
Chapter 2

New Methods for the

Computer-Assisted 3D Reconstruction

of Neurons from Confocal Image Stacks

2.1 Abstract

Exact geometrical reconstructions of neuronal architecture are indispensable for the in-

vestigation of neuronal function. Neuronal shape is important for the wiring of networks,

and dendritic architecture strongly a�ects neuronal integration and �ring properties as

demonstrated by modelling approaches. Confocal microscopy allows to scan neurons with

submicron resolution. However, it is still a tedious task to reconstruct complex dendritic

trees with �ne structures just above voxel resolution. We present a framework assisting

the reconstruction. User time investment is strongly reduced by automatic methods which

�t a skeleton and a surface to the data, while the user can interact, and thus, keeps full

control to ensure a high quality reconstruction. The reconstruction process comprises a

successive gain of metric parameters. First a structural description of the neuron is built,

including the topology and the exact dendritic lengths and diameters. We use general-

ized cylinders with circular cross-sections. The user provides a rough initialization by

marking the branching points. The axes and radii are �tted to the data by minimizing

an energy-functional which is regularized by a smoothness constraint. The investiga-

tion of proximity to other structures throughout dendritic trees requires a precise surface

reconstruction. In order to achieve accuracy of 0.1 micron and below, we additionally

implemented a segmentation algorithm based on geodesic active contours which allows

for arbitrary cross-sections and uses locally adapted thresholds. In summary, this new
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reconstruction tool saves time and increases quality as compared to other methods which

have previously been applied to real neurons.

2.2 Introduction

Metric analysis of neurons is indispensible to address (i) the complicated relation between

physiology (function) and morphology (form) of neurons by computational approaches

(Borst and Haag, 1996; De Schutter and Bower, 1994; Hausser et al., 2000; Koch et al.,

1982; Segev and Rall, 1998), (ii) the characterization of cell types and the investigation

of neuronal development by statistical analysis of the morphology (da Fontoura Costa

and Velte, 1999; Libersat and Duch, 2002; Mizrahi et al., 2000; Uylings et al., 1986; van

Pelt et al., 1989), and (iii) the relation of neuron surfaces to other structures in three-

dimensional space (Belichenko and Dahlström, 1995; Gray and Weeks, 2003; Hiesinger

et al., 2001; Jankowska et al., 1995; Lamotte d'Incamps et al., 1998; Wouterlood et al.,

2002) (for an overview see also (da Fontoura Costa et al., 2002)). Depending on the

goal a description of the neuron has to comprise the center lines and radii, the topolog-

ical structure including branching and end points, the order of segments1, or an exact

reconstruction of the surface.

Generally, in order to obtain morphometric measurements, reconstructions of neurons

should ful�ll the following requirements: (i) su�cient accuracy must be accomplished, (ii)

topological constraints based on the assumption of a tree-like structure must be full�lled,

(iii) the relevant measurements must be represented explicitly allowing direct access, and,

last but not least, (iv) the amount of the user's time and e�ort should be reasonably

small.

The goal of decreasing the necessary expense of user interaction often acts contrary to

that of ensuring the accuracy and the topological correctness of the result. Consequently,

available commercial software tools provide methods either for automatic segmentation

or manual reconstruction. One of the state-of-the-art software tools of the latter category

is Neurolucida (by MicroBrightField, Inc., Williston, VT). Unfortunately, the manual

tracing of complex dendritic trees is overly tedious. If the user tries to reduce the input

actions the result su�ers from inaccuracy and abrupt changes of thickness or center line

direction.

Automating the reconstruction process is di�cult due to noise and the partial volume

e�ect. Noise is generated by di�erent sources in the confocal microscope and the partial

1The segment's order is the number of branching points between the segment and the soma.
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Figure 2.1: Finer dendritic structures show less contrast w.r.t. the background than
thicker ones. The �gure shows a slice from a confocal image of a neuron. Scalebar: 1µm.
(a) Image intensity coded by gray values. The iso-intensity lines for 63 and 176 are shown
in white and black. (b) Contour plot of the image. The iso-intensity lines for 63 and 176
are shown in solid black lines. If the threshold for segmentation is close to be 176, it is
optimal for the thick branch, but fails to account for the thin branch.

volume e�ect occurs, when the volume, which is assessed for a measurement, contains

labeled and unlabeled tissue. The strength of the latter depends on the point spread

function (PSF). Both phenomena cause overlapping intensity histograms of the interior

and exterior. In particular �ne structures have low contrast to the background which may

be decreased additionally by inhomogeneous staining of the cell (see �g. 2.1). Several

software tools featuring automated reconstruction procedures are available. To the best

of our knowledge all of them work with threshold-based segmentation methods. Here we

con�ne our discussion to the FilamentTracer (formerly called NeuronTracer) included into

the program Imaris (Bitplane, Zürich). It provides three modes for the reconstruction of

neurons: one works fully automatic, one semi-automatic and the other fully manual. The

semi-automatic tracing allows the user to draw along the branches in a two-dimensional

projection and automatically computes the position in the third dimension. We discussed

the principle problems of manual tracing with respect to Neurolucida above. The auto-

matic reconstruction is based on a hysteresis method using two thresholds. Voxels with

intensity values above the high threshold are marked as interior with high con�dence (say

class inHi), those between the high and the low threshold are marked as interior with low

con�dence (say class inLo) if there is a connection via other inLo voxels to an inHi voxel.

Voxels falling below the low threshold are marked as exterior. The two thresholds are

chosen by the user. Afterwards the segmented volume is reconstructed with generalized
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cylinders. The result can be manually corrected.

The hysteresis method is an improvement over single threshold segmentations, but still

su�ers from the same limitations. The appropriate thresholds depend on the staining in-

tensity of a branch, which in turn, results from its true diameter (see �g. 2.1). If the user

optimizes the thresholds to a speci�c diameter, structures with other diameters are mis-

calculated. In case of neurons with a limited variation of segment diameters, and therefore

staining intensities, the hysteresis method improves the completeness of image segmenta-

tion. However, extensive variation in the staining intensities of neuronal structures makes

the choice of appropriate hysteresis values which include the complete topology of neu-

ronal arborization di�cult or even impossible. Therefore, this automatic reconstruction

procedure is useful for fast visualization and extraction of the rough topology, whereas

morphometric measurements are imprecise, in particular for neurons with a wide range of

diameters. A second source of inaccuracy in the FilamentTracer is smoothing which can

be applied to the result of the reconstruction. It neglects the image data, hence abrupt

changes of the axis direction or the radii are leveled out regardless of actual data values.

Thus the demand for the reconstruction of �ne structures near the spatial resolution limits

of the microscope is not answered by existing automated methods. In order to increase the

e�ciency of the reconstruction process without losing any quality, we developed a system

which highly reduces the time investment by automatic computational methods. It assists

the manual reconstruction process by (i) �tting automatically the center lines, radii, and

the surface of a neural branch between points given by the user, and (ii) providing an

intuitive and convenient user interface which allows immediate access to the result. The

combination of the two features yields the highest possible accuracy in practice. On the

one hand, the automated �tting relieves the user from most of the necessary user input,

thus accelerating the process and eliminating subjective estimations and imprecision due

to the user's haste or exhaustion. The reconstruction process is made mostly independent

from the user's knowledge. On the other hand the user has full control as an option

allowing correction at regions, where computation appears to fail.

This article is organized as follows. In the next section we review related approaches

for the detection of tubular structures in three-dimensional images. In the third section

we introduce the model for neural structures and describe the methods which �t the

model to the data. After showing example results from real neurons in the fourth section,

conclusions are drawn in the �fth one.
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2.3 Image Analysis Background

The task of reconstructing a neuron from raw three-dimensional image data can be split

into two subtasks: First a suitable representation (a model) of the reconstructed neuron

has to be de�ned and then an e�cient algorithm has to be designed which transforms the

image into a description based on this representation, i.e. which �ts the model to the data.

According to the requirements discussed in sec. 2.2 the neuron should be described in a

geometric way, that is by a graph connecting the individual segments which are speci�ed

by their center lines and their radii. The transformation from voxels to this structural

description is mostly done by identifying putative center points and linking them to a

graph structure.

2.3.1 Extraction of center points

Two approaches exist for the extraction of center points of tubular objects: (i) segmenta-

tion followed by skeletonization and (ii) �ltering. The �rst one is based on a segmentation

process which separates the image volume covered by the neuron from surrounding tissue.

The segmented �neuron� volume is then skeletonized e.g. by a three-dimensional thinning

algorithm (Gerig et al., 1993). This approach, however, is sensitive to noise, since thinning

algorithms are very sensitive to jagged surfaces resulting in erroneous branches (Kimmel

et al., 1995). Furthermore, simple thresholding fails due to the varying intensity pro�les

of di�erently sized neurites.

Lorigo et al. (2001) developed a method following the segmentation approach using a

geodesic active contour model (Caselles et al., 1997) which is an extension of the classical

active contour models (Kass, 1988) with level set methods. The model of Caselles et al.

(1997) allow for the estimation of hypersurfaces of codimension one2. Lorigo et al. modi�ed

the geodesic active contours to estimate hypersurfaces of codimension two, e.g. one-

dimensional curves in a three-dimensional image space. The implicit representation of

the curves is su�cient for visualization, but in order to obtain meaningful measurements

center points must be extracted and linked to continuous center lines. This is not part of

their method, but should give more reliable results than simple segmentation because of

the included smoothness and shape constraints.

The second approach to the extraction of center points applies appropriate �lters in order

to enhance line elements. Sato et al. (1998) introduced a three-dimensional multi-scale

line enhancement �lter for medical images. It is based on a combination of the eigenvalues

2The codimension is the di�erence between the dimension of the data space and that of the manifold.
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of the Hessian matrix whose elements are the second-order partial derivatives of the image

intensities. Curvilinear structures are discriminated from other structures such as point-

like or planar ones. The corresponding eigenvectors provide the direction of the axis.

Multiple scales allow for di�erent radii, where the discretization of the scales determines

the possible radii. Their exact extraction is problematic, since in general the number of

scales needs to be small in order to reduce the computational cost.

Another method following the second approach was developed by Pizer et al. (1998) and

is based on the concept of cores in which detect medial points of the object by correlating

opposite boundary points. Due to the spatial extent of the applied �lter, the detection of

center points is accurate and robust in the presence of interfering noise, but the method is

computationally more expensive than the calculation of the Hessian. Generally the �lter

is applied to the image at several scales, too.

2.3.2 Linking the Center Points

The linking is done either by simply connecting nearby center points or by tracing the

center line starting from a seed point. The latter procedure has the advantage that the

calculation of �lter responses, either the eigenvalues of the Hessian (cf. Sato et al. (1998))

or the medialness core (cf. Pizer et al. (1998)), can be accomplished successively. Under

the assumption of smoothness, the calculation can thus be restricted to a region and scale

of interest. However, the localized focus has the drawback that contextual information is

not available which would be necessary in order to �nd the correct tracing direction at

ambiguous and noisy image locations and to detect branching points.

Krissian et al. (2000) follow the �rst approach. They use both the abovementioned �lter-

ing methods for selecting candidates for central points at multiple scales. Subsequently,

ridges3 are extracted in order to �nd the central points at the scale with maximal re-

sponse. The vessels are then reconstructed by successive steps of binarization, thinning,

smoothing, and linking center points located at neighboring voxels. The topology of the

reconstruction is not robust with respect to noise, since unrecognized center points may

interrupt the center lines. This is su�cient for visualizing the data where mistakes in the

topology are tolerable.

The other approach which traces the center line is adopted by several methods. Aylward

and Bullit (2002) use the eigenanalysis of the Hessian for �nding the center points and up-

dating the tracing direction. The optimal scale is estimated dynamically by the evaluation

3Ridges are local maxima (here of intensity and scale) with respect to a restricted number of dimensions
(Eberly et al., 1994; Haralick, 1983)
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of an adaptive core. Finding a seed point for each branch is necessary, since branching

points are not detected during segment tracing. Flasque et al. (2001) introduced a tracing

method, which works on a segmented image and is able to detect branching points and

to follow the branches. The segmentation method does not take into account the prior

knowledge about the tubular shape of the vascular branches. Neither of the two methods

gives the user the possibility to steer or correct the reconstruction process.

The approaches discussed so far were developed speci�cally for the segmentation of blood

vessels in three-dimensional images from magnetic resonance angiography (MRA) or com-

puter tomography (CT). The following methods, however, focus on the reconstruction of

neurons from confocal image stacks. Streekstra and van Pelt (2002) use Gaussian deriva-

tive kernels and the eigenvalues of the Hessian. The tracing procedure is not speci�ed,

instead they focus on the incorporation of the point spread function of the confocal mi-

croscope in order to obtain an unbiased estimate of the radius. (Al-Koha� et al., 2002),

however, developed an elaborate method for the tracing of neurons. The basic idea of the

approach is the same as in Aylward and Bullit (2002), but the �lter kernel used for extract-

ing the center points and radii is based on simple edge detectors and lacks the theoretical

foundation of the abovementioned cores. Hence, the detectable diameter of the branches

is limited from below. The method, like the other tracing methods, involve heuristic cri-

teria for stopping the process at the end of a branch and bridging discontinuities due to

noise and low contrast.

In summary none of the described methods answer the purpose of an accurate recon-

struction of the neuron, since, under the inevitable presence of noise, the correct topology

is not ensured. The connectivity particularly of the thin processes is often not inferrible

from the �lter responses. This weakness is critical, if the result cannot be corrected due to

the lack of user interaction (Olabarriaga and Smeulders, 2001) which applies to all of the

methods. Furthermore, Burl et al. (1998) showed that the �hard� detection strategy which

is used by all the methods yields de�cient results. A hard detection strategy keeps only

the positions of the points where the �lter response exceeds a threshold, whereas the value

of the response is discarded. After �nding the best candidates for center points, either

their location is kept �xed resulting in a center line which is not optimized with respect

to its shape, or the center line is smoothed neglecting the data accuracy. Simultaneously

optimizing the �lter responses and the shape of the object, however, is shown to be a

better strategy. Sometimes a smoothness prior is incorporated in the tracing methods

(Al-Koha� et al., 2002; Aylward and Bullit, 2002; Flasque et al., 2001), but these meth-

ods su�er from the local focus of the tracing procedure neglecting context information,

and thus, still fail to reconstruct regions with low contrast and consequently the following
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part of the dendritic tree. The only method available so far which employs a real �soft�

detection strategy is that by Lorigo et al. (2001). However, it provides an implicit rep-

resentation of the neuron without connectivity information, and thus does not allow for

immediate user interaction.

2.3.3 Semi-automatic Extraction of Center Lines

In order to avoid the problems of reconstructing the correct connectivity, we pursue a

model-based approach. A model of the neurite is initialized to lie near the neurite in the

image and subsequently �tted to the data. The initialization can either be done manually

by the user or alternatively by an automated method, although the latter su�ers from the

abovementioned di�culties. Such a top-down approach incorporates prior knowledge on

tree structure, and thus, overcomes common constraints in localizing center points.

Semi-automatic methods require the input of the two end points of a center line by the

user. Then the axis and width of the neurite between them is reconstructed. Frangi et al.

(1999) use this scheme for the reconstruction of human carotid arteries from MRA. The

model-based method incorporates knowledge of the physics of the aqcuisition technique

to accurately segment the vessel geometry. The user provides the two end points, then

the center line is reconstructed by evaluating the Hessian matrix at multiple scales, and

�nally the vessel wall is reconstructed. Since the method is tailored for a specialized

application to MRA it lacks a data structure to represent complex vascular or dendritic

trees.

We therefore developed a framework for the reconstruction of neurons from confocal image

stacks which automatically determines the center line and radii of a neuron's segment

using start and end point for initialization, employing a �soft� detection strategy, and thus

yielding results which combine voxel-based image data with shape priors. It can be used

as stand-alone reconstruction tool or can be combined with fully automatic reconstruction

methods. When automated methods fail, it can be used to reconstruct unrecognized parts

of the neuronal tree with reasonable time investment. Fully automatic reconstruction of

recognized parts of the neuronal tree also can be revised by our semi-automatic method,

resulting in a reconstruction adapted to original image data at highest accuracy. To the

best of our knowledge it provides the only existing semi-automatic reconstruction tool

which can be applied to the most complex dendritic trees and a wide variety of confocal

image qualities.
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2.4 Methods

The skeleton of the neuron is reconstructed as follows. The branching and the end points

and, if necessary, some points in between are set manually by the user. This initialization

roughly approximate the shape of the neuron and provides its topology. It is then �tted

to the data with the automatic methods described in section 2.4.1. Initialization and

�tting of segments can be iterated. Due to a low signal-to-noise ratio or an improper

initialization and parameter setting, the �tting may produce incorrect or de�cient results.

Therefore, the skeleton can be corrected manually by moving, adding, or deleting nodes

at any stage if necessary.

In order to obtain a more detailed segmentation for exact morphometric measurements

a surface of the neuron can be �tted afterwards. This representation of the neuron is

not restricted to the circular cross-section, but lacks the explicit, structural description in

terms of center lines, radii, and segments. Hence it gives a better estimate of the volume

and surface area, but cannot be used directly for computational models. However, it

can be used indirectly by assigning each part of the surface to the corresponding part

of the skeleton. This way it is possible to correct the radii of the latter with respect to

either the surface area or the volume improving the accuracy of compartment models for

computational analysis. The processing �ow of the proposed method is described in Fig.

2.2.

2.4.1 Skeleton and Generalized Cylinders

We assume a tubular shape for the neurites: elongated and with circular cross-section.

The circular cross-section is an oversimpli�cation, but it reduces the computational costs

of the reconstruction process4. A neuron is described by a set of tubular segments which

are connected to a tree. Branches are not interrupted by gaps. This is critical, because

the staining of a cell is typically not uniform and gaps may occur. Furthermore the shape

is regularized by a smoothness constraint for the tangents of the center lines and the radii.

Our reconstruction is based on the model of generalized cylinders (Binford, 1987), which

are generated by sweeping a two-dimensional cross-section along an axis in three-dimensional

space. Shape and size of the cross-section as well as the direction of the axis changes with

location. We restrict the cross-section to be circular and always perpendicular to the

tangent of the axis. Since generally neurons are branching structures several generalized

cylinders attached to each other at branching points (see �g. 2.3) are necessary to describe

4It may, however, introduce errors in the estimation of the neuron's thickness which can be corrected
using the surface reconstruction (see above).
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Figure 2.2: The processing �ow. The user initializes the skeleton by tracing the neuron
roughly (for details see sec. 2.5.1). After �tting the skeleton to the data (see sec. 2.4.1)
the user can correct the result if necessary. The �tted skeleton serves as initialization for
the detailed surface reconstruction which is then �tted to the data (see sec. 2.4.2). The
�tting of the surface is regularized by the skeleton.

Figure 2.3: A skeleton formed by three
generalized cylinders attached to each
other. The tubular structure is de-
�ned by a circular cross-section which is
swept along an axis. It is parametrized
by the medial axis and a radius at every
point.

the tree. In this work we call such a structure a skeleton5.

We use the active contour model (also referred to as snake) by Kass (1988) for �tting

the skeleton to the data. The model was originally developed to �t just the shape of a

curve, that is the axes of the generalized cylinders. We must extend the model in order

to also �t the radius to the image data. Here we suggest to estimate the center line and

5Note that our description of the neuron does not satisfy the widely used de�nition of skeletons by
Blum (1967).
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the radius simultaneously, because �tting of the center line requires a good estimation of

the radius and vice versa.

The topology of the skeleton, i.e. the way the branches are connected, is set by the

user and remains �xed during the automatic �tting process. The quality of the �tted

skeleton is evaluated using an energy functional. The energy is small, if the skeleton

meets the assumptions that (i) bright voxels indicate the presence of the neuron and (ii)

the curvature of the axis and the change of the radii along the axis are smooth to a certain

extend. Thus the minimization of the energy �ts the skeleton to the local image evidences

while preserving a certain degree of smoothness.

Medialness

Since the neural structures are modeled as generalized cylinders with circular cross-

sections, the medial points � being centers of these circles � as well as the radii at each of

these points must be found. The circles lie in the plane which is orthogonal to the medial

axis. In order to obtain a robust measure of the medialness of an axis point, we de�ne

two medialness functions: one for the o�set medialness and one for the central medialness

(Pizer et al., 1998). Both functions evaluate the medialness with respect to the tangent

of the axis. The merits and drawbacks of the two measures are discussed in section 2.5.3.

The o�set medialness is based on the change of image intensities of points along the

circumference of the generalized cylinder. The boundary between object and background

at position ~x is characterized by a rapid change of intensities along a direction ~o. The

Laplace-operator � a common edge detector � locates the boundaries at the local maxima

of the gradients, i.e. at the zero-crossing of the second derivative in gradient direction. In

this sense we de�ne

B(~x, ~o) = −~oT · ∇I(~x) (2.1)

as the change of the image intensities I measured along the direction ~o (see �g. 2.4). The

o�set medialness of a position ~x with respect to a radius r and the plane spanned by ~n1,2

is then de�ned by

MO(~x, r, ~n1, ~n2) =
1

r

∫ 2π

0

B(~x + r~o(θ), ~o(θ))dθ, (2.2)

where ~o(θ) = cos(θ)~n1 + sin(θ)~n2. ~n1,2 are two orthogonal vectors of unit length. The

o�set medialness is high, if strong centripetal gradients lie in a given plane at a given

distance to the center. This measure is not a�ected by gradients lying inside or outside

the circle.
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The central medialness evaluates not just the boundary of a potential generalized cylinder

but also the image intensities lying inside and outside this circle. We de�ne a two-

dimensional kernel K(x, y, r),

K(x, y, r) = −r2(Gxx + Gyy) (2.3)

= (2−R)e−
R
2 , (2.4)

where Gxx and Gyy are the second partial derivatives of the Gaussian function, R =

(x2 + y2)/r2 and r is the radius of the circle. The medialness of a position ~x with respect

to a radius r and the plane spanned by ~n1,2 is de�ned by the linear convolution

MC(~x, r, ~n1, ~n2) = K ∗ I (2.5)

=

∫ ∫
K(x, y, r)I(~x + x~n1 + y~n2)dxdy. (2.6)

Due to the Mexican hat type kernel K, strong medialness is given if the interior and

exterior of the potential boundary of the generalized cylinder is covered by bright and dark

voxels, respectively. Note, that only relative intensity values matter, since maximization

of the medialness with respect to the center ~x is independent of its absolute value. This

feature is essential, because the scanning of di�erently sized processes yields di�erent

intensities (see sec. 2.2).

In order to compute the medialness of an image location we approximate the integrals in

the medialness functions by sums over m equally spaced points. We obtain:

MO(~x, r, ~n1, ~n2) =
1

m

m∑
i=1

B(~x + r~oi, ~oi) (2.7)

and

MC(~x, r, ~n1, ~n2) =
1

m2

m∑
i=−m

m∑
j=−m

K(xi, yj, r)I(~x + xi~n1 + yj~n2), (2.8)

where ~oi = ~o
(
2π i

m

)
(see eq. (2.2)), xi = 3r i

m
, yj = 3r i

m
and where K(x, y, r) was set to

0 for
√

x2 + y2 > 3r. The number m of points is chosen such that the distance between

adjacent points is approximately one voxel and that m ≥ 8. Intensity values between the

grid points of the image lattice are calculated by trilinear interpolation.

Combining both measures of medialness increases the robustness of the �tting proce-

dure, because they exploit somewhat complementary features of the object. The central

medialness evaluates the intensity pro�le, while the o�set medialness makes use of edge

information.
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Figure 2.4: The boundariness de�ned
in eq. (2.1). The �gure shows two
di�erent circular cross-sections (bold
lines) de�ning the radial directions ~o1,2

at position ~x and the (negative) image
gradient −∇I. The length of the vec-
tors ~b1,2 corresponds to the boundari-
ness measures B(~x, ~o1,2). Depending on
the center of the cross-section the same
location gives di�erent values for B.

Snakes

The skeleton is composed of a number of segments, each being modeled as a generalized

cylinder. The generalized cylinders are parameterized by a set of points V = {i : 1 . . . n}
(called snaxels). Each snaxel is characterized by its location ~xi ∈ R3 in the image, by its

radius ri ∈ R, and by its neighborhood Ni ⊂ V . The shape of the generalized cylinder

is obtained by linear interpolation between adjacent snaxels. Most of the snaxels have

two neighbors, except those at the branching points which have three or more neighbors6,

and those at the endings of the branches which have one. We �rst consider the case that

all snaxels have one or two neighbors and that the neighborhood of snaxel i is given by

Ni = {i−1, i+1} or Ni = {i±1}. The treatment of the branching points will be explained

afterwards.

The snake algorithm �ts the skeleton to the data by minimizing an energy functional. It

is de�ned for the whole skeleton as the sum of an external and an internal energy over all

snaxels,

Êsnake =
n∑

i=1

Esnake(i) =
n∑

i=1

(αEext(i) + (1− α)Eint(i)) . (2.9)

n denotes the number of snaxels and α ∈ [0, 1] is an adjustable weight for controlling the

relative importance of the terms.

The external energy is data driven. Its minimization attracts the snaxels (the medial

axis of the generalized cylinder) to the medial points of the neural structure and adjusts

the corresponding radii. It is de�ned as the weighted sum of the central and the o�set

medialness,

Eext(i) = −(λMC(i) + (1− λ)MO(i)), (2.10)

where MC,O(i) = MC,O(~xi, ri, ~ni1, ~ni2) is the medialness of the snaxel i ∈ {1 . . . n} at

6Bi-, tri-, and multifurcating points exist, and can be reconstructed by our method.
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location ~xi with radius ri according to equations (2.7) and (2.8). ~ni1,2 span the plane

which is orthogonal to the tangent of the generalized cylinder at this location. The

parameter λ ∈ [0, 1] is the weighting factor.

The internal energy is de�ned as the sum of the �rst derivatives (i.e. the length of

the tangent vectors) of the skeleton. Minimizing this energy gives the snake an elastic

behaviour which reduces its curvature and thus smoothes the curve. The radii are aligned

as well. For snaxels with one or two neighbors the internal energy is given by

Eint(i) =


1
4
(β (‖~xi − ~xi−1‖2 + ‖~xi − ~xi+1‖2)

+ (1− β) ((ri − ri−1)
2 + (ri − ri+1)

2)
)

: |Ni| = 2,
1
2
(β‖~xi − ~xi−1‖2 + (1− β)(ri − ri−1)

2) : |Ni| = 1,

(2.11)

where Ni is the neighborhood of snaxel i with snaxels at location ~xi±1 and with radii ri±1.

β ∈ [0, 1] is a weighting parameter. Since the internal energy is minimal for minimal dis-

tances between the snaxels, the skeleton tends to collapse to one point. This is prevented

by constraining the movements of the snaxels to the plane perpendicular to the skeleton.

If a snaxel has more than two neighbors, namely at the branching points, the energies

are evaluated with respect to each pair of neighboring snaxels and averaged. In order to

give more in�uence to the neighbors belonging to thicker branches, the energy values are

weighted by the radii of the respective neighbors,

E(i) =
∑

{k,l}∈Ni

rk + rl

Z
Esnake(i)|{k,l}, (2.12)

where Z = 2
∑

k∈Ni
rk is a normalization factor and Esnake(·)|{·,·} denotes the energy with

respect to the two given neighbors.

The energy functional given by equation 2.9 is minimized using an iterative gradient

descent method which minimizes Êsnake with respect to both the locations and the radii

(see appendix 2.7.1). Local minima are avoided by a su�ciently accurate initialization

which has to be provided by the user who sets the tree nodes.

2.4.2 Surface Reconstruction: Correction for Non-Circular Cross-

Sections

If a precise reconstruction of the neuron surface is required, the approximation by gener-

alized cylinders is no longer su�cient. Here we suggest to improve the surface description

by using a �exible model based on geodesic active contours by Caselles et al. (1997) which,
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however, is regularized by the generalized cylinder approximation.

The surface is implicitly de�ned by a level set of a function u : R3 → R: all points in

image space which are mapped to a certain value (e.g. u(~x) = 0) belong to the surface.

The �tting process then adjusts the mapping u according to the data and an appropriate

smoothness constraint.

Geodesic Active Contours

The geodesic active contours method detects boundaries in three-dimensional space by

computing surfaces of minimal area (also called geodesics). The area of a two-dimensional

surface S : R2 → R3 in the three-dimensional Euclidean space is given by

A :=

∫ ∫
d~a, (2.13)

where the surface is parametrized by ~a ∈ R2 and d~a is the Euclidean area element.

Surfaces minimizing eq. (2.13) are called minimal surfaces.

The fastest way to minimize the area of a surface is the mean curvature �ow or Euclidean

shortening �ow which is the Euler-Lagrange of A (Chopp, 1993). The curve evolution

equation is given by

St(~a) = H(~a)~n(~a), (2.14)

where the subscript t denotes the derivative with respect to t. H is the mean curvature

and ~n is the inward unit normal of the surface. This way the surface moves outward where

it is concave and its mean curvature is negative, and it moves inward where it is convex

and its mean curvature is positive.

Now let the area be �weighted� at location ~x = S(~a) according to the image evidences

I(~x),

Â :=

∫ ∫
g(S(~a))d~a. (2.15)

The function g usually depends on the edges in the image:

g(~x) = f(|∇I(~x)|), (2.16)

where f is a decreasing function, such that f(r) → 0 as r →∞. Here the function

f(x) =
1

1 + x
(2.17)

is used. Thus the larger the magnitude of the gradient at the location of a surface element,
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the less it contributes to the measured area. The surface which minimizes eq. (2.15) is also

called a minimal surface. In order to increase the robustness of the surface reconstruction

in particular that of the thin structures an intensity-based term is added:

g(~x) = λf(|∇I(~x)|) + (1− λ)|I(~x)− t|. (2.18)

λ is a weighting parameter and t is a local threshold which provides intensity information

independent from the gradients. The threshold is calculated by averaging the intensities

along the circle with center and radius of the snaxel which is closest to ~x and lying in the

plane which is perpendicular to the axis of the generalized cylinder at that snaxel. The

threshold changes with location, because the central as well as the o�set medialness used

to �t the snaxels depend just on di�erences of intensity values.

The Euler-Lagrange of Â is then given by (Caselles et al., 1997):

St = (gH −∇g · ~n)~n, (2.19)

where the arguments ~a and ~x have been omitted for clarity. Still the Euclidean mean

curvature will be reduced by the �rst term on the right hand side of eq. (2.19) but the

speed is controlled by the magnitude of the image gradient. Thus the shortening �ow is

reduced in the presence of edges. The second term pushes the surface towards the edges

except for those lying exactly orthogonal to the surface. −∇g points in the direction of

image gradients with larger magnitude and ~n is the inward normal of the surface (see �g.

2.5).

In order to formulate the weighted curvature �ow in level set notation the evolving surface

S is de�ned as the zero level set of the function u(~x) ∈ R which is the set of all points for

which u = 0. The weighted shorting �ow for the level set minimizing Â is then

ut = |∇u| div

(
g
∇u

|∇u|

)
(2.20)

= g |∇u| div

(
∇u

|∇u|

)
+∇g · ∇u. (2.21)

Closed contours, however, tend to collapse under the in�uence of the shortening �ow.

Caselles et al. (1997) therefore proposed an additional constant velocity acting like a

�balloon force� in the classical active contour model (Cohen, 1991) in order to avoid this
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Figure 2.5: The e�ect of the term −(∇g · ~n)~n in eq. (2.19) is illustrated in this �gure
for a two-dimensional image. The extension to three dimensions is straightforward. The
current estimate of the boundary S is shown as a black line and the edge map |∇I| is
shown as gray values. White denotes high values of the gradient and small values of
g according to eq. (2.18). Black arrows show the normal ~n of the boundary and the
direction of highest increase of the edge map: −∇g. We illustrate the result of −(∇g ·~n)~n
using white arrows at two di�erent locations of S marked by solid circles. Both points
are to be moved along the normal direction towards the edges.

behaviour. Thus the evolution equation (2.20) is supplemented by an �bias term� g|∇u|:

ut = |∇u| div

(
g
∇u

|∇u|

)
+ cg|∇u| (2.22)

= (c + H)g|∇u|+∇g · ∇u, (2.23)

where c is a constant which determines the strength of the balloon force. The term cg|∇u|
prevents the contour from collapsing due to the shortening �ow.

The surface of tubular structures is characterized by a high curvature in the direction

lying perpendicular to the axis of the tube. This curvature should not contribute to the

shortening �ow. Hence we incorporate the model of tubular shape by chosing the factor

c to be non-constant and depending on the curvature of the boundary of the generalized

cylinders:

c = −div

(
∇d

|∇d|

)
, (2.24)

where d(~x) is the signed distance to the nearest point lying on the boundary of the

generalized cylinders, with positive values outside and negative values inside the cylinders.

d is called the signed distance map (note that |∇d(~x)| = 1 holds in general).
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Figure 2.6: Application of eq. (2.27) to the surface reconstruction of a small part of
the data set described in sec. 2.5. (a) u is initialized by the signed distance map d of
the generalized cylinders which were �tted by the snake algorithm. The �gures show
the generalized cylinders (solid lines and circles) and the initial zero level set of d as
transparent surface. (b) The surface given by the zero level set of u after �tting u to the
data using eq. (2.27). Shown are the generalized cylinders and the �nal (opaque) surface.

The factor c acts as a shape regularizer. It compensates the contributions to the shortening

�ow which minimize the radius of the cross-section of the neurites leading to a collapse

of the surface to a one-dimensional curve. Thus equation (2.21) becomes

ut = g |∇u|
(

div

(
∇u

|∇u|

)
− div

(
∇d

|∇d|

))
+∇g · ∇u (2.25)

= g |∇u| div

(
∇u

|∇u|
− ∇d

|∇d|

)
+∇g · ∇u. (2.26)

In order to control the in�uence of both terms in eq. (2.26) separately, a weighting

parameter α is introduced:

ut = (1− α) g |∇u| div

(
∇u

|∇u|
− ∇d

|∇d|

)
+ α∇g · ∇u. (2.27)

The mapping u is initialized with the signed distance map induced by the skeleton (see

�g. 2.6 for an example).

2.5 Results

We applied the neuron reconstruction technique described in this paper to stacks of confo-

cal images of cultured astrocytes, sensory neurons, inter-, and motorneurons. Fig. 2.7(a)

shows a maximum intensity projection, and Fig. 2.7(b) and (c) the reconstruction of a
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dendritic tree of a motorneuron (MN5) of a Manduca sexta7.

The image in �g. 2.7(a) consists of seven tiles, viz. maximum intensity projections of

seven aligned confocal image stacks. The voxel size is 0.1×0.1×0.3 µm3. The skeleton was

reconstructed by loading successively image stacks covering di�erent subvolumes into the

software. This way, large dendritic trees can be reconstructed at highest resolution without

a shortage of working memory. The memory usage for the �tting procedure applied on the

whole skeleton is very small compared to the memory demands of the image stacks, and

therefore, causes no problems. For the surface reconstruction, however, memory usage

amounts to the tenfold of the original dataset due to �oating point precision and implicit

representation of the surface. To circumvent memory limitations the calculations can be

run on separate tiles successively.

The number of snaxels amounts to 16578 with an average spacing of about 0.5 µm which

allows smooth changes of axis direction and radius. The total length of the reconstructed

skeleton is 8323.9 µm, its radii range between 0.1 and 3.5 µm. It has 1022 branching

points, 1078 end points, and 2999 segments. We had to set approximately 1500 of 16578

points, i.e. 9%, manually. The tracing procedure is described in detail below. The

numbers alone suggest a rather moderate saving of e�ort, but most of the reduction results

from the automated �tting which delivers the user from specifying the radii and corrects

inaccurate input. Hence the reconstruction process is accelerated by reducing both the

necessary quantity and quality of the input while producing results of highest accuracy.

Time investment for de�ning the branching points of the skeleton strongly depends on

the user's experience and demand on completeness. However, to de�ne the 1500 points

necessary for the reconstruction of the cell shown in �g. 2.7 took a very experienced user,

who sought the highest level of completeness including reconstruction of �ne �lopodia,

one working day. In comparision, the same user needed three hours for a reconstruction

restricted to dendrites thicker than 0.3µm. The time needed for the calculation of surface

reconstructions depends on the size of the original image stacks. In case of the surface

reconstruction shown in Fig. 2.7(c), the computing time was 80 minutes on a standard

high-end personal computer, whereas the underlying image data has a size of 780 MB.

However, during calculation of surface reconstructions no user interaction is required.

A part of a dendritic tree was reconstructed to evaluate the user invariance (see sec.

2.5.2). This exempli�es the time investment for the processing of simpler structures. It

has 123 segments and 520 snaxels. Averaged over three users, the reconstruction time was

20 minutes.

7The manduca (Tobacco hornworm moth) belongs to the family of the sphings moths which are well
known to the layman from the movie �The Silence of the Lambs� (USA, 1991).
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Figure 2.7: The dendritic tree of the Motorneuron 5 of a Manduca sexta. The images were
captured on a Leica SP2 laser scanning confocal microscope using a 40× oil immersion lens
(NA 1.25). The excitation maximum of the laser was at 543 nm and the detection range
was 565-600 nm. The voxel size is 0.1×0.1×0.3µm3. Scalebar: 50µm. (a) Data shown in a
maximum intensity projection. (b) Reconstruction of the skeleton �tted using the active
contour model which minimizes eq. (2.9) (parameters: α = λ =0.5). The generalized
cylinders are indicated by their center lines. The radii are not shown. (c) Surface �tted
using the geodesic active contour model of eq. (2.27) (parameters: α =0.86, λ =0.17).
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2.5.1 Tracing Procedure

The tracing procedure is illustrated in Fig. 2.8. The user traces the dendritic tree iter-

atively selecting existing snaxels as the starting points of the piece of the skeleton to be

added. If the selected snaxel is an end point of a reconstructed segment, the segment will

be extended (see �g. 2.8(d)), otherwise the snaxel becomes a branching point and a new

segment will be attached to it (see �g. 2.8(f)). To provide the end point of the new piece of

the skeleton, the user clicks at the appropriate location in the image. Three-dimensional

input coordinates are speci�ed by clicking on a rendered isosurface of the neuron or an

image slice which can be dragged through the volume. A new snaxel will be created at

the given location and will be connected to the selected one by automatically inserting

intermediate snaxels on a straight line with a prede�ned stepwidth. The computing time

for the automatic connection procedure (snaxelization) shown in �g. 2.8 is negligible.

Afterwards the newly created piece of skeleton can be �tted to the data using the snake

algorithm described in section 2.4.1 by minimizing equation (2.9). This way the user can

check the resulting �t immediately after the creation of the new piece. Alternatively,

the user can set several snaxels, before the �tting procedure is applied to reconstruct the

skeleton pieces in between.

The number of iterations which are necessary for the convergence of the snake algorithm

depends on the noise and the bending of the neural branch, which is to be �tted. A high

noise level requires small update steps in order to avoid oscillatory behaviour resulting in

a large number of iterations. Strong bending of a neurite between the start and the end

point chosen by the user causes the (linear) initialization of the snake to deviate more

strongly from the actual shape of the neurite. This increases the number of iterations as

well. Convergence does not introduce a noticeable delay for segments with 20 sampling

points and an diameter covering 50 voxels. Increasing the voxel number to 400 introduces

a delay of about 10 seconds. The computing time increases with voxel number (linearly

for o�set medialness and quadratically for central medialness), but can be accelerated by

subsampling the image before. Generally the optimal solution is found by the algorithm

as long as parts of the initialized center line lie inside the neural structure. Snake-�tting

time is by far shorter than the time needed for user interaction.

2.5.2 User Invariance

In order to evaluate the reduction of the user variance which is achieved by our method,

three users independently reconstructed the same dendritic tree both manually and with

our new method.
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Figure 2.8: The tracing procedure shown for a detail. The image slice in sub�gures (b-
f) helps the user to locate the neurites in three-dimensional space and to specify input
coordinates by clicking on it. (a) A maximum intensity projection of the data. (b) The
user sets the �rst point (marked by an arrow) which is automatically selected (selected
points are highlighted with a wireframe cube), by clicking at the image slice. (c) The
user adds a point. The new point is automatically connected with the point which was
selected before by inserting additional points. The new points are �tted to the data. (d)
The user adds a point. All new points are �tted to the data. (e) The user selects a point
(marked by an arrow) by clicking on it to continue the tracing procedure there. Since it
is not an end point, it will become a branching point. (f) The user adds a point. All new
points are �tted to the data.

The upper row in Fig. 2.9 shows the resulting three manual reconstructions. The user

builds the skeleton by de�ning linear pieces and has to estimate their radii, mimicking the

Neurolucida reconstruction procedure. Note that the accuracy of a reconstruction does

not depend on the number of snaxels used to represent a linear piece, since the snaxels in

between are just linearly interpolated. The quality of these reconstructions is comparable

with that of Neurolucida reconstructions. The semi-automated reconstructions shown

in the lower row of Fig. 2.9 were produced as described above. The �gures in the

rightmost column show the center lines of all three skeletons together for the manual
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Figure 2.9: Three di�erent users reconstructed a detail of a dendritic tree. It is from the
MN5 of a Manduca sexta and shown at the top left as a maximum intensity projection.
Scalebar: 5µm. The top row shows manual and the bottom row shows semi-automated
reconstructions. The snaxels are represented by balls of the same radius as the skeleton at
this location. The rightmost column shows the three skeletons together without snaxels
to compare the congruence between the results. The arrows indicate a segment which was
reconstructed di�erently by the three users.

(upper row) as compared to the semi-automatic reconstruction (lower row). Obviously

the semi-automated reconstructions exhibit a much stronger congruence than the manual

ones. Di�erences between the former occur mainly with respect to the topology, i.e. the

lengths and number of segments (see arrows in �g. 2.9). These di�erences are not caused

by the �tting but depend on the user's data interpretation. Therefore, the �tting ensures a

high user invariance with regard to center line and branching point locations and segment

radii. In contrast, in manual reconstructions higher user variance occurs with regard to

these quantities.

For better visualization of user dependent variance the mean radii of the segments are plot-

ted in ascending order for the three manual (�g. 2.10(a)) and the three semi-automated

reconstructions (�g. 2.10(b)).
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Figure 2.10: The mean radii of the segments plotted in ascending order. Since the recon-
structions have di�erent numbers of segments, the x-axis was normalized. (a) The radii
of three manual segmentations by di�erent users. (b) The radii of three semi-automated
reconstructions by the same users.

Since the number of segments varies, the spacing between the data points is chosen such

that the curves are normalized with respect to the x-axis. The estimates of the users

di�er to a high degree, while those based on medialness measures introduced in section

2.4.1 are very similar.

2.5.3 Skeleton

The maximization of the two medialness measures MO and MC (see eqs. (2.7, 2.8)) yields

slightly di�erent results for each. In particular the estimates of the radii based on the

central medialness MC are larger than the values obtained for the o�set medialness MO.

MO is dominated by the high values of the gradient in x- and y-direction, while MC is more

in�uenced by the blurred intensity values in z-direction (see �g. 2.11), while MO neglects

the data in z-direction due to the lack of distinctive maxima of the gradient magnitudes

in that direction. It depends on the confocal images which of the two measures is the

more appropriate one. If the image is not deconvolved, the o�set medialness is preferable.

Because the blurring in axial direction is an artefact of the point spread function (PSF)

of the confocal microscope, it is reasonable to rely on the estimation of the radius in the

x-y-plane and then to adapt this value in z-direction. Here it is done by the restriction to

a circular cross-section of the generalized cylinders.

MC , however, is more robust for very thin structures covering just one or two voxels in x-
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Figure 2.11: Comparison of radius estimates obtained using the two medialness measures
MO and MC (eqs. (2.7)) and (2.8) for a thick (a,b) and a thin (c,d) neurite. The �gures
Show the cross-sections of the data and of the generalized cylinders which were �tted to
the data. The cross-sections of the generalized cylinders are shown by the thick black
contours. The data are visualized using gray values for image intensities (a,c) and as
iso-intensity contours (b,d), for the same cross-sections. Note the di�erent ranges of gray
values in (a) and (c). Scalebar: (a,b) 1µm, (c,d) 0.5µm. The central medialness MC

is strongly in�uenced by the blurred gray values in z-direction (vertical in the �gures),
leading to an estimation of the radius which is larger than that of the o�set medialness.
The o�set medialness MO, however, considers the local maxima of the image gradients.
The gradients are proportional to the density of the isolines in (b) and (d). Because no
distinctive maxima are given in z-direction, MO estimates the radius just with respect to
the x- and y-directions (horizontal in the �gures).

y-direction, since at the �nest scale the image gradients are very sensitive to the inherently

low signal-to-noise ratio of the data. After deconvolution the di�erence between the two

measures reduces to a large extend (Hiesinger et al., 2001). Without deconvolution the

user may want to choose a proper value for λ (see eq. (2.10)) weighting the two medialness

measures such that the method yields the most satisfying results. A reasonable choice is

to use MO in general except for very thin structures, where MC yields more robust results

and should be used in addition.

2.5.4 Surface Reconstruction

The �tting procedure for the surface uses two criteria for the evaluation of the data (see

eq. (2.18)), the intensity gradient and a locally adapted threshold which is provided by the

skeleton. In order to compare the in�uence of the di�erent terms we show a cross-section

of a detail fo the full data set with two neurites (see �g. 2.12).

The cross-sections which lie perpendicular to the axes of both branches show that the
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Figure 2.12: Comparison of the results according to the two data evidence criteria in eq.
(2.18) for a thin neurite. The �gures show the cross-sections of the data and of the surfaces
which were optimized according to the image gradients (parameters: α = 0.33, λ = 1)
and the intensities using a locally adapted threshold (parameters: α = 0.1, λ = 0).
The cross-sections of the surfaces are shown by the thick black contours. The data are
visualized using intensity gray values (a) and iso-intensity contours (b), for the same
cross-section. Scalebar: 0.5µm. The gradients are proportional to the density of the
isolines in (b). Because no distinctive maxima of the gradient magnitudes are given in
z-direction (vertical in the �gures), the surface resulting from the gradient-based �tting
is determined by those in the x- and y-directions (horizontal in the �gures). If the latter
are not distinctive enough either, the surface tends to collapse (like the right top one).
The intensity-based �tting results in a surface, whose cross-sectional shape is strongly
in�uenced by the blurred gray values in z-direction, but does not rely on local maxima of
the gradient magnitudes.

intensity gradients (observable by the density of the isolines in �g. 2.12(b)) do not always

provide enough information about the contours of the neural structures. It is inevitable

here to reconstruct the surface using a �nite threshold value in order to avoid a local

collapse of the surface. If, however, the gradients are su�ciently signi�cant, the re-

construction of the tubular surface is dominated by the intensity pro�le in the x- and

y-direction. Due to the lack of distinct maxima in z-direction the �rst term in eq. (2.27)

gives rise to an approximatly circular cross-section. This behaviour can be considered as

an invariance with respect to anisotropic blur occurring in confocal images.
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The varying contrast which is due to di�erently sized structures and inhomogeneous stain-

ing requires a local adaptation of the threshold (see �g. 2.13). The intensity values at

the locations of the reconstucted surface are higher for the thick structures than for the

thinner ones. In Fig. 2.13(a) two surface reconstructions are shown according to the

global thresholds t1 = 45 and t2 = 130. The threshold t2, which is optimal for the thick

branch, fails to reconstruct the thin branches, while the threshold t1, which includes the

thin branches, is too low for the thick branch.

The intensity-based term in eq. (2.18) depends on the local threshold values determined

by the respective snaxel of the skeleton, that is the snaxel, whose boundary is closest

to the respective location. These values can be observed at the surface shown in �g.

2.13(d) which was optimized with respect to that term. A strong correlation between the

thickness of the branches and the local thresholds is evident. Note, that neither of the

medialness measures used for �tting the snaxels (eqs. (2.2) and (2.5)) is based on the

absolute intensities.

The local intensity values at the surface which was �tted with respect to the local thresh-

olds approximate those which are found at the surface which was �tted to the gradients

(see �g. 2.13(c)). This suggests that both criteria for incorporating the data evidence

lead to similar results and thus are reasonable choices (see also �g. 2.13(b)). Nevertheless

none of the two is able to avoid the occurrence of little gaps in the reconstruction of thin

branches (indicated by the arrows in �gs. 2.13(c) and (d)). Since the locations of those

gaps di�er, it can be expected that the combination of both reduces their number. In-

deed, the surface of the same detail (see �g. 2.14) �tted using both criteria (λ = 0.95) no

longer shows these gaps. The di�erence between the generalized cylinders and the exact

surface is shown by the colors. This mismatch may be important, when the proximity

of the neural branches to other structures is evaluated which requires an exact surface

reconstruction.

2.5.5 2nd Channel Mapping

A detailed surface reconstruction may be used to evaluate the proximity to other struc-

tures like other neurons or cell surface molecules. We illustrate the projection of second

channel data onto the surface reconstruction in Fig. 2.15 using a reconstruction of an

intracellularly �lled interneuron and immunocytochemistry of the NO synthetase. To dis-

tinguish between both labels in the double staining they were bound to di�erent �uores-

cent markers and acquired with di�erent laser lines and emission �lters. At the moderate

laser intensities used for acquisition no cross-talk between both channels was observed.
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As an example for examining the spatial relation of two signals in 3-dimensional space

we followed the question how NO synthethase immunolabel was distributed within an

0.5µm vicinity around the dendritic tree of the interneuron. In Fig. 2.15(a) an x-y-slice

of the 2nd channel data is shown which is here distributed over the whole volume. This is

for instance the case with labelled cell surface molecules, because the labelling cannot be

restricted to those molecules belonging to the neuron of interest. In order to project only

the relevant data onto the surface the volume can be clipped at a user de�ned distance

from the surface, say 0.5µ (see �g. 2.15(b)). The intensities inside the remaining region

is projected onto the surface in Fig. 2.15(c)). If another (pre- or postsynaptic) neuron

was stained in the same specimen, it is also possible to mark the locations of the surface

where either direct, zero-distance contact or approximation below a user de�ned threshold

between the two appears. In order to obtain reliable results in all these cases it is crucial

to have an extremely accurate surface reconstruction which is provided by our method.
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Figure 2.13: Comparison of the results according to the two data evidence criteria in
eq. (2.18) for a detail including neurites of di�erent thickness. All images are views in
axial direction, (a), (c), and (d) are shown in front of a maximum intensity projection.
Scalebar: 1µm. (a) Two global threshold segmentations (thresholds: t1 = 45, t2 = 130)
shown as transparent surfaces. It is obvious, that branches of di�erent thickness require
di�erent thresholds for segmentation. (b) A data slice showing a cut of the volume. The
cross-section of the surface, which was optimized w.r.t. the intensity gradients (λ = 1)
is drawn blue, while the one, which was optimized w.t.r. the local thresholds (λ = 0)
is drawn red. Di�erences between the two occur mainly at the thin branches. (c) The
surface reconstruction using the intensity gradients (parameters: α = 0.95, λ = 1). The
intensity values of the image at the locations of the surface are color coded. (d) The
surface reconstruction using the local thresholds (parameters: α = 0.05, λ = 0). The
distribution of intensity values at the surface is nearly the same in (c) and (d), indicating
that both criteria are reasonable and reliable, although the reconstruction fails at some
places of the thin branches (marked by the arrows).
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2.5. RESULTS

Figure 2.14: The �tted surface (using eq. (2.27)) is compared to the surface of the �tted
generalized cylinders (minimum of eq. (2.9)) which is shown by the transparent surface
and the white circles. The local distance between the two is color coded (in µm). The
left �gure is a view in axial direction while the right one is a view from the side. Scalebar:
1µm.

Figure 2.15: Mapping of nearby structures onto a surface reconstruction (Data by courtesy
of Daniel Münch, FU Berlin). Scalebar: 20µm. (a) The surface and the maximum
intensity projection of the second channel recording. (b) The volume with the second
channel staining is clipped at a distance of 0.5µm of the surface. The remainder is shown
as volume rendering. The blue spots (marked by arrows) indicate where the intensity
exceeds 32. (c) The remaining structures are mapped onto the surface.
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2.6. CONCLUSIONS

2.6 Conclusions

In this paper, we present a semi-automatic method for high quality three-dimensional

reconstructions of most complex neurons from confocal image stacks which can be used

for diverse purposes. The skeleton gives the structural description of the neuron with high

accuracy and almost arbitrary high sample density of center lines and radii while reducing

considerably the user's e�ort, that is the necessary quantity and quality of input actions.

The automatic surface reconstruction achieves highest precision of even the �nest neurites

with low contrast.

In contrast to other available reconstruction tools our method is characterized by the

conjunction of (i) an accelerated process which provides exact results due to automated

�tting, (ii) invariance with respect to the reconstructing user and his carefulness, also due

to automated �tting, (iii) corrigible results due to extensive possibilities of user interaction,

and (iv) independence from computer platforms due to its implementation as a module

for Amira (Indeed - Visual Concepts GmbH, Berlin, Germany) which is available for the

standard operating systems on the PC8.

Thus we provide an e�cient, exact and controllable reconstruction procedure which allows

the analysis of a variety of neuronal properties: (i) the physiological properties of neurons

can be modeled exactly, since the radii of the segments vary continiously along the axes;

(ii) the detailed surface reconstruction allows to evaluate the proximity to other structures

reliably; and (iii) the structural description of the neuron allows the statistical analysis

of its morphology and structure. Furthermore it is possible to create a metric parameter

database for neurons which can be �lled by several users, since the user invariance of the

tool makes the results comparable.

8A binary version of the module will be available free of charge for download at
http:://www.neurobiologie.fu-berlin.de/duch.html. A brief documentation describing the instal-
lation and usage of the module will be provided, too.
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2.7. APPENDIX

2.7 Appendix

2.7.1 Calculation of the Gradients for the Snake Energies

The partial derivatives of the external energy with respect to the center point ~xi and to

the radius ri of snaxel i are

∂Êext

∂~xi

= −λ
∂MC(i)

∂~xi

− (1− λ)
∂MR(i)

∂~xi

(2.28)

=
1

m

m∑
j=1

(λH(~xi + r~oj)~oj

+ (1− λ)(I(~xi + r~oj)− t)∇I(~xi + r~oj)) (2.29)

∂Êext

∂ri

= −λ
∂MC(i)

∂ri

− (1− λ)
∂MR(i)

∂ri

(2.30)

=
1

m

m∑
j=1

(λ~oT
j H(~xi + r~oj)~oj

+ (1− λ)(I(~xi + r~oj)− t)~oT
j ∇I(~xi + r~oj)), (2.31)

where H is the Hessian matrix with

H = ∇2I =


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 . (2.32)

The partial derivatives of the internal energy with respect to the snaxels having two

neighbors are

∂Êint

∂~xi

=
1

2
(~xi−1 + ~xi+1 − 2~xi) (2.33)

∂Êint

∂ri

=
1

2
(ri−1 + ri+1 − 2ri). (2.34)

Like mentioned in section 2.4.1 the internal energy is neglected for the snaxels with one

neighbor. For those having more than two neighbors the internal energy is calculated

using a weighted sum of the contributions of all pairs of neigbors.
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