In order to provide a generic suf ix array construction algorithm in SeqAn, we needed
to resolve the constraints that the original algorithm put on the text string and alphabet
by introducing a smallest character $ which is allowed to only occur in the triple $$$ ap-
pended to text. Therefore, we irst adapted the bucket sort algorithm used for the radix
passes to count character accesses behind the end of 𝑠 in an extra bucket, which becomes
the irst bucket in the sorted sequence. After the tuples have been sorted, lexicographi-
cally adjacent tuples are compared and increasingly named. Tuples that exceed the end of
𝑠 neednot tobe comparedas they areunique andhence canbe assigned to auniquename.
Merely in the implementation of the third step when comparing the tuples 𝑠 𝑖..𝑖 + Δ ,
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and 𝑠 𝑗..𝑗 + Δ , , we must ensure not to exceed the end of 𝑠 and instead return 𝑠 ( , ) as
the lexicographically smaller suf ix in that case. To avoid the insertion of an arti icial sep-
arator between the two halves of 𝑠 in 3 or the three thirds of 𝑠 in 7, as done in
case 𝑛 ≡ 1 (mod 3) of DC3, we partition the suf ixes into residue classes not according to
their start position but according to their length. In this way, independent of the length
of 𝑠 the rightmost tuple of each subpart of 𝑠 has a unique name. Hence a separator is
not necessary as comparisons do not exceed the end of a subpart. Step 3 is still feasible,
the only difference is that the comparison of suf ixes of length 𝑎 and 𝑏 must reduced to
a pre ix comparison and a rank comparison of suf ixes that are shorter and have lengths
𝑎−Δ̄ , and 𝑏−Δ̄ , in the residue classes of the difference cover. For a perfect difference
cover of ℤ the smallest adequate value of Δ̄ , is:

Δ̄ , ∶= (𝑚 − Δ , ) mod 𝑚. (3.18)

Algorithm 3.1 shows the 3 pseudo-code as implemented in SeqAn. In step 1 we
choose suf ixes of a length congruent 1 or 2 modulo 3 and sort their pre ix triples in 3
passes of radix sort. The triple names are either used to recursively sort the suf ixes
or if unique to derive the suf ix ranks directly. If constructed recursively, in line 10 the
suf ix array 𝗌𝗎𝖿𝗍𝖺𝖻 of 𝑠 is transformed into the suf ix array 𝗌𝗎𝖿𝗍𝖺𝖻 of suf ixes of 𝑠 with
𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖] = 𝑛 − 𝜓(𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖]), where 𝜓 is de ined as follows:

𝜓(𝑖) = 3(𝑛 − 𝑖) − 1, if 𝑖 < 𝑛
3(𝑛 + 𝑛 − 𝑖) − 2, else. (3.19)

Step 2 is implemented analogously to DC3. The case distinction in step 3 is done accord-
ing to the length of the suf ixes from step 1. A suf ix of length congruent 0 modulo 3 is
compared with a suf ix of length congruent 1 or 2 modulo 3 by a reduction to suf ixes
which are Δ̄ , or Δ̄ , characters shorter. Compare line 20 with the values Δ̄ , and Δ̄ , in
Table 3.2a. If one of the suf ix sets is completely merged into 𝗌𝗎𝖿𝗍𝖺𝖻, the remaining set is
appended to 𝗌𝗎𝖿𝗍𝖺𝖻 in line 24.

7

7 is the extension of 3 to the next bigger perfect difference cover. According to
Table 3.1b we chose𝐷 = {1, 2, 4} as a difference cover of ℤ . Step 1 of the pseudo-code in
Algorithm3.2 differs fromAlgorithm3.1 only in the choice of suf ixes, the length of tuples
we sort and 𝑠 which is the concatenation of 3 instead of 2 strings of tuple names. Analo-
gously to 3, all of the three strings endwith unique 7-tuple names andbyLemma2.1
the suf ix array 𝗌𝗎𝖿𝗍𝖺𝖻 of 𝑠 re lects the order of suf ixes whose length is congruent 1, 2,
or 4 modulo 7. It is transformed by 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖] = 𝑛 − 𝜓(𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖]) in line 10 using the
following function 𝜓:

𝜓(𝑖) =
7(𝑛 − 𝑖) − 3, if 𝑖 < 𝑛
7(𝑛 + 𝑛 − 𝑖) − 5, if 𝑛 ≤ 𝑖 < 𝑛 + 𝑛
7(𝑛 + 𝑛 + 𝑛 − 𝑖) − 6, else.

(3.20)
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Algorithm 3.1: 3(𝑠)
input : text string 𝑠 over the alphabet Σ
output : suffix array 𝗌𝗎𝖿𝗍𝖺𝖻 // Step 1

1 𝑛 ← |𝑠|, 𝑛 = , 𝑛 =
2 𝐴 ← 𝑖 𝑖 ∈ [0..𝑛) and (𝑛 − 𝑖) mod 3 ∈ {1, 2} // compute triple positions
3 for 𝑗 ← 2 downto 0 do // sort triples
4 sort 𝐴 stably by 𝑠 𝐴[𝑖] + 𝑗
5 name tuples and let 𝜏 be the rank of 𝑠[𝑛 − 𝑖..𝑛 − 𝑖 + 2]
6 if names are unique then
7 foreach 𝑖 do 𝗌𝗎𝖿𝗍𝖺𝖻 [𝜏 ] ← 𝑛 − 𝑖 // no recursion
8 else
9 𝗌𝗎𝖿𝗍𝖺𝖻 ← 3(𝜏 … 𝜏 𝜏 ⋅ 𝜏 … 𝜏 𝜏 ) // recurse

10 transform 𝗌𝗎𝖿𝗍𝖺𝖻 into 𝗌𝗎𝖿𝗍𝖺𝖻
// Step 2

11 𝗌𝗎𝖿𝗍𝖺𝖻 ← 𝜖
12 for 𝑖 ← 0 to 𝗌𝗎𝖿𝗍𝖺𝖻 − 1 do // in-order extract remaining triple position
13 if 𝑛 − 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖] ≡ 2 (mod 3) and 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖] > 0 then
14 𝗌𝗎𝖿𝗍𝖺𝖻 ← 𝗌𝗎𝖿𝗍𝖺𝖻 ⋅ (𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖] − 1)
15 sort 𝗌𝗎𝖿𝗍𝖺𝖻 stably by 𝑠 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖]

// Step 3
16 𝑘 ← 0, 𝑙 ← 0, 𝗌𝗎𝖿𝗍𝖺𝖻 ← 𝜖
17 foreach 𝑖 do 𝖱𝟣𝟤 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖] ← 𝑖 // compute ranks
18 while 𝑘 < 𝗌𝗎𝖿𝗍𝖺𝖻 and 𝑙 < 𝗌𝗎𝖿𝗍𝖺𝖻 do // merge suffix arrays
19 𝑖 ← 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑘], 𝑗 ← 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑙]
20 if 𝑛 − 𝑗 ≡ 2 (mod 3) and 𝑠[𝑖], 𝖱𝟣𝟤[𝑖 + 1] < 𝑠[𝑗], 𝖱𝟣𝟤[𝑗 + 1] or

𝑛 − 𝑗 ≡ 1 (mod 3) and 𝑠[𝑖..𝑖 + 1], 𝖱𝟣𝟤[𝑖 + 2] < 𝑠[𝑗..𝑗 + 1], 𝖱𝟣𝟤[𝑗 + 2]
then

21 𝗌𝗎𝖿𝗍𝖺𝖻 ← 𝗌𝗎𝖿𝗍𝖺𝖻 ⋅ 𝑖, 𝑘 ← 𝑘 + 1 // 𝑠 is less
22 else
23 𝗌𝗎𝖿𝗍𝖺𝖻 ← 𝗌𝗎𝖿𝗍𝖺𝖻 ⋅ 𝑗, 𝑙 ← 𝑙 + 1 // 𝑠 is less

24 𝗌𝗎𝖿𝗍𝖺𝖻 ← 𝗌𝗎𝖿𝗍𝖺𝖻 ⋅ 𝗌𝗎𝖿𝗍𝖺𝖻 ⋅ 𝗌𝗎𝖿𝗍𝖺𝖻 // fill up 𝗌𝗎𝖿𝗍𝖺𝖻
25 return 𝗌𝗎𝖿𝗍𝖺𝖻

𝑎, 𝑏 0 1 2
0 1 2 1
1 2 0 0
2 1 0 0

max Δ̄ ,⋅
2
2
1

(a) 𝐷 = {1, 2},𝑚 = 3

𝑎, 𝑏 0 1 2 3 4 5 6
0 3 6 5 6 3 3 5
1 6 0 0 6 0 4 4
2 5 0 0 1 0 1 5
3 6 6 1 1 2 1 2
4 3 0 0 2 0 3 2
5 3 4 1 1 3 1 4
6 5 4 5 2 2 4 2

max Δ̄ ,⋅
6
6
5
6
3
4
5

(b) 𝐷 = {1, 2, 4},𝑚 = 7

Table 3.2: Shift values Δ̄ , used in 3 (a) and 7 (b). The rightmost column shows
the maximal shift values in each row.
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In step 2 the orders of suf ixes of length congruent 3 or 5modulo 7 are computed in radix
passes from suf ixes of length congruent 2 or 4modulo 7 sorted in step 1. The remaining
suf ixes of length congruent 6 or 0 are sorted in two additional radix passes from suf ixes
of length congruent 5. The 5 sets of ordered suf ixes are merged in step 3 into 𝗌𝗎𝖿𝗍𝖺𝖻 the
totally ordered set of suf ixes using a 5-waymerge. A priority queue is used to ef iciently
determine the smallest of 5 or less suf ixes. To compare two suf ixes of length congruent
𝑎 and 𝑏 modulo 7 we compare their pre ixes of length Δ̄ , and the ranks of suf ixes that
are Δ̄ , characters shorter. Table 3.2b shows all the values of Δ̄ , for the used difference
cover.

Algorithm 3.2: 7(𝑠)
input : text string 𝑠 over the alphabet Σ
output : suffix array 𝗌𝗎𝖿𝗍𝖺𝖻 // Step 1

1 𝑛 ← |𝑠|, 𝑛 = , 𝑛 = , 𝑛 =
2 𝐴 ← 𝑖 𝑖 ∈ [0..𝑛) and (𝑛 − 𝑖) mod 7 ∈ {1, 2, 4} // compute tuple positions
3 for 𝑗 ← 6 downto 0 do // sort tuples
4 sort 𝐴 stably by 𝑠 𝐴[𝑖] + 𝑗
5 name tuples and let 𝜏 be the rank of 𝑠[𝑛 − 𝑖..𝑛 − 𝑖 + 6]
6 if names are unique then
7 foreach 𝑖 do 𝗌𝗎𝖿𝗍𝖺𝖻 [𝜏 ] ← 𝑛 − 𝑖 // no recursion
8 else
9 𝗌𝗎𝖿𝗍𝖺𝖻 ← 7(𝜏 … 𝜏 𝜏 ⋅ 𝜏 … 𝜏 𝜏 ⋅ 𝜏 … 𝜏 𝜏 ) // recurse

10 transform 𝗌𝗎𝖿𝗍𝖺𝖻 into 𝗌𝗎𝖿𝗍𝖺𝖻
// Step 2

11 𝗌𝗎𝖿𝗍𝖺𝖻 ← 𝗌𝗎𝖿𝗍𝖺𝖻 ← 𝗌𝗎𝖿𝗍𝖺𝖻 ← 𝗌𝗎𝖿𝗍𝖺𝖻 ← 𝜖
12 for 𝑖 ← 0 to 𝗌𝗎𝖿𝗍𝖺𝖻 − 1 do // in-order extract remaining tuple position
13 𝑗 ← 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖]
14 if 𝑗 > 0 then
15 if 𝑛 − 𝑗 ≡ 2 (mod 7) then 𝗌𝗎𝖿𝗍𝖺𝖻 ← 𝗌𝗎𝖿𝗍𝖺𝖻 ⋅ (𝑗 − 1)
16 if 𝑛 − 𝑗 ≡ 4 (mod 7) then 𝗌𝗎𝖿𝗍𝖺𝖻 ← 𝗌𝗎𝖿𝗍𝖺𝖻 ⋅ (𝑗 − 1)
17 sort 𝗌𝗎𝖿𝗍𝖺𝖻 stably by 𝑠 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖]
18 sort 𝗌𝗎𝖿𝗍𝖺𝖻 stably by 𝑠 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖]
19 foreach 𝑖 do if 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖] > 0 then 𝗌𝗎𝖿𝗍𝖺𝖻 ← 𝗌𝗎𝖿𝗍𝖺𝖻 ⋅ (𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖] − 1)
20 sort 𝗌𝗎𝖿𝗍𝖺𝖻 stably by 𝑠 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖]
21 foreach 𝑖 do if 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖] > 0 then 𝗌𝗎𝖿𝗍𝖺𝖻 ← 𝗌𝗎𝖿𝗍𝖺𝖻 ⋅ (𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖] − 1)
22 sort 𝗌𝗎𝖿𝗍𝖺𝖻 stably by 𝑠 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖]

// Step 3
23 foreach 𝑖 do 𝖱𝟣𝟤𝟦 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖] ← 𝑖 // compute ranks

24 5-way merge 𝗌𝗎𝖿𝗍𝖺𝖻 , 𝗌𝗎𝖿𝗍𝖺𝖻 , 𝗌𝗎𝖿𝗍𝖺𝖻 , 𝗌𝗎𝖿𝗍𝖺𝖻 , 𝗌𝗎𝖿𝗍𝖺𝖻 into 𝗌𝗎𝖿𝗍𝖺𝖻
// compare two suffixes 𝑠 , 𝑠 by: 𝑠 <lex 𝑠 ⇔
// 𝑠 𝑖..𝑖 + Δ̄ , , 𝖱𝟣𝟤𝟦 𝑖 + Δ̄ , < 𝑠 𝑗..𝑗 + Δ̄ , , 𝖱𝟣𝟤𝟦 𝑗 + Δ̄ ,

25 return 𝗌𝗎𝖿𝗍𝖺𝖻
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3.3.4 External memory variant

To support the ef icient and generic construction of suf ix arrays of large texts andwhole
genomes in SeqAn, we developed variants of 3 and 7 for external memory.
The irst I/O optimal external memory algorithm for the construction suf ix arrays was
published in [Dementiev et al., 2005, 2008a] and is a variant of the DC3 algorithm, we
denote it as DC3_E M . It uses the STXXL [Dementiev et al., 2008b] and a pipelining
paradigm in which an external memory algorithm is only allowed to sort or sequentially
scan the input and intermediate results to produce the output. In this way, the output of
one algorithmic component can directly be streamed to succeeding components without
intermediate buffering on disk and random I/O accesses occur solely in sorting opera-
tions executed by generic I/O ef icient STXXL sorting algorithms.

As at the time implementing, the STXXL had no support for Windows platforms and
no dedicated algorithm to permute elements in external memory, we decided to reimple-
ment the STXXL pipelining interface in SeqAn aswell as a two-pass sorting algorithm and
a two-pass permuting algorithm described in [Weese, 2006]. The latter algorithm is im-
portant as some I/O intensive sorting operations are in fact permutationswith a function
𝜋 that maps an element 𝑥 to its position 𝜋(𝑥) in the output. Our permutation algorithm
is not only asymptotically optimal in terms of computing time and I/O accesses but also
shows a better practical running time than the external sorting algorithm in [Dementiev
and Sanders, 2003]. The algorithm has no random but only bulk read accesses and thus
requires no complicated prefetching as necessary in the multiway merge step of exter-
nal sorting [Dementiev and Sanders, 2003]. To make random write accesses of partially
permuted blocks non-blocking, they are written asynchronously with a FIFO.

Analogously to the external memory adaptation of DC3 we transformed the 3
algorithm to comply with the pipeline interface. The pseudo-code is given in [Weese,
2006] and differs fromDC3_E M in that half of the sorting operations are replaced by
permutations and suf ixes are grouped into congruence classes according to their length,
as described above.

The adaptation of 7 for externalmemory is shown in Algorithm3.3. At irst, lex-
icographical names for difference cover tuples are determined in lines 1–4. If the tuple
names are unique, 𝑆 stores pairs of length and rank of difference cover suf ixes. Other-
wise, analogously to 7, the suf ix array of a string 𝑠 of tuple name is constructed
in a recursive call of 7_E M and used to determine 𝑆 the string of length-rank
pairs. In lines 10–14 the difference cover set and the 4 remaining sets of suf ixes are
equipped with the information required to compare any two suf ixes from the same set
(step 2) or from different sets (step 3). In order to access suf ix ranks while sequentially
scanning the text 𝑠, we irst permute 𝑆 in line 15 to store ranks of difference cover suf-
ixes in decreasing length. For a suf ix of length 𝑎we additionally store its pre ix of length
max Δ̄ ,⋅ (comparewith Table 3.2b) and the ranks of the 3 next shorter or equal suf ixes of
lengths in the difference cover. This enables us to compare the suf ix with any other suf-
ix of length 𝑏 by comparing their Δ̄ , pre ix and ranks of suf ixes that are Δ̄ , characters
shorter, as Δ̄ , ≤ max Δ̄ ,⋅ holds and 𝑎 − Δ̄ , is in one of the 3 congruence classes of the
difference cover. Before the suf ix sets can bemerged in step 3, they are lexicographically
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sorted in lines 15–19.
7_E M is not only asymptotically I/O optimal but also has the least I/O vol-

ume (amount of written and read external memory) over all possible difference cover
algorithms [Weese, 2006].

Algorithm 3.3: 7_E M (𝑠)
input : text string 𝑠 over the alphabet Σ
output : suffix array 𝗌𝗎𝖿𝗍𝖺𝖻 // Step 1

1 𝑛 ← |𝑠|, 𝑛 = , 𝑛 = , 𝑛 =
2 𝐴 ← (𝑛 − 𝑖, 𝑠[𝑖..𝑖 + 6]) 𝑖 ∈ [0..𝑛) and (𝑛 − 𝑖) mod 7 ∈ {1, 2, 4}
3 sort 𝐴 by second component
4 𝑆 ← (𝑎, 𝜏 ) (𝑎, 𝑥) ∈ 𝐴, where 𝜏 is lex. name of 𝑥
5 if names are not unique then

6 𝑠 ← permute 𝑆 such that (𝑎, 𝜏 ) is moved to
, if ≡ (mod )

, if ≡ (mod )
, else

7 𝗌𝗎𝖿𝗍𝖺𝖻 ← 7_E M ⟨𝜏 | (𝑎, 𝜏 ) ∈ 𝑠 ⟩ // recurse

8 𝑆 ← 𝜓(𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖]), 𝑖 𝑖 ∈ [0..|𝗌𝗎𝖿𝗍𝖺𝖻 |)
// Step 2

9 𝖱𝟣𝟤𝟦 ← permute 𝑆 to be descending in the first component // compute ranks
// prepare 5-way merge in a linear scan over 𝑠 and 𝖱𝟣𝟤𝟦

10 𝑆 ← (𝑎, 𝑠[𝑛 − 𝑎..𝑛 − 𝑎 + 5], 𝜏 , 𝜏 , 𝜏 ) 𝑎 = 𝑛,… , 1 and 𝑎 ≡ 1 (mod 7)
⋅ (𝑎, 𝑠[𝑛 − 𝑎..𝑛 − 𝑎 + 4], 𝜏 , 𝜏 , 𝜏 ) 𝑎 = 𝑛,… , 1 and 𝑎 ≡ 2 (mod 7)
⋅ (𝑎, 𝑠[𝑛 − 𝑎..𝑛 − 𝑎 + 2], 𝜏 , 𝜏 , 𝜏 ) 𝑎 = 𝑛,… , 1 and 𝑎 ≡ 4 (mod 7)

11 𝑆 ← (𝑎, 𝑠[𝑛 − 𝑎..𝑛 − 𝑎 + 5], 𝜏 , 𝜏 , 𝜏 ) 𝑎 = 𝑛,… , 1 and 𝑎 ≡ 3 (mod 7)
12 𝑆 ← (𝑎, 𝑠[𝑛 − 𝑎..𝑛 − 𝑎 + 3], 𝜏 , 𝜏 , 𝜏 ) 𝑎 = 𝑛,… , 1 and 𝑎 ≡ 5 (mod 7)
13 𝑆 ← (𝑎, 𝑠[𝑛 − 𝑎..𝑛 − 𝑎 + 4], 𝜏 , 𝜏 , 𝜏 ) 𝑎 = 𝑛,… , 1 and 𝑎 ≡ 6 (mod 7)
14 𝑆 ← (𝑎, 𝑠[𝑛 − 𝑎..𝑛 − 𝑎 + 5], 𝜏 , 𝜏 , 𝜏 ) 𝑎 = 𝑛,… , 1 and 𝑎 ≡ 0 (mod 7)
15 permute 𝑆 such that (𝑎, … , 𝜏 , …) is moved to 𝜏 // sort suffix sets
16 sort 𝑆 by (𝑠[𝑛 − 𝑎], 𝜏 )
17 sort 𝑆 by (𝑠[𝑛 − 𝑎], 𝜏 )
18 sort 𝑆 by (𝑠[𝑛 − 𝑎..𝑛 − 𝑎 + 1], 𝜏 )
19 sort 𝑆 by (𝑠[𝑛 − 𝑎..𝑛 − 𝑎 + 2], 𝜏 )

// Step 3
20 5-way merge 𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 into 𝗌𝗎𝖿𝗍𝖺𝖻

// compare two suffixes by: 𝑠 <lex 𝑠 ⇔
// 𝑠 𝑛 − 𝑎..𝑛 − 𝑎 + Δ̄ , , 𝜏 ̄ , < 𝑠 𝑛 − 𝑏..𝑛 − 𝑏 + Δ̄ , , 𝜏 ̄ ,

21 return 𝗌𝗎𝖿𝗍𝖺𝖻

3.3.5 Extension to multiple sequences

Wenowwant to extend the notion of the suf ix array fromone tomultiple sequences [Shi,
1996]. Given a set of strings 𝒮 = {𝑠 , … , 𝑠 } over Σ, we de ine 𝒮( , ) ∶= 𝑠 to be the suf ix
of 𝑠 starting at position 𝑗. Further, let �̇� ∶= {𝑠 $ , … , 𝑠 $ } where $ are sentinels not
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contained in any of the strings and $ < … < $ < min Σ. The sentinels are (concep-
tually) appended to well-de ine the order of elements in the suf ix array as suf ixes from
different sequences otherwise might be equal.

De inition 3.5 (generalized suf ix array). For a set ofmultiple strings 𝒮 = {𝑠 , … , 𝑠 }, the
(generalized) suf ix array is a string of length 𝑛 = ∑ |𝑠 | of pairs (𝑖, 𝑗) with 𝑖 ∈ [1..𝑚]
and 𝑗 ∈ 0..|𝑠 | such that holds:

𝑖 < 𝑗 ⇔ �̇�𝗌𝗎𝖿𝗍𝖺𝖻[ ] <lex �̇�𝗌𝗎𝖿𝗍𝖺𝖻[ ] . (3.21)

For 𝑛 being the length of the longest sequence, the generalized suf ix array can
be constructed in 𝒪(𝑛 log 𝑛 ) time with the rank-based Manber and Myers [1993] al-
gorithm adapted to multiple sequences [Shi, 1996]. Another approach is to construct
the suf ix array of 𝑡 = 𝑠 $ 𝑠 $ …𝑠 $ and transform it to the generalized suf ix array.
However, the conversion would require 𝒪(𝑛 log𝑚) additional time and in practice many
construction algorithms are implemented for Σ = [0..256) and prohibit extending the
alphabet by𝑚more characters.

We developed an algorithm that directly constructs the generalized suf ix array for
multiple sequences over arbitrary integer alphabets in external memory. It is a vari-
ant of 7_E M modi ied in the irst recursion level and has the same asymptotic
I/O complexity and is thus also optimal. The pseudo-code is shown in Algorithm 3.4.
Again, we partition all non-empty suf ixes into residue classes modulo 7 according to
their length and consider their pre ixes of length 7 as tuples. In lines 3–5 difference
cover tuples are lexicographically sorted and named. In order to sort suf ixes accord-
ing to De inition 3.5, tuples from 𝑠 and 𝑠 of 6 or less characters are sorted as if a $ and
$ would have been appended to their ends. If the names are not unique, we recursively
construct the suf ix array of a single string 𝑠 which is the concatenation of 3 strings of
names 𝑠 = 𝑡 ⋅ 𝑡 ⋅ 𝑡 , where 𝑡 ∶= 𝑡 ⋅ 𝑡 ⋅ … ⋅ 𝑡 contains only names of tuples in residue
class 𝑗. Each 𝑡 ∶= 𝜏( , ( ) )…𝜏( , )𝜏( , ) is the concatenation of tuple names in residue
class 𝑗 from string 𝑠 , where e.g. 𝜏( , ) is the name of 𝑠 [𝑛−𝑎..𝑛−𝑎+7) and 𝑛 ∶= |𝑠 |. Given
𝑛 , the length of 𝑡 , the function 𝜋 determines for tuple name 𝜏 , its position 𝜋(𝑖, 𝑎) in 𝑠 :

𝜋(𝑖, 𝑎) =
∑ 𝑛 − , if 𝑎 ≡ 4 (mod 7)
𝑛 +∑ 𝑛 − , if 𝑎 ≡ 2 (mod 7)
𝑛 +𝑛 +∑ 𝑛 − , else,

with 𝑛 = 𝑛 . (3.22)

After the recursion or if nameswere unique, 𝑆 contains pairs of start positions and ranks
of suf ixes of 𝑠 . In lines 10–14, these pairs are assigned to strings 𝖱 which store lexico-
graphical ranks of suf ixes of length congruent 𝑗modulo 7 of the original strings 𝑠 , … , 𝑠 .
For the preparation of the 5-way merge of suf ixes in step 3, we permute 𝖱 such that
ranks are stored in the same order as the corresponding suf ixes appear in 𝑠 ⋅ 𝑠 ⋅… ⋅ 𝑠 ,
ascending in the sequence index 𝑖 and if equal, descending in the length of the 𝑠 -suf ix.
In this way, the preparation can be carried out by simultaneously scanning 𝑠 ⋅ 𝑠 ⋅… ⋅ 𝑠 ,
𝖱 , 𝖱 , and 𝖱 . The actual preparation and the 5-way merge in step 3 work analogously
to 7_E M . The only difference is that positions are pairs.
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Algorithm 3.4: 7_M (𝑠 , … , 𝑠 )
input : mul ple text strings 𝑠 , … , 𝑠 over the alphabet Σ
output : suffix array 𝗌𝗎𝖿𝗍𝖺𝖻 // Step 1

1 for 𝑖 ← 1 to𝑚 do
2 𝑛 ← 𝑠 , 𝑛 = , 𝑛 = , 𝑛 =
3 𝐴 ← (𝑖, 𝑛 − 𝑗), 𝑠 [𝑗..𝑗 + 6] 𝑖 ∈ [0..𝑚) and 𝑗 ∈ [0..𝑛 ) and (𝑛 − 𝑗) mod 7 ∈ {1, 2, 4}
4 sort 𝐴 by second component as if $ was appended to 𝑠 with $ < … < $ < min Σ
5 𝑆 ← 𝜋(𝑖, 𝑎), 𝜏( , ) (𝑖, 𝑎), 𝑥 ∈ 𝐴, where 𝜏( , ) is lex. name of 𝑥
6 if names are not unique then
7 𝑠 ← permute 𝑆 such that (𝑝, 𝜏) is moved to 𝑝
8 𝗌𝗎𝖿𝗍𝖺𝖻 ← 7_E M ⟨𝜏 | (𝑎, 𝜏) ∈ 𝑠 ⟩ // recurse
9 𝑆 ← (𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖], 𝑖) 𝑖 ∈ [0..|𝗌𝗎𝖿𝗍𝖺𝖻 |)

// Step 2
10 𝑏 ← 0
11 for 𝑗 ∈ {1, 2, 4} do
12 𝑎 ← 𝑏, 𝑏 ← 𝑎 + ∑ 𝑛
13 𝐵 ← (𝑝, 𝜏) | (𝑝, 𝜏) ∈ 𝑆 and 𝑎 ≤ 𝑝 < 𝑏 // extract suffixes of length ≡ 𝑗
14 𝖱 ← permute 𝐵 to be ascending in the first component // compute ranks

15 𝑆 ← // prepare 5-way merge in a linear scan over 𝑠 ⋅ … ⋅ 𝑠 , 𝖱𝟣, 𝖱𝟤, and 𝖱𝟦
(𝑖, 𝑎), 𝑠 [𝑛 −𝑎..𝑛 −𝑎+5], 𝜏 , , 𝜏 , , 𝜏 , 𝑎 = 𝑛 ,… , 1 ∧ 𝑎 ≡ 1 (mod 7)

⋅ (𝑖, 𝑎), 𝑠 [𝑛 −𝑎..𝑛 −𝑎+4], 𝜏 , , 𝜏 , , 𝜏 , 𝑎 = 𝑛 ,… , 1 ∧ 𝑎 ≡ 2 (mod 7)
⋅ (𝑖, 𝑎), 𝑠 [𝑛 −𝑎..𝑛 −𝑎+2], 𝜏 , , 𝜏 , , 𝜏 , 𝑎 = 𝑛 ,… , 1 ∧ 𝑎 ≡ 4 (mod 7)

16 𝑆 ← ∏ (𝑖, 𝑎), 𝑠 [𝑛 −𝑎..𝑛 −𝑎+3], 𝜏 , , 𝜏 , , 𝜏 , 𝑎 = 𝑛 ,… , 1 ∧ 𝑎 ≡ 5 (mod 7)
17 𝑆 ← ∏ (𝑖, 𝑎), 𝑠 [𝑛 −𝑎..𝑛 −𝑎+4], 𝜏 , , 𝜏 , , 𝜏 , 𝑎 = 𝑛 ,… , 1 ∧ 𝑎 ≡ 6 (mod 7)
18 𝑆 ← ∏ (𝑖, 𝑎), 𝑠 [𝑛 −𝑎..𝑛 −𝑎+5], 𝜏 , , 𝜏 , , 𝜏 , 𝑎 = 𝑛 ,… , 1 ∧ 𝑎 ≡ 0 (mod 7)
19 𝑆 ← ∏ (𝑖, 𝑎), 𝑠 [𝑛 −𝑎..𝑛 −𝑎+5], 𝜏 , , 𝜏 , , 𝜏 , 𝑎 = 𝑛 ,… , 1 ∧ 𝑎 ≡ 3 (mod 7)
20 permute 𝑆 such that (𝑖, 𝑎), … , 𝜏 , , … is moved to 𝜏 , // sort suffix sets
21 sort 𝑆 by (𝑠 [𝑛 − 𝑎], 𝜏 , )
22 sort 𝑆 by (𝑠 [𝑛 − 𝑎], 𝜏 , )
23 sort 𝑆 by (𝑠 [𝑛 − 𝑎..𝑛 − 𝑎 + 1], 𝜏 , )
24 sort 𝑆 by (𝑠 [𝑛 − 𝑎..𝑛 − 𝑎 + 2], 𝜏 , )

// Step 3
25 5-way merge 𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 into 𝗌𝗎𝖿𝗍𝖺𝖻

// compare two suffixes by: �̇�( , ) <lex �̇�( , ) ⇔
// 𝑠 𝑛 − 𝑎..𝑛 − 𝑎 + Δ̄ , , 𝜏 , ̄ , < 𝑠 𝑛 − 𝑏..𝑛 − 𝑏 + Δ̄ , , 𝜏 , ̄ ,

26 return 𝗌𝗎𝖿𝗍𝖺𝖻

3.4 Construction of the lcp table

The irst suf ix array construction algorithm [Manber and Myers, 1993] as well as the
skew algorithm [Kärkkäinen et al., 2006] can be extended to construct the lcp table as a
byproduct with auxiliary data structures. The irst optimal approach was a standalone
linear-time algorithm published by Kasai et al. [2001].
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3.4.1 The linear-time algorithm by Kasai et al.

The basic idea of the lcp table construction algorithm proposed in [Kasai et al., 2001] is
to use the lcp length of a suf ix and its lexicographical predecessor for the comparison of
the next shorter suf ix and its predecessor. The linear running time is possible due to the
following lemma.

Lemma 3.3. Given a string 𝑠 of length 𝑛, the corresponding suf ix array, and the lcp ta-
ble. For every 𝑗 ∈ [0..𝑛 − 1) with 𝗅𝖼𝗉 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑗] = 𝑙 and 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑗 + 1] ≠ 0 holds
𝗅𝖼𝗉 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑗 + 1] ≥ 𝑙 − 1.

Proof. Let 𝑠 be a suf ix with 𝗅𝖼𝗉 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑗] = 𝑙. The assumption obviously holds for
𝑙 ≤ 0. For 𝑙 > 0, 𝑠 has a lexicographical predecessor, say 𝑠 , and for the next shorter
suf ixes 𝑠 and 𝑠 holds lcp{𝑠 , 𝑠 } = 𝑙−1 and 𝑠 <lex 𝑠 . The lexicographical
predecessor of 𝑠 is 𝑠𝗌𝗎𝖿𝗍𝖺𝖻 𝗌𝗎𝖿𝗍𝖺𝖻 [ ] and it holds 𝑠 ≤lex 𝑠𝗌𝗎𝖿𝗍𝖺𝖻 𝗌𝗎𝖿𝗍𝖺𝖻 [ ] <lex 𝑠 .
From the latter follows:

𝗅𝖼𝗉 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑗 + 1] = lcp 𝑠𝗌𝗎𝖿𝗍𝖺𝖻 𝗌𝗎𝖿𝗍𝖺𝖻 [ ] , 𝑠 ≥ lcp 𝑠 , 𝑠 = 𝑙 − 1. (3.23)

As a consequence, the lcp values of suf ixes 𝑠 can be computed for increasing 𝑗 be-
ginning with 𝑗 = 0 and the pairwise suf ix comparison can skip the common pre ix of at
leastmax(𝑙−1, 0) characters, where 𝑙 is the lcp value of the previous comparison. In this
way, the overall number of character comparisons is less than 2𝑛 and the inner loop in
line 9 of Algorithm 3.5 takes 𝒪(𝑛) overall time as well as the whole algorithm.

Algorithm 3.5: L T (𝑠, 𝗌𝗎𝖿𝗍𝖺𝖻)
input : text string 𝑠, suffix array 𝗌𝗎𝖿𝗍𝖺𝖻
output : lcp table 𝗅𝖼𝗉

1 𝑛 ← |𝑠|, 𝗅𝖼𝗉[0] ← −1, 𝗅𝖼𝗉[𝑛] ← −1
2 for 𝑖 ← 0 to 𝑛 − 1 do // invert suffix array
3 𝗌𝗎𝖿𝗍𝖺𝖻 [𝗌𝗎𝖿𝗍𝖺𝖻[𝑖]] ← 𝑖
4 𝑙 ← 0
5 for 𝑗 ← 0 to 𝑛 − 1 do
6 if 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑗] ≠ 0 then
7 𝑖 ← 𝗌𝗎𝖿𝗍𝖺𝖻 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑗] − 1 // determine the lex. predecessor 𝑠 of 𝑠
8 whilemin(𝑖, 𝑗) + 𝑙 < 𝑛 and 𝑠[𝑖 + 𝑙] = 𝑠[𝑗 + 𝑙] do // compute lcp 𝑠 , 𝑠
9 𝑙 ← 𝑙 + 1

10 𝗅𝖼𝗉 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑗] ← 𝑙
11 if 𝑙 > 0 then 𝑙 ← 𝑙 − 1 // skip max(𝑙 − 1, 0) prefix in the next round

12 return 𝗅𝖼𝗉
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3.4.2 Space-saving variant

Manzini [2004] found a way to save the 4𝑛 bytes² of additional memory consumed by
the inverse suf ix array by reusing the memory of 𝗅𝖼𝗉. Before the lcp values are written,
𝗅𝖼𝗉 stores for each suf ix rank 𝑘 the rank of the next shorter suf ix, i.e. 𝖱𝖺𝗇𝗄𝖭𝖾𝗑𝗍[𝑘] =
𝗌𝗎𝖿𝗍𝖺𝖻 [𝗌𝗎𝖿𝗍𝖺𝖻[𝑘] + 1]. After substitution of 𝑗 by 𝗌𝗎𝖿𝗍𝖺𝖻[𝑘] and 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑗] by 𝑘 in Al-
gorithm 3.5, Manzini replaces lines 2–3 by a 𝖱𝖺𝗇𝗄𝖭𝖾𝗑𝗍 construction algorithm which uti-
lizes the rank-preservation property of the Burrows-Wheeler transform [Burrows and
Wheeler, 1994].

Algorithm 3.6: L T _I (𝑠, 𝗌𝗎𝖿𝗍𝖺𝖻)
input : text string 𝑠, suffix array 𝗌𝗎𝖿𝗍𝖺𝖻
output : lcp table 𝗅𝖼𝗉

1 𝑛 ← |𝑠|
2 for 𝑖 ← 0 to 𝑛 − 1 do // invert suffix array
3 𝗅𝖼𝗉 [𝗌𝗎𝖿𝗍𝖺𝖻[𝑖]] ← 𝑖
4 𝑙 ← 0
5 for 𝑗 ← 0 to 𝑛 − 1 do
6 if 𝗅𝖼𝗉[𝑗] ≠ 0 then
7 𝑖 ← 𝗌𝗎𝖿𝗍𝖺𝖻 [𝗅𝖼𝗉[𝑗] − 1] // determine the lex. predecessor 𝑠 of 𝑠
8 whilemin(𝑖, 𝑗) + 𝑙 < 𝑛 and 𝑠[𝑖 + 𝑙] = 𝑠[𝑗 + 𝑙] do // compute lcp 𝑠 , 𝑠
9 𝑙 ← 𝑙 + 1

10 𝗅𝖼𝗉[𝑗] ← −(𝑙 + 1)
11 if 𝑙 > 0 then 𝑙 ← 𝑙 − 1 // skip max(𝑙 − 1, 0) prefix in the next round

12 for 𝑗 ← 0 to 𝑛 − 1 do // transform lcp values from text to suffix array order
13 if 𝗅𝖼𝗉[𝑗] < 0 then // find a cycle that needs to be permuted
14 𝑖 ← 𝑗, 𝑡𝗍𝗆𝗉 ← 𝗅𝖼𝗉[𝑗]
15 while 𝗌𝗎𝖿𝗍𝖺𝖻[𝑖] ≠ 𝑗 do // for 𝑘 = 𝗌𝗎𝖿𝗍𝖺𝖻[𝑗], 𝗌𝗎𝖿𝗍𝖺𝖻 [𝗌𝗎𝖿𝗍𝖺𝖻[𝑗]] , … , 𝑗
16 𝗅𝖼𝗉[𝑖] ← −𝗅𝖼𝗉 [𝗌𝗎𝖿𝗍𝖺𝖻[𝑖]] − 1 // move 𝗅𝖼𝗉 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑘] ← 𝗅𝖼𝗉[𝑘]
17 𝑖 ← 𝗌𝗎𝖿𝗍𝖺𝖻[𝑖]
18 𝗅𝖼𝗉[𝑖] ← −𝑡𝗍𝗆𝗉 − 1
19 𝗅𝖼𝗉[0] ← −1, 𝗅𝖼𝗉[𝑛] ← −1
20 return 𝗅𝖼𝗉

Independent from Manzini’s approach, we found another simple way to reuse the
memory of 𝗅𝖼𝗉 by storing 𝗌𝗎𝖿𝗍𝖺𝖻 in it [Weese, 2006]. As the values of 𝗌𝗎𝖿𝗍𝖺𝖻 are read
only once and in sequential order, each entry can be used after reading to store the com-
puted lcp value. However, after all lcp values have been computed they are in text order
and must be permuted in-place to be in suf ix array order, i.e. an lcp value at position 𝑗
must be moved to position 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑗]. To permute elements without overwriting oth-
ers, we swap them along cycles 𝑗, 𝗌𝗎𝖿𝗍𝖺𝖻[𝑗], 𝗌𝗎𝖿𝗍𝖺𝖻 [𝗌𝗎𝖿𝗍𝖺𝖻[𝑗]] , … , 𝑗. To permute all cycles
exactly once we iterate over all cycle start positions 𝑗 and mark non-permuted elements
with negative values. The algorithmic details are shown in Algorithm 3.6. A similar algo-
rithm that constructs a sparse lcp table was later published in [Kärkkäinen et al., 2009].

² We assume that 𝑛 ≤ 2 holds, otherwise 𝗌𝗎𝖿𝗍𝖺𝖻 consumes 8𝑛 bytes.
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3.4.3 Adaptation to external memory

Adapting the algorithm in [Kasai et al., 2001] to ef iciently use external memory is chal-
lenging, as it shows a poor locality behavior. Although in the main loop all accesses to
𝗌𝗎𝖿𝗍𝖺𝖻 and text accesses via 𝑠[𝑗 + 𝑙] are in sequential order, accesses to 𝗌𝗎𝖿𝗍𝖺𝖻, 𝗅𝖼𝗉, and
𝑠[𝑖 + 𝑙] are random. Our in-place algorithm, described in the previous section, suggests
how 𝗅𝖼𝗉 can be permuted such that accesses to it become sequential. A similar permu-
tation is possible for 𝗌𝗎𝖿𝗍𝖺𝖻 as it is clear beforehand in which pattern 𝗌𝗎𝖿𝗍𝖺𝖻 values will
be accessed. For text accesses via 𝑠[𝑖 + 𝑙] this does not hold and yet all approaches to an
external memory lcp construction [Kasai et al., 2001; Kärkkäinen et al., 2009; Gog and
Ohlebusch, 2011] are semi-external, i.e. they require the whole text [Gog and Ohlebusch,
2011] and an additional array of 𝑛 [Gog and Ohlebusch, 2011] or 4𝑛 byte [Kasai et al.,
2001; Kärkkäinen et al., 2009] to reside in main memory.

We developed a window based approach that is applicable even if the text does not
it intomainmemory. It processes consecutive non-overlapping text windows of an arbi-
trary size 𝑤 in ⌈ ⌉ rounds. If 𝑠[𝑎..𝑏) is the current window, then character comparisons
between 𝑠[𝑖 + 𝑙] and 𝑠[𝑗 + 𝑙] can only be conducted if 𝑖 + 𝑙 ∈ [𝑎..𝑏). However, some
suf ix comparisons may exceed the window border. Those comparisons must be inter-
rupted at the end of the current window and resumed in the next window. The following
lemma will help to easily keep track of suf ixes 𝑠 whose comparisons were interrupted.
Whereas Lemma 3.3 states a relation between lcp lengths of suf ixes and their lexico-
graphical successors, the next lemma is its counterpart and gives a relation of suf ixes
and their successors.

Lemma 3.4. Given a string 𝑠 of length 𝑛 and the corresponding suf ix array and lcp table.
For every 𝑗 ∈ [0..𝑛 − 1) with 𝗅𝖼𝗉 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑗] + 1 = 𝑙 and 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑗 + 1] ≠ 𝑛 − 1 holds
𝗅𝖼𝗉 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑗 + 1] + 1 ≥ 𝑙 − 1.

Proof. This lemma can be proven analogously to Lemma 3.3.

A direct consequence of Lemma 3.4 is that if an lcp comparison of a suf ix 𝑠 with its
lexicographical successor exceeds the window end 𝑏, comparisons of all shorter suf ixes
𝑠 with 𝑖 < 𝑖 < 𝑏will leave the window aswell. Let𝜔(𝑏) be de ined as the leftmost start
position of such suf ixes:

𝜔(𝑏) = min 𝑖 𝑖 ∈ [0..𝑛) ∧ 𝑖 ≤ 𝑏 ≤ 𝑖 + 𝗅𝖼𝗉 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑖] + 1 . (3.24)

Clearly, comparisons of suf ixes 𝑠 will end left of 𝑏 if 𝑖 < 𝜔(𝑏) and exceed 𝑏 if 𝜔(𝑏) ≤
𝑖 < 𝑏. This allows to stop comparisons of suf ixes 𝑠 at the window end 𝑏 and to deter-
mine 𝜔(𝑏), the smallest of such 𝑖. Comparisons of suf ixes 𝑠 with 𝜔(𝑎) ≤ 𝑖 < 𝑎 were
interrupted at end of the previous window and can be resumed by setting 𝑙 to at least
𝑎 − 𝑖.

Algorithm 3.7 shows the pseudo-code of our implementation. Lines 1–3 prepare val-
ues 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑗] and 𝗌𝗎𝖿𝗍𝖺𝖻 𝗌𝗎𝖿𝗍𝖺𝖻 [𝑗] − 1 for increasing 𝑗. The main loop from line 4
to 16 iterates over all non-overlapping windows 𝑠[𝑎..𝑏), where 𝜔𝖺 equals 𝜔(𝑎) and 𝜔𝖻
is used to compute 𝜔(𝑏). An lcp value is successfully computed if the suf ix comparison
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was not interrupted or ends at the text end. Then the lcp value 𝗅𝖼𝗉[𝑘] and its rank 𝑘 is ap-
pended to 𝐿. At the end, 𝐿 is permuted to be ascending in 𝑘 and iltered for values 𝗅𝖼𝗉[𝑘]
in lines 17–18.

Algorithm 3.7: L T _E M (𝑠, 𝗌𝗎𝖿𝗍𝖺𝖻)
input : text string 𝑠, suffix array 𝗌𝗎𝖿𝗍𝖺𝖻
output : lcp table 𝗅𝖼𝗉

1 𝑛 ← |𝑠|, 𝜔𝖺 ← 0, 𝐿 ← (0,−1) ⋅ (𝑛, −1) // 𝐿 is a string of pairs (rank,lcp value)
2 𝐴 ← (𝑘, 𝗌𝗎𝖿𝗍𝖺𝖻[𝑘 − 1], 𝗌𝗎𝖿𝗍𝖺𝖻[𝑘]) 𝑘 ∈ [0..𝑛)
3 permute 𝐴 such that (𝑘, 𝑖, 𝑗) is moved to 𝑗 // prepare values
4 for 𝑗 ← 1 to ⌈ ⌉ do
5 𝑎 ← (𝑗 − 1) ⋅ 𝑤, 𝑏 ← min(𝑗𝑤, 𝑛), 𝜔𝖻 ← 𝑏 // process window 𝑠[𝑎..𝑏)
6 foreach (𝑘, 𝑖, 𝑗) ∈ 𝐴 do
7 if k>0 then
8 if 𝜔𝖺 ≤ 𝑖 and 𝑖 + 𝑙 < 𝑏 then
9 𝑙 ← max(𝑙, 𝑎 − 𝑖) // resume interrupted comparison

10 while (𝑖 + 𝑙) ∈ [𝑎..𝑏) and 𝑗 + 𝑙 < 𝑛 and 𝑠[𝑖 + 𝑙] = 𝑠[𝑗 + 𝑙] do
11 𝑙 ← 𝑙 + 1
12 if 𝑖 + 𝑙 < 𝑏 or 𝑏 = 𝑛 then // if comparison was not interrupted
13 𝐿 ← 𝐿 ⋅ (𝑘, 𝑙) // append (rank,lcp value) to 𝐿
14 if 𝑖 + 𝑙 ≥ 𝑏 then 𝜔𝖻 ← min(𝜔𝖻, 𝑖)
15 if 𝑙 > 0 then 𝑙 ← 𝑙 − 1 // skip max(𝑙 − 1, 0) prefix in the next round

16 𝜔𝖺 ← 𝜔𝖻
17 permute 𝐿 such that (𝑖, 𝑙) is moved to 𝑖 // order lcp values by their rank
18 𝗅𝖼𝗉 ← 𝑙 (𝑖, 𝑙) ∈ 𝑃
19 return 𝗅𝖼𝗉

We implemented the algorithm using the pipelining interface. The current window
𝑠[𝑎..𝑏) is loaded into a memory buffer of size𝑤. To minimize the running time,𝑤 should
be chosen as large as possible.

3.4.4 Extension to multiple sequences

All of the lcp table construction algorithms described above can easily be adapted tomul-
tiple sequences. For a given a set 𝒮 = {𝑠 , … , 𝑠 } of strings of lengths 𝑛 ,… , 𝑛 and the
corresponding generalized suf ix array 𝗌𝗎𝖿𝗍𝖺𝖻, we de ine:

𝜙(𝑖, 𝑗) = 𝑗 + 𝑛 and 𝑛 = 𝑛 . (3.25)

As the generalized suf ix array stores pairs instead of single integers, its entries cannot
directly be used to access 𝗌𝗎𝖿𝗍𝖺𝖻 . Therefore, we adapt Algorithm 3.5 and use 𝜙 as a
unique mapping of suf ix start positions onto the interval [0..𝑛) in lines 5,9,10, and 13 in
Algorithm 3.8. The second adaptation concerns the lcp comparison in line 11.
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Algorithm 3.8: L T _M (𝑠 , … , 𝑠 , 𝗌𝗎𝖿𝗍𝖺𝖻)
input : mul ple text strings 𝑠 , … , 𝑠 , suffix array 𝗌𝗎𝖿𝗍𝖺𝖻
output : lcp table 𝗅𝖼𝗉

1 𝑛 ← 0
2 for 𝑖 ← 1 to𝑚 do
3 𝑛 ← |𝑠 |, 𝑛 ← 𝑛 + 𝑛
4 for 𝑖 ← 0 to 𝑛 − 1 do // invert suffix array
5 𝗌𝗎𝖿𝗍𝖺𝖻 [𝜙 (𝗌𝗎𝖿𝗍𝖺𝖻[𝑖])] ← 𝑖
6 𝑙 ← 0, 𝗅𝖼𝗉[0] ← −1, 𝗅𝖼𝗉[𝑛] ← −1
7 for 𝑖 ← 1 to𝑚 do
8 for 𝑗 ← 0 to 𝑛 − 1 do
9 if 𝗌𝗎𝖿𝗍𝖺𝖻 [𝜙(𝑖, 𝑗)] ≠ 0 then

10 (𝑎, 𝑏) ← 𝗌𝗎𝖿𝗍𝖺𝖻 𝗌𝗎𝖿𝗍𝖺𝖻 [𝜙(𝑖, 𝑗)] − 1 // determine lex. predecessor
11 while 𝑏 + 𝑙 < 𝑛 and 𝑗 + 𝑙 < 𝑛 and 𝑠 [𝑏 + 𝑙] = 𝑠 [𝑗 + 𝑙] do
12 𝑙 ← 𝑙 + 1 // compute lcp value
13 𝗅𝖼𝗉 𝗌𝗎𝖿𝗍𝖺𝖻 [𝜙(𝑖, 𝑗)] ← 𝑙
14 if 𝑙 > 0 then 𝑙 ← 𝑙 − 1
15 return 𝗅𝖼𝗉

By implementing𝜙 using an array of length𝑚 that stores at position 𝑖 the partial sum
of the irst 𝑖 − 1 sequence lengths, 𝜙(𝑖, 𝑗) can be determined in constant time and Algo-
rithm 3.8 constructs the lcp table in 𝒪(𝑛) time. Algorithms 3.6 and 3.7 can analogously
be adapted without changing their asymptotical running time.

3.5 Construction of the child table

3.5.1 Bottom-up suf ix tree traversal

Asmentioned in Section 3.1.3, the lcp table alone can be used to traverse the inner nodes
of the suf ix tree in a bottom-up fashionwith an algorithmproposedbyKasai et al. [2001].
The corresponding pseudo-code is given in Algorithm 3.9. In linear time the algorithm
outputs all ℓ-intervals [𝑙𝑏..𝑟𝑏) that correspond to suf ix tree nodes visited in a postorder
depth- irst search (DFS). Therefore it scans the lcp-table andmaintains a stack of growing
lcp-table intervals and their minimal lcp value ℓ. Iteratively every lcp value 𝗅𝖼𝗉[𝑖] closes
intervals with greater lcp values (lines 5–9), extends or if not part of the stack creates a
new lcp-interval spanning the closed intervals (lines 9–11). For the proof of correctness
we refer the reader to [Kasai et al., 2001].

3.5.2 The linear-time algorithm by Abouelhoda et al.

In [Abouelhoda et al., 2002b] the authors propose two modi ications of this bottom-
up algorithm to construct the 𝗎𝗉 and 𝖽𝗈𝗐𝗇 values and the 𝗇𝖾𝗑𝗍ℓ𝖨𝗇𝖽𝖾𝗑 values. In Algo-
rithm 3.10 we show the combination of both algorithms to directly construct the child
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Algorithm 3.9: U T (𝗅𝖼𝗉)
input : lcp table 𝗅𝖼𝗉
output : lcp-intervals traversed in a postorder dfs

1 𝑛 ← |𝗅𝖼𝗉| − 1 // 𝑛 is the text length
2 𝑆 ← (−1, 0, 0) // initialize stack with super-root node (ℓ, 𝑙𝑏, 𝑟𝑏) = (−1, 0, 0)
3 for 𝑖 ← 1 to 𝑛 do
4 𝑙𝑏 ← 𝑖 − 1
5 while 𝗅𝖼𝗉[𝑖] < 𝑡𝑜𝑝(𝑆).ℓ do // close intervals with greater lcp values
6 top(𝑆).𝑟𝑏 ← 𝑖
7 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ← pop(𝑆)
8 report(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) // report closed interval
9 𝑙𝑏 ← 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙.𝑙𝑏 // get the leftmost boundary

10 if 𝗅𝖼𝗉[𝑖] > top(𝑆).ℓ then
11 push((𝗅𝖼𝗉[𝑖], 𝑙𝑏, 𝑖), 𝑆) // create new interval spanning closed intervals

table. Instead of ℓ-values and interval boundaries used in Algorithm 3.9, the stack in
Algorithm 3.10 only stores ℓ-indices, i.e. each ℓ-interval is represented by a run of its
ℓ-indices. According to the space-saving trick described in Section 3.2, 𝗎𝗉 values for ℓ-
indices 𝑖 are stored at position 𝑖 − 1 (line 9) and 𝖽𝗈𝗐𝗇 values are stored only for the last
of all ℓ-indices of each interval (lines 6–7).

𝖽𝗈𝗐𝗇 values

The condition in line 6 is true, iff the two ℓ-values on the topof the stack are different from
each other and greater than the current ℓ-value 𝗅𝖼𝗉[𝑖]. In this case, both elements will be
removed and are ℓ-indices from an lcp-interval and its last-child interval. As ℓ-indices of
the same interval are stored as an ascending run, the topmost stack entry (𝑙𝑎𝑠𝑡) is the
irst ℓ-index in the last-child interval and the second topmost stack entry (now top(𝑆)) is
the last ℓ-index in the parent interval and the left border of the last-child interval. Hence,
𝑙𝑎𝑠𝑡 is its 𝖽𝗈𝗐𝗇 value and needs to be stored.

𝗎𝗉 values

In line 8, 𝑙𝑎𝑠𝑡 is the last ℓ-index removed by the current ℓ-index 𝑖 or equals −1 if none
was removed. In the irst case, the last removed ℓ index is the irst ℓ-index in the child
interval left of 𝑖. Hence, 𝑙𝑎𝑠𝑡 is the 𝗎𝗉 value of 𝑖 and is stored at position 𝑖 − 1.

𝗇𝖾𝗑𝗍ℓ𝖨𝗇𝖽𝖾𝗑 values

𝗇𝖾𝗑𝗍ℓ𝖨𝗇𝖽𝖾𝗑 values are computed similarly. If after the removal of all greater ℓ-values the
topmost ℓ-value equals the current one, the topmost ℓ-index is directly preceding 𝑖 and
its 𝗇𝖾𝗑𝗍ℓ𝖨𝗇𝖽𝖾𝗑 value is set accordingly in line 12.

For the proof of correctness and a more detailed description we refer the reader to
[Abouelhoda et al., 2002b]. Although this algorithm as well as Algorithm 3.9 reads the
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Algorithm 3.10: C T (𝗅𝖼𝗉)
input : lcp table 𝗅𝖼𝗉
output : child table 𝖼𝗅𝖽

1 𝑛 ← |𝗅𝖼𝗉| − 1 // 𝑛 is the text length
2 𝑆 ← 0, 𝑙𝑎𝑠𝑡 ← −1 // initialize stack with the first ℓ-index
3 for 𝑖 ← 1 to 𝑛 do
4 while 𝗅𝖼𝗉[𝑖] < 𝗅𝖼𝗉[top(𝑆)] do
5 𝑙𝑎𝑠𝑡 ← pop(𝑆)
6 if 𝗅𝖼𝗉[𝑖] < 𝗅𝖼𝗉[top(𝑆)] and 𝗅𝖼𝗉[top(𝑆)] ≠ 𝗅𝖼𝗉[𝑙𝑎𝑠𝑡] then
7 𝖼𝗅𝖽[top(𝑆)] ← 𝑙𝑎𝑠𝑡 // top(𝑆) is last ℓ-index → store 𝖽𝗈𝗐𝗇 value

8 if 𝑙𝑎𝑠𝑡 ≠ −1 then
9 𝖼𝗅𝖽[𝑖 − 1] ← 𝑙𝑎𝑠𝑡 // store 𝗎𝗉 value

10 𝑙𝑎𝑠𝑡 ← −1
11 if 𝗅𝖼𝗉[𝑖] = 𝗅𝖼𝗉[top(𝑆)] then // is the previous ℓ-index on the stack?
12 𝖼𝗅𝖽[top(𝑆)] ← 𝑖 // set its 𝗇𝖾𝗑𝗍ℓ𝖨𝗇𝖽𝖾𝗑 value to 𝑖
13 push(𝑖, 𝑆)
14 return 𝖼𝗅𝖽

algorithm reference complexity

suffix array
BWF BwtWalkFast [Baron and Bresler, 2005; Marschall et al., 2009] 𝒪(𝑛 log 𝑛)
BWIP in-place variant of BwtWalkFast [Marschall et al., 2009] 𝒪(𝑛 )
DS deep-shallow sort [Manzini and Ferragina, 2004] 𝒪(𝑛 log 𝑛)
MM pre ix doubling algorithm [Manber and Myers, 1993] 𝒪(𝑛 log 𝑛)

quick sort with lexicographical string comparisons 𝒪(𝑛 )
3 our variant of DC3 [Kärkkäinen et al., 2006], see Section 3.3.3 𝒪(𝑛)
7 3 extension to the next larger, perfect difference cover 𝒪(𝑛)

lcp table
K linear-time lcp construction algorithm [Kasai et al., 2001] 𝒪(𝑛)
K IP our in-place variant of the Kasai’s algorithm, see Section 3.4.2 𝒪(𝑛)

child table
C bottom-up construction [Abouelhoda et al., 2002a] 𝒪(𝑛)

Table 3.3: Enhanced suf ix array construction algorithms available in SeqAn.

lcp table up to position 𝑛, it can easily be veri ied that it leaves 𝖼𝗅𝖽[𝑛] untouched. Thus,
the child table can be stored as a string of length 𝑛.

3.5.3 Adaptation to external memory andmultiple sequences

Algorithm 3.10 can easily be adapted to external memory as it sequentially reads the lcp
table and accesses adjacent elements on a stack. The only random accesses are the write
accesses 𝖼𝗅𝖽[𝑥] ← 𝑦. Instead of directly executing them, our implementation collects a
sequence of pairs (𝑥, 𝑦) which at the end of the algorithm is externally sorted by 𝑥 and
used to sequentially ill 𝖼𝗅𝖽.
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corpus/dataset reference

Gauntlet corpus http://compressionratings.com/files/gauntlet_corpus.zip
Schürmann-Stoye corpus http://bibiserv.techfak.uni-bielefeld.de/download/tools/bpr.html
Manzini-Ferragina corpus http://people.unipmn.it/manzini/lightweight/corpus/
UCSC genomes http://hgdownload.cse.ucsc.edu/downloads.html
celegans concatenated UCSC chromosomes of C. elegans
dmel concatenated UCSC chromosomes of D. melanogaster
hs concatenated UCSC human chromosomes
mammals three UCSC whole genome sequences (human, dog, and mouse)

Table 3.4: Datasets used for ESA experiments.

running time [s/Mb]

dataset size [Mb] BW
F

BW
IP

DS M
M

3 7

K K
IP

C

abac 0.2 0.0 53.3 121.3 0.3 2417.9 0.1 0.1 0.0 0.0 0.00
paper5x80 1.0 0.0 13.6 0.7 1.1 1587.0 0.2 0.2 0.0 0.1 0.01
test1 2.1 0.1 1726.0 3.7 2.4 – 0.4 0.3 0.0 0.1 0.01
test2 2.1 0.1 1908.5 3.7 2.4 – 0.4 0.3 0.0 0.1 0.01
test3 2.1 0.0 64.9 0.7 2.3 712.2 0.3 0.3 0.0 0.2 0.01
world 2.5 1.4 6.8 0.1 4.2 0.5 0.5 0.4 0.0 0.2 0.02
houston 3.8 0.1 11.9 27.1 1.2 1046.7 0.2 0.3 0.0 0.2 0.02
bible 4.0 1.0 7.2 0.1 5.2 0.5 0.8 0.6 0.1 0.2 0.02
abba 10.5 0.1 0.6 2.5 4.5 – 0.7 0.7 0.0 0.2 0.01
book1x20 15.4 0.1 80.0 5.6 5.2 – 1.0 1.3 0.1 0.2 0.01
Fibonacci 20.0 0.1 0.4 12.5 3.5 – 0.7 0.7 0.1 0.2 0.01
period_1000 20.0 0.1 – 18.6 3.6 – 1.1 1.2 0.0 0.2 0.01
period_20 20.0 0.0 – 50.7 1.1 – 0.3 0.4 0.0 0.2 0.01
period_500000 20.0 0.1 55.9 13.7 5.5 – 1.3 1.4 0.1 0.2 0.01
random 20.0 1.7 5.0 0.2 8.2 0.7 1.1 1.4 0.1 0.3 0.02
howto 39.4 6.0 40.4 0.2 8.2 1.2 1.7 1.6 0.1 0.3 0.02
jdk13c 69.7 1.5 17.2 0.4 7.3 4.6 1.5 1.5 0.1 0.2 0.02
gcc-3.0 86.6 4.5 39.0 0.4 7.7 14.7 1.6 1.5 0.1 0.3 0.02
w3c 104.2 7.5 31.7 0.5 7.7 22.6 1.6 1.6 0.1 0.2 0.02
etext99 105.3 7.1 11.8 0.3 10.3 3.4 1.9 1.9 0.1 0.3 0.02
sprot34 109.6 2.3 33.0 0.2 9.1 1.5 1.7 1.8 0.1 0.3 0.02
reuters 114.7 2.4 – 0.5 9.1 2.9 1.7 1.7 0.1 0.3 0.02
linux-2.4.5 116.3 3.7 27.7 0.2 8.3 2.1 1.7 1.6 0.1 0.3 0.02
rfc 116.4 4.7 2.3 0.2 9.4 1.3 1.7 1.7 0.1 0.3 0.02

Table 3.5: Construction times for ASCII datasets. We compared different ESA construction
algorithms and normalized their running times by the text length (seconds per
1M characters). Runs that did not inish within 10 h are denoted by dashes (–).

A special adaptation to multiple sequences is not necessary as the lcp-interval tree
depends solely on the lcp table and the text is not required for the construction of the
child table.

http://compressionratings.com/files/gauntlet_corpus.zip
http://bibiserv.techfak.uni-bielefeld.de/download/tools/bpr.html
http://people.unipmn.it/manzini/lightweight/corpus/
 http://hgdownload.cse.ucsc.edu/downloads.html
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running time [s/Mb]

dataset size [Mb] BW
F

BW
IP

DS M
M

3 7

K K
IP

C

fss9 2.9 0.1 0.2 2.2 2.3 122.2 0.3 0.3 0.0 0.2 0.01
E_coli 4.6 0.3 0.4 0.1 5.8 0.6 0.8 0.6 0.1 0.2 0.02
4Chlamydophila 4.9 0.2 0.6 0.2 5.4 2.8 0.8 0.6 0.1 0.2 0.02
aaaa 6.0 0.0 0.0 0.0 0.5 – 0.1 0.1 0.0 0.0 0.02
6Streptococci 11.6 0.3 0.8 0.2 6.9 0.9 1.2 0.9 0.1 0.2 0.02
A_thaliana_Chr4 12.1 0.3 0.7 0.2 7.3 0.9 1.2 1.0 0.1 0.3 0.02
fss10 12.1 0.1 0.3 5.6 3.5 – 0.6 0.7 0.1 0.2 0.01
C_elegans_Chr1 14.2 0.3 0.7 0.2 6.7 69.9 1.1 0.9 0.1 0.2 0.02
hs_chr22 34.6 0.4 0.8 0.2 8.1 51.9 1.5 1.2 0.1 0.3 0.02
celegans 101.7 0.4 0.9 0.2 9.9 1.1 1.7 1.4 0.1 0.3 0.02
dmel 122.1 0.5 1.0 0.2 10.6 2.3 1.7 1.4 0.1 0.3 0.02
hs_chrX 145.8 0.4 1.0 0.2 10.7 3.3 1.7 1.4 0.1 0.3 0.02
mm_chrX 169.0 0.4 1.0 0.2 10.9 – 1.7 1.4 0.1 0.4 0.02
mm_chr2 184.3 0.5 1.0 0.2 11.5 – 1.7 1.4 0.1 0.3 0.02
hs_chr2 246.7 0.5 1.0 0.2 12.2 – 1.8 1.5 0.1 0.3 0.02

Table 3.6: Construction times for DNA datasets. Compare with Table 3.5.
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Figure 3.6: Construction peak memory usage. We compared different ESA construction al-
gorithms and normalized their peak memory usage by the length of the text
(megabyte per 1 million text characters). Suf ix array algorithms are shown in
the left (a) and lcp and child table algorithms in the right plot (b).

3.6 Applications

3.6.1 Searching the suf ix array

The suf ix array is a data structure that allows ef icient searching of a text for any given
pattern. As every substring is a pre ix of a suf ix, searching a substring 𝑝 is equivalent
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running time [h:min:s]
dataset size [Mb] 7 K C total

internal memory variant
hs_chrX 145.8 2:40 0:44 0:03 3:28
hs_chr2 246.7 6:00 1:23 0:05 7:29
hs 3096.5 1:38:09 33:43 1:02 2:12:55

external memory variant
hs_chrX 145.8 1:16 0:30 0:05 1:52
hs_chr2 246.7 2:14 1:02 0:14 3:32
hs 3096.5 55:58 24:46 5:02 1:25:47

mul ple sequences
mammals 8111.1 8:28:52 3:27:18 26:10 12:22:21

internal memory usage [GB]
dataset size [Mb] 7 K C max

internal memory variant
hs_chrX 145.8 1.3 1.2 1.1 1.3
hs_chr2 246.7 2.1 2.1 1.9 2.1
hs 3096.5 26.0 26.0 23.1 26.0

external memory variant
hs_chrX 145.8 2.9 1.4 1.7 2.9
hs_chr2 246.7 4.9 2.2 0.2 4.9
hs 3096.5 7.5 2.3 0.2 7.5

mul ple sequences
mammals 8111.1 3.5 2.3 0.2 3.5

external memory usage [GB]
dataset size [Mb] 7 K C max

external memory variant
hs_chrX 145.8 2.9 2.7 1.1 2.9
hs_chr2 246.7 4.9 4.6 1.8 4.9
hs 3096.5 61.4 57.7 23.1 61.4

mul ple sequences
mammals 8111.1 323.6 302.2 90.6 323.6

Table 3.7: Construction times and internal and external peak memory usage for large DNA
datasets. We compared the internal and external memory ESA construction
of 3 single-sequence datasets and the external ESA construction of a multiple-
sequence dataset consisting of three mammal genomes.

to searching suf ixes 𝑠 that have a pre ix 𝑝, whereas 𝑖 is the begin position of an occur-
rence of 𝑝 in 𝑠. If 𝑝 has length 𝑚, a substring search in a suf ix array can be conducted
by a binary search in 𝒪(𝑚 log 𝑛) running time. Figure 3.7 shows the pseudo-code of the
binary searchwhich is split into two separate searches for the sake of simplicity. The two
functions determine the lower and the upper interval bound of the semi-open suf ix array
interval storing occurrences of the pattern 𝑝 in the text 𝑠. In each iteration the pattern 𝑝
is compared with the suf ix 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] beginning with the irst characters.
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Algorithm 3.11: L (𝑠, 𝑝)
input : text 𝑠 and pa ern 𝑝
output : minimal 𝑙 with 𝑝 ≤| | 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ]

1 𝑙 ← 0
2 𝑙 ← |𝑠|
3 while 𝑙 < 𝑙 do
4 𝑖 ←
5 if 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] <| | 𝑝 then
6 𝑙 ← 𝑖 + 1
7 else
8 𝑙 ← 𝑖
9 return 𝑙

Algorithm 3.12: U (𝑠, 𝑝)
input : text 𝑠 and pa ern 𝑝
output : minimal 𝑟 with 𝑝 <| | 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ]

1 𝑟 ← 0
2 𝑟 ← |𝑠|
3 while 𝑟 < 𝑟 do
4 𝑖 ←
5 if 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] ≤| | 𝑝 then
6 𝑟 ← 𝑖 + 1
7 else
8 𝑟 ← 𝑖
9 return 𝑟

Figure 3.7: Binary search on the suf ix array. L and U determine the
interval boundaries 𝑙 and 𝑟 of the suf ix array such that 𝗌𝗎𝖿𝗍𝖺𝖻[𝑙..𝑟) stores the
begin positions of all occurrences of 𝑝 in 𝑠.

With a simple so-calledmlr-heuristic [Manber and Myers, 1993] the average running
time can be reduced by keeping track of the longest-common pre ix lengths between the
suf ixes at the interval borders of the current search interval and the search pattern 𝑝. If
for strings 𝐿,𝑀, 𝑅 ∈ Σ∗ with 𝐿 ≤lex 𝑀 ≤lex 𝑅 holds 𝑙 ∶= | lcp{𝑝, 𝐿}| and 𝑟 ∶= | lcp{𝑝, 𝑅}| then
obviously 𝐿 and 𝑅 share a common pre ix of length𝑚𝑙𝑟 ∶= min(𝑙, 𝑟). Obviously𝑀 begins
with the same pre ix shared by 𝐿, 𝑅 and 𝑝 of length𝑚𝑙𝑟 and therefore the irst𝑚𝑙𝑟 char-
acters can be skipped during the comparison in line 6 of the improved binary searches
in Figure 3.8. Although the worst-case running time is still 𝒪(𝑚 log 𝑛) the heuristic im-
proves the average running time in practice. With an additional data structure, called
lcp-tree, that determines the values lcp 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ], 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] and lcp 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ], 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ]
in 𝒪(1) the running time can be improved to 𝒪(𝑚 + log 𝑛) [Manber and Myers, 1993].
However, experiments show that the running time deteriorates in practice due to the
overhead in accessing the lcp-tree. We compared the search times of the naive binary
search, the binary search with mlr-heuristic, the lcp-tree binary search, and the suf ix
tree search (following section) on texts over different alphabets. The results in Figure 3.9
show that in all cases the mlr-heuristics outperforms the naive and lcp-tree search. The
suf ix tree search is faster for small pattern lengths as in contrast to the binary searches
its running time does not depend on the length of the text. On large alphabets the suf-
ix tree search deteriorates due to the larger number of child edges which are searched
sequentially.

3.6.2 Traversing the suf ix tree

With the enhanced suf ix array consisting of suf ix array, lcp table, and child table, we are
now able to top-down traverse the nodes of the suf ix tree of a text which actually is a
node traversal of the corresponding lcp-interval tree.
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Algorithm 3.13: L H(𝑠, 𝑝)
input : text 𝑠 and pa ern 𝑝
output : minimal 𝑙 with 𝑝 ≤| | 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ]

1 𝑙 ← 0, 𝑘 ← 0
2 𝑙 ← |𝑠|, 𝑘 ← 0
3 while 𝑙 < 𝑙 do
4 𝑖 ←
5 𝑘 ← min{𝑘 , 𝑘 }
6 if 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] <| | 𝑝 then
7 𝑙 ← 𝑖 + 1
8 𝑘 ← 𝑘 + lcp 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] , 𝑝
9 else

10 𝑙 ← 𝑖
11 𝑘 ← 𝑘 + lcp 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] , 𝑝
12 return 𝑙

Algorithm 3.14: U H(𝑠, 𝑝)
input : text 𝑠 and pa ern 𝑝
output : minimal 𝑟 with 𝑝 <| | 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ]

1 𝑟 ← 0, 𝑘 ← 0
2 𝑟 ← |𝑠|, 𝑘 ← 0
3 while 𝑟 < 𝑟 do
4 𝑖 ←
5 𝑘 ← min{𝑘 , 𝑘 }
6 if 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] ≤| | 𝑝 then
7 𝑟 ← 𝑖 + 1
8 𝑘 ← 𝑘 + lcp 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] , 𝑝
9 else

10 𝑟 ← 𝑖
11 𝑘 ← 𝑘 + lcp 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] , 𝑝
12 return 𝑟

Figure 3.8: Binary search with mlr-heuristic. L H and U H return the
same interval boundaries as L and U . Aheuristic determines
a lower bound on the lcp length between 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] and 𝑝 and thereby reduces the
number of character comparisons on average.
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Figure 3.9: Comparison of the ESA based search algorithms available in SeqAn. We com-
pared the running times required to search 100,000 patterns using the naive
binary search (Naive), the binary search with mlr-heuristic (MLR), the binary
search with lcp-tree (LCPE), and the suf ix tree search (SufTree). As texts we
used the irst 100M characters of a DNA, amino acid, and natural language
text. Patterns are random substrings of varying length.

Top-down traversal

We implemented a so-called top-down iterator and functions to go to the root node, to go
down to the leftmost child, and to go right to the next sibling of the currently visited node,
where the children are lexicographically ordered by their edge labels from left to right.
The top-down iterator maintains the values 𝑙𝑏 and 𝑟𝑏, the lcp-interval boundaries of the
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Algorithm 3.15: R (𝑖𝑡𝑒𝑟)
input : suffix tree iterator 𝑖𝑡𝑒𝑟

1 𝑛 ← |𝗅𝖼𝗉| − 1 // 𝑛 is the text length
2 𝑖𝑡𝑒𝑟.𝑙𝑏 ← 0
3 𝑖𝑡𝑒𝑟.𝑟𝑏 ← 𝑛
4 𝑖𝑡𝑒𝑟.𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏 ← ⊥

Algorithm 3.16: N (𝑖)
input : ℓ-index 𝑖

1 𝑗 ← 𝖼𝗅𝖽[𝑖]
2 if 𝑖 < 𝑗 and 𝗅𝖼𝗉[𝑖] = 𝗅𝖼𝗉[𝑗] then
3 return true
4 return false

Algorithm 3.17: D (𝑖𝑡𝑒𝑟)
input : suffix tree iterator 𝑖𝑡𝑒𝑟
output : returns true on success

1 if 𝑖𝑡𝑒𝑟.𝑟𝑏 − 𝑖𝑡𝑒𝑟.𝑙𝑏 ≤ 1 then
2 return false;
3 if 𝑖𝑡𝑒𝑟.𝑟𝑏 ≠ 𝑖𝑡𝑒𝑟.𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏 then
4 𝑖𝑡𝑒𝑟.𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏 ← 𝑖𝑡𝑒𝑟.𝑟𝑏

// get 𝗎𝗉 value of right boundary
5 𝑖𝑡𝑒𝑟.𝑟𝑏 ← 𝖼𝗅𝖽[𝑖𝑡𝑒𝑟.𝑟𝑏 − 1]
6 else

// get 𝖽𝗈𝗐𝗇 value of left boundary
7 𝑖𝑡𝑒𝑟.𝑟𝑏 ← 𝖼𝗅𝖽[𝑖𝑡𝑒𝑟.𝑙𝑏]
8 return true

Algorithm 3.18: R (𝑖𝑡𝑒𝑟)
input : suffix tree iterator 𝑖𝑡𝑒𝑟
output : returns true on success

1 if 𝑖𝑡𝑒𝑟.𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏 ∈ {⊥, 𝑖𝑡𝑒𝑟.𝑟𝑏} then
2 return false
3 𝑖𝑡𝑒𝑟.𝑙𝑏 ← 𝑖𝑡𝑒𝑟.𝑟𝑏
4 if N (𝑖𝑡𝑒𝑟.𝑟𝑏) then

// 𝑖𝑡𝑒𝑟.𝑟𝑏 has a succeeding ℓ-index
5 𝑖𝑡𝑒𝑟.𝑟𝑏 ← 𝖼𝗅𝖽[𝑖𝑡𝑒𝑟.𝑟𝑏]
6 else

// 𝑖𝑡𝑒𝑟.𝑟𝑏 is the last ℓ-index
7 𝑖𝑡𝑒𝑟.𝑟𝑏 ← 𝑖𝑡𝑒𝑟.𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏
8 return true

currently visited node, and 𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏 the right boundary of the parent node. It starts
in the root of the lcp-interval tree which is the interval [𝑙𝑏..𝑟𝑏) = [0..𝑛). For the root
node, we initialize 𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏with⊥, see Algorithm 3.15. The intervals in the lcp-interval
tree are distinct from each other and two iterators can be compared by comparing their
boundary pairs. For leaf nodes hold 𝑟𝑏 − 𝑙𝑏 = 1.

When moving the iterator to the irst child of the current node, the left boundary re-
mains the same whereas the smallest ℓ-index in ℓ-indices(𝑙𝑏, 𝑟𝑏) becomes the new right
boundary 𝑟𝑏 and 𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏 the former value of 𝑟𝑏. If the current node is not the last
child of its parent (𝑟𝑏 ≠ 𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏), the smallest ℓ-index in ℓ-indices(𝑙𝑏, 𝑟𝑏) is the 𝗎𝗉
value of 𝑟𝑏 stored at 𝖼𝗅𝖽[𝑟𝑏 − 1], otherwise it is the 𝖽𝗈𝗐𝗇 value of 𝑙𝑏 stored only in this
case at 𝖼𝗅𝖽[𝑙𝑏]. The corresponding pseudo-code is given in Algorithm 3.17. Moving the
iterator to the next sibling is possible iff 𝑟𝑏 ∉ {⊥, 𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏}, i.e. for all but the last sibling.
Then 𝑙𝑏 becomes the former 𝑟𝑏 and 𝑟𝑏 becomes, if existent, its next ℓ-index or 𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏,
otherwise (see Algorithm 3.18).

Besides the D function that moves an iterator along the leftmost edge to the
irst child, we also implemented variants to go down to a child at the end of an edge
starting with a certain character or to go down along the path of string characters. All
the traversal functions return a booleanwhich is true, iff the iterator could be successfully
moved.

Random traversal

If only the 3 tables of the enhanced suf ix array are given, it is not possible to move a
top-down iterator upwards the tree in 𝒪(1) time. It is however possible to recover the
state the iterator had in the parent node by manually maintaing a stack of top-down it-
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Algorithm 3.19: N _P (𝑖𝑡)
input : suffix tree iterator 𝑖𝑡
// try go down, if not try go right

1 if not D (𝑖𝑡) and not R (𝑖𝑡) then
2 while U (𝑖𝑡) and not R (𝑖𝑡) do

// go up until we can go right

3 if I R (𝑖𝑡) then
// end when entering the root node

4 (𝑖𝑡.𝑙𝑏, 𝑖𝑡.𝑟𝑏) ← (−1,−1)
5 return false
6 return true

Algorithm 3.20: N _P (𝑖𝑡)
input : suffix tree iterator 𝑖𝑡

1 if R (𝑖𝑡) then
2 while D (𝑖𝑡) do

// try go right and down to leaf

3 else // otherwise go up
4 if not U (𝑖𝑡) then

// end after halting in root
5 (𝑖𝑡.𝑙𝑏, 𝑖𝑡.𝑟𝑏) ← (−1,−1)
6 return false
7 return true

erator copies. To provide a more convenient interface we implemented the subclass top-
down history iterator which extends the top-down iterator by a stack. The stack stores
the lcp-interval boundaries of nodes on the path to the root. We adapted the R
and D functions to clear the stack and to push the current interval boundary pair
(𝑙𝑏, 𝑟𝑏) onto the stack before going down. The new function U simply replaces (𝑙𝑏, 𝑟𝑏)
by the topmost pair and removes it from stack. We also need to adapt 𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏, which
is set to the new topmost 𝑟𝑏 value on stack.

Depth- irst search

While the two iterators above require 3 tables of the enhanced suf ix array, we have seen
in Section 3.5.1 that only 2 tables are required to conduct a postorder depth- irst search
(DFS). Algorithm3.9 can be executed to report all nodes. However, in some applications it
is more appropriate to have an iterator that can be moved node-by-node. Therefore, we
implemented a light-weight bottom-up iterator which maintains 𝑙𝑏 and 𝑟𝑏, the current
node boundaries, and provides functions B and N . Like a coroutine [Knuth,
1997], N resumes and suspends the execution of Algorithm 3.9 between two calls
of report(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) and instead of reporting the interval it sets 𝑙𝑏 and 𝑟𝑏 accordingly.

B executes Algorithm 3.9 up to the irst call of report(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙). The last node the
iterator halts in is the root node. If N is called again, it sets the iterator in a de ined
end-state and indicates that by returning false.

We provide the same depth- irst search interface for the top-down history iterator
but implemented N bymeans of D , R , and U to traverse all nodes
in the order of either a postorder or a preorder depth- irst search. The pseudo-codes of
both DFS variants are shown in Algorithms 3.19 and 3.20. In contrast to postorder DFS,
in a preorder DFS each node is traversed before its children.

Some applications require to traverse nodes only up to a certain tree or string depth
or have a different criteria to skip a whole subtree in the traversal. To meet this require-
ment, we implemented N R and N U . N R skips the subtree of
the current node andproceedswith the next sibling by omitting D in line 1 of Algo-
rithm 3.19. Analogously N U skips the subtree and all right siblings of the current
node.
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3.6.3 Accessing the suf ix tree

All of the suf ix tree iteratorsdescribedabove store apair of boundaries of the current lcp-
interval [𝑙𝑏..𝑟𝑏). We are not only able to traverse the lcp-interval tree but also to access all
information about the corresponding suf ix tree, given only the suf ix array, the lcp table,
and the node boundary pairs.

In the following, we are going to determine the concatenation string of the current
node, i.e. the concatenation of characters on the path from the root node to the node the
iterator points at. The sentinel character $ at the end of each leaf edge should be omitted
as it is not part of the text and especially formultiple sequenceswould bloat the alphabet.
If 𝑣 is the suf ix tree node that corresponds to the lcp-interval [𝑙𝑏..𝑟𝑏), the concatenation
string without sentinel equals the longest-common pre ix𝜔 of the ℓ-interval [𝑙𝑏..𝑟𝑏), see
Lemma 3.1. Thus, 𝜔 especially is the ℓ-pre ix of the lexicographically smallest suf ix of
the ℓ-interval and it holds𝜔 = 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ][0..ℓ). It remains to determine ℓ. If 𝑟𝑏 − 𝑙𝑏 = 1, 𝑣
is a leaf and ℓ equals the suf ix length 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] = 𝑛− 𝗌𝗎𝖿𝗍𝖺𝖻[𝑙𝑏]. For 𝑟𝑏− 𝑙𝑏 > 1, 𝑣 is an
inner node and ℓ is the lcp value of any, especially the smallest index in ℓ-indices(𝑙𝑏, 𝑟𝑏).
In the previous section, we described how to determine the smallest ℓ-index (used in
Algorithm 3.17). The function L (Algorithm 3.21) computes ℓ using a similar
approach. It only differs in the way of testing whether the current node is the last of its
siblings, as 𝑖𝑡𝑒𝑟.𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏 is not available for the bottom-up iterator. In line 3, the child
table entry at position 𝑖𝑡𝑒𝑟.𝑙𝑏 is read. It either contains a 𝗇𝖾𝗑𝗍ℓ𝖨𝗇𝖽𝖾𝗑-value if the current
node is the irst or an inner sibling or a 𝖽𝗈𝗐𝗇-value if the node is the last sibling. In the
latter case, the entry is less than 𝑖𝑡𝑒𝑟.𝑟𝑏. If it is greater than or equal to 𝑖𝑡𝑒𝑟.𝑟𝑏, it contains
a 𝗇𝖾𝗑𝗍ℓ𝖨𝗇𝖽𝖾𝗑-value, the current node is not the last sibling and the right boundary is an
ℓ-index with an 𝗎𝗉-value at position 𝑖𝑡𝑒𝑟.𝑟𝑏 − 1. The concatenation string of a node is
returned by (Algorithm 3.22).

Algorithm 3.21: L (𝑖𝑡𝑒𝑟)
input : suffix tree iterator 𝑖𝑡𝑒𝑟
output : returns the length of the concatena on string

1 if 𝑖𝑡𝑒𝑟.𝑟𝑏 − 𝑖𝑡𝑒𝑟.𝑙𝑏 = 1 then
2 return |𝑠| − 𝗌𝗎𝖿𝗍𝖺𝖻[𝑖𝑡𝑒𝑟.𝑙𝑏]; // determine suffix length
3 𝑖 ← 𝖼𝗅𝖽[𝑖𝑡𝑒𝑟.𝑙𝑏] // try to get 𝖽𝗈𝗐𝗇 value of left boundary
4 if (𝑖𝑡𝑒𝑟.𝑟𝑏 ≤ 𝑖) then // was it a 𝗇𝖾𝗑𝗍ℓ𝖨𝗇𝖽𝖾𝗑 value?
5 𝑖 ← 𝖼𝗅𝖽[𝑖𝑡𝑒𝑟.𝑟𝑏 − 1] // get 𝗎𝗉 value of right boundary
6 return 𝗅𝖼𝗉[𝑖] // value of the ℓ-interval [𝑖𝑡𝑒𝑟.𝑙𝑏..𝑖𝑡𝑒𝑟.𝑟𝑏)

To only determine the label of the edge from the parent to the current node, we need
to compute the ℓ-value of the parent interval of [𝑙𝑏..𝑟𝑏) in the interval tree. This could
be easily accomplished for a top-down history iterator by going up one node and calling

L . However, there is another way that works for every tree iterator and only
requires 𝑙𝑏 and 𝑟𝑏. Assume [𝑙𝑏..𝑟𝑏) is not the root node and [𝑙𝑏 ..𝑟𝑏 ) its parent interval.
In Section 3.1.3, we have seen that the child interval boundaries are contained in the set
ℓ-indices(𝑙𝑏 , 𝑟𝑏 ) ∪ {𝑙𝑏 , 𝑟𝑏 } and at least one boundary of every interval is an ℓ-index
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Algorithm 3.22: (𝑖𝑡𝑒𝑟)
input : suffix tree iterator 𝑖𝑡𝑒𝑟
output : returns the concatena on string, also called representa ve

1 𝑖 ← 𝗌𝗎𝖿𝗍𝖺𝖻[𝑖𝑡𝑒𝑟.𝑙𝑏] // start of the first suffix in ℓ-interval
2 return 𝑠 𝑖..𝑖 + L (𝑖𝑡𝑒𝑟) // return its prefix of length ℓ

of the ℓ-interval [𝑙𝑏 ..𝑟𝑏 ). Thus, either both boundaries are ℓ-indices or only one is an
ℓ-index and then the other’s lcp value must be less than ℓ. In either case the maximal lcp
value of the boundaries equals ℓ. For the case that [𝑙𝑏..𝑟𝑏) = [0..𝑛) is the root interval,
we set ℓ = 0 as the root has no parent edge. Thus, it holds ℓ = max{𝗅𝖼𝗉[𝑙𝑏], 𝗅𝖼𝗉[𝑟𝑏], 0}
and the parent edge label is the suf ix of the concatenation string starting at position ℓ,
compare with Algorithm 3.23.

Algorithm 3.23: E L (𝑖𝑡𝑒𝑟)
input : suffix tree iterator 𝑖𝑡𝑒𝑟
output : returns label of the edge between parent and current node

1 𝑙 ← max{𝗅𝖼𝗉[𝑖𝑡𝑒𝑟.𝑙𝑏], 𝗅𝖼𝗉[𝑖𝑡𝑒𝑟.𝑟𝑏], 0} // length of the parent’s representative
2 𝑡 ← (𝑖𝑡𝑒𝑟)
3 return 𝑡 𝑙..|𝑡| // cut the first 𝑙 characters

The occurrences of a string 𝑡 in the text 𝑠 are the start positions of suf ixes of 𝑠 begin-
ning with 𝑡. Hence, if 𝑡 is the concatenation string of a suf ix tree node, its occurrences
can be determined by traversing the leaves in the node’s subtree. Given the enhanced
suf ix array, the set of suf ix start positions can directly be obtained, as for a node [𝑙𝑏..𝑟𝑏)
the substring 𝗌𝗎𝖿𝗍𝖺𝖻[𝑙𝑏..𝑟𝑏) contains the start positions of its concatenation string. Algo-
rithm 3.24 shows the corresponding pseudo-code.

Algorithm 3.24: O (𝑖𝑡𝑒𝑟)
input : suffix tree iterator 𝑖𝑡𝑒𝑟
output : reports the occurrences of the node’s concatena on string

1 for 𝑖 ← 𝑖𝑡𝑒𝑟.𝑙𝑏 to 𝑖𝑡𝑒𝑟.𝑟𝑏 − 1 do
2 print “occurrence at position ” 𝗌𝗎𝖿𝗍𝖺𝖻[𝑖]

3.6.4 Repeat search

Besides the above-mentioned iterators, we implemented special purpose iterators for
inding maximal repeats, supermaximal repeats, and maximal unique matches. A repeat
is a substring that occurs at least twice in a text. It is calledmaximal, if the substring can-
not be extended to the left or right such that it still has the same number of occurrences
in the text. The following de initions will more precisely formalize the term repeat.
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Figure 3.10: Class hierarchy of suf ix tree iterators. The superclass of all iterators is the suf-
ix tree iteratorwhich maintains 𝑙𝑏 and 𝑟𝑏, the boundaries of the current lcp-
interval, and provides functions to access the corresponding suf ix tree node
as described in Section 3.6.3.

De inition 3.6 (repeated pair). For a given text 𝑠 of length 𝑛, the triple (𝑝 , 𝑝 , 𝑙) is called
a repeated pair, iff 𝑝 , 𝑝 ∈ [0..𝑛 − 𝑙], with 𝑝 ≠ 𝑝 and the two substrings 𝑠[𝑝 ..𝑝 + 𝑙)
and 𝑠[𝑝 ..𝑝 + 𝑙) are equal.

De inition 3.7 (maximal repeated pair). A repeated pair (𝑝 , 𝑝 , 𝑙) is right maximal if
(𝑝 , 𝑝 , 𝑙 + 1) is not a repeated pair. It is left maximal if (𝑝 − 1, 𝑝 − 1, 𝑙) is not a re-
peated pair. Amaximal repeated pair is left and right maximal.

Given a text 𝑠. A string 𝛼 is called a maximal repeat, iff there is at least one maximal
repeated pair (𝑝 , 𝑝 , |𝛼|) with 𝛼 = 𝑠[𝑝 ..𝑝 + |𝛼|) = 𝑠[𝑝 ..𝑝 + |𝛼|). For example, the
text 𝑠 = xabcyabcwabcyz contains the two maximal repeats abc, with maximal repeated
pairs (1, 5, 3) and (5, 9, 3), and abcy with the only maximal repeated pair (1, 9, 4), see
Figure 3.11a.

De inition3.8 (supermaximal repeat). Asupermaximal repeat is amaximal repeatwhich
is not a substring of another maximal repeat.

As mentioned above, the text 𝑠 = xabcyabcwabcyz contains the two maximal repeats
abc and abcy. As abcy is a superstring of abc, it is the only contained supermaximal repeat,
see Figure 3.11b.

De inition 3.9 (maximal unique match). For given strings 𝑠 , 𝑠 , … , 𝑠 , a unique match
is a string that occurs exactly once in every 𝑠 , with 𝑖 ∈ [1..𝑚]. A maximal unique match
(MUM) is a unique match that is not a substring of another unique match.

One important observation is that for everymaximal repeat ormaximal uniquematch
𝛼 there is an inner suf ix tree node 𝛼. This is due to the right-maximality of 𝛼 which im-
plies that different characters or sentinels follow the𝛼 pre ix in two distinct suf ixes. Vice
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𝑠 =
xabcyabcwabcyz
xabcyabcwabcyz
xabcyabcwabcyz

(a)maximal repeats

𝑠 = xabcyabcwabcyz

(b) supermaximal repeat

𝑠 = axyzbcxyzcxyza
𝑠 = bxyzaxyzaxyzbc
𝑠 = baxyzaxyzbxyzb

(c)MUM

Figure 3.11: Repeat examples. The text xabcyabcwabcyz contains 3 maximal repeated pairs
of 2 repeats (a) and only one supermaximal repeat (b). The 3 strings shown
in (c) contain only one MUM.

versa, for every inner node there is a repeated pair that cannot be extended to the right.
For the exact proof, we refer the reader to Chapter 7.12.1 in [Gus ield, 1997]. As a conse-
quence of this observation, maximal and supermaximal repeats as well as MUMs can be
found by traversing the nodes of the suf ix tree. We implemented 3 special purpose iter-
ators as subclasses of the bottom-up iterator that only halt at nodes that are maximal or
supermaximal repeats or MUMs. The following paragraphs describe their functionality
in more detail. We assume that the alphabet size is ixed.

Searching maximal repeats in linear-time

For a given text 𝑠 and a minimum length 𝑛 , the maximal repeat problem is to ind all
maximal repeats 𝛼 with |𝛼| ≥ 𝑛 and all corresponding maximal pairs. According to the
observation above, the right-maximality is given for every inner node 𝑣, i.e. every pair
of suf ixes 𝑠 and 𝑠 from different subtrees of 𝑣 form a right maximal repeated pair
𝑝 , 𝑝 , concat(𝑣) . The pair is also left maximal, if 𝑝 or 𝑝 equals 0 or the characters

left of the suf ixes differ. If at least one suchpair exists for a node𝑣, concat(𝑣) is amaximal
repeat.

In Section 7.12.3 of [Gus ield, 1997], the author proposed a suf ix tree algorithm to
ef iciently enumerate all maximal pairs in 𝒪(𝑛|Σ| + 𝑘) time, where 𝑘 is the number of
maximal repeated pairs. This algorithm was later adapted to enhanced suf ix arrays by
Abouelhoda et al. [2002a]. Fundamental to both algorithms is to traverse the suf ix tree
from bottom up and for every tree node to partition the sets of suf ixes in the subtree
according to their preceding character. To well-de ine the preceding character, we de ine
$ to precede the suf ix starting at position 0. For a tree node [𝑖..𝑗) and a character 𝑥 ∈
Σ ∪ {$}, the partition of start positions of suf ixes preceded by character 𝑥 in the subtree
of [𝑖..𝑗) is:

𝒫[ .. )(𝑥) =
0 0 ∈ 𝗌𝗎𝖿𝗍𝖺𝖻[𝑖..𝑗) , if 𝑥 = $
𝑝 ∈ 𝗌𝗎𝖿𝗍𝖺𝖻[𝑖..𝑗) 𝑝 ≠ 0 ∧ 𝑠[𝑝 − 1] = 𝑥 , else. (3.26)

Let 𝑣 be an inner suf ix tree node that corresponds to the lcp-interval [𝑖..𝑗) with child
intervals [𝑙 ..𝑙 ), [𝑙 ..𝑙 ), …, [𝑙 ..𝑙 ), where 𝑙 = 𝑖 and 𝑙 = 𝑗 holds. The set of maximal
repeatedpairs for concat(𝑣) is theunionof Cartesianproducts of partitions fromdifferent
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subtrees (right-maximality) and different preceding characters (left-maximality):

ℛ[ .. ) =
, ∈[ .. ), , ∈ ∪{$},

𝒫[ .. )(𝑥) × 𝒫[ .. )(𝑦) × concat(𝑣) . (3.27)

If the setℛ[ .. ) is empty, the concatenation string concat(𝑣) is not a maximal repeat. Oth-
erwise, it contains all maximal repeated pairs of the maximal repeat concat(𝑣).

The algorithm described in [Gus ield, 1997; Abouelhoda et al., 2002a] computes the
sets 𝒫[ .. )(𝑥) for every node [𝑖..𝑗) in the lcp-interval tree from bottom up. It begins in
the leaves [𝑘..𝑘 + 1), where 𝒫[ .. )(𝑥) is empty for all but one character 𝑥 ∈ Σ ∪ {$}.
It is non-empty and equals the singleton {𝑘} for the character that precedes the suf ix
𝑠 . Whenever a child node [𝑙 ..𝑙 ) is visited the last time during the postorder DFS, its
sets 𝒫[ .. )(⋅) are joined to the sets of its parent node [𝑖..𝑗). At the moment, between
leaving the child node and appending its sets, the parent [𝑖..𝑗) stores the union of sets of
all left siblings of [𝑙 ..𝑙 ), …, [𝑙 ..𝑙 ) which equals 𝒫[ .. )(⋅). The Cartesian products of
the sets 𝒫[ .. )(𝑥) and 𝒫[ .. )(𝑦), with 𝑥 ≠ 𝑦, constitute maximal pairs and are output
for every child [𝑙 ..𝑙 ), with 𝑏 ∈ [1..𝑚). It becomes clear that the algorithm is correct,
after equivalently rewriting equation 3.27:

ℛ[ .. ) =
∈[ .. ) , ∈ ∪{$},

𝒫[ .. )(𝑥) × 𝒫[ .. )(𝑦) × concat(𝑣) . (3.28)

We implemented the described algorithm as a specialized bottom-up iterator. The iter-
ator is extended by a stack that stores the position sets for every 𝑥 ∈ Σ ∪ {$} for the
current tree node and all of its ancestors. Sets are represented as linked lists and thus
can be joined in constant time. They are no longer used after theywere joined to the par-
ent node. As a consequence, all active sets are disjoint and the linked lists can be stored
in a single string 𝑃 of length 𝑛 over [0..𝑛), where the sets {17, 42, 23} and {10, 20} are
represented by:

𝑃[17] = 42, 𝑃[42] = 23, 𝑃[23] = 17,
𝑃[10] = 20, 𝑃[20] = 10

and joined by switching their irst links to 𝑃[17] = 20, 𝑃[10] = 42. Instead of directly
storing positions in the sets, our implementation stores the indices of the correspond-
ing suf ix array entries. This enables us to seamlessly extend the approach to multiple
sequences. The bottom-up iterator halts in every node 𝑣, where concat(𝑣) is a maximal
repeat of minimum length 𝑛 ≤ concat(𝑣) . More precisely it might halt multiple times
in 𝑣, whenever it leaves a child node whose position sets, in conjunction with the sets
of left siblings, contribute maximal repeated pairs. The user may proceed with the next
maximal repeat or with a second iterator enumerate these maximal repeated pairs. De-
ciding whether a child contributes maximal repeated pairs and joining its position sets
can be done in 𝒪(|Σ|) time. The time required for enumerating these maximal repeated
pairs is proportional to the number of pairs.
Theorem 3.1. The time to enumerate all maximal repeats of a text of length 𝑛 is 𝒪(𝑛|Σ|).
If the text contains overall 𝑘 maximal repeated pairs of minimal length 𝑛 , the overall time
to output them is 𝒪(𝑛|Σ| + 𝑘).
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We extend the repeated pair de inition (De inition 3.6) straightforward to multiple
sequences as well as the dependent maximal and supermaximal repeat de initions.

De inition 3.10 (generalized repeated pair). Given strings 𝑠 , … , 𝑠 of lengths 𝑛 ,… , 𝑛 ,
the triple ((𝑖 , 𝑗 ), (𝑖 , 𝑗 ), 𝑙) is called a (generalized) repeated pair, iff (𝑖 , 𝑗 ), (𝑖 , 𝑗 ) ∈
⋃ ∈[ .. ]{𝑖} × [0..𝑛 − 𝑙], with (𝑖 , 𝑗 ) ≠ (𝑖 , 𝑗 ) and the two substrings 𝑠 [𝑗 ..𝑗 + 𝑙) and
𝑠 [𝑗 ..𝑗 + 𝑙) are equal.

The suf ix tree algorithm described above as well as our implemented iterator can
without a change be applied to the generalized suf ix tree to solve the generalized maxi-
mal repeat problem in 𝒪(𝑛|Σ| + 𝑘) time, where 𝑛 = ∑ ∈[ .. ] 𝑛 is the overall text length.

Searching supermaximal repeats in linear-time

For a given text 𝑠 and a minimum length 𝑛 , the supermaximal repeat problem is to ind
all supermaximal repeats 𝛼 with |𝛼| ≥ 𝑛 . A supermaximal repeat is a maximal repeat
that is not a substring of a larger maximal repeat. Whereas one maximal repeated pair
suf ices for being amaximal repeat, all possible pairs of text occurrences of a supermaxi-
mal repeat must form maximal repeated pairs. Otherwise a pair of occurrences could be
extended to the left or right to form a larger maximal repeated pair of a superstring.

Theorem 3.2. A substring of a text is a supermaximal repeat, iff it occurs at least twice
and all its occurrences have pairwise distinct preceding characters and pairwise distinct
succeeding characters (if existent).

Considering the suf ix tree, supermaximal repeats are inner nodes whose children
are leaves (criterion 1) and the characters preceding the leaf suf ixes are pairwise dis-
tinct (criterion 2). Testing a node for being leaf can be done in constant time. As every
child node is tested at most once and the time for enumerating the children of a node
is proportional to their number, the overall time for testing the irst criterion is 𝒪(𝑛).
Deciding whether all characters preceding the occurrences of a single node are pairwise
distinct takes𝒪(|Σ|) time, deciding it for all nodes consequently takes𝒪(𝑛|Σ|). The𝒪(|Σ|)
time per node is required to erase a boolean vector of size 𝒪(|Σ|) and to check for every
occurrence if the preceding character was marked and otherwise mark it.

For large alphabets, a simple trick avoids erasing the vector and reduces the time
to 𝒪(𝑜) per node, where 𝑜 is the number of occurrences. Instead of using a vector of
booleans, we store for each character a unique identi ier of the last visited criterion-
1-node with occurrences preceded by that character. This way, the vector needs to be
erased only once per traversal instead of once per node and two occurrences of the same
node preceded by the same character can be detected by the same node identi ier. As the
vector is updated only for the occurrences of nodes ful illing criterion 1, i.e. all children
are leaves, the total number of updates is not greater than the total number of leaves.
Hence, the overall running time to test criterion 2 is 𝒪(𝑛 + |Σ|).

Theorem 3.3. The supermaximal repeat problem for a text of length 𝑛 can be solved in
𝒪(𝑛 + |Σ|) time.
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While our above-described approach can be applied to any suf ix tree index, Abouel-
hoda et al. [2004] proposed an algorithm that solves the supermaximal repeat problem
using the suf ix array and the lcp table of a given text. Although both have the same
asymptotical time consumption, their approach is twice as fast in practice. Fundamen-
tal is the observation that nodes whose children are leaves are ℓ-intervals where every
element in the interval is an ℓ-index, i.e. the ℓ-interval is a local maximum in the lcp
table. In a linear scan over the lcp table, all intervals [𝑖..𝑗) can be determined where
𝗅𝖼𝗉[𝑖] < 𝗅𝖼𝗉[𝑖] = 𝗅𝖼𝗉[𝑖 + 1] = … = 𝗅𝖼𝗉[𝑗 − 1] > 𝗅𝖼𝗉[𝑗] holds. These intervals [𝑖..𝑗) are
ℓ-intervals that ful ill the irst supermaximality criterion. The second criterion can be
tested as described above by comparing the preceding characters of suf ixes starting at
positions 𝗌𝗎𝖿𝗍𝖺𝖻[𝑖], 𝗌𝗎𝖿𝗍𝖺𝖻[𝑖 + 1], … , 𝗌𝗎𝖿𝗍𝖺𝖻[𝑗 − 1].

For both variants, the generic and the specializiation for enhanced suf ix arrays, we
implemented a supermaximal repeat iteratorwhich, just like themaximal repeat iterator,
can be applied to multiple sequences as well.

Searching MUMs in linear-time

Givenmultiple strings 𝑠 , 𝑠 , … , 𝑠 and a minimum length 𝑛 , theMUM problem is to ind
all MUMs 𝛼with |𝛼| ≥ 𝑛 . A uniquematch is a substring that occurs exactly once in every
string, i.e. the number of occurrences equals 𝑚 and there is no string 𝑠 containing two
occurrences. A uniquematch𝛼 is notmaximal, iff it is contained in a longer uniquematch.
As the longer unique match must have the same number of occurrences, all occurrences
of 𝛼 would be preceded or succeeded by the same character.

Theorem 3.4. A unique match is a MUM, iff it has two occurrences preceded by different
characters and two occurrences succeeded by different characters.

From the latter follows, that MUMS are inner nodes of the suf ix tree. They can be
found by traversing the suf ix tree while skipping all nodes with more or less than 𝑚
occurrences. For every remaining node it can be tested in 𝒪(𝑚) time whether the𝑚 oc-
currences are preceded by the same character or contained twice in a string 𝑠 . If neither
the former nor the latter holds, the node is aMUM and can be reported. We implemented
the MUM iterator as a subclass of the bottom-up iterator, where we overloaded B
and N to only halt inMUMswith aminimal length 𝑛 . The time spent in every node
is bound linear in the number of children. Thus the overall time for reporting all MUMs
is linear in the number of nodes.

Theorem3.5. For multiple strings of overall text length 𝑛, the MUM problem can be solved
in 𝒪(𝑛) time.
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C

4 Lazy Suf ix Tree

In the previous chapter, we proposed repeat search algorithms which construct and tra-
verse the whole suf ix tree of a text. Some applications, however, require to traverse only
an upper part or a single path of the tree. In such cases another index, described in the
following, becomes more appropriate.

A lazy suf ix tree [Giegerich et al., 2003] is a suf ix treewhose nodes are created on de-
mand, i.e. when they are visited the irst time in a top-down traversal. The suf ix tree con-
struction is deferred to the traversal and driven by it. The term deferred data structuring
was irst introduced by Karp et al. [1987]. It denotes a concept where data structures are
query-driven constructed on demand. Ching et al. [1990] distinguish between static and
dynamic deferred data structures, depending on whether the underlying dataset must
remain constant or permits dynamic changes, e.g. insertions or removals of elements. As
the lazy suf ix tree assumes a constant text, it falls in the irst category.

Depending on the usage scenario, using a lazy suf ix tree can signi icantly improve
on the overall running time and memory consumption compared to an enhanced suf ix
array. In [Weese andSchulz, 2008; Schulz et al., 2008a;Weese et al., 2013]weproposedif-
ferent applications of a lazy suf ix tree that outperform competitive algorithms that use
suf ix trees or enhanced suf ix arrays. In Chapter 7, we describe in detail an application
of the lazy suf ix tree to frequency string mining, where we exploit a property of the on-
demand construction for the ef icient computation of substring frequencies in databases,
and analyze its performance on different real-world datasets.

Giegerich et al. introduced the irst lazy suf ix tree data structure that utilizes the
write-only, top-down algorithm [Giegerich and Kurtz, 1995] for the on-demand node ex-
pansion. We irst describe this algorithm and the original lazy suf ix tree data structure.
Then, we propose our own lazy suf ix tree variant that supports multiple sequences and
provides the same suf ix tree interface as the enhanced suf ix array (described in Sec-
tion 3.6.2). At the end of this chapter, we propose different applications that bene it from
the on-demand tree construction.

4.1 Thewotd algorithm

The wotd (write-only, top-down) algorithm was irst proposed by Giegerich and Kurtz
[1995] as a purely functional suf ix tree construction algorithm. In a follow-up paper,
Giegerich et al. [2003] introduced a data structure to represent the partially constructed
suf ix tree of a single string and restated their algorithm in an imperative language. The
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basic idea of the wotd algorithm is to determine the children of a branching suf ix tree
node by partitioning the set of corresponding suf ixes by the character following the
longest common pre ix. Beginning with only the root node it recursively expands a di-
rected tree step-by-step up to the entire suf ix tree.

We consider a given non-empty text 𝑠 of length 𝑛 and a rooted, directed tree 𝑇 that
in every state of the algorithm is a subgraph of the suf ix tree including its root, in the
following referred to as partial suf ix tree. Let 𝑅 be a function that maps any string 𝛼 ∈ Σ∗
to the set of suf ixes of 𝑠$ that begin with 𝛼:

𝑅(𝛼) ∶= 𝛼𝛽 𝛼𝛽 is a suf ix of 𝑠$ ⧵ {$} . (4.1)

Given abranching suf ix tree node𝛼,𝑅(𝛼) contains the concatenation strings of the leaves
below 𝛼. The children of 𝛼 can be determined as follows: Divide 𝑅(𝛼) into non-empty
groups 𝑅(𝛼𝑐 ), … , 𝑅(𝛼𝑐 ) of suf ixes, where character 𝑐 ∈ Σ ∪ {$} follows the common
𝛼-pre ix. Let 𝛼𝑐 𝛽 be the longest-common pre ix of 𝑅(𝛼𝑐 ), which for singleton groups
equals the only contained suf ix. For non-singleton groups, 𝛼𝑐 𝛽 is a branching node in
the suf ix tree, as there are two suf ixes of 𝑠$ that differ in the character following their
common pre ix 𝛼𝑐 𝛽 . Singleton groups contain suf ixes of 𝑠$which correspond to leaves
𝛼𝑐 𝛽 in the suf ix tree. As every suf ix with pre ix 𝛼𝑐 also has a pre ix 𝛼𝑐 𝛽 , there is
no branching node between 𝛼 and 𝛼𝑐 𝛽 . Hence every 𝛼𝑐 𝛽 can be inserted as a child
of 𝛼 in 𝑇, which remains a partial suf ix tree. This procedure, called node expansion, is
recursively repeated for every newly inserted branching node; Algorithm 4.1 shows the
corresponding pseudo-code. The wotd-algorithm begins with 𝑇 consisting of only the
root node and expands it and all its descendants, see Algorithm 4.2.

Algorithm 4.1: E (𝑇, 𝛼)
input : par ally constructed suffix tree 𝑇 and node 𝛼

1 divide 𝑅(𝛼) into subsets 𝑅(𝛼𝑐) of suffixes where character c follows the 𝛼-prefix
2 foreach 𝑐 ∈ Σ ∪ {$} and 𝑅(𝛼𝑐) ≠ ∅ do
3 𝛼𝑐𝛽 ← lcp𝑅(𝛼𝑐)
4 if |𝑅(𝛼𝑐)| = 1 then // leaf node

5 add leaf 𝛼𝑐𝛽 as a child of 𝛼 in 𝑇
6 else // branching node

7 add inner node 𝛼𝑐𝛽 as a child of 𝛼 in 𝑇
8 E (𝑇, 𝛼𝑐𝛽) // recurse into child subtree

4.2 Lazy construction and representation

A key property of the wotd-algorithm is that it constructs the suf ix tree top-down and
nodes from disjunctive subtrees can be expanded independently and in arbitrary order.
Thatmakes it possible to step-by-step expand single nodes instead of entire subtrees and
allows turning the suf ix tree construction into a lazy, on-demand construction. Such a
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Algorithm 4.2: S T (𝑠)
input : text string 𝑠 over the alphabet Σ
output : suffix tree of 𝑠

1 create tree 𝑇 that consists of only the root node 𝜖
2 E (𝑇, 𝜖)
3 return 𝑇
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(d) fully expanded tree

Figure 4.1: Different states of the lazy suf ix tree for 𝑠 = ttatctctta. Below each unex-
panded node𝛼 the remaining suf ixes𝑅(𝛼) are shownwithout their common𝛼-
pre ix. In the beginning (a), the lazy suf ix tree consists of only the unexpanded
root node. (b) shows the result of the root node expansion and (c) the expansion
of node t. The fully expanded suf ix tree is shown in (d).

lazy suf ix tree requires a method to expand a suf ix tree node and a data structure to
represent a partial suf ix tree whose nodes are either in expanded or unexpanded state.
Further, it requires 𝑅(𝛼) for the expansion of nodes 𝛼 and needs to provide the corre-
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sponding set of suf ix start positions for all (even expanded) nodes 𝛼:

𝑙(𝛼) ∶= 𝑖 ∈ [0..𝑛) ∃ ∈ ∗ 𝑠 $ = 𝛼𝛽 (4.2)

to determine the text occurrences of a pattern. Giegerich et al. proposed a lazy suf ix tree
that meets all of these requirements. However, their approach has two drawbacks: the
children of inner nodes are not lexicographically ordered as in the enhanced suf ix array
based suf ix tree and the tree cannot directly be generalized to multiple sequences. We
introduce a new data structure that overcomes these limitations and present their and
our approaches in the next two sections.

4.2.1 The original data structure

Asmentioned above, in the original lazy suf ix tree [Giegerich et al., 2003] the children𝛼𝛽
of an inner node 𝛼 are not in lexicographically order, instead they are ordered increas-
ingly bymin 𝑙(𝛼𝛽), i.e. decreasingly by the length of the longest suf ix in𝑅(𝛼𝛽). This order
iswell de ined as the children𝛼𝛽 , 𝛼𝛽 ,… , 𝛼𝛽 of𝛼 partition the set 𝑙(𝛼) into non-empty,
disjoint sets 𝑙(𝛼𝛽 ), 𝑙(𝛼𝛽 ), … , 𝑙(𝛼𝛽 ).

We irst describe how to represent edge labels. Consider an edge from the expanded
node 𝛼 to a child 𝛼𝛽. As 𝑙(𝛼𝛽) is the set of occurrence begin positions of 𝛼𝛽, it holds that
𝛽 = 𝑠[min 𝑙(𝛼𝛽) + |𝛼|.. min 𝑙(𝛼𝛽) + |𝛼𝛽|]. Let 𝑙𝑝 be a function on tree nodes de ined as:

𝑙𝑝(𝛼𝛽) ∶= min 𝑙(𝛼𝛽) + |𝛼|, where 𝛼 is parent of 𝛼𝛽. (4.3)

We then can substitute 𝛽 = 𝑠[𝑙𝑝(𝛼𝛽)..𝑙𝑝(𝛼𝛽) + |𝛽|). For now, assume that the tree rep-
resentation stores 𝑙𝑝-values for all children of an expanded node. It remains to show
how to determine |𝛽|. In case 𝛼𝛽 is a leaf in the suf ix tree, 𝛼𝛽 is a suf ix of 𝑠$ and it
holds |𝛽| = 𝑛 + 1 − 𝑙𝑝(𝛼𝛽). Otherwise, assume that 𝛼𝛽 is expanded and let 𝛼𝛽𝛾 be
the irst child of 𝛼𝛽. By de inition of the child order it holds min 𝑙(𝛼𝛽) = min 𝑙(𝛼𝛽𝛾 )
and hence |𝛽| = 𝑙𝑝(𝛼𝛽𝛾 ) − 𝑙𝑝(𝛼𝛽). If 𝛼𝛽 is unexpanded, |𝛽| can be computed via
|𝛽| = | lcp𝑅(𝛼𝛽)| − |𝛼|.

The nodes of the partial suf ix tree are stored in a string 𝑇 of integers, where the
children of a node are stored in a contiguous block and in the same order as in the tree.
An expanded inner node𝛼 is represented by two adjacent entries, 𝑙𝑝(𝛼) and irstchild(𝛼).
The latter refers to the beginning of the block of child nodes in 𝑇. A leaf is represented
by a single entry in 𝑇 the value 𝑙𝑝(𝛼). To distinguish between inner nodes and leaves, a
leaf bit (L) is split off the irst entry. The last child of a node is marked by a last-child bit
(LC) in the irst entry.

Node expansion

Unexpanded nodes are marked by an unexpanded bit (U) in the second entry. To expand
a node 𝛼, the suf ixes 𝑅(𝛼) are partitioned according to their character at position |𝛼|. To
this end, we store the corresponding suf ix start positions in an additional integer string
𝗌𝗎𝖿𝗍𝖺𝖻 of length 𝑛 initialized with 0, 1, … , 𝑛 − 1. In 𝑇 the two reserved entries of every
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(d) expanded node 𝚝𝚊

Figure 4.2: Different states of the lazy suf ix tree for 𝑠 = ttatctctta and how they are rep-
resented by the original data structure. Below each unexpanded node 𝛼 the
remaining suf ixes 𝑅(𝛼) are shown without their common 𝛼-pre ix. In the be-
ginning (a), the lazy suf ix tree consists of only the unexpanded root node. (b)
shows the result of the root node expansion, (c) and (d) the expansions of nodes
t and ta
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unexpanded node store boundaries 𝑖, 𝑗 of substrings of 𝗌𝗎𝖿𝗍𝖺𝖻 such that the following
invariant holds. The intervals [𝑖..𝑗) are disjoint subsets of [0..𝑛) and for an unexpanded
node 𝛼𝛽, 𝗌𝗎𝖿𝗍𝖺𝖻[𝑖..𝑗) contains the values 𝑙(𝛼𝛽) + |𝛼| in increasing order. Hence the 𝑙𝑝-
value of 𝛼𝛽 equals 𝗌𝗎𝖿𝗍𝖺𝖻[𝑖] and is therefore also available for unexpanded nodes. In the
beginning, the partial suf ix tree consists of only the root node represented by two entries
0, 𝑛 in 𝑇 with leaf and unexpanded bits set, see Figure 4.2a. Before expanding 𝛼𝛽, the
length of |𝛽| is unknown andmust be determined by computing the lcp value lcp{𝑠 | 𝑘 ∈
𝗌𝗎𝖿𝗍𝖺𝖻[𝑖..𝑗)}. This can be done by step-wise comparing all characters 𝑠[𝗌𝗎𝖿𝗍𝖺𝖻[𝑖..𝑗)+ 𝑙] for
𝑙 = 1, 2, … for equality. Then |𝛽| equals the smallest value 𝑙 forwhich𝑎, 𝑏 ∈ [𝑖..𝑗) existwith
𝑠[𝗌𝗎𝖿𝗍𝖺𝖻[𝑎] + 𝑙] ≠ 𝑠[𝗌𝗎𝖿𝗍𝖺𝖻[𝑏] + 𝑙]. The values 𝗌𝗎𝖿𝗍𝖺𝖻[𝑖..𝑗) are then increased by |𝛽| and
stably rearranged into subintervals 𝐺 of the same character 𝑥, such that for 𝑥 ∈ Σ holds
∀ ∈ 𝑠[𝗌𝗎𝖿𝗍𝖺𝖻[𝑘]] = 𝑥 and ⋃̇ ∈ ∪{$}𝐺 = [𝑖..𝑗). The groups correspond to the children
of 𝛼𝛽 and are appended to 𝑇 in 𝑙𝑝-order, i.e. increasingly by the valuemin ∈ 𝗌𝗎𝖿𝗍𝖺𝖻[𝑘].
For each singleton group, a single 𝑙𝑝-entry with a set leaf bit is stored. The remaining
groups are branching nodes whose subinterval boundaries are stored and marked with
a set unexpanded bit. The last group is marked by setting the last-child bit. Finally, the
unexpanded bit of the parent node is cleared and the two interval boundaries are replaced
by 𝑙𝑝(𝛼𝛽) and irstchild(𝛼𝛽), the position of the irst child group appended to 𝑇.

Example 4.1. As an example, Figure 4.2 shows different states of the lazy suf ix tree of
𝑠 = ttatctctta during the search of the pattern 𝑝 = ttat. Initially empty, the lazy suf ix
tree is expandednode-by-node along thewhole search path. The sub igures (a)–(d) show
the contents of 𝑇 and 𝗌𝗎𝖿𝗍𝖺𝖻 and the corresponding partial suf ix trees. The different
colors represent the different suf ix groups computed when expanding a node. It can
easily be seen that the groups are decreasingly sorted by the length of the longest suf ix
and that 𝗌𝗎𝖿𝗍𝖺𝖻 is not a permuted suf ix array.

The theoretical running time for constructing the whole suf ix tree is 𝒪(𝑛 + |Σ|) for
the worst case and𝒪(𝑛 log| | 𝑛+|Σ|) on average [Giegerich and Kurtz, 1995]. In practice,
the algorithm shows almost a linear running time and bene its from its good cache local-
ity during the recursive descent [Giegerich et al., 2003]. Giegerich et al. use a modi ied
counting sort [Cormen et al., 2001] that avoids iterations over the alphabet and reuses
the counter array to group𝑚 suf ixes in𝒪(𝑚) instead of𝒪 (|Σ| + 𝑚) time. As a result, the
size of the alphabet is an addend instead of a factor in the overall running time and suf-
ixes are stably assigned to groups with increasing 𝑙𝑝-values instead of increasing group
characters.

4.2.2 Our data structure

As explained above, Giegerich et al. use a modi ied counting sort with the effect that the
outgoing edges of their lazy suf ix tree are not in lexicographical order. However, some
applications require a lexicographical order, e.g. to speed up the search for an outgoing
edge from𝒪(|Σ|) to𝒪(log |Σ|)¹ or to search common edge labels between two suf ix trees,

¹ A binary search on the outgoing edges requires an extra bit to distinguish the both entries of an inner
node from the single entry of a leaf in 𝑇.
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e.g. in a multiple exact pattern search described in Section 4.3.3. As a remedy, we irst
implemented a variant of the original lazy suf ix tree where the suf ixes are sorted by
the character following the longest common pre ix using an unmodi ied counting sort.
However, for the edge label determination the group containing the longest suf ix of all
groups must be moved to front and become the irst child in 𝑇. This variant makes it
possible to enumerate the lexicographically ordered children of a node in linear time and
to search an outgoing edge in logarithmic time.

In the following, we propose a second, more elegant variant of the lazy suf ix tree
where children can be stored in arbitrary and especially lexicographical order. Our data
structure is applicable to multiple sequences and represents exactly the same general-
ized suf ix tree as the enhanced suf ix array, i.e. every tree node 𝛼 corresponds to the
same substring of 𝗌𝗎𝖿𝗍𝖺𝖻 and is stored in the same order as in the enhanced suf ix array.
The number of occurrences can be determined in𝒪(1) time, whereas in the original data
structure a DFS traversal is required.

Again, our lazy suf ix tree data structure consists of the two strings 𝑇 and 𝗌𝗎𝖿𝗍𝖺𝖻 and
nodes require the same number of entries in 𝑇. The second entry of every expanded
node is the irstchild pointer and extra bits are used to mark leaves, last children and un-
expanded nodes. Every tree node 𝛼 corresponds to an interval [𝑖..𝑗) such that 𝗌𝗎𝖿𝗍𝖺𝖻[𝑖..𝑗)
now stores 𝑙(𝛼), the set of positions where 𝛼 occurs in the text. In contrast to the orig-
inal lazy suf ix tree [Giegerich et al., 2003] which stores 𝑙𝑝-values, our data structure
stores lcp values, i.e. the length |𝛼| = 𝑇[ irstchild(𝛼)] is available for every expanded
node 𝛼. For unexpanded nodes the lcp value can be computed as described in the previ-
ous section. Consider an edge from an expanded node 𝛼 to a child 𝛼𝛽 and let 𝗌𝗎𝖿𝗍𝖺𝖻[𝑖..𝑗)
be the substring that stores 𝑙(𝛼𝛽). The edge label 𝛽 then can be determined via 𝛽 =
𝑠[𝗌𝗎𝖿𝗍𝖺𝖻[𝑖] + |𝛼|..𝗌𝗎𝖿𝗍𝖺𝖻[𝑖] + |𝛼𝛽|).

Node expansion

Consider an unexpanded node 𝛼 whose text occurrences are stored in 𝗌𝗎𝖿𝗍𝖺𝖻[𝑖..𝑗) in as-
cending order. To expand 𝛼, the elements 𝑘 ∈ 𝗌𝗎𝖿𝗍𝖺𝖻[𝑖..𝑗) are stably sorted by 𝑠 [𝑘 + |𝛼|]
using counting sort. The result is a partition [𝑙 ..𝑙 ), [𝑙 ..𝑙 ), … , [𝑙 ..𝑙 ) with 𝑙 = 𝑖 and
𝑙 = 𝑗, such that 𝗌𝗎𝖿𝗍𝖺𝖻[𝑙 ..𝑙 ), 𝗌𝗎𝖿𝗍𝖺𝖻[𝑙 ..𝑙 ), … , 𝗌𝗎𝖿𝗍𝖺𝖻[𝑙 ..𝑙 ) store the occurrences of
the substrings 𝛼𝑥 < 𝛼𝑥 < … < 𝛼𝑥 in the text 𝑠$ in increasing order, with 𝑥 ∈ Σ ∪ {$}.
Each interval stores the start positions of suf ixes 𝑅(𝛼𝑥 ) whose longest common pre ix
𝛼𝛽 = lcp𝑅(𝛼𝑥 ) corresponds to a child node 𝛼𝛽 of 𝛼 in the suf ix tree and is inserted
into our lazy suf ix tree in the same order. Singleton intervals [𝑙 ..𝑙 + 1) correspond
to suf ix tree leaves. They occupy a single entry in 𝑇 with value 𝑙 and the leaf bit set.
All other intervals [𝑙 ..𝑙 ) correspond to inner suf ix tree nodes and occupy two entries
with the unexpanded bit set. One entry is the left boundary 𝑙 , the other is reserved for
the irstchild(𝛼𝛽 ) pointer which is used if 𝛼𝛽 is in expanded state. The right boundary
needs not to be stored as it equals the left boundary of the following sibling or the right
boundary of the parent node if 𝑖 = 𝑚 − 1. After all child nodes are inserted into 𝑇, the
last-child bit is set for 𝛼𝛽 , the irstchild(𝛼)-pointer is adapted and length |𝛼| is stored
in place of the left boundary of the irst child, which is expendable as it equals the left
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Figure 4.3: Different states of the lazy suf ix tree and how they are represented by our data
structure.



73

boundary of the parent node.

Example 4.2. Figure 4.3 shows how the different states of the lazy suf ix tree in Figure 4.2
are represented by our data structure. The same pattern 𝑝 = ttat is searched in the
lazy suf ix tree of 𝑠 = ttatctctta. In contrast to the original lazy suf ix tree [Giegerich
et al., 2003], in our data structure groups are sorted lexicographically and 𝗌𝗎𝖿𝗍𝖺𝖻 is a
permuted suf ix array. Moreover, for every node 𝛼 there is a corresponding substring
𝗌𝗎𝖿𝗍𝖺𝖻[𝑖..𝑗) that stores the occurrences of𝛼 in the text. Some of the entries in 𝑇 are empty.
They are reserved for irstchild pointers of yet unexpanded nodes, e.g. entry 1 initially
empty and after expansion refers to the irst child stored at position 2. For an expanded
node 𝛼, 𝑇[ irstchild(𝛼)] stores the length |𝛼|, e.g. entry 𝑇[14] stores 2 the length of the
concatenation string of node ta.

The whole lazy suf ix tree can be constructed in 𝒪 𝑛 + |Σ|𝑛 time in the worst and
𝒪 𝑛 log| | 𝑛 + |Σ|𝑛 time in the average case. The additional 𝒪 |Σ|𝑛 running time is a
result of using the original counting sort which sorts𝑚 suf ixes by their irst character in
𝒪 |Σ| + 𝑚 time.

4.2.3 Extension to multiple sequences

Our approach, described in the previous subsection, can easily be extended to multiple
sequences. Given a set 𝒮 = {𝑠 , … , 𝑠 } of sequences of lengths 𝑛 ,… , 𝑛 , a suf ix is repre-
sented by a pair of integers (𝑖, 𝑗), with 𝑖 ∈ [1..𝑚] and 𝑗 ∈ [0..𝑛 ). Hence we change 𝗌𝗎𝖿𝗍𝖺𝖻
to be a string of pairs of length 𝑛 = Σ ∈[ .. ]𝑛 and initialize it with:

𝗌𝗎𝖿𝗍𝖺𝖻 ∶= (1, 0)(1, 1)… (1, 𝑛 − 1)(2, 0)… (2, 𝑛 − 1)(3, 0)… (𝑚, 𝑛 − 1). (4.4)

𝑇 needs not to be changed, as all of its entries solely store pre ix lengths, interval bound-
aries or child pointers. In order to construct a lazy suf ix tree, whose nodes have the same
order as in the ESA based suf ix tree, the sentinel relation $ < … < $ < min Σ must
be retained. In order to achieve this without introducing extra alphabet characters in the
implementation, we modi ied counting sort to use an extra bucket in front of all other
buckets that represents all sentinels. When sorting the suf ixes 𝑅(𝛼) by their character
at position |𝛼|, this sentinel bucket contains all pairs (𝑖, 𝑗)with 𝑗 + |𝛼| = 𝑛 . As counting
sort is stable, these pairs will have the same relation as in the initialization, i.e. in 𝗌𝗎𝖿𝗍𝖺𝖻 a
suf ix 𝛼$ will be stored left of a suf ix 𝛼$ with 𝑖 < 𝑗. At last these suf ixes are appended
to 𝑇 as leaves below 𝛼. They are appended in the same order as they occur in 𝗌𝗎𝖿𝗍𝖺𝖻 and
left of the remaining buckets.

4.3 Applications

In the following, we show that our lazy suf ix tree is a complete replacement for the en-
hanced suf ix array as it creates the same suf ix tree and provides the same interface for
traversing and accessing it. In general, lazy suf ix trees are well suited for applications
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where either only the upper parts of the suf ix tree are traversed, e.g. if only substrings
up to a certain length should be examined, or only certain paths to the leaves are tra-
versed, e.g. searching patterns. For bottom-up traversals the enhanced suf ix array is a
better solution. In the following, we show different examples where a lazy suf ix tree is
well suited, and show in chapter 7 a new approach to frequency based stringmining that
exploits another property of our lazy suf ix tree.

4.3.1 Traversing and accessing the lazy suf ix tree

Tomake the lazy suf ix tree easily accessible, we implemented a top-down and a top-down
history suf ix tree iterator for our data structure. Both iterators provide exactly the same
functionality as the top-down and a top-down history iterators introduced in Section 3.6.2.
The latter is also simply a subclass of the irst extended by a stack that permits to go up
the tree. Top-down iterators start at the root node and can arbitrarily go down and go
right. If they aremoved down from a node in unexpanded state the node is automatically
expanded,whichmakes thema complete replacement for enhanced suf ix array iterators.
We also implemented variants that work on the original lazy suf ix tree for the sake of
completeness, but refer the reader to [Giegerich et al., 2003] for details on how they are
implemented.

A top-down iterator consists of member variables 𝑛𝑜𝑑𝑒, 𝑙𝑏, 𝑟𝑏, and 𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏. Let 𝛼
be the node the iterator points at. The position of the irst of the atmost two correspond-
ing entries in 𝑇 is stored by 𝑛𝑜𝑑𝑒. Analogously to the enhanced suf ix array iterators, 𝑙𝑏
and 𝑟𝑏 are the boundaries such that 𝗌𝗎𝖿𝗍𝖺𝖻[𝑙𝑏..𝑟𝑏) contains the start positions of suf ixes
that have a pre ix 𝛼 (our data structure) or the start positions of the remaining suf ixes
(original data structure). The right boundary of the parent node is stored in 𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏.
Algorithm4.3 shows how the iterator is initialized to point at the root node. As described
above, 3 bits are required to signal whether a node is a leaf (L), in unexpanded state (U)
or the last child (LC). We therefore use the 2 most signi icant bits of the irst entry in 𝑇
to store the last-child and leaf bits and store the unexpanded bit in the second entry. The
remaining bits in 𝑇 are used to store integers. In the following, we only describe the de-
tails of the functions D , R , and L for our lazy suf ix tree variant.
All other functions have been implemented as described in Sections 3.6.2 and 3.6.3.

Algorithm 4.6 shows how to move the iterator to the next sibling, which is only pos-
sible for all but the rightmost sibling, i.e. for 𝑟𝑏 ≠ 𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏. The siblings are alpha-
betically arranged in 𝑇 and in 𝗌𝗎𝖿𝗍𝖺𝖻. Hence, the sibling’s left boundary in 𝗌𝗎𝖿𝗍𝖺𝖻 equals
the right boundary of the current node. Depending on whether the current node is a
leaf or a branching node it occupies one or two entries in 𝑇. Consequently, 𝑛𝑜𝑑𝑒 must
be increased accordingly. Finally, the right boundary is updated and becomes 𝑙𝑏 + 1 if
the sibling is a leaf, 𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏 if the sibling is the last child, or the left boundary of the
following sibling which is stored in 𝑇[𝑛𝑜𝑑𝑒 + 2] otherwise.

How to move the iterator to the leftmost child of the current node is shown in Algo-
rithm 4.5. First, the leaf bit is veri ied to be cleared, otherwise the node would have no
child. A set unexpanded bit in the second entry signals that the node must be expanded
irst, which is done automatically. Now, the 𝑛𝑜𝑑𝑒 variable can be updated with the value
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Algorithm 4.3: R (𝑖𝑡𝑒𝑟)
input : lazy suffix tree iterator 𝑖𝑡𝑒𝑟

1 𝑖𝑡𝑒𝑟.𝑙𝑏 ← 0
2 𝑖𝑡𝑒𝑟.𝑟𝑏 ← |𝗌𝗎𝖿𝗍𝖺𝖻|
3 𝑖𝑡𝑒𝑟.𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏 ← |𝗌𝗎𝖿𝗍𝖺𝖻|
4 𝑖𝑡𝑒𝑟.𝑛𝑜𝑑𝑒 ← 0 // position in 𝑇
5 𝖫𝖢 ← 𝖴 ← 𝑤− 1 // 𝑤 is the number of
6 𝖫 ← 𝑤 − 2 // bits of an entry in 𝑇

Algorithm 4.4: R (𝑖𝑡𝑒𝑟)
input : lazy suffix tree iterator 𝑖𝑡𝑒𝑟

1 if 𝑇[𝑖𝑡𝑒𝑟.𝑛𝑜𝑑𝑒] & 2𝖫𝖢 ≠ 0 then
2 𝑖𝑡𝑒𝑟.𝑟𝑏 ← 𝑖𝑡𝑒𝑟.𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏
3 else if 𝑇[𝑖𝑡𝑒𝑟.𝑛𝑜𝑑𝑒] & 2𝖫 ≠ 0 then
4 𝑖𝑡𝑒𝑟.𝑟𝑏 ← 𝑖𝑡𝑒𝑟.𝑙𝑏 + 1
5 else
6 𝑖𝑡𝑒𝑟.𝑟𝑏 ← 𝑇[𝑖𝑡𝑒𝑟.𝑛𝑜𝑑𝑒 + 2] & (2𝖫 − 1)

Algorithm 4.5: D (𝑖𝑡𝑒𝑟)
input : lazy suffix tree iterator 𝑖𝑡𝑒𝑟
output : returns true on success

1 if 𝑇[𝑖𝑡𝑒𝑟.𝑛𝑜𝑑𝑒] & 2 ≠ 0 then
2 return false // leaf bit is set
3 if 𝑇[𝑖𝑡𝑒𝑟.𝑛𝑜𝑑𝑒 + 1] & 2𝖴 ≠ 0 then
4 N (𝑖𝑡𝑒𝑟.𝑛𝑜𝑑𝑒);
5 𝑖𝑡𝑒𝑟.𝑛𝑜𝑑𝑒 ← 𝑇[𝑖𝑡𝑒𝑟.𝑛𝑜𝑑𝑒 + 1] & (2𝖫 − 1)
6 𝑡𝑚𝑝 ← 𝑖𝑡𝑒𝑟.𝑟𝑏
7 R (𝑖𝑡𝑒𝑟)
8 𝑖𝑡𝑒𝑟.𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏 ← 𝑡𝑚𝑝
9 return true

Algorithm 4.6: R (𝑖𝑡𝑒𝑟)
input : lazy suffix tree iterator 𝑖𝑡𝑒𝑟
output : returns true on success

1 if 𝑖𝑡𝑒𝑟.𝑟𝑏 = 𝑖𝑡𝑒𝑟.𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏 then
2 return false
3 𝑖𝑡𝑒𝑟.𝑙𝑏 ← 𝑖𝑡𝑒𝑟.𝑟𝑏
4 if 𝑇[𝑖𝑡𝑒𝑟.𝑛𝑜𝑑𝑒] & 2𝖫 ≠ 0 then
5 𝑖𝑡𝑒𝑟.𝑛𝑜𝑑𝑒 ← 𝑖𝑡𝑒𝑟.𝑛𝑜𝑑𝑒 + 1
6 else
7 𝑖𝑡𝑒𝑟.𝑛𝑜𝑑𝑒 ← 𝑖𝑡𝑒𝑟.𝑛𝑜𝑑𝑒 + 2
8 R (𝑖𝑡𝑒𝑟)
9 return true

of the node’s second entry, which refers to the irst entry of the leftmost child node in 𝑇.
The right boundary 𝑟𝑏 is updated as in R and 𝑝𝑎𝑟𝑒𝑛𝑡𝑅𝑏 gets its former value.

In order to determine the length of the concatenation string (without sentinel) for
the current node, we implemented the function L as shown in Algorithm 4.7.
It irst examines whether the current node is a leaf and, if so, returns the length of the
suf ix. Otherwise, it either computes the length, as described in Section 4.2.2, if the node
is unexpanded, or returns the length stored at the irst child of the current node.

With the lazy suf ix tree adaptationof L , the concatenation string and its oc-
currences in the text can be determined by (Algorithm3.22) and O -

(Algorithm 3.24) as described in Section 3.6.3 on page 57.

Algorithm 4.7: L (𝑖𝑡𝑒𝑟)
input : lazy suffix tree iterator 𝑖𝑡𝑒𝑟
output : returns the length of the concatena on string (without sen nel)

1 if 𝑇[𝑖𝑡𝑒𝑟.𝑛𝑜𝑑𝑒] & 2𝖫 ≠ 0 then
2 return 𝑛 − 𝗌𝗎𝖿𝗍𝖺𝖻[𝑖𝑡𝑒𝑟.𝑙𝑏]
3 else if 𝑇[𝑖𝑡𝑒𝑟.𝑛𝑜𝑑𝑒 + 1] & 2𝖴 ≠ 0 then
4 return L (𝑖𝑡𝑒𝑟.𝑛𝑜𝑑𝑒)
5 else
6 return 𝑇 [𝑇[𝑖𝑡𝑒𝑟.𝑛𝑜𝑑𝑒 + 1]] & (2𝖫 − 1)
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4.3.2 Radix trees

The linear-time construction algorithms of suf ix array and lcp table described in the pre-
vious chapter save redundant character comparisons by reusing rank or lcp information
of neighboring suf ixes. This is only possible if all suf ixes are included in the compu-
tation. In contrast to this, the wotd algorithm does not exploit the fact that the strings
to sort are overlapping suf ixes of the same text. The suf ix tree is constructed by solely
comparing string characters. Thatmakes it possible not only to expandnodes in arbitrary
order but also to construct the radix tree of arbitrary, not necessarily all suf ixes.

For a given set of strings, a radix tree, also known as patricia trie [Morrison, 1968], is
a tree whose paths to the leaves represent the given strings. This is in contrast to a suf ix
tree which for a given strings represents all of their suf ixes. A suf ix tree therefore is a
patricia tree of all suf ixes.

De inition 4.1 (radix tree). The radix tree 𝑅𝑇(𝒮) of a set of strings 𝒮 = {𝑠 , … , 𝑠 } ⊆ Ψ∗

is a rooted tree whose edges are labeled with strings over Σ ∶= Ψ ∪ {$ , … , $ }, where $
is a sentinel character with $ ∉ Ψ and $ < … < $ < minΨ. The radix tree ful ills the
following properties:

1. Each internal node is branching, i.e. it has at least two children.

2. For branching nodes the labels of outgoing edges begin with distinct characters.

3. The radix tree has 𝑚 leaves numbered from 1 to 𝑚. The concatenation of edge
labels from the root to leaf 𝑖 yields the string 𝑠 $ .

To create the radix tree of strings 𝑠 , … , 𝑠 with the wotd algorithm, it suf ices to
change the way 𝗌𝗎𝖿𝗍𝖺𝖻 is initialized. Instead of storing all the suf ixes, we chose only the
largest suf ixes, i.e. the strings itself. Thus 𝗌𝗎𝖿𝗍𝖺𝖻must be a string of length𝑚 initialized
with the pairs:

𝗌𝗎𝖿𝗍𝖺𝖻 ∶= (1, 0)(2, 0)… (𝑚, 0). (4.5)
Because of the similarities between radix and suf ix trees, the remaining parts of the al-
gorithm can be kept unchanged and the radix tree can in the same way be accessed via
suf ix tree iterators.

4.3.3 Multiple exact pattern search

Given a text and a corresponding suf ix tree, a single pattern 𝑝 can be searched in the
text by descending the tree along the path of edges labeled with the pattern sequence. If
this is not possible, the text has no occurrence of 𝑝. Otherwise the descent ends in the
topmost node 𝑣 for which 𝑝 ⪯ concat(𝑣) holds. The occurrences of 𝑝 can be determined
by enumerating all leaves in the subtree of 𝑣.

Amultiple pattern search is typically conducted by either searching each pattern sep-
arately in the suf ix tree of the text [Weiner, 1973] or streaming the text against a keyword
treeof patterns [AhoandCorasick, 1975],which is anuncompacted radix treewhere edge
labels are single characters and inner nodes may be non-branching.
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Algorithm 4.8: M R (𝑖𝑡𝑒𝑟𝐴, 𝑖𝑡𝑒𝑟𝐵, 𝑖)
input : iterator 𝑖𝑡𝑒𝑟𝐴 of pa ern radix tree
input : iterator 𝑖𝑡𝑒𝑟𝐵 of text suffix tree
input : length 𝑖 of compared prefixes
output : all text occurrences of a pa ern

// Part I: Go down a path that is not branching in both trees
1 𝛼 ← (𝑖𝑡𝑒𝑟𝐴)
2 𝛽 ← (𝑖𝑡𝑒𝑟𝐵)
3 repeat
4 𝑗 ← min{|𝛼|, |𝛽|}
5 if 𝛼[𝑖..𝑗) ≠ 𝛽[𝑖..𝑗) then return
6 if 𝑗 < |𝛽| then // end of edge in radix tree?
7 if L (𝑖𝑡𝑒𝑟𝐴) then // patterns are leaves
8 print “pattern ” 𝛼 “ found at: ” O (𝑖𝑡𝑒𝑟𝐵)
9 return

10 if not D (𝑖𝑡𝑒𝑟𝐴, 𝛽[𝑗]) then return // follow the suffix tree path
11 𝛼 ← (𝑖𝑡𝑒𝑟𝐴)
12 else if 𝑗 < |𝛼| then // end of edge in suffix tree?
13 if not D (𝑖𝑡𝑒𝑟𝐵, 𝛼[𝑗]) then return // follow the radix tree path
14 𝛽 ← (𝑖𝑡𝑒𝑟𝐵)
15 𝑖 ← 𝑗
16 un l |𝛼| = |𝛽|

// Part II: Recursively go down paths branching in both trees
17 if not D (𝑖𝑡𝑒𝑟𝐴) then
18 print “pattern ” 𝛼 “ found at: ” O (𝑖𝑡𝑒𝑟𝐵)
19 return
20 while L (𝑖𝑡𝑒𝑟𝐴) = 𝑖 do
21 print “pattern ” (𝑖𝑡𝑒𝑟𝐴) “ found at: ” O (𝑖𝑡𝑒𝑟𝐵)
22 if not R (𝑖𝑡𝑒𝑟𝐴) then return
23 D (𝑖𝑡𝑒𝑟𝐵)
24 while L (𝑖𝑡𝑒𝑟𝐵) = 𝑖 do
25 if not R (𝑖𝑡𝑒𝑟𝐵) then return
26 while true do // find pairs with equal edge beginnings
27 𝛼 ← (𝑖𝑡𝑒𝑟𝐴)
28 𝛽 ← (𝑖𝑡𝑒𝑟𝐵)
29 if 𝛼[𝑖] < 𝛽[𝑖] then
30 if not R (𝑖𝑡𝑒𝑟𝐴) then return
31 else if 𝛼[𝑖] > 𝛽[𝑖] then
32 if not R (𝑖𝑡𝑒𝑟𝐵) then return
33 else
34 M R (𝑖𝑡𝑒𝑟𝐴, 𝑖𝑡𝑒𝑟𝐵, 𝑖) // recurse
35 if not ( R (𝑖𝑡𝑒𝑟𝐴) and R (𝑖𝑡𝑒𝑟𝐵)) then return
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In the following, we propose an algorithm that combines both approaches and top-
down traverses the suf ix tree of the text and the radix tree of the patterns in parallel.
It recursively searches common paths in both trees and whenever a radix tree leaf is
reached, a pattern was found whose occurrences are represented by the suf ixes below
the same path in the suf ix tree. Beginning in the root nodes of both trees, the labels of
edges to child nodes (𝛼, 𝛽) beginning with the same character are compared character-
wise. If the lengths of the concatenation strings differ, e.g. |𝛼| < |𝛽|, only the |𝛼|-pre ix
of 𝛽 can be compared and if successful the comparison continues with the pair (𝛼 , 𝛽),
where 𝛼 is the child of 𝛼 whose edge begins with 𝛽[|𝛼|]. The recursion stops if such an
edge does not exist or a mismatch occurs. Whenever the whole concatenation string of
a radix leaf 𝛼 is compared successfully, the pattern 𝛼 is found with occurrences given by
the suf ixes below 𝛽.

Algorithm 4.8 shows the pseudo-code of our approach. It is called with radix and
suf ix tree iterators 𝑖𝑡𝑒𝑟𝐴 and 𝑖𝑡𝑒𝑟𝐵 pointing at the root nodes and 𝑖 = 0 at the beginning.
In the irst part (lines 1–16) edge labels are compared,whereas the secondpart (lines 17–
35) searches for pairs of children with the same edge label beginnings. This is possible
by visiting each child atmost once as the children are sorted by the irst character of their
edge label. The while-loops in lines 20–22 and 24–25 handle sentinel edges which are
implemented to have an empty edge label instead of a $ character and appear left of all
non-sentinel edges.

4.3.4 Approximate pattern search

In Section 2.5 on page 19, we described a DP algorithm that sequentially scans a text of
length 𝑛 to search a pattern 𝑝 with up to 𝑘 errors in 𝒪(𝑘𝑛) time on average. In typical
applications, such as searching sequenced reads in a reference genome, the text is much
larger than the pattern and even the linear search time becomes prohibitive. In the fol-
lowing, we propose a simple recursive search algorithm that descends the suf ix tree of
the text and solves the in 𝒪 (2 ⋅ |Σ| ⋅ |𝑝|) time [Navarro and Baeza-Yates, 2000].

Searching a pattern with errors in a suf ix tree requires to tolerate mismatches while
descending along the path of pattern characters from the root towards the leaves. That
means whenever a pattern character is compared with an edge character, a mismatch
only reduces the remaining number of tolerated errors, see Algorithms 4.9 and 4.10 for
the corresponding pseudo-code. Branching nodes must be left via the edge beginning
with the current pattern character and, if there are errors remaining, also via all other
edges. Approximate matches have been found if the end of the pattern has been reached
without exceeding the number of tolerated errors.

The algorithmic idea of Algorithm 4.9 can be combined with the multiple pattern
search algorithm of the previous section to approximately search multiple patterns in
a text. We again use a radix tree of patterns and a suf ix tree of the text and traverse both
in parallel, starting at the root nodes. During the recursion, both concatenation strings
are compared character-wise while recording the number of mismatches. When the end
of one or both strings is reached, the search recurses into all children of the nodes or the
Cartesian product of children sets of both nodes. The recursion ends if moremismatches
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Algorithm 4.9: R (𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑖𝑡𝑒𝑟, 𝑖, 𝑒)
input : search pa ern, suffix tree iterator
input : length 𝑖 of compared prefixes of pa ern and concatena on string
input : remaining number of tolerated errors 𝑒
output : all text occurrences within tolerated Hamming distance

1 if 𝑒 = 0 then
2 if D (𝑖𝑡𝑒𝑟, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛[𝑖..|𝑝𝑎𝑡𝑡𝑒𝑟𝑛|)) then
3 print “pattern found at: ” O (𝑖𝑡𝑒𝑟)
4 else
5 while 𝑖 < |𝑝𝑎𝑡𝑡𝑒𝑟𝑛| and 𝑖 < L (𝑖𝑡𝑒𝑟) do
6 if 𝑝𝑎𝑡𝑡𝑒𝑟𝑛[𝑖] ≠ (𝑖𝑡𝑒𝑟)[𝑖] then // on mismatch …
7 if 𝑒 = 0 then // reduce the tolerated errors
8 return
9 else

10 𝑒 ← 𝑒 − 1
11 𝑖 ← 𝑖 + 1
12 if 𝑖 = |𝑝𝑎𝑡𝑡𝑒𝑟𝑛| then
13 print “pattern found at: ” O (𝑖𝑡𝑒𝑟)
14 else
15 if not D (𝑖𝑡𝑒𝑟) then return
16 repeat // at branching nodes
17 R (𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑖𝑡𝑒𝑟, 𝑖, 𝑒) // try all outgoing edges
18 un l not R (𝑖𝑡𝑒𝑟)

Algorithm 4.10: P S (𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑒𝑟𝑟𝑜𝑟𝑠)
input : pa ern and number of tolerated Hamming errors
output : all approximate matches

1 create iterator 𝑖𝑡𝑒𝑟 of the suffix tree of the text
2 R (𝑖𝑡𝑒𝑟)
3 R (𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑖𝑡𝑒𝑟, 0, 𝑒𝑟𝑟𝑜𝑟𝑠)

occurred than tolerated or a leaf in either tree is reached. If it is a leaf in the radix tree
a pattern has been found. Algorithm 4.11 shows the corresponding pseudo-code of this
algorithm. Themultiple exact pattern search algorithm of the previous section is used in
line 2 as an optimization if nomore errors are tolerated. The repeat-loops in lines 24 and
26 enumerate the children of the current nodes 𝛼 or 𝛽 depending on whether the end of
𝛼 or 𝛽 has been reached in the comparison.

To evaluate the practical running time of the multiple approximate search algorithm,
we searched 100,000 substrings in DNA, protein, and natural language texts of length
100 million characters while varying the allowed number of mismatches and the length
of the substrings. The results are shown in Figure 4.4.
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Figure 4.4: Running times required to search 100,000 patterns with a varying number of
tolerated errors in the irst 100M characters of a DNA, amino acid, and natural
language text. We compared the exact (Section 4.3.3) and approximate (Sec-
tion 4.3.4) recursive algorithms that search the radix tree of the patterns in the
suf ix tree (enhanced suf ix array) of the text. Patterns are random substrings
of varying length.

It can be seen that the number of errors has the greatest in luence on running time
which increases by an order of magnitude for every additional error. The search time on
large alphabets is higher than on small alphabets due to a greater out-degree of suf ix
tree nodes.

In [Siragusa et al., 2013a,b], wedemonstrate the applicability of the above-mentioned
exact and approximate multiple backtracking approaches to the read mapping problem.
In that work, we search exact or approximate occurrences of non-overlapping seeds of
the reads in the reference sequence and extend them up to a given error rate.

The approximate search can also be extended to edit distance. Instead of comparing
the edge labels of both trees character-wise, they need to be aligned recursively with a
modi ied DP algorithm [Needleman and Wunsch, 1970] that updates a DP matrix which
for a pair of tree nodes re lects the pairwise alignment of both concatenation strings. For
more details, we refer the reader to [Navarro and Baeza-Yates, 2000].
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Algorithm 4.11: M R (𝑖𝑡𝑒𝑟𝐴, 𝑖𝑡𝑒𝑟𝐵, 𝑖, 𝑒)
input : iterator 𝑖𝑡𝑒𝑟𝐴 of pa ern radix tree
input : iterator 𝑖𝑡𝑒𝑟𝐵 of text suffix tree
input : length 𝑖 of compared prefixes
input : remaining number of tolerated errors 𝑒
output : all text occurrences within tolerated Hamming distance

1 if 𝑒 = 0 then
2 M R (𝑖𝑡𝑒𝑟𝐴, 𝑖𝑡𝑒𝑟𝐵, 𝑖) // no errors left, use Algorithm 4.8
3 else
4 𝛼 ← (𝑖𝑡𝑒𝑟𝐴)
5 𝛽 ← (𝑖𝑡𝑒𝑟𝐵)
6 while 𝑖 < |𝛼| and 𝑖 < |𝛽| do
7 if 𝛼[𝑖] ≠ 𝛽[𝑖] then // on mismatch …
8 if 𝑒 = 0 then // reduce the tolerated errors
9 return

10 else
11 𝑒 ← 𝑒 − 1
12 𝑖 ← 𝑖 + 1
13 if 𝑖 = |𝛼| then
14 if L (𝑖𝑡𝑒𝑟𝐴) then
15 print “pattern ” 𝛼 “ found at: ” O (𝑖𝑡𝑒𝑟𝐵)
16 return
17 D (𝑖𝑡𝑒𝑟𝐴)
18 if 𝑖 = |𝛽| then
19 if not D (𝑖𝑡𝑒𝑟𝐵) then return
20 repeat
21 𝑖𝑡𝑒𝑟𝐵 ← 𝑖𝑡𝑒𝑟𝐵
22 repeat
23 M R (𝑖𝑡𝑒𝑟𝐴, 𝑖𝑡𝑒𝑟𝐵, 𝑖, 𝑒)
24 un l 𝑖 ≠ |𝛽| or not R (𝑖𝑡𝑒𝑟𝐵)
25 𝑖𝑡𝑒𝑟𝐵 ← 𝑖𝑡𝑒𝑟𝐵
26 un l 𝑖 ≠ |𝛼| or not R (𝑖𝑡𝑒𝑟𝐴)

Algorithm 4.12: M P S (𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠, 𝑒𝑟𝑟𝑜𝑟𝑠)
input : mul ple pa erns and number of tolerated Hamming errors
output : all approximate matches

1 create pa ern radix tree and tree iterator 𝑖𝑡𝑒𝑟𝐴
2 create iterator 𝑖𝑡𝑒𝑟𝐵 of the suffix tree of the text
3 R (𝑖𝑡𝑒𝑟𝐴), R (𝑖𝑡𝑒𝑟𝐵)
4 R (𝑖𝑡𝑒𝑟𝐴, 𝑖𝑡𝑒𝑟𝐵, 0, 𝑒𝑟𝑟𝑜𝑟𝑠)
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5 𝑞-gram Index

The two indices described in the previous chapters can be seen as alternative implemen-
tations of a suf ix tree. However, many applications do not require the whole suf ix tree
functionality and instead only need to search patterns up to a certain length. For such
case, a 𝑞-gram index may be a much faster alternative. We irst de ine the term 𝑞-gram
and how to construct and access a 𝑞-gram index. Finally, we explain how to use 𝑞-gram
indices in 𝑞-gram counting ilters to accelerate approximate string matching. We will
later use one of the ilters in our read mapper proposed in Chapter 6.

5.1 De initions

A 𝑞-gram is a sequence of 𝑞 characters over an alphabet Σ. The substring 𝑠[𝑖..𝑖 + 𝑞) of
a given string 𝑠 is called the ungapped or contiguous 𝑞-gram at position 𝑖 in 𝑠. A gener-
alization of contiguous 𝑞-grams are gapped 𝑞-grams [Burkhardt and Kärkkäinen, 2003]
which are (non-contiguous) subsequences of 𝑠 with length 𝑞 and a certain shape.

De inition 5.1 (shape). A shape 𝑄 is a set of non-negative integers {𝑖 , 𝑖 , … , 𝑖 }with 0 =
𝑖 < 𝑖 < … < 𝑖 . The span of 𝑄 is span(𝑄) = 𝑖 + 1 and the weight of 𝑄 is the set
cardinality |𝑄| = 𝑞.

The de inition above includes ungapped 𝑞-grams as a special case where 𝑄 = [0..𝑞).
Considering a given shape 𝑄 = {𝑖 , … , 𝑖 } the subsequence 𝑠[𝑖 + 𝑖 ]𝑠[𝑖 + 𝑖 ]… 𝑠[𝑖 + 𝑖 ] is
called (gapped) 𝑞-gram at position 𝑖 in 𝑠. In the following, we only consider 𝑞-grams that
are true subsequences, i.e. 0 ≤ 𝑖 ≤ 𝑛−span(𝑄). As a shortcut we denote the shape𝑄 by a
string over {-, #} of length span(𝑄)where the character # only occurs at positions 𝑝 ∈ 𝑄,
e.g. the shape 𝑄 = {0, 1, 4, 6} corresponds to ##--#-#. For example, the 3-grams of shape
##-# in the string gttca are gtc and tta.

Consider the function rank ∶ Σ → [0..|Σ|) that maps each character to its rank in
the alphabet Σ, i.e. for each 𝑎, 𝑏 ∈ Σ holds 𝑎 < 𝑏 ⇒ rank(𝑎) < rank(𝑏). We now want to
extend rank to arbitrary 𝑞-grams and de ine the 𝑞-gram code to be the rank of the 𝑞-gram
𝑡 in the set of all possible 𝑞-grams Σ in lexicographical order. The following function
code ∶ Σ → [0..|Σ| ) computes the 𝑞-gram code value:

code(𝑡) = rank(𝑡[𝑖]) ⋅ |Σ| . (5.1)
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Figure 5.1: Ungapped 2-gram index of ttatctctta. To look up all text occurrences of the 2-
gram ta, we irst determine its code value code(ta) = 12. The directory table
𝖽𝗂𝗋 stores at position12and13begin and endposition of the substring𝗉𝗈𝗌[3..5).
This substring contains 1 and 8, the begin positions of all occurrences in the text.

5.2 The direct addressing 𝑞-gram index

A (direct addressing) 𝑞-gram index is a data structure that permits looking up all text
occurrences of a 𝑞-gram in a time linear to the number of occurrences.

For a string 𝑠 of length 𝑛, the direct addressing 𝑞-gram index consists of two tables,
the position table 𝗉𝗈𝗌 and the directory table 𝖽𝗂𝗋. The position table stores all positions
of gapped 𝑞-grams ordered by increasing code values.

De inition 5.2 (position table). Given a shape 𝑄 = {𝑖 , … , 𝑖 } and a string 𝑠 of length
𝑛, the position table 𝗉𝗈𝗌 of 𝑠 is a string of length 𝑛 − span(𝑄) + 1 over the alphabet
[0..𝑛 − span(𝑄)]. For every 𝑖, 𝑗 ∈ [0..𝑛 − span(𝑄)] holds:

𝑖 < 𝑗 ⇒ code(𝑠[𝗉𝗈𝗌[𝑖]+𝑖 ]… 𝑠[𝗉𝗈𝗌[𝑖]+𝑖 ]) ≤ code(𝑠[𝗉𝗈𝗌[𝑗]+𝑖 ]… 𝑠[𝗉𝗈𝗌[𝑗]+𝑖 ]) . (5.2)

As a consequence, the occurrences of each 𝑞-gram are stored in a contiguous interval
in 𝗉𝗈𝗌; this interval is called 𝑞-gram bucket. The directory table stores for each 𝑞-gram
the start of its bucket which equals the number of occurrences of 𝑞-grams having a less
code value.

De inition 5.3 (directory table). Given a shape 𝑄 = {𝑖 , … , 𝑖 } and a string 𝑠 of length 𝑛,
the directory table 𝖽𝗂𝗋 of 𝑠 is a string of length |Σ| +1 over the alphabet [0..𝑛−span(𝑄)].
For every 𝑖 ∈ [0..|Σ| ] holds:

𝖽𝗂𝗋[𝑖] = 𝑗 ∈ [0..𝑛 − span(𝑄)] code(𝑠[𝑗 + 𝑖 ]… 𝑠[𝑗 + 𝑖 ]) < 𝑖 . (5.3)

To determine the occurrences of a 𝑞-gram 𝑡 we irst need to compute the code 𝑐 ∶=
code(𝑡) in 𝒪(𝑞) time. By de inition,𝑚 = 𝖽𝗂𝗋[𝑐 + 1] − 𝖽𝗂𝗋[𝑐] equals the number of occur-
rences and 𝗉𝗈𝗌[𝖽𝗂𝗋[𝑐]..𝖽𝗂𝗋[𝑐 + 1]) is the interval of occurrences. Thus, the𝑚 occurrences
of any 𝑞-gram can be retrieved in optimal 𝒪(𝑞 +𝑚) time.

5.3 Construction

The position table of a 𝑞-gram index for ungapped 𝑞-grams can be considered as a suf ix
array that is partially sorted. It contains all but the last 𝑞 − 1 suf ixes of the text sorted
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by the irst 𝑞 characters. Hence, the position table can be constructed from a suf ix ar-
ray as it is proposed by Burkhardt et al. [1999]. Recording the lowest suf ix ranks of
runs of suf ixes beginning with the same ungapped 𝑞-gram yields the directory table in
a sequential scan over the position table. However, in practice constructing a suf ix ar-
ray is much more expensive in terms of running time and memory consumption than
constructing only a partially sorted suf ix array or constructing the 𝑞-gram index using
non-comparison based sorting algorithms, e.g. counting sort or radix sort [Cormen et al.,
2001].

5.3.1 Counting sort algorithm

In SeqAn we implemented an adapted counting sort to construct the 𝑞-gram index in
𝒪(𝑛 + |Σ| ) time and memory. Its pseudo-code is given in Algorithm 5.1. Note that our
implementation uses the (𝑐+1)-th bucket for counting (line 6) and increasing the target
position (line 14) of 𝑞-grams with code value 𝑐. In this way, at the end of the algorithm
𝖽𝗂𝗋[𝑐 + 1] contains the end position of the 𝑐-th bucket which equals the desired begin
position of the (𝑐 + 1)-th bucket.

Algorithm 5.1: QG I (𝑠, 𝑄)
input : text string 𝑠 over the alphabet Σ, shape 𝑄
output : posi on table 𝗉𝗈𝗌, directory table 𝖽𝗂𝗋

1 Let {𝑖 , … , 𝑖 } ← 𝑄 such that 𝑖 < … < 𝑖
2 for 𝑗 ← 0 to |Σ| do // initialization
3 𝖽𝗂𝗋[𝑗] ← 0
4 for 𝑗 ← 0 to |𝑠| − span(𝑄) do // count 𝑞-grams
5 𝑐 ← code(𝑠[𝑗 + 𝑖 ]𝑠[𝑗 + 𝑖 ]… 𝑠[𝑗 + 𝑖 ])
6 𝖽𝗂𝗋[𝑐 + 1] ← 𝖽𝗂𝗋[𝑐 + 1] + 1
7 𝑠𝑢𝑚 ← max(0, |𝑠| − span(𝑄) + 1)
8 for 𝑗 ← |Σ| downto 0 do // cumulative sum
9 𝑠𝑢𝑚 ← 𝑠𝑢𝑚−𝖽𝗂𝗋[𝑗]

10 𝖽𝗂𝗋[𝑗] ← 𝑠𝑢𝑚
11 for 𝑗 ← 0 to |𝑠| − span(𝑄) do // fill position table
12 𝑐 ← code(𝑠[𝑗 + 𝑖 ]𝑠[𝑗 + 𝑖 ]… 𝑠[𝑗 + 𝑖 ])
13 𝗉𝗈𝗌[𝖽𝗂𝗋[𝑐 + 1]] ← 𝑗
14 𝖽𝗂𝗋[𝑐 + 1] ← 𝖽𝗂𝗋[𝑐 + 1] + 1
15 return (𝗉𝗈𝗌, 𝖽𝗂𝗋)

5.3.2 Extension to multiple sequences

Analogously to the de inition of the generalized suf ix array, the 𝑞-gram index of multiple
sequences 𝑠 , 𝑠 , … , 𝑠 differs from the single sequence index only in that 𝗉𝗈𝗌 contains
position pairs. The pair (𝑖, 𝑗) with 𝑖 ∈ [1..𝑚] and 𝑗 ∈ 0..|𝑠 | − span(𝑄) represents a
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gapped 𝑞-gram at position 𝑗 in 𝑠 . The staightforward extension of Algorithm 5.1 to mul-
tiple sequences is shown inAlgorithm5.2. Insteadof scanning a single sequence, it counts
𝑞-grams and ills their begin positions into buckets in consecutive scans of the sequences.

Algorithm 5.2: QG I _M (𝑠 , … , 𝑠 , 𝑄)
input : mul ple text strings 𝑠 , … , 𝑠 over the alphabet Σ, shape 𝑄
output : posi on table 𝗉𝗈𝗌, directory table 𝖽𝗂𝗋

1 Let {𝑖 , … , 𝑖 } ← 𝑄 such that 𝑖 < … < 𝑖
2 for 𝑗 ← 0 to |Σ| do // initialization
3 𝖽𝗂𝗋[𝑗] ← 0
4 for 𝑖 ← 1 to𝑚 do // count 𝑞-grams
5 for 𝑗 ← 0 to |𝑠 | − span(𝑄) do
6 𝑐 ← code(𝑠 [𝑗 + 𝑖 ]𝑠 [𝑗 + 𝑖 ]… 𝑠 [𝑗 + 𝑖 ])
7 𝖽𝗂𝗋[𝑐 + 1] ← 𝖽𝗂𝗋[𝑐 + 1] + 1
8 𝑠𝑢𝑚 ← ∑ max(0, |𝑠 | − span(𝑄) + 1)
9 for 𝑗 ← |Σ| downto 0 do // cumulative sum

10 𝑠𝑢𝑚 ← 𝑠𝑢𝑚−𝖽𝗂𝗋[𝑗]
11 𝖽𝗂𝗋[𝑗] ← 𝑠𝑢𝑚
12 for 𝑖 ← 1 to𝑚 do // fill position table
13 for 𝑗 ← 0 to |𝑠 | − span(𝑄) do
14 𝑐 ← code(𝑠 [𝑗 + 𝑖 ]𝑠 [𝑗 + 𝑖 ]… 𝑠 [𝑗 + 𝑖 ])
15 𝗉𝗈𝗌[𝖽𝗂𝗋[𝑐 + 1]] ← (𝑖, 𝑗)
16 𝖽𝗂𝗋[𝑐 + 1] ← 𝖽𝗂𝗋[𝑐 + 1] + 1
17 return (𝗉𝗈𝗌, 𝖽𝗂𝗋)

5.3.3 Adaptation to external memory

For large texts we provide an external memory variant of Algorithm 5.1. Algorithm 5.3
irst scans the text and externally sorts pairs of code values and positions of all overlap-
ping 𝑞-grams by increasing code values. The corresponding positions of the sorted array
𝐴 are used to sequentially ill 𝗉𝗈𝗌. The begin position of each bucket 𝑐 is determined dur-
ing a scan over 𝐴 and sequentially written to 𝖽𝗂𝗋 while counting the number of 𝑞-grams
with code values less than 𝑐.

5.4 The open addressing 𝑞-gram index

As described above, the directory table of the direct addressing 𝑞-gram index is a string
of length |Σ| + 1 and the whole index consumes Θ(|Σ| + 𝑛)memory. Thus, for growing
values of𝑞 the availablememory rapidly becomes a limiting factor, e.g. for aDNAalphabet
with |Σ| = 4, 𝑞 = 16, and 4 byte per entry the directory requires 16GB of memory. For
alphabets with |Σ| = 256 the same amount of memory is required for 𝑞 = 4. In fact,
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Algorithm 5.3: QG I _E M (𝑠, 𝑄)
input : text string 𝑠 over the alphabet Σ, shape 𝑄
output : posi on table 𝗉𝗈𝗌, directory table 𝖽𝗂𝗋

// sort 𝑞-grams and store positions in 𝗉𝗈𝗌
1 𝐴 ← code(𝑠[𝑗 + 𝑖 ]𝑠[𝑗 + 𝑖 ]… 𝑠[𝑗 + 𝑖 ]), 𝑗 𝑗 ∈ [0..|𝑠| − span(𝑄)]
2 sort 𝐴 by the first component
3 𝗉𝗈𝗌 ← ⟨last component of 𝑎 ∶ 𝑎 ∈ 𝐴⟩

// scan 𝗉𝗈𝗌 for buckets and store their begin positions in 𝖽𝗂𝗋
4 𝖽𝗂𝗋 ← ⟨⟩
5 𝑏 ← 0
6 𝑐 ← −1
7 foreach (𝑐, 𝑗) ∈ 𝐴 do
8 if 𝑐 < 𝑐 then
9 for 𝑖 ← 𝑐 + 1 to 𝑐 do

10 append 𝑏 to 𝖽𝗂𝗋
11 𝑐 ← 𝑐
12 𝑏 ← 𝑏 + 1
13 for 𝑖 ← 𝑐 + 1 to |Σ| do
14 append 𝑏 to 𝖽𝗂𝗋

the directory is only required to retrieve the position table interval of every non-empty
𝑞-gram bucket and to determine whether a bucket is empty. However, the number of
non-empty buckets is not only bound by the number of possible different 𝑞-grams |Σ|
but also by the number of overlapping 𝑞-grams 𝑛 − span(𝑄) + 1.

In the following, we propose the open addressing 𝑞-gram index with a memory con-
sumption of 𝒪(𝛼 𝑛), for a ixed load factor 𝛼 with 0 < 𝛼 ≤ 1. Instead of addressing
entries in 𝖽𝗂𝗋 directly by 𝑞-gram code values, it uses an open addressing scheme [Cor-
men et al., 2001] to map the 𝑞-gram codes (keys) of non-empty buckets to entries in 𝖽𝗂𝗋
(values). The load factor determines the maximal ratio between non-empty buckets and
available entries of the 𝑞-gram directory and provides a trade-off between number of
collisions and memory consumption.

In addition to the directory table 𝖽𝗂𝗋, the open addressing index uses a string 𝐶 of
length ⌊𝛼 𝑛⌋ over the alphabet [−1..|Σ| ), the so-called code table. A pseudo-random
hash function 𝗁𝖺𝗌𝗁 ∶ [0..|Σ| ) → [0..⌊𝛼 𝑛⌋)maps a 𝑞-gram code 𝑐 to an entry in 𝖽𝗂𝗋. Our
index implementation can be usedwith arbitrary hash functions and by default maps the
𝑞-gram code 𝑐 to its CRC32 checksum using the SSE4.2 CPU instruction _mm_crc32_u64
[Intel, 2011].

As 𝗁𝖺𝗌𝗁maymap different values of 𝑐 to the same position 𝑖 (collision), 𝐶[𝑖] stores the
code that currently occupies the entry 𝖽𝗂𝗋[𝑖] or equals−1 if empty. Whenever a collision
with a different code occurs, the entries 𝐶 [(𝑖 + 𝑗) mod ⌊𝛼 𝑛⌋] for 𝑗 = 1 , 2 , 3 , … are
probed for being empty or containing the correct code. Compared to linear probing this
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Algorithm 5.4: G B (𝑐, 𝐶)
input : code value 𝑐, code table 𝐶
output : posi on of the corresponding

entry in 𝖽𝗂𝗋
1 if |𝐶| = 0 then return c
2 𝑖 ← 𝗁𝖺𝗌𝗁(𝑐) mod |𝐶|
3 𝑑 ← 0 // search with quadratic probing
4 while 𝐶[𝑖] ≠ 𝑐 and 𝐶[𝑖] ≠ −1 do
5 𝑖 ← (𝑖 + 2𝑑 + 1) mod |𝐶|
6 𝑑 ← 𝑑 + 1
7 return 𝑖

Algorithm 5.5: R B (𝑐, 𝐶)
input : code value 𝑐, code table 𝐶
output : posi on of the corresponding

entry in 𝖽𝗂𝗋
1 if |𝐶| = 0 then return c
2 𝑖 ← G B (𝑐, 𝐶)

// occupy bucket and return its position
3 𝐶[𝑖] ← 𝑐
4 return 𝑖

quadratic probe sequence prevents primary clustering of buckets [Cormen et al., 2001].
The buckets in 𝗉𝗈𝗌 need to be arranged in the same order as their code values appear in
𝐶. In this way, 𝖽𝗂𝗋[𝑖] stores the begin and 𝖽𝗂𝗋[𝑖 + 1] the end position of the bucket in 𝗉𝗈𝗌.

Algorithm 5.4 shows how to retrieve for a 𝑞-gram code 𝑐 the position 𝑖 of the entry in
𝖽𝗂𝗋 that stores the corresponding bucket begin position. Algorithm 5.5 returns the same
position 𝑖 or occupies a new entry if it not yet exists. The irst lines of both algorithms
optionally switch to the behavior of the direct addressing index if it is more memory ef-
icient (|Σ| < 2𝛼 𝑛). In that case 𝐶 is empty as it is not needed. To construct the open
addressing index wemodi ied Algorithm 5.1 (and 5.2) by inserting 𝑐 ← R B (𝑐, 𝐶) be-
tween lines 5 and 6 (6 and 7) and 𝑐 ← G B (𝑐, 𝐶) between lines 12 and 13 (14 and 15).
Wemade the samemodi ication to Algorithm 5.6 by inserting 𝑐 ← G B (𝑐, 𝐶) between
lines 1 and 2. Algorithm 5.3 can be modi ied as well if 𝐶 and 𝖽𝗂𝗋 are stored in internal
memory, otherwise an external hash table [Jensen and Pagh, 2008] would be preferable.

We compared the running time and memory required to construct direct addressing
and open addressing 𝑞-gram indices of different DNA texts for different values of 𝑞. The
results are shown in Figure 5.2. The construction times and memory consumptions are
identical for 𝑞 ≤ 8 as the open addressing scheme is disabled since it would consume
more memory than the direct addressing index. For 𝑞 = 14, 15 the switch occurs at text
lengths around 50Mb or 200Mb. It can be seen that the open addressing index is at least
half as fast as the direct addressing index and for 𝑞 = 16 on texts smaller than 100Mb
even faster.

5.5 Applications

The most common and simplest application of 𝑞-gram indices is to search the occur-
rences of a 𝑞-gram in a text. For a given 𝑞-gram 𝑡 with code value 𝑐 = code(𝑡), the
begin positions of all text occurrences are stored in a bucket 𝗉𝗈𝗌[𝑙..𝑟) with 𝑙 = 𝖽𝗂𝗋[𝑐]
and 𝑟 = 𝖽𝗂𝗋[𝑐 + 1] for the direct addressing index or 𝑙 = 𝖽𝗂𝗋[G B (𝑐, 𝐶)] and 𝑟 =
𝖽𝗂𝗋[G B (𝑐, 𝐶)+1] for the open addressing index. Figure 5.1 shows how to look up the
occurrences of the ungapped 2-gram ta in a direct addressing index of the text ttatctctta
over the alphabet Σ = {a, c, g, t}. The general pseudo-code for searching a direct address-
ing index is given in Algorithm 5.6.
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Figure 5.2: Construction time (top) and memory consumption (bottom) of direct address-
ing and open addressing 𝑞-gram indices for different values of 𝑞 and load fac-
tors 𝛼. We used the DNA datasets described in Table 3.6 on page 51.
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The 𝑞-gram index of multiple sequences can and has been successfully used to ef-
iciently determine the number of common 𝑞-gram between pairs of sequences, e.g. in
[Göke et al., 2012] to replace costly pairwise alignments by 𝑞-gram based similaritymea-
sures or to build a guide-tree in a progressive sequence alignment as we proposed in
[Rausch et al., 2008].

In the following, we introduce two ilters based on 𝑞-gram counting that accelerate
local alignment algorithms by skipping parts of the text that contain no local matches. In
Section 6.4.1 we propose a variant of the second ilter that we specialized for the approx-
imate matching problem and utilize in our read mapping tool RazerS.

Algorithm 5.6: O (𝑡, 𝗉𝗈𝗌, 𝖽𝗂𝗋)
input : 𝑞-gram 𝑡, posi on table 𝗉𝗈𝗌, directory table 𝖽𝗂𝗋
output : text occurrences of 𝑡

1 𝑐 ← code(𝑡)
2 𝑜𝑐𝑐𝑠 ← ⟨⟩
3 for 𝑗 ← 𝖽𝗂𝗋[𝑐] to 𝖽𝗂𝗋[𝑐 + 1] − 1 do
4 append 𝗉𝗈𝗌[𝑗] to 𝑜𝑐𝑐𝑠
5 return 𝑜𝑐𝑐𝑠

5.5.1 𝑞-gram counting ilters for approximate matching

In Chapter 2.5 we introduced the approximate string matching problem which can be
solved with the proposed dynamic programming algorithms or the recursive suf ix tree
search described in Chapter 4.3.4. However, the bilinear running time of the DP algo-
rithm makes it infeasible to millions of patterns and texts of billions of characters. The
recursive suf ix tree search with a running time exponential in the number of errors is
applicable to only a small numbers of errors, e.g. 1 or 2. A remedy to this situation are il-
terswhich make it possible to reduce the search space and thus the overall running time
of approximate matching algorithms by orders of magnitude.

A lossless ilter is an algorithm that speeds up the pattern search by discarding large
parts of the text that are guaranteed not to contain an approximatematch. The remaining
parts, called candidate regions, are then examined using an approximate pattern match-
ing algorithm. Commonly used ilters are either seed based or based on 𝑞-gram counting.
Single ormultiple seed based ilters de ine candidate regions to share a single ormultiple
gapped 𝑞-grams with the pattern. Filters based on 𝑞-gram counting, which we consider
in the following, require a candidate region to have a certain number of 𝑞-grams in com-
mon with the pattern. Fundamental to most of the 𝑞-gram counting ilters is the 𝑞-gram
lemmawhich determines this number such that the ilter is lossless:

Lemma5.1 (𝑞-gram lemma [Owolabi andMcGregor, 1988; Jokinen andUkkonen, 1991]).
Let 𝑎, 𝑏 ∈ Σ be two strings with Hamming distance 𝑘, then 𝑎 and 𝑏 share at least 𝑡 =
𝑛 − span(𝑄) + 1 − 𝑘 ⋅ 𝑞 common 𝑞-grams.
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Proof. First assume 𝑘 = 0, then 𝑎 and 𝑏 are equal and have 𝑡 = 𝑛− span(𝑄)+1 𝑞-grams
in common. As all 𝑞-grams have the same shape and each 𝑞-grams covers 𝑞 characters,
every introduced mismatch is covered by at most 𝑞 formerly common 𝑞-grams. Hence,
overall not more than 𝑘𝑞 𝑞-grams can be destroyed by 𝑘 errors and at least 𝑡 = 𝑛 −
span(𝑄) + 1 − 𝑘 ⋅ 𝑞 common 𝑞-grams remain.

The threshold 𝑡 is the minimal number of 𝑞-grams that two strings within Hamming
distance 𝑘 share. This lemma can also be applied to edit distance if 𝑛 is the length of the
larger sequence. The term common 𝑞-gramwas intentionally not de ined precisely as the
lemma holds for different alternative de initions [Burkhardt and Kärkkäinen, 2003]. One
way is to count the number of overlapping 𝑞-grams of one string that occurs at least once
in the other. The 𝑞-gram lemma is strict for ungapped shapes and the worst case can be
constructed by placing errors such that each error destroys 𝑞 q-grams, e.g. at positions
𝑞 − 1, 2𝑞 − 1, 3𝑞 − 1,…, see Figures 5.3a and 5.3b. For gapped shapes the lemma gives a
lower bound for the exact threshold and a strict closed formula has not been found yet.
However, the exact threshold can be computed using dynamic programming as proposed
by Burkhardt and Kärkkäinen [2003].

Although the threshold given by the lemma is lower for gapped shapes compared to
ungapped shapes with the same weight, gapped shapes may yield a higher exact thresh-
old. Even more, gapped shapes may increase the iltration speci icity due to a higher
minimal coverage [Burkhardt and Kärkkäinen, 2003]. For a shape 𝑄 and a threshold 𝑡
the minimal coverage is the minimal number of characters that must match to observe 𝑡
common 𝑞-grams. The higher the minimal coverage, the less likely random hits are and
themore speci ic the ilter is. However, most of the advantages of gapped shapes are lim-
ited to Hamming distance. Under edit distance gapped shapes have the same threshold
as ungapped shapeswith the same span. As 𝑞-gramgaps are only immune tomismatches,
additional countingmethods are required to also tolerate indels [Burkhardt andKärkkäi-
nen, 2002].

Example 5.1. Considering strings of length 𝑛 = 11with Hamming distance 𝑘 = 3. The 𝑞-
gram lemma for ungapped 3-grams gives an exact threshold of 𝑡 = 11−3+1−3 ⋅ 3 = 0,
see Figure 5.3b. For the gapped shape ##-# a lower bound for the threshold would be
𝑡 = −1. However, the exact threshold 𝑡 = 1 is even higher as in every mismatch pattern
at least one gapped 3-gram remains uncovered by mismatches. A worst case is shown in
Figure 5.3c.

QUASAR

The irst ilter algorithm that utilizes the 𝑞-gram lemma was QUASAR [Burkhardt et al.,
1999]. It searches a pattern of length 𝑚 with at most 𝑘 edit errors in a text and uses
the observation that the maximal length of a match is 𝑚 + 𝑘. Considering the dot plot
between pattern and text, the common 𝑞-grams between pattern and match must reside
in a𝑚×(𝑚+𝑘) rectangle. In order to detect𝑚×(𝑚+𝑘) rectangleswith a suf iciently high
number of common 𝑞-grams, QUASAR virtually partitions the text into blocks of length
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.... 0.. 1.. 2.. 3.. 4.. 5.. 6.. 7.. 8.. 9.. 10

(a) 2-errors worst case

.... 0.. 1.. 2.. 3.. 4.. 5.. 6.. 7.. 8.. 9.. 10

(b) 3-errors worst case

.... 0.. 1.. 2.. 3.. 4.. 5.. 6.. 7.. 8.. 9.. 10

(c) 3-errors worst case (gapped)

Figure 5.3: Mismatch patterns of length 11. (a) and (b) show worst cases of the 𝑞-gram
lemma where a maximal number of ungapped 3-grams is destroyed. For 3 mis-
matches, a gapped shape (c) should be preferred as it yields a higher threshold.

2𝑏, with 𝑏 ≥ 𝑚+𝑘, and additionally uses a second partitioning where blocks are shifted
by 𝑏 (see Figure 5.4a). In this way, blocks overlap by at least𝑚 + 𝑘 characters and each
match completely resides in at least one block. A 𝑞-gram index¹ built over the text is used
to look up the text occurrences of pattern 𝑞-grams. Each 𝑞-gram of the pattern increases
the counters of blocks that contain at least one occurrence. At the end, only blockswhose
counters are greater or equal 𝑡 are output as candidates for containing a pattern match
and are further examined using an approximate string matching algorithm. QUASAR can
also be used to ind local similarities by sliding a window of length 𝑤 over the pattern
while updating the 𝑞-gram counters.

SWIFT

A direct successor of QUASAR is SWIFT [Rasmussen et al., 2006], a ilter for local align-
ments. In contrast to QUASAR which uses an absolute error threshold 𝑘 and a ixed win-
dow length, it permits to specify an error rate 𝜀 and a minimum match length 𝑛 which
is more appropriate since the length of a local alignment is not known in advance. An
𝜀-match of a pattern 𝑝 is a match of a substring 𝑝 ≺ 𝑝with at most ⌊𝜀|𝑝 |⌋ errors. SWIFT
has a higher iltration speci icity, as it counts common 𝑞-grams in partial dot plot paral-
lelograms instead of rectangles, and guarantees to detect an overlapping parallelogram
for each 𝜀-match.

We specialized the original algorithm to ind approximate (semi-global) matches in-
stead of local matches and count common 𝑞-grams in full, not partial parallelograms (see
Figure 5.4b). A more detailed description of our variant can be found in Section 6.4.1.

In the following, we describe the fundamental idea of the original SWIFT algorithm.
Considering the dot plot between pattern and text, every common 𝑞-gram, called 𝑞-hit,
corresponds to a diagonal stretch of matches with length 𝑞. Obviously, all 𝑞-hits of an
alignment with 𝑘 errors can cover at most 𝑘+1 different diagonals in the dot plot. Using
the 𝑞-gram lemma, Rasmussen et al. proved that for any given 𝜀 and 𝑛 there exist𝑤, 𝑞, 𝑒

¹ QUASAR actually uses a suf ix array. However, a 𝑞-gram index can be constructed much faster and is
also applicable to gapped shapes.
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𝑡
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(b) (semi-global) SWIFT

Figure 5.4: Filters based on 𝑞-gram counting. (a) shows how QUASAR partitions the dot
plot into rectangles such that each match its into at least one of them. Our
semi-global variant of SWIFT (b) counts 𝑞-grams in overlapping parallelo-
grams of less area such that the trace of each match is covered by at least one.
The example shows, that SWIFT is a more speci ic ilter and for the true match
reports a much smaller candidate region (blue area) compared to QUASAR.

Rectangles and parallelograms are intentionally rotated to visualize their overlap.

and 𝜏 such that every 𝜀-match contains 𝜏 𝑞-hits that reside in a𝑤×𝑒 parallelogram. A𝑤×𝑒
parallelogram is the intersection of 𝑒 + 1 consecutive diagonals and 𝑤 + 1 consecutive
columns in the dot plot.

Todetect𝑤×𝑒 parallelogramswith 𝜏 𝑞-hits in the dot plot, the SWIFTalgorithmslides
from left to right over the pattern and searches each pattern 𝑞-gram in a 𝑞-gram index
of the text. Found 𝑞-hits are counted in bins of Δ + 𝑒 consecutive diagonals whose irst
diagonal is a multiple of Δ. As adjacent bins share 𝑒 diagonals, every𝑤×𝑒 parallelogram
is contained in one bin. Every bin contains a 𝑞-hit counter and represents the parallelo-
gram with columns bounded by the leftmost and rightmost contained 𝑞-hit. If a 𝑞-hit is
found that is at most𝑤− 𝑞 columns apart from the rightmost 𝑞-hit, the parallelogram is
extended. Otherwise it is closed and a newone starting at the found 𝑞-hit is opened as the
two hits cannot be part of the same 𝑤 × 𝑒 parallelogram. A closed parallelogram whose
bin counter has reached 𝜏 is output as a SWIFT hit and needs to be veri ied whether it
contains a part of an 𝜀-match.

The 𝜀-match veri ication is a non-trivial part and not covered by the work of Ras-
mussen et al. However, we proposed an algorithm that uses SWIFT for iltration and a
new veri ication strategy to detect and report all 𝜀-matches in [Kehr et al., 2011]. To ver-
ify SWIFT hits, we irst examine the candidate parallelogram as to whether it contains an
𝜀-match using a local alignment algorithm with an appropriate scoring scheme. If it con-
tains an 𝜀-match, we extend the alignment, if possible, using an X-drop strategy [Zhang
et al., 1998] and report amaximal 𝜀-matchwithout X-drop. In a last phasewe remove du-
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plicate or overlapping matches which are the result of 𝜀-matches that contain multiple
shorter 𝜀-submatches. For more details, we refer the reader to [Kehr et al., 2011].



Part III

APPLICATIONS





C

6 Read Mapping

In this chapter, we propose RazerS [Weese et al., 2009, 2012], a versatile read mapper
that allows to align millions of sequenced reads of arbitrary length under Hamming or
edit distance. Our algorithm supports shared-memory parallelism and utilizes the 𝑞-
gram index and 𝑞-gram based ilters as proposed in Chapter 5, and a fast bit-parallel DP
algorithm for approximate string search. We irst describe the existing read mapping
tools and their characteristics. Thereafter, we state a formal de inition of the read map-
ping problem to solve and introduce the novel algorithmic ideas of RazerS. As such, we
present an automatic parametrization approach that, given a user-de ined loss rate, guar-
antees not to lose more reads than speci ied. This enables the user to run our tool either
lossless or with a controlled loss rate at higher speeds and provides a seamless tradeoff
between sensitivity and running time. At the end of this chapter, we extensively evaluate
our approach on different real-world datasets in comparison with other state-of-the-art
read mappers.

6.1 Related work

In the last years a variety of toolswas designed anddeveloped speci ically for the purpose
of mapping short reads. In Table 6.1 we compare the algorithmic key features of a subset
ofmappers, i.e. Bowtie [Langmead et al., 2009], Bowtie 2 [Langmead and Salzberg, 2012],
BWA[Li andDurbin, 2009], Eland [Cox, 2006], Hobbes [Ahmadi et al., 2012],Maq [Li et al.,
2008a], mrFAST [Alkan et al., 2009], SeqMap [Jiang and Wong, 2008], SHRiMP2 [David
et al., 2011], Soap [Li et al., 2008b], Soap 2 [Li et al., 2009b], Zoom [Lin et al., 2008], and
RazerS [Weese et al., 2009, 2012]. For a thorough algorithmic comparison we refer the
reader to [Li and Homer, 2010; Fonseca et al., 2012].

All existing read mapping approaches are based on a substring index. Depending on
the type of index, they can be divided into two classes: 1) 𝑞-gram based or 2) pre ix-trie
based read mappers.

𝑞-gram based read mappers. The 𝑞-gram based approaches use a two-step strategy.
First, a iltration algorithm reduces the search space by iltering regions that cannot con-
tain a match. This includes building a 𝑞-gram index, either on the set of reads, the refer-
ence sequence, or both to ef iciently ind common 𝑞-grams. The remaining candidate re-
gions are then examined for true matches in a second, more time-consuming veri ication
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index of reference - - • - - • - • • • • • •
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seed-based • • • • • - • • • •
𝑞-gram counting - - - - - • • - - -
supports indels - - - • - • • • • •

full sensitivity mode • • - • • - • • • -
controllable loss rate - - - - - - • - - -

m
ap

pi
ng

supports indels - - - • • • • • • - • • -
max. read length [bp] 32 127 60 - 240 - - 100 1000 - - - -

max. error 2 3 2 5 - - - - - - - - 2
multiple (suboptimal) hits - - - • • • • • • • • • -

Table 6.1: Read mapping tools and their characteristics.

full sensitive up to 2 mismatches
full sensitive up to 3 mismatches
depends on settings, no switch to guarantees full sensitivity
full sensitive up to 5 errors
no help for parameter choice, default will be lossy for most settings
limited to one gap

step. The iltration algorithms again can be divided into seed-based or 𝑞-gram counting
ilters.

Most of the seed-based ilters are based on the pigeonhole principle. It states that,
given two sequenceswithin distance 𝑘, any partition of the irst sequence into 𝑘+1 parts
contains one part that can be found without errors in the other sequence [Navarro and
Raf inot, 2002]. The shorter this seed, the more likely it is to encounter randommatches,
and therefore the lower the speci icity of the ilter. This strategy is thus rather limited to
a small number of errors. To increase the seed length and the iltration speci icity, Eland
was the irst to extend this strategy and divides one sequence into 𝑘 + 2 parts. Now
at least two of such parts will occur in the other sequence. These two parts retain their
relative positions as long as no indels occur in between. Eland,Maq, and Soapmakeuse of
this observation but are therefore limited to Hamming distance. Furthermore, Eland and
Soap always use a 4-segment partition and Maq at most a 5-segment partition and can
therefore not guarantee full sensitivity for 𝑘 > 2 or 𝑘 > 3, respectively. SeqMap extends
the two-seed pigeonhole strategy to edit distance and searches the two parts varying the
gap length by −𝑘,… , 𝑘 nucleotides. Not based on the pigeonhole lemma but also seed-
based ilters, where a common (gapped) 𝑞-gram triggers a veri ication, are BLAT [Kent,
2002], PatternHunter [Ma et al., 2002], PatternHunter II [Li et al., 2003], and Zoom.

The second class of ilters is based on 𝑞-gram counting and the minimal number 𝑡 of
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common 𝑞-grams every 𝑘-error match must have (see Lemma 5.1 on page 90). To ind
match candidates, SHRiMP2 scans the reference and for every read of length𝑚 reports
dot plot rectangles of size 𝑚 × (𝑚 + 𝑘) with at least 𝑡 common 𝑞-grams as candidates.
For SHRiMP2, however, 𝑞 and 𝑡must be set manually and the default con iguration is not
guaranteed to be lossless.

Veri ication methods encompass approximate matching algorithms for Hamming or
edit distance [Sellers, 1980], local-alignment algorithms [Smith and Waterman, 1981],
e.g. in SHRiMP2, or alignment algorithms that minimize the sum of base-call qualities at
mismatching bases, e.g. in Maq. In current implementations one has to carefully distin-
guish whether both steps, the iltration and the veri ication step, are adequate for the
distance chosen (Hamming or edit distance). Some implementations, e.g. Maq, verify
matches using base-call qualities but ilter the candidate regions using a ixed Hamming
or edit distance.

Some 𝑞-gram based read mappers primarily target sensitivity and support to output
all (including suboptimal) matches of a read up to a certain distance. This set of so-called
all-mappers includes Hobbes, SeqMap, SHRiMP2, Hobbes, mrFAST, Zoom, and RazerS.

Pre ix-trie based mappers. Another approach to read mapping utilizes the Burrows-
Wheeler transform [Burrows and Wheeler, 1994] which allows for the compression of a
text and its suf ix array 𝗌𝗎𝖿𝗍𝖺𝖻. Ferragina et al. [2004] complemented the functionality
of this data structure so that one can count and locate all exact text occurrences of a pat-
tern 𝑝 without prior uncompressing either of the two tables. This self-index, also called
FM index, uses a backward search to determine the interval 𝗌𝗎𝖿𝗍𝖺𝖻[𝑙..𝑟) of occurrences in
𝒪(|𝑝|) time. Lam et al. [2008] extended this idea to ind all approximate pattern occur-
rences. For each read, their approach recursively descends a pre ix trie, i.e. the suf ix trie
of the reversed text, analogously to Algorithm 4.9 on page 79.

This idea of backward backtracking combined with heuristics to prune the search
space is used by Bowtie, Bowtie 2, BWA, and Soap 2. Whereas most of the approaches
search whole reads and recursively enumerate mismatches (Bowtie, Soap 2) or also in-
dels (BWA), Bowtie 2uses the FM index to search exact seeds and veri ies candidateswith
anapproximatematching algorithm, as described for seed-based ilters above. In general,
the backtracking approach is not limited to pre ix-tries and was successfully adapted to
suf ix trees in [Hoffmann et al., 2009].

Recursive approaches are usually designed for the fast search of one or a few loca-
tions where reads map with low error rates. These search algorithms are mostly based
on heuristics and optimized for speed instead of sensitivity. As they aim at directly ind-
ing the “best” location for mapping a read, they are called best-mappers. If a read has
multiple mapping locations, the best location is randomly chosen either error-based or
quality-based, where the irst strategy minimizes the absolute number of errors and the
second prefers alignments where mismatches correspond to low base-call qualities. We
will show that both strategies have limitations in the presence of repeats or SNPs and that
best-mappers are not applicable to reliably detect sequence variations (Section 6.10.5).
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Figure 6.1: Match extraction in RazerS. The reference is scanned by a 𝑞-gram based ilter
which outputs candidate parallelograms that possibly contain a match. To ver-
ify whether the parallelograms contain true matches, they are searched with
an approximate string matching algorithm. At last, duplicate matches, a result
of overlapping parallelograms, are removed.

6.2 The RazerS algorithm

Some of the common problems inherent in many existing read mappers are that they
use complicated rules to chose the best match, heuristics that prohibit full-sensitivity,
or ilters that must be parametrized manually. As a consequence, a clear de inition of
their solution space is often impossible and they are hard to adapt to a speci ic biological
problem.

RazerS is a versatile 𝑞-gram based all-mapper that distinguishes itself in several re-
spects fromexisting algorithms. First, it can be easily parametrized andmaps reads using
edit or Hamming distance (in iltration and veri ication phase without any restrictions).
Second, given a user-de ined sensitivity (possibly 100% making the mapper full sensi-
tive), we integrated an algorithm that automatically parametrizes the mapper such that
the chosen sensitivity will be exceeded in expectation. Finally, our implementation can
map millions of reads of any length with an arbitrary number of errors and is currently
the fastest in reporting all hits for typical read lengths and loss rates. It supports paired-
end mapping, the SAM output format [Li et al., 2009a], shared-memory parallelism, and
requires no prebuilt index.
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RazerS consists of four modules: parameter chooser, ilter, veri ier, and match pro-
cessor. Based on the user-speci ic read mapping settings (e.g. minimal sensitivity, error
rate, given read lengths) the parameter chooser selects and parameterizes one of the two
available ilters such that the requiredminimal sensitivity is exceeded in expectation and
the overall mapping time is minimal. Both strands of the reference genome are divided
into windows of ixed length. The selected ilter constructs a 𝑞-gram index of the reads
and scans each window to collect candidate regions that possibly contain a read match.
After a window has been processed, a Hamming or edit distance veri ier examines the
collected candidate regions as to whether they contain a truematch. In regular intervals,
the match processor searches the recorded matches for duplicates, which are artifacts
by the iltration method. It also adapts the ilters to be more stringent, if the number of
matches per read is limited and enough distinct matches have been found.

Figure 6.1 depicts the steps required to extract truematches. We describe the details
of each step in the following.

6.3 De initions

The general readmapping problem, whichwe consider in the following, can be formalized
as follows:

De inition 6.1 (read mapping problem). Given a set of read sequences ℛ ⊂ Σ∗, a refer-
ence sequence 𝐺 ∈ Σ∗, and an error rate 𝜀 ∈ ℝ, for every read 𝑟 ∈ ℛ ind all substrings
𝑔 of 𝐺 that are within distance ⌊𝜀|𝑟|⌋ to 𝑟. The occurrences of 𝑔 in 𝐺 are called (read)
matches.

Common distance measures are Hamming distance or edit distance, see Section 2.4.
An error rate 𝜀 instead of an absolute number of errors takes account to the fact that
read lengths may vary. For the sake of simplicity, we assume in the following that all
reads have the same length 𝑚 and the tolerated distance is 𝑘 = ⌊𝜀|𝑟|⌋. However, all the
proposed approaches are applicable to and were implemented for varying read lengths.

In the following sections, we consider transcripts and irst need to generalize the 𝑞-
gram lemma to introduce a more precise de inition of common 𝑞-grams, the 𝑞-matches.

Lemma 6.1 (generalized 𝑞-gram lemma). Given an edit transcript 𝑇 between two strings
𝑠, 𝑡 ∈ Σ∗ with 𝑘 = ‖𝑇‖E errors. Then 𝑇 contains at least 𝑡 = |𝑇| − 𝑘(𝑞+ 1)+ 1 occurrences
of the substring 𝙼 , called 𝑞-matches.

Proof. For𝑘 = 0holds𝑇 = 𝙼| | and𝑇 contains 𝑡 = |𝑇|−𝑞+1𝑞-matches. Every additional
error 𝑥 either replaces a former match 𝙼 in 𝑇, if 𝑥 ∈ {𝚁, 𝙳}, or is inserted into 𝑇, if 𝑥 = 𝙸.
In the irst case, the replaced 𝙼 can be part of at most 𝑞 former 𝑞-matches. In the second
case, the inserted 𝙸 extends 𝑇 by one character and is contained in at most 𝑞 − 1 former
𝑞-matches.

In particular, the above lemma holds for Hamming transcripts as they are special edit
transcripts. The original 𝑞-gram lemma (Lemma 5.1 on page 90) is a direct consequence
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of Lemma 6.1 as |𝑇| is always greater than or equal to the length of the larger string. Due
to the correspondence of transcripts and alignments (De inition 2.12 on page 18), a 𝑞-
match is a diagonal stretch of length 𝑞 in an alignment trace and hence corresponds to a
diagonal stretch of 𝑞 matching bases in the dot plot, the so-called 𝑞-hit.

De inition 6.2 (𝑞-hit). Two strings 𝑠, 𝑡 ∈ Σ∗ contain a so-called 𝑞-hit (𝑖, 𝑗), if they share a
common 𝑞-gram 𝑠[𝑖..𝑖 + 𝑞) = 𝑡[𝑗..𝑗 + 𝑞).

The 𝑞-gram ilters, which we propose in the following, search the dot plot between
reads and reference for 𝑞-hits to ind match candidates.

6.4 Filtration

To make RazerS applicable to a broad spectrum of use cases, we implemented two fast
iltration algorithms: (1) SWIFT, a 𝑞-gram counting ilter, and (2) the seed-based pigeon-
hole ilter. Both differ in iltration speci icity and processing speed. In Section 6.10.1 we
will empirically compare their speci icities and overall mapping times.

6.4.1 SWIFT ilter

To ind potential match regions of reads in the reference genome we adapted the SWIFT
algorithm, described in Section 5.5.1, to search semi-global instead of local matches. As
a semi-global match aligns the whole read to a genomic substring, we need to consider
dot plot parallelograms that span the whole read. Hence, we can omit to open or close
parallelograms as it is done by the original SWIFT ilter for local alignments.

The generalized 𝑞-gram lemma (Lemma 6.1) de ines a threshold 𝑡, such that every
read alignment with at most 𝑘 errors contains at least 𝑡 𝑞-matches. They correspond to
at least 𝑡 𝑞-hits that reside in a dot plot parallelogram of at most 𝑑 = 𝑘 + 1 consecutive
diagonals, as the alignment contains at most 𝑘 insertions or deletions. In case of Ham-
ming distance there is a single diagonal (𝑑 = 1) completely covering all 𝑞-hits. Hence it
is suf icient to count 𝑞-hits in each possible |𝑟| × 𝑑 parallelogram, i.e. the intersection of
|𝑟| consecutive rows and 𝑑 consecutive diagonals in the dot plot. To reduce processing
overhead, we count them in larger |𝑟| × 𝑤 parallelograms, where 𝑤 > 𝑑, that overlap by
𝑑− 1 diagonals as every |𝑟| × 𝑑 parallelogram is contained in one |𝑟| × 𝑤 parallelogram,
see Figure 6.2.

As an optimization the width𝑤 is chosen such that parallelograms start at multiples
of a power of 2. In this way, the parallelogram counter can be ef iciently determined by
bit-shifting the coordinate of the 𝑞-hit diagonal.

We construct a 𝑞-gram index of all overlapping read 𝑞-grams and search common 𝑞-
hits in a linear scan over the reference sequence𝐺. During the scan only a limited number
of counters is needed per read at the same time. As every |𝑟| × 𝑤 parallelogram spans
at most |𝑟| + 𝑤 − 1 letters of 𝐺, we re-use parallelogram counters after |𝑟| − 𝑤 − 𝑞 scan
steps. Each 𝑞-hit increases the counters of the parallelograms it is covered by. Whenever
a counter reaches the threshold 𝑡, the parallelogram is recorded as a candidate region.
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Figure 6.2: Example for 𝑞-gram counting in parallelograms . The dot plot between a read
and a genome is covered by parallelograms that count common 3-grams, span
𝑤 = 12 diagonals, and overlap by 𝑘 = 4 diagonals. The marked parallelogram
contains a 4-error read match and counts eight 3-hits that correspond to the
seven 3-matches in the transcript and one random 3-hit.

Parallelograms are intentionally rotated to visualize their overlap.

Weextended the ilter to be applicable to gapped 𝑞-grams aswell, given a shape𝑄 and
an appropriate threshold 𝑡. Burkhardt and Kärkkäinen [2003] proposed how to compute
optimal thresholds for full-sensitivity Hamming ilters. In Section 6.5.1, we introduce a
more generic approach that computes the sensitivity ofHamming andedit distance ilters
for arbitrary thresholds.

6.4.2 Pigeonhole ilter

The second ilter is based on the pigeonhole principle, which states that if a read is cut
into 𝑘 + 1 pieces, then in every approximate match of the read with at most 𝑘 errors at
least one piece occurs without error [Baeza-Yates and Navarro, 1999]. If all reads have
the same length𝑚, they are cut into ⌊𝜀𝑚 + 1⌋ pieces of length 𝑞= ⌊ ⌋ , where 𝜀 is the
tolerated error rate.

For reads of arbitrary lengths the minimal 𝑞 is chosen to build a 𝑞-gram index over
the pieces of the reads. These pieces are then searched in a linear scan of the reference
sequence. For every exact match, the dot plot parallelogram, consisting of the diagonals
that are at most 𝑘 diagonals apart of the matching piece, is considered as a candidate
region for amatchwithin the tolerated edit distance. InHammingdistancemode, only the
diagonals that covermatching pieces are considered as candidate regions. The candidate
parallelograms of all matching pieces are recorded and veri ied in the further veri ication
step.

As the pigeonhole ilter requires no counters and searches only non-overlapping 𝑞-
grams of the reads in the reference, it requires less processing time and a smaller index
on the expense of more veri ications compared to the SWIFT ilter.
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Figure 6.3: Filters used in RazerS. The SWIFT ilter (a) counts common 𝑞-grams in overlap-
ping parallelograms. Parallelograms with a suf iciently high number of com-
mon 𝑞-grams are reported as candidate regions. The pigeonhole ilter (b) di-
vides the read into non-overlapping 𝑞-grams (seeds) and reports for each oc-
currence in the reference 𝐺 a surrounding parallelogram as candidate region.

6.5 Lossy iltration and prediction of sensitivity

Both ilters are fully sensitive if parameterized as described above, i.e. every occurrence
of a read within the tolerated edit or Hamming distance will be detected as a candidate
region and positively veri ied in the veri ication step. However, the ilter parametriza-
tion depends on a number of worst cases where all errors are almost equidistantly dis-
tributed, which is small compared to all possible error distributions. Further, some se-
quencing technologies show an accumulation of sequencing errors towards the 3’ end
of the read (Sanger and Illumina) or clustered errors at SNPs (SOLiD) or homopolymer
runs (Roche/454), which lowers the worst-case probabilities compared to independent
and identically distributed errors. As an example, Figure 6.4a shows the positional er-
ror pro ile observed after mapping the reads of typical Illumina runs to their reference
genomes. A strong correlation between observed and predicted errors becomes appar-
ent when comparing Figure 6.4a with Figure 6.4b, which shows the average base-call
quality values.

In this section, we propose modi ications that make both ilters more stringent and
reduce the iltration time, the number of recorded candidate regions, and hence the over-
allmapping time. As the𝑞-gramandpigeonhole lemmasare strict, our improvements can
only be achieved at the expense of sensitivity. To obtain control over the loss of a ilter, we
additionally devise methods to compute the sensitivity of both ilters that are in general
applicable to any ilter based on 𝑞-gram counting or the pigeonhole principle.

The sensitivity of a ilter is the probability that a randomly chosen true match (𝑟, 𝑔)
is detected by the ilter as a match candidate. Existing sensitivity estimation approaches
assume errors to be generated by a Markov process [Herms and Rahmann, 2008] or are
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signal intensities generated by several types of bases
become comparable. Consequently, the following base
calls fluctuate under influence of the sequence context
and several other factors.

In the standard base-calling procedure, dephasing is
considered to be the consequence of incomplete CRT
cycle or contamination of reagents or enzymes at each
cycle (27). Therefore, dephasing is treated with just two
(phasing and pre-phasing) parameters for all clusters in
each tile. However, this regular dephasing differs from

the SSE discussed here, which is a sequence-specific
dephasing that only affects the template clusters incorpo-
rating specific parts of the genome sequence. Therefore,
this sequence-specific dephasing should be addressed inde-
pendently from the Illumina standard phasing and
pre-phasing treatments.
So far, we have discussed some of the characteristics of

SSE sequences. However, several questions remain unre-
solved. For instance, we found that some, but not all,
GGC sequences or inverted repeats are associated with
SSE. Furthermore, about 10% of the SSE positions
are associated with neither GGC nor inverted repeat se-
quences (Table 3). This observation suggests the presence
of other factors involved in SSE. A possible hypothesis is
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Figure 5. Plots of (a) average base call quality and (b) mismatch ratio
along the sequencing cycle. Quality value of B. subtilis is based on the
Illumina/Solexa standard protocol, while other data are PHREAD-type
scores (30).

Table 6. Base conversion ratio of all SSE mismatches

ref. read

A T G C

B. subtilis (44%)
A – 1.05 1.04 1.14
T 1.02 – 1.21 1.06
G 0.92 0.93 – 0.87
C 0.92 0.93 0.87 –

M. bovis (65%)
A – 0.24 1.13 1.50
T 0.24 – 1.56 1.13
G 0.43 0.58 – 2.07
C 0.59 0.44 2.08 –

S. aureus (33%)
A – 1.55 0.98 1.44
T 1.58 – 1.51 1.04
G 0.66 0.84 – 0.44
C 0.84 0.66 0.43 –

B. pertussis (68%)
A – 0.35 0.98 1.20
T 0.35 – 1.29 1.00
G 0.67 0.73 – 2.01
C 0.74 0.66 2.00 –

The rate with which read bases (top row) are mismatched with refer-
ence bases (left column). The numbers are normalized so that the value
of each cell is 1.00 in the absence of bias. The GC content of each
genome is enclosed in parenthesis.

Table 4. Total number of base counts in reads mapped with MPSmap allowing 35 mismatches; total number of mismatches;
mismatches as a percentage of total base calls; number of SSE mismatches; and SSE mismatches as a percentage of total
mismatches

Species Total base calls Total mismatches (%) SSE mismatches (%)

Bacillus subtilis 232 126 275 2 500 234 (1.1) 215 088 (8.6)
Mycobacterium bovis 3 983 850 916 140 028 534 (3.5) 54 874 169 (39.2)
Staphylococcus aureus 2 883 461 928 142 819 880 (4.9) 8 526 781 (5.9)
Bordetella pertussis 879 723 180 37 036 504 (4.2) 8 427 651 (22.8)

Table 5. Percentage of mismatches in SSE regions that match the
reference base positioned 1–5 bp before the mismatch position

Species 1 2 3 4 5

Bacillus subtilis 61.2 19.7 7.4 3.5 1.9
Mycobacterium bovis 61.6 22.3 7.7 3.4 1.7
Staphylococcus aureus 48.9 20.9 9.7 5.5 3.5
Bordetella pertussis 54.4 20.6 8.7 4.3 2.7
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(b) average base-call quality

Figure 6.4: Plots of averagemismatch ratio (a) and base-call quality (b) along the cycles of
typical Illumina runs. Plots by Nakamura et al. [2011].

limited touniformerrordistribution [Li et al., 2003]. Ourmethods ef iciently estimate the
iltration sensitivity under any position-dependent error distribution, e.g. as observed in
Sanger or Illumina sequencing technologies [Dohm et al., 2008; Nakamura et al., 2011].

We consider positional error probabilities 𝑝𝚁, i.e. the probability that in a random
match of a read there is a mismatch at nucleotide position 𝑖. As errors we consider base
miscalls and SNPs, and before mapping we compute an average error pro ile over all
reads based on their base-call quality values and a user-speci ic mutation rate. For an
average Phred quality [Ewing and Green, 1998] value 𝑞 at position 𝑖 in the reads, the
base-miscall probability 𝜒 can be computed as follows:

𝜒 = 10 . (6.1)

With a given mutation rate 𝜇, we compute the probability 𝑝𝚁 to observe a mismatch
at position 𝑖 as:

𝑝𝚁 = 1 − (1 − 𝜒 ) ⋅ (1 − 𝜇) . (6.2)

6.5.1 Sensitivity calculation of 𝑞-gram counting ilters

A (𝑞, 𝑡)-counting ilter is a iltering algorithm that detects any pair (𝑟, 𝑔) for which a tran-
script 𝑇 from 𝑟 to 𝑔 exists that contains at least 𝑡 𝑞-matches. In this section, we devise
DP algorithms that ef iciently compute the sensitivity of any (𝑞, 𝑡)-counting ilter and, es-
pecially, the SWIFT ilter used in RazerS. Knowing the iltration sensitivity enables us to
increase 𝑞 or 𝑡 and reduce random hits while guaranteeing a required minimal sensitiv-
ity.

Hamming distance sensitivity. We irst consider the read mapping problem for reads
of length 𝑚 and matches with a Hamming distance of at most 𝑘. To determine a lower
bound for the sensitivity of a (𝑞, 𝑡)-counting ilter we could enumerate all Hamming tran-
scripts with up to 𝑘 replacements and sum up the occurrence probabilities of those tran-
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scripts having at least 𝑡 substrings 𝙼 . However, as there are ∑ ( ) different tran-
scripts, a full enumeration takes Ω(( ) ) time and is not feasible for large reads or high
error rates, e.g. of length 𝑚 = 200 with 𝑘 = 20 errors. We have developed a dynamic
programming approach which is signi icantly faster by using a recurrence similar to the
threshold calculation in [Burkhardt and Kärkkäinen, 2003].

Given a position-dependent error distribution 𝑝𝚁. Then the occurrence probability
of a Hamming transcript 𝑇 over the alphabet Φ = {𝙼, 𝚁} is the product of the individual
occurrence probabilities of transcript characters 𝑝(𝑇) = ∏| | 𝑝 [ ], with 𝑝𝙼 = 1 − 𝑝𝚁.
We calculate the sensitivities for matches with 𝑒 errors for each 𝑒 ≤ 𝑘 separately. Let
𝑆(𝑚, 𝑒, 𝑡) be the sum of occurrence probabilities of transcripts of length 𝑚, having 𝑒 er-
rors, and at least 𝑡 𝑞-matches. The sensitivity of a (𝑞, 𝑡)-counting ilter to detect 𝑒-error
matches is at least:

𝑃 𝑇 contains ≥ 𝑡 𝑞-matches ‖𝑇‖E = 𝑒 = 𝑆(𝑚, 𝑒, 𝑡)
𝑆(𝑚, 𝑒, 0) . (6.3)

We will see how to calculate 𝑆(𝑚, 𝑒, 𝑡) using a DP algorithm. Let 𝑝(𝑇, 𝑗) = ∏| | 𝑝 [ ]

be the occurrence probability of sub-transcript 𝑇 to occur after 𝑗 letters of a read. We
de ine 𝑅(𝑖, 𝑒, 𝑡, 𝑇 ) the sum of occurrence probabilities of transcripts 𝑇 ∈ Φ , s.t. 𝑇 has
𝑒 errors and the concatenation 𝑇 𝑇 contains at least 𝑡 substrings 𝙼 . By de inition of 𝑆,
the following holds:

𝑆(𝑚, 𝑒, 𝑡) =
∈ ,‖ ‖E

𝑅 (𝑚 − 𝑞, 𝑒 − ‖𝑇‖E, 𝑡, 𝑇) ⋅ 𝑝(𝑇,𝑚 − 𝑞) . (6.4)

The sum goes over all transcript ends 𝑇 of length 𝑞 with at most 𝑒 errors. The right fac-
tor is the probability of 𝑇 occurring at the end of a random transcript of length 𝑚. The
left factor is the occurrence probability sum over all transcript beginnings, s.t. the con-
catenation of beginning and end is a transcript of length 𝑚 with 𝑒 errors, and at least 𝑡
𝑞-matches. With the following lemma a DP algorithm can be devised to determine 𝑅 and
therefore the sensitivities𝑆(𝑚, 𝑒, 𝑡) for all 𝑒 = 0,… , 𝑘 and 𝑡 = 1,… , 𝑡max in𝒪(𝑚⋅𝑘⋅𝑡max⋅2 )
time.
Lemma 6.2. Let 𝑖, 𝑞 ∈ ℕ; 𝑒, 𝑡 ∈ ℤ; 𝑇 ∈ {𝙼, 𝚁} . 𝑅 can be calculated using the following
recurrence:

𝑅(0, 𝑒, 𝑡, 𝑇) = 1, if 𝑒 = 0, 𝑡 ≤ 𝛿(𝑇)
0, else, (6.5)

𝑅(𝑖, 𝑒, 𝑡, 𝑇) = 𝑝𝙼 ⋅ 𝑅(𝑖 − 1, 𝑒 , 𝑡 − 𝛿(𝑇), shift(𝙼, 𝑇))
+ 𝑝𝚁 ⋅ 𝑅(𝑖 − 1, 𝑒 − 1, 𝑡 − 𝛿(𝑇), shift(𝚁, 𝑇)) ,

(6.6)

with

shift(𝑥, 𝑇) = 𝑥𝑇 0..|𝑇| − 1 , (6.7)

𝛿(𝑇) = 1, if 𝑇 = 𝙼
0, else. (6.8)

Proof. See Appendix A.2.
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Extension to gappedshapes. Given a shape𝑄 = {𝑖 , 𝑖 , … , 𝑖 } and aHamming transcript
𝑇, we call the gapped 𝑞-gram 𝑇[𝑖 + 𝑖 ]𝑇[𝑖 + 𝑖 ]…𝑇[𝑖 + 𝑖 ] = 𝙼| | a 𝑄-match at position
𝑖. A (𝑄, 𝑡)- ilter is an algorithm that detects any pair (𝑟, 𝑔) for which a transcript 𝑇 from
𝑟 to 𝑔 with at least 𝑡 𝑄-matches exists. To extend the sensitivity calculation to gapped
shapes 𝑄, the transcript 𝑇 in Lemma 6.2 must be resized to cover the whole shape and
the matching criterion in 𝛿(𝑇)must be adapted. This can be done by replacing 𝑞 in (6.4)
by span(𝑄) and 𝛿(𝑇) in (6.5) and (6.6) by:

𝛿(𝑇) = 1, if 𝑇[𝑖 ]𝑇[𝑖 ]…𝑇[𝑖 ] = 𝙼| |

0, else. (6.9)

For two strings of length span(𝑄) with the Hamming transcript 𝑇 ∈ Φ ( ), 𝛿(𝑇) re-
turns 1 iff they share their sole 𝑄-gram. A lemma similar to Lemma 6.2 can be proven
analogously.

Edit distance sensitivity. We now consider the read mapping problem under edit dis-
tance andpropose aDPalgorithm that computes the sensitivity of a𝑞-gram ilter to detect
a randomly chosen true match (𝑟, 𝑔)with edit distance 𝑑(𝑟, 𝑔) ≤ 𝑘 as a potential match.
Again, we consider all reads 𝑟 ∈ ℛ to be of equal length𝑚 and reduce randomly chosen
true matches (𝑟, 𝑔) to randomly chosen edit transcripts from 𝑟 to 𝑔withΦ = {𝙼, 𝚁, 𝙳, 𝙸}.
We therefore assume a given error distribution that associates each nucleotide position
𝑖 in a read with positional error probabilities 𝑝𝚁, 𝑝𝙳, 𝑝𝙸, where 𝑝𝚁 and 𝑝𝙳 are the proba-
bilities that the nucleotide 𝑟[𝑖] is replaced or deleted, and 𝑝𝙸 the probability that a single
nucleotide is inserted after the nucleotide 𝑟[𝑖] in 𝑔. For any transcript 𝑇 from read to
genome we de ine ‖𝑇‖R = {𝑖 | 𝑇[𝑖] ∈ {𝙼, 𝚁, 𝙳}} , the number of read characters affected
by 𝑇. Finally, we assume the following occurrence probability of an edit transcript 𝑇:

𝑝(𝑇) =
| |

𝑝 [ ]
‖ [ .. )‖R , (6.10)

with 𝑝𝙼 = 1−𝑝𝚁−𝑝𝙳−𝑝𝙸. We de ine the setΦ(𝑖) = {𝑇 | 𝑇 ∈ Φ∗, ‖𝑇‖R = 𝑖} of transcripts
from reads of length 𝑖. In the following, we omit to enumerate transcripts beginning or
endingwith𝙸, as these transcripts can always be shortened resulting in amatchwith less
errors. Similar to (6.4) the occurrence probability sum 𝑆(𝑚, 𝑒, 𝑡) of edit transcripts from
reads of length𝑚, with 𝑒 errors, and at least 𝑡 substrings 𝙼 can be written as:

𝑆(𝑚, 𝑒, 𝑡) =
∈ ( ), ‖ ‖E ,
[| | ] 𝙸

𝑅 (𝑚 − 𝑞, 𝑒 − ‖𝑇‖E, 𝑡, 𝑇) ⋅ 𝑝(𝑇,𝑚 − 𝑞) , (6.11)

where 𝑅(𝑖, 𝑒, 𝑡, 𝑇 ) is the occurrence probability sum of transcripts 𝑇 ∈ Φ(𝑖) with 𝑒 er-
rors, s.t. 𝑇 [1] ≠ 𝙸 and 𝑇 𝑇 contains at least 𝑡 substrings 𝙼 . 𝑝(𝑇, 𝑗) = ∏| | 𝑝 [ ]

‖ [ .. )‖R
is the occurrence probability of sub-transcript 𝑇 to occur after 𝑗 letters of a read.



108

Lemma 6.3. Let 𝑒, 𝑖, 𝑞 ∈ ℕ; 𝑡 ∈ ℤ; 𝑇 ∈ Φ(𝑞). 𝑅 can be calculated using the following
recurrence:

𝑅(0, 𝑒, 𝑡, 𝑇) = 1, if 𝑒 = 0, 𝑡 ≤ 𝛿(𝑇), 𝑇[0] ≠ 𝙸
0, else, (6.12)

𝑅(𝑖, −1, 𝑡, 𝑇) = 0, (6.13)
𝑅(𝑖, 𝑒, 𝑡, 𝑇) = 𝑝𝙼 ⋅ 𝑅(𝑖 − 1, 𝑒 , 𝑡 − 𝛿(𝑇), shift(𝙼, 𝑇))

+ 𝑝𝚁 ⋅ 𝑅(𝑖 − 1, 𝑒 − 1, 𝑡 − 𝛿(𝑇), shift(𝚁, 𝑇))
+ 𝑝𝙳 ⋅ 𝑅(𝑖 − 1, 𝑒 − 1, 𝑡 − 𝛿(𝑇), shift(𝙳, 𝑇))
+ 𝑝𝙸 ⋅ 𝑅(𝑖 , 𝑒 − 1, 𝑡 , 𝙸𝑇 ) ,

(6.14)

with

shift(𝑥, 𝑇) = 𝑥𝑇 0..max 𝑖 ∈ [0..|𝑇| − 1) 𝑇[𝑖] ≠ 𝙸 , (6.15)

𝛿(𝑇) = 1, if 𝑇 contains 𝙼
0, else. (6.16)

Proof. See Appendix A.2.

Accordingly, the sensitivities 𝑆(𝑚, 𝑒, 𝑡) for all 𝑒 = 0,… , 𝑘 and 𝑡 = 1,… , 𝑡max can be
determined in 𝒪(𝑚 ⋅ 𝑘 ⋅ 𝑡max ⋅ 4 ) time.

Algorithm 6.1: 𝛿(𝑇) for gapped shapes
input : transcript 𝑇, shape 𝑄
output : 0, if 𝑇 destroys 𝑄-gram; 1, else

1 𝑟 ← 0, 𝑔 ← 0
2 𝑗 ← min 𝑖 | 𝑇[𝑖] ≠ 𝙸
3 for 𝑖 ← 𝑗 to |𝑇| − 1 do
4 if 𝑇[𝑖] ≠ 𝙳 then
5 𝑔 ← 𝑔 + 1
6 if 𝑇[𝑖] ≠ 𝙸 then
7 if 𝑟 ∈ 𝑄 and (𝑇[𝑖] ≠ 𝙼 or 𝑟 ≠ 𝑔) then
8 return 0
9 𝑟 ← 𝑟 + 1

10 return 1

Extension to gapped shapes. Although “don’t care” positions of gapped shapes are not
immune to indels, we extend the edit distance sensitivity calculation to gapped shapes for
the sake of completeness. To calculate𝑅 and 𝑆 for a gapped shape𝑄, every 𝑞 in (6.11) and
Lemma 6.3 must be replaced by span(𝑄). Algorithm 6.1 can be used to detect whether a
common Q-gram is retained or destroyed by a transcript affecting 𝑠𝑝𝑎𝑛(𝑄) read charac-
ters.
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6.5.2 Sensitivity calculation of pigeonhole ilters

A lossless pigeonhole ilter divides a read into at least 𝑘 + 1 fragments and uses them as
seeds to detect all 𝑘-error matches. As fragments we use the irst 𝑘 + 1 non-overlapping
𝑞-grams of the reads where 𝑞 is chosen as large as possible. In expectation, every read
𝑞-gram has 𝑛/4 occurrences in a genome of length 𝑛. To reduce the number of random
candidates and to reduce the overall running time, we increase 𝑞 and allow the seeds to
overlap, see Figure 6.5. However, with overlapping seeds some matches will be missed
by the ilter, e.g. if every odd seed overlap contains an error.

With a (𝑞, Δ)-seed ilter we denote a ilter that uses all 𝑞-grams starting at multi-
ples of Δ in the read as seeds, with 𝑞/2 ≤ Δ ≤ 𝑞, such that adjacent 𝑞-grams overlap
by 𝑞 − Δ characters. To compute the sensitivity of such a ilter, we consider Hamming
transcripts between a read of length𝑚 and all of its true matches. Again, the sensitivity
for matches with 𝑒 = 0, 1, … , 𝑘 errors is the sum of occurrence probabilities of 𝑒-error
transcripts that are detected by the ilter divided by the probability that an 𝑒-error tran-
script occurs. Instead of enumerating all possible 𝑒-errorHamming transcriptswedevise
a DP algorithm that virtually splits the transcript into segments at 𝑞-gram boundaries
Δ, 𝑞, 2Δ, Δ + 𝑞,… , (𝑘 + 1)Δ, 𝑘Δ + 𝑞 and denote the irst 2(𝑘 + 1) segments from left to
right as 𝑥 , 𝑦 , 𝑥 , 𝑦 … , 𝑥 , 𝑦 , see Figure 6.6. Our approach is analogously applicable to
edit distance as insertions or deletions behave like mismatches in relation to destroyed
seeds.

We irst compute theprobability𝑃 ‖𝑇[𝑖..𝑗)‖E = 𝑒 that a randomHamming transcript
𝑇 contains 𝑒 errors in the segment 𝑇[𝑖..𝑗) given positional error probabilities 𝑝𝚁 and their
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Figure 6.5: Examples for (𝑞, Δ)-seed ilters. The upper is lossless for up to 3 mismatches
and based on the pigeonhole principle. The second uses 7-grams that overlap
by one position and still recognizes the match, whereas the third uses 8-grams
and misses the match.
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Figure 6.6: A (𝑞, Δ)-seed ilter, with 𝑞 = 8 and Δ = 6, for searching matches with up to
𝑘 = 3 errors (seed 𝑖 consists of segments 𝑦 , 𝑥 , and 𝑦 , except for 𝑖 = 0).

complementary probabilities 𝑝𝙼 = 1 − 𝑝𝚁:

𝑃 ‖𝑇[𝑖..𝑖)‖E = 𝑒 = 1, if 𝑒 = 0
0, else, (6.17)

𝑃 ‖𝑇[𝑖..𝑖 + 1)‖E = 𝑒 =
𝑝𝙼, if 𝑒 = 0
𝑝𝚁, if 𝑒 = 1
0, else,

(6.18)

𝑃 ‖𝑇[𝑖..𝑗)‖E = 𝑒 = 𝑝𝙼 ⋅ 𝑃 ‖𝑇[𝑖..𝑗 − 1)‖E = 𝑒
+ 𝑝𝚁 ⋅ 𝑃 ‖𝑇[𝑖..𝑗 − 1)‖E = 𝑒 − 1 .

(6.19)

Let 𝐿(𝑖, 𝑒, 𝑦) be the probability of the event that the irst 𝑖 + 1 seeds contain overall 𝑒
errors, each at least one error, and 𝑦 contains 𝑦 errors. Let𝑋 and𝑌 be randomvariables
for the number of errors in the segments 𝑥 and 𝑦 , then 𝐿 can recursively be computed
as follows:

𝐿(0, 𝑒, 𝑦) = 0, for 𝑒 = 0
𝑃(𝑋 = 𝑒 − 𝑦) ⋅ 𝑃(𝑌 = 𝑦), else, (6.20)

𝐿(𝑖, 𝑒, 𝑦) = 𝐿(𝑖 − 1, 𝑒 − 𝑠 + 𝑦 , 𝑦 ) ⋅ 𝑃(𝑋 = 𝑠 − 𝑦 − 𝑦 ) ⋅ 𝑃(𝑌 = 𝑦) . (6.21)

The probability that all seeds are destroyed with overall 𝑒 errors is:

𝐿all(𝑒) = 𝐿(𝑘, 𝑒 − 𝑥, 𝑦) ⋅ 𝑃(‖𝑇[𝑘Δ + 𝑞 .. 𝑛)‖E = 𝑥) , (6.22)

and thus the sensitivity of the (𝑞, Δ)-seed ilter for matches with at most 𝑘 errors is:

𝑆(𝑞, Δ, 𝑘) = 1 − 𝐿all(𝑒)
𝑃(‖𝑇‖E = 𝑒) . (6.23)

6.5.3 Choosing iltration parameters

Now that we are able to compute the sensitivity of a ilter parametrization, we want
to automatically choose iltration parameters, such that (1) a certain sensitivity level is
achieved and (2) the running time of the mapping procedure is minimized.



111

SWIFT ilter. Due to the huge parameter space of thresholds 𝑡 and possible gapped
shapes𝑄, we have precomputed the sensitivities using a selection of different shapes and
thresholds for all read lengths from 24 to 100 bp and error rates up to 10%. As an error
distribution we assume a typical Illumina error pro ile [Dohm et al., 2008]. Additionally,
all parameter combinations were used to run RazerS on simulated data, yielding a rough
estimate for the corresponding relativemapping times. Parameters for reads longer than
100 bp are extrapolated from parameters of precomputed shorter reads with the same
error rate. Given a user-de ined minimum sensitivity, suitable iltration parameters are
chosen from theprecomputed tables such that the anticipated running time isminimized.

If preferred, the parameter tables can be precomputed based on a machine-speci ic
error distribution and user-de ined shapes. This error distribution can be obtained in
two ways. (1) Quality based probabilities: transform the average base-call quality value
for each position into a probability value. (2) A posteriori probabilities: map a small sub-
set of reads and determine the position-dependent error frequency. Given an error dis-
tribution the parameters for reads of length 50 bp can, for instance, be calculated within
10 minutes.

Pigeonhole ilter. In contrast to the SWIFT ilter, the small parameter space of the pi-
geonhole ilter allows for the ilter to be adjusted based on the quality-basedprobabilities
of the read set at hand. Before starting themapping, RazerS estimates the sensitivities of
different ilter settings and maximizes the seed length 𝑞 as it has the greatest in luence
on the overall running time. Beginning with the lossless setting 𝑞 = Δ = 𝑚/(𝑘 + 1) , it
step-wise increases 𝑞 as long as the estimated sensitivity is higher than required, 𝑞 does
not exceed themaximal seed length of 31, and notmore than two seeds overlap (𝑞 ≤ 2Δ).
The corresponding step sizes Δ = ⌊(𝑚 − 𝑞)/𝑘 are chosen such that each read contains
𝑘 + 1 overlapping seeds.

6.6 Veri ication

The result of the iltration step is a set of candidate regions and corresponding reads.
A candidate region is a parallelogram in the dot plot that might contain the alignment
trace of a match. Depending on the considered string metric it is veri ied by one of the
approximate matching algorithms explained in the following.

6.6.1 Hamming distance veri ication

In Hamming mode, a match covers solely one dot plot diagonal. Hence, the candidate
parallelogram can be veri ied by scanning each diagonal while counting the number of
mismatches between read and reference sequence. A diagonal can be skipped as soon as
the counter exceeds the number of tolerated errors. Otherwise, a match has been found.



112

6.6.2 Edit distance veri ication

To verify an edit distance match candidate, the reference substring covered by the candi-
date region could be searched with one of the approximate pattern matching algorithms
explained in Section 2.5. However, none of these algorithms take account of the paral-
lelogramic shape of the candidate region but instead verify the whole surrounding dot
plot rectangle. To take advantage of knowing the shape of the candidate region, we im-
plemented a banded version of Myers’ [1999] bit-vector algorithm as it was proposed in
[Hyyrö, 2003] with some improvements.

Myers’ bit-vector algorithm. The original algorithm by Myers can be used for approx-
imate pattern matching in a dot plot rectangle. For each position in the reference, it de-
termines the minimal number of errors a match ending there. The underlying idea is
the same as in the DP algorithm for approximate pattern matching by Sellers [1980], but
the implementation is much more ef icient as it encodes a whole DP column in two bit-
vectors and computes the adjacent column in a constant number of 12 logical and 3 arith-
metical operations. For reads up to length 64 bp, CPU registers can directly be used. For
longer reads, bit-vectors and operations must be emulated using multiple words where
onlywords affecting a possiblematch need to be updated [Ukkonen, 1985]. However, the
additional processing overhead results in a performance drop for reads of length 65 bp
and longer.

Banded variant by Hyyrö. Hyyrö [2003] proposed a variant of Myers’ algorithm that
only computes DP cells that are covered by a parallelogram. Hence, only the columns of
the parallelogram need to be encoded by bit-vectors, which makes it applicable to par-
allelograms with the width of up to 63 cells without the need for bit-vector emulation.
However, the banded variant as proposed in [Hyyrö, 2003] still requires to precompute
bitmasks of |Σ| ×𝑚 bits for each read of length𝑚 and does not support clipped parallel-
ograms. Clipping of parallelograms is, however, necessary to ind the begin position of
a match in the reference and to verify parallelograms that cross the beginning or end of
the reference sequence.

Our banded algorithm. We devise a banded variant of Myers’ algorithm that supports
clipped parallelograms, requires no preprocessing information at all, and uses online-
computedpattern bitmasks of |Σ|×𝑤 instead of |Σ|×𝑚 bits. Before going into algorithmic
details, we sketch the outline of the edit distance veri ication. In contrast toHammingdis-
tance veri ication, where the difference between begin and end position of every match
equals the read length, Myers’ algorithm reports only the ends of matches. More pre-
cisely, it determines the minimal number of errors for a ixed end position and a free
begin position. To determine a corresponding begin position we search the read back-
wards with a ixed end position. As edit distance scores mismatches and indels equally,
there can bemultiple bestmatch beginnings. We choose the largest bestmatch to option-
ally shrink it later using an alignment algorithm for af ine gap costs [Gotoh, 1982] where
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Figure 6.7: Applications of the banded alignment algorithm are: (a) approximate pattern
matching in a band of the DPmatrix, e.g. a candidate region, or (b) edit distance
computation between two sequences tolerating at most 𝑘 errors.

gaps are penalized slightly more thanmismatches and gap opening costs are higher than
extension costs.

In the following, we propose the algorithmic details of our banded algorithm. It is
not only applicable to approximate pattern matching in (clipped) parallelograms (Fig-
ure 6.7a) but can also be used for edit distance computation (Figure 6.7b) with a small
modi ication. For a given text 𝑡 of length 𝑛 and a given pattern 𝑝 of length𝑚we consider
the DP matrix which has 𝑚 + 1 rows and 𝑛 + 1 columns. Let a band of 𝑤 consecutive
diagonals be given where the left-most diagonal is the main diagonal shifted by 𝑐 diag-
onals to the left, see Figure 6.8a. The algorithm diagonally slides a column vector 𝐷 of
𝑤 + 1 cells over the band. Analogously to Myers’ algorithm, 𝐷 is encoded by delta bit-
vectors 𝑉𝑃 and 𝑉𝑁 of size𝑤 and a variable errors that tracks the cell values of the lower
band boundary (dark cells in Figure 6.8a). Each sliding step consists of a horizontal and
a vertical step. In the horizontal step the delta vectors 𝐷0, 𝐻𝑃 and 𝐻𝑁 are computed as
in Myers’ algorithm, see Figure 6.8c and lines 12–15 in Algorithm 6.2. From these delta
vectors 𝑉𝑃 and 𝑉𝑁 are deduced and shifted by 1 bit to the right in the vertical step, see
Figure 6.8d and lines 16–18. In contrast to Myers’ and Hyrrö’s algorithms, we shift and
update the pattern bitmasks online. In this way, we save a time consuming preprocessing
(shaded areas in Figure 6.9) and reduce the required memory from |Σ| ×𝑚 bits per read
to overall |Σ| × 𝑤 bits.

In the beginning, 𝐷 covers the intersection of the irst column and all band diagonals
plus the diagonal left of the band as shown Figure 6.8b. As 𝐷 initially represents cells
beyond the DP matrix, they have to be initialized such that they have no unintended in-
luence on the cells within the DP matrix and such that the irst DP row contains zero
values for approximate pattern matching or increasing values for the edit distance cal-
culation. Setting the pattern bitmasks to zero for cells beyond the DP matrix, 𝑉𝑁 = 0
and 𝑉𝑃 = 1 for approximate pattern matching or 𝑉𝑃 = 1 0 for edit distance
results in the desired initialization patterns depicted in Figure 6.8. The following lemma
guarantees that non-band cells are not used in the DP recurrence, and as 𝐷0 represents
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Figure 6.8: Band parameters (a). A band is uniquely de ined by the number of consecutive
diagonals 𝑤 and the row 𝑐 that intersects the left-most diagonal and the irst
column. The initial state (b) and the recursion steps (c,d) are shown on the top
right. The column vector initializations for approximate pattern matching (e)
and edit distance calculation (f) are shown below.

the diagonal delta of all 𝑤 diagonals, the algorithm computes exactly the band depicted
in Figure 6.8a.

Lemma 6.4. Cells left and right of the band are not used for the computation of band cells.

Proof. Let 𝑘 ∈ ℕ with 𝑘 ≤ min(𝑚 − 𝑐, 𝑛) and 𝑖 = 𝑐 + 𝑘 and 𝑗 = 𝑘 then 𝐶 , is a cell on
the diagonal left of the band and 𝐶 , is in the left-most band diagonal. After shifting 𝐷0
by 1 bit to the right in line 16 of Algorithm 6.2 bit 𝑤 in 𝑋 is 0 and thus bit 𝑤 in 𝑉𝑁 will
be 0 after the assignment in line 17. Therefore holds 𝐶 , ≤ 𝐶 , and 𝐶 , have no
in luence on the minimum stored in 𝐶 , . The cells in the diagonal right (or above) of the
band have no in luence as bit 0 in𝐷0 depends only on the comparison of pattern and text
characters and the vertical delta 𝐷0[0] ⇔ (𝑝[𝑖] = 𝑡[𝑗]) ∧ 𝑉𝑁[0]. The horizontal deltas
between band and non-band cells have no in luence on 𝐷0[0] and thus no in luence on
band cells.
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Algorithm 6.2: M (𝑡, 𝑝, 𝑘, 𝑤, 𝑐)
input : text 𝑡 ∈ Σ∗, pa ern 𝑝 ∈ Σ∗, errors 𝑘 and band parameters 𝑤, 𝑐
output : text end posi ons of matches with up to 𝑘 errors

1 foreach 𝑥 ∈ Σ do // initialize pattern bitmasks
2 𝐵[𝑥] ← 0
3 for 𝑗 ← 0 to 𝑐 − 1 do
4 𝐵 𝑝[𝑗] ← 𝐵 𝑝[𝑗] ∣ 0 10

5 𝑉𝑃 ← 1 ; 𝑉𝑁 ← 0 // initialize vertical delta vectors
6 errors ← 𝑐

7 for 𝑝𝑜𝑠 ← 0 to 𝑛 − 1 do

8 foreach 𝑥 ∈ Σ do // shift and update pattern bitmasks
9 𝐵[𝑥] ← 𝐵[𝑥] ≫ 1

10 if 𝑝𝑜𝑠 + 𝑐 < 𝑚 then
11 𝐵 𝑝[𝑝𝑜𝑠 + 𝑐] ← 𝐵 𝑝[𝑝𝑜𝑠 + 𝑐] ∣ 10

12 𝑋 ← 𝐵 𝑡[𝑝𝑜𝑠] ∣ 𝑉𝑁 // compute horizontal delta vectors
13 𝐷0 ← (𝑉𝑃+(𝑋 & 𝑉𝑃)) ∧ 𝑉𝑃 ∣ 𝑋
14 𝐻𝑁 ← 𝑉𝑃 & 𝐷0
15 𝐻𝑃 ← 𝑉𝑁 ∣ ∼ (𝑉𝑃 ∣ 𝐷0)
16 𝑋 ← 𝐷0 ≫ 1 // compute and shift vertical delta vectors
17 𝑉𝑁 ← 𝑋 & 𝐻𝑃
18 𝑉𝑃 ← 𝐻𝑁 ∣ ∼ (𝑋 ∣ 𝐻𝑃)

19 if 𝑝𝑜𝑠 ≤ 𝑚 − 𝑐 then // scoring and output
20 errors ← errors+ 1 − (𝐷0 ≫ (𝑤 − 1)) & 1
21 else
22 𝑠 = (𝑤 − 2) − 𝑝𝑜𝑠 − (𝑚 − 𝑐 + 1)
23 errors ← errors+ (𝐻𝑃 ≫ 𝑠) & 1
24 errors ← errors− (𝐻𝑁 ≫ 𝑠) & 1
25 if 𝑝𝑜𝑠 ≥ 𝑚 − 𝑐 and errors ≤ 𝑘 then
26 report occurrence ending at 𝑝𝑜𝑠

Before the pattern bitmasks can be used to compute the next 𝐷 vector, they need to
be shifted by 1 bit to the right and for 𝑝𝑜𝑠 + 𝑐 < 𝑚 in one bitmask bit 𝑤 must be set to
represent the next pattern character 𝑝[𝑝𝑜𝑠+𝑐]. This is done in line 11. Eventually, errors
must be tracked properly. As long as the second last cell of 𝐷 is within the DP matrix
the last bit of 𝐷0 is used to track errors down the left-most band diagonal in line 20.
Otherwise, the horizontal deltas of the last matrix row are used in lines 23 and 24 to
update errors.

To speed up the veri ication of false positive match candidates, we use the property
that cell values along a DP diagonal aremonotonically increasing from top to bottom and
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errors can only decrease along the last matrix row. The last row contains 𝑛+ 𝑐−𝑚 band
cells and thus the search can be stopped if errors > 𝑘 + 𝑛 + 𝑐 −𝑚.

We compared our algorithm with an unbanded implementation of Myers’ [1999] al-
gorithm combined with the optimization proposed by Ukkonen [1985], and banded and
unbanded implementations of Sellers [1980] algorithm. The average veri ication times
per pattern character on DNA and ASCII alphabets are shown in Figure 6.9. Hyyrö’s al-
gorithm could not be compared as an implementation was not publicly available.
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Figure 6.9: Average veri ication time per read character required to verify a genomic sub-
string of 110% the read length. We compared banded and unbanded vari-
ants of the algorithms by Myers [1999]; Sellers [1980] on different alphabets
|Σ| ∈ {5, 256} and read lengths. The banded algorithms use a band width of
10% the read length. The gray bars are split into preprocessing (shaded) and
search (unshaded) times of Myers’ algorithm.
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Algorithm 6.3: M _L A (𝑡, 𝑝, 𝑘, 𝑤, 𝑐)
input : text 𝑡 ∈ Σ∗, pa ern 𝑝 ∈ Σ∗, errors 𝑘 and band parameters 𝑤, 𝑐
output : text end posi ons of matches with up to 𝑘 errors

1 foreach 𝑥 ∈ Σ do // initialize pattern bitmasks
2 𝐵[𝑥] ← 0
3 𝑆[𝑥] ← 0
4 for 𝑗 ← max(𝑐 − 𝑤, 0) to 𝑐 − 1 do
5 𝐵 𝑝[𝑗] ← 𝐵 𝑝[𝑗] 0 10
6 ⋮

7 for 𝑝𝑜𝑠 ← 0 to 𝑛 − 1 do

8 if 𝑝𝑜𝑠 + 𝑐 ≤ 𝑚 then // shift and update pattern bitmasks

9 𝐵 𝑝[𝑝𝑜𝑠 + 𝑐] = 𝐵 𝑝[𝑝𝑜𝑠 + 𝑐] ≫ 𝑝𝑜𝑠 − 𝑆 𝑝[𝑝𝑜𝑠 + 𝑐] 10
10 𝑆 𝑝[𝑝𝑜𝑠 + 𝑐] = 𝑝𝑜𝑠
11 𝐵 = 𝐵 𝑡[𝑝𝑜𝑠] ≫ 𝑝𝑜𝑠 − 𝑆[𝑡 ]

12 𝑋 ← 𝐵 ∣ 𝑉𝑁 // compute horizontal delta vectors
13 ⋮

Optimization for large alphabets. As shifting all pattern bitmasks in every sliding step
takes 𝒪(|Σ|𝑛) time¹, Algorithm 6.2 should only be used for small alphabets, e.g. the DNA
alphabet. For large alphabets, a small adaptation shown in Algorithm 6.3 can be made
that results in an overall running time of 𝒪(𝑚 + 𝑛 + |Σ|)¹. In every step only one pat-
tern bitmask, i.e. 𝐵 𝑝[𝑝𝑜𝑠 + 𝑐] , is required to compute 𝐷0 and in only one bitmask, i.e.
𝐵 𝑡[𝑝𝑜𝑠] , bit 𝑤 is set. We can omit to shift all other bitmasks by recording the number
of yet to be conducted bit shifts in 𝑆 and perfom the omitted shifts at once before reading
(line 11) or updating (line 9) a pattern bitmask.

6.7 Paired-endmapping

In the paired-end sequencing protocol, DNA is fractionated into double-stranded frag-
ments having lengths within a certain interval, e.g. 200–500 bp in the Illumnia protocol.
Each fragment is sequenced from both 5’-ends and yields a pair of two reads (𝑙, 𝑟) ∈
Σ∗×Σ∗, see Figure 6.10. To determine the genomic origin of a read pair (𝑙, 𝑟), we consider
the two sets of all matches of 𝑙 and 𝑟 and call a pair of matches from both sets valid if the
following holds:

1. 𝑙 and 𝑟 alignwith up to 𝑘 errors each to opposite strands of the reference sequence.

2. They are aligned in correct orientation, i.e. the 3’-ends of both matches point to-
ward each other.

¹ assuming that 𝑤 is constant
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Figure 6.10: Paired-end reads (𝑙 , 𝑟 ) are sequenced from both 5’-ends of double-stranded
DNA fragments. As in most sequencing technologies the originating strand of
a mate is unknown, pair matches must be searched on both strands.

3. The library size is retained, i.e. given amean library size𝜇 and a tolerated deviation
𝛿, the genomic distance 𝑑 of both 5’ends is in the interval 𝑑 ∈ [𝜇 − 𝛿..𝜇 + 𝛿].

In most paired-end protocols the originating strand of a read is unknown. Hence, there
are two possible orientations a valid pair match can have, see Figure 6.10.

We extended RazerS to search all valid pair matches. Given a set of paired-end reads
ℛ ⊂ Σ∗ × Σ∗, it scans the reference genome from left to right in parallel with two ilters
having the distance of theminimal tolerated distance 𝜇−𝛿. Each ilter searches formatch
candidates of one of the two reads of all pairs. In order to be able to scan the same strand
with the two ilters, we reverse-complement the right reads irst. Additionally, we record
in a queue all preceding matches of the left ilter within a distance of 2𝛿. Only if the right
ilter inds a match candidate whose mate match candidate is stored in the queue both
candidates are veri ied. This guarantees that veri ications are only done if both candi-
dates are within the correct distance. If for a right read match multiple enqueued left
readmatches exist, we select matches with aminimal number of errors and among these
the one with a minimal deviation from the library size 𝜇.

As an optimization we use a lookup table to determine in constant time whether at
least one match candidate of a left read is contained in the queue and link all candidates
of the same read. Each candidate is veri ied one time at most and negatively veri ied
candidates are removed from the linked list.

6.8 Match processing

The overlapping parallelograms of the SWIFT ilter or the multiple seeds the pigeon-
hole ilter may ind in a single read match, result in multiple identical or nearly identical
matches found in the veri ication step. To ilter these duplicates, we regularly search for
matches of the same read that have an identical begin or end position and keep only those
with a minimal number of errors. Additionally we use a heuristic in the pigeonhole ilter,
that for multiple seeds on the same diagonal only one candidate region is generated.

If the user speci ies a maximal number 𝑀 of matches per read, we sort all matches
ascendingly by the number of errors and remove all but the irst𝑀matches of each read.
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For a read, the number of errors 𝑒 in the 𝑀-th match is used to dynamically adjust the
ilter and veri ier in order to search only for matches with less than 𝑒 errors. If 𝑒 equals
0 the read can be disabled completely.

There is another general ambiguity inherent to alignments with gaps that is related
to the question which matches are different. Due to indels, a match with 𝑒 errors, where
𝑒 < 𝑘, has adjacent matches with at most 𝑒 + 1, 𝑒 + 2,… , 𝑘 errors. An intuitive approach
would be to output only matches with a local minimum of errors. However there can
be multiple local minima even separated by matches with more than 𝑘 errors that share
the same alignment trace. In [Holtgrewe et al., 2011] we approach this problem more
formally and require that two distinctmatches have disjunctive optimal alignment traces
andare separatedbyoptimal alignmentswithmore than𝑘 errors. We implemented these
criteria in the veri ication step such that RazerS outputs all distinct matches. For more
details, we refer to [Holtgrewe et al., 2011].

6.9 Parallelization

We parallelized RazerS using OpenMP [Chandra et al., 2001], a C++ language extension
for shared memory parallel programming. To map reads in parallel with a ixed number
of 𝑡 threads, the set of reads is divided into 𝑡 subsets of equal size which are statically
assigned one-to-one to each thread. Each thread uses its own 𝑞-gram index and ilter
to search candidate matches of the read subset. We use open addressing indices (Sec-
tion 5.4) which in total require 𝒪(|ℛ|)memory independent of the number of threads.

The parallel mapping of reads is performed window-wise in alternating phases of
iltration and veri ication. We therefore partition both strands of the reference sequences
into windows of equal length𝑊, e.g.𝑊 = 500,000 bp. The threads simultaneously start
iltering the irst window of one strand and collect match candidates. Each thread that
completed the iltration of a window divides the set of found candidates into packages of
con igured size, e.g. 100 candidates, or larger if the number of packages would exceed a
maximal number, e.g. 100 packages. The packages are appended to a global queue (green
boxes in Figure 6.11).

To realize a dynamic load-balancing, we allow threads that are behind others with
iltration to immediately proceed with the next window. All other (leading) threads ver-
ify enqueued packages until the queue is empty. Found matches (blue boxes in Fig-
ure 6.11) are returned to the thread that enqueued the package, which ilters duplicates
and improves iltration parameters for reads with a suf icient number of matches (see
Section 6.8). To save memory, the threads regularly append their found matches to a
global external memory array of matches.

6.10 Experimental results

To evaluate the performance of RazerS, we conducted a number of experiments on sim-
ulated and real-world data and compared it with the best-mappers Bowtie 2, BWA, and



120

compaction
at the end

filtration verification

mask on
writeback

queue

collect window
matches

T1

T2

Figure 6.11: Parallelization in RazerS. The set of reads is equally distributed over the set of
threads 𝑇 . Each thread ilters the reference window-wise and adds veri ica-
tion packages (green) to a queue. Before processing the next window leading
threads verify packages from the queue with dynamic load balancing. Dupli-
cate matches are masked by each thread and the remaining matches (blue)
are appended to a global array of matches.

Soap 2 aswell as the all-mappers Hobbes, mrFAST, and SHRiMP2. For running time com-
parison, we ran the toolswith 12 threads and used local disks for I/O.We used default pa-
rameters, except where stated otherwise. Read mappers that accept a maximal number
of errors (mrFAST, Hobbes, Soap 2) were con igured with the same error rate as RazerS.
For a fair comparison with best-mappers, we con igured RazerS in a second variant to
also output one best match per read. See Section A.3 for the exact parametrization.

The involved real-world read sets are published in the European Nucleotide Archive
[Leinonen et al., 2011] and are given by their SRA/ENA id. As references we used whole
genomes of E. coli (NCBI NC_000913.2), C. elegans (WormBaseWS195), D. melanogaster
(FlyBase release 5.42), and human (GRCh37.p2). The mapping times were measured on
a cluster of nodeswith 72GBRAMand 2 Intel Xeon X5650 processors (eachwith 6 cores)
per node running Linux 3.2.0.

6.10.1 Comparing the SWIFT and pigeonhole ilters

RazerS provides support for two string metrics (Hamming and edit distance) and two
ilter variants (SWIFT and pigeonhole ilter). To investigate which ilter performs best
on which kind of input and metric, we conducted an experimental evaluation of the time
required to map different real datasets for varying mapping settings.

For this reason, we compared the mapping times of both ilters and ran RazerS with
100% and 99% sensitivity for reads of lengths 30, 50, 70, and 100 bp for the references
of E. coli, C. elegans, and chr. 2 of humanwith error rates between 0 and 10%using Ham-
ming and edit distance. To reduce in luences from the operating systemwemeasured the
running times excluding I/O.

Figure 6.12 shows the running time ratios betweenmappingwith the pigeonhole and
SWIFT ilter, where blue cells indicate a faster pigeonhole ilter. We observe that for edit
distance, the pigeonhole ilter always leads to shorter running times than the SWIFT il-
ter. For Hamming distance, the pigeonhole ilter is well suited for low error rates (up to
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reference read length read set ID original length

E. coli 100 ERR022075 100
E. coli 70 ERR022075 100
E. coli 50 ERR022075 100
E. coli 30 ERR032371 36
C. elegans 100 SRR065390 100
C. elegans 70 SRR065390 100
C. elegans 50 SRR065390 100
C. elegans 30 SRR107574 34
human chr. 2 100 ERR012100 101
human chr. 2 70 SRR029194 88
human chr. 2 50 SRR029194 88
human chr. 2 30 ERR003244 37

Table 6.2: This table gives information on which datasets were used when creating the ex-
perimental maps (Figure 6.12). If original length and read length 𝑚 are not
equal then the irst𝑚 bases were used.

6%), while the SWIFT ilter yields bettermapping times for higher error rates. Astonish-
ingly, the factors between the two methods range from 1:32 to 32:1. The differences in
mapping times can be explained by the different characteristics of both ilters. Compared
to SWIFT, the simpler but less speci ic pigeonhole ilter requires no counting and hence
less processing overhead which compensates the increased number of veri ications for
low error rates. With an increase in error rate the speci icity of both ilters deteriorates
equally for edit distance. For Hamming distance, gapped shapes compensate this degra-
dation and make the SWIFT ilter much more speci ic than the pigeonhole ilter which is
based on ungapped 𝑞-grams.

6.10.2 Analyzing the sensitivity estimation accuracy

We verify the correctness of both iltration sensitivity estimations by assessing the dis-
crepancy between estimated and empirical sensitivity for the following two scenarios,
where the irst one serves as a sanity check:

(1) Simulated data. We simulate DNA sequence reads using position-dependent er-
ror probabilities and group them according to the number of implanted errors. After
mapping the reads to the reference sequence we de ine the empirical sensitivity for each
group as the proportion of reads that could be mapped back to their genomic origin. Us-
ing the same error distribution as for simulation, we compute the estimated sensitivity
as described in Section 6.5.1.

(2) Real data. We map the set of reads once with 100% sensitivity and keep as ref-
erence matches only those reads that map uniquely. Again, we group them according to
the number of errors and determine the empirical sensitivity as for simulated data. The
expected sensitivity is computed using the a posteriori probabilities (Section 6.5.3).
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Figure 6.12: Experimental map for reference sequences of E. coli, C. elegans, and chr. 2 of human.
For read sets from different organisms we compared the time between mapping with
the pigeonhole and SWIFT ilter, while varying read length, string metric, error rate,
and sensitivity. Only the mapping time was measured to eliminate the variance of
the I/O time on the cluster as much as possible. RazerS was run with 12 threads.
The color of each cell indicates the ratio of the running time between the pigeonhole
and the SWIFT variant, where the pigeonhole variant was faster for blue cells. Ratios
less/greater than 1:32/32:1 are plotted as 1:32/32:1.



123

0 20 40 60 80 100

0
20

40
60

80
10

0

Hamming distance

estimated loss rate (%)

em
pr

ic
al

 lo
ss

 r
at

e 
(%

)

1 error 2 errors

−
20

−
10

0
10

20

m
ea

n 
re

la
tiv

e 
di

ffe
re

nc
e 

(%
)

0 20 40 60 80 100

0
20

40
60

80
10

0

edit distance

estimated loss rate (%)

em
pr

ic
al

 lo
ss

 r
at

e 
(%

)

1 error 2 errors

−
20

−
10

0
10

20

m
ea

n 
re

la
tiv

e 
di

ffe
re

nc
e 

(%
)

0 20 40 60 80 100

0
20

40
60

80
10

0

Hamming distance, simulated

estimated loss rate (%)

em
pr

ic
al

 lo
ss

 r
at

e 
(%

)

1 error 2 errors

−
20

−
10

0
10

20

m
ea

n 
re

la
tiv

e 
di

ffe
re

nc
e 

(%
)

0 20 40 60 80 100

0
20

40
60

80
10

0

edit distance, simulated

estimated loss rate (%)

em
pr

ic
al

 lo
ss

 r
at

e 
(%

)

1 error 2 errors

−
20

−
10

0
10

20

m
ea

n 
re

la
tiv

e 
di

ffe
re

nc
e 

(%
)

Figure 6.13: Comparison of estimated and empirical SWIFT ilter loss rates (loss rate =
1 − sensitivity) varying weight 𝑞 = 8,… , 14 and threshold 𝑡 = 1,… , 20. The
dashed line re lects the mean of relative differences 1 − empirical loss rate

estimated loss rate
of all

estimated loss rates below a varying level.

SWIFT ilter

Using the two protocols, we irst examined the SWIFT ilter sensitivity for simulated
36 bp reads and for a subset of the 36 bp reads in SRR001815. We inspected both Ham-
ming as well as edit distance sensitivity and did the mapping for all ungapped shapes of
weight 𝑞 where 8 ≤ 𝑞 ≤ 14 and all thresholds 𝑡 where 1 ≤ 𝑡 ≤ 20.

As a measure of accuracy we use the relative difference between empirical and es-
timated loss rate. We observe a very good agreement for Hamming distance (see Fig-
ure 6.13). For expected loss rates between 0 and 10% the mean relative difference for
simulated aswell as real data is below 0.1%. Considering edit distance, the expected loss
rates overestimate the empirical loss. Between0and10%of expected loss themean rela-
tive difference is below 4% for simulated and below 2.8% for real data. For edit distance
the SWIFT parallelograms are broader and producemore random 𝑞-gram hits compared
to Hamming distancemappingwhere the parallelograms are single diagonals. This leads
to morematches than expected. The discrepancy for simulated data is slightly more pro-
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Figure 6.14: Comparison of estimated and empirical pigeonhole ilter loss rates varying
seed length 𝑞 = 16,… , 31 and the seed overlap 𝑞−Δ = 0,… , 10. Analogously
to Figure 6.13, the dashed line re lects the mean of relative differences.

nounced. This can be explained by the observation that simulated matches are not nec-
essarily optimal, i.e. reads can bemapped with less errors than originally implanted (e.g.
an insertion next to a deletion will be aligned as one replacement). Most notably, in all
cases the empirical sensitivities are higher than expected, thereby yielding better map-
ping results than estimated.

Pigeonhole ilter

Second, we repeated the two protocols for the pigeonhole ilter for simulated and real
10M ly reads of length 75 bp (SRR060093) and 10M human reads of length 100 bp
(ERR012100). Therefore, we mapped the read sets with edit distance and used a (𝑞, Δ)-
seed ilter while varying the 𝑞-gram length 𝑞 = 16,… , 31 and the 𝑞-gram overlap 𝑞−Δ =
0,… , 10.

The results in Figure 6.14 show a high level of agreement for simulated reads with a
mean relative difference below 1% for loss rates between 0 and 10%. On real data the
predicted loss rates between 0 and 10% show a mean relative difference of 3% on the



125

ly and 14% on the human read set. We explain this deviation by an observed correla-
tion of sequencing errors at adjacent positions towards the end of the read, whereas our
model assumes independence of errors. This error correlation has also been observed in
[Dohm et al., 2008] andmay be the result ofmoleculeswhich are out of phase formultiple
cycles in the sequencing process and lead to interferences with signals of adjacent bases.
However, this correlation shows no negative in luence as in none of our experiments the
effective sensitivity was overestimated by our model.

6.10.3 Achieved speedup

To evaluate how much our implementation bene its from widely available multi-core ar-
chitectures, wemapped a relatively large dataset (10M reads of set ERR012100) against
chr. 2 of the human genome. We ran RazerS with 1, 2, 4, and 8 threads (dynamic load
balancing). The results were compared with the trivial parallelization (static load bal-
ancing) of splitting the read set into 𝑡 parts of equal size and running 𝑡 separate RazerS
processes in parallel that use one thread each.

Both the runs with dynamic and static load balancing required about 89.5min with
one thread. Mapping reads with dynamic load balancing scaled almost linearly with
speedups of 1.95, 3.95, and 7.46 for 2, 4, and 8 threads. Static load balancing scaled
worse: The speedups were 1.90, 3.63, and 6.61. With 8 threads we effectively gained
onemore processor corewith our dynamic balancing scheme compared to the static load
balancing.

6.10.4 Rabema benchmark results

Next, we used the Rabema benchmark [Holtgrewe et al., 2011] (v1.1) for a thorough eval-
uation and comparison of read mapping sensitivity. With Mason [Holtgrewe, 2010] we
simulated 100 k reads of length 100 bp from the whole human genome and distributed
sequencing errors like in a typical Illumina experiment (default settings). In the follow-
ing, we will denote RazerS in edit distance mode using the pigeonhole ilter with a sensi-
tivity rate of 𝑥 percent as R-𝑥, e.g. R-100 for full sensitivity.

The benchmark contains the categories all, all-best, any-best, and recall and was per-
formed with a maximal error rate of 5%. In the all-category all matches with up to 5%
errors have to be found. In the categories any-best and all-best a mapper has to ind for
each read any or all matches with minimal edit distance. The category recall requires a
mapper to ind the original location of each read, which is a measure independent of the
used scoring model (edit-distance or quality-based). For each category and mapper the
Rabema benchmark determines the average fraction of found matches per read.

To compare the sensitivity fairly, we con igured readmappers as best-mappers and as
all-mappers if possible (BWA, Bowtie 2, and RazerS).We parametrized the best-mappers
for high sensitivity and multiple matches. We do not consider running time here, since
best-mappers are not designed for inding all matches and consequently consume more
time (up to 3 hours in a run compared to several minutes). The aim here was to investi-
gate sensitivity and recall.
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method all all-best any-best recall
be

st
-m

ap
pe

rs
Bow e 2 92.04 99.18 98.72 96.80

93.44 81.94 40.19 96.16 97.79 97.85 95.80
94.83 93.37 88.86 98.08 100.00 99.96 97.55

96.62 94.93 90.46 95.94 98.01 97.72 95.55
94.24 92.79 89.52

BWA 92.18 99.18 98.72 97.81
94.25 80.92 37.65 96.81 97.79 97.87 97.88

96.59 92.63 83.47 98.81 100.00 99.95 99.81
98.55 94.28 85.37 96.41 97.93 97.69 97.25

95.77 91.98 84.61

Soap 2 65.93 99.18 95.55 91.34
8.67 0.70 0.00 69.89 97.79 94.74 91.37

8.98 0.79 0.00 71.37 100.00 96.78 93.18
9.21 0.81 0.00 69.91 98.05 94.62 91.20

11.85 1.41 0.36

R-100 93.30 99.18 98.73 97.93
95.60 85.81 44.15 97.96 97.79 97.88 98.03

98.00 98.27 97.93 100.00 100.00 100.00 100.00
100.00 100.00 100.00 97.80 98.00 97.85 97.75

97.65 97.70 97.69

R-95 93.10 99.18 98.73 97.93
95.49 84.76 42.82 97.75 97.79 97.88 98.03

97.88 97.03 94.97 99.79 100.00 100.00 100.00
99.89 98.74 97.00 97.60 98.03 97.85 97.74

97.52 96.56 94.99

al
l-m

ap
pe

rs

Bow e 2 95.69 99.98 99.91 99.45
97.99 90.69 55.14 98.85 99.74 99.79 98.61

98.21 97.55 93.84 99.16 100.00 99.98 99.01
98.63 97.94 94.17 98.54 99.74 99.58 98.27

97.64 96.87 94.40

BWA 95.89 99.96 99.88 99.49
97.13 87.79 64.11 97.98 98.81 99.01 99.02

97.83 93.95 85.20 98.82 100.00 99.95 99.82
98.56 94.34 85.37 97.80 99.03 98.96 98.75

97.35 93.43 86.36

Hobbes 96.56 99.41 99.00 98.76
97.80 93.20 73.05 97.08 97.23 96.59 97.01

97.38 98.16 97.42 98.01 97.92 97.51 97.96
98.43 99.12 98.46 96.41 95.49 95.84 96.54

97.03 97.98 97.79

mrFAST 99.97 100.00 100.00 100.00
100.00 99.99 99.53 99.97 100.00 100.00 100.00

100.00 100.00 99.10 99.97 100.00 100.00 100.00
100.00 100.00 99.13 99.97 100.00 100.00 100.00

99.99 100.00 99.18

SHRiMP 2 96.53 99.87 99.82 99.53
98.37 92.58 64.63 99.50 99.34 99.50 99.60

99.64 99.65 98.32 99.85 99.87 99.90 99.91
99.89 99.84 98.57 99.25 99.35 99.30 99.24

99.30 99.09 98.48

R-100 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00

100.00 100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00 100.00

100.00 100.00 100.00

R-95 99.54 100.00 100.00 100.00
99.89 98.67 95.11 99.79 100.00 100.00 100.00

99.89 98.71 96.96 99.79 100.00 100.00 100.00
99.89 98.74 97.00 99.79 100.00 100.00 100.00

99.89 98.77 97.17

Table 6.3: Rabema benchmark results. Rabema scores in percent (average fraction of
matches found per read). Large numbers are the total scores in each Rabema
category and small numbers show the category scores separately for reads with

0 1 2
3 4 5 errors.

The results are shown in Table 6.3. As expected, the all-mappers generally perform
better than the best-mappers. Also, as expected, mappers lose more of the high-error
locations than low-error locations. Surprisingly, Bowtie 2 and BWA are better than the
all-mapper Hobbes. Soap 2 is low sensitive to reads with more than 2 errors as it al-
lows no indels and at most 2 mismatches in total. By chance it aligns some of the reads
with more errors as it replaces each N in the reads by a G. R-100 is the most sensitive
method, followed by mrFAST (which is not fully sensitive for higher error rates), R-95,
SHRiMP2, and Bowtie 2. Evenwhen con igured as a best-mapper (i.e. only reporting one
best match), RazerS achieves the best scores.

6.10.5 Variant detection results

The next experiment analyzes the applicability of RazerS and other read mappers in se-
quence variation pipelines. Similarly to the evaluation in [David et al., 2011], we gener-
ated 5 million read pairs of length 2 × 100 bp with sequencing errors, SNPs, and indels
from thewhole human genome such that each read has an edit distance of atmost 5 to its
genomic origin. To distribute sequencing errors according to a typical Illumina run, we
used the read simulator Mason with the default pro ile settings. The reads (pairs) were
grouped according to the numbers of contained SNPs and indels, where the group (𝑠, 𝑖)
consists of reads (pairs) with 𝑠 SNPs and 𝑖 indels in total. We mapped the reads both as
single and paired-end reads and measured the sensitivities separately for each class and
read mapper.

A read (pair)wasmapped correctly if an alignment (paired alignment) has been found
within 10 bp of the genomic origin. It is considered tomap uniquely if only one alignment
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was reported by the mapper. For each class we de ine recall to be the fraction of all con-
tained reads (pairs) andprecision the fraction of uniquelymapped reads (pairs) thatwere
mapped correctly. Table 6.4 shows the results for each read mapper and class for single-
end (Table 6.4a) and paired-end reads (Table 6.4b). An extended version of this table is
given in Section A.4 on page 158.

Comparing the all-mappers results, R-100 shows the highest recall and precision val-
ues onboth the single andpaired-enddatasets. mrFAST is also full sensitive on the single-
end dataset but has a low recall value of 8% for pairs with 5 bp indels. SHRiMP2 shows
full precision in all classes and experiments but misses some non-unique alignments.
Hobbes appears to have problems with indels and shows the lowest sensitivities in the
all-mapper comparison.

Surprisingly, R-100 is the most sensitive best-mapper even in the non-variant class
(0,0) where the simulated qualities could possibly give quality-basedmappers an advan-
tage. For paired-end reads where matches are also ranked by their deviation from the
library size, R-100 is even more sensitive than the all-mappers Hobbes and mrFAST. As
observed in [David et al., 2011], quality-based mappers like Bowtie 2, BWA, and Soap 2
are not suited to reliably detect the origin of readswith variants. Their recall values dete-
rioratewithmore variants as they prefer alignmentswheremismatches can be explained
by sequencing errors instead of natural sequence variants. The low sensitivity of Soap 2
is again due to its limitation to at most 2 mismatches.

6.10.6 Performance comparison

In the last experiment, we compare the real-world performance of RazerS with other
read mappers. To this end, we mapped four different sets of 10 million Illumina read
pairs of length 2×100 bp from E. coli, C. elegans, ly, and human, as well as six simulated
datasets consisting of 1million simulated read pairs of length 2×200 bp, 2×400 bp, and
2 × 800 bp from ly and human to their reference genomes. We mapped the reads both
as single and paired-end reads with 4% error rate and measured running times, peak
memory consumptions, mapped reads (pairs), and reads (pairs) mapped with minimal
edit distance. We compared RazerS in default mode with other all-mappers and con ig-
ured it to output only one best match per read for the best-mapper comparison. Since
mrFAST supports no shared-memory parallelization, we split the reads into packages of
500 k reads and mapped them with 12 concurrent processes of mrFAST. Hobbes’ large
memory consumption also required tomap the reads package-wise butwith a single pro-
cess and 12 threads.

For the evaluationweuse the commonly usedmeasure of percentage ofmapped reads
(pairs), i.e. the fraction of reads (pairs) that are reported as aligned in the result ile of
the mapper. However, as some mappers report alignments without constraints on the
number of errors, we also determine the fraction of reads (pairs) whose best match has
an error rate of at most 0%, …, 4% (small numbers in the mapped reads (pairs) column
in Tables 6.5 and 6.5b).

We call a read (pair) 𝜀-mappable, if it is aligned with an error rate of 𝜀 by at least one
mapper and 𝜀 is the smallest such value. A mapper correctly maps an 𝜀-mappable read
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(0,0) (2,0) (4,0) (1,1) (1,2) (0,3)
method prec. recl. prec. recl. prec. recl. prec. recl. prec. recl. prec. recl.

be
st
-m

ap
pe

rs Bow e 2 97.6 97.3 94.6 92.0 92.6 82.5 95.3 93.3 93.5 92.3 96.1 95.4
BWA 98.2 97.9 97.6 95.3 94.9 85.1 97.4 90.9 97.1 80.3 96.3 66.5
Soap 2 98.1 82.9 97.4 31.0 0.0 0.0 90.6 6.2 0.0 0.0 0.0 0.0
R-100 98.4 98.4 98.2 98.2 96.3 96.3 98.1 98.1 97.9 97.9 97.6 97.6
R-95 98.4 98.3 98.2 97.3 96.1 91.7 98.2 97.6 97.9 97.6 97.5 97.5

al
l-m

ap
pe

rs

Hobbes 99.9 99.9 99.9 99.9 100.0 100.0 100.0 99.8 100.0 93.6 99.6 90.5
mrFAST 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SHRiMP 2 100.0 99.4 100.0 99.7 100.0 99.7 100.0 99.5 100.0 99.2 100.0 99.6
R-100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
R-95 100.0 99.9 100.0 99.0 100.0 95.4 100.0 99.4 100.0 99.6 100.0 99.9

(a) single-end reads

(0,0) (4,0) (8,0) (2,2) (2,4) (0,5)
method prec. recl. prec. recl. prec. recl. prec. recl. prec. recl. prec. recl.

be
st
-m

ap
pe

rs Bow e 2 98.8 98.8 98.3 96.4 100.0 92.0 98.5 97.6 98.3 97.5 98.5 98.3
BWA 99.0 98.4 99.2 93.5 100.0 80.0 98.5 79.9 100.0 65.2 99.1 69.0
Soap 2 98.7 95.5 98.9 53.2 0.0 0.0 97.3 53.3 96.6 46.3 98.5 79.7
R-100 99.0 99.0 99.0 99.0 100.0 100.0 99.7 99.7 99.6 99.6 99.0 99.0
R-95 99.0 98.9 99.1 96.3 100.0 88.0 99.1 97.9 100.0 99.2 98.7 98.6

al
l-m

ap
pe

rs

Hobbes 97.5 93.2 98.0 94.6 100.0 100.0 96.5 80.1 99.5 86.0 97.7 85.2
mrFAST 98.8 98.8 98.9 98.9 100.0 100.0 99.1 99.1 98.8 98.8 91.8 7.8
SHRiMP 2 100.0 99.7 100.0 99.9 100.0 100.0 100.0 99.7 100.0 99.6 100.0 99.7
R-100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
R-95 100.0 99.9 100.0 97.3 100.0 88.0 100.0 98.8 100.0 99.2 100.0 99.9

(b) paired-end reads

Table 6.4: Variant detection results. For single-end (a) and paired-end reads (b) we show
the percentages of found origins (recall) and fraction of unique reads mapped to
their origin (precision) grouped by reads with 𝑠 SNPs and 𝑖 indels (𝑠, 𝑖).

(pair), if it reports at least one alignment with an error rate of 𝜀. For each mapper we
measured the percentage of correctlymapped reads (pairs), i.e. the fraction of 𝜀-mappable
reads (pairs) for 𝜀 ∈ [0, 4%] that are correctly mapped. For a more detailed analysis we
additionally give the percentages separately for sets of 𝜀 = 0, 𝜀 ∈ (0, 1%], …, 𝜀 ∈ (3, 4%].

The results for the ly and human Illumina datasets aswell as the simulated 800 bp ly
dataset are shown in Tables 6.5a and 6.5b. More detailed tables of all datasets are given
in Section A.5 on page 159.

As can be seen, R-100 aligns all readswith theminimal number of errors and achieves
the best percentage of correctlymapped reads followed by R-95 in all experiments. A de-
crease in the speci ied sensitivity results in a decrease in running time and on the human
genome R-95 is up to twice as fast as R-100. As in the previous experiments, the actual
sensitivity is always higher than speci ied.

All-mapper comparison. For the single-end 100 bp datasets mrFAST is as sensitive
but 4 times slower than R-100. On paired-end reads it is less sensitive and apparently
has problems to map long reads with an increased number of absolute errors. In the
results of the Illumina paired-end datasetswe in fact noticed some alignmentswithmore
errors than asserted by mrFAST and an error rate above 4%. Thus the number of totally
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dataset
SRR497711 ERR012100 simulated,𝑚 = 800

D.melanogaster H. sapiens D.melanogaster
me correctly mapped mapped reads me correctly mapped mapped reads me correctly mapped mapped reads

method [min:s] reads [%] [%] [min:s] reads [%] [%] [min:s] reads [%] [%]

be
st
-m

ap
pe

rs

Bow e 2 2:00 99.65 100.00 99.77 99.02
97.65 94.92 85.71 52.08 67.27 73.62

76.88 78.81 5:37 99.62 100.00 99.75 96.02
92.88 87.86 96.72 75.99 87.81 90.54

91.85 92.76 13:48 96.73 97.47 99.67 98.05
87.95 85.17 99.99 0.03 41.07 73.95

82.31 90.03

BWA 5:35 98.96 100.00 99.57 98.40
90.72 82.08 79.37 52.08 67.24 73.57

76.62 78.31 13:45 99.66 100.00 99.50 98.01
93.39 88.92 93.53 75.99 87.78 90.59

91.91 92.82 5:38 74.96 97.47 98.62 82.47
0.00 0.00 68.09 0.03 40.61 68.09

68.09 68.09

Soap 2 1:55 91.78 100.00 96.24 89.35
0.09 0.02 72.49 52.08 66.73 72.48

72.49 72.49 2:34 96.45 100.00 94.94 86.54
0.32 0.16 89.73 75.99 87.24 89.73

89.73 89.73 0:54 41.21 97.47 67.99 28.10
0.22 0.00 38.14 0.03 28.17 37.88

38.14 38.14

R-100 1:28 100.00 100.00 100.00 100.00
100.00 100.00 78.92 52.08 67.31 73.69

76.97 78.92 85:56 100.00 100.00 100.00 100.00
100.00 100.00 92.99 75.99 87.84 90.67

92.02 92.99 1:17 100.00 100.00 100.00 100.00
100.00 100.00 90.43 0.03 41.13 74.13

82.65 90.43

R-95 1:26 99.87 100.00 100.00 100.00
99.11 96.34 78.82 52.08 67.31 73.69

76.94 78.82 43:16 99.96 100.00 100.00 100.00
99.30 96.92 92.95 75.99 87.84 90.67

92.01 92.95 1:15 100.00 100.00 100.00 100.00
100.00 100.00 90.43 0.03 41.13 74.13

82.65 90.43

al
l-m

ap
pe

rs

Hobbes 4:51 96.49 96.55 96.46 96.94
96.28 93.86 76.16 50.28 64.98 71.16

74.33 76.16 265:48 95.97 95.94 96.14 96.39
96.10 94.63 89.24 72.90 84.30 87.02

88.33 89.24 – – –

mrFAST 4:01 100.00 100.00 100.00 100.00
100.00 100.00 78.92 52.08 67.31 73.69

76.97 78.92 413:40 100.00 100.00 100.00 100.00
100.00 100.00 92.99 75.99 87.84 90.67

92.02 92.99 5:16 65.25 93.14 95.65 59.59
0.00 0.00 69.32 0.03 39.34 69.32

69.32 69.32

SHRiMP 2 23:40 99.83 99.99 99.99 99.74
98.71 96.33 89.91 52.07 67.30 73.66

76.92 78.83 1312:09 99.81 99.89 99.83 99.39
98.29 96.81 99.06 75.90 87.74 90.56

91.91 92.87 796:06 95.70 97.47 99.75 97.60
82.95 80.14 99.31 0.03 41.04 73.67

81.63 89.14

R-100 1:51 100.00 100.00 100.00 100.00
100.00 100.00 78.92 52.08 67.31 73.69

76.97 78.92 118:26 100.00 100.00 100.00 100.00
100.00 100.00 92.99 75.99 87.84 90.67

92.02 92.99 1:20 100.00 100.00 100.00 100.00
100.00 100.00 90.43 0.03 41.13 74.13

82.65 90.43

R-95 1:45 99.87 100.00 100.00 100.00
99.11 96.34 78.82 52.08 67.31 73.69

76.94 78.82 58:13 99.96 100.00 100.00 100.00
99.30 96.92 92.95 75.99 87.84 90.67

92.01 92.95 1:20 100.00 100.00 100.00 100.00
100.00 100.00 90.43 0.03 41.13 74.13

82.65 90.43

(a) single-end reads

dataset
SRR497711 ERR012100 simulated,𝑚 = 800

D.melanogaster H. sapiens D.melanogaster
me correctly mapped mapped pairs me correctly mapped mapped pairs me correctly mapped mapped pairs

method [min:s] pairs [%] [%] [min:s] pairs [%] [%] [min:s] pairs [%] [%]

be
st
-m

ap
pe

rs

Bow e 2 6:32 98.94 100.00 98.82 96.96
95.26 90.21 81.94 32.50 60.48 69.88

72.47 72.94 10:51 99.51 99.97 99.80 97.70
94.37 84.85 94.19 15.04 77.57 85.16

86.58 86.89 39:07 93.64 – 99.20 93.91
83.32 73.14 99.70 0.00 24.15 57.94

69.85 71.10

BWA 13:33 97.47 100.00 98.48 91.02
82.51 68.36 73.41 32.51 60.41 69.30

71.57 71.92 34:35 98.84 99.99 99.66 93.72
84.75 63.84 88.06 15.04 77.50 84.86

86.16 86.39 11:26 56.28 – 95.85 49.28
0.00 0.00 46.44 0.00 23.32 40.44

40.44 40.44

Soap 2 5:29 88.67 100.00 93.05 59.12
17.90 0.01 72.77 32.58 59.65 65.93

66.51 66.62 8:24 91.58 99.99 97.68 43.05
9.61 0.01 87.47 15.07 77.33 81.46

81.70 81.77 12:36 23.55 – 49.58 13.91
0.002 0.00 28.23 0.00 12.38 17.64

17.83 18.00

R-100 9:01 100.00 100.00 100.00 100.00
100.00 100.00 72.95 32.50 60.63 70.04

72.52 72.95 176:29 100.00 100.00 100.00 100.00
100.00 100.00 86.93 15.04 77.65 85.27

86.62 86.93 2:22 100.00 – 100.00 100.00
100.00 100.00 71.16 0.00 24.22 58.38

70.03 71.16

R-95 6:56 99.78 100.00 100.00 99.28
97.44 93.24 72.80 32.50 60.63 69.98

72.39 72.80 135:44 99.89 100.00 100.00 99.47
97.74 91.70 86.84 15.04 77.65 85.23

86.55 86.84 2:19 100.00 – 100.00 100.00
100.00 100.00 71.16 0.00 24.22 58.37

70.02 71.16

al
l-m

ap
pe

rs

Hobbes 8:43 84.78 84.27 86.02 84.71
78.85 77.84 62.48 27.39 51.81 59.99

62.08 62.48 89:35 95.11 95.68 95.57 92.20
85.12 89.86 84.05 14.39 74.46 81.95

83.53 84.05 – – –

mrFAST 8:26 100.00 100.00 99.99 99.99
99.99 99.98 73.16 32.50 60.63 70.04

72.52 72.95 779:12 99.94 99.98 99.96 99.82
99.56 98.73 87.79 15.04 77.64 85.26

86.61 86.91 10:47 44.19 – 91.35 27.29
0.00 0.00 49.69 0.00 24.50 43.35

43.35 43.35

SHRiMP 2 47:07 99.67 100.00 99.93 98.65
97.39 93.03 87.36 32.50 60.62 69.95

72.48 72.93 2762:32 99.74 99.91 99.88 99.07
97.44 90.67 97.51 15.03 77.57 85.15

86.53 86.83 1617:26 91.64 – 99.35 91.81
77.75 64.58 98.62 0.00 24.12 57.14

68.89 70.27

R-100 7:59 100.00 100.00 100.00 100.00
100.00 100.00 72.95 32.50 60.63 70.04

72.52 72.95 184:27 100.00 100.00 100.00 100.00
100.00 100.00 86.93 15.04 77.65 85.27

86.62 86.93 2:30 100.00 – 100.00 100.00
100.00 100.00 71.16 0.00 24.22 58.38

70.03 71.16

R-95 7:36 99.78 100.00 100.00 99.28
97.44 93.24 72.80 32.50 60.63 69.98

72.39 72.80 166:22 99.89 100.00 100.00 99.47
97.74 91.70 86.84 15.04 77.65 85.23

86.55 86.84 2:29 100.00 – 100.00 100.00
100.00 100.00 71.16 0.00 24.22 58.37

70.02 71.16

(b) paired-end reads

Table 6.5: Performance results of single-end (a) and paired-end (b) mapping. The left
side shows the results for the irst 10M× 100 bp reads (pairs) of two Illumina
datasets. The dataset on the right consists of 1M× 800 bp simulated reads
(pairs) with a stretched Illumina sequencing error pro ile. In large we show the
percentage of totallymapped reads (pairs) and in small the percentages of reads
(pairs) that are mapped with up to 0 1% 2%

3% 4% errors. Correctly mapped reads
(pairs) show the fractions of reads (pairs) that were mapped with the overall
minimal number of errors. There were none of the 2 × 800 bp pairs without er-
ror (denoted by a “–” in the 0-error class). Hobbes could not be run on reads
longer than 100 bp.

mapped pairs is slightly higher compared to R-100 on the Illumina paired-end reads. On
single-end reads Hobbes is about 2 times slower and only on human paired-end reads
faster (up to 2 times) than R-100. It maps 5–15% less reads correctly and also the total
number of mapped reads is less. Hobbes is not able to map reads longer than 100 bp and
some single-end read packages could not be mapped due to repeated crashes (4 of 20
for C. elegans and 1 of 20 for human). As SHRiMP2 does not use a maximal error rate it
outputs more mapped reads than R-100 in total. However, the percentages of correctly
mapped reads is less in all experiments. This could be due to its different scoring scheme,
where twomismatches cost less than opening a gap, but it does not explain why it misses
reads with 0 errors. SHRiMP2 is 5–23 times slower than R-100 on the Illumina datasets
and up to 600 times slower on the 800 bp datasets.
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Best-mapper comparison. Compared to other best-mappers, R-95 is faster or com-
parably fast on all E. coli, C. elegans, and ly datasets. For human reads of length 100 bp or
200 bp it is 2–3 times slower than BWA and equally fast or faster for longer reads. BWA
and Bowtie 2 could not be runwith amaximal error rate and hencemapmore reads than
R-100 in total, but less correctly (in terms of edit distance) as they optimize for errors at
low-quality bases. With longer reads, BWA becomes less sensitive and BWA-SWmight be
the better choice. However, we could not compare BWA-SW as it does not align the reads
from end to end. As seen before, Soap 2 is low sensitive to reads withmore than 2 errors.

Memory requirement. The memory consumption of RazerS can be determined as
follows: As all contigs of the reference genome are loaded and searched one after another,
the size 𝐶 of the largest contig is one summand. Another summand is the total number
of bases in the input read set, e.g. 𝑛 ⋅ 𝑚 for 𝑛 reads of length 𝑚. Each thread ilters a
subset of reads and uses a 𝑞-gram index whose size is linear in the number of contained
𝑞-grams. Therefore, the overall size of the indices is 𝒪(𝑛 ⋅ (𝑚 − max𝑄)) when using a
SWIFT ilter with 𝑞-grams of shape𝑄, or𝒪(𝑛 ⋅𝑚/Δ)when using a (𝑞, Δ)-seed pigeonhole
ilter. Finally, enough space for the matches has to be allocated, which can be estimated
by 𝒪(𝑛 ⋅ 𝛼)where 𝛼 is the average number of matches per read. Hence the peak memory
usage of RazerS is 𝒪(𝐶 + 𝑛 ⋅ (𝛼 + 𝑚)).

In practice, RazerS requires 9 or 15GB formapping 10million reads of length 100 bp
to the human genome in best-mode or all-mode. For the same input set, Bowtie 2 uses
3.3 GB, BWA uses 4.5 GB, Soap 2 uses 5.4 GB, SHRiMP2 uses 38GB. Due to the lack of
parallelization or a high memory consumption we ran mrFAST and Hobbes on packages
of 500 k reads where they required 11GB and 70GB of memory. Section A.5 on page 159
contains tables that also show the full memory requirements.

RazerS’ memory consumption grows linearly with the number of reads andmatches,
i.e. about 10GB are required for each additional 10M×100 bp reads. A large read set, e.g.
an Illumina HiSeq run, can be mapped on clusters or low memory machines by splitting
it into blocks of appropriate size and mapping them separately. The inal mapping result
can be obtained by concatenating the mapping results of each block.



C

7 Frequency String Mining

In this chapter, we propose the deferred frequency index [Weese and Schulz, 2008], an ap-
plication of the lazy suf ix tree to ef iciently solve arbitrary frequency based stringmining
problems in multiple databases.

After de ining the string frequency, frequency predicates, and some well-known fre-
quency string mining problems in Section 7.2, we introduce a novel discriminatory fre-
quency predicate the entropy substring mining problem for multiple databases based on
the notion of entropy from information theory. The predicate is motivated by the emerg-
ing substringmining problem thatwas introduced by Chan et al. [2003] for twodatabases.
The idea is to ind patterns that are representative for a small subset of databases, possi-
bly one, and are absent in the rest of the databases.

We de ine the monotonic hull in Section 7.3 that allows to prune the set of suf ix tree
nodes to a required minimum. In the subsequent two sections, we irst introduce the
optimal algorithm by Fischer et al. [2006] and then give an in-depth presentation of our
algorithm, which exploits the stability of counting sort used for the node expansion of the
lazy suf ix tree to compute the substring frequencies as a byproduct.

At last, we show in Section 7.6 how our approach can be applied to mine multiple
databaseswith a variety of frequency constraints. Weapplyournewpredicate and search
for species speci ic protein domains in large protein databases. In experiments over a
broad range of pattern domains and for different types of frequency string mining prob-
lems, we demonstrate that the deferred frequency index (DFI) is the fastest currently
available algorithm for frequency based string mining. Although the algorithm of Fis-
cher et al. [2006] has in theory a better memory consumption, we can show that our
implementation uses in practice less memory. The two memory improved variants by
Fischer et al. [2008] and Kügel and Ohlebusch [2008] use less memory in practice but
are prohibitively slow or limited to conjunctive predicates, respectively.

7.1 Related work

There have been several approaches in the context of mining exact substrings with fre-
quency constraints. Raedt et al. [2002] introduced the irst 𝒪(𝑛 ) algorithm based on
the level-wise Apriori algorithm [Raedt et al., 2002], where 𝑛 is the total number of char-
acters. This algorithm is not suitable for large databases due to repeated scanning of
the whole databases. Subsequently, Lee and Raedt [2005] proposed to build a suf ix trie
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work time memory multiple pruning optimal hull

Raedt et al. [2002] 𝒪(𝑛 ) 𝒪(𝑛 ) - • -
Lee and Raedt [2005] 𝒪(𝑛 ) 𝒪(𝑛 ) • - -
Chan et al. [2003] 𝒪(𝑛 ) 𝒪(𝑛) - • -
Fischer et al. [2005] 𝒪(𝑛 ) 𝒪(𝑛) • - -
Fischer et al. [2006] 𝒪(𝑛) 𝒪(𝑛) • - -
DFI 𝒪(𝑛 ) 𝒪(𝑛) • • •

Table 7.1: Existing frequency string mining algorithms and their characteristics

from the irst database and stream the remaining databases against it. A more ef icient
algorithm based on suf ix trees was suggested by Chan et al. [2003] incorporating three
different pruning criteria. Fischer et al. [2005] were the irst to use an enhanced suf ix
array (Chapter 3) of the concatenated databases.

Until 2006 all approaches calculated the frequencies of substrings in the databases in
a naive manner. Fischer et al. [2006] developed a strategy to compute the frequencies of
substrings in optimal time via range minimum queries [Fischer and Heun, 2006], which
led to the irst optimal𝒪(𝑛) time algorithm for frequency based stringmining. Themem-
ory consumption of this approach was subsequently improved by Kügel and Ohlebusch
[2008] and Fischer et al. [2008]. The details of the algorithms are explained in Section
7.4.

Fischer et al. [2006] achieved optimality at the expense of complicating the algorithm
and adding another Θ(𝑛) memory for every database. In addition, all algorithms of Fis-
cher et al. need to construct the enhanced suf ix array completely to calculate the fre-
quencies of all substrings afterwards and cannot bene it from search space pruning.

Our approach proposed in [Weese and Schulz, 2008] can ef iciently solve any fre-
quency based string mining problem on an arbitrary number of databases. It is not only
simple but also retains the problem-speci ic search space pruning of the algorithms by
Raedt et al. [2002]; Chan et al. [2003], see Table 7.1. The frequencies are calculated dur-
ing the construction of a suf ix tree over all databases, which enables for the irst time
to limit the index construction to a problem-speci ic minimum referred to as the optimal
monotonic hull (Section 7.3). Most of the previous approaches and problem de initions
focussed on two databases (foreground and background database). In this work, we gen-
eralize the well-known emerging substring mining problem and devise a novel problem
de inition for mining multiple databases.

7.2 De initions

In the following, we denote a non-empty set of strings𝒟 ⊆ Σ∗ as database given an alpha-
bet Σ. For arbitrary strings over Σwe de ine their frequency and support in a database.

De inition 7.1 (frequency and support). Given a database𝒟. The frequency and the sup-
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𝒟 = {abab, babb}
𝒟 = {baab, aaab}
𝒟 = {cbab, baba}
𝒟 = {abac, bbbb}

𝜙 b ba bab aab

freq(𝜙,𝒟 ,…𝒟 ) (2,2,2,2) (2,1,2,1) (2,0,2,0) (0,2,0,0)
supp(𝜙,𝒟 ) 1 1 1 0
supp(𝜙,𝒟 ) 1 0.5 0 1
growth𝒟 →𝒟 (𝜙) 1 2 ∞ 0
𝐻(𝜙,𝒟 ,… ,𝒟 ) 1 0.96 0.25 0

Table 7.2: Example for the de inition of frequency vector, support, growth, and entropy.

port of a string 𝜙 ∈ Σ∗ in 𝒟 is de ined as follows:

freq(𝜙,𝒟) ∶= 𝑑 ∈ 𝒟 𝜙 ⪯ 𝑑 , (7.1)

supp(𝜙,𝒟) ∶= freq(𝜙,𝒟)
|𝒟| . (7.2)

Obviously it holds 0 ≤ supp(𝜙,𝒟) ≤ 1 and the support can be considered as the
normalized frequency. For multiple databases we de ine the frequency vector.

De inition 7.2 (frequency vector). Given multiple databases 𝒟 ,… ,𝒟 , the frequency
vector of a string 𝜙 ∈ Σ∗ is an element of ℕ and de ined as:

freq(𝜙,𝒟 ,… ,𝒟 ) ∶= freq(𝜙,𝒟 ), … , freq(𝜙,𝒟 ) . (7.3)

On ℕ we de ine a partial order “≤”, such that for two vectors 𝑢, 𝑣 ∈ ℕ holds 𝑢 ≤
𝑣 ⇔ ∀ ∈[ .. ]𝑢 ≤ 𝑣 . Table 7.2 gives an example for the support value and frequency
vector.

7.2.1 Predicates

A frequency predicate on a set of databases 𝒟 ,… ,𝒟 is de ined as a boolean function
overℕ with the additional constraint that the function yields false for the null vector. In
general, our approach is applicable to the task of inding patterns𝜙 ∈ Σ∗ whose frequen-
cies satisfy a predicate pred on a given database set𝒟 ,… ,𝒟 . We de ine the solution set
Th as a function of pred [Raedt et al., 2002]:

Th(pred) = 𝜙 ∈ Σ∗ pred (freq(𝜙,𝒟 ,… ,𝒟 )) is true . (7.4)

Please note that the solution set solely contains substrings of the given databases, as the
null vector does not satisfy the frequency predicate. In the following, we consider three
speci ic examples of frequency string mining problems and de ine their corresponding
frequency predicates in the next section:

Problem 7.1 (frequent pattern mining problem). Given𝑚 databases𝒟 ,… ,𝒟 of strings
over Σ and 𝑚 pairs of frequency thresholds (min ,max ), … , (min ,max ), the frequent
patternmining problem is to ind all strings𝜙 ∈ Σ∗ that satisfymin ≤ freq(𝜙,𝒟 ) ≤ max ,
for all 1≤ 𝑖 ≤ 𝑚.
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This problem is conjunctive (explained in Section 7.2.3) and has been considered in
a series of research papers [Fischer et al., 2005; Raedt et al., 2002; Lee and Raedt, 2005].
The next problem considers discriminatory strings for two databases 𝒟 ,𝒟 ∈ Σ∗. 𝒟 is
usually called positive (foreground) set, where𝒟 is the negative (background) set. As a
measure of difference the growth-rate from𝒟 to 𝒟 for a string 𝜙 is de ined as:

growth𝒟 →𝒟 (𝜙) ∶=
( ,𝒟 )
( ,𝒟 ) , if supp(𝜙,𝒟 ) ≠ 0

∞, else.
(7.5)

Problem 7.2 (emerging substring mining problem). Given a support condition 𝜌 , where

|𝒟 | ≤ 𝜌 ≤ 1, and a minimum growth rate 𝜌 > 1, the emerging substring mining prob-
lem [Chan et al., 2003] is to detect all strings 𝜙 ∈ Σ∗, such that supp(𝜙,𝒟 ) ≥ 𝜌 and
growth𝒟 →𝒟 (𝜙) ≥ 𝜌 .

The minimum support rate 𝜌 limits the solution space to representative strings of
database 𝒟 , where 𝜌 is a discrimination threshold. Patterns which satisfy the condi-
tions of Problem 7.2 are called emerging substrings. If the growth rate of the pattern is
in inite it is called jumping emerging substring, because it is a major discriminator be-
tween the databases under investigation. For example, Kobyliński and Walczak [2009]
use jumping emerging substrings for image classi ication. The problem is asymmetric and
the algorithm will return different outputs depending on the order of the input datasets.
Compared to Problem7.1, the emerging substringmining problem ismore suitable to con-
trast datamining, as the growth rate re lects the speci icity of a pattern for the foreground
dataset more adequately than absolute frequency bounds.

Example 7.1. We now apply this problem to databases 𝒟 and 𝒟 given in Table 7.2
with 𝜌 = 1 and 𝜌 = 2. The corresponding frequency predicate pred for the emerg-
ing substring mining problem is a function that maps the frequency vector (𝑑 , 𝑑 ) =
freq(𝜙,𝒟 ,𝒟 ) of a string 𝜙 ∈ Σ∗ to a truth value as follows:

pred(𝑑 , 𝑑 ) ∶= (𝑑 ≥ 𝜌 ⋅ |𝒟 |) ∧ (𝑑 ⋅ |𝒟 | ≥ 𝜌 ⋅ 𝑑 ⋅ |𝒟 |)
= (𝑑 ≥ 2) ∧ (𝑑 ≥ 2𝑑 ) .

(7.6)

The set of patterns whose frequencies satisfy pred is Th(pred) = {bab, ba}. b for example
is not an emerging substring, because supp(b, 𝒟 ) = 1 but growth𝒟 →𝒟 (b) = 1 < 𝜌 .

In addition to [Weese and Schulz, 2008], we de ine a new discriminatory frequency
predicate based on entropy. Entropy is a concept from information theory that measures
the information content of a probability distribution [Cover and Thomas, 1991]. Given a
discrete random variable X, with 𝑝 = 𝑃(𝑋 = 𝑖) the entropy H is de ined as:

𝐻(𝑋) = − 𝑝 ln 𝑝 . (7.7)

In accordance, we de ine the entropy𝐻 of a pattern 𝜙 in a set of databases𝒟 ,… ,𝒟 as:

𝐻(𝜙,𝒟 ,… ,𝒟 ) = − supp(𝜙,𝒟 )
∑ supp(𝜙,𝒟 ) log

supp(𝜙,𝒟 )
∑ supp(𝜙,𝒟 ) . (7.8)
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As probability distribution we use in (7.8) the normalized support distribution and use
𝑚 as logarithmic base to normalize the entropy to a maximal value of 1.

Problem 7.3 (entropy substring mining problem). Given a support condition 𝜌 and a
maximum entropy bound 𝛼 with 0 < 𝜌 ≤ 1 and 0 ≤ 𝛼 ≤ 1, the entropy substring
mining problem is to detect all strings 𝜙 ∈ Σ∗, such that ∀ ∈[ .. ] supp(𝜙,𝒟 ) ≥ 𝜌 and
𝐻(𝜙,𝒟 ,… ,𝒟 ) ≤ 𝛼.

The entropy substring mining problem is symmetric and returns the same patterns in-
dependently of the order of the input datasets. Patterns 𝜙 that are abundant in a small
subset of databases and occur with low support in the complement set will tend to have
a low entropy 𝐻(𝜙,𝒟 ,… ,𝒟 ), whereas a uniform support over all databases will result
in the highest entropy of value 1. The problem can be considered as a symmetric gener-
alization of the emerging substring mining problem to 2 and more databases. Table 7.2
shows the entropy values of different support distributions.

7.2.2 Monotonicity

We will now introduce the monotonicity property of frequency predicates that we use
later to prune the search space of our algorithm. Examples 7.2–7.4 will show that each
frequency predicate of the Problems 7.1–7.3 contains a monotonic subpredicate.

De inition 7.3. If for a frequency predicate pred ∶ ℕ → {true, false} holds that:

∀ , ∈ℕ , pred(𝑢) ⇒ pred(𝑣) , (7.9)

then pred is calledmonotonic.

Proposition 7.1. For a monotonic¹ frequency predicate pred on databases
𝒟 ,… ,𝒟 ⊆ Σ∗ it holds that:

∀ , ∈ ∗ , ⪯ pred(freq(𝜓,𝒟 ,… ,𝒟 )) ⇒ pred(freq(𝜙,𝒟 ,… ,𝒟 )) . (7.10)

Proof. Each occurrence of 𝜓 is also an occurrence of 𝜙. Thus, freq(𝜓,𝒟 ,… ,𝒟 )
≤ freq(𝜙,𝒟 ,… ,𝒟 ) holds.

Example 7.2. As seen in Example 7.1 the frequency predicate for the emerging substring
mining problem is:

pred(𝑑 , 𝑑 ) = (𝑑 ≥ 𝜌 ⋅ |𝒟 |) ∧ (𝑑 ⋅ |𝒟 | ≥ 𝜌 ⋅ 𝑑 ⋅ |𝒟 |) . (7.11)

Generally, pred is not monotonic as shown in Example 7.1. Recall that ba is emerging
although b is not. However, if we consider only the left inequality:

pred (𝑑 , 𝑑 ) ∶= (𝑑 ≥ 𝜌 ⋅ |𝒟 |) , (7.12)

¹ Please note that Raedt et al.; Fischer et al. consider pattern predicates andwe consider frequency pred-
icates. The properties of both are reciprocal and therefore they call anti-monotonicwhatwe callmonotonic.
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pred is monotonic, as for all 𝑢, 𝑣 ∈ ℕ , 𝑢 ≤ 𝑣 holds 𝑢 ≥ 𝜌 ⋅ |𝒟 | ⇒ 𝑣 ≥ 𝜌 ⋅ |𝒟 |.
Obviously it holds that pred ⇒ pred , a fact which we use later. In the next two exam-
ples we show the predicates pred and corresponding monotonic predicates pred with
pred ⇒ pred for the remaining two problems.

Example 7.3. Predicates for the frequent pattern mining problem:

pred(𝑑) = (min ≤ 𝑑 ≤ max ) ∧ … ∧ (min ≤ 𝑑 ≤ max ) , (7.13)
pred (𝑑) ∶= (min ≤ 𝑑 ) ∧ … ∧ (min ≤ 𝑑 ) . (7.14)

Example 7.4. Predicates for the entropy substring mining problem:

pred(𝑑) = ∀ ∈[ .. ]
𝑑
|𝒟 | ≥ 𝜌 ∧ 𝑑

|𝒟 | ⋅ 𝜔(𝑑) log
𝑑

|𝒟 | ⋅ 𝜔(𝑑) ≤ 𝛼 , (7.15)

pred (𝑑) ∶= ∀ ∈[ .. ]
𝑑
|𝒟 | ≥ 𝜌 , with 𝜔(𝑑) = 𝑑

|𝒟 | . (7.16)

7.2.3 Conjunctive predicates

If a predicate pred on databases𝒟 ,… ,𝒟 can be decomposed into a conjunction of pred-
icates 𝑝 on 𝒟 such that holds:

pred(freq(𝜙,𝒟 ,… ,𝒟 )) = 𝑝 (freq(𝜙,𝒟 )) ∧ … ∧ 𝑝 (freq(𝜙,𝒟 )) , (7.17)

we call pred a conjunctive predicate and pred , … , pred its factors. It is easy to see that
the predicate of Problem 7.1 is conjunctive whereas the predicates of Problem 7.2 and
7.3 are not.

7.3 Monotonic hull

We now show how to connect arbitrary frequency predicates with suf ix trees. To do so,
we give a theoretical description of the minimal set of nodes that need to be expanded.

De inition 7.4. Given frequency predicates pred and predhull. predhull is called a mono-
tonic hull of pred, if it is monotonic and pred ⇒ predhull holds.

The most trivial monotonic hull of each frequency predicate pred is predhull ≡ true.
If we take a look at the generalized suf ix tree 𝑇 of databases 𝒟 ,… ,𝒟 , we make the
following observations:

Proposition 7.2. Let pred be an arbitrary frequency predicate and pred an arbitrary
monotonic frequency predicate on 𝒟 ,… ,𝒟 . For all pairs of parents 𝛼 and children 𝛼𝛽
in 𝑇 it holds that:
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1. If pred(freq(𝛼𝛽,𝒟 ,… ,𝒟 )) is true then pred(freq(𝜒, 𝒟 ,… ,𝒟 )) is true for each
string 𝜒 with 𝛼 ≺ 𝜒 ⪯ 𝛼𝛽.

2. If pred (freq(𝛼𝛽,𝒟 ,… ,𝒟 )) is true then pred (freq(𝛼, 𝒟 , … , 𝒟 )) is true.

Proof. The frequency vectors of 𝛼𝛽 and 𝜒 with 𝛼 ≺ 𝜒 ⪯ 𝛼𝛽 must be equal. If not, there
would be a branching node between𝛼 and𝛼𝛽which contradicts the assumption𝛼would
be the parent of 𝛼𝛽. Hence 1. holds. 2. is a direct consequence of Proposition 7.1 as 𝛼 is
a substring of 𝛼𝛽.

In consequence of Proposition 7.2, it is suf icient to evaluate pred only on the nodes
of 𝑇 to compute the set Th(pred). For every monotonic hull predhull of pred the set of
nodes, whose frequencies satis ies predhull, is a connected subgraph of 𝑇, which if non-
empty contains the root node. Outside of this subgraph there is no node ful illing pred.
Our algorithmexclusively traverses this subgraph to compute the setTh(pred). Hence,we
are interested in keeping the subgraph as small as possible, leading to the next de inition:

De inition 7.5. predhull is called the optimal monotonic hull of pred, if it is a monotonic
hull of pred, and for each monotonic hull pred’hull of pred, it holds that predhull ⇒ pred’hull.

In other words, if predhull is optimal, the corresponding subgraph is minimal.

7.4 The linear-time algorithm by Fischer et al.

In Section 7.1, we have summarized previous algorithms for frequency based stringmin-
ing problems. Wewill give here a more detailed description for the optimal algorithm by
Fischer, Heun, and Kramer (FHK algorithm) and two variants that have been proposed
to reduce the memory consumption of the algorithm.

7.4.1 The original algorithm

For a given string 𝑠 and a corresponding suf ix array 𝗌𝗎𝖿𝗍𝖺𝖻, the lcp table 𝗅𝖼𝗉 stores the
length of the longest common pre ix between lexicographically adjacent suf ixes (Sec-
tion 3.1). It can be shown that the length of the longest common pre ix between non-
adjacent suf ixes of rank 𝑖 and 𝑗, with 𝑖 < 𝑗, is the minimum over lcp values between 𝑖 +1
and 𝑗:

𝗅𝖼𝗉[𝑖] ∶= lcp 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ], 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] , (7.18)
lcp 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ], 𝑠𝗌𝗎𝖿𝗍𝖺𝖻[ ] = min

∈( .. ]
𝗅𝖼𝗉[𝑘] . (7.19)

To answer so-called range minimum queries of the form:

RMQ𝗅𝖼𝗉(𝑖, 𝑗) = arg min
∈( .. ]

𝗅𝖼𝗉[𝑘] (7.20)

in constant time and determine the lcp value of arbitrary suf ix pairs, Fischer and Heun
[2006] proposed a data structurewhich can be constructed in𝒪(𝑛) time using 𝑜(𝑛) extra
memory.
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The main concept of the algorithm by Fischer, Heun, and Kramer [2006] is based on
the following idea. Let𝒮𝒟 (𝜔)be the total number of occurrences of a string𝜔 in database
𝒟 = {𝜙 ,… , 𝜙|𝒟 |} and the so-called correction term 𝒞𝒟 (𝜔) be de ined as the number of
recurrences of 𝜔 in the same string of𝒟 :

𝒮𝒟 (𝜔) ∶=
∈𝒟

𝑗 𝜙[𝑗..𝑗 + |𝜔|) = 𝜔 , (7.21)

𝒞𝒟 (𝜔) ∶=
∈𝒟

max 0 , 𝑗 𝜙[𝑗..𝑗 + |𝜔|) = 𝜔 − 1 . (7.22)

Then the frequency freq(𝜔,𝒟 ) equals 𝒮𝒟 (𝜔) − 𝒞𝒟 (𝜔). Consider the generalized suf ix
tree of the databases𝒟 ,… ,𝒟 and let𝜔 be the concatenation string of a branching node
𝜔 with children 𝜔𝛼 ,… ,𝜔𝛼 . Then the following holds:

𝒮𝒟 (𝜔) = 𝒮𝒟 (𝜔𝛼 ) , (7.23)

𝒞𝒟 (𝜔) ≥ 𝒞𝒟 (𝜔𝛼 ) . (7.24)

To enable the recursive computation of 𝒞, Fischer et al. precompute an auxiliary array 𝒞
for each of the𝑚 databases using 𝗅𝖼𝗉 range minimum queries which takes Θ(𝑚 ⋅ 𝑛) time
and memory in total:

𝒞𝒟 (𝜔) = 𝒞𝒟 (𝜔) + 𝒞𝒟 (𝜔𝛼 ) . (7.25)

They observed that 𝒞𝒟 (𝜔) can be calculated by adding up for every string in𝒟 the num-
ber of its lexicographically adjacent suf ix pairs that begin with 𝜔. Consequently, 𝒞𝒟 (𝜔)
is equal to the number of suf ixes that share a longest-common-pre ix 𝜔 with their next
greater suf ix in the same database string. 𝒞 can be computed in a linear scan of the suf-
ix array recording for every suf ix the last seen suf ix in the same database string. The
longest common pre ix 𝜔 between both suf ixes is determined by a RMQ and the value
𝒞𝒟 (𝜔) is increased by one².

The recursive computation of 𝒮 and 𝒞 is integrated into a bottom-up traversal of
the suf ix tree (described in Section 3.9). Algorithm 7.1 shows the outline of the whole
linear-time algorithm by Fischer et al. [2006]. Their approach concatenates all strings in
𝒟 ,… ,𝒟 to a single union string and corrects border effects, e.g. miscounting substrings
that cross string borders in the union string.

7.4.2 Space ef icient variants

We will brie ly describe two memory ef icient approaches published by Kügel and Ohle-
busch [2008]; Fischer et al. [2008]which aremodi ications of the original FHK algorithm.

² In fact, Fischer et al. implemented 𝒞𝒟 as a string of length 𝑛 and increase it at any ℓ-index position of
the 𝜔-interval.
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Algorithm 7.1: FHK(𝒟 ,… ,𝒟 , pred)
input : databases 𝒟 ,… ,𝒟 , frequency predicate pred

// preprocessing
1 construct the suffix array SA of the union string over 𝒟 ,… ,𝒟
2 build and preprocess the lcp table for constant me range minimum queries
3 calculate the correc on term auxiliary arrays 𝐶𝒟 , … , 𝐶𝒟

// extraction phase
4 foreach suf ix tree node 𝜔 in postorder DFS do
5 compute 𝒮𝒟 (𝜔) and 𝒞𝒟 (𝜔) using the recurrences (7.23) and (7.25)
6 Freq ← (𝒮𝒟 (𝜔) − 𝒞𝒟 (𝜔), … , 𝒮𝒟 (𝜔) − 𝒞𝒟 (𝜔))
7 if pred(Freq) then
8 output strings 𝜒 with 𝛼 ≺ 𝜒 ⪯ 𝜔, where 𝛼 is the parent node of 𝜔

Themodi ication byKügel andOhlebusch (KO) is only applicable to conjunctive pred-
icates pred like the frequent pattern mining problem and computes separate solution sets
Th(pred ) iteratively for each factor pred on database 𝒟 . After each iteration the so-
lution set Th(pred ) is intersected with the result of previous intersections, as the inal
solution set of a conjunctive predicate is the intersection of all separate solution sets
Th(pred) = ⋂ Th(pred ). The intersection of two solution sets is based on an algo-
rithm for suf ix array merging [Jeon et al., 2005] retaining linear time complexity. The
memory consumption, however, merely depends on the total size of the largest database.

Fischer, Mäkinen, and Välimäki (FMV) decreased the memory consumption of the
original FHK algorithm by compressing the suf ix array [Navarro and Mäkinen, 2007],
the lcp table [Sadakane, 2007], and the RMQ data structure [Fischer and Heun, 2007].
Their approach avoids the precomputation of the correction term auxiliary arrays and
instead computes the values 𝒞𝒟 (𝜔) for nodes 𝜔 on the DFS stack during the traversal
and stores the 𝒮 and 𝒞 numbers in a searchable partial sum data structure [Mäkinen and
Navarro, 2008]. The overall memory consumption of the FMV algorithm is 𝒪(𝑛 log |Σ| +
𝑑 log 𝑛) bits and the runtime is𝒪(𝑛 log 𝑛), where 𝑑 is the overall number of strings in the
databases.

7.5 A fast algorithm based on lazy suf ix trees

This section introduces the deferred frequency index (DFI) which is fundamentally based
on a generalized lazy suf ix tree, i.e. a lazy suf ix tree of multiple sequences as proposed
in Chapter 4. The DFI algorithm constructs only an upper part of a generalized suf ix tree
in a top-down manner using a modi ied wotd algorithm (Algorithm 4.1 on page 66).

7.5.1 The deferred frequency index

Themain idea of our algorithm is to calculate the frequency vector for a tree node during
the node expansion of its parent node in the wotd algorithm. In this way, we are able
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Algorithm 7.2: DFI(𝑇, 𝛼, pred, predhull)
input : unexpanded node 𝛼

1 Freq← A C F (𝛼)
2 foreach 𝑐 ∈ Σ and 𝑅(𝛼𝑐) ≠ ∅ do
3 𝛼𝑐𝛽 ← lcp𝑅(𝛼𝑐)
4 if pred(Freq[𝑐]) then
5 Output strings 𝜒 with 𝛼𝑐 ⪯ 𝜒 ⪯ 𝛼𝑐𝛽
6 if predhull(Freq[𝑐]) then
7 if |𝑅(𝛼𝑐)| = 1 then // leaf node

8 add leaf 𝛼𝑐𝛽 as a child of 𝛼 in 𝑇
9 else // branching node

10 add inner node 𝛼𝑐𝛽 as a child of 𝛼 in 𝑇
11 DFI(𝑇, 𝛼𝑐𝛽, pred, predhull) // recurse into child subtree

to restrict the set of node expansions to the optimal monotonic hull predhull of a given
predicate pred.

Algorithm 7.2 starts with DFI(𝑇, 𝜖, pred, predhull) on a tree 𝑇 consisting of only the
unexpanded root node 𝜖. First, A C F is called for the current node 𝛼 in
line 1. Identically to Algorithm 4.1 on page 66, the set 𝑅(𝛼) is divided into groups 𝑅(𝛼𝑐)
of suf ixes that share the same character 𝑐 ∈ Σ after their commonpre ix𝛼. In addition, an
array Freq, that stores in Freq[c] the frequency vector freq(𝛼𝑐, 𝒟 ,… ,𝒟 ), is returned. In
the next section we explain the implementation details of function A C F .
The longest common pre ix of every non-empty group 𝑅(𝛼𝑐) is determined and assigned
to 𝛼𝑐𝛽 in line 3. If the predicate pred evaluated with the frequency vector Freq[c] is true,
by Proposition 7.2 all strings 𝜒with 𝛼𝑐 ⪯ 𝜒 ⪯ 𝛼𝑐𝛽 belong to Th(pred) and are output. In
line 6 predhull is evaluated on Freq[c]. Only if true is returned, the subtree below the node
𝛼𝑐𝛽 may contain a node 𝛾 with 𝛾 ∈ Th(pred) and will be expanded recursively. If false is
returned, the node 𝛼𝑐𝛽 is not created, as no further subtree expansion is necessary.

Algorithm 7.2 is correct and outputs the set Th(pred) because of the following: For
each database substring 𝜙 there is a path from the root ending in a node or on an edge
to a node. This node has the same frequency vector as 𝜙 and will be visited if it satis ies
predhull andoutput iff it satis iespred. Aspredhull is amonotonic hull, nonode that satis ies
pred is left out by the algorithm. The algorithm consumes 𝒪(𝑛 log 𝑛) time in the average
and 𝒪(𝑛 ) time in the worst case, and 𝒪(𝑛)memory [Giegerich et al., 2003].

For the frequent patternmining problem and the emergingor entropy substringmining
problem one only needs to replace pred and predhull in Algorithm 7.2 with the predicates
deduced in Examples 7.2–7.4, respectively. The monotonic hulls for these problems are
also optimal as Propositions A.1–A.3 prove (see Appendix). Figure 7.1 shows the DFI for
the emerging substring mining problem considered in Example 7.1.
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Figure 7.1: The generalized suf ix tree of our example databases𝒟 and𝒟 . For clarity, we
omitted sentinels $ . Considering the problem of Example 7.1, the DFI would
expand only the white nodes. Grey nodes are not built. The bold nodes ba, bab
represent the emerging substrings. Each node holds the frequency vector of its
corresponding substring (compare the frequencies of b and ba with Table 7.2).

7.5.2 Algorithmic details

In this section, we explain the function A C F in detail (Algorithm 7.3).
The sets𝑅(𝛼) are not actually stored as sets of strings, but as intervals of the string 𝗌𝗎𝖿𝗍𝖺𝖻,
which contains pairs (𝑖, 𝑗) that represent suf ixes 𝑠 . This string is initialized ascendingly
as described in Section 4.2.3. To determine which database a string is part of, we need
a function getDatabaseNo that returns for each sequence number 𝑖 the corresponding
database number 𝑘, with 𝑠 ∈ 𝒟 .

When A C F (𝛼, pred, predhull) is called, 𝗌𝗎𝖿𝗍𝖺𝖻[𝑙..𝑟) contains the start
positions of suf ixes beginningwith𝛼. Each start position corresponds to a suf ix in𝑅(𝛼).
Because 𝛼 is unexpanded, the suf ixes in 𝗌𝗎𝖿𝗍𝖺𝖻[𝑙..𝑟) have been sorted with counting sort
[Cormen et al., 2001] up to the irst |𝛼| characters by previous function calls. As count-
ing sort is stable, the pairs (𝑖, 𝑗) in 𝗌𝗎𝖿𝗍𝖺𝖻[𝑙..𝑟) are in ascending order. In particular, the
corresponding sequence numbers 𝑖 are stored in contiguous blocks. Counting sort di-
vides𝑅(𝛼) into buckets𝑅(𝛼𝑐) for each character 𝑐 ∈ Σ (lines 3–4). The frequency of each
bucket can simply be counted by counting blocks of equal sequence numbers (line 5).

We keep track of three arrays in the size of the alphabet, i.e. |Σ|, namely C, Freq, and
Last. C is the original array from counting sort, and C[𝑐] counts the occurrences of 𝛼𝑐.
Freq stores frequency vectors, and Freq[𝑐][𝑘] determines how often 𝛼𝑐 occurred in dis-
tinct sequences of𝒟 . Last is used to construct Freq (lines 5–8).
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Algorithm 7.3: A C F (𝛼)
input : unexpanded suffix tree node 𝛼
output : freq(𝛼𝑐, 𝒟 ,… ,𝒟 ) for each 𝑐 ∈ Σ
require : 𝗌𝗎𝖿𝗍𝖺𝖻[𝑙..𝑟) stores all suffixes beginning with 𝛼, suffixes from the same

sequence are con guous in the interval
ensure : suffixes from the same sequence are con guous in output intervals

𝗌𝗎𝖿𝗍𝖺𝖻 Bucket[𝑐]..Bucket[𝑐 + 1]
1 ini alize C, Freq, Last with zeros
2 for 𝑘 ← 𝑙 to 𝑟 − 1 do
3 (𝑖, 𝑗) ← 𝗌𝗎𝖿𝗍𝖺𝖻[𝑘] // get sequence number 𝑖 and suffix start position 𝑗
4 if 𝑗 + |𝛼| < |𝑠 | then // ignore $-edges
5 𝑐 ← 𝑠 [𝑗 + |𝛼|]
6 C[𝑐] ← C[𝑐] + 1
7 if Last[𝑐] ≠ 𝑖 then // have we entered a new sequence?
8 Last[𝑐] ← 𝑖
9 𝑑 ← D N (𝑖) // get database number 𝑑 with 𝑠 ∈ 𝒟

10 Freq[𝑐][𝑑] ← Freq[𝑐][𝑑] + 1
// proceed with steps 3 and 4 of counting sort (Cormen et al., 8.2, ll. 6–12)

11 stably sort suffixes 𝗌𝗎𝖿𝗍𝖺𝖻[𝑙..𝑟) by the character at posi on |𝛼|
12 return Freq // now Freq[𝑐] contains the frequency vector freq(𝛼𝑐, 𝒟 ,… ,𝒟 )

7.6 Experimental results

To evaluate the performance of our algorithm, we conducted a number of experiments
with databases of different characteristics. We used a previously compiled set of human
and Drosophila core promoters [Fitzgerald et al., 2006], the UniProt proteome sets of
H. sapiens and M. musculus, release 12.6, and C. elegans and A. thaliana, release 15.6
[UniProt Consortium, 2008], verses of the King James Bible and the Bible in Basic En-
glish, and posts of 20 newsgroups from the UCI Machine Learning Repository [Asuncion
and Newman, 2007]. The alphabet sizes |Σ|, the number of contained sequences, and
references of these databases can be found in Table 7.3.

For our tests we compared our algorithm with the algorithms FHK, KO, and FMV de-
scribed in Section 7.4. All implementations were written in C++ and compiled using the
same compiler options. They run under Linux on an Intel Xeon 3.2 GHzwith 2GB of RAM.
To reduce in luences from the operating system and secondary storage units, the output
was redirected to the null-device, and each experiment was repeated 5 times. We mea-
sured the running time andmemory consumption of both algorithms using the GNU tools
time and memusage. In an additional run we successfully veri ied that the outputs of our
and the other tools are identical.

In the following we compare the performance of our approach with existent tools on
two andmultiple real-world databases. Finally, we analyze the applicability of our newly
introduced entropy-based predicate in an experiment with proteomes of four species.
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Figure 7.2: Runtime comparison of the FHK algorithm [Fischer et al., 2006] and our DFI
implementation for the emerging substring mining problem and the frequent
pattern mining problem. Experiment details are listed in Table 7.3.
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name description |Σ| length [Mb] #seqs source

𝒟 Human Promoters 5 23 15011 Fitzgerald et al.

𝒟 Drosophila Promoters 5 17 10914
𝒟 Human Proteome 24 18 40827 UniProt Consortium
𝒟 Mouse Proteome 24 16 35344
𝒟 King James Bible 128 4.1 31102 English Bible Online
𝒟 Bible in Basic English 128 4.2 31102 http://www.o-bible.com

𝒟 Windows Newsgroup 128 3.9 2000 Machine Learning Repos.
𝒟 Computer Newsgroup 128 3.4 3000 Asuncion and Newman
𝒟 4 Proteomes 24 58 136562 UniProt Consortium
𝒟 20 Newsgroups 128 16 12273 Machine Learning Repos.

Table 7.3: Characteristics for the different databases we used.

7.6.1 Two databases

Of all other approaches the theoretically optimal FHK algorithm [Fischer et al., 2006] has
turned out to be the fastest algorithm in practice for Problem 7.1 and 7.2. Hence, we
used the FHK algorithm as reference for the irst experiment where we compared the
runtime behavior under different parameters. We searched different pairs of databases
for emerging substrings and for the solution of the frequent pattern mining problemwith
different values of 𝜌 and varyingmin , respectively. As 𝜌 andmax had no measurable
in luence on the tested algorithms, only the results for 𝜌 = 5 and max = |𝒟 |/2 are
shown. The results for other values look similar [Fischer et al., 2005]. Wemade no other
restrictions, i.e.max = ∞,min = 0.

Figure 3 shows that our approach is in all cases faster than the FHK algorithm, even
for small values 𝜌 or min when the whole suf ix tree needs to be constructed. As an
example, for 𝜌 = 0.2 the DFI is with 16 seconds on the proteome databases roughly four
times faster than the FHK algorithm. Considering reasonable³ values of 𝜌 < 0.2 and
min < 0.2 ⋅ |𝒟 | our algorithm is 1.5–4 times faster in practice. The runtime peaks for
small values of 𝜌 ormin are due to the high amount of strings in the solution space that
were reported.

In the second experiment we compared running times and memory consumptions
of the DFI, the FHK, and the memory ef icient FMV algorithm for different parameter
settings of the emerging substring mining problem, see Table 7.4. The FMV algorithm is
themostmemory ef icient, as it occupies on average 1.69 times lessmemory than theDFI
and 3.55 times lessmemory than the FHK algorithm. However, this reduction of memory
consumption induces an average increase in running time by a factor of 212 compared
to the DFI. The DFI is generally the fastest.

³ Dong and Li [1999] report that a minimum support of 1%–20% for inding emerging patterns could
contribute signi icantly to knowledge discovery.

http://www.o-bible.com
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parameters databases time [s] memory [MB]
𝜌 𝜌 DFI FHK FMV DFI FHK FMV
0.05 5 DNA Promoters 51 67 6317 469 920 246

0.1 5 DNA Promoters 47 67 6180 468 920 246

0.05 5 Proteomes 22 62 7974 329 779 233

0.1 5 Proteomes 18 62 7949 328 779 233

0.05 5 Newsgroups 3 9 1243 82 167 47

0.1 5 Newsgroups 3 9 1238 81 167 47

Table 7.4: Running times and memory consumption for the emerging substring mining
problem for different parameters on two databases.

It is interesting tonote that theFHKalgorithmaswell as theDFI have an𝒪(𝑛)memory
consumption, but the DFI needs only about half of the memory. The FHK algorithm has
an almost constant running time andmemory consumption as it does not take advantage
of the monotonic pruning of the suf ix tree like our deferred approach does.

7.6.2 Multiple databases

In the third experiment we analyzed the memory behaviour of the Kügel and Ohlebusch
[2008] variant of the FHK algorithm for the conjunctive frequent patternmining problem.
We used an adaptation of the FHK algorithm for more than two databases provided by
Kügel and Ohlebusch. As described in Section 7.4, the memory footprint of the KO algo-
rithm depends only on the size of the largest database and predicate parameters do not
affect the memory and time consumption of the KO algorithm. The DFI is faster by a fac-
tor of 2–20 compared to the KO algorithm and consumes 3–10 times more memory, see
Table 7.5. Generally speaking, the higher the number of databases the better thememory
improvement of the KO algorithm compared to the other algorithms. Interestingly, the
KO algorithm on 4 proteomes consumes lessmemory than the FMV algorithm on 2 of the
4 proteomes.

InTable7.6we list the results of the forth experiment,wherewecompared theperfor-
manceofDFI andFHK for thenew entropy substringminingproblemon several databases.
To do so, we adapted the implementation of the FHK algorithm for the new predicate. As
can be seen, the memory footprint of the DFI is 3–9 times smaller compared to the FHK
algorithm. Thus, the memory improvement of the DFI compared to the FHK algorithm is
higher if more databases are used, considering that in the second experiment with two
databases the memory footprint was two times smaller.

7.6.3 Detection of species speci ic protein domains

We sought out to test the new entropy substring mining problem on a biologically moti-
vated example. For particular biological applications of the frequent patternmining prob-
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parameters databases time [s] memory [MB]
𝑚𝑖𝑛 𝑚𝑎𝑥 DFI FHK KO DFI FHK KO

10 1000 4 Proteomes 78 154 224 660 1848 182

100 5000 4 Proteomes 63 153 224 584 1848 182

500 50000 4 Proteomes 54 153 224 575 1848 182

500 100000 4 Proteomes 52 154 223 575 1848 182

50 1000 20 Newsgroups 7 36 46 176 1526 18

200 1000 20 Newsgroups 4 37 46 175 1526 18

500 5000 20 Newsgroups 2 37 46 145 1526 18

Table 7.5: Running times andmemory consumption for the frequent patternmining prob-
lem for various parameters on multiple databases.

parameters databases time [s] memory [MB]
𝜌 𝛼 DFI FHK DFI FHK
0.001 0.2 4 Proteomes 65 155 629 1848
0.005 0.4 4 Proteomes 57 155 590 1848
0.01 0.7 4 Proteomes 52 156 578 1848
0.01 0.2 20 Newsgroups 59 98 217 1526
0.05 0.2 20 Newsgroups 13 41 178 1526
0.1 0.4 20 Newsgroups 11 40 177 1526

Table 7.6: Running times and memory consumption for the entropy substring mining
problem for various parameters on multiple databases.

lem or the emerging substring mining problem, we refer the reader to [Stöber et al., 1996;
Brāzma et al., 1998; Birzele and Kramer, 2006; Mitašiūnaitė et al., 2008].

Domains are functional substrings of proteins that are conserved in a large set of pro-
teins, which is termed a protein family. We are interested in inding protein families typ-
ical for species. We formulate this as a contrast data mining problem, where we take the
proteomes⁴ of different species and search for protein domains that are speci ic to a small
subset, possibly one, of the species. A low entropy of a pattern 𝜙 re lects speci icity to a
small subset of species, see Table 7.2. The hope is, that such pattern 𝜙 emanates from
real species speci ic protein domains.

We applied the entropy substring mining problem problem to a dataset of four pro-
teomes from different parts of the phylogenetic tree, namely the proteomes ofH. sapiens,
M. musculus, A. thaliana, and C. elegans. For this taskwemodi ied our algorithm to report
only strings 𝜙 ∈ Th(pred) that are not substrings of longer strings 𝛾 ∈ Th(pred) with

⁴ A proteome is the set of all proteins of a given species.
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pattern entropy frequency reference
𝜙 𝐻(𝜙,𝒟 ,… ,𝒟 ) 𝒟 𝒟 𝒟 𝒟
KSDVYSFG 0.230657 8 4 302 7 [Walker, 1994]
KSDVYSFGV 0.254649 4 5 335 14
KSDVYSFG 0.263708 9 6 351 11
KSDVYSFGV 0.356452 8 12 306 15
MAYDRYVAIC 0.338613 94 374 0 0 [Xie et al., 2000],
MAYDRYVAIC 0.343253 97 375 0 0 [Zhang and Firestein, 2002]
MAYDRYVAIC 0.352435 135 493 0 0
MAYDRYVAIC 0.369871 193 632 0 0
MAYDRYVAIC 0.379256 194 634 0 1
PMLNPL 0.377389 98 306 0 0 [Zhang and Firestein, 2002]
PMLNPLIYSLRNKDV 0.378017 79 283 2 0
PMLNPLIYSLRNKDV 0.385805 97 287 0 0
PMLNPLIYSLRNKDV 0.389852 102 294 0 0

Table 7.7: Entropy substring mining on the four proteomes H. sapiens, M. musculus,
A. thaliana, and C. elegans (𝒟 , 𝒟 , 𝒟 , 𝒟 ) with 𝜌 = 0.008 and 𝛼 = 0.39.

freq(𝜙,𝒟 ,… ,𝒟 ) = freq(𝛾, 𝒟 ,… ,𝒟 ). For ease of exposition, we also omitted strings
that are pre ixes of longer strings in the solution set. In Table 7.7 we list the entropy sub-
strings that have been mined using the parameters 𝜌 = 0.008 and 𝛼 = 0.39. All mined
patterns belong to three distinct motifs that we discuss in the next paragraphs.

The substrings with the lowest entropy values are speci ic for the plant A. thaliana.
The KSDVYSFGVmotif is part of thekinasedomain IX in receptor-likeproteinkinases (RLKs)
in higher plants [Walker, 1994]. RLKs constitute a big protein family in higher plants,
alone in A. thaliana there are more than 600 members [Morris and Walker, 2003]. They
are involved in a number of different signaling pathways like cell differentiation, plant
growth, and development.

The other two motifs that are found are abundant in mouse proteins and occur with
a lower frequency in the human proteome, but are absent in the plant and worm pro-
teomes. Both motifs are highly conserved domains of odorant or olfactory receptors
(ORs) inmouse [Xie et al., 2000; Zhang and Firestein, 2002]. ORs are located in cell mem-
branes and are responsible for the detection of odor molecules. The irst motif, MAYDRY-
VAIC, is part of the transition between the transmembrane II domain and the intercellular
loop 2 of ORs in mouse. The second motif, PMLNPLIYSLRNKDV, describes a major part of the
transmembrane domain VII of ORs in mouse. It was shown that these conserved protein
domains are speci ic to Class II ORs in mouse [Zhang and Firestein, 2002]. As mentioned
above, these two motifs do also occur in human proteins and these types of ORs consti-
tute a large protein family that was found to be vertebrate speci ic [Berghard and Dryer,
1998]. Nevertheless, humans have only one-third the number of ORs thanwhat has been
found in mouse [Zhang and Firestein, 2002], re lected by the pattern frequency distribu-
tion in Table 7.7.
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8 Conclusion and FutureWork

In this thesis, we presented data structures and algorithmswith applications in the anal-
ysis of high-throughput sequencing data. We developed a uniform framework for con-
structing and accessing different substring indices of a single or multiple strings in main
or external memory and showed its applicability for indexing multiple whole mammal
genomes. Moreover, we provided algorithms for typical applications based on indices,
e.g. exact and approximate pattern matching and repeat search, and in the last chapters
introduced high-throughput sequencing applications based on two of the proposed in-
dices. To make our framework and tools freely accessible to the research and user com-
munity, we implemented it as part of SeqAn [Döring et al., 2008] a platform-independent
generic C++ template library for sequence analysis. Due to its modularity, it was eas-
ily possible to integrate our framework into other alignment tools [Rausch et al., 2008;
Langmead et al., 2009; Emde et al., 2010; Kehr et al., 2011; Emde et al., 2012; Siragusa
et al., 2013a].

In Chapter 6, we presented RazerS, an ef icient read mapping tool that guarantees to
ind all reads within a user-de ined Hamming or edit distance. In addition, a ixed error
model and a user-de ined loss rate can be used to ind the reads at higher speedwith con-
trolled sensitivity. RazerS hence provides a perfect sensitivity-time tradeoff. Our tool can
also handle paired-end reads as well as arbitrary number of errors and arbitrary read
lengths, which makes it usable for the new or improved technologies that will provide
longer reads. The latter two features are unique among the current implementations. To
provide a shared-memory parallelization we used OpenMP and dynamic load balancing.
Compared to other state-of-art read mappers, RazerS shows the highest sensitivity with
a comparable performance. It is the preferable tool for applications that require a high
sensitivity even in the presence of repeats, e.g. variation detection pipelines. The novel
algorithmic ideas used in RazerS, e.g. lossy iltering with sensitivity control or using a
banded adaptation of Myers’ algorithm for ef icient bit-parallel veri ication, can also be
applied to improve existing readmappers with a similar iltration-veri ication approach.
Many algorithmic components of RazerS were integrated into SeqAn and the whole al-
gorithm was basis of similar tools for local read alignment [Hauswedell, 2009] or the
alignment of miRNA [Emde et al., 2010] or split reads [Emde et al., 2012].

In Chapter 7, we presented a new approach to constraint-based string mining that
outperforms the best-known algorithms by Fischer et al. [2006, 2008]; Kügel and Ohle-
busch [2008] in running time as the experiments show. The better running time can
be attributed to various factors. Most importantly, the optimal monotonic hull of a fre-
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quency predicate is incorporated to prune the search space to a minimum, resulting in
the deferred frequency index (DFI). Moreover, the frequency information is extracted as
a constant time byproduct during the suf ix tree construction. Our algorithm inherits
the good cache locality of the lazy suf ix tree if expanded in a depth- irst search fashion
[Giegerich et al., 2003]. We used the notion of entropy from information theory and in-
troduced a symmetric, discriminatory predicate that generalizes the emerging substring
mining problem for more than two databases. In an experiment with proteomes of four
species we showed that it can be used to mine parts of protein domains that belong to
species speci ic protein families. Generally, the DFI is the preferable algorithm for fre-
quency based stringmining. For huge datasets that the DFI cannot process inmainmem-
ory, space ef icient variants of the FHK algorithm [Fischer et al., 2006] should be consid-
ered. For conjunctive predicates, the KO algorithm [Kügel and Ohlebusch, 2008] is the
next best alternative. For non-conjunctive predicates, the FMV algorithm [Fischer et al.,
2008] can reduce the memory consumption at the price of a high increase in running
time.

Future Work. The work presented in this thesis can be complemented in several as-
pects of future research. First, different compressed indices could be provided to enable
larger texts to be processed in main memory with focus on generic approaches that are
ef icient in practice. In [Grossi et al., 2003; Sadakane, 2003; Navarro andMäkinen, 2007]
the authors devise compressed indices which are based on succinct representations of
the suf ix array or the lcp table. In conjunction with a data structure for constant-time
range-minimum queries as proposed in [Fischer and Heun, 2006], a compressed variant
of the enhanced suf ix array could be integrated into our framework as proposed in [Fis-
cher et al., 2008] and extended to multiple strings. Another memory improvement for
small alphabets completely refrains from using the lcp or child table and instead uses a
binary search to determine the children of a suf ix tree node [Navarro and Baeza-Yates,
2000]. We implemented aprototypeof the FM index [Ferragina et al., 2004]whichproved
its applicability to high-throughput sequencing in different read mapping applications
[Li and Durbin, 2009; Langmead et al., 2009; Langmead and Salzberg, 2012] and allows
to traverse the pre ix trie of a text. Currently, we are integrating it into our framework
and provide pre ix trie iterators to ease the development of FM index based algorithms.
Another interesting direction is dynamic indexing [Salson et al., 2009, 2010], i.e. to up-
date an index according to text changes. This approach not only saves the time required
for constructing an index from scratch, it could also be used to determine and ef iciently
represent the changes a set of similar textswould induce on a reference index. We are de-
veloping a data structure that, instead of applying these changes directly, allows to access
the (virtual) index of each text.

Our read mapping approach is with slight modi ications also applicable to the din-
ucleotide based ABI/SOLiD sequencing technology. Therefore the reference sequence
must be converted into color space, i.e. into a sequence of 4 dinucleotide colors instead of
the 4 DNA bases, and the semi-global alignment of color-space reads could be adapted as
proposed in [Rumble et al., 2009]. Additionally, base-call qualities could not only be used
for sensitivity control, but also to optionally rank the read alignments by their plausibil-
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ity instead of the number of errors [Li et al., 2008a]. We also plan to use SIMD extensions
[Intel, 2011] and hardware accelerators, e.g. GPUs and FPGAs, to massively parallelize
the veri ication of candidate regions.

Depending on the problem at hand, the implementation of our algorithm for fre-
quency string mining could be improved. If the DFI should only be used to output the
result of Th(pred), the memory consumption of the algorithm could be further reduced.
As each node is visited at most once, at any time only nodes of the suf ix tree on the path
from the root to the current node need to be stored. A small alphabet (e.g. DNA) leads to
a dense suf ix treewithmany branching nodes at the top, as observed by Kurtz [1999]. In
that case, an improvement in running time could be expected by replacing the top of the
suf ix tree with a q-gram index and in parallel traverse multiple 𝑞-gram buckets. In this
way, the memory consumption could be improved by keeping in memory only the tra-
versed subtree. Considering additional constraints during the mining process will play
an important role in further algorithmic development, e.g. reducing the solution space of
anymining approach to a succinct but representative set is one of the open challenges, as
mentioned by Han et al. [2007]. For example, Kobyliński and Walczak [2009] aggregate
all minimal jumping emerging substrings to train discriminative image classi iers. The
top down construction of the DFI could limited to right minimal jumping emerging sub-
strings. To check for leftminimalitywould require either the use of suf ix links [Ukkonen,
1995] or an additional post processing step. Another venue is to combine the framework
of frequency based stringmining with probabilistic automata that can be used to classify
sequences, e.g. to build discriminative models as presented by Slonim et al. [2003]. Due
to the ef iciency of the presented approach it is possible now to construct probabilistic
automata for a set of databases in expected linear time as an extension to our previous
work [Schulz et al., 2008b].





A

A Appendix

A.1 High-throughput sequencing technologies in detail

In the following, we explain the mechanisms and characteristics of the three most preva-
lent technologies (according to [Kodama et al., 2012]) and in brief describe the SMRT™

and HeliScope™ single molecule sequencing technologies. More details can be found in
[Janitz, 2008; Mardis, 2008; Shendure and Ji, 2008].

Illumina

Illumina sequencing uses a cycle-based sequencing-by-synthesis approach. The DNA
sample of interest is irst fractionated by nebulization or sonication into smaller double-
stranded fragments. After blunt-ending and phosphorylating, two unique adapters are
ligated to the ends of the fragments. An eight-lane low cell, whose surface is coated with
single-stranded primers that correspond to the adapter sequences, is used to hybridize
the single strands of the adapter-ligated fragments and bind them to the low cell surface.
In a process called bridge PCR these fragments are ampli ied to clusters, i.e. local spots
of ≈1,000 identical copies of a single fragment.

The low cell now contains millions of unique clusters and is sequenced in cycles. In
each cycle luorescently labeled nucleotides are added to the low cell. Each nucleotide
is a reversible terminator such that only one is incorporated to each nucleic acid chain in
each cycle. After the single-base extension, the labeled nucleotides are excited by a laser
and their emitted light is captured by a CCD camera, whereby the identical nucleotides in
the clusters work as ampli iers. Before starting the next cycle the luorescent labels are
removed and the incorporated nucleotide is unblocked.

At the end all images are aligned, where clusters correspond to signals at identical
image positions across the cycles. The intensities of the four colors in the 𝑖-th image at a
certain cluster position are used to base-call the 𝑖-th base of the corresponding read and
assign a quality score.

SOLiD

In contrast to Illumina sequencing, SOLiD (Sequencing by Oligonucleotide Ligation and
Detection) is a cycle-based sequencing by ligation. The DNA sample is irst fraction-
ated into smaller fragments, which are then adapter-ligated. For the ampli ication, the
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Figure A.1: SOLiD color labels of the 16 dinucleotides (a). The labeling allows to convert
a sequence of overlapping dinucleotide colors into a sequence of bases, if one
involved base is known. Fragments are sequenced in rounds ofmultiple ligation
cycles (b). The universal primer is shortened after each round to interrogate all
bases. Image by Mardis [2008].

ABI/SOLiD platform uses emulsion PCR [Dressman et al., 2003], where small magnetic
beads are enclosed by water compartments in a water-in-oil emulsion. Thousands of
primers corresponding to one of the adapters are tethered to the bead surface. The com-
partmentswork asmicroreactors and contain all reagents required for PCR. Through lim-
ited dilution, each bead-containing compartment include at most one fragment which is
ampli ied on the bead surface. At the end of the ampli ication, each bead is coated with
millions of copies of the original single-stranded adapter-ligated fragment. After break-
ing the emulsion, the beads are separated from the micro reactors using magnetic bead
puri ication. The free 3’ ends of the fragments are then chemically attached to a low cell
slide.

Prior to the irst sequencing cycle, a universal primer that corresponds to the adapter
is annealed at the 5’ end of each ampli ied fragment. SOLiD uses a sequencing-by-ligation
technique. A pool of 1024 octamer primers with all possible combinations of A, C, G, and T
at the irst 5 positions is luorescently labeled according to the dinucleotide at the irst 2
positions (at the 3’ end). The 16 possible dinucleotides are mapped to 4 different colors
as shown in Figure A.1a. In each cycle only one primer anneals to the 5’ end of the nucleic
acid chain. Then the low cell is laser excited and imaged by a CCD camera. At the end of
the cycle the last 3 bases of the ligated primers and the luorescent labels are removed
and the next cycle follows.

As in every cycle effectively 5-mers are ligated, only fragment bases at positions 1+5𝑖
and2+5𝑖 canbe examined. Todetermine the remainingbases, thewhole sequencing step
is repeated 4 times with a universal adapter that is one base shorter than the previous
round, such that positions 0 + 5𝑖 and 1 + 5𝑖 can be examined in the second round and
4 + 5𝑖 and 5 + 5𝑖 in the third, and so on (see Figure A.1b)

At the end of the 5 sequencing rounds, all overlapping dinucleotides in a fragment
pre ix have been imaged. Analogously to Illumina sequencing, the images are aligned to
identify beads, their emitted colors and corresponding quality scores. The result of the
base-calling step is not a set of reads in base space (i.e. bases are A, C, G, or T) but in color
space (bases are 0, 1, 2, or 3 representing colors).
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Roche/454

Roche/454 sequencing, commercially available since 2004, uses a cycledpyrosequencing
[Ronaghi et al., 1996] and the same technique for sample preparation as SOLiD. Beginning
with fragmentation and adapter ligation, the templates are then ampli ied on the surface
ofmagnetic beads by emulsion PCR, afterwhich each bead is coated by amillion of copies
of one DNA fragment. The beads are separated from the emulsion and distributed over a
picotiter plate, whose surface is covered by millions of wells, where each provides space
for only a single bead.

The actual sequencing is performed by the pyrosequencing method [Ronaghi et al.,
1996], in which luciferase and other enzymes are used to generate light from the poly-
merase-driven incorporation of nucleotides. In a ixed order of cycles the plate is lown
with pure nucleotide solutions (e.g. beginning with A, followed by G,C,T,A,G,C,T,…). Wells in
which one or more nucleotides are incorporated, emit light which is captured by a CCD
camera at the bottom of the plate. The light intensity is proportional to the number of
incorporated bases and must be used to infer the length of homopolymer stretches, as
the incorporated nucleotides contain no terminating moiety. The sequence of the ligated
adapter starts with TCGA, which allows measuring the intensities of single nucleotide in-
corporations for each well to calibrate the base-calling software. However, the base call
accuracy deteriorates on large homopolymer runs (>6 bp). After the imaging, the unin-
corporated nucleotides are removed by an apyrase wash and the next cycle continues
with the next nucleotide solution.

SMRT™

Paci ic Biosciences introduced in 2010 a singlemolecule real time (SMRT) sequencer that
enables sequencing a contiguous piece of length ≈1500 bp of a single molecule without
prior ampli ication. The fundamental idea is to immobilize DNA polymerase and to ilm
the incorporation of luorescently labeled nucleotides in real time. As the sequencing
is not cycled, the base-calling cannot accurately determine the length of homopolymer
runs which must be inferred from signal lengths. However, this new approach permits
sequencing reads of length similar to irst generation sequencing and promises to detect
methylated bases from deviations in the signal length.

HeliScope™

HeliScope™ sequencing is a combination of Illumina and Roche/454 sequencing. Like
PacBio, it does not require fragment ampli ication and uses sequencing by synthesiswith
nucleotides that contain a terminating moiety. Instead all four nucleotides being added
simultaneously to the low cell, they are added in separate cycles (like 454). The imaging
and base-calling steps are similar to Illumina sequencing.
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A.2 Proving sensitivity recursions

In this section, we prove the correctness the recursions proposed in Lemma 6.2 and
Lemma 6.3 (Section 6.5.1 on page 105) for the sensitivity computation of 𝑞-gram count-
ing ilters.

Proof of Lemma 6.2. Let 𝒯(𝑖, 𝑒, 𝑡, 𝑇 ) ⊆ Φ , with Φ = {𝙼, 𝚁}, be the set of Hamming tran-
scripts with 𝑒 errors, s.t. for every 𝑇 ∈ 𝒯(𝑖, 𝑒, 𝑡, 𝑇 ) the concatenation 𝑇 𝑇 contains at
least 𝑡 substrings 𝙼 . For 𝑖 < 0, 𝑒 < 0, or 𝑡 < 0we de ine 𝒯(𝑖, 𝑒, 𝑡, 𝑇 ) = ∅.

Randomly choose 𝑖, 𝑒, 𝑡 ∈ ℕ , 𝑖 > 0, 𝑇 ∈ Φ , and 𝑇 ∈ 𝒯(𝑖, 𝑒, 𝑡, 𝑇 ). Now let 𝑥, 𝑦 ∈ Φ
be the last characters of 𝑇 and 𝑇 such that for appropriate 𝑇 ∈ Φ , 𝑇 ∈ Φ holds
𝑇 = 𝑇 𝑥, 𝑇 = 𝑇 𝑦. As 𝑇 𝑇 = 𝑇 𝑥𝑇 𝑦 contains at least 𝑡 substrings 𝙼 it follows that
𝑇 𝑥𝑇 contains at least 𝑡 − 𝛿(𝑇 𝑦). Additionally, it holds that 𝑒 = ‖𝑇 ‖E = ‖𝑇 𝑥‖E =
‖𝑇 ‖E + ‖𝑥‖E and thus ‖𝑇 ‖E = 𝑒, if 𝑥 = 𝙼, and ‖𝑇 ‖E = 𝑒 − 1, if 𝑥 = 𝚁. Because
shift(𝑥, 𝑇 ) = 𝑥𝑇 it follows 𝑇 ∈ 𝒯(𝑖 − 1, 𝑒, 𝑡 − 𝛿(𝑇 ), shift(𝙼, 𝑇 )) or 𝑇 ∈ 𝒯(𝑖 − 1, 𝑒 −
1, 𝑡 − 𝛿(𝑇 ), shift(𝚁, 𝑇 )) and thus:

𝒯(𝑖, 𝑒, 𝑡, 𝑇 ) ⊆ 𝒯(𝑖 − 1, 𝑒 , 𝑡 − 𝛿(𝑇 ), shift(𝙼, 𝑇 ))𝙼
∪ 𝒯(𝑖 − 1, 𝑒 − 1, 𝑡 − 𝛿(𝑇 ), shift(𝚁, 𝑇 ))𝚁 .

(A.1)

Now, randomly choose 𝑖 , 𝑒 , 𝑡 ∈ ℕ , 𝑥 ∈ Φ, 𝑇 ∈ Φ , and 𝑇 ∈ 𝒯(𝑖 , 𝑒 , 𝑡 , shift(𝑥, 𝑇 )).
It holds |𝑇 𝑥| = 𝑖 + 1, ‖𝑇 𝑥‖E = 𝑒 + ‖𝑥‖E, and if 𝑇 shift(𝑥, 𝑇 ) = 𝑇 𝑥𝑇 [0..|𝑇 | − 1)
contains at least 𝑡 substrings 𝙼 , then 𝑇 𝑥𝑇 contains at least 𝑡 + 𝛿(𝑇 ). Therefore, it
follows that 𝑇 𝑥 ∈ 𝒯(𝑖 + 1, 𝑒 + ‖𝑥‖E, 𝑡 + 𝛿(𝑇 ), 𝑇 ) and thus:

𝒯(𝑖, 𝑒, 𝑡, 𝑇 ) ⊇ 𝒯(𝑖 − 1, 𝑒 , 𝑡 − 𝛿(𝑇 ), shift(𝙼, 𝑇 ))𝙼
∪ 𝒯(𝑖 − 1, 𝑒 − 1, 𝑡 − 𝛿(𝑇 ), shift(𝚁, 𝑇 ))𝚁 .

(A.2)

By the de inition of 𝑅 it holds that 𝑅(𝑖, 𝑒, 𝑡, 𝑇 ) = ∑ ∈𝒯( , , , ) 𝑝(𝑇 ). Applied to (A.1) and
(A.2), (6.6) follows.

𝑇 contains exactly 𝛿(𝑇 ) substrings 𝙼 , therefore 𝒯(0, 𝑒, 𝑡, 𝑇 ) = {𝜖} if 𝑒 = 0 and
0 ≤ 𝑡 ≤ 𝛿(𝑇 ), otherwise 𝒯(0, 𝑒, 𝑡, 𝑇 ) = ∅. With 𝑝(𝜖) = 1, (6.5) follows.

Proof of Lemma 6.3. This lemma can be proven analogously to the proof above. LetΦ =
{𝙼, 𝚁, 𝙳, 𝙸} and 𝒯(𝑖, 𝑒, 𝑡, 𝑇 ) ⊆ Φ(𝑖) be the set of transcripts with 𝑒 errors, s.t. for every
𝑇 ∈ 𝒯(𝑖, 𝑒, 𝑡, 𝑇 ), 𝑇 𝑇 contains at least 𝑡 substrings 𝙼 .

Randomly choose 𝑖, 𝑒, 𝑡 ∈ ℕ , 𝑖 > 0, 𝑇 ∈ Φ(𝑞), 𝑇 [|𝑇 |−1] ≠ 𝙸, and𝑇 ∈ 𝒯(𝑖, 𝑒, 𝑡, 𝑇 ).
Let 𝑥, 𝑦 ∈ Φ be the last characters of 𝑇 and 𝑇 such that for appropriate 𝑇 , 𝑇 ∈ Φ∗

holds 𝑇 = 𝑇 𝑥, 𝑇 = 𝑇 𝑦. Now it holds that ‖𝑇 ‖R = 𝑖 − ‖𝑥‖R and ‖𝑇 ‖E = 𝑒 − ‖𝑥‖E.
Additionally, 𝑇 𝑥𝑇 and thus also 𝑇 shift(𝑥, 𝑇 𝑦) contain at least 𝑡 − 𝛿(𝑇 𝑦) substrings
𝙼 . This proves the ”⊆” part of (6.14). We omit the analogue rest of the proof.
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A.3 Readmapper parametrization

In the following we describe the parameters we used for the comparisonwith other read
mappers. MIN and MAX were placeholders for minimal and maximal insert size, INS is the
mean insert size and IERR the allowed deviation (INS = (MIN + MAX) / 2, IERR = (MAX -
MIN) / 2). For the tools using indices, we built the index using default options.

Bowtie 2. Version 2.0.0-beta6 was used. The number of threads was selected us-
ing the parameter -p. We used the parameter --end-to-end to enforce semi-global read
alignments. For the Rabema experiment, we used the parameters -k 100. For all other
experiments, we used the parameters -k 1. In paired-endmode, we used the parameters
--minins MIN --maxins MAX.

BWA. Version 0.6.1-r104was used. We used the parameter -t to select the number of
reads in the aln step. The sampe and samse steps were performed using one thread since
BWAdoes not offer a parallelization here. Whenmapping for theRabema experiment, we
passed the parameter -N to aln and -n 100 to samse. Otherwise, we passed the parameter
-n 1 to samse. The insert size was not passed to BWA, however we pass the insert size and
allowed error from BWA’s output to the other read mappers.

Hobbes. Version 1.3 was used. Since we focus on edit distance, we used the 16-bit
bit-vector version as described in [Ahmadi et al., 2012]. We built the index using the
recommended¹ 𝑞-gram length 11. Indels were enabled using --indels. Maximal edit dis-
tancewas set using -v. Multi-threadingwas enabled using -p. For resourcemeasurement,
we used the output without CIGAR, for analyzing the results, we enabled CIGAR output
using --cigar. In paired-end mode, we used the parameters --pe --min MIN --max MAX.

mrFAST. Version 2.1.0.6 was used. It was used as explained in the manual². mrFAST
does not support multithreading. We divided the input into blocks of 500 k reads and
processed each chunk in a separate process using the program ts³. Long readswere split
into packages of 100 k reads. This way, always 8 processes were executed in parallel. We
set the edit distance error rate to 4% of the read length.

RazerS. Version 3.1 was used. RazerS was parametrized as follows: The native or
SAM output format was selected with -of 0 or -of 4. Indel support was disabled with
--no-gaps when required. The number of threads was set with the -tc parameter. The
percent recognition rate was set using the -rr parameter, e.g. -rr 100 or -rr 99. The error
rate was set through the -i parameter, e.g. -i 96 tomapwith 4% errors⁴. The pigeonhole
or SWIFT ilter was selected using -fl pigeonhole or -fl swift. As an all-mapper, the
parameter -m 1000000was used and as a best-mapper -m 1was used. In paired-endmode,
the parameters used were --library-length INS --library-error IERR.

SHRiMP2. Version 2.2.2 was used. The number of threads was selected with --
threads. In paired-end mode, the options used are --pair-mode opp-in --isize MIN,MAX.

Soap2. Version 2.1was used. The number of threadswas selectedwith -p. In paired-
end mode, the options used are -m MIN -x MAX.

¹ http://hobbes.ics.uci.edu/manual.jsp
² http://mrfast.sourceforge.net/manual.html
³ http://vicerveza.homeunix.net/~viric/soft/ts/
⁴ RazerS uses the percent identity, which is 100 minus error rate in percents.

http://hobbes.ics.uci.edu/manual.jsp
http://mrfast.sourceforge.net/manual.html
http://vicerveza.homeunix.net/~viric/soft/ts/
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A.4 Extended variation detection tables
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A.6 Proving hull optimality

In the following, we show that the monotonic hulls proposed in Examples 7.2, 7.3, and
7.4 (Section 7.2.2 on page 135) are optimal.
Proposition A.1. Let𝒟 ,𝒟 be two databases, 𝜌 , 𝜌 ∈ ℝ, and pred ∶ ℕ → {true, false} be
de ined as:

pred(𝑑 , 𝑑 ) = (𝑑 ≥ 𝜌 ⋅ |𝒟 |) ∧ (𝑑 ⋅ |𝒟 | ≥ 𝜌 ⋅ 𝑑 ⋅ |𝒟 |) . (A.3)

The monotonic hull predhull of pred with:

predhull(𝑑 , 𝑑 ) ∶= (𝑑 ≥ 𝜌 ⋅ |𝒟 |) (A.4)

is optimal.

Proof. We assume predhull is a non-optimal monotonic hull of pred. Then there exists
a monotonic hull pred’hull of pred with predhull ⇏ pred’hull. Thus, 𝑑 ∈ ℕ exist so that
predhull(𝑑 , 𝑑 ) is true and pred’hull(𝑑 , 𝑑 ) is false. By contraposition of the monotonicity
criterion, pred’hull(𝑑 , 0) also is false. It holds that pred(𝑑 , 0) = predhull(𝑑 , 𝑑 ) = true
and 𝑝𝑟𝑒𝑑 ⇏ pred’hull. This is a contradiction to pred’hull being a monotonic hull of pred.
Hence the proposition holds.
Proposition A.2. Let (min ,… ,min ), (max ,… ,max ) ∈ ℕ , with (min ,… ,min ) ≤
(max ,… ,max ), and pred ∶ ℕ → {true, false} be de ined as:

pred(𝑑) = (min ≤ 𝑑 ≤ max ) ∧ … ∧ (min ≤ 𝑑 ≤ max ) . (A.5)

The monotonic hull predhull of pred with:

predhull(𝑑) ∶= (min ≤ 𝑑 ) ∧ … ∧ (min ≤ 𝑑 ) (A.6)

is optimal.

Proof. Analogously holds for a pred’hull and 𝑑 ∈ ℕ : predhull(𝑑) is true and pred’hull(𝑑) is
false. Thus it holds that (min ,… ,min ) ≤ 𝑑 and pred’hull(min ,… ,min ) also is false. It
holds that pred(min ,… ,min ) = true and 𝑝𝑟𝑒𝑑 ⇏ pred’hull. This is a contradiction to
pred’hull being a monotonic hull of pred. Hence the proposition holds.
Proposition A.3. Let 𝛼, 𝜌 ∈ ℝ, 0 ≤ 𝛼, 𝜌 ≤ 1, and pred ∶ ℕ → {true, false} be de ined as:

pred(𝑑) = ∀ ∈[ .. ]
𝑑
|𝒟 | ≥ 𝜌 ∧ 𝑑

|𝒟 | ⋅ 𝜔(𝑑) log
𝑑

|𝒟 | ⋅ 𝜔(𝑑) ≤ 𝛼 , (A.7)

with 𝜔(𝑑) = 𝑑
|𝒟 | . (A.8)

The monotonic hull predhull of pred with:

predhull(𝑑) ∶= ∀ ∈[ .. ]
𝑑
|𝒟 | ≥ 𝜌 (A.9)

is optimal.
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Proof. Again assume non-optimality of predhull and for a pred’hull and 𝑑 ∈ ℕ : predhull(𝑑)
is true and pred’hull(𝑑) is false. Choose 𝑘 such that 𝑑 /|𝒟 | ≥ 𝜌 and 𝑑 ∈ ℕ such that
𝑑 = 𝑑 and 𝑑 = 0 for 𝑖 ≠ 𝑘. Then pred’hull(𝑑 ) is false because pred’hull is a monotonic
hull. pred(𝑑 ) is true because predhull(𝑑 ) is true and the following holds:

𝑑
|𝒟 | ⋅ 𝜔(𝑑 ) log

𝑑
|𝒟 | ⋅ 𝜔(𝑑 ) = 𝑑

|𝒟 | ⋅ 𝜔(𝑑 ) log
𝑑

|𝒟 | ⋅ 𝜔(𝑑 ) (A.10)

= log 1 (A.11)
= 0 ≤ 𝛼 . (A.12)

Thus 𝑝𝑟𝑒𝑑 ⇏ pred’hull follows which is a contradiction to pred’hull being a monotonic hull
of pred. Hence the proposition holds.
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alignment, 17, 80, 90, 93, 99, 101, 111
all-mapper, 99, 119, 126, 128
alphabet, 13, 62, 115

integer alphabet, 30
array, 13

backward search, 99
best-mapper, 99, 119, 125, 129
Burrows-Wheeler transform, 99

candidate region, 90, 101–103, 111
Cartesian order, 14
character, 13
compressed index, 29
concatenation string, 16, 56, 57, 66, 75

database, 132
deferred data structure, 65
difference cover, 34

minimal, 34
perfect, 34

DNA, 3

edit
distance, 17, 91, 111
operations, 17

emerging substring, 134
mining problem, 131, 134, 135,

145, 146
entropy, 134

substring mining problem, 131,
135, 145, 146

FM index, 99
frequency, 132

predicate, 133
vector, 133

frequent pattern mining problem, 133,
136, 138, 142–146, 163

generalized
repeated pair, 61
suf ix array, 40
suf ix tree, 16, 71, 136, 139, 141

growth rate, 133, 134

Hamming distance, 17, 90, 91, 111
hull, seemonotonic hull

jumping emerging substring, 134

𝑘-error
match, 19, 98, 108
problem, 19

𝑘-mismatch, 19
problem, 19, 78

ℓ-indices, 29
ℓ-interval, 26
lcp table, 25
lcp values, 26
lcp-interval, 26

tree, 29
lexicographical

naming, 15
order, 14

longest common pre ix, 14

maximal repeat, see repeat
maximal unique match, 59
minimal coverage, 91
mlr-heuristic, 50
monotonic hull, 136, 137, 163
monotonic predicate, 135
MUM, seemaximal unique match

𝜔-interval, 26

partial suf ix tree, 66
pigeonhole ilter, 102, 108
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pre ix trie, 99
protein, 4

𝑞-gram, 13, 83
code, 83
index, 84

construction, 85, 86
search, 90

lemma, 90, 101
shape, 83

𝑞-hit, 93, 101
𝑞-match, 101
QUASAR, 91

radix tree, 76
read mapping, 101
repeat

maximal, 59
supermaximal, 59

repeated pair, 59
generalized, 61
left maximal, 59
maximal, 59
right maximal, 59

representative, see concatenation string
RNA, 4
RNA-seq, 4

self-index, 29
SeqAn, 7
shape, 83
skew algorithm, 30
string, 13
succinct index, 29
suf ix, 13
suf ix array, 25

enhanced, 25
generalized, 40
inverse, 25

suf ix tree, 16
generalized, 16, 71, 136, 139, 141
lazy, 65

suf ix trie, 16, 131
supermaximal repeat, see repeat
support, 132

SWIFT, 93, 102, 105

table, 13
top-down iterator, 54
transcript, 17
tuple, 13

unique match, 63


	Part I Introduction
	Introduction
	Preface
	Sanger sequencing
	High-throughput sequencing technologies
	Applications of high-throughput sequencing
	Overview
	Index data structures
	Read mapping
	Frequency string mining


	Mathematical Preliminaries
	Notations
	Relations
	Suffix tree
	Transcripts and alignments
	Approximate matching


	Part II Index Data Structures
	Enhanced Suffix Array
	Definitions
	Suffix array
	LCP table
	Child table

	Representation
	Construction of the suffix array
	The linear-time algorithm by Kärkkäinen et al.
	Difference covers
	Our algorithms
	External memory variant
	Extension to multiple sequences

	Construction of the lcp table
	The linear-time algorithm by Kasai et al.
	Space-saving variant
	Adaptation to external memory
	Extension to multiple sequences

	Construction of the child table
	Bottom-up suffix tree traversal
	The linear-time algorithm by Abouelhoda et al.
	Adaptation to external memory and multiple sequences

	Applications
	Searching the suffix array
	Traversing the suffix tree
	Accessing the suffix tree
	Repeat search


	Lazy Suffix Tree
	The wotd algorithm
	Lazy construction and representation
	The original data structure
	Our data structure
	Extension to multiple sequences

	Applications
	Traversing and accessing the lazy suffix tree
	Radix trees
	Multiple exact pattern search
	Approximate pattern search


	q-gram Index
	Definitions
	The direct addressing q-gram index
	Construction
	Counting sort algorithm
	Extension to multiple sequences
	Adaptation to external memory

	The open addressing q-gram index
	Applications
	q-gram counting filters for approximate matching



	Part III Applications
	Read Mapping
	Related work
	The RazerS algorithm
	Definitions
	Filtration
	SWIFT filter
	Pigeonhole filter

	Lossy filtration and prediction of sensitivity
	Sensitivity calculation of q-gram counting filters
	Sensitivity calculation of pigeonhole filters
	Choosing filtration parameters

	Verification
	Hamming distance verification
	Edit distance verification

	Paired-end mapping
	Match processing
	Parallelization
	Experimental results
	Comparing the SWIFT and pigeonhole filters
	Analyzing the sensitivity estimation accuracy
	Achieved speedup
	Rabema benchmark results
	Variant detection results
	Performance comparison


	Frequency String Mining
	Related work
	Definitions
	Predicates
	Monotonicity
	Conjunctive predicates

	Monotonic hull
	The linear-time algorithm by Fischer et al.
	The original algorithm
	Space efficient variants

	A fast algorithm based on lazy suffix trees
	The deferred frequency index
	Algorithmic details

	Experimental results
	Two databases
	Multiple databases
	Detection of species specific protein domains 


	Conclusion and Future Work
	Appendix
	High-throughput sequencing technologies in detail
	Proving sensitivity recursions
	Read mapper parametrization
	Extended variation detection tables
	Extended performance comparison tables
	Proving hull optimality

	Curriculum Vitae
	Declaration
	Bibliography
	Index


