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Introduction

Since the discovery of the microscopical structure of matter, the idea to observe the

motion of the smallest particles in real time has attracted large interest of the scienti�c

community. However, in the early days of exact sciences, the limitations of experimental

capabilities prevented any insight into the course of molecular processes and only allowed

for determining the velocities of slow chemical reactions, initially at most on time scales

of seconds, and later down to milliseconds using sophisticated �ow tube techniques [1,2].

These data were complemented by empirical theories relating the reaction velocities to

external parameters such as temperature, as pioneered by Arrhenius more than 120 years

ago [3, 4]. With the discovery of quantum mechanics [5�7], the basic laws governing

the motion at the molecular level became essentially known [8], but for a long time

their application to realistic molecular systems remained computationally intractable.

Instead, the concepts of quantum mechanics were utilized to re�ne the empirical kinetic

theories, notably by the invention of transition state theory accomplished by Eyring and

others [9, 10]. In the meantime, the experimental limits of resolving increasingly shorter

time scales were pushed forward, most notably by the work of Eigen, Norrish and Porter,

who developed techniques based on the impulsive interruption of a previously equilibrated

system, followed by measuring the system's relaxation. This could be achieved e.g. by

sudden changes of temperature, pressure, or electric �elds [11], or, alternatively, by an

intensive light �ash, as performed in the technique of �ash photolysis [12,13]. In this way,

investigations of dynamical processes on the microsecond time scale became possible.

The advent of laser technology capable to generate light of very high intensity and

precisely adjusted frequency represented a further major advancement. In particular, the

possibility to produce very short laser pulses with durations from the nanosecond to the

sub-picosecond time regime opened fascinating opportunities for following the course of

radiative and nonradiative processes [14]. Entering the realm of femtosecond time reso-

lution [15] eventually allowed for the study of chemical reactions in real time, which was

pioneered by Zewail more than 20 years ago [16]. Since then, the experimental resolution

was further pushed downwards to shorter times, ultimately reaching the attosecond time

scale in which even the electronic motion can be followed [17,18]. Typically, time-resolved

measurements are nowadays performed by employing time-delayed laser pulse sequences,

in which the �rst pulse excites the system to a superposition of quantum states in which

dynamics is initiated, while the second one maps the dynamical evolution onto the de-

tection signal. In this way, a plethora of experiments has been successfully conducted,

providing insights into processes like structural rearrangement (isomerization, proton or

electron transfer), redistribution of vibrational energy, electronic relaxation, excitation

energy transfer, molecular dissociation, or ionization, or chemical reactions [19].
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Introduction

Moreover, not only techniques for mere observation have been advanced, but also

the active manipulation of molecular processes has become an active area of research.

Stimulated by several strategies theoretically proposed by Tannor and Rice [20] as well

as by Brumer and Shapiro [21, 22], molecular quantum control has been experimentally

realized for a wide variety of processes. A major advancement in this context was the

steadily improved capability to create very complex shaped pulse forms, and to employ

such pulses in iterative optimization procedures [23�26], as proposed by Judson and Rabitz

[27]. This has allowed for obtaining speci�cally tailored pulses, best adapted to achieve

a given control objective without the need to know the intrinsic properties of the studied

system in all details [28�34].

However, notwithstanding the increasing capabilities to successfully design and per-

form ultrafast experiments, a major challenge has been always posed by the task of con-

necting the measured data to the underlying molecular-level processes. Generally, it has

been realized that based on experiments and simple empirical models alone, the oppor-

tunities to extract information from the measurements are limited. Therefore, already

in the early stages of ultrafast science, attempts were made from the theoretical side to

provide more re�ned models and simulations that help interpret the experimental data.

For this purpose, the quantum mechanical time evolution equations for the studied sys-

tems have to be solved, frequently also including the laser �elds used in the experiments

for observation and control. In this context, a milestone in the quantum mechanical de-

scription of molecules that can hardly be overestimated is the separation of electronic and

nuclear motion formulated by Born and Oppenheimer [35], which has lead to the concept

of an electronic potential energy surface on which the nuclear motion takes place [36,37].

The characterization of such surfaces in terms of minima or saddle points provides the

basis for the common chemical notions of molecular structures or of transition states

traversed during a reaction. Moreover, the quantum dynamics of the nuclei can be for-

mulated to take place on these surfaces. While several decades ago the computational

capabilities available still largely prevented sophisticated dynamics simulations of real-

istic molecules, restricting the theoretical e�orts to simpli�ed models, the extraordinary

progress of computational technology has up to now enabled such studies for increasingly

complex systems.

In spite of these achievements, the treatment of polyatomic molecules in their full

dimensional complexity is still not possible on the basis of a full quantum mechanical

formulation, and therefore simulation techniques which approximate the nuclear motion

classically, are of large signi�cance. This idea can be traced back to the early �nding

of Ehrenfest that, in the dynamics of quantum mechanical systems, the mean values of

the observables evolve according to classical-like equations of motion [38]. Within the

concept of potential energy surfaces, the classical forces on the nuclei in molecules can

2
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be obtained from the gradients of the energy. In the beginning, the calculation of energy

surfaces, and even more of their gradients, was much too demanding for realistic systems,

and thus empirical model potentials were used instead, allowing nevertheless for pioneering

studies of collisional dynamics in simple systems, cf. e.g. Refs. [39, 40]. Nowadays, this

situation has largely changed, and the calculation of accurate electronic energies and

gradients has become possible for a multitude of systems. Moreover, the erstwhile most

commonly employed procedure of globally precalculating the energy surfaces prior to the

simulation of nuclear dynamics has become outperformed by the development of molecular

dynamics �on the �y� techniques [41�44], in which the energies and gradients are only

calculated for the current nuclear con�gurations during the course of the dynamics. This

has provided the opportunity to extend the scope of dynamics simulations to complex

molecules accounting for all degrees of freedom [45,46].

Combining these methods with an approximate description of nonadiabatic electronic

transitions, occurring when the Born-Oppenheimer separation of electronic and nuclear

motion breaks down, has also been an active research area since the very beginning of

quantum mechanics. Early contributions for calculating nonadiabatic transition probabil-

ities go back to Landau and others in the 1930s [47�49]. The combination of their approach

with classical molecular dynamics paved the way for the development of surface-hopping

techniques [50,51], which have been advanced and generalized since [52,53], and thus have

found widespread application for the simulation of coupled electron-nuclear nonadiabatic

dynamics. Yet the applicability of this class of methods for the theoretical simulation

of ultrafast laser experiments has so far been rather limited, as the interaction between

molecule and laser �eld is not accounted for. Despite that, important insights into the

intrinsic molecular processes occurring in excited states, such as internal conversion or ex-

cited state isomerization, could be gained using this approach, thus providing important

hints as to which processes may happen following the laser-induced photoexcitation [54].

However, phenomena induced by moderately strong laser �elds, such as Rabi cycling

of electronic populations or the competing excitation of di�erent electronic states, which

also represent the key to various strategies for optimal control, cannot be described within

this framework. This gap could be closed by the development of our �eld-induced surface

hopping method (FISH) [55], which introduces explicitly the matter-�eld interaction into

nonadiabatic molecular dynamics simulations. In this way, it could be demonstrated that

excitation induced by moderately intense laser �elds can be described with high accuracy,

opening the perspective for performing simulations that are much more comparable to

the experimental situation. Thus, the FISH method represents a highly valuable means

for the simulation of laser-induced dynamical processes accounting for the full system

complexity.

3
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In the present thesis, the theoretical foundation of FISH is elaborated, and the accu-

racy of the method is validated by comparison with exact numerical quantum dynamics.

In particular, the role of electronic quantum coherence in FISH simulations is investigated

in depth, and the conditions for the accurate treatment of electronic coherences in this

mixed quantum-classical framework are determined. In addition, the implications of the

classical approximation to the nuclear degrees of freedom on the accurate description of

vibronic (i.e. simultaneous electronic and vibrational) excitation are carefully assessed.

Furthermore, the general scope of the FISH method is signi�cantly advanced by extending

it for systems in the condensed phase, such as molecules in solution. Consequently, the

present thesis provides, based on the FISH method, a general theoretical methodology for

the simulation of laser-driven multistate dynamics in complex systems. This will be uti-

lized for application-oriented studies in the context of ultrafast spectroscopy and optimal

control. It will be shown that this involves two complementary aspects: The simulation

and interpretation of available experiments, providing a molecular-level understanding

of the experimental observations, and the theoretical prediction of molecular processes,

eventually stimulating novel investigations.

With regard to ultrafast spectroscopy, the focus has been put on the time-resolved

photoelectron spectroscopy (TRPES), since this technique represents a particularly con-

venient approach to the observation of coupled electron-nuclear dynamics in molecular

systems [56�58]. It involves the creation of a quantum wavepacket in an excited elec-

tronic state by a pump laser pulse, and subsequent probing of the dynamically evolving

system by photoionization due to a time-delayed probe pulse. The broad applicability of

this technique is due to the fact that a TRPES signal can always be recorded if ionization

is energetically possible (e.g. no dark states are present), and the detection of photo-

electrons can be performed with high sensitivity. Moreover, the energetic and angular

distribution of the photoelectrons carries a wealth of information about the character of

the electronic and nuclear quantum states. In order to enable the simulation of TRPES

based on �eld-induced multistate dynamics, a major extension of the FISH method has

been devised and elaborated in this thesis, as outlined in Chapter 6. The scope of this

methodology for the simulation of TRPES has been illustrated by studies of the photo-

dynamics in small noble-metal clusters. Since these systems are characterized by strongly

non-scalable properties, the investigation of their ultrafast dynamics is of fundamental

importance for establishing the relation between structure, size, optical properties, and

the time scales of nonradiative processes determining their photoemission. The speci�c

systems selected in this thesis serve to illustrate the aforementioned two applicational

aspects of simulations based on the FISH method. First, the nonadiabatic relaxation dy-

namics after photoexcitation and the associated TRPES signals are studied for the silver

trimer (Ag3) [59, 60]. While the ground state dynamics of this system has been already

4
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extensively investigated, studies of the dynamics in excited electronic states have not

been performed so far. Consequently, the present investigations, which established the

lifetimes of nonradiative relaxation as well as the structural dynamics occurring during

this process, attempt to �ll this gap theoretically and also aim to stimulate comparative

experimental studies. Conversely, the choice of the second example, the relaxation dy-

namics of the anionic gold heptamer (Au−7 ) after photoexcitation [61], was motivated by

previously obtained experimental TRPES. For this case, the simulation of the TRPES

signal and the analysis of the underlying dynamics permitted the interpretation of the ex-

perimental data by a bulk-like electronic relaxation behaviour accompanied by only small

structural �uctuations. Contrary to that, previous studies in a lower excitation energy

regime have found a molecular-like relaxation involving large structural deformations [62].

These results reveal the presence of distinctly di�erent relaxation mechanisms in one and

the same system, only depending on the energy regime of electronic excitation.

Beyond the simulation of observables, the main emphasis of the present thesis lies on

the extension of the FISH approach to the coherent control in complex molecular systems

interacting with their environment. As mentioned above, the use of optimally shaped laser

�elds allows for the manipulation of a wide variety of processes. However, the gap between

experimental observation and the molecular-level interpretation is even larger in optimal

control than in purely analytical spectroscopic applications. To a major part, this is caused

by the usually very complex pulse forms arising in iterative optimization procedures,

which prevent a straightforward connection to the underlying processes. Therefore, the

mutual interaction between experiments and theoretical simulations is highly desirable.

In this context, the FISH method, due to the explicit inclusion of the laser �eld in the

dynamics, provides a unique opportunity to simulate the laser-driven processes occurring

in optimal control. In particular, the combination of FISH with pulse shaping in the

spectral domain, as introduced in this thesis, allows for the construction of control �elds

analogous to the experimental procedure. This opens the possibility to employ arbitrarily

shaped �elds, which can be either theoretically optimized in an iterative fashion, or,

alternatively, directly taken from the experiment. Moreover, also the ability to achieve

a given control target can be assessed as a function of the pulse parameters, thus entire

control landscapes can be theoretically explored. Hence, for the �rst time the connection

between experimental pulses and intrinsic dynamical processes in coherent control can be

established for realistic molecules accounting for their full complexity, eventually including

their environment. These opportunities are utilized in this thesis for the investigation of

selected applications of optimal control.

At the outset, the applicability of the FISH method for the precise control of electronic

excitation processes is benchmarked in Chapter 9 against exact quantum dynamical simu-

lations on the example of selective population transfer to energetically close-lying excited

5
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states in the potassium dimer molecule (K2) [63]. This represents an example of strong-

�eld control involving complete population inversion, which is of interest if close-lying

excited states are present that exhibit di�erences, for instance, in the initiated nuclear

motion after excitation, in �uorescence e�ciency, coupling mechanisms to other states,

possible onset of molecular dissociation, etc. The comparison of the results obtained by

FISH with those from quantum dynamics simulations allows for establishing the accuracy

of FISH for simulating coherent control processes, which provides a basis for applying

the method to the much more complex molecular systems discussed in the subsequent

chapters.

The �rst of these, presented in Chapter 10, is inspired by the idea to theoretically

design simpli�ed laser pulses based on an analytic parameterization of the electric �eld,

thus avoiding the time-consuming iterative optimization procedure. This approach will

be illustrated on a challenging application of coherent control in the condensed phase,

namely the suppression of ultrafast nonradiative relaxation in the nucleobase adenine in-

teracting with water environment [64]. Adenine represents an example of a biomolecule

characterized by very e�cient radiationless electronic relaxation processes following pho-

toexcitation. This phenomenon is prominently seen in a number of molecules related to

the genetic material of living cells. It has been surmised that this represents an evolu-

tionary adaptation aiming to ensure the stability of the genetic information under solar

irradiation [65]. In the context of optimal control, the question can be raised if the ultra-

fast radiationless decay can be counteracted by adequately tailored laser pulses such that

the excited state lifetimes are extended. It could be shown that this is indeed possible

by utilizing the dynamical processes in di�erent excited electronic states, thereby hin-

dering the system to directly advance towards conical intersections to the ground state.

This might ultimately open a route to invoke �uorescence in intrinsically non-�uorescent

systems, which can be of considerable interest in the context of biosensing applications.

Due to the direct inclusion of the electric �eld in the dynamics simulations within the

FISH method, also the straightforward application of experimentally obtained laser pulses

in theoretical simulations is feasible. In this way, a real-time picture of the dynamics at

the molecular level can be obtained in direct connection to experimental observations.

This approach is utilized in Chapter 11 to study the optimal dynamic discrimination of

nearly identical molecules using shaped laser �elds, which represents a sophisticated vari-

ant of optimal control in which the optimization goal is at the same time to maximize

the response of one, and to minimize that of a second system. Speci�cally, two �avin

molecules, ribo�avin and �avin mononucleotide, will be studied, which share the same

chromophore and di�er only by a phosphate residue at the tail of a side group. These

molecules have virtually indistinguishable absorption and �uorescence spectra, which pre-

vents their discrimination using stationary spectroscopic techniques. However, it has been

6



Introduction

demonstrated experimentally that the use of optimized laser �elds enables the generation

of experimental signals (in this case the �uorescence depletion induced by an ionizing laser

pulse) which di�er for the two molecules [66]. Since the experimental data alone do not

allow one to deduce the molecular mechanism underlying this �nding, FISH simulations

provide a unique means to directly investigate the in�uence of the experimental pulses

on the system dynamics. In this way, it could be revealed that the shaped pulses take

advantage of minute transient di�erences of the dynamics in the two molecules to steer

them to slightly di�erent regions on their potential energy surfaces, in which for one of

the molecules the ionization probability is enhanced, while for the other one it is dimin-

ished [67]. This �nding might represent a general clue to the spectroscopic distinction

between very similar analytes, thus o�ering promising application potential in analytical

sciences.

Altogether, the present thesis is structured as follows: The �rst part is concerned with

the methodological foundations. Therefore, in the introductory Chapter 1, the quantum

mechanical basis of the dynamics in molecules is outlined, and an overview of mixed

quantum-classical and semiclassical approximations to the coupled electron-nuclear dy-

namics is provided. Subsequently, in Chapter 2 the basic computational tools needed

to carry out multistate nonadiabatic molecular dynamics simulations are presented, in

particular algorithms for solving the classical equations of motion as well as methods for

the calculation of the molecular electronic structure. Thereafter, the FISH method is

elaborated in Chapter 3, followed by an analysis and validation of several formal aspects

of this method in Chapter 4, which concludes the methodological part.

The second part is devoted to the extension and application of the FISH method

to ultrafast spectroscopic observables. To this end, in Chapter 5 a general introduction

to ultrafast spectroscopy is provided, followed by the description of a broadly applicable

approach to the simulation of TRPES based on FISH dynamics in Chapter 6. Applications

of this method to the simulation of TRPES in noble-metal clusters are presented in

Chapter 7.

The ensuing third part of the thesis focuses on applications of FISH dynamics to

optimal control. After the introductory Chapter 8 providing the basic theoretical strate-

gies of optimal control as well as an overview of applications, three chapters presenting

applications follow, each aiming to point out particular aspects of the scope of FISH

simulations for quantum control. The �rst of these, Chapter 9, presents the strong-�eld

control in the potassium dimer molecule. This study serves to illustrate the applicability

of FISH for controlling strong-�eld excitation phenomena and in addition provides a thor-

ough validation against exact numerical quantum dynamics calculations. Subsequently,

in Chapter 10, the predictive power of FISH simulations to design optimal control �elds

will be addressed in the context of manipulating the excited state dynamics in the nucle-

7
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obase adenine. This study also represents an illustration of control in a complex system

including solvent environment. Finally, in Chapter 11, the opportunities of FISH control

to provide interpretation and molecular-level understanding of experimental results are

presented on the example of optimal dynamic discrimination of two nearly identical �avin

molecules. Ultimately, conclusions and outlook are given.
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Theoretical Methodology
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1 Coupled Electron-Nuclear Molecular Dynamics

Dynamical processes in molecules are characterized by the interplay of electronic and nu-

clear motion. Frequently, due to the large mass di�erence of electrons and nuclei (the

lightest nucleus, the proton, is 1836 times heavier than an electron), these two types of

motion can be treated separately, but under certain circumstances, this is not possible due

to strong coupling between electronic and nuclear motion. A comprehensive theoretical

description of these phenomena is possible in the framework of quantum mechanics. How-

ever, for the numerical simulation of the dynamics occurring in realistic molecules, the

large computational demand of solving the quantum mechanical equations of motion often

prevents their direct use, and a variety of approximate approaches have been devised. A

large number of them are based on introducing a purely or partially classical description of

the nuclear motion, giving rise to the mixed quantum-classical or semiclassical methods.

The following chapter serves to provide a general overview of the theoretical approaches to

coupled electron-nuclear dynamics in molecular systems, beginning with the exact quan-

tum mechanical formulation and successively introducing classical approximations to the

nuclear motion. In the �rst Section 1.1, this is performed for the case of purely adiabatic

nuclear dynamics without changes of the electronic state, while thereafter in Section 1.2,

approaches to the nonadiabatically coupled electron-nuclear dynamics will be presented.

1.1 Quantum molecular dynamics and classical approximations

In the framework of quantum mechanics, motion in the molecular size regime can be

described by the time-dependent Schrödinger equation,

i~|Ψ̇〉 = Ĥ|Ψ〉, (1.1)

with the Hamiltonian operator Ĥ and the quantum state vector |Ψ〉 [5�7]. In the particular
case of a molecular system, composed of electrons and nuclei, the Hamiltonian can, in the

absence of relativistic e�ects, be split into the nuclear kinetic energy and an electronic

part as Ĥ0 = 1
2
p̂ · M−1p̂ + Ĥel, with p̂ as the Cartesian nuclear momentum operator

and M−1 as the inverse of the diagonal matrix of the nuclear masses1. The electronic

Hamiltonian Ĥel is de�ned here as the sum of the kinetic energy of the electrons plus the

Coulomb interaction among the electrons, among the nuclei, as well as between electrons

and nuclei, and reads, with atomic units for the interaction terms (e = 1 and 1/4πε0 = 1),

Ĥel =
1

2me

el.∑
i

p̂2
i +

el.∑
i<j

1

rij
+

nuc.∑
A<B

ZAZB

RAB

−
nuc.∑
A

el.∑
i

ZA

rAi

, (1.2)

1Bold-faced variables in lower case stand for vectorial quantities, those in upper-case for matrices.
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Chapter 1. Coupled Electron-Nuclear Molecular Dynamics

where p̂i is the momentum operator for electron i, ZA is the charge of nucleus A, and the

rij, RAB, and rAi indicate the distance of two electrons, two nuclei, and pairs of nuclei

and electrons, respectively. Considering the large di�erence in masses between electrons

and nuclei, it is sensible to introduce as a basis the eigenstates of Ĥel at �xed value q of

the nuclear coordinate, which are solutions of

Ĥel(q)|i;q〉 = Ei(q)|i;q〉, (1.3)

where eigenenergies Ei(q) and eigenstates |i;q〉 are parametrically dependent on the nu-

clear coordinates. Assuming completeness of the set of electronic eigenstates |i;q〉, the
total electron-nuclear wavefunction can, according to Born [68, 69], be expressed as a

linear combination of the electronic eigenstates,

|Ψ(q, t)〉 =
∑
i

χi(q, t)|i;q〉, (1.4)

with the nuclear-coordinate-dependent coe�cients χi(q) being interpreted as nuclear wave

functions2. Insertion of the wavefunction (1.4) into the time-dependent Schrödinger equa-

tion (1.1) followed by projection on the electronic eigenstates yields a set of coupled

equations of motion for the nuclear wavefunctions χi(q):

i~χ̇i(q, t) =

(
−~2

2
∇q ·M−1∇q + Ei(q)

)
χi(q, t)

−~2

2

∑
j

(
2dij ·M−1∇qχj(q, t) + d̃ijχj(q, t)

)
. (1.5)

Here, dij = 〈i;q|∇q|j;q〉 and d̃ij = 〈i;q|∇q ·M−1∇q|j;q〉 denote the �rst- and second-

order nonadiabatic coupling, respectively. These terms arise owing to the interdepen-

dence of nuclear and electronic motion. However, due to the aforementioned large mass

di�erence between electrons and nuclei, this coupling of electronic and nuclear motion is

negligible under many circumstances, and therefore in the sum on the right-hand side of

Eq. (1.5) all terms with j 6= i can be omitted in these cases. This is denoted the adiabatic

approximation and leads eventually to separated equations of motion for each nuclear

wavefunction χi(q, t),

i~χ̇i(q, t) =

(
−~2

2
∇q ·M−1∇q + Ei(q)−

~2

2
d̃ii(q)

)
χi(q, t), (1.6)

2More strictly, the quantum state vector |Ψ(t)〉 is expanded in the complete set of the combined
eigenfunctions of Ĥel and the position operator q̂ as |Ψ(t)〉 =

∑
i

´
dq′ χi(q

′, t) |q′〉 ⊗ |i;q′〉. From this
expression, the expansion (1.4) is obtained by projecting on the position eigenstate 〈q|.
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Chapter 1. Coupled Electron-Nuclear Molecular Dynamics

where the relation dii = 0 valid for real electronic wavefunctions has been used, which

can be always applied if the electronic states are not degenerate. Furthermore, neglecting

the diagonal correction term results in the Born-Oppenheimer approximation [35] with

the following equation of motion for the nuclear wavefunction:

i~χ̇i(q, t) =

(
−~2

2
∇q ·M−1∇q + Ei(q)

)
χi(q, t), (1.7)

where the electronic energy Ei(q) as a function of the nuclear coordinates acts as an

e�ective potential energy for the nuclear motion. On this basis, the concept of a nuclear

wavepacket moving on an electronic potential energy surface was introduced.

In the following, general strategies for the simulation of nuclear motion in the frame-

work of the Born-Oppenheimer approximation will be discussed. The implications of

nonadiabatic couplings between the nuclear and electronic degrees of freedom will be

outlined in Sec. 1.2.

1.1.1 Quantum nuclear dynamics

The most straightforward approach for solving Eq. (1.7) consists in a numerical procedure.

For this purpose, the Schrödinger equation (1.7) can be formally integrated and assumes, if

the Hamiltonian does not depend on time, the propagator form χi(t) = exp
(
− i

~Ĥt
)
χi(0).

This exponential expression can be expanded into a Taylor series in di�erent ways. The

simplest useful approach consists in setting

χi(t+∆t)− χi(t−∆t) =
(
e−

i
~ Ĥ∆t − e

i
~ Ĥ∆t

)
χi(t), (1.8)

after expansion up to second order leading to

χi(t+∆t) = χi(t−∆t)− 2i

~
Ĥχi(t)∆t, (1.9)

which is called the second-order di�erence propagator3 [71]. The second-order di�erence

approach also allows the inclusion of explicitly time-dependent terms in the Hamiltonian,

such as e.g. electric �elds, and was therefore employed in the quantum dynamical model

calculations presented in this thesis. As a drawback, however, this propagator su�ers

from inaccuracies for longer propagation times. Therefore, other propagation schemes

3The practical implementation of this propagation scheme involves the representation of the wavefunc-
tion on a discrete grid in position space. The action of the potential energy term of the Hamiltonian is
then obtained by multiplying the grid representations of the potential energy and the wavefunction. For
the kinetic energy operator, a direct representation in position space is not possible due to its nonlocal
nature in this representation. Therefore, it is common to employ the Fourier transformation to represent
the kinetic energy term in momentum space, where the kinetic energy operator becomes multiplicative.
After its multiplication with the wavefunction, the result is back-transformed to the position space [70].
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Chapter 1. Coupled Electron-Nuclear Molecular Dynamics

have been developed which allow for a longer simulation time without accumulation of

numerical errors [72]. However, most of these schemes are not suited to include an arbi-

trary time dependence of the Hamiltonian [72].

For the treatment of multidimensional systems, the computational e�ort of the above

numerical propagation schemes without introducing further approximations rapidly be-

comes prohibitive, since their scaling with system size is exponential. Therefore, only

systems with less than �ve atoms can usually be treated. For this reason, methods have

been developed which allow for a simpli�ed and more e�cient description of the studied

systems. Notably, the time-dependent Hartree approach (cf. Ref. [73] and references

therein) and its multicon�gurational variants (cf. Refs. [73, 74]) are worth mentioning.

These are based on a separation of the many-particle nuclear wavefunction into prod-

ucts of one-particle functions, for which e�ective equations for the time evolution can be

derived. In this way, the computational e�ort is signi�cantly reduced, allowing for the in-

vestigation of polyatomic systems. However, as with all full quantum dynamics methods,

there remains the need to know in advance the global electronic potential energy surface

(at least for the spatial region relevant for the studied process), which still represents a

severe limitation for the investigation of complex systems including all nuclear degrees

of freedom (e.g. vibrational modes). Selection of relevant vibrational coordinates or a

simpli�ed description of the molecular potentials along selected coordinates can therefore

be a means to remedy this problem, though at the cost of further decrease in accuracy.

Calculations are nowadays feasible for molecular systems of up to 20 degrees of freedom,

although also model systems of larger dimensionality have been investigated (see e.g.

Ref. [75] and references therein). For a more detailed discussion of these issues as well

as for the presentation of further techniques for full quantum dynamical simulations, see

Ref. [72, 73].

Whereas in the foregoing approaches, approximations were only introduced to the form

of the wavefunction, whilst retaining a fully quantum mechanical time propagation, it is

also possible to treat the latter in an approximate way. The most popular technique in

this context is the Gaussian wavepacket method proposed by Heller [76], which assumes

that the nuclear wavefunction always maintains the form of a moving Gaussian function,

for the parameters of which (i.e. mean position, momentum, width, and phase) equations

of motion can be derived. Notably, for the position and momentum these equations are

identical to the classical Hamiltonian equations. This semiclassical approach, especially its

more approximate variant with �xed widths of the Gaussian functions (frozen Gaussian)

[77] have been successfully used to simulate vibrationally resolved absorption spectra and

to �nd the system's eigenvalues based on time-dependent calculations.
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1.1.2 Classical nuclear dynamics

Finally, the nuclear degrees of freedom can be treated entirely classically by propagating

trajectories governed by the Newtonian (or Hamiltonian) equations of motion. For purely

adiabatic dynamics on a single electronic energy surface, this assumption can be rigor-

ously based in several ways by considering limiting cases of a full quantum mechanical

description, as will be outlined in the following.

Limit of the hydrodynamic representation. By separating the quantum mechan-

ical wavepacket into an amplitude and a phase factor as

χi(q, t) = A(q, t)e
i
~S(q,t), (1.10)

the hydrodynamic form of the time-dependent Schrödinger equation (1.7) is obtained

[78,79]. Insertion of this ansatz into Eq. (1.7) and separation of real and imaginary parts

leads to the two equations

Ȧ+∇qA ·M−1∇qS +
1

2
A
(
∇q ·M−1∇q

)
S = 0 (1.11)

Ṡ +
1

2

(
∇qS ·M−1∇qS

)
+ Ei =

~²
2

(∇q ·M−1∇q)A

A
. (1.12)

Whereas the �rst equation describes the time evolution of the purely quantum mechanical

amplitude A, the second one can be related to a classical analog by noting that, when

identifying S with Hamilton's principal function and taking the limit ~ → 0, the classical

Hamilton-Jacobi equation is obtained. Thus, for ~ → 0 the quantum mechanical equation

of motion of the nuclear wavepacket turns into the classical equation of motion of a point

particle. However, it is evident that the replacement of a wavepacket of �nite width by

a point particle is a quite crude approximation, even already for the initial conditions

of a dynamical quantum system. Therefore, also a more sophisticated starting point for

a classical description of wavepacket motion can be obtained by considering the density

operator formulation of quantum mechanics.

Limit of the quantum mechanical phase-space density. Introducing the concept

of a density operator ρ̂ = |Ψ〉〈Ψ| replaces Eq. (1.1) for time time evolution by the Liouville-

von Neumann equation [80,81],

i~ ˙̂ρ = [Ĥ, ρ̂]. (1.13)

The brackets in this expression indicate the commutator of the Hamiltonian and the

density operator. In order to proceed towards a classical description, a classical limit of

this equation has to be introduced. This can be conveniently achieved by employing a

phase space picture of quantum mechanics such as the Wigner representation [82,83]. All

quantum mechanical operators are thereby transformed to functions of the coordinates q
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and momenta p by means of the following transformation:

A(q,p) =
1

(2π~)N

ˆ
dy1...dyN

〈
q− y

2

∣∣∣Â∣∣∣q+
y

2

〉
e

i
~p·y (1.14)

with N representing the number of nuclear coordinates. For a product of operators Â and

B̂ the following correspondence applies:

ÂB̂ → A(q,p)exp

(
~
2i
Λ

)
B(q,p) (1.15)

with the Poisson operator Λ =
←
∂
∂p

→
∂
∂q

−
←
∂
∂q

→
∂
∂p
, where the arrows indicate to which side the

derivatives are acting. Up to �rst order in ~, the exponential operator can be approximated

as

exp

(
~
2i
Λ

)
≈ 1 +

~
2i
Λ. (1.16)

In this way the commutator in Eq. (1.13) reduces to the classical Poisson bracket [83] and

the Liouville equation for a phase space distribution of classical particles is obtained:

i~ρ̇(q,p) = H(q,p)

(
1 +

~
2i
Λ

)
ρ(q,p)− ρ(q,p)

(
1 +

~
2i
Λ

)
H(q,p)

= −i~H(q,p)Λρ(q,p)

ρ̇(q,p) = {H(q,p), ρ(q,p)} . (1.17)

In this spirit, the motion of a quantum mechanical wavepacket is approximated by that of

a collection of classical point particles, with the classical Hamiltonian function replacing

the quantum mechanical operator Ĥ. Therefore, in the trajectory-based approaches to

the dynamics of quantum systems, usually ensembles of trajectories are employed, with

the initial conditions chosen such as to best represent a quantum mechanical wavepacket.

Classical motion of individual trajectories. In order to propagate the individual

nuclear trajectories in time, the Newtonian equations of motion,

Mq̈ = F = −∇qEi(q), (1.18)

can be solved, where F denotes the forces acting on the nuclei, which are obtained from the

gradients∇qEi(q) of the electronic potential energy surface on which the nuclei move. For

the solution of Eq. (1.18) usually speci�c numerical algorithms are employed as presented

in detail in Sec. 2.1. The potential energy surface can in principle be precalculated

similar to the case of full quantum dynamics. It is, however, much more convenient (and

only possible in the classical framework), to calculate the forces solely for the nuclear

con�guration of the system present at a given time step (molecular dynamics (MD) �on
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the �y�), as was �rst performed in combination with electronic structure calculations

based on semiempirical quantum chemistry methods [41, 42] and subsequently also with

ab initio quantum chemistry [43]. The �on the �y� approach prevents multidimensional

energy surface calculations and thus remedies the exponential scaling of computational

e�ort with system size, thereby opening the way for employing MD methods for complex

systems, strongly exceeding the limitations of quantum nuclear dynamics approaches. The

electronic structure can be determined either independent of the integration of the nuclear

equations of motion in each dynamics step by computing a converged solution of the

electronic Schrödinger equation, or the electronic wavefunction can be propagated in time

parallel to the propagation of the nuclei (Car-Parrinello molecular dynamics [44]). The

latter method, however, is best suited in combination with electronic structure calculations

using plane wave basis sets, and is therefore mainly applied to extended periodic systems,

while the former is usually employed for molecular systems. Compared to quantum nuclear

dynamics, the bottleneck in MD �on the �y� is no more the propagation of the nuclear

degrees of freedom, but rather the calculation of the forces, for which in principle any

electronic structure method can be used. The progress in the development of e�cient

electronic structure methods such as density functional theory, improved semiempirical

methods as well as ab initio methods including more electron correlation (cf. Sec. 2.2) has

in the last decades paved the way for extensive use of these methods for a large variety

of applications. In view of the vast literature in this �eld, for an overview the reader is

referred to the review articles [45,46] and the references cited therein.

1.2 Nonadiabatic dynamics

When the nuclear motion is accompanied by fast changes in the character of the electronic

state, as e.g. at crossings or near-degeneracies of the electronic potential energy surfaces,

the separation between nuclear and electronic motion underlying the Born-Oppenheimer

approximation is not valid anymore. Instead, the nonadiabatic coupling terms appearing

in Eq. (1.5) cannot be neglected, and the electronic state of the system can change during

the nuclear dynamics. In the framework of purely quantum dynamical methods, the cou-

pling between di�erent energy surfaces could be in principle straightforwardly accounted

for by the numerical integration of Eq. (1.5). However, in order to avoid the presence of

large localized nonadiabatic couplings, frequently a transformation is employed from the

adiabatic potential energy surfaces to the so-called diabatic ones, in which the nonadia-

batic coupling terms are minimized [84]. Instead, new coupling terms then arise in the

transformed potential energy operator. Based on this diabatic representation, a variety of

wavepacket calculations including nonadiabatic e�ects has been performed, particularly

in the context of vibronically resolved spectroscopy [84] and reactive scattering [85].
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In the context of mixed quantum-classical approaches, an early contribution was made

by Mott, who calculated the probability of electronic excitation of a hydrogen-like atom

during collision with an α particle, where the latter was supposed to move classically [86].

Further pioneering work concerned the transition probability between two diabatic states

near their intersection, for which case under certain simplifying assumptions an analytic

expression was derived by Landau [47], Zener [48] and Stückelberg [49].

In the following, the focus lies on the theoretical approaches to nonadiabatic dynamics

based on the classical propagation of the nuclei, considering both such methods that solely

use classical trajectories, as well as such that implement several quantum corrections to

the nuclear motion. With regard to the �rst class, two di�erent approaches have found

widespread attention: The mean-�eld or Ehrenfest dynamics, as well as the trajectory

surface hopping (TSH) approach. These will be presented below, followed by a brief

survey on methods employing quantum mechanical corrections to the classical propagation

(semiclassical nuclear dynamics).

1.2.1 Ehrenfest dynamics

The basic idea of Ehrenfest or mean-�eld dynamics is to combine the solution of the

Newtonian equations for the nuclei with the time-dependent Schrödinger equation for the

electrons in a self-consistent way. For this purpose, a Lagrangian is formulated as

L =
1

2
q̇ ·Mq̇− 〈Ψel|Ĥel − i~

∂

∂t
|Ψel〉, (1.19)

whereM is the nuclear mass matrix andΨel the electronic wavefunction (cf. e.g. Ref. [87]).

Upon minimization of L the classical nuclear equations of motion

Mq̈ = −∇qEel (1.20)

are obtained. The electronic energy Eel = 〈Ψel|Ĥel|Ψel〉 corresponds to the wavefunction

satisfying the time-dependent Schrödinger equation

Ĥel|Ψel〉 = i~
∂

∂t
|Ψel〉 (1.21)

and represents the mean value of the potential energy in the spirit of the Ehrenfest

theorem [38]. The electronic wavefunction in Eq. (1.21) is propagated in time along the

nuclear trajectories. This can be performed either in a direct way (numerically or using

a basis set expansion), or alternatively by projecting the wavefunction on the adiabatic

eigenfunctions |i;q(t)〉 of Ĥel, which then have to be determined in every time step of

the propagation. In the latter case, if the wavefunction is expanded as |Ψel [t;q(t)]〉 =∑
i ci(t)|i;q(t)〉, the time evolution of the electronic degrees of freedom is described by a
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time-dependent Schrödinger equation for the expansion coe�cients ci(t) as

i~ċi(t) = Ei [q(t)] ci(t)−
∑
j

i~
(
M−1p

)
· dij [q(t)] cj(t), (1.22)

where the current nuclear coordinates q(t) at each time step enter as parameters. In

this way, quantum populations |ci|2 of the electronic states can be speci�ed, which are

used to construct the e�ective electronic mean-�eld potential for the nuclear motion as

Emean =
∑

i |ci|2Ei. This approach has been successfully applied to a number of reac-

tive scattering problems [88�90], frequently using the time-dependent Hartree-Fock ap-

proach [91�95]. Furthermore, also a number of studies concerned with the nonadiabatic

dynamics in molecules after photoexcitation has been performed using e.g. the valence

bond method [96] or time-dependent density functional theory in the framework of the

real-time propagation approach [87, 97�101], in which the electronic equations of mo-

tion are evolved in time without an expansion into adiabatic eigenstates of the electronic

Hamiltonian. Given the fact that, in the adiabatic picture, within Ehrenfest dynamics the

energy gradients of several electronic states have to be calculated to obtain the mean-�eld

force, the use of real-time methods with only a single time-dependent wavefunction being

propagated in the mean-�eld potential is particularly advantageous, since then only a

single gradient needs to be computed. The main methodological drawback of Ehrenfest

dynamics, however, is a wrong asymptotic behaviour of the mean-�eld potential: After

passing through a region of strong coupling between two electronic states, the e�ective

potential consists of non-negligible portions from both states, and if even the coupling

vanishes at later times, this composition will not change anymore. However, physically

one would expect that after leaving the coupling region, the trajectory would continue its

path on a single energy surface and not on a mixture [102].

1.2.2 Trajectory surface hopping

The shortcomings of Ehrenfest dynamics have motivated the idea of performing the prop-

agation of the nuclei on pure electronic states instead of averaged ones, with the nonadi-

abatic e�ects being incorporated by allowing the nuclear trajectories to switch between

electronic states in regions where the coupling is large. For the �rst time, this idea was

discussed in the context of atomic and molecular collisions, where the scattering event

can be accompanied by electron transfer or electronic excitation/relaxation. In their pio-

neering work, Bjerre and Nikitin described the electronic relaxation of excited Na atoms

induced by collisions with molecular nitrogen using classical trajectories that move in a

given electronic state and branch between the states at the intersection of the energy

surfaces according to Landau-Zener transition probabilities [50]. On this methodological

basis, Preston and Tully devised an extended algorithm [51] involving the numerical inte-
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gration of the time-dependent Schrödinger equation (1.22) parallel to the nuclear motion.

Furthermore, they introduced, besides the original trajectory-branching procedure, a sim-

pli�ed surface hopping technique which preserves the number of propagated trajectories

by forcing them to follow only the path on that particular surface to which the switching

probability is highest. This paved the way to utilize the surface hopping approach not

only for collisions [103�105] but also for the nonradiative electronic relaxation in molecules

after interaction with light. Two main advances have supported this development: Firstly,

methodological improvement of e�cient electronic structure methods which provide the

necessary energies, forces and couplings is constantly taking place, accompanied by rapid

technological progress in computation facilities. Secondly, the surface hopping scheme

was put on a new and more solid footing by Tully who introduced the fewest-switches

algorithm for calculating the hopping probabilities [52, 106], which aims at reproducing

correct electronic state population dynamics whilst performing the smallest possible num-

ber of hopping events. For this purpose, the hopping from an initial state i to a �nal state

j is allowed only if the quantum mechanical population of i decreases and that of j in-

creases. The magnitude of the probability is determined by the change in the electronic

state populations, which reads, in the density matrix version of Eq. (1.22) with ρij = cic
∗
j ,

ρ̇ii = −2
∑
k

Re
[(
M−1p

)
· dikρki

]
(1.23)

ρ̇ij = − i

~
(Ei − Ej) ρij −

∑
k

(
M−1p

)
· (dikρkj − dkjρik) . (1.24)

The probability for changing from state i to state j is then determined by the decrease of

ρii due to the coupling with j, i.e. the respective term of the sum in Eq. (1.23) times the

time increment ∆t, normalized by the total initial state population ρii:

Pi→j(t) =
2Re [(M−1p) · dijρji] ∆t

ρii(t)
. (1.25)

Since nonadiabatic relaxation is an intrinsic molecular process in which no energy ex-

change with the environment takes place, the hopping process, which abruptly changes

the electronic energy, needs to be complemented by a procedure ensuring conservation of

the total energy. This can be achieved by adjusting the nuclear kinetic energies. Due to

the independent propagation of trajectories in surface hopping, this is only possible by

demanding the energy conservation for each trajectory individually, although physically,

this would merely be required for the ensemble as a whole. Usually, the energy conser-

vation is achieved by rescaling the nuclear momenta in the direction of the nonadiabatic
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coupling vector dij [51, 107�109], such that for the momentum pβ at the nucleus β

pβ
new = pβ

old − γijdij, (1.26)

where, following Refs. [110,111], the expression for the scaling coe�cient γij reads

γij =
(M−1p) · dij ±

√
[(M−1p) · dij]

2 + 2 (M−1dij) · dij (Ei − Ej)

(M−1dij) · dij

(1.27)

with M−1p = q̇ as the velocity vector. In case that only the scalar coupling Dij =

(M−1p) · dij is available, the rescaling can instead be performed uniformly, such that

pnew = pold

√
Ekin + (Ei − Ej)

Ekin

, (1.28)

where Ekin is the nuclear kinetic energy and Ei/Ej are the electronic energies of states

i and j. However, if a hop to an electronic state of higher energy than the actual state

is required, the nuclear kinetic energy may occasionally be insu�cient to compensate

for the needed increase in electronic energy. Then, usually the surface hop is prohibited

(�forbidden hop�), and the direction of the nuclear velocities might be either reversed [110]

or retained [112].

Drawbacks of surface hopping. The above described hopping prescription is de-

signed in order to achieve consistency between the trajectory-averaged quantum probabil-

ities ρii =
1

Ntraj

∑
n ρ

(n)
ii and the fraction of trajectories in a given state Πi =

1
Ntraj

∑
n p

(n)
i ,

where ρ(n)ii is the quantum population of trajectory n and p
(n)
i represents the current elec-

tronic state in which it is propagated. However, this internal consistency condition is

not always ful�lled, mainly due to two reasons. Firstly, the occurrence of forbidden hops

can lead to a di�erent time evolution of the two population quantities ρ̄ii and Πi, since

e.g. the ρ̄ii may grow for a particular state which may be energetically inaccessible, and

thus Πi would not change. In most cases, this inconsistency is ignored, and only the

fraction of trajectories Πi is considered as the proper population from which the needed

physical observables are calculated, while the ρ̄ii are disregarded. This is mainly mo-

tivated by the idea to obtain the quantities corresponding to wavefunction expectation

values by averaging over the ensemble of trajectories. Nevertheless, some modi�ed sur-

face hopping schemes exist which avoid the presence of forbidden transitions, such as the

approach by Hammes-Schi�er et al. in which, when a surface hop would be forbidden, the

nuclear velocities are modi�ed such that the coupling between the two involved states be-

comes zero [113]. The second cause of internal inconsistency is due to the phenomenon of

overcoherence in the electronic wavefunctions associated with each trajectory. Quantum
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mechanically, if in a region of strong coupling a wavepacket is split into parts, and these

parts then move away from each other, their coherence gradually decays and ultimately

vanishes at large distance. However, for the case of a single classical trajectory, the associ-

ated quantum populations for the electronic states cease to change when a coupling region

is left, and the electronic wavefunction retains a mixed character although the trajectory

moves in a single electronic state. If then again a coupling region is reached, wrong hop-

ping probabilities may result. To tackle this problem, several approaches introducing an

empirical decoherence correction have been introduced and validated on model systems.

The simplest approach consists in resetting the electronic coe�cients when a region of

large coupling is left. More sophisticated is the method originally introduced by Truhlar

in the context of mean-�eld dynamics [114, 115] and applied to surface hopping by Per-

sico [116]. It is based on determining a speci�c coherence decay time, which depends on

the gap of electronic energies and the nuclear kinetic energies of the given trajectory, such

that decoherence is faster for large gap and large nuclear kinetic energy. Another method

recently proposed by Persico relies on a simpli�ed propagation of Gaussian wavepackets

in both involved states after a hopping event and performing coherence decay according

to the decrease of the wavepacket overlap along the trajectory [117]. A similar route has

been followed by Shenvi et al. [118] who complement each trajectory by the propagation

of at most a single Gaussian wavepacket per electronic state and model the decoherence

as a stochastic process depending on the overlap decay between the Gaussian wavepackets

between pairs of electronic states. On a di�erent footing is another recent development

of Subotnik et al. [119, 120], in which parallel to the positions and momenta of each tra-

jectory also the �rst moments (i.e. �rst-order deviations from the trajectory values of

position and momentum) of these quantities are propagated. These are employed to cal-

culate a rate constant for the decoherence between each pair of electronic states, which

is subsequently used in a stochastic process to determine if the electronic wavefunction

is to collapse to the current state or not. Besides the mere decay of coherences, also the

issue of dephasing has been recently addressed, and a phase-corrected surface hopping

scheme based on a modi�ed propagation of the time-dependent Schrödinger equation has

been presented [121, 122]. It must be emphasized that most of the above-mentioned ap-

proaches to introducing decoherence into the surface hopping technique have until now

only been employed in studies of low-dimensional model systems, and thorough studies

of their usefulness for real molecules are not available until now.

Applications of surface hopping. In spite of the above mentioned issues, trajec-

tory surface hopping represents one of the few approaches to nonadiabatic dynamics which

have found widespread application. This is due to its complete foundation on classical

nuclear dynamics, which allows for the combination with MD �on the �y� and thus to treat

complex systems, which is not possible with approaches accounting for quantum correc-
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tions on the nuclear dynamics. Moreover, the accuracy of surface hopping simulations

can be validated by comparison with experimental results, which has been successfully

performed for a variety of systems for which the nonradiative relaxation had been studied

experimentally [123�128].

The applicational scope of surface hopping has been greatly advanced due to nu-

merous developments enabling its combination with various quantum chemical methods,

which has allowed for the investigation of photodynamical processes in increasingly com-

plex molecules. This involves a nonadiabatic Car-Parrinello technique based on DFT

using plane wave basis sets [129] as well as converged Born-Oppenheimer dynamics in the

framework of time-dependent Kohn-Sham [130] and linear response density functional

theory [127, 131, 132], semiempirical methods [111, 133] and of the ab initio CAS-MRCI

method [134]. Moreover, recently surface hopping has been implemented in the frame-

work of mixed quantum mechanical-molecular mechanical (QM/MM) approaches, based

on semiempirical [135�137] and ab initio quantum chemical methods [138�140] as well as

time-dependent density functional theory [141, 142]. This enables the study of systems

interacting with their environment such as solution or protein. For a further overview of

recent achievements, cf. also Ref. [54].

Interestingly, the surface hopping approach as explained above is not restricted to the

assignment of the electronic degrees of freedom as quantum mechanical and the nuclear

degrees of freedom as classical. Instead, in the context of proton transfer reactions also

a separation of the proton motion from that of all the other (heavier) nuclei is possible,

and surface hopping is then performed between proton vibrational quantum states [110].

Eventually, the vibrational and the electronic surface hopping can be uni�ed to provide a

technique for the simulation of proton transfer accompanied by electron excitation [143].

1.2.3 Nonadiabatic dynamics with semiclassical propagation of the nuclei

Beyond the purely trajectory-based methods, several approaches have been developed

trying to retain some degree of quantum mechanical behaviour in the nuclear motion.

The most relevant of them will be brie�y presented below.

Liouville dynamics. Starting from the Liouville-von Neumann equation in the den-

sity operator representation of quantum mechanics, semiclassical equations of motion for

the density matrix elements have been derived by performing a partial Wigner transfor-

mation [82, 83] for the nuclear degrees of freedom, followed by taking the classical limit

and subsequently projecting onto diabatic [144] or adiabatic [145] electronic states. These

approaches have been implemented in various ways using ensembles of classical trajecto-

ries for each propagated density matrix element. For instance, the number of trajectories

representing a particular element of the density matrix can be held constant, their inter-

action being described via time-dependent weights assigned to each trajectory according
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to the quantum mechanical electronic state populations [146,147]. This approach is com-

putationally quite demanding since only with su�cient covering of the relevant phase

space regions by trajectories an adequate representation of the density matrix elements

for the entire propagation time can be achieved. Moreover, due to the interaction of the

trajectories, the ensembles pertaining to each of the density matrix elements all have to

be propagated simultaneously. Therefore, simpli�ed variants have been also proposed,

such as the use of only a single ensemble driven mainly by the Hamiltonian of the most

relevant electronic state [148]. Further simpli�cation involves the use of completely un-

coupled trajectories [149]. Interestingly, in the latter case the description of electronic

state populations turns out to be identical to that employed in standard surface hop-

ping, whereas the applicability of the nuclear dynamics driven only by a single reference

Hamiltonian is much more limited due to the higher degree of approximation. Based on

the theoretical derivation given in Ref. [145], also several surface-hopping-like implemen-

tations have been proposed, in which the dynamics is partitioned into (i) the classical

propagation of trajectories representing the speci�c density matrix elements (both diag-

onal elements and coherences), and (ii) the surface hopping procedure leading either to

changing the state of a given trajectory or to a branching into several new ones. In these

methods, hopping caused by nonadiabatic e�ects can be accompanied by momentum ad-

justment (�momentum jump�) which results from the presence of o�-diagonal forces in

the equations of motion [150, 151]. Since this can cause numerical instabilities [151], at-

tempts to avoid the momentum jump have been made. To this end, the o�-diagonal force

components can be transformed away [152], or a di�erent derivation of the equations of

motion can be employed, based on �rst projecting the Liouville-von Neumann equation

onto basis states and only afterwards performing the Wigner transformation. In this case,

o�-diagonal forces do not appear [153]. The latter derivation also serves as the basis for

an implementation using parameterized Gaussian-type phase space functions instead of

trajectories [154]. All these methods have been shown to yield more accurate results than

standard surface hopping for some selected one-dimensional model problems. However,

their application to complex systems involving real molecules is severely limited by the

need to propagate all trajectories at the same time and to solve complicated integral

expressions to describe the electronic population dynamics.

A related approach also describes the nuclear motion in the Wigner representation,

but takes one (nonclassical) term more in the ~ expansion of the general phase space equa-
tion of motion (cf. Eq. (1.16)) [155, 156]. In this way, a quantum mechanical correction

to the force acting on each trajectory is introduced, which depends on the total phase

space density represented by the ensemble of trajectories. Therefore, the trajectories are

not propagated independently but interact with each other (entangled trajectory dynam-

ics). The largest drawback preventing application of this approach to multidimensional
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systems is, however, that the quantum correction to the force involves the third deriva-

tive of the potential energy, which could for real molecules only be determined with high

computational e�ort.

Semiclassical dynamics based on path integrals. Besides the above discussed

methods based on a semiclassical limit of the Liouville-von Neumann equation, approaches

to semiclassical nuclear dynamics have been also formulated based on the path integral

formalism [157,158]. Speci�cally, semiclassical approximations to the time evolution oper-

ator have been devised, such as the initial value representation, which involves the propa-

gation of classical trajectories, but still accounts for e�ects such as nuclear interference or

tunneling (cf. Refs. [159, 160] and references therein). The extension of this approach to

nonadiabatic coupled electron-nuclear dynamics has been performed along di�erent lines.

The method devised by Pechukas relies on a stationary phase evaluation of path integrals

and leads to a classical-like time evolution containing a nonlocal force originating from

the electrons [161]. Although formally appealing, this approach has proved to be compu-

tationally even more demanding than exact quantum calculations [162]. Another route

has been followed more recently, based on the idea to construct a harmonic-oscillator-like

continuous representation of the discrete electronic degrees of freedom, followed by turn-

ing to the classical description by analogy [163,164]. This method has been applied to the

simulation of absorption spectra of molecules exhibiting strong vibronic coupling between

electronic and nuclear degrees of freedom [160, 165]. However, due to the computational

e�ort its use for molecular systems accounting for all degrees of freedom is also limited.

Multiple-spawning method. This technique represents the only approach to cou-

pled multistate dynamics beyond the classical trajectory approximation which has been

up to now applied to realistic molecules [166�169]. It is based on representing the nu-

clear wavepackets by linear combinations of Gaussian basis functions with �xed widths

(similar to Heller's frozen Gaussian approach mentioned in Sec. 1.1), and propagating the

mean positions, momenta, phase factors and weight coe�cients in time. The equations of

motion for positions and momenta turn out to be entirely classical, hence the Gaussian

functions follow the paths of classical trajectories. However, their motion is coupled due

to the presence of cross terms in the evolution equations for the weight coe�cients, which

allows for partial incorporation of nuclear coherence e�ects. Nonadiabaticity is accounted

for by creating new Gaussian basis functions on the concerned electronic states in regions

of strong coupling, thereby achieving population transfer. In this way, the surface-hop in

the trajectory-based methods is replaced by a more gradual �ow of population between

the states. The multiple spawning method has been successfully combined with di�er-

ent quantum chemical methods for the calculation of electronic energies, gradients and

couplings, and has been applied to problems such as collision-induced ionization [170],

tunneling [171], vibronic spectra [172], photodynamics in solution in the framework of the
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QM/MM technique [173,174], excited state dynamics involving isomerization and internal

conversion [175�177]. Recently, also an extension of the method including the interaction

with external laser �elds has been presented [178]. Compared to the trajectory-based

methods such as surface hopping, the description of the quantum mechanical character

of the nuclear motion has been partially retained. However, this is achieved at the cost

of calculating overlap integrals between di�erent basis functions, and also of propagating

the whole ensemble of trajectories simultaneously, which both represent severe obstacles

for achieving an e�ciency comparable to the surface hopping techniques.

Despite the wide variety of scienti�c e�orts in developing more broadly applicable

methods for the simulation of nonadiabatic processes in the framework of semiclassical

nuclear dynamics, up to now still no method exists which would outperform the e�ciency

of the surface hopping approach based on performing classical MD supplemented by quan-

tum electronic transitions. Therefore, the main methodological basis of the investigations

presented in this thesis, the �eld-induced surface hopping method (FISH) to be presented

in Chapter 3, has utilized the trajectory surface hopping approach as its fundament and

represents a major advancement and generalization of this methodology. For this reason,

in the following Chapter 2 �rst the basic procedures necessary for performing classical

multistate MD simulations will be presented. Speci�cally, in Section 2.1 the simulation

procedures for solving the classical equations of motion will be outlined, and subsequently

in Section 2.2 a brief survey will be given of the methods used for the calculation of the

molecular electronic structure, which represent the main computational tool to determine

the needed ingredients of multistate molecular dynamics simulations, such as energies,

forces and couplings.
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2 Multistate Molecular Dynamics Simulations

2.1 Algorithms for solving the classical equations of motion

In the framework of the Born-Oppenheimer approximation, the nuclei of a molecule move

on an electronic potential energy surface. The classical Newtonian dynamics on this

surface is governed by the forces F on the nuclei q, which are obtained as the negative

gradients of the electronic energy in the electronic state i:

Mq̈ = F = −∇qEi(q). (2.1)

Alternatively, using p = Mq̇, the Hamiltonian equations can be formulated:(
q̇

ṗ

)
=

(
M−1p

−∇qEi(q)

)
= f(q,p). (2.2)

These equations can be solved numerically by discretizing the time variable into �nite

steps. Usually, special algorithms are employed for this purpose which provide both

numerical e�ciency and satisfy formal demands such as time invariance [179]. The most

common of these procedures is the Verlet algorithm [180]. It is based on a Taylor expansion

of the nuclear position at the time step ti+1 with respect to the previous time step ti =

ti+1 −∆t. Using q̇ = v, q̈ = a and d3q/dt3 = b, this leads to:

qi+1 = qi + vi∆t+
1

2
ai(∆t)2 +

1

6
bi(∆t)3 + ... (2.3)

Analogously, for ti−1 one obtains:

qi−1 = qi − vi∆t+
1

2
ai(∆t)2 − 1

6
bi(∆t)3 + ... (2.4)

The sum of these two expressions provides a relation between three subsequent positions

at time steps ti+1, ti and ti−1, which de�ne the original Verlet algorithm [180]:

qi+1 = 2qi − qi−1 + ai(∆t)2 + ... (2.5)

Since both the velocities and the terms cubic in ∆t cancel in Eq. (2.5), this expression

is exact up to third order. The accelerations are obtained from the electronic gradients

using Newton's equations (2.1). For the �rst step, the initial conditions are utilized:

q1 = q0 − v0∆t. (2.6)

27



Chapter 2. Multistate Molecular Dynamics Simulations

A shortcoming of this original Verlet procedure is the absence of the velocities in the algo-

rithm, which are explicitly needed e.g. for constant temperature simulations. Moreover,

numerical instabilities can arise due to the smallness of (∆t)2 in Eq. (2.5) compared to the

coordinate values qi. Therefore, modi�ed approaches have been developed, such as the

velocity Verlet algorithm, in which the positions, velocities and accelerations are obtained

simultaneously [181]:

qi+1 = qi + vi∆t+
1

2
ai(∆t)2 (2.7)

vi+1 = vi +
1

2
(ai + ai+1)∆t. (2.8)

The precision of all numerical integration algorithms crucially depends on the step size.

For MD simulations, it is common to use a time step typically about at least ten times

smaller than the fastest nuclear oscillation period, i.e. mostly between 0.1 and 2.0 fs.

Besides the above algorithms, also common general methods for the numerical solution

of �rst-order di�erential equations can be employed, such as the Runge-Kutta procedure.

Introducing a shorthand notation for Hamilton's equations (2.2) using Γ = (q,p)T ,

Γ̇(t) = f [Γ(t)] , (2.9)

allows for a compact presentation of the most frequently used fourth order Runge-Kutta

scheme [182]. It is based on the calculation of intermediate steps as follows:

Γ1 = Γ(t) k1 = f(Γ1)∆t

Γ2 = Γ1 +
1
2
k1 k2 = f(Γ2)∆t

Γ3 = Γ1 +
1
2
k2 k3 = f(Γ3)∆t

Γ4 = Γ1 + k3 k4 = f(Γ4)∆t.

(2.10)

Finally, the coordinates and momenta at the next time step are obtained as:

Γ(t+∆t) = Γ(t) +
∆t

6
(k1 + 2(k2 + k3) + k4) . (2.11)

This methodological structure of the Runge-Kutta method immediately makes evident a

major drawback compared to the Verlet algorithm: Four force evaluations per time step

are necessary instead of only one in the Verlet algorithm. Moreover, the Runge Kutta

method is not time invariant, which may lead to worsened energy conservation [179].

Therefore, the practical use of this method for dynamics simulations is limited.

The MD simulation of a molecule in a �xed electronic state immediately implies the

conservation of the total molecular energy. However, when considering an ensemble,

also the temperature can be held constant. Therefore, it is convenient to de�ne a tem-
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perature of a single trajectory, such that temperature conservation can be imposed on

each trajectory separately. This temperature can be obtained from the kinetic energy

Ekin = 1
2

∑f
N MNv

2
N and the number of degrees of freedom f as

T =
2Ekin

fkB
(2.12)

and ensures the �xed value of the true thermodynamic temperature of the ensemble,

which is proportional to the ensemble average of the kinetic energy. In a simulation,

the temperature can thus be controlled by modifying the nuclear velocities. This can

be performed either by direct scaling of the velocities, such that the actual temperature

rapidly approaches the desired value, or the system can be coupled to a heat bath, and

the velocity rescaling mimicks a more gradual energy exchange with the bath, eventually

also letting the system assume the desired temperature [183].

Such coupling of the system dynamics with a surrounding bath also represents the

simplest approximation of dynamics including an environment, which in the molecular

case could e.g. be a solvent, surface, or a protein. Another common approach for implicit

inclusion of environmental in�uence consists in considering an additional frictional force

in the classical equations of motion. This leads to the Langevin dynamics, which is based

on the equation

Mq̈ = −∇qEi(q)− γMq̇(t) + Frand(t), (2.13)

where γ is an empirical friction coe�cient depending on the surrounding, and Frand(t)

represents a �uctuating random force [184]. Numerical integration of Eq. (2.13) can e.g.

performed using a modi�ed velocity Verlet algorithm as described in Ref. [185].

More involved treatments of the in�uence of environment are possible on the atomistic

level by considering explicitly the structure of the surrounding. This can be implemented

by partitioning the complete system under study into di�erent parts which are described

at di�erent levels of accuracy, as it is performed in the framework of mixed quantum

mechanical/molecular mechanical methods (cf. Sec. 2.2.3).
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2.2 Electronic structure calculations1

At the heart of multistate molecular dynamics (MD) simulations lies the availability of

electronic energies, gradients, as well as of interstate coupling elements such as nonadi-

abatic couplings or transition moments. Therefore, in order to go beyond simple model

systems and treat real molecules, electronic structure calculations have to be performed,

i.e. the stationary Schrödinger equation for the many-electron problem has to be solved.

For this purpose, a large variety of methods based on di�erent levels of approximation

is available. Since in the present thesis, the focus lies on the investigation of dynamical

properties under the in�uence of light, and the calculation of the molecular electronic

structure rather serves as a tool to obtain the necessary ingredients for the dynamics

simulations, in the following only those electronic structure methods which are employed

for the calculations presented here will be brie�y sketched. The particular choice of these

methods was strongly motivated by the requirements posed by many-electronic state dy-

namics simulations for relatively long propagation times (up to several picoseconds), i.e. a

major condition was computational e�ciency and at the same time a su�ciently accurate

description of both ground and excited states. Therefore, highly correlated wavefunction

methods were only used for very small systems, while for the larger ones in the gas phase

and in environment, instead more approximate approaches such as density functional

theory or semiempirical methods were employed.

In following subsections, these methods and their relation to each other will be pre-

sented. For this purpose, �rst the treatment of the electronic ground and excited state

energies will be outlined, and subsequently the calculation of molecular properties such

as forces and couplings will be described, �nally followed by a short presentation of quan-

tum mechanical/molecular mechanical (QM/MM) methods suited for the description of

quantum systems interacting with their environment.

2.2.1 Electronic energies

One-electron approximation. Since for the many-electron Schrödinger equation an-

alytic solutions are not available, approximate forms of the wavefunction need to be

employed. For almost the entire quantum chemistry, the basic assumption consists in

adopting a product form for the many-electron wavefunction, such as

Φ(x1...xN) =
∑
k

(−1)kφpk(1)(x1)...φpk(N)(xN) =
1√
N !

∣∣∣∣∣∣∣
φ1(x1) . . . φN(x1)

. . . . . . . . .

φ1(xN) . . . φN(xN)

∣∣∣∣∣∣∣ , (2.14)

1Throughout this section, atomic units are employed, i.e. Planck's constant ~, electron mass me,
elementary charge e, are set to unity, and so, too, is the prefactor 1/4πε0 of the Coulomb interaction.
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where the required antisymmetry of the electronic wavefunction upon permutations pk

of any two electrons has been taken into account by using the structure of a determi-

nant [186]. The variables xi = {ri, si} denote the combined spatial coordinates ri and

spin coordinates si of the i'th electron. The one-electron functions φi(xj) are termed

molecular orbitals (MOs). This representation of the wavefunction is called a Slater de-

terminant and would be an exact solution to the many electron problem if no interaction

between the electrons existed. However, since a variational principle can be formulated,

stating that any approximate wavefunction will give rise to an energy expectation value

higher than the exact electronic ground state energy, the Slater determinant can be taken

as the starting point for formulating the search for the best approximate solution as an

optimization problem [186]. For this purpose, the variation of the energy expectation

value E = 〈Φ|Ĥ|Φ〉 with respect to the MOs is formulated under the constraint that the

MOs be orthonormal. In this way, the N electron problem represented by the full N elec-

tron Schrödinger equation is formally decoupled, giving rise to N one-electron equations

(Hartree-Fock equations) determining the optimal orbitals,(
−1

2
∇2 + v̂eff(r)

)
φi = εiφi , (2.15)

where εi is the orbital energy, and v̂eff denotes the e�ective one-particle or mean-�eld

potential which determines the state of an individual electron [186] and is given by

v̂eff(r) =
∑
j

(
〈φj|

1

|r− r′|
|φj〉r′ − |φj〉〈φj|

1

|r− r′|

)
−
∑
a

Za

|r−Ra|
, (2.16)

with electron coordinates r, r′ and nuclear coordinates R. The �rst term on the right-

hand side denotes the Coulomb operator, which is equivalent to the Coulomb potential in

classical electrostatics, while the second term represents the nonlocal exchange operator,

which is a consequence of the antisymmetry of the electronic wavefunction and hence a

quantum mechanical contribution. Since the orbitals are at the same time solutions of

the Hartree-Fock equations and determine the e�ective potential needed for their compu-

tation, the solution procedure needs to be iterative until self-consistency is achieved.

The practical route to solve the Hartree-Fock equations consists in making further

assumptions on the form of the MOs. Typically, these are expanded in linear combinations

of �xed basis functions, which are most frequently chosen as atom-centered Gaussian

functions, such that φi(r) =
∑

n cinbn(r), where bn(r) = N xlxylyzlzexp
[
−ζ (r− r0)

2]
with the Cartesian coordinates x, y, and z, the parameters lx, ly, lz, ζ, and the center r0.

In this way, the integro-di�erential Hartree-Fock equations (2.15) are transformed into

matrix equations [186],

FC = SCε, (2.17)
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which can be solved employing linear algebra techniques. In the above expression, F is the

Fock matrix, which is the matrix representation of the Fock operator f̂ = −1
2
∇2 + v̂eff(r)

(cf. Eq. (2.15)) and has, for a closed-shell system with all electrons spin-paired, the

elements

Fij =

〈
bi

∣∣∣∣∣−1

2
∇2

r1
−

nuclei∑
a

Za

|r1 −Ra|

∣∣∣∣∣ bj
〉

r1

+
∑
km

ckcm

(〈
bi(r1)bk(r2)

|r1 − r2|

∣∣∣∣ [2 ∣∣∣∣bj(r1)bm(r2)〉−
∣∣∣∣bm(r1)bj(r2)〉]) (2.18)

= hij +
∑
km

ckcm (2Jikjm −Kikmj) , (2.19)

where Jikjm is a Coulomb and Kikmj an exchange integral, while S is the overlap matrix

with elements Sij = 〈bi|bj〉, and C is the vector of orbital coe�cients.

The description of the electronic structure obtained within the Hartree-Fock approach

represents an e�ective one-electron formulation. This means that each individual electron

is restricted to its orbital and experiences the presence of the other electrons only in

an averaged way via the e�ective potential (cf. Eq. (2.15)). This results in incorrect

probability amplitudes for �nding an electron at a particular spatial position, which in

the one-electron approximation do not explicitly depend on the other electrons' positions,

while they do so in an exact treatment. This e�ect is termed electron correlation and its

neglect contributes, besides the use of a �nite basis set, the main part to the deviation of

Hartree-Fock energies from the exact values.

As is well known, accounting for this deviation is decisive for the predictive value of

any chemically or physically relevant property [187]. Therefore, the Hartree-Fock method

as such is not commonly used to determine the electronic structure of molecular systems.

Rather, it serves as a starting point for more accurate approaches in which the determi-

nation of a Hartree-Fock wavefunction is the initial step, as will be outlined below.

Correlated methods. The basic idea of correlated electronic structure methods

consists in introducing more variational �exibility in the electronic wavefunction, which

can e.g. be achieved by going beyond the single Slater determinant formulation. For this

purpose, the simplest possibility, termed the con�guration interaction (CI) method [186],

is to set up the wavefunction Ψ as a linear combination of several Slater determinants Φi,

each corresponding to a di�erent electronic con�guration, i.e. a di�erent distribution of

the electrons in the molecular orbitals (MOs):

Ψ =
∑
i

ciΦi. (2.20)

These Slater determinants are obtained from the optimized Hartree-Fock determinant
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serving as the reference function by putting one or more electrons into higher-lying MOs.

The electric energy is then obtained by �nding the optimal values of the ci which mini-

mize the energy expectation value of the CI wavefunction, ECI = 〈Ψ|Ĥ|Ψ〉, subject to the
constraint that the wavefunction remains normalized (〈Ψ|Ψ〉 = 1). This variation prob-

lem can be recast in the form of a matrix eigenvalue equation in the basis of all Slater

determinants as

Hc = Ec, (2.21)

where Hij = 〈Φi|Ĥ|Φj〉, c is the vector of all ci and E is the CI energy. The solution of this

equation involves diagonalization of the matrix H, giving rise to the set of eigenvectors c

and eigenenergies E, of which the lowest corresponds to the CI ground state energy of the

system. Formally, if all possible Slater determinants within a given basis set were taken

into account, the CI approach would deliver the best possible solution of the many electron

problem for this particular basis set (full CI). However, since the number of determinants

increases factorially with the number of electrons of the system, for all but very small

systems it is mandatory to truncate the CI expansion appropriately, e.g. by restricting

to several classes of excitations with respect to the Hartree-Fock wavefunction, such as

singly and doubly excited determinants.

As mentioned above, the determinants employed in a CI calculation are based on MOs

obtained within the Hartree-Fock approach, which are not optimized for the CI wavefunc-

tion. Therefore, from a given number of electronic con�gurations, a much more accurate

wavefunction can be constructed if the CI coe�cients and the MOs are optimized simul-

taneously (multicon�guration self-consistent �eld method, MCSCF) [187]. For several

systems containing unpaired electrons such as biradicals, which even qualitatively cannot

be correctly described by a single determinant wavefunction, this is mandatory to obtain

meaningful results when using a limited number of electronic con�gurations2. However,

this approach is computationally very demanding, which limits its use to very small sys-

tems. Nevertheless, it forms the basis of a more applicable method, which relies on the

idea to strongly restrict the number of possible determinants included in the MCSCF

procedure only to those necessary to obtain a qualitatively correct wavefunction. This

is achieved by considering only orbital excitations within a small �active space� of MOs,

usually several of the highest occupied and lowest unoccupied ones. Within this space,

a full CI expansion is performed, and the CI and MO coe�cients of the resulting wave-

function are simultaneously optimized (complete active space SCF, CASSCF). The so

obtained CASSCF wavefunction can subsequently be taken as the (multicon�gurational)

reference function for an additional truncated CI calculation, in which the MO coe�-

cients are held �xed, but a great many more Slater determinants are taken into account

2If a full CI calculation can be performed in the employed basis set, highly accurate results can be
also obtained without performing an MCSCF procedure.
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(multireference CI, MR-CI) [187]. In this way, a major part of the electron correlation

energy can be accounted for. However, this approach is still very demanding, and only

applicable for systems in which a reasonably small number of �active electrons� can be

identi�ed to primarily determine the electronic properties. Regardless of these restrictions

in ab initio methods, there is another application �eld of CI in the framework of semiem-

pirical approaches (cf. below). Formally identical to ab initio CI, the drastically reduced

computational e�ort allows for much increased CI spaces, particularly for the inclusion of

higher excited determinants and larger orbital active spaces also for quite large systems.

Although useful for obtaining accurate ground state energies and wavefunctions, MR-

CI-based calculations are much more common as a valuable means to determine excited

electronic states, as it will be discussed below.

The most straightforward general approach to the calculation of excited states starts

by taking a set of many-electron wavefunctions, such as Slater determinants, as basis

functions for the many-electron problem. Provided the basis set were complete, the

eigenstates of the electronic Hamiltonian could be expanded in linear combinations of

the basis functions. Although the completeness condition is not ful�lled for �nite ba-

sis sets, this approach can be employed to obtain approximate electronic energies and

wavefunctions. Technically, this is equivalent to the diagonalization of the Hamiltonian

matrix in terms of the basis functions, and energies and wavefunctions are obtained as

eigenvalues and eigenvectors of the Hamiltonian matrix. Thus, this procedure is in fact

identical to the CI method discussed above in the context of the ground state energy, and

the higher-energetic eigenvalues and eigenvectors of the CI Hamiltonian matrix can be

identi�ed with electronic energies and wavefunctions for excited states. Improvement by

taking multicon�gurational CASSCF wavefunctions as reference instead of the Hartree-

Fock determinant can be achieved similarly to the ground state case, and is of even more

fundamental importance since the MOs optimized for a ground state Hartree-Fock wave-

function are in general unlikely to be appropriate for an excited state wavefunction as

well. If several electronic states have to be determined at the same time (e.g. for an

absorption spectrum or for performing multistate dynamics), it is useful to perform the

CASSCF optimization procedure for all states simultaneously (i.e. to take an appropriate

average of all excited state energies as the quantity to be minimized) in order to achieve

a balanced description of all relevant excited states (state-averaged CASSCF) [187]. In

the present thesis, the MR-CI method based on CASSCF calculations has been used to

calculate several potential energy curves of the diatomic K2 molecule (cf. Chapter 9).

Although the framework of the Hartree-Fock approximation supplemented by the

treatment of electron correlation using the MR-CI method represents a systematic way

to obtain more and more accurate results, the rapidly increasing computational e�ort

restricts the applicability of this approach to systems with only a small number of active
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electrons. In particular, in cases where a large number of energy evaluations is necessary,

such as in dynamics simulations, the use of ab initio correlated methods comes to its

limits. Therefore, in the following a class of methods will be discussed, which retain the

principal structure of the Hartree-Fock and consecutive correlation methods, but allow

for higher computational e�ciency by introducing approximations to the integrals over

basis functions present in Hartree-Fock.

Semiempirical methods. Historically, the computational e�ort in evaluating the

molecular integrals occurring in the solution of the Hartree-Fock equations (cf. Eq. (2.19))

provided a strong motivation for developing the more approximate semiempirical meth-

ods capable to treat larger systems. Although nowadays the computational capabilities

usually allow for Hartree-Fock calculations and even for the application of more advanced

correlated methods to common molecules of several tens of atoms, semiempirical methods

are by no means obsolete. Quite the contrary, they �nd their application �elds in areas

where a large number of energy calculations is necessary, such as MD simulations. Partic-

ularly in combination with correlation treatments such as CI, semiempirical methods can

o�er both an accurate and e�cient description of ground and excited electronic states,

which has motivated their use for several studies presented in this thesis.

In the following, the fundamental assumptions of semiempirical methods as well the

speci�c approximations made in the PM3 and OM2 methods employed in this thesis will

be brie�y reviewed. The most important approximations in semiempirical theories are:

(i) consideration of valence electrons only, (ii) use of a minimal basis set, i.e. the minimal

number of basis functions necessary to accommodate the given number of electrons. Fur-

thermore, depending on the method, several classes of integrals over basis functions are

neglected, simpli�ed or parameterized. The methods used in this thesis all rely on the

modi�ed neglect of diatomic di�erential overlap (NDDO) approach, which includes the

following approximations: Firstly, in the matrix equation (2.17) the overlap matrix S is

replaced by the unit matrix. Furthermore, all integrals needed for the construction of the

Fock matrix (cf. 2.19) are either parameterized or neglected. For the one-electron part of

the Fock matrix, if two basis functions i, j are situated on the same atomic center a, the

matrix element is given by

hij =

〈
i

∣∣∣∣−1

2
∇2 − Za

|r−Ra|

∣∣∣∣ j〉 δij −
∑
b6=a

〈
i

∣∣∣∣ Zb

|r−Rb|

∣∣∣∣ j〉
= Uiiδij −

∑
b6=a

Zb〈isb|jsb〉, (2.22)

where Za, Zb are the nuclear charges, Uii is the ionization potential for the atomic orbital i,

and sb is a spherical charge distribution replacing the nuclear point charge. The elements

involving basis functions at di�erent atomic centers are given as hij =
1
2
Sij(βi + βj), with
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the overlap integral Sij = 〈i|j〉 and the numerical resonance parameters βi. For the two-

electron integrals, all terms involving basis functions on more than two atomic centers

are set to zero. The one-center Coulomb and exchange integrals replaced by parameters.

For the two-center two-electron integrals also the exchange terms are neglected. The

evaluation of the remaining two-center two-electron integrals is performed by replacing

the electric charge cloud by a multipole expansion, i.e. a point charge for the interaction

of two s orbitals, a dipole for an s-p interaction and a quadrupole for a p-p interaction.

These dipoles and quadrupoles are also represented by two or four point charges �xed at

some parameterized distance from the atomic center. The determination of semiempirical

parameters is nowadays usually performed by considering a test set of molecules and then

optimizing simultaneously all parameters with the aim to minimize the averaged error of

several molecular quantities. The di�erence between the various semiempirical methods

based on the NDDO approximation mainly arises from the treatment of the interaction

of the atomic cores. While in an ab initio theory like Hartree-Fock, the internuclear

interaction energy should cancel its interelectronic counterpart large distances, this is not

anymore the case within the approximate NDDO framework. Therefore, in the PM3

method [188] the following modi�ed expression is used:

Vnn =
nuc∑
a<b

ZaZb〈sasb|sasb〉
(
1 + e−αaRab + e−αbRab

)
+

ZaZb

Rab

2∑
k=1

∑
m=a,b

akme
−bkm(Rab−ckm)2 .

(2.23)

In this expression, Zi are nuclear charges, si are spherical charge distributions, Rab denotes

the internuclear distance, and αi, akm, bkm, ckm are parameters. A slightly di�erent

expression is used in the older AM1 method [189], which is besides that essentially identical

to PM3, though employing di�erent numerical values of the parameters due to a di�erent

optimization procedure.

The assumption of the NDDO approximation that two-electron integrals involving

more than two atomic centers can be neglected is based on the basis functions being

orthogonal. However, this is in general not the case for the minimal basis sets used in

semiempirical methods, rendering the above assumption somewhat questionable. There-

fore, attempts have been made to devise semiempirical methods that employ orthogo-

nalized basis sets. The OM2 method method developed by Weber and Thiel [190, 191]

provides an orthogonalization correction to all integrals occurring in an NDDO calcula-

tion, supplemented by several three-center terms. This method has been evidenced to

provide an improved description of the structural and energetic ground state properties of

several organic and bioorganic molecules as compared to the PM3 or AM1 methods [192].

Semiempirical methods, due to their underlying approximations, are computationally

far more e�cient than Hartree-Fock calculations, which in principle allows much larger
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molecules to be treated. This is even more pronounced in the context of semiempirical

calculations including electron correlation, such as MR-CI, which in this framework can

be employed very e�ciently to molecules for which a full ab initio correlation calculation

would be too demanding. The possibility to employ large active spaces and to include

highly excited determinants allows for very large numbers of determinants to be included

in the CI calculation, which is especially valuable for excited state calculations. Important

computational savings can be additionally achieved by ensuring the correct spin state of

the employed basis functions in the CI calculation. Physically, it is required that the total

electronic wavefunction represents an eigenstate of the total spin operator of the system.

While Slater determinants constructed from spin orbitals (spatial orbitals associated with

α or β spin, respectively) are not in general spin eigenfunctions, linear combinations of

them ful�lling this demand can be constructed. These �spin-adapted con�guration state

functions� (CSFs) are then used as new many-electron basis functions in the CI problem.

The procedure for their construction can be based on group theoretical considerations.

Particularly attractive in this context is the graphical unitary group approach (GUGA),

which provides the connection between Slater determinants and spin-adapted CSFs by

utilizing the properties of the unitary group of order N for a system of N electrons. This

technique constitutes the basis of the semiempirical CI formalism [193] used in this thesis.

Thanks to the optimization of the semiempirical parameter sets with respect to exper-

imental data, results obtained in this way can for particular molecules be even of better

quality than the ones obtained from parameter-free methods, such as ab initio MR-CI

using a small active space. Although this strongly depends on the molecule under study,

necessitating careful comparison with experimental or high-quality theoretical results, it

has e.g. provided a reasonably accurate description of the ground and excited electronic

states of biomolecules such as adenine or �avins, which are in the focus of the investiga-

tions presented in Chapters 10 and 11 of this thesis.

Notwithstanding the accuracy achievable in the semiempirical framework, there are

several classes of systems which cannot be properly accounted for. Most prominently

among them are transition metals and heavy elements exhibiting relativistic e�ects, for

which no adequate semiempirical parameterizations are available. For this reason, in

order to study systems such as small noble metal clusters, as an alternative the density

functional theory (DFT) was used instead in this thesis and will be sketched in the

following paragraph.

Density functional theory (DFT). This approach ranks in general terms of accu-

racy between semiempirical and correlated ab initio wavefunction methods. Usually, the

computational e�ort is comparable to that of Hartree-Fock, but unlike the latter, electron

correlation is accounted for in an approximate fashion. Therefore, DFT methods have

found widespread use in contemporary computational chemistry applications.
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The methodological basis of DFT is provided by the �nding of Hohenberg and Kohn

that for the unambiguous determination of expectation values, such as energies, of an

N-electron system, not the complete N-electron wavefunction needs to be known, but

already the one-electron density,

ρ(r1) =

ˆ
dr2...drNds1..dsNΨ

∗(x1,x2, ...xN)Ψ(x1,x2, ...,xN), (2.24)

is su�cient [194], which is obtained by integrating the squared wavefunction over all spin

coordinates si and all but one spatial coordinates ri, and thus only depends on a single

spatial electron coordinate. However, the exact expression from which the energy can

be calculated as a functional of ρ(r1) is not known. Nevertheless, Hohenberg and Kohn

proved the existence of a variational principle stating that the energy expectation value of

any trial density derived from an antisymmetric N-electron wavefunction is always larger

than the true ground state energy [194]. Since the energy functional is unknown, however,

approximate expressions have been introduced and applied for several model systems such

as the noninteracting homogeneous electron gas [195�197]. The applicability of these ap-

proaches to molecular systems was very limited, though. A practically useful approach

could be formulated by Kohn and Sham [198] who expressed the density by an auxiliary

wavefunction constructed from orbitals in a single determinant form. Applying the vari-

ational principle to these orbitals leads to the Kohn-Sham equations, which are entirely

analogous to the Hartree-Fock equations given in Eq. (2.15), with the exception that in

the e�ective potential the nonlocal exchange operator is replaced by an approximate local

exchange-correlation potential vxc(r):

vKS
eff (r) =

[∑
j

(
〈φj|

1

|r− r′|
|φj〉r′ + vxc(r)

)
−
∑
a

Za

|r−Ra|

]
. (2.25)

The exchange-correlation potential can be approximated in many ways, often using em-

pirical parameters from experiments or high-accuracy calculations. In this form, Kohn-

Sham density functional theory can be viewed as a sort of semiempirical correction to

Hartree-Fock, which retains the simple one-determinant structure of the wavefunction,

but includes approximate electron correlation in terms of vxc. Formally, the exchange-

correlation potential is de�ned as the functional derivative of an exchange-correlation

energy, vxc(r) =
δExc[ρ(r)]

δρ(r)
. The functional form of Exc usually involves complex analytical

expressions of the density, as well as of its gradient. The basic relation goes back to

Dirac, who derived an analytic expression for the exchange energy of the homogeneous

electron gas [197]. Later improvements involve the introduction of terms that depend on

the density gradient [199], leading to the general form of gradient-corrected functionals
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(generalized gradient approximation, GGA),

EGGA
x = const ·

ˆ
ρ4/3(r)dr−

ˆ
FX(χ)ρ

4/3(r)dr, (2.26)

where the �rst term is the Dirac exchange expression, and the density gradient is accounted

for in the second term by the dimensionless variable

χ(r) =
|∇ρ(r)|
ρ4/3(r)

. (2.27)

In the present thesis, the GGA functional of Perdew, Burke and Ernzerhof (PBE) was

employed, which is based on an analytical �t to the numerically calculated exchange

and correlation energies of a system with slowly varying electron density [200]. Further

approaches to the construction of exchange-correlation functionals also rely adding par-

tially Hartree-Fock exchange (hybrid functionals) [201,202], or taking into account higher

derivatives of the density (cf. Ref. [192], section 8.4.2). Moreover, also new empirical

corrections have been developed, introducing e.g. dispersion interaction, which is only

poorly described in standard functionals [203].

Technically, the usual implementation of Kohn-Sham DFT is also to a great extent

analogous to the Hartree-Fock method, such that the orbitals are expanded in linear com-

binations of atomic orbitals, which then leads to matrix representations of the Kohn-Sham

equations that are solved using linear algebra techniques. The only di�erence to Hartree-

Fock consists in the computation of the exchange-correlation part of the involved matrix

elements, which cannot be performed analytically due to the complicated functional form

of these terms. Therefore, the density is represented on a spatial grid and the integration

is performed numerically [204,205].

While in the frame of wavefunction-based approaches, excited states can be obtained

formally easily by diagonalization of the Hamiltonian matrix in an appropriate many-

electron basis, their determination is less straightforward in DFT, where no systematically

approximated ground state wavefunction is available. Therefore, in order to arrive at a

practical approach to excited state properties based on DFT, a di�erent methodology is

employed, which will be outlined in the following.

Time-dependent density functional theory (TDDFT). The DFT formalism as

sketched above provides a means to approximately calculate the electronic ground state

of a molecular system. Although there is no direct variational approach to calculating

excited state densities, an approximate treatment of excited states becomes possible in

the framework of the time-dependent density functional theory. Based on the �nding

of Runge and Groÿ that in analogy to the stationary Hohenberg-Kohn theorem also the

time-dependent electron density is (up to a phase factor) in a one-to-one correspondence
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with the time-dependent wavefunction [206], determination of this density should su�ce

to determine time-dependent properties. One can formulate a time-dependent variational

principle for the action

A =

ˆ t1

t0

〈
Ψ(t)

∣∣∣∣i ∂∂t − Ĥ(t)

∣∣∣∣Ψ(t)

〉
dt, (2.28)

from which, considering that the wavefunction is a functional of the time-dependent den-

sity and representing this density using molecular orbitals, the time-dependent Kohn-

Sham equations follow as

ĤKSφi(r, t) = i
∂

∂t
φi(r, t) (2.29)

with the Kohn-Sham Hamiltonian

ĤKS =

(
−1

2
∇2 + vKS

eff (r, t)

)
. (2.30)

The e�ective potential is the time-dependent generalization of its stationary counterpart

given in Eq. (2.25). The basic di�erence is the presence of a time-dependent exchange-

correlation potential vxc(r, t), which, however, in the limit of a slowly varying external

potential, can be well approximated by the stationary vxc(r) (adiabatic approximation of

TDDFT) [207, 208]. This allows one to employ the exchange-correlation functionals of

ground state DFT also in the framework of TDDFT.

In principle, the equations (2.29) can be solved in two ways. One possible approach

consists in a numerical procedure. For this purpose, in order to obtain excited state

energies, the system can be perturbed by an external impulsive potential (e.g. an electric

�eld), and the subsequent electronic evolution can be simulated in real time. From the

time-dependent expectation values obtained in this way, frequency- or energy-dependent

properties such as excitation energies can be determined by Fourier transformation [209,

210]. It should be noted, that the real-time propagation also opens a possibility to simulate

the electron dynamics under perturbations such as laser pulses of �nite time duration.

In this way, as was brie�y discussed in Sec. 1.2, coupled electron-nuclear self-consistent

mean-�eld dynamics can be performed without diagonalizing the electronic Hamiltonian

in terms of adiabatic basis states.

Most recent applications of TDDFT, though, rely on the linear response formalism for

determining excited state properties [207,208,211] in terms of adiabatic electronic states.

In order to derive the working equation for this approach, the system is formally exposed to

a small perturbation, which leads to a change in the orbitals as well as in the Kohn-Sham

Hamiltonian. To �rst order, the variation of the orbitals is φi(t) = e−iεit(φ0
i +δφi(t)), while

the Kohn-Sham Hamiltonian becomes ĤKS = Ĥ0
KS + δĤKS. Introducing these quantities

in Eq. (2.29) and retaining only the terms linear in the perturbation leads to
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Ĥ0
KSδφi(t) + δĤKSφ

0
i = εiδφi(t) + i

∂

∂t
δφi(t). (2.31)

The orbital variation can be expressed using an expansion in terms of the virtual Kohn-

Sham orbitals as

δφi(t) = e−iωt

virt∑
k

Xkiφ
0
k(r) + eiωt

virt∑
k

Ykiφ
0
k(r). (2.32)

Inserting this expansion into Eq. (2.31), multiplying from left by φn and integrating leads

to

(εn − εi)

(
Xni

Yni

)
+

virt∑
k

occ∑
j

[(
Ykj

Xkj

)〈
φnφk

∣∣∣∣∣δĤKS[ρ]

δρ

∣∣∣∣∣φjφi

〉

+

(
Xkj

Ykj

)〈
φnφj

∣∣∣∣∣δĤKS[ρ]

δρ

∣∣∣∣∣φkφi

〉]
= ω

(
Xni

−Yni

)
. (2.33)

Employing the de�nitions

Aabij = δabδij (εa − εi) +

〈
φaφj

∣∣∣∣∣δĤKS[ρ]

δρ

∣∣∣∣∣φbφi

〉
(2.34)

Babij =

〈
φaφj

∣∣∣∣∣δĤKS[ρ]

δρ

∣∣∣∣∣φbφi

〉
(2.35)

allows for the formulation of Eq. (2.33) as the TDDFT matrix eigenvalue equation(
A B

−B −A

)(
X

Y

)
= ω

(
X

Y

)
, (2.36)

the eigenvalues ω of which can be identi�ed with the electronic transition energies of the

system, while the eigenvectors (X,Y) contain the expansion coe�cients for the orbital

variation.

In this form, TDDFT represents a valuable tool for the calculation of excited state

energies and electronic absorption spectra in a wide variety of systems, usually working

best for valence-excited states [207, 212]. Besides that, however, there are several limita-

tions of TDDFT pertaining to other types of excited states. Most fundamentally, it has

to be noted that linear response TDDFT represents a single-excitation formalism. This

becomes evident from the dependence of the electron density on the Kohn-Sham orbitals,

ρ(r) =
N∑
i=1

φ∗
i (r)φi(r), (2.37)

from which the �rst-order density variation can be shown to consist only of products of
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occupied and virtual orbitals,

δρ =
occ∑
i

(δφ∗
iφi + φ∗

i δφi) =
virt∑
k

occ∑
i

[
(Xkiφ

∗
kφi + Ykiφ

∗
iφk)e

iωt + (Xkiφ
∗
iφk + Ykiφ

∗
kφi)e

−iωt
]
,

(2.38)

corresponding to single excitations out of the Kohn-Sham reference determinant. There-

fore, the description of states exhibiting double excitation or multireference character is

not possible. Other well-known problems of TDDFT involve the incorrect description

of Rydberg states due to an arti�cially lowered onset of the ionization continuum, as

well as the underestimation of charge transfer excitation energies due to a wrong asymp-

totic behavior of the interaction energy between two charge densities. However, advances

have been made in designing improved functionals providing better treatment of these

problems [207,212].

2.2.2 Molecular Properties

Electronic gradients. As outlined in Sec. 1.1, the mandatory prerequisite for classical

MD simulations is the availability of the forces acting on the nuclei. In the framework

of the �on the �y� class of procedures these are obtained as the negative gradients of the

electronic energy with respect to the nuclear coordinates. In principle, two approaches

can be employed for this purpose. The numerical method consists in calculating the elec-

tronic energy at a number of slightly distorted structures around the reference geometry

and then approximating the gradient by �nite di�erences along all coordinates. Although

easy to implement, this method su�ers from signi�cant accuracy problems inherent to the

�nite di�erence approach. Attempting to tackle this drawback by increasing the number

of points used in the numerical calculation scheme strongly increases the computational

e�ort (for f nuclear degrees of freedom the minimum number of energy evaluations is 2f ,

which would need to be much increased to signi�cantly improve the results), thus making

it impractical for large molecules. A more accurate and e�cient alternative relies on the

analytic calculation of the gradients [213], which requires much more theoretical develop-

ment and programming e�ort in advance, but, with commercial codes readily available for

this purpose, largely outperforms the numerical methods. For the derivation of analytical

formulae for the energy gradient it has to be taken into account that both the Hamiltonian

as well as the wavefunction depend on the nuclear coordinates. The wavefunction depen-

dence is twofold: There is an explicit dependence introduced by the use of atom-centered

(mostly Gaussian) basis sets, and an implicit dependence of the variation parameters (CI

and MO coe�cients), which also change with the nuclear geometry. Given a fully vari-

ational wavefunction, i.e. one whose energy expectation value has been optimized with

respect to all variation parameters, the energy can be expressed as a function of nuclear

42



Chapter 2. Multistate Molecular Dynamics Simulations

coordinates R and variation parameters C(R). The derivative is then formally

dE

dRa

=
∂E

∂Ra

+
∑
i

∂E

∂Ci

∂Ci

∂Ra

. (2.39)

If the wavefunction is fully optimized, however, the sum on the right-hand side of Eq. (2.39)

is zero since ∂E
∂Ci

= 0. The partial derivative of the energy can be decomposed by inserting

the expectation value expression E = 〈Ψ|Ĥ|Ψ〉, leading to

∂E

∂Ra

=

〈
Ψ

∣∣∣∣∣ ∂Ĥ∂Ra

∣∣∣∣∣Ψ
〉

+ 2Re

〈
∂Ψ

∂Ra

∣∣∣∣Ĥ∣∣∣∣Ψ〉 . (2.40)

The �rst part of this expression is the real physical contribution, coming from the nuclear-

coordinate dependence of the Hamiltonian, and is termed the Hellmann-Feynman force

[214, 215]. The second contribution, called the Pulay force [216], stems from the depen-

dence of the basis set on the nuclear coordinates and is only present if atom-centered basis

sets are employed. In the limit of a complete basis set, this contribution vanishes, but for

common calculations using �nite basis sets, in most cases it cannot be neglected.

For wavefunctions which are not fully variationally optimized, such as in truncated

CI methods, the gradients have to be calculated by taking into account the wavefunction

response on the nuclear displacements, ∂Ci

∂Ra
, for the subset of variation parameters for

which ∂E
∂Ci

6= 0. In the CI case, for instance, these are the MO coe�cients. Such parameters

may have been fully optimized in a simpli�ed energy calculation, such as Hartree-Fock

in the example considered here. In this way, an energy Ẽ is obtained, and the condition
∂Ẽ
∂Ci

= 0 holds. Taking the total derivative of this condition with respect to Ra leads to

∑
j

∂2Ẽ

∂Ci∂Cj

∂Cj

∂Ra

= − ∂2Ẽ

∂Ci∂Ra

, (2.41)

or, in matrix notation,

wCa = −va, (2.42)

where (w)ij = ∂2Ẽ/(∂Ci∂Cj), (Ca)i = ∂Ci/∂Ra, and (va)i = ∂2Ẽ/(∂Ci∂Ra). The

expression (2.42) corresponds to as many equations as there are nuclear coordinates.

Formally solving for Ca and inserting in Eq. (2.39) leads to

dE

dRa

=
∂E

∂Ra

−
∑
i

∂E

∂Ci

[∑
j

(w−1)ijv
a
j

]

=
∂E

∂Ra

−
∑
j

[∑
i

(w−1)ij
∂E

∂Ci

]
va
j . (2.43)
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The expression in brackets in the last line now corresponds to solving only a single set of

response equations [217],

wTz = x (2.44)

with xi = ∂E/∂Ci. Having determined the z vector, all components of the gradient can

be obtained as
dE

dRa

=
∂E

∂Ra

− zT · va, (2.45)

thus the e�ort of the calculation is essentially independent of the number of nuclear

coordinates.

The calculation method outlined above is in principle applicable to all types of wave-

function-based energy expressions. As mentioned before, the partial derivative of the

energy contains the derivative of the Hamiltonian, which is a one electron operator. The

additional terms of the wavefunction force are essentially the derivatives of Gaussian basis

functions with respect to the coordinates of their center, which are also Gaussian atomic

orbitals with higher angular momentum. Finally, the wavefunction response calculated in

Eq. (2.44) involves changes of the MO coe�cients with the nuclear displacement. These

techniques have been implemented in the last decades for a multitude of ab initio and

semiempirical quantum chemical methods, in particular for those employed in this thesis,

semiempirical CI [193, 218], and ground state DFT [219�221]. Also for the excited state

energies from linear response approaches such as TDDFT, analytical gradients based

on the above explained z vector approach have been formulated and implemented in

commercial programs [222�224].

Nonadiabatic couplings. The intrinsic coupling between adiabatic electronic states

due to the breakdown of the Born-Oppenheimer approximation is determined by the

nonadiabatic coupling gradient dIJ = 〈ΨI |∇R|ΨJ〉. In this subsection, for clarity the

electronic states are marked with a capitalized index, whereas individual MOs are referred

to with a lower case index. For a general CI wavefunction (cf. Eq. (2.20)), the coupling

gradient may be expanded as

dIJ = 〈cI |∇R|cJ〉+
∑
kk′

c∗Ik cJk′〈φk|∇R|φk′〉, (2.46)

where the cI , cJ are vectors of CI coe�cients [225]. The �rst term of Eq. (2.46) can be

related to the CI gradient by

〈cI |∇Rc
J〉 = 〈cI |∇RH|cJ〉

EI − EJ

, (2.47)

which allows for the use of gradient routines in order to calculate this part of the nonadi-

abatic coupling [226]. The second term of Eq. (2.46) can be reduced to gradients of MO
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coe�cients and atomic basis functions [225]. In the framework of the semiempirical im-

plementation [111] used in this thesis, however, it is neglected due to its relative smallness

in regions of substantial coupling [227, 228]. In nonadiabatic dynamics simulations, the

nonadiabatic coupling vector enters the time-dependent Schrödinger equation exclusively

in terms of a dot product with the nuclear velocities. This product, termed the scalar

coupling DIJ , can be related to the total time derivative of the wavefunction,

Ṙ · dIJ = DIJ

= Ṙ · 〈ΨI |∇R|ΨJ〉

=

〈
ΨI

∣∣∣∣ ddt
∣∣∣∣ΨJ

〉
, (2.48)

which can be numerically determined, e.g. employing �nite di�erences. In this way,

evaluation of the complete gradient expression (2.46) can be avoided.

Nonadiabatic coupling in TDDFT. The calculation of nonadiabatic couplings in the

framework of the TDDFT method requires a representation of the wavefunction based

on Kohn-Sham (KS) orbitals. Since, as shown in Eq. (2.38), within the linear response

method the electron density variation only contains contributions from single excitations of

occupied to virtual KS orbitals, it is straightforward to assume a con�guration interaction

singles (CIS)-like expansion for the excited state electronic wavefunction. For a closed-

shell system, the construction of this wavefunction has been explained in Refs. [127,132].

For open shell systems, such as the Ag3 cluster presented in Chapter 7, the wavefunction

can be constructed as

|ΨK(r;R(t))〉 =
∑
i,a

cKα,i,a |Φα,i,a(r;R(t))〉+
∑
i,a

cKβ,i,a |Φβ,i,a(r;R(t))〉 , (2.49)

where |Φα,i,a(r;R(t))〉 and |Φβ,i,a(r;R(t))〉 represent singly excited Slater determinants in

the α and β spin subspaces in which one electron has been promoted from the occupied

orbital φi to the virtual orbital φa with spin α or β, respectively [59]. The expansion

coe�cients cKα,i,a and cKβ,i,a in Eq. (2.49) are determined such that the wavefunction in

Eq. (2.49) corresponds to the same density response as the one obtained by the linear

response TDDFT procedure. Then, as shown in Ref. [132], the expansion coe�cients are

connected to the solutions X and Y of the TDDFT eigenvalue problem according to

cKα,i,a = (εα,a − εα,i)
−1/2(Xα,ia + Yα,ia) (2.50)

cKβ,i,a = (εβ,a − εβ,i)
−1/2(Xβ,ia + Yβ,ia). (2.51)
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In this way, an excited state wavefunction |ΨK(r;R(t))〉 is constructed, which can be

employed to calculate the scalar nonadiabatic couplings, e.g. in an approximate way by

using the �nite di�erence for the time derivative,

DKI

(
R

(
t+

∆t

2

))
≈ 1

2∆t
[〈ΨK(r;R(t)) |ΨI(r;R(t+∆t))〉

− 〈ΨK(r;R(t+∆t)) |ΨI(r;R(t))〉] . (2.52)

From Eq. (2.52) it can be seen that the nonadiabatic coupling is obtained as the overlap of

two electronic wavefunctions for the states K and I at subsequent timesteps t and t+∆t,

which can be further reduced to the overlap of spatial Kohn-Sham orbitals and eventually

of basis functions as described in Refs. [127,132].

Electric transition dipole moments. These quantities determine the coupling

strength between electronic states due to an external electric �eld via the dipole coupling

term −µKI · E(t) and are de�ned as

µKI(R(t)) = 〈ΨK(r;R(t))|µ̂el(r)|ΨI(r;R(t))〉, (2.53)

where µ̂el(r) = −e
∑N

n rn is the electronic dipole operator for a system with N electrons.

Therefore, if the wavefunction for two electronic states is available, each component of the

respective transition dipole moment can simply be calculated using the above integral. For

methods relying on Cartesian Gaussian atomic orbitals as basis functions, multiplication

of a component of r = (x, y, z) by the wavefunction means the conversion of any basis

function corresponding to angular momentum l to one of l+1, thus the calculation of µKI

involves entirely the same types of integrals as those employed in an overlap calculation,

i.e. over products of di�erent basis functions.

For the case of TDDFT, where formally no excited state wavefunction is available, the

approximate wavefunction ansatz of Eq. (2.49) can be employed to compute the transition

dipole moments according to

µKI = 〈ΨK(r;R(t)) |µ̂el(r)|ΨI(r;R(t))〉 (2.54)

=
∑
i,a

∑
j,b

c∗Kα,i,ac
I
α,j,b 〈Φα,i,a(r;R(t)) |µ̂el(r)|Φα,j,b(r;R(t))〉

+
∑
i,a

∑
j,b

c∗Kβ,i,ac
I
β,j,b 〈Φβ,i,a(r;R(t)) |µ̂el(r)|Φβ,j,b(r;R(t))〉 , (2.55)

where a and b indicate virtual and i and j occupied orbitals, respectively [59, 229]. The

dipole matrix elements on the right hand side of Eq. (2.55) can be reduced to the time-

dependent transition dipole moments between Kohn-Sham orbitals [229].
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2.2.3 Quantum mechanical/molecular mechanical (QM/MM) approach

for inclusion of the environment

Notwithstanding the availability of very e�cient electronic structure methods applicable

to quite complex molecules, the complete quantum chemical description of systems such as

molecules in solution, on surfaces, or biological macromolecules such as proteins or DNA

still cannot be performed without further approximations. A possible strategy to devise

a treatable approach consists in partitioning the system in one part which is described

fully quantum mechanically (QM part), and another one (the environment), for which a

molecular mechanics treatment is su�cient (MM part)3 [230�233]. The interaction of the

QM and MM subsystems can be accounted for by di�erent approximations. In the case

of a molecule in solvent environment, where no chemical bonds between the two parts

are present, as considered in this thesis, two approaches are available. In the mechanical

embedding scheme, only the nonbonding interaction between the QM and MM parts is

considered, while the electronic structure of the QM system is not in�uenced by the MM

part. In this case the nonbonding interaction between both subsystems can be accounted

for by the di�erence of the MM energies of the combined system (X+Y) and the QM

system (X) alone. The total energy of the combined system can then be written as

EQM/MM = EQM(X) + EMM(X + Y )− EMM(X). (2.56)

In contrast, the electrostatic embedding scheme takes into account the polarization of the

QM wavefunction due to the environment by including the point charges from the MM

part in the QM Hamiltonian. This allows for a more accurate description of the interaction

between QM and MM parts, yet at the cost of higher computational e�ort. If the elec-

trostatic e�ects of the solvent on the solute molecule are small, as in the case of solvated

adenine investigated in this thesis, the more e�cient mechanical embedding scheme thus

represents a valuable approach to the combination of QM/MM with multistate dynamics

simulations in the framework of FISH.

2.2.4 Choice of electronic structure methods employed in this thesis

The light-driven electron-nuclear dynamics simulations in the framework of the FISH

method which will be presented in the subsequent chapters of this thesis have been per-

formed using di�erent electronic structure methods, selected according to their appro-
3Molecular mechanics represents an empirical approach to molecular energies as a function of their

geometry. The electronic structure is completely neglected, and the energy is represented as a function
of bond lengths and angles which are modelled by analytic functions. Moreover, nonbonding interactions
such as electrostatic and van der Waals interactions are also accounted for. The necessary parameters
such as force constants, equilibrium values of bond lengths and angles, as well as the partial atomic
charges and van der Waals parameters are preset and de�ne the speci�c force �eld model. Parameter
values are usually determined from the experiment or from quantum chemical calculations.
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priateness for the studied problems. For the dynamics and TRPES simulations of small

noble metal clusters presented in Chapter 7, DFT and TDDFT have been used for the

electronic structure. This was motivated by the ability these methods to provide an accu-

rate ab initio description of such metallic systems, while at the same time being e�cient

enough to allow for dynamics calculations in a large manifold of excited states.

The control of electronic state populations in the potassium dimer presented in Chap-

ter 9, which was studied in order to validate the applicability of FISH to optimal control,

was performed using potential energy curves obtained from state-averaged CAS-MRCI

calculations. The use of such a high-level correlated method was possible due to both the

smallness of the system as such, as well as by the fact that for the electronic states under

study, it was su�cient only to consider the two 4s electrons present in K2 as the active

ones, thus the active space could be kept relatively small.

The two examples of control in biomolecules interacting with their environment, i.e.

adenine (Chapter 10) and �avins (Chapter 11), posed much higher demands on the e�-

ciency of the employed methods. For both simulations, extended propagation times due

to the use of long laser pulses (up to 5 ps) were necessary, and in addition a large number

of simulations employing di�erent laser �elds had to be performed. Therefore, semiem-

pirical methods were chosen for the electronic structure. In the framework of MR-CI for

the excited states, these provide an accurate description of the spectroscopic properties

of the studied systems. Speci�cally, in the case of adenine the OM2 method has been

previously validated as an accurate approach [125]. For the case of �avin molecules, the

most reliable description was achieved in the framework of the PM3 parameterization.
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In this section, our FISH method [55], which represents the basis of all theoretical results

presented in this thesis, will be explicated. The aim of this approach is the simulation of

laser-driven coupled electron-nuclear dynamics in complex molecular systems accounting

for all nuclear degrees of freedom. This is achieved by combining quantum mechanical

electronic state population dynamics, directly including the laser �eld, with classical nu-

clear dynamics. To this end, independent trajectories are propagated in the manifold of

adiabatic electronic states, and the transfer of electronic population induced by the laser

�eld is accounted for by allowing the trajectories to change their current state. For this

purpose, a stochastic process is employed, in which hopping probabilities are determined

by the changes of the quantum mechanical populations of each state along the trajectories.

In this way, a readily applicable method has been designed which can be combined with

classical MD �on the �y� in the framework of any quantum chemical method for which the

needed energies, gradients and couplings are available. From a methodological point of

view, the FISH method has been inspired by the previously established surface hopping

schemes of Tully and others (cf. Section 1.2). However, the FISH method provides a

more general applicability than these since it allows for explicit inclusion of �eld-induced

couplings between electronic states in addition to the nonadiabatic e�ects. Only the latter

are already accounted for in the �eld-free surface hopping method according to Tully.

This chapter is structured as follows: First, in Sec. 3.1 the basic equations of motion

of a molecular system driven by an external �eld are set up, and a partial classical limit

for the nuclear degrees of freedom is taken, leading to equations of motion for a phase

space density. Subsequently, in Sec. 3.2, classical trajectories are introduced to represent

the semiclassical phase space density, and in Sec. 3.3 the surface hopping procedure for

determining the electronic state of the trajectories is explained. In Sec. 3.4, this is followed

by a description of the overall algorithm for performing FISH simulations. Finally, the

general scope of the FISH method is elucidated in Sec. 3.5.

3.1 Semiclassical time evolution of a molecular system

In the framework of the density operator formalism introduced in Sec. 1.1, the equation

of motion for a system described by a Hamiltonian Ĥ0 is the Liouville-von Neumann

equation

i~ ˙̂ρ = [Ĥ0, ρ̂]. (3.1)

As discussed in Sec. 1.1, for a molecular system the Hamiltonian can be split into the

nuclear kinetic energy and an electronic part as Ĥ0 =
1
2
p̂ ·M−1p̂+ Ĥel. Within the Born-

Oppenheimer approximation, a complete set of eigenfunctions of the electronic Hamilto-
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nian for �xed nuclear coordinate q can be introduced according to Eq. (1.3), from which

eigenenergies Ei(q) and eigenstates |i;q〉 are determined that are parametrically depen-

dent on the nuclear coordinates. Subsequently utilizing the complete basis set formed by

combining the eigenstates of Ĥel with those of the nuclear position operator q̂, |q〉⊗|i;q〉,
the total Hamiltonian can be spectrally decomposed as

Ĥ0 =
∑
j

ˆ
dq′ |q′〉 ⊗ |j;q′〉

(
−~2

2
∇q′ ·M−1∇q′ + Ej(q

′)

)
〈j;q′| ⊗ 〈q′|. (3.2)

This enables the introduction of the Born-Oppenheimer nuclear Hamiltonians

Ĥi(q) = 〈i;q| ⊗ 〈q|Ĥ0|q〉 ⊗ |i;q〉 (3.3)

associated to the electronic states |i;q〉. In the presence of external perturbations such

as e.g. electric or magnetic �elds, a coupling operator can be de�ned in a similar way as

V̂ =
∑
ij

ˆ
dq′ |q′〉 ⊗ |i;q′〉V̂ij(q

′, t)〈j;q′| ⊗ 〈q′|, (3.4)

from which the electronic matrix element can be obtained as

V̂ij(q, t) = 〈i;q| ⊗ 〈q|V̂ |q〉 ⊗ |j;q〉. (3.5)

This leads to a generalized form of the Liouville-von Neumann equation,

i~ ˙̂ρ = [Ĥ0 + V̂ , ρ̂], (3.6)

or, in terms of electronic matrix elements ρ̂ij = 〈i|ρ̂|j〉,

i~ ˙̂ρij = Ĥiρ̂ij − ρ̂ijĤj +
∑
k

(
V̂ikρ̂kj − ρ̂ikV̂kj

)
. (3.7)

For the ease of reading, the coordinate dependency has been omitted in the above equa-

tions, as it will be also done in the following. In order to proceed towards a mixed

quantum-classical formulation, the Wigner transformation is introduced, and the classi-

cal limit is taken similar to the derivation given in Sec. 1.1 (cf. Eqs. (1.15)-(1.17)), but this

time only for the nuclear degrees of freedom. This leads to a set of coupled equations for

the phase space representations of the diagonal (ρii(q,p, t)) and o�-diagonal (ρij(q,p, t))

density matrix elements:
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ρ̇ii = {Hi, ρii}+
∑
k

(
2

~
Im [Vikρki]− 2Re

[(
M−1p

)
· dikρki

])
(3.8)

ρ̇ij = −iωijρij +
1

2
({Hi, ρij}+ {Hj, ρij}) +

[
i

~
Vij +

(
M−1p

)
· dij

]
(ρii − ρjj)

+
∑
k 6=i,j

[
i

~
(Vkjρik − Vikρkj)−

(
M−1p

)
· (dikρkj − dkjρik)

]
, (3.9)

where the diagonal density matrix elements determine the quantum mechanical state pop-

ulations and the o�-diagonal elements describe the coherence. The curly braces denote

the Poisson brackets (cf. Eq. (1.17)) and H i are the Hamiltonian functions for the elec-

tronic state i. The quantity ωij is the energy gap between the electronic states i and j,

dji = 〈j|∇q|i〉 denotes the nonadiabatic coupling elements describing the intrinsic cou-

pling between nuclear and electronic degrees of freedom, with ∇q indicating the derivative

with respect to the nuclear coordinates.

The time evolution of the phase space functions can now be separated into di�erent

physical contributions. For the diagonal terms ρii(q,p, t), the Poisson bracket {Hi, ρii}
corresponds to the phase space density �ow within the electronic state i, while the second

term in Eq. (3.8) describes the population transfer between the state i and all other

states k induced by the coupling terms. Similarly, for the coherences ρij(q,p, t), these

two contributions are also present. However, in this case the Poisson brackets correspond

to the evolution of the phase space function on an averaged surface of the states i and j.

Furthermore, the additional �rst term −iωijρij corresponds to the temporal phase change

of the coherence.

The above equations can be used as a starting point for numerical solution procedures,

in which the individual density matrix elements in phase space can be represented on a

discrete grid or as ensembles of classical trajectories, as it has been discussed in Sec. 1.2

(cf. also Refs. [144, 146, 147]). However, since the FISH method aims at providing an

approach of general applicability for complex molecular systems, the conceptual pathway

followed here is based on using a single ensemble of trajectories to represent the dynamics

of the entire phase space density.

3.2 Introduction of classical trajectories

Within the FISH approach, the nuclear phase space functions ρii(q,p, t) are represented

by an ensemble of independent trajectories propagated in the respective electronic states,

while the phase space coherences are disregarded. It should be noted, however, that on

the level of individual trajectories, the electronic part of the coherences is nevertheless

51



Chapter 3. Field-Induced Surface Hopping Method (FISH)

accounted for, as it will be explained in Sec. 3.3 below. Given a number of N trajectories,

ρii(q,p, t) can be expressed by a swarm of time-dependent δ functions

ρii(q,p, t) =
1

N

∑
k

θki (t) δ
[
q− qi

k (t;q0,p0)
]
δ
[
p− pi

k (t;q0,p0)
]

(3.10)

where the set of coordinates qi
k (t;q0,p0) and momenta pi

k (t;q0,p0) denotes a trajectory

k propagated in the electronic state i with initial conditions q0 and p0. The parameter

θki (t) has a value of unity if the trajectory k resides in the state i, and of zero otherwise.

The initial phase space distribution can e.g. be obtained by discrete sampling of

a quantum mechanical Wigner distribution for the harmonic normal modes ωn of the

molecular system [83]:

ρ00(q0,p0) =

Nmodes∏
n=1

αn

π~
exp

[
− αn

~ωn

(p20n + ω2
nq

2
0n)

]
, (3.11)

where q0n and p0n are the ground state normal coordinates and conjugate momenta, while

αn = tanh(~ωn/2kbT ) is a factor including e�ects of a �nite temperature.

The nuclear trajectories obey the classical Newtonian equations of motion,

ṗ(t) = −
∑
i

θi(t)∇qEi [q(t)] , (3.12)

which can be solved numerically using the Verlet algorithm as described in Sec. 2.1 [180].

In Eq. (3.12) the parameter θi(t) has a value of unity for the electronic state in which the

trajectory is propagated at time t and of zero for all other states. Ei [q(t)] is the adiabatic

potential energy of the electronic state i. The forces acting on the nuclei (−∇qEi [q(t)])

need to be calculated only for the given nuclear con�guration in each time step (�on the

�y�).

If an interaction with the environment such as solution is present, dissipative e�ects

on the nuclear motion can be approximately accounted for by employing the Langevin

equation of motion

ṗ(t) = −
∑
i

θi(t)∇qEi [q(t)]− γp(t) + Frand(t). (3.13)

instead of Eq. (3.12) for calculating the forces acting on the nuclei (cf. Sec. 2.1). Here,

γ is an empirical friction coe�cient and Frand represents a random force. This equation

can be numerically solved using e.g. a modi�ed version of the Verlet algorithm [185]. The

solution of Eqs. (3.12) or (3.13) provides continuous nuclear trajectories which reside in

pure electronic states and may switch between these according to the quantum mechanical

occupation probabilities given by ρii, as worked out below.
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3.3 Surface hopping procedure in FISH

In order to describe the electronic degrees of freedom on the level of classical nuclear

trajectories, the set of equations (3.8)-(3.9) for the whole ensemble has to be transformed

to its counterpart for each individual trajectory. For this purpose, the density matrix

elements ρij(q,p, t) are rewritten as

ρij(q,p, t) = ρ̃ij(q,p, t)e
−ηq(q−qt)2e−ηp(p−pt)2 = ρ̃ij(q,p, t)P(q,qt,p,pt), (3.14)

where P represents a Gaussian function in phase space with time-dependent centers qt

and pt. This expression can be inserted into Eqs. (3.8)-(3.9). For clarity, in the following

this will be elaborated only for the general matrix element ρij, since the corresponding

Eq. (3.9) contains Eq. (3.8) for the diagonal elements as a special case. Thus, it follows:

˙̃ρijP + 2[ηqq̇t(q− qt) + ηpṗt(p− pt)]ρ̃ijP

=− iωij ρ̃ijP +
1

2
({Hi, ρ̃ijP}+ {Hj, ρ̃ijP})

+

[
i

~
Vij +

(
M−1p

)
· dij

]
(ρ̃iiP − ρ̃jjP)

+
∑
k 6=i,j

[
i

~
(Vkj ρ̃ikP − Vikρ̃kjP)−

(
M−1p

)
· (dikρ̃kjP − dkj ρ̃ikP)

]
.

(3.15)

The Poisson brackets can be expanded as

{Hi, ρ̃ijP} = {Hi, ρ̃ij}P + {Hi,P}ρ̃ij (3.16)

= {Hi, ρ̃ij}P − 2ηp
∂Hi

∂q
(p− pt)ρ̃ijP + 2ηq

∂Hi

∂p
(q− qt)ρ̃ijP. (3.17)

In this way, Eq. (3.15) is composed of terms that are either proportional to (q− qt)P , to
(p− pt)P , or to P only. Therefore, the equation is satis�ed if the expressions pertaining

to each of these factors vanish identically. This gives rise to separated equations of motion

for ρ̃ij, qt, and pt:

˙̃ρijP = −iωij ρ̃ijP +
1

2
({Hi, ρ̃ij}+ {Hj, ρ̃ij})P (3.18)

+

[
i

~
Vij +

(
M−1p

)
· dij

]
(ρ̃iiP − ρ̃jjP)

+
∑
k 6=i,j

[
i

~
(Vkj ρ̃ikP − Vikρ̃kjP)−

(
M−1p

)
· (dikρ̃kjP − dkj ρ̃ikP)

]
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q̇tP =
1

2

(
∂Hi

∂p
+

∂Hj

∂p

)
P (3.19)

ṗtP = −1

2

(
∂Hi

∂q
+

∂Hj

∂q

)
P, (3.20)

in which for later convenience the Gaussian functions P have been retained. Subsequently,

for all three equations, the phase space integral over q and p is taken. Assuming that

the density matrix element ρ̃ij vanishes for q → ±∞, p → ±∞, the integral over the

Poisson brackets in Eq. (3.18) vanishes, too. To solve the remaining integrals, the limit

of an in�nitely narrow Gaussian function P is considered. This corresponds to ηq and ηp

going towards in�nity, in which case the Gaussian turns into a delta function:

lim
ηq → ∞
ηp → ∞

P(q,qt,p,pt) → δ(q− qt)δ(p− pt). (3.21)

Performing the phase space integration now leads to the replacement of the coordinates

q and momenta p by the time-dependent quantities qt = q(t) and pt = p(t). Therefore,

the density matrix elements ρ̃ij �nally depend only parametrically on the actual time-

dependent values of coordinates and momenta for a given trajectory,

˙̃ρii =
∑
k

(
2

~
Im [Vik [q(t)] ρ̃ki]− 2Re

[(
M−1p(t)

)
· dik [q(t)] ρ̃ki

])
(3.22)

˙̃ρij = − i

~
(Ei [q(t)]− Ej [q(t)]) ρ̃ij +

∑
k

[
i

~
(Vkj [q(t)] ρ̃ik − Vik [q(t)] ρ̃kj) (3.23)

−
(
M−1p(t)

)
· (dik [q(t)] ρ̃kj − dkj [q(t)] ρ̃ik)

]
.

The motion of the trajectories is governed by Eqs. (3.19)-(3.20). In the spirit of the

surface-hopping methodology relying on the propagation of trajectories on pure electronic

energy surfaces, it su�ces to consider the case i = j, giving rise to equations of motion

for the nuclear trajectories according to

q̇(t) =
∂Hi

∂p(t)
(3.24)

ṗ(t) = − ∂Hi

∂q(t)
. (3.25)
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These are the classical Hamiltonian equations, thus corroborating the assumption made

in Sec. 3.2 that the complete phase space density can be represented by an ensemble of

nuclear trajectories evolving according to the classical equations of motion.

The above derived Eqs. (3.22)-(3.23) allow for the description of electronic population

dynamics along classical nuclear trajectories. Notably, this formulation is fully equiva-

lent to that introduced by Tully [52], who assigned in an ad-hoc fashion an electronic

Schrödinger equation to each nuclear trajectory:

i~ċi(t) = Ei [q(t)] ci(t) +
∑
j

(
Vij [q(t), t]− i~

(
M−1p(t)

)
· dij [q(t)]

)
cj(t), (3.26)

where ci(t) are the expansion coe�cients of the electronic wavefunction in the basis of

adiabatic electronic states. From this equation, density matrix elements can be calculated

as ρ̃ij = cic
∗
j . This in turn allows for transforming the Schrödinger equation (3.26) into

equations of motion for the density matrix elements, which emerge as identical to the set

of Eqs. (3.22)-(3.23). Therefore, the presented derivation provides a formal justi�cation

for the use of Eq. (3.26) for the electronic population dynamics.

The FISH method extends the common surface hopping approaches by augmenting

the description of �eld-free electronic relaxation dynamics by the interaction with external

couplings Vij. Typically, these are given as the electric dipole coupling, i.e.

Vij = −µij [q(t)] · E(t) (3.27)

with the transition dipole moment µij and the electric �eld strength E. However, recently,

also a quadratic �eld coupling has been implemented in order to approximate the two-

photon excitation in strong nonresonant laser �elds, which is mediated by a manifold of

high-energy states [234]. In this case, it can be shown that the coupling arises due to a

dynamic transition polarizability as

Vij = − 1

4~
ET (t) ·αij [q(t), t]E(t), (3.28)

where E(t) is the �eld envelope. Moreover, also magnetic dipole couplings, which play

an important role in the dynamics of enantiomers of chiral molecules interacting with

polarized light, can be employed [235]. In addition, it was recently demonstrated that the

spin-orbit coupling between electronic state manifolds of di�erent spin symmetry can be

a posteriori introduced on the same footing [236].

The Schrödinger equation (3.26) is solved parallel to the propagation of the nuclear

equations of motion in order to obtain the time-dependent electronic state coe�cients

ci. For this purpose, numerical solution methods such as the Runge-Kutta algorithm are

used. Typically, the integration time step ∆τ is chosen to be much smaller than the time
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step ∆t used for the nuclear integration since the oscillations of the ci occur on a much

shorter time scale than the nuclear motion.

Based on the solution of Eq. (3.26) for each individual trajectory, the electronic pop-

ulation transfer is modelled by allowing the trajectories to switch between the electronic

states according to a probability derived from the coe�cients ci. This procedure is re-

lated to Tully's surface hopping method [52] which has been developed in order to describe

�eld-free nonadiabatic transitions in molecular systems. However, as already outlined in

the beginning of this chapter, the FISH method provides a more general framework since

also couplings induced by external �elds are considered. It should be noted that in the

absence of electric �elds, e.g. in cases in which the dynamics is continued after the end of

a laser pulse, the FISH method becomes equivalent to the �eld-free nonadiabatic surface

hopping procedure.

In principle, the hopping process of switching from electronic state i to state j can be

performed either after each nuclear integration time step ∆t, or, alternatively, after each

electronic integration time step ∆τ , which is much smaller than ∆t. The actual choice

depends on how the hopping probabilities Pi→j are computed. According to the original

procedure of Tully, these can be obtained as

Pi→j(t) = (−1)

(
2
~Im [Vijρji]− 2Re [(M−1p) · dijρji]

)
∆t

ρii(t)
(3.29)

after each nuclear time step [52]. The expression in brackets in the numerator of Eq. (3.29)

corresponds to a single term of the sum in Eq. (3.22), indicating the rate of change

of probability amplitude between the states i and j. Multiplying by the time step ∆t

yields the total amount of probability exchange between these states, and division by

the current population of the initial state leads to a normalized probability. Finally, this

expression is only evaluated if the numerator is negative, i.e. if there is a population

loss in the initial and a gain in the �nal state. In this case, the minus sign ensures a

positively de�nite value of the probability. If the numerator is positive, corresponding to

population transfer in the opposite direction, the probability is set to zero. The hopping

probability derived in this way has been commonly used in many applications of Tully's

surface hopping method. However, due its explicit dependence on fast changing quantities

such as the electronic coherences ρij and the couplings Vij which can include a rapidly

oscillating electric �eld, it su�ers from the drawback that for not su�ciently small time

steps, numerical discrepancies can arise and cause erroneous results. Therefore, it was

proposed already in the context of �eld-free surface hopping to calculate the hopping

probabilities and perform the hopping procedure after each small electronic time step

instead, thus replacing the nuclear time step ∆t by its electronic counterpart ∆τ in

Eq. (3.29) [132].
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However, an alternative procedure for calculating the hopping probabilities can be also

formulated, which is based only on the more slowly varying electronic state populations,

thus avoiding a direct dependence on rapidly oscillating coherences or external �elds [237].

For this purpose, the probabilities to depopulate the initial state i and to populate the

�nal state j are �rst calculated separately. The depopulation probability of state i is

obtained from the population change during a time step ∆t, normalized to the actual

population of this state:

Pdepopulate i = Θ(−ρ̇ii)
−ρ̇ii
ρii

∆t. (3.30)

By de�nition, this probability can be nonzero only if the population of state i decreases,

which is ensured by the Θ function in Eq. (3.30). The expression ρ̇ii∆t can be calculated

from the populations in successive nuclear time steps t and t+∆t as ρ̇ii∆t = ρii(t+∆t)−
ρii(t), such that no explicit calculation of time derivatives is necessary. If the depopulation

probability of state i is nonzero, the probability to populate state j depends on the change

of the population ρ̇jj, which must be positive. Since, however, this condition can be

simultaneously ful�lled for several electronic states at the same time, the probability to

populate the particular state j is obtained by normalizing to the total rate of change of

all states k with growing population (cf. the denominator of Eq. (3.31) below):

Ppopulate j =
Θ(ρ̇jj)ρ̇jj∑
k Θ(ρ̇kk)ρ̇kk

. (3.31)

Given these probabilities for the depopulation of state i and the population of state j,

the total probability for hopping from i to j is obtained as [237]:

Pi→j = Pdepopulate iPpopulate j = Θ(−ρ̇ii)Θ(ρ̇jj)
−ρ̇ii
ρii

ρ̇jj∑
k Θ(ρ̇kk)ρ̇kk

∆t. (3.32)

This �nal expression for the hopping probability allows for performing the state switching

procedure in each nuclear time step, since, as mentioned above, the populations typically

vary much more slowly than the couplings and coherences employed in Eq. (3.29) which

usually contain rapidly oscillating terms. Therefore, the use of Eq. (3.32) is of particular

advantage in the context of �eld-driven dynamics, and consequently this procedure has

been employed in all FISH simulations presented in this thesis.

3.4 Simulation procedure

The simulation of the laser-induced dynamics in the framework of the FISH method, using

the above derived approach, can now be cast in the following steps:

(i) Initial conditions for an ensemble of trajectories are generated by sampling e.g. the

canonical Wigner distribution function (cf. Eq. (3.11)) or a long classical trajectory
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in the electronic ground state, and the initial electronic states for the trajectories

are assigned. For a simulation including optical �elds, usually the electronic ground

state is initially populated.

(ii) Each trajectory is classically propagated in the given electronic state by solving the

Newton (Eq. (3.12)) or if necessary the Langevin (Eq. (2.13)) equations of motion.

Simultaneously, all density matrix elements ρij are calculated by numerical integra-

tion either directly from Eq. (3.22) or from the electronic state coe�cients obtained

by integration of Eq. (3.26).

(iii) In order to determine in which electronic state the trajectory is propagated, the

hopping probabilities are calculated according to Eq. (3.29) or (3.32). In a stochastic

process, a uniform random number between zero and unity is employed to decide if

a state switch should occur. After a successful hop, the trajectory is continued on

the new electronic state. If the hopping event is caused by the intrinsic nonadiabatic

coupling, a velocity rescaling procedure according to Eq. (1.26) or (1.28) is applied in

order to ensure conservation of the total system energy. In the case of hopping due

to external �elds, the energy conservation condition is not imposed and therefore no

rescaling is applied.

(iv) After the trajectories are completed, electronic state populations and other proper-

ties such as spectroscopic observables or the phase space distribution of the nuclear

degrees of freedom can be obtained by averaging over the entire ensemble. Moreover,

in order to get an insight into mechanistic details of the studied processes, also the

motion along individual trajectories can be analysed.

3.5 Scope of FISH

The mixed quantum-classical FISH method presented in the foregoing sections provides a

unique framework for the simulation of laser-induced photodynamics in complex molecular

systems. This has been achieved by the combination of classical nuclear dynamics with

a quantum mechanical treatment of electronic state population dynamics in the presence

of electric �elds. In particular, population transfer processes in moderately strong �elds

such as coherent Rabi oscillations are very well described, as it has been evidenced on

comparative studies of several model systems and small clusters [55, 63, 238]. Due to the

classical description of the nuclear degrees of freedom, allowing for the e�cient �on the

�y� calculation of the electronic structure, for the �rst time a methodological framework

has been established which allows both the treatment of large molecules and the explicit

consideration of laser excitation beyond the perturbative limit.
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Figure 3.1: Scope of possible applications for the FISH method in the areas of ultrafast
time-resolved spectroscopy and coherent quantum control.

59



Chapter 3. Field-Induced Surface Hopping Method (FISH)

The ability of FISH to accurately describe coupled electronic-nuclear dynamics driven

by laser �elds of moderate intensity opens a multitude of application possibilities in pho-

tochemistry and photophysics. Notably, the dynamics induced by laser pulse sequences

can be simulated and used to calculate time-resolved spectroscopic observables. This

allows for establishing a direct connection with experimental time-resolved spectra and

provides a versatile means for their interpretation at the molecular level. Moreover, pos-

sible experiments may be also anticipated by theoretical predictions, which can serve to

stimulate new experimental techniques and establish the conditions needed to observe

speci�c molecular processes. In this context, the FISH method has been advanced for

the simulation of time-resolved photoelectron spectra by an approximate description of

the photoionization continuum [59], which will be presented in Chapter 6 of this thesis.

Moreover, in the framework of FISH recently also a method for the simulation of time-

resolved harmonic spectra, which provide a sensitive probe for coupled electron-nuclear

dynamics, has been devised [238].

Beyond the mere analysis of processes, the interaction of molecules with light can also

be utilized to achieve control by employing shaped laser pulses. In this context, the FISH

method o�ers a particularly convenient way to simulate coherent control experiments.

This is due to the explicit inclusion of the laser �eld in the FISH equations (3.26), which

allows for employing laser pulses of arbitrary shapes in the simulations. Therefore, similar

to the common experimental procedure, the electric �elds can be iteratively optimized

by using genetic algorithms [239], as it has been shown in Refs. [55, 63]. Alternatively,

simple parameterized pulse forms may be proposed without the need for optimization,

and the e�ect of parameter changes on the studied systems can be predicted [64]. In this

way, decisive knowledge about suitable control �elds can be gained, providing valuable

information for experimental realizations. In addition, FISH provides also the opportunity

to employ experimentally optimized laser �elds in the simulation [67]. This allows for

a molecular-level investigation of the dynamical processes underlying the experimental

control and provides a route both for revealing the mechanism of control as well as of how

this mechanism is re�ected in the speci�c form of the optimized laser �eld. Within this

thesis, control-related applications are the main subject of the Chapters 9, 10, and 11.

Conclusively, the main application areas of FISH are summarized in Fig. 3.1.

The necessary ingredients needed to perform a FISH simulation are electronic state

energies, their negative gradients with respect to the nuclear coordinates (forces), as well

as the transition dipole matrix elements and nonadiabatic couplings between the elec-

tronic states, which all may be calculated �on the �y� along the nuclear trajectories.

To obtain the above quantities, in principle the whole spectrum of quantum chemistry

methods can be used. However, since ensembles of trajectories have to be propagated,

which in the case of optimal control simulations has to be performed several times repeat-
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edly, the computational demands for such simulations can become quite high. Therefore,

the use of computationally e�cient methods is advisable, provided they prove su�ciently

accurate for the given problem. In particular, application of time-dependent density func-

tional theory (TDDFT) has become possible due to the development of nonadiabatic cou-

plings [127,131,132,240] and transition dipole moments between excited states [229]. Fur-

thermore, also semiempirical quantum chemical models, which have been recently adapted

to calculate arbitrary transition dipole moments and nonadiabatic couplings [111], o�er

a convenient and e�cient possibility. However, the applicability of FISH simulations

is not restricted to isolated molecules. Rather, also the molecular surrounding of the

systems can be included at di�erent levels of accuracy, such as by performing dissipa-

tive Langevin dynamics or by explicit inclusion of the environment in the framework of

QM/MM methods. In this way, the in�uence of solvent, surfaces or protein environment

on the photodynamical processes may be studied. In conclusion, the FISH method opens

new routes to interesting applications in ultrafast spectroscopy and coherent control, a

selection of which will be discussed in the following chapters 7, 9, 10, and 11.
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4 Formal Aspects and Validation of FISH

The approximate description of coupled electron-nuclear dynamics underlying all surface-

hopping approaches, including also FISH, requires the accuracy and applicability of these

methods to be thoroughly validated by comparison with exact quantum dynamics. Al-

though the FISH method formally features no additional approximations compared to

�eld-free surface hopping, the �eld-induced excitation process makes relevant certain ad-

ditional aspects which would otherwise play only a minor role. In the present chapter,

three issues concerning the accuracy of FISH will be investigated. In the �rst place,

the question of internal consistency will be addressed, which represents a well-examined

subject in the context of �eld-free surface hopping. The speci�c aspects of this prob-

lem related to FISH will be discussed in Sec. 4.1. Subsequently, in Sec. 4.2 the issue

of missing coherence decay (overcoherence), also a common problem in surface hopping

methods, will be studied with the particular focus on its implications on time-resolved

pump-probe spectroscopies involving sequential laser excitation and deexcitation steps.

The chapter concludes with Sec. 4.3, presenting an issue speci�c to FISH, namely the

mixed quantum-classical description of the �eld-induced excitation process itself and the

implications of neglecting the quantum mechanical nature of the nuclei on the correct

distribution of vibrational energy during the excitation. The sections of this chapter fo-

cus on the presentation of the comparative results that allow for the validation of FISH

against quantum dynamics. Methodological details such as the parameters employed for

the model systems and laser �elds are provided in Appendix A.

4.1 Forbidden hops and internal consistency

As discussed in Sec. 1.2, a major requirement for the accuracy of surface hopping pro-

cedures is the internal consistency, i.e. the agreement of the fraction Πi of trajectories

residing in a particular electronic state with the averaged values ρ̄ii of the quantum elec-

tronic state populations |ci|2 obtained from the Schrödinger equation (3.26). The main

reason for the occurrence of poor internal consistency in surface-hopping approaches in

general has been identi�ed as the presence of forbidden hops due to energy conservation

requirements (cf. Sec. 1.2). In FISH, contrary to �eld-free surface-hopping dynamics, this

internal inconsistency problem is less pronounced, since, in the presence of a su�ciently

intense and resonant �eld, most of the hopping events are caused by the matter-�eld in-

teraction, which does not imply energy conservation for the molecular system. Therefore,

no forbidden hops can arise in the time period of strong �eld coupling. The internal

consistency of FISH in such cases is illustrated in Fig. 4.1, in which the sequential excita-

tion in a three-state model system has been simulated employing the hopping procedure

according to Eq. (3.32). Comparison of the fractional surface hopping state populations
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Figure 4.1: Illustration of the internal consistency of FISH for sequential excitation in a
3-state model system using two 35 fs laser pulses centered at 50 fs and 100 fs, respectively.
The �rst pulse is resonant to the 0 → 1 and the second one to the 1 → 2 transition. Ex-
cellent agreement between the fractional state occupations Πi and the averaged quantum
populations ρ̄ii is observed.

Πi presented in Fig. 4.1b) with the averaged quantum populations ρ̄ii shown in Fig. 4.1c)

reveals perfect agreement. However, if nonadiabatic e�ects play a role during time periods

of negligible �eld coupling, energy conservation is required and forbidden hops can occur

similar to the case of Tully's �eld-free surface hopping procedure, with the implications

on the internal consistency of the simulation as discussed in Sec. 1.2.

A second source of internal inconsistency present in all surface-hopping based ap-

proaches also occurs in the absence of forbidden hops and is related to the description

of quantum mechanical coherence in surface hopping. This issue will be discussed in the

following paragraph.

4.2 Quantum coherence in FISH

Field-induced electronic excitation represents a typical coherent process in which the

wavefunctions of the coupled states are characterized by a precisely de�ned phase relation.

As it has been previously demonstrated on a number of examples, coherent electronic

excitation is fully accounted for in the framework of the FISH method, which allows for

the accurate simulation of population dynamics occurring in moderately intense �elds,

such as Rabi oscillations [55]. Furthermore, coherent excitation constitutes the basis for

coherent control of molecular processes in strong �elds, which can also be accurately

simulated in the frame of FISH as will be shown in Chapter 9 and has been recently

published in Ref. [63]. However, as a surface hopping method, FISH also has inherited a
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Figure 4.2: Overcoherence in FISH for pump-dump excitation using 5 fs pulses at t1 =
20 fs/t2 = 80 fs. a) Potentials of the 2-state system and schematic illustration of the
wavepacket dynamics. Right panel: Comparison of quantities from full quantum dynamics
(green) and FISH simulations (red) as a function of the �eld amplitude: b) Population of
state 1 after pulse 1 (at 25 fs), c) Modulus of the coherence between states 0 and 1 after
pulse 1 (at 25 fs), d) Population of state 1 after pulse 2 (at 90 fs). The coherences in the
FISH simulation are obtained by averaging ρij = c∗i cj over the entire ensemble.

drawback related to coherence, namely the phenomenon of overcoherence [116]. In order

to make this clear, �rst the quantum mechanical nature of coherence will be considered.

For two nuclear wavepackets χi(R) and χj(R), e.g. generated during electronic excitation,

the coherence is de�ned as an overlap integral, ρij =
´
dRχ∗

i (R)χj(R). Therefore, if the

two wavepackets move spatially away from each other, their coherence must vanish. By

contrast, in surface hopping the individual trajectories are propagated independently of

each other, and thus no information about the spatial separation of di�erent trajectories

is available. Therefore, the coherence cannot, as in quantum dynamics, be de�ned by the

spatial overlap of two wavepackets, but is just represented by the product of two electronic

state coe�cients as ρij = c∗i cj, which remains constant after leaving a coupling region.

For this reason, also the ensemble-averaged coherence remains constant if no coupling

is present, and therefore no decay of coherence due to nuclear motion occurs in surface

hopping, which may cause internal inconsistency [116]. Although not desirable from a

methodological standpoint, this type of inconsistency can be neglected in several cases if

the fractional state occupations for the given problem are su�ciently correct, as then the

averaged quantum probabilities can be simply disregarded [112, 113, 116]. Nevertheless,

beyond the more technical question of internal inconsistency, the lack of decoherence can,

in certain cases, also lead to qualitative errors in the population dynamics, particularly
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Figure 4.3: Overcoherence within FISH in a simulation of pump-dump excitation using
5 fs pump and dump pulses at t1 = 20 fs/t2 = 80 fs. a) Potential functions of the 2-
state system and quantum wavepackets at selected times (values in fs). b)/c) Time-
dependent populations obtained by full quantum dynamics simulations and FISH. d)/e)
Modulus of the coherence as function of time. The coherences in the FISH simulation are
obtained by averaging ρij = c∗i cj over the entire ensemble. Full lines in c)/e): uncorrected
FISH simulation. Dashed lines: FISH simulation employing an overlap-based decoherence
correction. The uncorrected FISH method wrongly describes the e�ect of the dump pulse
due to the lack of coherence decay. Introducing a correction accounting for this e�ect
leads to much better agreement between FISH and quantum coherences and thus also of
the populations.

if the trajectories experience the presence of strong coupling during several separate time

periods of the studied dynamics. A typical case might consist in the sequential excitation

of a system with time-delayed laser pulses, as is common in various pump-probe or pump-

dump experiments. Therefore, in the following the issue of overcoherence will be studied

on three prototypical cases for �eld-induced excitation, and the ability of FISH to properly

treat them will be discussed.

Implications of a non-decaying coherence magnitude. Most basically, it is

evident that problems concerning overcoherence are dependent on the magnitude of the

coherence terms during the studied process, and it can be surmised that the smaller the

coherence created in an excitation process is, the smaller also the implications of overcoher-

ence will be. In order to quantify this, dynamics in the model system shown in Fig. 4.2a)

has been studied both using numerically exact quantum dynamics and employing FISH

dynamics. The model system is characterized by a double well potential representing the

lower electronic state 0, and a dissociative upper state 1. Short-pulse excitation of the
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wavepacket initially situated in the left well of state 0 to the higher state 1 leads to a fast

passage of the excited state wavepacket towards a position directly above the right well of

the state 0, to which it is dumped by a second laser pulse. By varying the �eld strength

of the �rst laser pulse, the excitation e�ciency can be controlled almost completely in the

range between 0 and 100 %, as shown in Fig. 4.2b). The agreement between quantum

mechanical and FISH excitation is very good for this process. In Fig. 4.2c), the magnitude

of the coherence ρ01 between the states immediately after the end of the �rst laser pulse

is shown, illustrating that the largest coherence is created if about half of the electronic

state population is transferred from state 0 to state 1. If almost no, or almost complete

population transfer takes place, the coherence is signi�cantly smaller. Also for the co-

herences, good agreement between quantum and FISH simulations is present. However,

these coherences strongly in�uence the accuracy of FISH in reproducing the e�ect of the

second laser pulse, as can be inferred from Fig. 4.2d). It is clearly visible that, while

for the lowest as well as for the highest �eld intensities, good agreement of the quantum

mechanical and the FISH results is observed, signi�cant deviations are present for inter-

mediate �eld strengths, which cause only partial population transfer and therefore large

coherences. Therefore, in such situations the e�ect of overcoherence is most pronounced.

Aiming at a more detailed analysis of this issue, in the following the population dy-

namics induced by an intensity of the �rst laser pulse of 0.002 EH/ea0, leading to 50 %

population transfer from state 0 to state 1, will be investigated. The model system as

well as the nuclear wavepackets at selected time steps are shown in Fig. 4.3a). As already

stated above, the used pump pulse induces about 50 % population transfer, as depicted

for the full quantum dynamics simulation in Fig. 4.3b). In this way, a large coherence ρ01
is created, which due to the nuclear motion decreases to zero before the dump pulse sets

in (cf. Fig. 4.3d)). The latter then leads to a complete transfer of the state 1 population

to the right well of the state 0 potential. In the FISH simulation, the decay of coherence is

not reproduced and the averaged coherence stays constant, as can be seen from Fig. 4.3e)

(full line). As a consequence, the action of the dump pulse is not properly reproduced,

since only very small net population transfer takes place as shown in Fig. 4.3c). Identi-

fying the constant magnitude of the coherence as the main source for this deviation, a

possible remedy can be sought in introducing a coherence decay correction in the FISH

algorithm. As outlined in Sec. 1.2, in the context of �eld-free surface hopping, several

techniques have been suggested for this purpose [116�120]. For the case presented here,

a modi�cation of the decay-of-Gaussian-overlap method of Ref. [117] has been employed,

as discussed in detail in Appendix B. In this way, as shown as a dashed line in Fig. 4.3e),

the coherence ρ01 could be completely removed in the modi�ed FISH simulation, which

subsequently lead to a correct description of the population dynamics induced by the

dump pulse.
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Figure 4.4: Quantum dynamics simulation of pump-repump excitation at wavepacket
recurrence using 5 fs pump and repump pulses at t1 = 20 fs/t2 = 331 fs. a) Potential
functions of the 2-state system and quantum wavepackets at selected times (values in fs).
b) Time-dependent populations obtained by full quantum dynamics simulations. c) Full
lines: Populations obtained from FISH simulations. Dashed lines: FISH simulation with
the coherences reset at t = 325 fs to the quantum dynamics values (cf. e)). d) Modulus
(full line), real (blue) and imaginary (violet) parts of the quantum coherence ρ01 as a
function of time. e) Modulus (full line), real (blue) and imaginary (violet) parts of the
quantum coherence ρ01 obtained from the FISH simulation by by averaging ρij = c∗i cj
over the entire ensemble. Dashed lines: coherence terms reset to the quantum values at
t = 325 fs.

In�uence of coherence phase. Besides the direct implications of a non-decaying

coherence magnitude on the population dynamics, there is another, more subtle source

of error caused by overcoherence. To illustrate this, a di�erent model system was in-

vestigated, now consisting of two displaced harmonic potentials. The excitation scheme

is of a pump-repump type, such that the �rst pulse creates a wavepacket in the upper

state and the second pulse sets in exactly after a full oscillation period of the upper state

wavepacket has been completed, i.e. when two wavepackets again overlap in space (cf.

Fig. 4.4a)). The quantum dynamical simulation shows that this should lead to a sequen-

tial population transfer from the lower to the upper state, such that each pulse transfers

about 50 % and �nally the population almost completely resides in the upper state, as

shown in Fig. 4.4b). Inspection of the FISH populations depicted in Fig. 4.4 shows that,

while the e�ect of the �rst pulse is in perfect agreement with the quantum simulation,

the action of the second pulse is not reproduced. In this case, however, this cannot be

attributed to a wrong magnitude of the coherence, since Fig. 4.4d) makes clear that, al-

though after the �rst pulse the quantum coherence drops to zero, subsequently it rises
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again and reaches almost its previous maximal value before the second pulse sets in. In

the FISH simulation, as expected, the coherence decay is not present, but since it simply

stays constant, it again matches the magnitude of its quantum dynamics counterpart just

before the second pulse occurs (cf. Fig. 4.4e)). Therefore, introducing a correction for

coherence decay, similar to the previous example, would not be bene�cial here. The real

cause of error can be revealed by looking not only at the magnitude of the coherence,

but also on its real and imaginary parts. These are entirely di�erent in the quantum and

FISH simulations, which is particularly true before the onset of the second laser pulse.

(cf. Figs. 4.4d) and 4.4e)). This means that in this case the phase of the coherence,

which depends on the real and imaginary parts as φ = tan(Im(ρ01)/Re(ρ01)), makes the

di�erence. Resetting this phase to the quantum mechanical value at t=325 fs accordingly

leads to a correct dynamics for the action of the second pulse, as can be seen from the

dashed lines in Fig. 4.4b) and c). This example shows that also the evolution of the phase

di�erence between two wavepackets can be decisive for the dynamics. The inclusion of

such e�ects into surface hopping simulations is a more involved task than the decay of the

coherence modulus, and by now only very few attempts to develop appropriate corrections

have been made [121,122], however without taking into account the speci�c requirements

of �eld-induced dynamics.

Processes not in�uenced by overcoherence. Although the issue of overcoherence

is frequently present in a variety of situations, there are also cases in which it has no

implications on the accuracy of the dynamics simulation. This aspect will be illustrated

on the example of a typical pump-probe setup as depicted in Fig. 4.5a): Pump excitation

brings part of the population from state 0 to state 1, where subsequent dynamics occurs.

Then, after a certain time delay, the state 1 wavepacket is projected to the �nal detection

state 2 by a probe pulse. The electronic state populations and coherences obtained by a

full quantum dynamics simulation of this process are depicted in Fig. 4.5b) and d). The

pump pulse employed in this simulation transfers about half of the population from state

0 to state 1, inducing a large coherence between the two states. However, as the two

wavepackets subsequently move to di�erent spatial regions, the coherence between the

states 0 and 1 starts to decay, eventually reaching zero just before the probe pulse sets

in. The latter transfers the state 1 population completely to the detection state 2. In

Fig. 4.5c) and e), these results are confronted with a FISH simulation for the same system.

Clearly, here the coherence ρ01 does not decay and remains constant after the pump pulse.

However, inspection of Fig. 4.5c) shows that this does not a�ect the population dynamics

between the states 1 and 2 induced by the probe pulse. The reason is that the population

transfer between states 1 and 2 is entirely determined by the coherence ρ12, which is

correctly reproduced by the FISH dynamics. The erroneous coherence ρ01 plays no role in

the coupling between the states 1 and 2 and therefore does not in�uence the population
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Figure 4.5: Overcoherence within FISH in a simulation of pump-probe excitation using 5
fs pump and dump pulses at t1 = 20 fs/t2 = 175.5 fs. a) Potential functions of the 3-state
system and quantum wavepackets at selected times (values in fs). b)/c) Time-dependent
populations obtained by full quantum dynamics simulations and FISH. d)/e) Modulus of
relevant coherence terms as a function of time. The coherences in the FISH simulation are
obtained by averaging ρij = c∗i cj over the entire ensemble. The FISH populations agree
well with those obtained from full quantum dynamics since the wrong coherence term ρ01
does not in�uence the 1 → 2 excitation.

transfer between these two states. This evidences that for cases in which, in a sequential

excitation scheme, the second pulse invokes the coupling between a pair of states which did

not contribute to the dynamics before, the results of FISH dynamics agree well with full

quantum dynamics regardless of the presence of an incorrect coherence term associated

with another pair of states.

In summary, the following conclusions can be drawn: Overcoherence represents an

issue that occurs in all variants of surface hopping techniques, and therefore has also been

inherited by the FISH method. It is present if parts of the ensemble assigned to di�erent

electronic states move apart in space after the coupling has ceased. This e�ect is most

pronounced if the magnitude of the coherence is large, which occurs when about half of

the electronic state population is transferred in the excitation process. By contrast, if the

population transfer is either very small or almost complete, the e�ect of overcoherence is

much less signi�cant. For cases in which the wavepackets move apart without again over-

lapping in space, the overcoherence problem may be removed by applying a decoherence

correction which mimicks the quantum mechanical coherence decay. Only if besides the

magnitude also the phase of the coherence matters, corrections are less straightforward,
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and methodological progress suitable for �eld-driven simulations is necessary in order to

correctly describe the dynamics. Apart from that, in several other cases the overcoherence

may be present, but does not lead to errors in the coupled electron nuclear dynamics. This

arises in situations in which, after the creation of a large coherence, couplings at later

times do not a�ect the initial pair of states between which the coherence is wrong, but

other states to which no coupling has occurred before. Most notably, this applies for

the population transfer invoked during pump-probe spectroscopic techniques, which can

therefore be accurately simulated in the framework of FISH dynamics.

4.3 Field-induced excitation and distribution of vibronic energy

Besides the issue of decoherence, another aspect crucial for the validation of FISH is

the nature of the light-induced excitation process. Quantum mechanically, the excitation

between a pair of electronic states takes place between the two manifolds of vibrational

quantum states associated with each of the involved electronic potential energy surfaces.

The excitation e�ciency between pairs of such states is determined (i) by the matrix

elements 〈1, v′|µ01|0, v〉 involving both the electronic transition dipole matrix element

µ01 and the overlap of the vibronic states |0, v〉 and |1, v′〉, and (ii) by the resonance of

the �eld frequency with respect to the energy di�erence between the two vibronic states.

However, within the mixed quantum-classical framework of FISH, there are no vibrational

quantum states present, and for each trajectory the excitation e�ciency depends (i) on

the speci�c value of µ01 at the given nuclear geometry, as well as (ii) on the resonance

of the �eld frequency with respect to the vertical electronic excitation energy for this

geometry. Since these two sets of conditions are signi�cantly di�erent, the question can

be raised to which extent the electronic excitation as simulated in the framework of the

FISH method is comparable to the exact quantum mechanical excitation process. The

present subsection therefore serves to provide a comparison between quantum dynamical

and FISH excitations in terms of the distribution of vibrational energy, thereby allowing

for a validation of the accuracy of the electronic excitation within the FISH method.

For this purpose, model calculations have been performed employing one-dimensional

potentials of di�erent curvature, as well as laser �elds of di�erent time duration. The

composition of the quantum mechanical wavepackets has then been analysed in terms of

vibrational eigenfunctions and was compared to an approximate assignment of vibrational

�states� in the FISH simulations. To this end, the total energies Etraj of each trajectory

have been used to calculate an approximate integer vibrational quantum number according

to v =
Etraj

~ωi
− 1

2
, where ωi is the vibrational frequency associated with the electronic

potential Vi. The corresponding vibrational state populations have been obtained by

averaging over the ensemble.
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Figure 4.6: Vibrational state population in the upper state after excitation by a resonant
5 fs laser pulse (indicated as turquoise arrow) which leads to 50 % population transfer.
Upper panel: Excitation to the shallow potential V1. Lower panel: Excitation to the
steep potential V2.The quantum populations have been obtained by projecting the current
upper state wavepacket on the vibrational eigenstates. The FISH populations correspond
to the de�nition of approximate vibrational quantum numbers as v =

Etraj

~ωi
− 1

2
, rounded

to the nearest integer, with Etraj as the total energy of the trajectory and ωi as the
vibrational frequency associated with the potential Vi.

The chosen model systems consist of a pair of harmonic potentials where the excited

state either has a more shallow curvature than the ground state (potentials V0 versus V1)

or a steeper one (potentials V0 versus V2). The particle moving in these potentials has

a mass corresponding to the reduced mass of the sodium dimer, exhibiting a vibrational

period of 159 fs in the potential V0.

First, the excitation using a short laser pulse of 5 fs duration was investigated. In this

way, the excitation process could be studied without signi�cant in�uence of the nuclear

dynamics since on the time scale of excitation the nuclei are almost stationary. Using

a �eld intensity which overall transfers about 50 % of the population from the ground

to the excited electronic state leads to the time-dependent vibrational state populations

shown in Fig. 4.6. Clearly, for excitation to the shallow potential V1, there are relatively

few vibrational states (up to v = 4) populated in the excitation process. The approxi-

mate vibrational state populations de�ned for the FISH simulations are to a major extent

similar to those obtained quantum mechanically. Excitation to the steeper potential V2
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Figure 4.7: Vibrational state population in the upper state after excitation by a resonant
50 fs laser pulse (indicated as turquoise arrow). Upper panel: Excitation to the shallow
potential V1. Lower panel: Excitation to the steep potential V2.

causes the population of a larger number of vibrational states up to v = 9. Neverthe-

less, the agreement between quantum and FISH simulations is still reasonably good. In

both cases, accordingly also the total electronic state populations agree well, as shown in

Appendix A.3. Therefore, it can be concluded that despite the di�erent nature of the ex-

citation process in the full quantum mechanical and in the mixed quantum-classical FISH

cases, the FISH method allows for a qualitatively correct simulation of the excitation,

and the distribution of vibrational energy in the classical ensemble of trajectories largely

resembles that of the quantum mechanical wavepacket.

Taking into account that the use of 5 fs pulses implies that during the excitation process

the nuclei are almost stationary, in order to study the interplay of electronic excitation and

nuclear motion also longer laser pulses of 50 fs duration have been employed for both pairs

of potentials V0/V1 and V0/V2. The vibrational state populations obtained due to these

pulses are depicted in Fig. 4.7. The population dynamics is now characterized by coherent

Rabi oscillations, which occur on a similar time scale as the nuclear motion. Whereas for

the shallow potential V1 again a good agreement between the quantum and FISH results

is observed, for the case of V2 the FISH simulation is accurate only for the initial part of

the dynamics up to 60 fs, while for later times large deviations occur. Subsequently, these

also e�ect the total electronic state populations, which start to diverge for times after 80
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fs, as shown in Appendix A.3. In contrast, no such deviations are found for the dynamics

involving the shallow potential V1 (cf. also Appendix A.3). Thus, an initially incorrect

distribution of vibrational energies upon electronic excitation can lead eventually also to

wrong electronic population dynamics in the FISH simulation.

From these model studies, it can be concluded that the FISH method qualitatively

correctly describes the excitation process both for very short laser pulses in general, as

well as for longer pulses provided that the excited state potential is not very steep and

only a small number of vibrational states is involved in the excitation. However, for very

steep excited state potentials and longer laser pulses, such as the case shown in Fig. 4.7

for V2, the concurrence of excitation to a large number of vibrational states and of the

duration of the excitation process on a time scale of substantial nuclear motion poses a

challenge for the correct distribution of vibrational energies upon electronic excitation in

the framework of FISH. Nevertheless, this represents an extreme case, since in multidi-

mensional systems, the gradient di�erences between pairs of potential energy surfaces are

often not so pronounced. Moreover, in the presence of a large number of vibrational modes

which are coupled due to anharmonic e�ects, which is a typical situation for polyatomic

molecules, the coherent population oscillations observed for the one-dimensional case in

Fig. 4.7 are usually washed out to a major extent. This leads to much more incoherent

dynamics which is expected to be less sensitive to the detailed agreement of quantum

mechanical and classical vibrational energy distributions. Therefore, in such cases the

electronic excitation in the frame of FISH can be still considered reasonably accurate to

allow for a realistic picture of the photoexcitation in complex molecular systems.

4.4 Conclusions

Several formal aspects and possible drawbacks inherent to surface hopping approaches

have been studied in the context of FISH simulations and have been validated against

numerically exact quantum dynamics simulations. For this purpose, selected model cases

have been investigated with a speci�c focus on the accuracy of the laser-induced popula-

tion dynamics. Speci�cally, the internal consistency problem was revisited, and excellent

agreement between the fractional electronic state occupations and the averaged quantum

populations was found in the absence of forbidden surface hops. It has been pointed out

that the e�ect of forbidden hops, which are the main reason for poor internal consistency

in surface hopping, is of minor signi�cance during time periods in which the coupling

of electronic states is mainly caused by the laser �eld, since then no conservation of the

molecular energy is required and hence no additional forbidden hops occur.

Besides the internal consistency, another major issue in surface hopping is the lack

of quantum decoherence due to the independent-trajectory description of the nuclear dy-
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namics. It has been shown on the example of pump-dump and pump-probe excitations

that this may lead to incorrect population dynamics in FISH if initially a large coherence

between electronic states is generated. This occurs in a most pronounced way if about

half of the electronic population is transferred from one state to another. For cases in

which the exact quantum mechanical coherence completely vanishes, but the FISH coun-

terpart stays constant, it could be shown that introducing an empirical coherence decay

correction can provide a remedy to the overcoherence problem. However, the presently

available approaches are best suited to low-dimensional model systems, and it is still an

open question how to devise an e�cient and accurate correction procedure applicable to

complex systems. Even more methodological progress is desirable for such cases in which

not the magnitude but the phase of the coherence is decisive, since only few approaches

for �xing this problem in the context of �eld-free dynamics are available at present. How-

ever, in the present work an important class of excitation schemes could be identi�ed

in which the incorrect description of decoherence does not lead to wrong population dy-

namics. This occurs in pump-probe excitations, in which the probe step a�ects a pair of

electronic states which beforehand has not yet been coupled by the pump step and for

which therefore no incorrect coherence term can be present.

Finally, the electronic excitation process itself was studied, aiming to investigate the

implications of the classical treatment of the nuclei in FISH on the correct distribution

of vibrational energies in those portions of the trajectory ensemble that change their

electronic state due to photoexcitation. To this end, electronic potentials with di�erent

steepness and laser pulses of di�erent durations compared to the time scale of the nuclear

motion were considered. For most cases, very good agreement between FISH and quantum

dynamics was found, except for situations in which the di�erence in steepness is very large

and the pulse duration is long enough to be accompanied by signi�cant nuclear motion.

However, it can be assumed that these e�ects found in one-dimensional systems will be

less pronounced in polyatomic molecules, in which many nuclear degrees of freedom are

coupled and the quantum mechanical vibrational dynamics is much less coherent.

Overall, the FISH method reveals its capability to well reproduce the quantum dy-

namics also for cases which are assumed to be problematic from a theoretical standpoint.

A number of situations in which lower accuracy has to be envisaged can be identi�ed, and

for several of them correctives can be proposed.
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5 Ultrafast spectroscopy

The idea to follow the course of dynamical processes in molecules in real time has been a

long-standing goal scientists strove for. In the last decades, the progress of laser technology

to enable the creation of extremely short light pulses with durations on the femtosecond

and even attosecond time scales, has made this goal to a great extent become reality,

thereby opening fascinating insights into fundamental molecular phenomena. Although

the speci�c experimental setups for realizing such investigations may di�er in details,

almost all of them as a common basis share the pump-probe technique, which relies on

the action of two time-delayed ultrashort laser pulses. The �rst of these (pump pulse)

serves to excite the system to a nonequilibrium con�guration, which may be an excited

electronic state, or an ionized state obtained by photodetachment. In the so prepared

nonequilibrium state, dynamical processes are initiated, which may involve changes both

in the nuclear and electronic degrees of freedom of the system. The course of these

processes is then interrupted after a precisely adjusted time delay by the second laser pulse

(probe) transferring the system to a �nal state used for detection. For this purpose, both

absorption or emission of radiation, as well as the formation of ions and photoelectrons can

be utilized. Most frequently, either �uorescence emission or photoelectrons are detected.

The �rst experimental realizations of femtosecond pump-probe measurements were

achieved by Zewail et al. who investigated excited state dissociation dynamics in small

di- and triatomic molecules [16, 241�244]. Using the laser-induced �uorescence intensity

as the detection signal, they were able to monitor the wavepacket motion initiated by the

pump pulse photoexcitation. This enabled the determination of time scales for molecular

processes and revealed information on transition state geometries as well as on the spe-

ci�c form of the molecular potential energy surfaces. In particular, on the example of the

NaI molecule, nonadiabatic predissociation dynamics at the avoided crossing of a bound

and a dissociative electronic state could be observed [242, 243]. Furthermore, it could be

also demonstrated that for simple diatomic systems such as iodine (I2) even the complete

reconstruction of the potential energy curve based on time-resolved spectroscopic data

was possible [245]. Since then, numerous applications of time-resolved femtosecond spec-

troscopy have been presented, investigating a multitude of processes such as dissociation,

isomerization, electron or proton transfer, as well as vibrational and electronic relaxation

processes (for a comprehensive overview, cf. the review articles [19,246]). Besides �uores-

cence or transient absorption detection, photoionization represents a particularly attrac-

tive choice as a probe step. This is due to a number of advantages, such as the absence

of forbidden transitions, and to the much richer information content inherent to both the

spectral and angular distribution of photoelectrons as well as to the molecular ions pro-

duced after photoionization. In particular, the energy- and angle-resolved photoelectron

79



Chapter 5. Ultrafast spectroscopy

distribution provides valuable information on the nature of the ionizing electronic state.

Therefore, nonadiabatic relaxation processes, which are re�ected in temporal changes of

the electronic state character, can be directly observed. This makes time-resolved pho-

toelectron spectroscopy (TRPES) and its angle-resolved variant a highly valuable tool

for the investigation of coupled electron-nuclear dynamics in molecular systems. Con-

sequently, the central focus of this part of the thesis lies on the simulation of TRPES

signals, which will be discussed at full length in the following Chapter 6.

Before, some general remarks on the connection of time-resolved spectroscopic data

with the underlying molecular processes are appropriate. Basic kinetic information about

the studied systems can be already gained by phenomenological modeling using rate equa-

tion approaches, e.g. based on the optical Bloch equations for quantum multilevel systems.

Assuming the presence of several distinct processes and their respective branching ratios,

the temporal behaviour of measured femtosecond spectroscopic signals can be decomposed

into individual components characterized by rate constants [19]. In this way, �rst estima-

tions on the time scales inherent to the investigated system can be obtained. Moreover,

as mentioned above, for diatomic systems the information contained in the spectroscopic

data even allows for the reconstruction of the molecular potential energy curves. However,

this is no longer possible for more complex systems, as in these cases the interplay of a

large number of degrees of freedom makes the spectroscopic signals much more intricate.

Therefore, in order to get a molecular-level picture of the various entangled dynamical

processes occurring, quantum simulations accounting for the detailed electronic and ge-

ometrical structure of the system are mandatory. Most straightforwardly, full quantum

dynamics simulations of the coupled electron-nuclear dynamics under the in�uence of

the pump and probe laser �elds can be performed in order to obtain a real-time picture

of the wavepacket motion induced by the pump and probe lasers. Yet, as discussed in

Chapter 1.1, this approach is only applicable for small systems or dimensionally reduced

models for which global potential energy surfaces can be precalculated. Therefore, in

order to simulate the dynamics of larger molecules, accounting for all degrees of freedom

and avoiding the precalculation of high-dimensional potential energy surfaces, the use of

e�cient mixed quantum-classical simulation methods based on molecular dynamics �on

the �y� is of great advantage. In this context, the FISH method [55] presented in Chap-

ter 3 represents a particularly attractive approach, since it explicitly accounts for the laser

excitation and can be directly connected with quantum chemical methods for the descrip-

tion of the electronic structure. For this reason, in the following the prospects of the FISH

method for simulating various types of pump-probe signals will be brie�y outlined. The

extension of FISH to the simulation of time-resolved photoelectron (TRPE) spectra will

be elaborated in detail in Chapter 6.
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The idea of FISH to include the laser excitation process directly into nonadiabatic

dynamics simulations straightforwardly enables its use for simulating such types of pump-

probe (or pump-dump) spectroscopies which only involve dynamics in bound electronic

states of the studied system. In this way, e.g. transient absorption (TA) spectra, where

the probe step leads to the population of higher excited states, or time-resolved stimulated

emission (SE) spectra, where the radiative return back to the ground state is induced,

can in principle be simulated, as it will be sketched in the following. In a crude approach,

the pump excitation might be explicitly described in the framework of FISH employing

Eq. (3.26), whereas the probe step could be approximated by considering time-dependent

oscillator strengths from the current state to higher-lying ones or to the ground state,

respectively. Such oscillator strengths can be readily obtained from electronic transition

dipole moments calculated along the classical trajectories propagated in the framework

of FISH. More elaborately, also the probe pulse might be explicitly included in the FISH

dynamics, and the spectroscopic signal might be computed from the quantum populations

of the detection states induced by the probe pulse. In this way, the following expressions

for the TA and time-resolved SE spectra can be proposed:

STA(t, E) ∼ 1

Ntraj

Ntraj∑
k

∑
f

|ck,f (t)|2δ(E − [Ef − Ei]) (5.1)

SSE(t, E) ∼ 1

Ntraj

Ntraj∑
k

|ck,0(t)|2δ(E − [E0 − Ei]). (5.2)

Here, the indices i and f represent the initial and �nal states before and after the action of

the probe pulse. In this way, transient spectra along ensembles of trajectories propagated

in the framework of FISH can be simulated. However, in order to go beyond the bound

state excitations and to include the photoionization continuum, aiming at the simulation

of time-resolved photoelectron spectra, an extension of the FISH method is necessary.

Therefore, after a short general introduction to the methodology of TRPES, the main

part of Chapter 6 will be devoted to the extension of FISH for the simulation of TRPES.
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6 Time-resolved photoelectron spectroscopy (TRPES)

6.1 Introduction

The use of photoionization as a probe step has proved to be a powerful approach for

the interrogation of ultrafast processes. This has lead to the development of the TRPES

technique [56�58], which features a number of advantages compared to other pump-probe

procedures. Most importantly, photoionization, in contrast to e.g. excited state absorp-

tion, is always an allowed process, such that there are no dark quantum states in TRPES.

Therefore, the observation of dynamical processes is not restricted to a temporal win-

dow in which some bright states are involved, but instead the complete course of the

dynamics can be followed, only provided that the probe pulse is able to ionize the system.

Moreover, the detection of photoelectrons, being charged particles, can be performed very

sensitively. Not only can the spectrum of photoelectron kinetic energies be obtained, but

also the angle-resolved distribution of the photoelectrons can be measured [58,247], from

which important conclusions on the nature of the ionizing molecular states can be drawn.

Simultaneous detection of the produced molecular ions or their possible fragmentation

products can reveal further information. In general, in the framework of TRPES both

vibrational and electronic dynamics can be observed, and in some cases also a distinction

between these two processes may be possible. A schematic presentation of the principle

of TRPES is provided in Fig. 6.1.

In recent years, TRPES has been used to probe excited state dynamics in a vari-

ety of systems. In the following, some illustrative references will be provided, without

claiming to give a comprehensive survey. In small metal clusters, nonradiative electronic

relaxation [61, 62, 248�250] and photodesorption of ligands [251] have been investigated,

while in the case of organic molecules, both electronic relaxation and molecular vibra-

tions have been observed, leading to the possibility to distinguish the �ngerprints of both

processes in the spectrum [252]. Fundamental studies, which are also valuable for com-

parison with theoretical approaches, have been performed on the internal conversion in

pyrazine, involving both energy-resolved TRPES [253] as well as time-resolved photoelec-

tron anisotropy maps [254, 255]. Much experimental e�ort has also been devoted to the

nonradiative deactivation of biomolecules, with particular attention to nucleobases such

as adenine [256�258] (cf. also Chapter 10). Moreover, isomerization reactions in photo-

switchable molecules that are important for the design of functional materials have been

monitored using TRPES [259]. Recent developments involve the improvement of angular

detection and even of adopting the molecule's own perspective (molecular frame) in order

to circumvent the e�ect of rotational averaging present in a statistical sample [260, 261].

Furthermore, also the �rst steps towards TRPES experiments in the liquid phase are
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Figure 6.1: Schematic illustration of the TRPES method. Upper panel: A wavepacket
(light red) is transferred by the pump pulse (blue) from the ground state X to the excited
state A, in which dynamical processes set in, leading the wavepacket to a conical inter-
section between the X and A states and then back to the X state. During the wavepacket
evolution (indicated by black arrows), the dynamics is mapped by the probe pulse (or-
ange) onto the cation states X+ and A+. However, depending on the current energy gap
between neutral and ionic states, not all ionic states can be reached by the probe pulse (cf.
last orange arrow on the right). Lower panel: TRPES signal corresponding to the dynam-
ics shown above. The upper feature in the PKE distribution (starting at 1.6 energy units)
corresponds to ionization to the X+, the lower one to the A+ state. Depending on the
actual course of the dynamics, the photoelectron signal not only indicates the energetic
evolution of the system state but may also contain signatures of underlying nuclear vibra-
tions (not shown in the scheme). Moreover, in�uenced by the transition dipole moments
for ionization, transitions to a particular ionic state may be preferred or suppressed.
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presently taken [262].

Parallel to these experimental achievements, theoretical approaches for simulation of

TRPE spectra have been devised, based on coupled electron-nuclear dynamics simulations

using di�erent approximations. Initial theoretical studies have been performed by Seel

and Domcke more than 20 years ago, based on an expansion of the nuclear wavepackets

in terms of eigenstates and a discretization of the electronic continuum, with the tran-

sition dipole moments for ionization treated as constant [263]. Subsequently, a number

of studies have been reported in which numerical nonadiabatic wavepacket propagation

was performed, but the issue of describing the ionization continuum was circumvented

by employing perturbation theory expressions for the �eld-matter interaction [264�268].

Clearly, employing such approaches only allowed for the calculation of energy-resolved sig-

nals, neglecting completely the angular dependency. However, this latter issue has been

addressed by several studies based on wavepacket dynamics in which the photoelectron

has been described employing di�erent approximations for scattering states, and both

one- [269�271] as well as multidimensional systems have been investigated [272�275].

Notwithstanding these e�orts, the foundation of the above mentioned methods on

quantum nuclear dynamics restricts their use to small systems or reduced-dimensional

models. Approaches to calculate TRPES for complex molecules under inclusion of all

nuclear degrees of freedom necessarily have to employ more e�cient classical or semiclas-

sical methods for the nuclear motion. In the framework of the so-called ab initio multiple

spawning method (cf. Sec. 1.2), the semiclassical simulation of nonadiabatic dynamics

has been utilized to calculate TRPE spectra of several DNA bases [276, 277]. A more

intuitive and far more e�cient approach to nonadiabatic dynamics is represented by mul-

tistate surface-hopping molecular dynamics based on classical trajectories, as it has been

discussed in Chapter 1.2. Employing the Wigner distribution approach for representing

the initial ensemble, TRPE spectra have been simulated using nonadiabatic molecular

dynamics combined with a perturbation theory treatment of the probe process, both us-

ing the Condon approximation [62, 127, 132, 278] as well as approximating the transition

dipoles to the continuum in the framework of the Stieltjes imaging approach [229].

While in the above mentioned semiclassical studies only �eld-free nonadiabatic dy-

namics simulations have been performed, and thus the details of the pump step have been

neglected, the �eld-induced surface hopping method (FISH) [55] discussed in Chapter 3

o�ers the unique possibility to include the laser �elds directly into the excited state nona-

diabatic dynamics simulations. In this way, the e�ect of the pump pulse on the dynamics

is explicitly accounted for. In this chapter the augmentation of the FISH method by

an approximate description of the ionization continuum is presented, which allows for

the simulation of laser-driven photoionization processes using laser pulses with arbitrary

shapes and therefore can be employed both to simulate the spectroscopic observables as
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well as to control the photoionization process. This approach enables for the �rst time

the simulation of time-resolved spectroscopic signals in complex molecular systems with-

out the need to restrict the number of degrees of freedom and simultaneously explicitly

accounting for the shape of the driving laser �elds.

In the remainder of this chapter, the theoretical formulation of the FISH method

extended by the discretized continuum approximation for the description of the photoion-

ization and the simulation of TRPES signals will be presented. In addition, the in�uence

of the quantum mechanical nature of the vibrational motion on the appearance of the

spectra will be discussed. The results presented here have been published in Ref. [59]. In

the subsequent Chapter 7, the method will be illustrated on the simulation of TRPES for

the small noble metal clusters Ag3 and Au−7 .

6.2 Time-resolved photoelectron spectra within the FISH method

6.2.1 Discretized continuum approximation for photoionization

In the framework of the FISH method, the temporal evolution of the electronic quantum

state is described by individual electronic state occupations of each trajectory, which are

averaged over the classical ensemble. During the propagation of the trajectories, the

state occupations may change stochastically according to hopping probabilities, which

are calculated quantum mechanically using Eq. (3.29) or (3.32). For this purpose, an

electronic Schrödinger equation,

i~ċi(t) = Ei[R(t)]ci(t)−
∑
j

(
µij[R(t)] · E(t) + i~Ṙ · dij[R(t)]

)
cj(t), (6.1)

is assigned to each trajectory R(t) and is solved for the electronic state coe�cients ci,

taking into account the coupling of states by the laser �eld E(t) and by the nonadiabatic

couplings dij.

An extension of this method to the simulation of time-dependent ionization processes

requires, in addition to the bound electronic state dynamics, the inclusion of transitions

to the ionization continuum. Therefore, a description of the electronic continuum states

has to be introduced. Within the FISH method, this can be achieved by augmenting

the time-dependent Schrödinger equation (6.1) for the bound states by a set of equations

describing the ionization continuum, and allowing the system to switch from the bound

to the ionized states.

In order to derive these equations, as a starting point the electron-nuclear wavefunction

of a combined system with both bound and continuum states is considered, which can be

written as
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Ψ(r, R, t) =
neutr∑

i

χ
(N)
i (R, t)Ψ

(N)
i (r; R)+

ion∑
j

ˆ
dE χ

(N−1)
j (R, E, t)A

[
Ψ

(N−1)
j (r; R)φj(E)

]
,

(6.2)

where χ(N)
i (R, t) and χ

(N−1)
j (R, E, t) represent the nuclear wavepacket in the bound and

continuum states, respectively, Ψ(N)
i (r; R) and Ψ

(N−1)
j (r; R) are the electronic eigenfunc-

tions of the N -electron or (N − 1)-electron Hamiltonians, while φj(E) is a free electron

scattering state. The antisymmetrized product A
[
Ψ

(N−1)
j (r; R)φj(E)

]
represents the

continuum eigenfunctions of the Hamiltonian for the combined system of ion and free

electron, in which the electron-core interaction has been neglected. The summations ex-

tend over the complete sets of N -electron (�neutr�) and (N−1)-electron (�ion�) states. For

the ease of reading, the N -electron system will be referred to as �neutral� in the following,

while the (N − 1)-electron system will be denoted as �ionized�. However, the derivation is

generally applicable for any pair of species which di�er in their electron number by one,

such as e.g. also an anionic and a neutral species. The wavefunction ansatz in Eq. (6.2)

can be inserted into the full electron-nuclear time-dependent Schrödinger equation includ-

ing the coupling to the electric �eld, and a set of equations for the time evolution of the

continuum portion of the nuclear wavepacket of the ionized system χ
(N−1)
j (R, E, t) can

be derived following Ref. [279], giving rise to

i~χ̇(N−1)
j (R, E, t) =

(
−~²

2
∇R ·M−1∇R + E

(N−1)
j (R) + E

)
χ
(N−1)
j (R, E, t)

−
neutr∑

i

µij(R, E) ·E(t)χ(N)
i (R, t), (6.3)

where E
(N−1)
j (R) corresponds to the energy of the j′th excited state of the cation and

E is the kinetic energy of the released photoelectron. In order to connect Eq. (6.3) with

trajectory-based FISH simulations, a mixed quantum-classical approximation related to

Tully's original procedure will be employed. First, the nuclear wavepackets are separated

into amplitude and phase terms in the spirit of the Bohm-Madelung representation of

quantum mechanics (cf. Eq. (1.10), Refs. [78, 79])

χ
(N−1)
j (R, E, t) = A

(N−1)
j (R, E, t) exp

[
i

~
S
(N−1)
j (R, E, t)

]
(6.4)

χ
(N)
i (R, t) = A

(N)
i (R, t) exp

[
i

~
S
(N)
i (R, t)

]
. (6.5)
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Inserting these expressions into Eq. (6.3) and appropriately separating terms into two

equations yields [106]

Ṡ
(N−1)
j = −1

2

(
∇RS

(N−1)
j ·M−1∇RS

(N−1)
j

)
− E

(N−1)
j

+
~2

2

(∇R ·M−1∇R)A
(N−1)
j

A
(N−1)
j

(6.6)

i~Ȧ(N−1)
j = −i~

(
∇RA

(N−1)
j ·M−1∇RS

(N−1)
j +

1

2
A

(N−1)
j

(
∇R ·M−1∇R

)
S
(N−1)
j

)
−

neutr∑
i

µij ·E A
(N)
i exp

[
i

~

(
S
(N)
i − S

(N−1)
j

)]
. (6.7)

While the �rst of the above equations can be interpreted as a quantum mechanical analog

to the Hamilton-Jacobi equation for the nuclear motion in the electronic state j, the

second one describes the time evolution of the amplitude functions A(N−1)
j (R, E, t). The

latter change in time both due to the spatial variation of amplitude and phase in the same

electronic state, represented by the terms

∇RA
(N−1)
j ·M−1∇RS

(N−1)
j +

1

2
A

(N−1)
j

(
∇R ·M−1∇R

)
S
(N−1)
j , (6.8)

as well as due to the couplings with the bound electronic state amplitudes, given by

−
neutr∑

i

µij · E A
(N)
i exp

[
i

~

(
S
(N)
i − S

(N−1)
j

)]
(6.9)

Hence, the terms (6.9) are responsible for population transfer between di�erent electronic

states. Interpreting S
(N)
i and S

(N−1)
j as classical actions allows for the substitution1

S
(N)
i − S

(N−1)
j =

ˆ t

0

(
E

(N−1)
j + E − E

(N)
i

)
dt, (6.10)

with E
(N)
i as the electronic energy of the neutral state i. Thus, Eq. (6.7) becomes

i~Ȧ(N−1)
j = −i~

(
∇RA

(N−1)
j ·M−1∇RS

(N−1)
j +

1

2
A

(N−1)
j

(
∇R ·M−1∇R

)
S
(N−1)
j

)
−

neutr∑
i

µij ·E A
(N)
i exp

[
i

~

ˆ t

0

(
E

(N−1)
j + E − E

(N)
i

)
dt

]
. (6.11)

1This substitution uses the de�nition of the action integral as S =
´
(T − V )dt with T as the kinetic

and V as the potential energy. In the present case, the latter is replaced by the electronic energies E(N)
i

or E(N−1)
j + E, respectively.
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Comparison of Eq. (6.11) with the time evolution equation for the electronic state coe�-

cients a(N−1)
j (E, t) of a multilevel system in the interaction picture,

i~ȧ(N−1)
j = −

neutr∑
i

µij ·E a
(N)
i exp

[
i

~

ˆ t

0

(
E

(N−1)
j + E − E

(N)
i

)
dt

]
, (6.12)

reveals that in both equations the terms describing the population transfer between dif-

ferent electronic states are completely analogous. Thus, it is possible to relate the am-

plitude functions A
(N−1)
j (R, E, t) of the wavepacket to the coe�cients a

(N−1)
j (E, t) and

to use Eq. (6.12) for describing the change in the electronic state populations. In or-

der to be consistent with the formulation of the FISH method worked out in Sec. 3,

Eq. (6.12) is transformed to the Schrödinger picture by employing the de�nition aj =

cj exp
(´ t

0
i
~(Ej + E)dt

)
, which leads to

i~ċ(N−1)
j (E, t) = (E

(N−1)
j [R(t)] + E)c

(N−1)
j (E, t)−

neutr∑
i

µij[R(t), E] · E(t) c(N)
i (t). (6.13)

This equations describes the time evolution of the quantum amplitudes c(N−1)
j (E, t) of a

continuum state A
[
Ψ

(N−1)
j (r; R)φj(E)

]
with the energy E(N−1)

j +E. To obtain a �nite set

of working equations, the photoelectron kinetic energy can be discretized in the relevant

range, thus replacing the ionization continuum by a set of densely spaced discrete states.

From this result, an approximate description of photoionization in the framework

of the FISH method can be devised by augmenting Eq. (6.1) for the bound electronic

state dynamics with Eq. (6.13). The system of these two sets of equations provides

a basis for the simulation of laser-driven photoionization processes and can be used to

calculate the TRPE spectra. The intensity of the TRPES signal at a particular value of

the photoelectron kinetic energy E is then obtained from the continuum state populations

after the end of the ionization pulse by averaging over the whole ensemble of individually

propagated trajectories according to:

S(td, E) =
1

Ntraj

Ntraj∑
k

ion∑
j

|c(N−1)
k,j (E, t → ∞)|2. (6.14)

Altogether, the simulation of TRPES signals in the framework of the FISH method pro-

ceeds in the following steps:

(i) Initial conditions for the nuclear trajectories are determined

(ii) FISH dynamics simulations are performed in a manifold of bound electronic states un-

der the explicit in�uence of the pump laser pulse according to Eq. (6.1) and e.g. (3.12)
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(iii) Along the obtained FISH trajectories, the probe step is simulated for each cho-

sen pump-probe time delay by performing numerical integration of the Schrödinger

equation (6.13) in the manifold of the current bound state and the set of discretized

continuum states over the duration of the probe pulse

(iv) The spectroscopic signal at a given time delay is obtained according to Eq. (6.14)

from the asymptotic populations of the continuum states after the action of the probe

pulse, averaged over the ensemble of trajectories.

In this way, time-resolved photoelectron spectra generated by moderately intense pump

and probe pulses with arbitrary shapes can be simulated. For the �rst time, this allows

for the simulation of spectroscopic observables in complex molecular systems accounting

for all nuclear degrees of freedom and simultaneously going beyond the weak-�eld limit by

explicitly accounting for the pulse shapes. Therefore, in addition to the mere simulation

of spectroscopic signals, also the combination with optimal control in order to steer the

photoionization process or to shape the outgoing electronic wavepackets is straightforward.

The approach developed here represents thus a general framework for simulating time-

dependent photoionization dynamics based on classical trajectories. Depending on the

degree of sophistication used for the description of the ionization continuum, di�erent

levels of approximation can be considered. In particular, if the transition dipole moments

between the bound and continuum states, the calculation of which is computationally

challenging, are not available, simpli�ed treatments such as the Condon approximation

of constant transition dipole moments can be employed. It should be noted that such a

procedure for calculating TRPES becomes, for laser pulses of Gaussian form and in the

weak-�eld perturbation theory limit, also equivalent to the analytical formulation used

e.g. in Ref. [62,132].

However, due to the classical description of the nuclear motion, the in�uence of vibra-

tional quantum states on the ionization transition and thus on the form of the TRPES

signal is not accounted for in this approach. This implies the assumption that the vi-

brational energy of the wavepacket does not change upon ionization. Although being a

reasonable approximation for many systems in which the electronic excitation is domi-

nated by the transitions between the vibrational ground states of both involved electronic

states, this condition may not be ful�lled in certain cases, and therefore it is of signi�cance

to investigate how the inclusion of vibrational quantum states may change the appearance

of a TRPES signal. Therefore, this aspect will be qualitatively discussed in the following

subsection.
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6.2.2 Role of vibrational quantum states

In a mixed quantum-classical approach such as FISH, in which the quantum mechanical

description only pertains to the electronic degrees of freedom, while the nuclei are treated

classically, the e�ciency of an electronic transition depends on (i) the resonance between

the frequencies of the excitation �eld and the vertical electronic transition and (ii) the

coupling strength determined by the value of the electronic transition dipole moment at

the current nuclear geometry. By contrast, if the nuclear motion is treated quantum me-

chanically, the excitation process proceeds between two manifolds of vibrational quantum

states associated to the lower and upper electronic states, respectively. The excitation

e�ciency is then determined by the resonance between the �eld and each pair of vibronic

(combined electronic-vibrational) states in the lower and upper electronic potential energy

surfaces, and by the vibronic transition dipole moment between these states.

In the following, the aim is to obtain a semiclassical formulation accounting approxi-

mately for the quantum mechanical nature of the nuclear motion. For this purpose, the

full quantum mechanical Eq. (6.3) is projected onto the vibrational eigenstates |vj〉 of the
j′th cationic electronic state, leading to

i~ċ(N−1)
vj

(E, t) =
(
E

(N−1)
j,0 + E(N−1)

vj
+ E

)
c(N−1)
vj

(E, t)

−
neutr∑

i

〈
vj
∣∣µij(R, E)

∣∣χ(N)(R, t)
〉
R
· E(t), (6.15)

with the vibrational expansion coe�cients c(N−1)
vj , the minimum value E(N−1)

j,0 of the elec-

tronic energy surface of the cationic state j and the energy E
(N−1)
vj of the corresponding

vibrational state. Expanding the neutral state wavepacket χ(N)
i (R, t) as

χ
(N)
i (R, t) = c

(N)
i (t) e−ηR(R−R(t))² (6.16)

and considering the limit ηR → ∞ leads to a δ-function representation of the wavepacket,

χ
(N)
i (R, t) ≈ c

(N)
i (t)δ(R−R(t)). (6.17)

This gives rise to a semiclassical approximation of the dipole integral in Eq. (6.15) as

〈
vj
∣∣µij(R, E)

∣∣χ(N)(R, t)
〉
R
≈ ϕ∗

vj
[R(t)]µij[R(t), E]χ

(N)
i [R(t)] = Fi,vj [R(t)]µij[R(t), E],

(6.18)

where ϕvj is the vibrational wavefunction of the state vj, Fi,vj represents a classical approx-

imation for the time-dependent Franck-Condon (FC) factor and µij is the transition dipole
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moment, all evaluated at the position of the nuclear trajectory R(t). Thus, Eq. (6.15)

becomes

i~ċ(N−1)
vj

(E, t) =
(
E

(N−1)
j,0 + E(N−1)

vj
+ E

)
c(N−1)
vj

(E, t) (6.19)

−
neutr∑

i

c
(N)
i (t)Fi,vj [R(t)]µij[R(t), E] · E(t).

This provides a semiclassical framework for studying the dependence of the TRPES signal

on vibrational FC factors.

In order to investigate qualitatively the in�uence of this approximate quantum treat-

ment of the vibrational degrees of freedom on the TRPES, in the following, low �eld

intensities are assumed, and �rst order perturbation theory is applied in a similar way as

devised in Refs. [280,281]. For laser pulses of Gaussian form,

E(t) = E0 exp

[
−(t− td)

2

2σ2
pr

]
cos

[
Epr

~
(t− td)

]
, (6.20)

this allows one to derive an analytic expression for the continuum state population. After

integrating over the duration of the probe pulse, the population of a speci�c cationic

vibrational state |vj〉 corresponding to the photoelectron kinetic energy E is given by

∣∣∣c(N−1)
vj

(E, t → ∞)
∣∣∣2 ∼

neutr∑
i

ˆ ∞

−∞
dτ
∣∣Fi,vj

∣∣2 ∣∣µij

∣∣2 e
− (τ−td)

2

σ2
pr

× exp

(
−
σ2
pr

~2
[
Epr −

(
E

(N−1)
j,0 + E(N−1)

vj
− E

(N)
i − E

(N)
i,vib

)
− E

]2)
,

(6.21)

where σpr is the temporal width of the probe pulse and Epr its energy, while E
(N)
i is

the electronic and E
(N)
i,vib the vibrational energy of the neutral wavepacket. Within a

classical description based on localized trajectories, the quantum energies E
(N)
i + E

(N)
i,vib

and E
(N−1)
j,0 +E

(N−1)
vj of the wavepackets, consisting of an electronic and a vibrational part,

can be approximated by the total energies of the classical system, E(N)
i [R(t)]+E

(N)
i,vib[R(t)]

and E
(N−1)
j [R(t)] +E

(N−1)
j,vib [R(t)], respectively. The FC factor then becomes a function of

the continuous vibrational energies of the neutral and the cation as Fij

(
E

(N)
i,vib, E

(N−1)
j,vib

)
.

Upon ionization, the vibrational energy can be partly transformed into the photoelectron

kinetic energy. The total population for a state of given photoelectron kinetic energy E

can thus be obtained by integration over the range of vibrational energies E(N−1)
j,vib .
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Therefore, in the classical approximation the photoelectron signal can be calculated

according to

S(td, E) ∼ 1

Ntr

Ntr∑ ion∑
j

neutr∑
i

ˆ ∞

0

dE
(N−1)
j,vib

ˆ ∞

−∞
dτ
∣∣∣Fij(E

(N−1)
j,vib )

∣∣∣2 ∣∣µij(R(τ), E)
∣∣2 e

− (τ−td)
2

σ2
pr

× exp

(
−
σ2
pr

~2
[
Epr −

(
E

(N−1)
j (R(τ)) + E

(N−1)
j,vib − E

(N)
i (R(τ))− E

(N)
i,vib

)
− E

]2)
.

(6.22)

Altogether, in this chapter, the extension of the FISH method for the simulation of

time-resolved photoelectron spectra has been presented. Based on the discretization of

the ionization continuum combined with a mixed quantum-classical approximation for

the coupled electron-nuclear dynamics for the ionization process, a set of equations has

been derived which serves to augment the original FISH equations in order to account for

the photoionization. This approach is applicable to complex molecular systems including

all degrees of freedom and using moderately intense laser �elds with arbitrary shapes.

Therefore, it represents a valuable and general framework for the simulation of time-

resolved photoelectron spectra as well as for the control of the photoionization process.

In addition, the e�ects of the quantum mechanical nature of the vibrational degrees

of freedom have been investigated using a semiclassical approximation. This allows for

an examination of how the appearance of TRPE spectra is in�uenced by the FC fac-

tors between vibrational quantum states. In the following chapter, this methodological

framework will be applied for the simulation of TRPES in small metal nanoclusters.
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7 TRPES study of the nonadiabatic relaxation

in small clusters

7.1 Introduction

The scope of the above presented method for the simulation of TRPES will be illustrated

by studies of the laser-induced nonadiabatic dynamics in small metal clusters. Such sys-

tems, while having only a limited number of nuclear degrees of freedom, already exhibit a

complex electronic structure which is re�ected in a high density of states as well as in the

presence of strong nonadiabatic relaxation e�ects connected with electronic state degen-

eracies at particular highly symmetric geometries. In general, the investigation of ultrafast

processes in metal clusters is of fundamental importance for establishing the relation be-

tween structure, size, optical properties, and the time scales of nonradiative processes

determining their photoemission. This is of particular signi�cance due to the strongly

nonscalable properties of small clusters, which make them promising building blocks for

novel optical and catalytic materials. Notably, the emissive properties of clusters are im-

portant in the context of their potential use as emitters in new photonic and biosensing

materials. Formally, small clusters result from a continued size reduction of bulk metals

to small molecular-like units. This leads to a change in their electronic structure from

band-like properties typical for the solid state to a discrete level structure found in molec-

ular systems, which also results in drastically di�erent optical properties. A prototype for

this type of nanocluster systems is the silver trimer, Ag3, which is characterized by a num-

ber of energetically well-isolated excited electronic states in the energy region below 3.5

eV [282,283]. The dynamics of neutral Ag3 has been so far studied experimentally in the

framework of the negative ion-to neutral-to positive ion (NeNePo) spectroscopy [284,285].

This technique involves the preparation of the system in its anionic state Ag−3 , which as-

sumes a linear equilibrium geometry. Photodetachment by a pump laser pulse creates the

neutral cluster in its electronic ground state, for which the linear structure represents a

non-equilibrium state, thus inducing geometrical relaxation towards the triangular struc-

ture. This is monitored by photoionization with a time-delayed probe pulse, yielding an

ion (or photoelectron) signal as a function of the delay time between pump and probe

pulses, which contains information about the nature and time scales of the involved pro-

cesses. In contrast to TRPES, which will be considered here, the NeNePo signal is not

energy-resolved and therefore equivalent to a TRPES signal integrated over all photoelec-

tron energies, thus containing a lower amount of information. However, a detailed analysis

of the dynamical processes investigated by either time-resolved spectroscopic technique

requires to be complemented by theoretical simulations which allow for a direct connec-

tion between the spectroscopic signals and the underlying molecular dynamics. This was
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accomplished for the case of NeNePo spectroscopy by semiclassical simulations of the dy-

namics of Ag3 in the ground electronic state, monitoring the structural evolution from

the linear to the triangular geometry [281]. In this way, the time scales of the geometrical

relaxation could be identi�ed, as well as the fundamental features of internal vibrational

energy redistribution and its nature such as resonant and dissipative. In contrast to the

ground state dynamics of Ag3, which involves only adiabatic geometric relaxation, the

excited state dynamics is expected to exhibit also strong nonadiabatic e�ects which can

open new photochemical reaction channels not available in the ground state. Therefore,

in the �rst part of the following results section 7.3, the FISH simulation of TRPES of Ag3
is presented with the aim to establish the connection between the spectroscopic signal

and the underlying dynamical processes.

In contrast to neutral clusters, for negatively charged species a number of experimental

TRPES studies has been performed. Similar to Ag3, for anionic silver clusters containing

up to 20 atoms, relatively short relaxation times ranging from less than 100 fs for Ag−3
to about 4 ps for Ag−7 have been observed [286], which are also attributed to structural

deformations leading to energy level crossings and thus to more rapid internal conversion.

Such behaviour has been also found for certain anionic gold clusters (Au−7 and Au−8 ) in

which molecular-like internal conversion to the ground state caused by strong changes of

the geometrical structure occurs within 1-2 ps after excitation of the lowest-lying electronic

transition, followed by strong structural �uctuations in the hot ground state [62]. Other

gold clusters, however, are characterized by long-lived excited states (Au−3 , Au
−
5 and

Au−6 ) [62,287]. This illustrates impressively the strongly size-dependent properties of small

metal clusters, resulting in order-of-magnitude changes of the electronic lifetimes just upon

adding or removing a single atom. Relatively long excited state lifetimes are also found for

other clusters composed of closed d-shell atoms, such as mercury [249,250]. This is usually

attributed to the presence of discrete excited electronic states which are well-separated

from neighbouring ones. In stark contrast to that, for open d-shell transition metal

(e.g. Ni, Pd, Pt) clusters exhibiting a high electronic state density, ultrafast electronic

relaxation accompanied by changes in the character of the electronic state occurs on time

scales below 100 fs following the excitation, closely resembling the behaviour of bulk

metals [248,288,289].

Interestingly, such fundamentally di�erent relaxation regimes can also occur within

the very same system depending on the excitation conditions. In particular, in the second

part of Sec. 7.3 it will be shown that Au−7 , when excited into a higher-energy region

characterized by a high density of states, exhibits a relatively fast internal conversion

to lower-lying excited states without large-amplitude nuclear motion, similar to the bulk

behaviour. As discussed above, for lower energy excitation, the relaxation is molecular-like

in contrast.
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In this chapter, simulated TRPES for the small noble-metal clusters Ag3 and Au−7 will

be presented. This choice of systems serves to emphasize the conceptual scope of TRPES

simulations within the FISH method: On the one hand, it allows for the prediction of

TRPES prior to experimental realization, thus providing stimulation for new experiments.

This aspect will be illustrated on the example of Ag3. On the other hand, it provides

a versatile means for analysing experimentally obtained spectra and for establishing the

connection between measured signals and dynamical processes at the molecular level,

which will be outlined on the example of Au−7 .

The remainder of this chapter is structured as follows: First, the computational pro-

cedures will be presented in Sec. 7.2. Subsequently, in Sec. 7.3 �rst the results obtained

for neutral Ag3 will be discussed and the approximations made as well as their in�uence

on the appearance of the TRPES signal will be critically examined. These results have

been published in Refs. [59,60]. Thereafter, the TRPES of Au−7 obtained by an excitation

energy of 3.12 eV will be presented and compared to experimental measurements. The

results of this subsection have been published in Ref. [61]. Finally, conclusions are given

in Sec. 7.4.

7.2 Computational Procedures

The �eld-induced nonadiabatic dynamics of Ag3 in the framework of the FISH method

has been performed using the spin-unrestricted linear response TDDFT. For this purpose,

the PBE exchange-correlation functional [200] combined with the triple zeta valence plus

polarization atomic basis set (TZVP) [290] and the relativistic 19 electron e�ective core

potential (RECP) of the Stuttgart group [291] have been employed. The initial coordi-

nates and momenta R0 and P0 have been sampled i) from a long ground state trajectory

of the neutral species at 300 K for the triangular start geometry and ii) from a ground

state trajectory of the anionic species at 300 K for the linear start geometry. A total

number of 48 trajectories has been used for the further simulations. The FISH dynamics

with direct inclusion of the pump laser pulse has been carried out in the ground state

and i) six excited states for the triangular geometry and ii) 8 excited states for the linear

geometry. For the nuclear motion, the Newtonian equations have been integrated using

the velocity-Verlet algorithm (cf. Eq. (2.7)) with a timestep of 1.0 fs, while the elec-

tronic equations of motion (Eq. (6.1) and (6.13)) have been integrated with a time step

of 10−4 fs. The nonadiabatic couplings and transition dipole moments along the trajec-

tories, needed for the FISH simulations, have been calculated in the frame of TDDFT

using the approach presented in Refs. [59, 127, 132]. In each dynamics step, the hopping

probabilities were calculated and the decision if a switch between states occurs was made

in a stochastic process. For times after 90 fs, when the duration of the pump pulse was
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over, the nuclear velocities were uniformly rescaled after hopping events in order to ensure

energy conservation.

The photoionization due to the probe pulse has been simulated using the FISH pro-

cedure augmented by the discretized continuum approximation presented in Sec. 6.2. For

this purpose, the electronic continuum corresponding to the cationic ground state was

approximated by 110 discrete energy levels above the ionization limit with an equal spac-

ing of 0.027 eV. The transition dipole moments for the ionization from the bound neutral

electronic state in which the trajectory is propagated to the ionized states (µij[R(t), E]

in Eq. (6.13)) have been all set to a constant value. The ionized population has been

calculated along each trajectory for each given time delay td of the probe pulse by nu-

merically propagating the time-dependent Schrödinger equation (6.13) in the manifold

of the current neutral excited electronic state and the states above the ionization limit

under the in�uence of the probe pulse. The propagation of Eq. (6.13) was performed over

the �nite width of a Gaussian probe pulse in the time interval -3σ... +3σ, where σ is

connected to the full width at half maximum ∆t of the pulse by σ = ∆t (2ln2)−1/2. The

�nal populations of the ionized states were obtained for the time after the probe pulse was

over and were subsequently employed to calculate the TRPES signal using Eq. (6.14). For

studying the in�uence of vibrational FC factors, the TRPES was also calculated according

to Eq. (6.22). For this purpose, a model FC factor distribution of Gaussian form around

the initial vibrational energy E
(N)
i,vib of the neutral wavepacket was assumed as

Fij

(
E

(N)
i,vib, E

(N−1)
j,vib

)
= exp

[
− 1

2σ2

(
E

(N)
i,vib − E

(N−1)
j,vib

)2]
. (7.1)

This allows for explicit integration of Eq. (6.22) over E
(N−1)
j,vib , thus the in�uence of the

FC factors can be studied based on analytic expressions. In the present case, width

parameters of σ = 0.5 eV and σ = 1.5 eV have been employed.

For the simulation of �eld-induced dynamics and TRPES in Au−7 , the approach em-

ployed was essentially the same as for Ag3. However, the initial conditions were obtained

from a harmonic Wigner distribution at 50 K, and in total 70 trajectories were propagated

for the isomer 1, and 18 for isomer 2 (cf. Sec. 7.3.2). Due to the higher pump energy of

3.12 eV as compared to Ag3, a number of 50 bound electronic states had to be included.

The ionization continuum was discretized using 120 energy levels spaced by 0.027 eV.
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7.3 Results and discussion

In the following the simulated TRPES of Ag3 and Au−7 , based on the combination of FISH

dynamics with TDDFT as devised in Sec. 6.2, are presented. These investigations serve

to demonstrate the capability of FISH to simulate ultrafast spectroscopic observables of

small metallic particles, which are characterized by a complex manifold of excited states

and strong nonadiabatic couplings for particular geometries of the systems. The simula-

tions include the pump laser pulse explicitly in the bound-state coupled electron-nuclear

dynamics, while the probe pulse only serves to ionize the system without propagation of

trajectories in the ionized state. The speci�c choice of systems emphasizes the two appli-

cational aspects of TRPES simulations using FISH: Either the time-resolved observables

can be predicted, and conditions for later experimental realization can be determined,

as shown on the example of Ag3, or existing experimental �ndings can be analysed and

interpreted with the aid of theoretical simulations, as outlined for the case of Au−7 .

7.3.1 Excited state dynamics and TRPES of Ag3

The investigation of the photodynamics and TRPES in Ag3 serves the purpose to obtain

for the �rst time an insight into the ultrafast photophysical processes in the excited

states of this system, thus extending the available results concerning only ground state

dynamics. As a starting point for the dynamics simulations presented in the following,

two di�erent sets of initial conditions have been employed: (i) The triangular equilibrium

geometry of the Ag3 cluster in the ground 2B2 state; (ii) The linear geometry of Ag3
in the ground electronic state, which has 2Σ+

u symmetry. The latter corresponds to the

equilibrium con�guration of the anionic species Ag−3 and constitutes a transition state for

the neutral Ag3 cluster. Accordingly, whereas the �rst simulation represents the excitation

of triangular Ag3 clusters prepared in the ground state of the neutral species, the second

simulation refers to a situation where the neutral, linear Ag3 clusters are produced by

ultrafast photodetachment from the anionic species, as conducted, e.g., in the framework

of NeNePo spectroscopy [281,284].

The electronic absorption spectra for both the triangular and linear geometries are shown

in Fig. 7.1a) and b), respectively. The excited states which are populated by the pump

pulse and hence are the starting points for the nonadiabatic relaxation (32B2 for the

triangular structure, 32Σ+
g for the linear one) are marked by arrows and the character of

the corresponding transitions is indicated by the dominant molecular orbital excitations.

In addition, the symmetry labels, transition energies and oscillator strengths for the eight

lowest-lying transitions are summarized in Table 7.1.
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Triangular Ag3 Linear Ag3
State Symmetry Te(eV) fe State Symmetry Te(eV) fe
|0〉 2B2 0.00 - |0〉 2Σ+

u 0.00 -
|1〉 22B2 0.40 0.003 |1〉 2Σ+

g 1.24 0.027
|2〉 2A2 2.22 0.000 |2〉 22Σ+

g 2.14 0.015
|3〉 4A1 2.40 0.001 |3〉 2Πg 2.24 0.001
|4〉 32B2 2.59 0.039 |4〉 2Πg 2.25 0.001
|5〉 2A1 2.85 0.003 |5〉 2∆g 2.52 0.000
|6〉 42B2 2.98 0.150 |6〉 2∆g 2.53 0.000
|7〉 4B2 3.20 0.000 |7〉 4Σ+

u 2.66 0.000
|8〉 22A1 3.35 0.099 |8〉 32Σ+

g 2.72 0.641

Table 7.1: Symmetry labels and oscillator strengths of the low-lying excited states of triangular

and linear Ag3 calculated using TDDFT (cf. Sec. 7.2).

Figure 7.1: Electronic absorption spectra of triangular (a) and linear Ag3 (b). Vertical bars
represent the electronic transitions, each being broadened by a Lorentzian distribution.
The dominant excitations corresponding to the transition to (a) the state |4〉 (32B2) and
to (b) the state |8〉 (32Σ+

g ) are shown.
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Figure 7.2: Section of the potential energy surfaces for the ground and 8 excited states of
Ag3 along the bending coordinate connecting the triangular with the linear geometry.

In the low energy regime, the spectrum of the triangular cluster is characterized by a

transition of moderate intensity at 2.59 eV, corresponding to the 32B2 state, as well as by

a stronger transition at 2.98 eV which corresponds to the 42B2 state. Up to 3.2 eV, several

states of other symmetries are present, which however do not bear signi�cant intensity

in the spectrum. For the linear structure, as shown in Fig. 7.1b, an intense transition at

2.72 eV occurs, corresponding to the 32Σ+
g state which is dominated by HOMO-LUMO

excitation as also shown in Fig. 7.1. Furthermore, two states of 2Σ+
g symmetry with only

weak intensity are present at 1.24 and 2.14 eV. The other excited states present up to

3 eV exhibit essentially no intensity in the spectrum. Since in the adiabatic picture the

character of the excited states can change during the dynamics, and the symmetry of the

system is not preserved either, in the following the symmetry labelling of the states will

be replaced by the general numeric notation |0〉-|8〉 for the electronic states included in

the simulation. Thus, the initially populated states are |4〉 (32B2) for the triangular and

|8〉 (32Σ+
g ) for the linear geometry.

For illustrative purposes, sections of the potential energy surfaces of the electronic

states |0〉-|8〉 along the bending coordinate connecting the triangular with the linear struc-
ture are shown in Fig. 7.2. It can be seen that the energetic locations of the excited states

are strongly structure dependent. The ground state, as already mentioned, has a min-

imum for an obtuse triangular structure. For the state |4〉, which is mainly populated

in the simulation starting in the triangular geometry, there is a minimum at a bending
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angle of about 80◦ corresponding to an opening of the triangle. Since at this geometry the

energies of the states |2〉, |3〉 and |4〉 are nearly degenerate, nonadiabatic transitions from

|4〉 to the lower states are expected to occur. The state |8〉, which is mainly populated

in the simulation starting at the linear geometry, has a shallow minimum at 150◦, where

also near-degeneracy with lower-lying states occurs.

In the following both the excited state population dynamics and the simulated TRPES

for the two sets of initial conditions corresponding to i) the triangular structure (the equi-

librium ground state electronic con�guration) and ii) the linear structure (the transition

state in the ground electronic con�guration) will be presented.

i) Initial conditions for triangular geometry: Pump excitation is achieved by a

Gaussian pulse with a width of ∆t = 50 fs and an energy which is resonant to the lowest-

lying intense transition at 2.59 eV, corresponding to the state |4〉. The pulse intensity

was 4.2 · 1011W/cm2, which is su�cient to induce considerable population in the state

|4〉. A higher intensity would cause Rabi oscillations, in this way making the excitation

e�ciency very sensitive to the pulse duration. The population dynamics induced by the

pump pulse is shown in Fig. 7.3. In spite of the resonant pulse energy, the state |4〉 is only
populated to about 50% even though the applied pulse intensity is relatively high. This is

due to very low transition dipole moments to that state in a signi�cant part of the initial

ensemble. The sensitivity of the transition dipole moments to the nuclear con�guration is

illustrated in Fig. 7.4, which shows the absolute values of the transition dipole moments

µn4 along a selected trajectory. After the pump pulse has ceased, the state |4〉 population
decays with a time constant of 196 fs mainly via the third to the second excited state,

and the depopulation of the 4th state is essentially complete after 500 fs. Subsequently,

the population of the state |2〉 decays within 2000 fs almost entirely via the �rst excited

state to the ground state.

The dynamical processes induced by the laser excitation are characterized by large

geometrical �uctuations a�ecting all normal modes, the symmetry labels and frequencies

of which are given in Table 7.2. Ultimately, the dynamical processes result in fragmenta-

tion of the cluster, mainly to Ag + Ag2, for about 25 % of the propagated trajectories.

This is initially caused by the electronic excitation due to the pump pulse which leads

to a strong energy transfer from the laser �eld to the cluster. Subsequent nonadiabatic

processes accumulate a signi�cant part of this energy almost equally in all vibrational

degrees of freedom, which results in heating and �nally in fragmentation.

Normal mode Symmetry ν(cm−1)
bending A1 50.9

antisymmetric stretch B2 123.2
symmetric stretch A1 175.3

Table 7.2: Normal modes of neutral triangular Ag3 calculated using DFT (cf. Sec. 7.2).
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Figure 7.3: Population of the ground and 4 excited electronic states of Ag3 during the
FISH simulation starting in the triangular geometry for an ensemble of 48 trajectories.
The pump excitation with an energy of 2.59 eV mainly populates the state |4〉.

Figure 7.4: Absolute values of selected transition dipole moments along one selected
nuclear trajectory of Ag3 started in the triangular geometry.
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The simulated TRPES obtained by the approach presented in Section 6.2 is shown

in Fig. 7.5a). For the probe pulse, a 50 fs Gaussian with an energy of 5.71 eV and a

maximum �eld intensity of 2.6·1010W/cm2 was used in order to achieve e�cient ionization.

The probe pulse energy was chosen slightly below the ionization potential of the ground

state (6.1 eV) in order to selectively probe the excited state population. It can be seen

that the initial excitation to the state |4〉 is mirrored in the appearance of a strong

photoelectron kinetic energy (PKE) signal in the range from 1.7 to 2.7 eV. This signal

decays and shifts to lower PKE values mainly within 1000 fs, re�ecting the depopulation

of the state |4〉. For later times, only low intensity remains for PKE higher than 0.2

eV, corresponding to those trajectories which remain in excited states until the end of

the simulation. The signal intensity near zero kinetic energy can be attributed to the

trajectories in the ground state. In order to obtain a more quantitative picture of the PKE

distribution, in Fig. 7.5b) the time-dependent photoelectron signal intensities for di�erent

kinetic energy intervals are presented. After initial excitation, a strong photoelectron

signal intensity is obtained for the kinetic energies between 1.6 and 3.0 eV which then

decreases to around one tenth at 1000 fs. Beginning around the same time, the highest

intensity is observed for photoelectrons with kinetic energies between 0.0 and 0.5 eV.

The strong decay of intensity for higher PKE values is also re�ected in the photoelectron

spectra for �xed probe pulse delays shown in Fig. 7.5c). While for a short time delay

of 200 fs there is a strong signal for PKEs between 1.5 and 2.5 eV, for later times the

relative intensities for small PKEs around zero increase (from 0.4 at 200 fs to 1.0 at 1500

fs), whereas the maximum PKE decreases from 2.5 eV at 200 fs to 1.3 eV at 1500 fs.

With the aim to investigate the in�uence of vibrational Franck-Condon factors on the

appearance of the photoelectron spectra, also the TRPES for the triangular start geometry

has been calculated according to Eq. (6.22) as outlined in the last part of Section 6.2.

The TRPES for a model FC factor distribution given by

Fij

(
E

(N)
i,vib, E

(N−1)
j,vib

)
= exp

(
− 1

2σ2

(
E

(N)
i,vib − E

(N−1)
j,vib

)2)
(7.2)

with energy widths σ of 0.5 eV and 1.5 eV are shown in 7.6a) and b), respectively. As

can be seen, the main e�ect of increasing σ, which implies expanding the energy range

in which the FC factors are large, consists in �lling the PKE distribution, which was

previously peaked at the maximum kinetic energies, into the range of lower energies. This

corresponds to the transfer of part of the probe pulse energy into the vibrational degrees

of freedom, giving rise to photoelectrons with lower kinetic energies.
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Figure 7.5: a) Time-resolved photoelectron spectrum of Ag3 obtained from the FISH dy-
namics starting in the triangular geometry for a probe pulse of 5.71 eV. b) Time-dependent
photoelectron signal intensities for di�erent photoelectron kinetic energy (PKE) intervals.
c) Photoelectron spectra for di�erent time delays of the probe pulse. The signals in b)
and c) have been normalized with respect to the highest peak.
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Figure 7.6: Time-resolved photoelectron spectra of Ag3 calculated using the �rst order
perturbation theory expression of Eq. (6.22) for the triangular initial geometry. The
probe pulse energy is 5.71 eV. An approximate Franck-Condon (FC) factor distribution
according to Eq. (7.2) was assumed. The signal has been calculated for two di�erent
widths of the FC factor distribution: a) σ =0.5 eV, b) σ =1.5 eV.
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Figure 7.7: Population of the ground and 8 excited electronic states of Ag3 during the
FISH simulation starting in the linear geometry. The pump excitation with an energy of
2.72 eV mainly populates the state |8〉.

ii) Initial conditions for linear geometry: The population dynamics induced by

a pump pulse resonant with the intense transition 2Σ+
u → 32Σ+

g (state |0〉 to state |8〉)
at 2.72 eV is shown in Fig. 7.7. In contrast to the triangular geometry, the excitation of

the transient linear geometry of Ag3 is far more e�cient due to large transition dipole

moments to the state |8〉 for the entire initial ensemble. Therefore, the application of

a pump pulse of smaller intensity (7.6·1010W/cm2) than in the case of the triangular

structure signi�cantly populates this state. After initial Rabi oscillations (cf. inset of

Fig. 7.7), the state |8〉 population reaches about 80 %. Subsequently, the nonradiative

relaxation of this state occurs with a time constant of 268 fs and is essentially completed

after 750 fs. The population is transferred partially into the manifold of the states |4〉-|7〉,
but mainly in the second excited state whose population reaches ≈ 30 % after 500 fs. For

later times, the population of state |2〉 decays almost equally into the |1〉 and |3〉 excited
states. However, the state |3〉 is also depopulated for times after 1000 fs. At the end of

the simulation time of 2000 fs, both the populations of the ground and the �rst excited

state have reached about 30 %, whereas 20 % remain in the second and 10 % in the

higher excited states. In this simulation the nuclear dynamics during the nonadiabatic

relaxation is characterized by large geometric �uctuations, involving all normal modes

of the cluster, the frequencies and symmetries of which are given in Table 7.3. This

behaviour is similar to the previous case starting from the triangular geometry. However,

the amount of cluster fragmentation of about 45 % is even higher due to the more e�cient

excitation which leads to a stronger energy transfer from the laser �eld to the cluster.
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Normal mode Symmetry ν(cm−1)
bending Πu 31.0

symmetric stretch Σ+
g 108.3

antisymmetric stretch Σ+
u 179.4

Table 7.3: Normal modes of linear anionic Ag−3 calculated using DFT (cf. Sec. 7.2).

The simulated TRPES for the initially linear system is shown in Fig. 7.8a). In this

case, a 50 fs Gaussian probe pulse with an energy of 6.0 eV, and again a maximum �eld

intensity of 2.6·1010W/cm2 were employed. Due to the high excitation e�ciency of the

pump pulse (see also Fig. 7.7), a strong signal centered around a PKE of 1.7 eV occurs

after Rabi oscillations, indicating the population of the state |8〉. During the dynamics,

the intensity of this signal decreases and a new feature evolves around 0.4 eV, re�ecting

the population transfer from the state |8〉 to the lower-lying excited states. Furthermore,

also the total signal intensity decreases as a result of population transfer to the ground

state which cannot be ionized by the applied probe pulse due to the ionization potential

of 7.1 eV for the linear structure. Overall, the decay of TRPES intensity is slower than

in the triangular case. The time-dependent photoelectron signal intensities for selected

PKE intervals shown in Fig. 7.8b) clearly con�rm this observation. After excitation, the

photoelectrons in the energy range between 1.2 and 2.2 eV have the highest intensity at

short delay times (0.9 at ≈ 100 fs) and lower intensities at longer delay times (about 0.1

after 1800 fs). For low PKEs in the range between 0.0 and 0.8 eV the intensity increases

from zero to 0.5 as a function of the delay time. However, at the end of the simulation,

there is still some intensity of photoelectrons with higher energies. This behaviour is also

re�ected in the photoelectron spectra for �xed probe pulse delay shown in Fig. 7.8c). For

the early delay times of 200 fs, the maximum PKE is centered at ≈ 1.7 eV with a relative

intensity of ≈ 1.0. Then this maximum decreases to ≈ 0.15 at a delay time of 1750 fs. In

addition, a new peak is evolving at a PKE of ≈ 0.4 eV starting with an intensity of ≈ 0.3

at 500 fs to almost 0.6 at 1750 fs which re�ects the transfer of population to the lower

excited states |1〉 and |2〉.

The comparison of simulated TRPES for the di�erent choices of starting geometries

(triangular vs. linear) illustrates the structural in�uence on the excited state dynamics

and the corresponding time scales. In the triangular case, there is almost complete decay

of the excited state population within 1 ps. For the linear starting geometry, which is

of interest in the context of transition state spectroscopy and excited state dynamics,

the depopulation of the highest excited state involved is almost equally fast. However, a

signi�cant part of the population is not transferred to the ground state but to lower-lying

excited states within a time scale of about 2 ps. Thus the decay of the total excited states

population is much slower for the linear than in the triangular starting geometry.
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Figure 7.8: a) Time-resolved photoelectron spectrum of Ag3 obtained from the FISH
dynamics starting in the linear geometry for a probe pulse of 6.0 eV. b) Time-dependent
photoelectron signal intensities for di�erent photoelectron kinetic energy intervals. c)
Photoelectron spectra for di�erent time delays of the probe pulse. The signals in b) and
c) have been normalized with respect to the highest peak.
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The theoretical predictions obtained here can be confronted with the results of two

types of experimental studies of TRPES. For the equilibrium starting geometry of Ag3 two-

pulse driven TRPES, which involves excitation followed by ionization, can be performed.

For the linear starting geometry of the transition state of Ag3 a three-pulse driven NeNePo

TRPES, involving ionization of Ag−3 followed by a sequence of excitation and ionization

of the resulting Ag3, may be proposed for experimental realization.

7.3.2 Excited state dynamics and TRPES of Au−
7

The �rst validation of TRPES simulated employing the novel approach presented in

Sec. 6.2 with experimental results has been obtained on the example of the anionic Au−7
cluster. The excited state dynamics of this system has been investigated experimentally

and theoretically already some time ago using irradiation by a 1.56 eV laser pulse [62].1 In

this excitation regime, the �rst excited state is populated, in which rapidly large-amplitude

nuclear motion sets in and leads to structural isomerization of the cluster. During this

process, a conical intersection with the ground state is reached and the system is trans-

ferred back to the ground state within less than 1 ps. Subsequently, due to the large

gain in kinetic energy during the ensuing dynamics in the ground state, a melting-like be-

haviour has been observed. This is clearly reminiscent of processes occurring in molecules

characterized by discrete and well-separated energy levels.

In the present collaborative study [61], a higher excitation energy of 3.12 eV has

been used. The dynamical processes induced by the pump excitation give rise to the

experimentally measured TRPES shown in Fig. 7.9 (right part). It is characterized by

two peaks, which are initially situated at photoelectron kinetic energies of 0.8 and 1.3

eV, respectively. Both peaks only slightly shift to lower energies during the time period

of 800 fs shown in Fig. 7.9. However, their intensity gradually decreases, which can be

attributed to less e�cient ionization of the clusters in the course of the dynamics. The

experimental �ndings are to a major extent reproduced by the theoretical TRPES also

shown in Fig. 7.9 (left part). The position of the peaks is almost identical, and also

a slight shift to lower energies can be observed for later times. Due to the constant

transition dipole moments for ionization employed in the simulation, the decrease in peak

heights is less well reproduced. The FISH simulations underlying the calculated TRPES

allow for an analysis of the dynamical processes behind the spectroscopic signal. Since for

Au−7 two almost energetically degenerate lowest-lying isomers are present [292], dynamics

simulations have been performed for both of them, and the TRPES has been obtained by

averaging over both ensembles with equal weights.

1The theoretical method used in this study relied on �eld-free dynamics in the �rst excited state
until the conical intersection with the ground state was reached. The TRPES was approximated using a
modi�cation of the perturbation theory approach from Ref. [281].
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Figure 7.9: (Left) Time-resolved photoelectron spectrum of Au−7 obtained from the FISH
dynamics. (Right) Experimental TRPES of Au−7 . The signals have been normalized with
respect to the highest peak. Adapted from Ref. [61]

The electronic structure of the two isomers is illustrated in Fig. 7.10 by the densities

of electronic states up to 3.3 eV. Characteristically, it can be seen that in the low-energy

regime up to 2.3 eV well-separated electronic states are present, while for higher energies

the states become more and more closely spaced, leading to a higher density of states. The

pump pulse, whose energy width is indicated in red in Fig. 7.10, leads to the population

of a manifold of energetically close-lying electronic states centered at the pulse energy

of 3.12 eV. This is also evident from the electronic state population dynamics obtained

within the FISH simulation and shown in Fig. 7.11. Initial excitation thus leads to the

population of the electronic state manifold III. Subsequently, electronic relaxation occurs

within the region of high state density, leading in average to a 0.3 eV decrease of the elec-

tronic energy within the propagation time of 1 ps. Accordingly, the population dynamics

is characterized by a decay of the region III population, accompanied by an increase of

the populations of regions II and I. After 600 fs, also the population of region II starts

to decay, such that the main part of the excited state population becomes situated in

region I, i.e. at the lower edge of the high state density region. From there, only very

few trajectories decay further within 1 ps, and no return to the ground state is observed.

The lose of electronic energy is compensated for by an increase of the nuclear vibrational

energy, which is re�ected in weak oscillations of the nuclear framework. However, in con-

trast to the dynamics in low-lying excited states, no large-amplitude motion or structural

isomerization occurs. A more detailed analysis of the dynamical processes obtained in

this collaborative work is presented in Ref. [61]. Here, it su�ces to point out that the

joint theoretical and experimental investigations performed in Ref. [62] and [61] have re-

vealed the presence of two distinctly di�erent excitation regimes in Au−7 , in which either
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Figure 7.10: Electronic densities of state (DOS) for the two lowest-lying isomers of Au−7 .
The individual transition lines (black sticks) have been broadened by a Lorentzian width
of 0.1 eV (blue curve). The spectral position and width of the pump laser pulse centered
at 3.12 eV is indicated in red .

Figure 7.11: Electronic state population dynamics of the isomer 1 of Au−7 for the ground
state (black), the low-lying excited states (orange) as well as for the high-lying excited
states from energy regions I (red), II (green), and III (blue) (cf. Fig. 7.10) obtained using
the FISH method with the experimental pump pulse of 3.12 eV [293].

a molecular-like internal conversion process involving isomerization, or a more bulk-like

relaxation, in which electronic energy from a manifold of close-lying states is transferred

to the vibrational degrees of freedom without large-amplitude nuclear motion, takes place.

Consequently, the relaxation processes occurring in such small clusters can be controlled

by the choice of the electronic excitation energy, opening the perspective for developing

cluster-based materials with bespoke optical response properties.
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7.4 Conclusions

In this chapter, the FISH method extended by the discretized continuum approxima-

tion for the photoionization as devised in Chapter 6 has been employed to simulate the

TRPES of the small metal nanoclusters Ag3 and Au−7 . In this way, for the �rst time

trajectory-based simulations accounting for all nuclear degrees of freedom have been per-

formed under the explicit in�uence of pump and probe laser pulses in order to simulate a

time-resolved spectroscopic observable. As a �rst illustration, the prototype example of

the Ag3 cluster was chosen, which is characterized by a high density of excited electronic

states and strong nonadiabatic e�ects. The mechanism and the time scale of the nonra-

diative excited state relaxation have been determined for two sets of initial conditions: (i)

starting from a ground state equilibrium ensemble around the triangular structure, (ii)

starting from the linear structure which corresponds to the equilibrium geometry for the

anion and represents a transition state of the neutral species. For both simulations, it has

been shown how the �ngerprint of the underlying dynamics is re�ected in the TRPES.

Moreover, the in�uence of a model Franck-Condon factor distribution on the appearance

of TRPES signals has been examined, which is important for the interpretation of exper-

imental results. In addition to Ag3, also the TRPES of Au−7 , for which experimental data

are available, has been simulated, and very good agreement with the experiment has been

found. Also in this case, the analysis of the dynamics simulations has allowed for the

elucidation of the molecular processes underlying the speci�c appearance of the spectra.

These two examples illustrate the applicability of FISH for the simulation of experimen-

tal spectroscopic observables, emphasizing both the ability to theoretically predict the

appearance of the signal as well as to utilize simulations to help analyse and interpret ex-

perimentally obtained data. Moreover, since the presented approach is based on the FISH

method with its broad applicational scope, it provides a unique opportunity to simulate

experimental spectroscopic signals and to identify the mechanism of photochemical pro-

cesses in a multitude of complex systems such as metallic nanoclusters, biochromophores

interacting with the environment, or molecules in solution.
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8 Concepts and applications of coherent control

in molecular systems

A particularly attractive area in molecular physics is the coherent control using optimally

shaped laser �elds, which is based on the idea of using light to steer the course and

outcome of a chemical or physical process in a precisely de�ned way. While in the common

approaches to the control of chemical reaction pathways external parameters such as

temperature, pressure or concentrations of reactants are adjusted, the interaction of light

with reactants has the potential of being much more precisely tunable. The advent of

laser technology, with the more and more improved ability to generate ultrashort light

pulses with durations on the time scales of nuclear and electronic motion, has nowadays

enabled the experimental realization of numerous strategies for coherent control at the

molecular level. The basic concepts, however, have been devised from the theoretical side

already in the early stages of ultrafast laser physics. As a starting point served the idea

to selectively excite a speci�c vibrational mode of a molecule by infrared light in order to

achieve bond breaking [294]. However, it soon became clear that the needed accumulation

of vibrational energy in the respective mode usually does not happen fast enough to

compete with processes of ultrafast intramolecular energy redistribution (IVR) [295�298],

especially when laser pulses of longer duration than the typical vibrational time scales are

used. Therefore, di�erent strategies were proposed, which rely on utilizing ultrashort laser

pulses of durations in the sub-ps time regime. Such pulses are able to induce dynamical

processes and to intervene in the ultrafast dynamics in a precisely de�ned way, thereby

also exploiting the quantum mechanical nature of molecular motion.

The earliest control strategy has been developed by Tannor, Koslo� and Rice [20,299,

300] and consists in the sequential action of two ultrashort laser pulses [cf. Fig. 8.1a)]. The

�rst of these pulses (pump pulse) excites the system to a non-equilibrium con�guration,

which subsequently leads to the onset of dynamical processes. After a speci�c time delay,

a second pulse is acting, which either brings the system back to the ground state (dump

pulse), or leads to further excitation to a detection state, e.g. by ionization (probe pulse).

This approach has later been experimentally veri�ed on the example of controlling the

ratio between molecular and dissociative ionization of the sodium dimer [301]. In another

early realization, the variation of the pulse delay allowed for controlling the formation

yield of the XeI molecule [302].

The second major strategy for coherent control is less intuitive, as it relies on quantum

interference e�ects in a subtle way. Devised by Brumer and Shapiro [21,22,303,304], this

approach is based on the interplay of di�erent reaction pathways which can be steered

by varying the phase di�erence between two laser �elds of di�erent frequencies. This

can lead to constructive interference for one of the reaction pathways, and to destructive
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Figure 8.1: Strategies for coherent control in molecular systems. a) Tannor-Rice pump-
dump control. b) Brumer-Shapiro interference control. c) Stimulated Raman adiabatic
passage (STIRAP).

interference for the other, thus enhancing one of the product channels, as schematically

depicted in Fig. 8.1b). The �rst realizations of this strategy involve the modulation of

excitation and ionization e�ciency in Kr [305] and Hg atoms [306], as well as in the HCl

molecule [307]. Control of product distributions was �rst achieved on the example of

molecular vs. dissociative ionization of the HI molecule [308].

While in the early pioneering experimental work control was achieved by variation of

a single parameter only, later technological progress in laser pulse shaping allowed for the

precise �ne-tuning of several laser parameters (for an overview see Ref. [309]), leading

to the �rst realizations of multi-parameter control. In the context of the Tannor Koslo�

Rice scheme, this involves, besides the time delay, e.g. the pulse frequency [310�313],

frequency chirp [314], pulse width [315], or �eld amplitude [316].

Besides the above mentioned control strategies, the use of strong laser �elds opens

additional possibilities for the manipulation of processes. In the framework of adiabatic

passage techniques, the coupling of electronic states by strong �elds leads to Rabi oscil-

lations that may achieve complete population exchange. In particular, Raman processes

utilizing transiently populated intermediate states are relevant in this research �eld, such

as the stimulated Raman adiabatic passage technique (STIRAP) [317�319] illustrated in

Fig. 8.1c), �rst experimentally realized for the selective population of vibrational states

in the sodium dimer [318].

In order to determine optimal pulse parameter values for a process under study, in

simple cases knowledge about several system parameters, as e.g. excitation energies or

vibrational periods, can provide valuable information. However, with increasing system

complexity, this approach will cease to be practical for �nding the best parameters. In-

stead, mathematical techniques can be used, which, based on a quantum mechanical

description of the studied system, may lead to predictions of optimal �eld parameters us-
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Figure 8.2: Principle of adaptive closed-loop control: The incoming laser pulse is spec-
trally decomposed, amplitudes and phases are tailored, and the resulting shaped pulse
is irradiated on the sample. The detection signal is fed to a computer system where
its ability to achieve the optimization goal is assessed. New pulse parameters based on
this information are then constructed, which are passed to the pulse shaper. The whole
procedure is iteratively repeated until the optimization goal is ful�lled.

ing a variational formulation of the control problem [320�325]. These techniques typically

rely on �eld-driven quantum dynamics simulations and therefore share the limitations of

the latter regarding size and complexity of the systems. Therefore, their applicability

beyond few-dimensional systems is severely restricted.

An alternative, which has by now developed into the most widely used approach to the

coherent control in complex systems, has been proposed two decades ago by Judson and

Rabitz [27]. Their idea was to utilize the response of the molecular system provoked by the

acting control �eld as a feedback signal for an iterative optimization procedure (�closed-

loop learning�, CLL, cf. Fig. 8.2). For this purpose, adaptive optimization techniques,

such as genetic algorithms [239,326], are commonly used, which are inspired by the process

of biological evolution. The starting point of these techniques is the random generation

of many di�erent parameter sets (the �population�) and their encoding as �genes�. Using

a properly constructed target function, the ability of each parameter set to produce a

desired outcome (��tness�) is evaluated, and based on this evaluation a selection of genes

is chosen for constructing a subsequent generation of new parameters. For this purpose,

the representations of the old parameters are recombined, mimicking the crossover of genes

occurring in biological cell division. This leads to reproduction of favourable genes, while

the unfavourable ones become extinct. In order to avoid too fast an onset of uniformity

in the population, it is also common to introduce a small probability for random changes

in the genes, thus mimicking also mutations.
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In this way, the optimization problem is in fact solved by the studied system itself,

thus avoiding complicated theoretical simulation procedures. After the �rst more tech-

nical implementations of the closed loop learning technique combined with optical pulse

compression and shaping [23�26], the �rst experimental application to a molecular system

has been reported by Bardeen et al., who optimized the electronic excitation e�ciency

in an organic dye molecule [327]. In the context of chemical reactivity, �rst results were

obtained by Gerber et al., who investigated the photodissociation of the organic iron car-

bonyl [(C5H5)Fe(CO)2Cl] and achieved a signi�cant degree of control for the formation

ratio of di�erent photoproducts [328]. Similar results were also obtained by Wöste et

al. on the manganese carbonyl [(C5H5)Mn(CO)3] [329,330]. Further applications involve

selective bond breaking in other organic molecules [331, 332], isomerization in biologi-

cal [333, 334] and organic chromophores [335], as well as the control of excitation energy

transfer in biological light-harvesting systems [336, 337]. In addition, the CLL approach

has been employed to achieve selective vibrational excitation via Raman [338] or elec-

tronic pump-dump processes [339]. Using a technique for wavefunction reconstruction,

even the radial shape of a highly excited atomic Rydberg state wavefunction has been

optimized to match a selected target [340]. Moreover, nonlinear optical properties as the

high-harmonic generation in noble gas atoms have been controlled [341], and recently,

also the control of the spatial �eld distribution has been achieved and utilized to induce

spatially localized electron emission in a nanostructure [342]. In simple systems, the e�-

ciency of ionization processes has been controlled [343�345], and even isotope selectivity

of the ionization process could be achieved [346]. For a more comprehensive overview of

the literature, compare also the review articles and books given as Ref. [28�34]. It should

be emphasized that beyond the control on the time scale of nuclear motion, technologi-

cal progress has in the last years also enabled the control of processes directly involving

electronic motion on the attosecond time scale [347�350].

Notwithstanding this experimental success of the adaptive optimization technique for

controlling even very complex molecular processes, a major drawback of this method is the

usually also very complex form of the optimized laser �elds. This prevents in most cases

a straightforward interpretation of how the �elds act at a molecular level and therefore

is of limited help in �nding the mechanism underlying the control. A possible remedy

to this problem might consist in successively reducing the pulse complexity by imposing

restrictions on the functional form or decreasing the number of optimization parameters.

In this context, it has been shown that starting from a freely optimized control pulse

involving several hundreds of parameters, the covariance properties of the obtained �tness

data can be used to identify a small number of certain linear combinations of parameters

which contribute the main part to the control. In this way, the dimension of the control

space could be reduced to less then ten parameters, at the same time retaining almost
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the full variational �exibility and hence ability to achieve control [351].

Another, particularly convenient strategy consists in the construction of simpli�ed

shaped laser pulses that a priori depend only on a small number of parameters to be

varied [352�354]. Simple examples include variation of the time delay between di�erent

subpulses or their relative intensity. Greater �exibility of pulse forms can be achieved

by employing an analytical expression for the spectral phase, such as a triangular shape

or a sine function. In this way, only few parameters are present, which often have an

intuitive connection to the pulse appearance. Their e�ect on the controlled system can

be investigated by scanning an appropriate range of values [355�358]. The control space

spanned by such parameters is often small enough to be completely sampled, hence a

control landscape [359�361] can be obtained and extrema of the optimization target func-

tion can be found without performing a full iterative optimization procedure [362�365]1.

Moreover, in some cases the pulse parameters can be directly connected to properties of

the studied system, and insights into the control mechanism can be obtained, e.g. as it

has been done in studies of the wavepacket dynamics in alkali dimers using simple pump-

probe techniques [301] or more complicated laser pulse trains obtained by spectral phase

modulation [353].

Although the use of simpli�ed laser pulses has lead to important insights into the

control mechanism in several cases, a thorough molecular-level understanding can only

be gained if experimental results are complemented by theoretical simulations. For small

molecules or reduced-dimensional models of larger systems, theoretical optimization of

control �elds can be performed based on quantum dynamics simulations, both in the

framework of variational optimal control theory (for an overview cf. Ref. [361], � 3 and

references cited therein) as well as employing the adaptive closed-loop learning method

similar to the experimental procedure. As an illustrative example for the direct use of

experimentally optimized laser �elds in quantum dynamics simulations in order to gain

an immediate insight into the molecular mechanisms behind the experimental �ndings,

the study of the ionization processes in alkali dimers [345,369] is mentioned.

However, in view of the limitations inherent to full quantum dynamics simulations,

progress in theoretical methodology is necessary in order to also allow for molecular-level

simulations of complex systems under the in�uence of realistic optimized pulses. This can

be achieved in the framework of mixed quantum-classical methods based on the descrip-

tion of nuclear dynamics using classical trajectories. In this context, the FISH method

discussed in Chapter 3 provides a powerful tool for the simulation of control experiments,

1Although there has recently been some debate about the nature of the extrema of control landscapes,
in particular concerning the existence of optimization traps (local extrema) [366�368], it could be shown
for isolated quantum systems that, provided certain well-de�ned criteria for the systems and control �elds
are met, all extrema are global ones [361,367]. Therefore, the convergence of optimization procedures to
the global extrema of the optimization target can be ensured in these cases.
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at the same time taking into account all nuclear degrees of freedom and explicitly in-

cluding the molecule-�eld interaction. This allows for the use of arbitrarily shaped laser

�elds in the simulations, thus opening the possibility either to theoretically optimize the

�elds in an iterative procedure, or, alternatively, to employ experimentally optimized laser

�elds directly in the simulation. Moreover, also control landscapes can be theoretically

explored by scanning the pulse parameters in an appropriate range of values. Owing to

these opportunities, for the �rst time the connection between experimental pulses and

intrinsic dynamical processes for real molecules can be established, thus elucidating the

mechanism underlying the control.

Before turning towards application-oriented investigations using FISH, the following

Chapter 9 will be devoted to a thorough comparative study on the fundamental validation

of the method for the simulation of coherent quantum control. For this purpose, on the

example of the potassium dimer molecule, the selective population of energetically close-

lying excited states using shaped laser �elds will be simulated both using the FISH method

and numerically exact quantum dynamics [63]. The comparison of results obtained by

the two methods will establish the accuracy of FISH for simulating coherent control

processes, which will provide a basis for applying the method to much more complex

molecular systems.

Subsequently, the theoretical design of simpli�ed laser pulses shaped for control in

complex systems will be illustrated in Chapter 10 on the example of manipulation of

excited state dynamics in the nucleobase adenine interacting with water environment [64].

This is motivated by the aim to exploit the approach of reducing pulse complexity also

in the framework of theoretical simulations. In this context, it is in fact of particular

advantage, since it provides a means to avoid iterative optimization procedures, given the

fact that the time scales of dynamics simulations can be considerably larger than those

for running the respective experimental measurements.

Since within the FISH method the electric �eld is directly included in the dynamics

simulations, also the most straightforward approach of combining experimental optimal

control with theory is possible: Experimentally obtained laser pulses can be employed

directly in theoretical simulations of the dynamical processes in the studied system. In

this way, a real-time picture of the dynamics at molecular level can be obtained, and the

direct connection to experimental observations can be made. This will be illustrated on

the example of optimal dynamic discrimination of �avin molecules [67] in Chapter 11 of

this thesis.
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9 Validation of FISH:

Coherent control of selective photoexcitation in K2

9.1 Introduction

Since the FISH method employs classical trajectories for the nuclear dynamics, the funda-

mental question has to be addressed to which extent it can take into account the electronic

and nuclear coherence e�ects which are at the heart of the coherently controlled dynamics.

In previous work it has been demonstrated that FISH simulations can perfectly account

for the coherent Rabi oscillations between two coupled electronic states in a two-level

model system [55]. Moreover, on the example of several one-dimensional systems it could

be shown that FISH almost perfectly reproduces the results of full quantum dynamics

simulations [55,238]. In the present chapter, the focus lies on the strong �eld control and

the ability of the FISH method to describe coherent processes in a system with several

coupled electronic states. For this purpose, the potassium dimer has been selected as a

prototype, since accurate potential energy curves and transition dipole moments for this

system are available. Moreover, the strong �eld control using the selective population of

dressed states (SPODS) scheme, which was previously experimentally applied to potas-

sium atoms [370�372], has been already demonstrated on this molecular example using

quantum dynamics simulations [373], and, recently, also experimentally [374]. Within

SPODS, the excitation to a manifold of excited electronic states by a phase coherent dou-

ble pulse sequence is used to steer the �nal state population. Almost perfect selectivity in

populating di�erent target states has been achieved by varying the time delay between the

two subpulses. Due to its conceptual clarity, the SPODS control scheme is particularly

suitable for a systematic investigation of coherent control in the framework of the mixed

quantum-classical FISH method. Therefore, in the following it will be demonstrated that

FISH accurately describes the coherent electronic processes induced within the SPODS

control scheme and leads to results which are in almost perfect agreement with the exact

quantum dynamics simulations. These �ndings, together with the applicability of FISH to

complex systems with many degrees of freedom, provide a strong fundament for using the

FISH method for the simulation of coherent control in systems ranging from polyatomic

(bio)molecules and clusters to complex nanostructures and supramolecular assemblies or

systems interacting with their environment, such as solvent or surfaces.

This chapter is organized as follows: First, the computational details are presented in

Section 9.2. Subsequently, in Section 9.3 the results are presented and discussed. Finally,

conclusions are given in Section 9.4. The results presented in this chapter have been

published in Ref. [63].
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9.2 Computational Procedures

9.2.1 Ab initio potential energy curves and transition dipole moments

Both the quantum dynamical as well as the FISH simulations have been performed using

precalculated potential energy curves and distance-dependent electric transition dipole

moments for the K2 molecule. For this purpose, the multireference con�guration interac-

tion (MRCI) method [375�377] was employed as implemented in the MOLPRO program

package [378]. As reference states in the MRCI calculation, state-averaged complete

active space self-consistent �eld (CASSCF) wavefunctions [379, 380] were used. The K

atoms were described using a 1-electron e�ective core potential [381] together with a

(7s5p7d2f)/[6s5p5d2f] Gaussian basis set [382] as well as the core polarization potential

from Ref. [383]. The active space for the CASSCF calculations was constructed from

the occupied orbital and 15 virtual ones. Subsequently, the MRCI calculations includ-

ing single and double excitations from all reference wavefunctions have been performed.

This approach has previously been proven to yield precise results for K2 [382, 384]. The

potential energy curves for the X1Σ+
g , A

1Σ+
u , 4

1Σ+
g , 2

1Πg and 51Σ+
g states, as well as the

transition dipole moments between the X1Σ+
g and A1Σ+

u , and between the A1Σ+
u and the

higher-lying 41Σ+
g , 2

1Πg and 51Σ+
g states have been calculated for internuclear distances

between 5.25 and 25.0 a0, with a0 = 0.529 as the Bohr radius.

9.2.2 Quantum dynamics simulations

The quantum dynamics of K2 has been simulated employing the grid-based numerical so-

lution of the nuclear Schrödinger equation using a second-order di�erence propagator [72].

The values of the potential energy as well as of the transition dipole moments at the 256

grid points for nuclear distances between 4 and 15 a0 were obtained by B-spline interpola-

tion. As initial condition, the lowest vibrational eigenstate of the electronic ground state

X1Σ+
g was chosen. The time step for the dynamics was 0.005 fs, and the propagation was

performed over 60 fs. The laser coupling of the electronic states was described by the

electric dipole interaction −µij(R(t)) · E(t). The electric �eld was parameterized in the

time domain according to

E(t) =
(
E1e

−2ln2(t/∆t)2 + E2e
−2ln2((t−τ)/∆t)2eiω0τ

)
eiω0t. (9.1)

with a frequency ω0 of 1.49 eV (830 nm), a width of ∆t = 14.1 fs and amplitudes for

the subpulses of E1 = 0.0011 EH/ea0 (4.17 · 1010W/cm2) and E2 = 0.005 EH/ea0 (8.78 ·
1011W/cm2), where EH/ea0 is the atomic unit of electric �eld strength. The polarization

of the �eld was assumed to be 45◦ with respect to the internuclear axis of the molecule.

This �eld was employed in the simulations as given in Eq. (9.1), without performing
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the rotating wave approximation, in contrast to the simulations presented in Ref. [373].

For the pulse delay τ , di�erent values in the range from 11.8 to 13.1 fs have been used.

Experimentally, such ultrashort femtosecond pulse pairs with precisely adjusted time delay

(up to a precision of 0.3 attoseconds) have been recently realized by Baumert et al. and

have been applied to the SPODS control in potassium atoms [385].

9.2.3 FISH simulations

For the FISH dynamics, 300 initial conditions were sampled from a canonical Wigner

distribution function at 10 K, and the nuclei were propagated classically in the respective

electronic states by solving the Newtonian equations of motion using the velocity Verlet

algorithm [180, 181] with a time step of 0.2 fs. The total propagation time was the same

as for the quantum dynamics. The necessary forces have been obtained �on the �y� from

the numerical gradients of the potential energy curves. According to the FISH procedure,

the trajectories were allowed to switch between the electronic states in a probabilistic

manner. For this purpose, the time-dependent Schrödinger equation (3.26) was integrated

numerically in the basis of the electronic states along the nuclear trajectories, employing

a time step of 8·10−5 fs. Notice, that in the present contribution only the dipole coupling

between the electronic states was taken into account and the nonadiabatic couplings

present in Eq. (3.26) were neglected. The probabilities for hoppings between the electronic

states were calculated from the quantum mechanical state populations ρii = c∗i ci according

to Eq. (3.32). In order to improve the statistics of the hopping events, the whole ensemble

of initial conditions was propagated twice.

9.2.4 Pulse optimization

The ability of longer laser pulse sequences to selectively populate a chosen excited state

has been examined by optimizing a double pulse sequence in a restricted parameter space.

For this purpose, the �eld parameterization given in Eq. (9.1) has been generalized to

E(t) = E1e
−2ln2((t−τ1)/∆t1)2eiω1(t−τ1)

+ E2e
−2ln2((t−τ2)/∆t2)2eiω2(t−2τ1+τ2). (9.2)

Using a genetic algorithm [239], the �eld parameters Ei, ωi, τi, and ∆ti have been op-

timized with the target to maximize the population of the 21Πg state after the �eld has

ceased. The optimization procedure was performed employing FISH simulations with a

smaller ensemble of 72 trajectories.
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Figure 9.1: a) CAS-MRCI potential energy curves for the electronic states X1Σ+
g , A

1Σ+
u ,

41Σ+
g , 2

1Πg and 51Σ+
g of K2. b) Transition dipole moments between the A1Σ+

u and the
X1Σ+

g , 4
1Σ+

g , 2
1Π+

g and 51Σ+
g states as a function of the internuclear distance.

9.3 Results and discussion

The calculated potential energy curves for the electronic ground state X1Σ+
g and four

electronically excited states (A1Σ+
u , 4

1Σ+
g , 2

1Πg and 51Σ+
g ) of K2, which serve as the basis

for the quantum dynamical and FISH simulations, are presented in Fig. 9.1a). The �rst

optically allowed excited state (A1Σ+
u ) can be easily reached in a single photon process with

830 nm light. The three higher excited states 41Σ+
g , 2

1Πg and 51Σ+
g lie closely together

and are in principle also accessible from the A1Σ+
u state using 830 nm excitation. This

opens a possibility to control the population of these higher excited states by using phase-

coherent double pulses as previously demonstrated by Wollenhaupt and Baumert [373].

The relevant transition dipole moments between the considered states strongly depend on

the internuclear distance as shown in Fig. 9.1b).

With the aim to explore the ability of the FISH method to describe coherent control

of the electronic state population, FISH simulations have been performed, following Ref.

[373] using the excitation laser �eld given in Eq. (9.1) and systematically varying the

parameter τ in the range from 11.8 fs to 13.1 fs. For comparison, numerically exact

quantum dynamics simulations have been also performed. The resulting dependence of

the �nal electronic state population on the time delay τ is presented in Fig. 9.2. As can

be seen from the quantum dynamical simulations, the time delay has a strong in�uence

on the �nal population of the 41Σ+
g and 51Σ+

g states such that almost complete reversal of

the corresponding populations can be achieved. Speci�cally, maximal population of the

41Σ+
g state of ∼ 75% is obtained for τ=12.0 fs while the population of the 51Σ+

g state is
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Figure 9.2: Final state populations after excitation with a short phase-coherent double
pulse as a function of the time delay τ between the two subpulses [cf. Eq. (9.1)]. a)
Results obtained from quantum dynamics, b) results obtained from FISH simulations.

kept below 10 % in this case. In contrast, for τ=12.9 fs the population of the 51Σ+
g is

maximized while the population of the 41Σ+
g remains lower than 10 %. As can be seen

from Fig. 9.2b), the FISH simulations very well reproduce the quantum dynamics results

of the �nal electronic state populations.

In order to examine the details of the electronic state population dynamics within

the FISH method and to validate them against the full quantum mechanical results, the

time-dependent populations obtained using the values of τ=12.0 fs and 12.9 fs, which

correspond to the maximal �nal populations of the 41Σ+
g or 51Σ+

g states, respectively, are

presented in Fig. 9.3. The excitation �eld (blue line) together with the relative temporal

phase (red line) for τ=12.0 fs is shown in Fig. 9.3a). The relative temporal phase, which

was obtained from the complex �eld as

ϕ = −i ln

[
e−iω0t

E(t)

|E(t)|

]
, (9.3)

smoothly varies between zero and ≈ +2.1. The population dynamics obtained fully quan-

tum mechanically and in the framework of the FISH method are presented in Fig. 9.3b)

and 9.3c). In both cases, the ground state population is transferred via transient occupa-

tion of the A1Σ+
u and 21Πg �nally to the 51Σ+

g state, the population of which ultimately

reaches about 75 %. Overall, the time-dependent populations obtained in the frame of

FISH follow closely the full quantum mechanical results. It should be noted that, in con-

trast to Ref. [373], in the present simulations the rotating wave approximation is not em-

ployed and therefore the electronic state populations exhibit additional small oscillations

corresponding to the counter-rotating corrections to the rotating wave approximation.
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Figure 9.3: Left panel: a) Temporal �eld strength (blue) and relative temporal phase
(red, cf. Eq. (9.3)) of the double pulse with time delay τ=12.0 fs. The �eld strength is
given in atomic units (1EH/ea0=̂5.14 · 1011V/m). b)/c) Time-dependent electronic state
populations obtained by quantum dynamics (b) and by employing the FISH method (c).
Right panel: d)/e)/f): Same as left panel, but for a time delay of 12.9 fs.
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For τ=12.9 fs the overall envelope of the electric �eld is unchanged, but the relative

temporal phase varies now from zero to ≈ −2.1 as shown in Fig. 9.3d). This phase change

leads to dramatically di�erent dynamics. The resulting state populations are presented

in Fig. 9.3e) for the full quantum and in Fig. 9.3f) for the FISH simulation. In both

cases, after initial population of the A1Σ+
u state, the 41Σ+

g state starts to be populated

immediately and reaches a maximal value of 80 % after 30 fs. Subsequently, due to the

larger transition dipole moment between the A1Σ+
u and the 41Σ+

g state as compared to

the 51Σ+
g state, large-amplitude Rabi oscillations occur and lead to population transfer

back to the X1Σ+
g and A1Σ+

u states, and also partly to the 21Πg state. After 38 fs the

population of 41Σ+
g state has diminished to a value of only 4 %. However, after 40 fs the

41Σ+
g state begins again to be populated, reaching a �nal value of almost 75 % after the

pulse has ceased. Similar to the previous case, the comparison between full quantum and

FISH dynamics shows perfect agreement.

In order to address the mechanism underlying the selective population of states by only

changing the phase of the driving laser �eld, in the following the role of the electronic

coherences between the intermediate A1Σ+
u state and the �nal states 41Σ+

g and 51Σ+
g

are analyzed for the quantum dynamics simulation. Starting from the time-dependent

Schrödinger equation for nuclear wavepackets in a manifold of electronic states (cf. Eq. (1.7)),

i~χ̇i(R, t) =

(
− ~2

2m

∂2

∂R2
+ Ei(R)

)
χi(R, t)−

∑
k

µik(R) ·E(t)χk(R, t), (9.4)

with m as the reduced mass of the diatomic, an equation for the population transfer

between the states can be derived similar to Eq. (3.8) as

ρ̇ii(t) =
d

dt

ˆ
dRχ∗

i (R, t)χi(R, t) = −2

~
∑
k

ˆ
dRµik(R) · E(t) Im [χk(R, t)χ∗

i (R, t)] .

(9.5)

This means that the population change of a state i caused by the coupling to a state

k can be to �rst order approximated by one summand of the right-hand side. If the

electronic transition dipole moments are only slightly dependent on the nuclear coordi-

nate, as it is in the present case within the spatial extent of the wavepacket, Eq. (9.5)

can be further simpli�ed by taking the transition dipole moment at the center of the nu-

clear wavepacket R0 out of the integral, followed by introducing the electronic coherences

ρki(t) =
´
dRχk(R, t)χ∗

i (R, t), which leads to

ρ̇ii(t) = −2

~
∑
k

µik(R0) · E(t) Im [ρki(t)] . (9.6)

Since the selectivity of the excitation process depends crucially on the intermediate pop-
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Figure 9.4: (Upper panel) Contribution from the A1Σ+
u state to the rate of change of the

41Σ+
g and 51Σ+

g state populations for the double pulse excitation with τ=12.0 fs (a) and
τ=12.9 fs (b). (Lower panel) Imaginary part of the electronic coherences between the
A1Σ+

u and 41Σ+
g (blue) or 51Σ+

g (orange) states, respectively, for τ=12.0 fs (c) and τ=12.9
fs (d). The temporal �eld strength is also indicated (grey curve). Yellow background
indicates time periods in which the �eld is resonant to and in phase with the imaginary
part of the coherence of the 51Σ+

g state (c) or 41Σ+
g state (d).

ulation transfer from the A1Σ+
u state to either of the �nal states 41Σ+

g and 51Σ+
g , the

respective rates of change according to Eq. (9.5) are presented in the upper panel of

Fig. 9.4. From part a), it becomes evident that for the pulse with τ=12.0 fs, although

both �nal states exchange almost equal amounts of population with the intermediate

state, only for the 51Σ+
g state this exchange is always positive, whereas for the 41Σ+

g state

exchange occurs in both directions, thus minimizing the net population transfer. By con-

trast, for the case of τ=12.9 fs, the population exchange with the 51Σ+
g state is much

more pronounced than that with the 41Σ+
g state, which in this case also re�ects the higher

transition dipole moment (cf. Fig. 9.1b)). The main reason for this distinctly di�erent

behaviour becomes clear by inspection of the lower panel of Fig. 9.4, in which the imagi-

nary parts of the coherences between the intermediate and �nal states are shown together

with the temporal �eld amplitude. The product of these two quantities determines to a

major extent the population exchange shown in the upper panel of Fig. 9.4, as is manifest

from Eq. (9.6). As both the �eld and the coherences oscillate in time, it is clear that their

product assumes the largest possible values if these oscillations are in phase with each

other. For the �eld with τ=12.0 fs, this occurs only with the coherence to the 51Σ+
g state,

as shown in Fig. 9.4c). In contrast, for τ=12.9 fs the oscillations are in phase between
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the �eld and the coherence to the 41Σ+
g state (cf. Fig. 9.4d)) during the time periods

between 20-30 fs and 38-45 fs, in which the population transfer to that state is positive.

In both cases, the �eld is always out of phase with the oscillations of the respective other

coherence. Thus, it can be concluded that adjusting the time delay τ between the two

laser pulses with a sub-fs precision tunes the �eld oscillations in such a way that they

are exactly in phase with the coherences pertaining either to the pair A1Σ+
u /4

1Σ+
g or to

A1Σ+
u /5

1Σ+
g , while being out of phase to the other, respectively. In this way, population

transfer takes place selectively to that state to which phase-matching occurs.

The fact that this subtle mechanism is perfectly reproduced by the FISH simulations

(cf. Fig. 9.3) clearly indicates that the FISH method is adequate for simulation and

control of coherent electronic state population dynamics in a manifold of several coupled

electronic states. Since the FISH method can be straightforwardly coupled with either ab

initio or semiempirical molecular dynamics, this opens a possibility to control coherent

electronic processes as well as to simulate time-resolved spectroscopies in complex systems,

even such as biomolecules interacting with the environment, which is far beyond the reach

of full quantum dynamics simulations and represents one of the major goals of this thesis.

The ability of the FISH method to correctly describe the coupled electron-nuclear

dynamics in a manifold of several electronic states is not restricted to the short pulse

limit, in which no signi�cant nuclear motion occurs, but also applies to the case in which

the laser pulse duration is longer and the internuclear separation changes considerably. As

an illustration, a double pulse sequence of longer time duration has been optimized with

the aim to achieve a maximal �nal population of the 21Πg state. The resulting pulse as

well as the time-dependent electronic state populations for both the quantum dynamical

and the FISH simulation are shown in Fig. 9.5. The �rst subpulse induces population

transfer between the ground state and the excited A1Σ+
u , 5

1Σ+
g and 21Πg states until

t≈130 fs. Under the in�uence of the second pulse at later times only Rabi cycles between

the ground state and the 21Πg state are induced via the A1Σ+
u , while the populations of

all other states remain very small. Finally, when the �eld ceases, a 21Πg population of

∼ 70 % is reached. Comparison between the exact quantum dynamics [Fig. 9.5b)] and

FISH [Fig. 9.5c)] clearly shows that, also in the case where the the wavepacket moves

substantially during the action of the pulse, the FISH electronic state populations agree

very well with the full quantum dynamics results.

The time evolution of the internuclear distance R and the corresponding momentum

P is illustrated in Fig. 9.6 in terms of probability distributions for both the full quantum

dynamics and the FISH dynamics employing the optimized pulse from Fig. 9.5a). For

the quantum dynamics, these distributions are obtained from the wavepackets in position
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Figure 9.5: a) Temporal �eld strength (blue) and relative temporal phase (red) of the
optimized long double pulse with a time duration of about 150 fs. The phase has been
obtained using Eq. (9.3) with ω0 = 1

2
(ω1 + ω2). b)/c) Time-dependent electronic state

populations obtained by quantum dynamics (b) and by employing the FISH method using
the ensemble of 300 trajectories (c).
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Figure 9.6: Position and momentum probability distributions according to Eqs. (9.7)-
(9.10) for the dynamics induced by the optimized double pulse shown in Fig. 9.5a) em-
ploying quantum dynamics [a) and c)] as well as the FISH method [b) and d)]. The label
a0 denotes the Bohr radius, a0 = 0.529Å. Blue color represents zero probability density,
yellow and red denote increasing positive values.

and momentum space as

Pqm
pos(R) =

∑
j

|χj(R)|2 (9.7)

Pqm
mom(P ) =

∑
j

|φj(P )|2 =
∑
j

∣∣∣∣ 1√
2π~

ˆ
dR e

i
~PRχj(R)

∣∣∣∣2 , (9.8)

where the index j denotes the electronic state. In the case of FISH, semiclassical proba-

bility distributions are obtained by convoluting each trajectory with a Gaussian function

of width ∆R =0.15 a0 in position and ∆P =2.5 a−1
0 in momentum space and averaging

over the whole ensemble:

Pcl
pos(R) =

1

N

N∑
k

e−
4ln2
∆R2 (R−Rk)

2

(9.9)

Pcl
mom(P ) =

1

N

N∑
k

e−
4ln2
∆P2 (P−Pk)

2

. (9.10)

As can be seen from Fig. 9.6a) the main part of the position wavepacket, starting from the

ground state minimum around 7.4 a0, steadily moves to larger internuclear distances until
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it reaches the outer turning point at 10.1 a0 after ∼ 350 fs. Since the �eld has already

ceased after 250 fs, the subsequent dynamics is dominated by the wavepacket oscillation

in the 21Πg state with a period of ∼ 750 fs. Similarly, also the momentum oscillates with

this period [cf. Fig. 9.6c)]. The same behaviour is seen for the FISH simulations [cf.

Fig. 9.6b) and d)]. Although the overall agreement is very good, after 700 fs the quantum

dynamics simulation exhibits characteristic interference features which are a consequence

of nuclear coherence [cf. the fringe-like structures around 800 fs in Fig. 9.6a)]. Such

phenomena as a matter of principle cannot be present in FISH simulations due to the

purely classical propagation of the nuclear degrees of freedom. However, the e�ect of

the electronic coherence is fully accounted for since the electronic degrees of freedom are

propagated quantum mechanically according to Eq. (3.26).

A complementary viewpoint may be obtained by analysing the dynamical processes in

terms of the phase space distribution. For this purpose, the quantum mechanical nuclear

wavepackets χj(R) have been Wigner transformed [82] as

Wqm(R,P ) =
∑
j

Wj(R,P )

=
1

2π~
∑
j

ˆ
dY χ∗

j

(
R− Y

2

)
χj

(
R +

Y

2

)
e

i
~PY . (9.11)

As can be seen from Fig. 9.7 the main part of the quantum mechanical Wigner distri-

bution exhibits an elliptical-like motion in the phase space as it is expected for a bound

potential. Interestingly, after 300 fs negative contributions appear in the distribution,

which can be attributed partly to portions of the wavepacket moving in other states than

the mainly populated 21Πg, and partly to quantum mechanical nuclear interferences. The

semiclassical FISH phase space density also shown in Fig. 9.7 is obtained by folding the

individual trajectories with Gaussian phase space functions of width ∆R =0.15 a0 for the

position and ∆P =2.5 a−1
0 for the momentum variable as

Wcl(R,P ) =
1

4Nπ²
√
σRσP

N∑
k

e−
4ln2
∆R2 (R−Rk)

2

e−
4ln2
∆P2 (P−Pk)

2

(9.12)

and evolves in time very similarly to the full quantum mechanical Wigner distribution.

In particular, the maxima of the phase space density evolve essentially identically in the

quantum and FISH simulations, whereas the width of the classical distribution becomes

slightly larger for later times of the dynamics. Regarding the negative features of the

quantum mechanical Wigner function, those belonging to wavepacket motion in less pop-

ulated electronic states appear also in the semiclassical distribution, but with a positive

sign (see e.g. Fig. 9.7 in the snapshot at 1050 fs the narrow feature at R ≈8.5 a0 and P
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Figure 9.7: Quantum mechanical Wigner distribution function Wqm and classical phase
space distribution Wcl obtained from FISH simulations for selected timesteps of the dy-
namics driven by the optimized double pulse from Fig. 9.5a). Violet areas correspond
to negative values of the distribution, blue to zero, yellow and red to increasing positive
values.
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between 5 and 15 a−1
0 ), whereas those parts corresponding to interferences are not present

(e.g. for 1050 fs the periodic feature above the main part of the wavepacket, for R between

9 and 11 a0 and P between 4 and 13 a−1
0 ), since they are not described within the mixed

quantum-classical FISH simulations as discussed above.

From the above discussed results, it becomes evident that the FISH method very

accurately reproduces both the electronic and the nuclear quantum dynamics. For the

present example, this is also true for the coherences between the electronic states, which

are essentially identical in the FISH and quantum simulations, as shown in Appendix C,

Fig. C.1. Consequently, in the following the electronic coherences obtained in the frame

of FISH will be applied to gain further insight into the mechanism underlying the control.

Similar to the case of short pulses discussed before, the resonant in-phase oscillations of

the �eld amplitude and the imaginary parts of the coherences between the coupled states

are of crucial importance for the selective excitation process. Therefore, in Fig. 9.8 these

quantities are depicted for all pairs of electronic states coupled by the optimized �eld for

the time period up to 150 fs. For comparison, also the populations of the respective target

states are shown, and the parameters of the optimized laser pulse are given in Table 9.1.

Parameter Value

E1 4.713 · 10−3EH/ea0
ω1 1.521 eV

∆t1 73.54 fs

τ1 120.8 fs

E2 8.390 · 10−3EH/ea0
ω2 1.473 eV

∆t2 86.48 fs

τ2 151.6 fs

Table 9.1: Optimized pulse parameters for maximizing the population of the 21Πg state [cf.

Eq. (9.2)].

From part a) of Fig. 9.8, it is visible that at the very beginning of the pulse phase-

matching occurs between the �eld oscillation and the imaginary part of the coherence

between the ground state and the intermediate A1Σ+
u state, initiating population transfer

from the ground state. Later on, the pulse is, during di�erent time periods, resonantly in

phase to the imaginary part of the coherence between the intermediate state A1Σ+
u and

either of the three possible �nal states 41Σ+
g , 5

1Σ+
g or 21Πg. However, most frequently this

phase-matching occurs to the 21Πg state, which consequently already after 140 fs assumes

the highest population (cf. Fig. 9.8b)). During the remaining part of the pulse (not shown

completely), both the resonance and phase-matching conditions are less well ful�lled for

all states. This is mainly due to the gradual changes of the energy gaps between the

states resulting from the nuclear motion. Speci�cally, this involves a decrease in the
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Figure 9.8: Time evolution of FISH electronic state populations and imaginary parts of
coherences compared to the laser �eld oscillation. Coloured lines in the upper panels of
a), b), c), d) represent the FISH populations, while in the respective lower panels the
imaginary parts of the ensemble-averaged coherences, Im ρ̄ij, are shown. The grey lines
indicate the �eld strength E(t). The following cases are shown: (a) Population of A1Σ+

u ,
coherence between A1Σ+

u and X1Σ+
g , (b) population of 21Πg, coherence between 21Πg

and A1Σ+
u , (c) population of 41Σ+

g , coherence between 41Σ+
g and A1Σ+

u , (d) population of
51Σ+

g , coherence between 51Σ+
g and A1Σ+

u . Yellow background indicates time periods in
which the �eld is in phase with the imaginary part of the shown coherences.
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gap between the 21Πg and the A1Σ+
u states, which is partially compensated for by the

optimal laser �eld exhibiting a likewise lowered frequency of the second subpulse (cf.

Table 9.1). Consequently, the detuning of the �eld from the resonance to this gap never

exceeds 0.1 eV, and eventually approaches zero towards the end of the optimal pulse.

Conversely, for the 41Σ+
g and 51Σ+

g states, the �eld is increasingly detuned by up to 0.2

and 0.3 eV from the resonance for t >150 fs. In addition, the second subpulse accounts

for the systematically smaller transition dipole moments for the 21Πg -A1Σ+
u transition

as compared to the transition from the ground to the A1Σ+
u state by exhibiting a higher

intensity than the �rst one (cf. Table 9.1). Altogether, these �ndings show that due

to (i) the interplay of resonant in-phase oscillation of the optimized laser �eld and the

imaginary parts of the coherences between selected pairs of electronic states and (ii)

the adaptation of the pulse parameters to time-dependent changes of coupling strengths

and resonance conditions, the optimal �eld is tailored such as to most e�ectively drive

the electronic state population to the 21Πg state. This detailed picture of the selective

excitation processes illustrates impressively the use of simulations to obtain profound

insights into the mechanisms underlying optimal control.

9.4 Conclusions

It has been demonstrated by comparison with exact quantum dynamics simulations that

the FISH method can accurately describe coherently driven electron-nuclear dynamics in

a system with several coupled electronic states. This can be utilized to coherently control

a sequential two-photon electronic excitation and to achieve a selective population of the

desired electronic state. Moreover, using an optimized laser pulse with a duration on the

time scale of the nuclear motion, it could be demonstrated that the FISH method is also

able to reproduce the coupled electron-nuclear dynamics in this case, even in spite of the

absence of minor nuclear coherence e�ects. For both types of laser �elds, the mechanism

of selective state population could be explained by subtle resonance and phase-matching

conditions between the driving �eld and electronic coherences between the coupled states.

These �ndings provide a basis for using the FISH method for the control of photochemistry

and photophysics in more complex molecular systems, which is possible in connection

with molecular dynamics �on the �y�. In the following Chapters 10 and 11, this will be

illustrated on two selected examples for control in biomolecular systems interacting with

their environment.

138



10 Coherent control in the condensed phase:

Laser pulse trains for manipulating

the photodynamics of solvated adenine

10.1 Introduction

Optimal control based on iterative pulse optimization represents, as discussed in Chap-

ter 8, an e�cient means to experimentally generate laser �elds capable to steer various

processes in molecular systems. It is commonly based on the optimization of a large

number of individual parameters, obtained e.g. by decomposing the electric �eld into

discrete spectral components and varying the associated amplitude or phase values. The

resulting pulse forms are usually quite complex and mostly not interpretable in a simple

way. Therefore, such experimental data are often insu�cient to provide the mechanism

underlying the control, and strategies to gain a deeper insight have to be developed. Be-

sides the direct application of experimental laser �elds in theoretical simulations, which

will be illustrated in the subsequent Chapter 11, another possible strategy consists in the

reduction of complexity, e.g. by utilizing simple analytically parameterized pulse shapes,

as discussed in Chapter 8. In particular, parameterization of the spectral phase by a sine

function leads to laser pulse trains with speci�c temporal and spectral patterns. Such

pulse trains have been employed in the present chapter for the manipulation of excited

state dynamics and nonradiative decay in solvated adenine.

The presence of nonradiative internal conversion processes that compete with the light-

induced dynamics poses a great challenge for the application of optimal control since these

processes rapidly bring the system back to the lowest excited or even to the ground elec-

tronic state. In this context, the question can be raised if also this type of processes can be

manipulated by adequately shaped laser pulses. In this way, nonradiative lifetimes could

be enhanced in order to enable selective spectroscopic studies of excited states or even to

invoke �uorescence of otherwise non-�uorescent molecules. This issue has been addressed

in several contributions based on a fully quantum mechanical description of the studied

molecular systems. On the example of the pyrazine molecule, in which without control

the internal conversion between the two lowest excited states S2 and S1 takes place on the

timescale of 20 fs [127,253], it has been shown that selective population of speci�c vibronic

states in the S2-S1 manifold can result in a signi�cant slowdown of the internal conver-

sion [386]. Moreover, based on the interference properties of di�erent vibronic states, an

elongation of the S2 lifetime can even be achieved if no isolated long-living states exist

in the chosen energy range, provided that these states ful�ll certain overlap criteria with

the exact eigenstates of the system [387,388]. However, such simulations rely on a quan-
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Figure 10.1: Chemical formulae of the 9H and 7H tautomers of adenine, di�ering by the
position of the H atom on nitrogen in the �ve-membered ring.

tum mechanical treatment of the nuclear motion, and therefore simplifying assumptions

such as selecting a limited number of normal modes or an approximate treatment of the

vibronic quantum states have been adopted in order to keep the computational e�ort rea-

sonable. Consequently, this type of control is not applicable in the framework of a mixed

quantum-classical simulation which is mandatory to treat complex molecular systems ac-

counting for all nuclear degrees of freedom. Yet it is exactly complex systems such as e.g.

DNA and RNA nucleobases that are prominent examples for very fast internal conversion

and that already in isolated form are too large for full quantum dynamics simulations,

let alone in combination with an environment such as a nucleic acid strand or a solvent.

Therefore, in the present chapter the possibilities of manipulating the excited state life-

times will be investigated employing the combination of mixed quantum-classical FISH

dynamics with the quantum mechanical-molecular mechanical (QM/MM) approach. The

prototype system chosen for this purpose is the nucleobase adenine in water environment.

Nucleic acids and their constituent nucleobases are indeed characterized by very short

excited state lifetimes upon ultraviolet irradiation both in aqueous environment [389�392]

and in the gas phase [393]. From the standpoint of biological evolution, this can be traced

back to the need for stability of the genetic information encoded within the nucleic acids,

which would be destroyed if the nucleobases underwent photochemical reactions after be-

ing exposed to sunlight. Therefore, in the early stages of molecular evolution only those

chemical species might have survived which could su�ciently fast dissipate the gained

energy before any harmful reactions could take place.

The mechanism of the ultrafast excited state decay of adenine has been the subject

of numerous experimental and theoretical studies. In solution, the two tautomeric forms

7H- and 9H-adenine, di�ering in the position of an H atom, are present (cf. Fig. 10.1), of

which the 9H-form is the dominant one [394]. Time-resolved photoelectron spectroscopy

studies have shown that, in the gas phase, the 9H-tautomer exhibits an excited state life-

time of about 750 fs after resonant excitation to the lowest-lying bright ππ∗ states at 267

nm [256,257]. However, the lifetimes are found to be strongly wavelength-dependent [258],
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reaching up to 9 ps for excitation at 277 nm [395]. Theoretical studies based on nonadia-

batic molecular dynamics using both semiempirical [125] and ab initio quantum chemical

methods [126] have revealed a two-step relaxation mechanism involving several conical

intersections between the electronic states. The initially excited bright state relaxes very

rapidly to the lowest excited state with a time constant of ∼ 20 fs, followed by the relax-

ation to the ground state with a time constant of ∼ 550 fs.

In aqueous solution, the time scales for nonradiative relaxation are considerably shorter.

Experimental investigations have obtained lifetimes for the dominant 9H-tautomer of 180

fs by transient absorption [394], about 550 fs by time-resolved �uorescence [396] and <300

fs by photon echo experiments [397]. Theoretical nonadiabatic dynamics simulations em-

ploying the semiempirical OM2-multireference con�guration interaction method combined

with the QM/MM approach have yielded a lifetime of 410 fs [136], whereas in the frame-

work of the time-dependent density functional tight-binding method (TDDFTB),1 explic-

itly including the water molecules in the �rst solvation shell, the nonadiabatic relaxation

proceeds within less than 200 fs [403].

In the context of such ultrafast nonadiabatic relaxation, the aim of the present chap-

ter is to explore to which extent the excited state lifetimes of adenine can be a�ected

using simple parameterized pulse trains, thus avoiding the need for full closed-loop �eld

optimization. This represents the �rst step towards the manipulation of the excited state

lifetimes of complex systems with the ultimate goal to selectively induce the �uorescence

of DNA nucleobases.

The chapter is structured as follows: In Section 10.2, the theoretical approach is

outlined by presenting the combination of �eld-induced surface hopping (FISH) with the

QM/MM approach and the procedure for the design of laser pulse trains. Subsequently,

the computational details are given in Section 10.3. The results of the nonadiabatic

dynamics of solvated adenine driven by laser pulse trains are presented in Section 10.4.

Finally, conclusions and outlook are given in Section 10.5. Most of the results presented

in this chapter have been published in Ref. [64].

10.2 Theoretical Approach

In order to simulate the laser-driven dynamics of adenine in aqueous solution, the FISH

method [55] presented in Chapter 3 has been combined with the QM/MM approach. This

allows for a general treatment of laser driven dynamics in complex systems interacting

with various types of environments such as solvents, surfaces or proteins. Furthermore,

1TDDFTB is the tight-binding analog to the TDDFT method. It is based on the density functional
tight-binding method, which represents an approximate DFT approach relying on a second-order expan-
sion of the total energy obtained within the Kohn-Sham formulation with respect to charge density �uc-
tuations around a �xed reference density. For a detailed description of this approach cf. Refs. [398�402].
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analytically parameterized laser pulse trains are constructed and applied for the manip-

ulation of excited state dynamics of adenine in water.

10.2.1 Combination of FISH with the QM/MM approach

Combining the FISH method with QM/MM represents a general approach to nonadiabatic

dynamics simulations under direct in�uence of laser �elds for molecular systems interact-

ing with their environment. This extends previous work on �eld-free QM/MM nona-

diabatic dynamics in the framework of time-dependent density functional theory [141].

In the present approach, the laser �eld is now explicitly included, thus allowing for the

use of arbitrarily complex pulse forms suitable for manipulation and control of excited

state dynamics. The basic idea of the QM/MM of separating the system into a quantum

mechanically described (QM) part and an environment which is treated by molecular me-

chanics (MM part), has been outlined in Sec. 2.2.3. In principle, the FISH method can

be combined with both the mechanical and electrostatic embedding schemes presented

this Section. In the present study, the more e�cient mechanical embedding scheme was

employed for solvated adenine. This choice was motivated by the fact that the electro-

static embedding is signi�cantly more time consuming in the context of FISH simulations

in which a large number of control pulses is used to drive the dynamics of an ensemble

of trajectories. Furthermore, the comparison between the mechanical and electrostatic

embedding schemes on selected trajectories lead to very similar results, thus revealing

only a very small in�uence of the electrostatic interaction between water and adenine on

the excited state dynamics and by that justifying the use of mechanical embedding (cf.

also the population dynamics shown in Fig. 10.3 for mechanical and in Appendix D for

electrostatic embedding).

The total energy of the combined system in the frame of mechanical embedding was

obtained according to Eq. (2.56). The forces needed to perform molecular dynamics

�on the �y� are determined from the gradient of Eq. (2.56), and both the nonadiabatic

couplings as well as the transition dipole moments were calculated only for the QM part.

10.2.2 Design of laser pulse trains

In order to perform the control of the excited state dynamics, phase shaping by an an-

alytical mask function in the spectral domain has been used. Speci�cally, the laser �eld

parameterized in the frequency domain as

E(ω) = E0 exp

[
−4 ln 2

w2
1/2

(ω − ω0)
2

]
exp [iφ(ω)] , (10.1)
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with amplitude E0, central frequency ω0, spectral width w1/2 and phase φ, has been

modulated employing a sinusoidal phase modulation

φ(ω) = a sin [τ(ω − ω0) + c] . (10.2)

This procedure provides complex pulse forms in the time domain, the features of which

only depend on the choice of the three parameters a, τ , and c. Consequently, the control

landscape can be fully sampled without the need for iterative optimization. In the time

domain, the laser �elds de�ned by Eq. (10.1) consist of a train of temporally separated

subpulses. The phase modulation parameters a, τ , and c determine the intensity variation

within the pulse train, the time separation of the subpulses and the sine or cosine character

of the modulation function, respectively.

10.3 Computational Procedures

The equilibrated structure of the solvated 9H-adenine, which is the dominant species

present in water, has been obtained by the following steps: First, adenine was placed into

a cubic water box of 49.2 Å side length, and classical force �eld molecular dynamics with

periodic boundary conditions using the TINKER package [404] was performed over 20 ps

at a temperature of 300 K until the system was equilibrated. For adenine, the OPLS-

AA force �eld parameters [405�409] were used, while water was described by the TIP-3P

parameters [410]. Subsequently, a water sphere with a radius of 35 Å was cut around the

adenine molecule, and the system was further equilibrated by performing a ground state

QM/MM dynamics simulation using the mechanical embedding scheme. The QM part

consisted of the adenine molecule, for which the semiempirical OM2 method [190,191] was

employed. From the QM/MM trajectory obtained in this way, a number of 100 initial

conditions was �nally generated by sampling at regular time intervals. In order to obtain

an almost ideal water sphere, the water droplets of each structure were further truncated

to a radius of 20 Å . In this way, adenine was solvated by about 1400 water molecules.

The FISH-QM/MM simulations have then been performed in the manifold of the

ground and the three lowest excited states. For this purpose, the OM2 method combined

with the GUGA multireference con�guration interaction [193, 411] was employed in the

framework of the MNDO program [412], and all single and double excitations out of the

ground-state determinant and of the leading con�gurations of the three excited states (cf.

Fig. 10.2b)) were taken into account within an active space of the six highest occupied

and four lowest virtual orbitals. The nuclear trajectories were propagated by numerical

solution of Newton's equations of motion using the velocity Verlet algorithm [180] with a

time step of 0.25 fs. The total propagation time depended on the applied laser �eld and

was chosen to be ∼ 1000 fs longer than the duration of the �eld. Along each trajectory

143



Chapter 10. Coherent control in the condensed phase: Laser pulse trains
for manipulating the photodynamics of solvated adenine

Figure 10.2: a) Theoretical electronic absorption spectrum of adenine in a water sphere for
the ensemble of 100 initial conditions. The individual transitions (black sticks) have been
broadened by a Lorentzian width of 5 nm (blue curve). For comparison, the experimen-
tal absorption spectrum of Kohler et al. [394] is also shown (red points). b) Theoretical
electronic absorption spectrum for the equilibrium structure of isolated adenine. The
dominant orbital excitations contributing to the three lowest-lying transitions are illus-
trated, with H indicating the highest occupied and L the lowest unoccupied molecular
orbital.
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R(t), the time-dependent Schrödinger equation (3.26) including the nonadiabatic coupling

and the coupling to the laser �eld was integrated using the Runge-Kutta procedure with

a time step of 2.5 · 10−5 fs. The electronic state coe�cients obtained in this way were

used to calculate the hopping probabilities according to Eq. (3.32). If the average absolute

value of the �eld within a nuclear time step was lower than 10−6 a.u., the nuclear velocities

were rescaled in the direction of the nonadiabatic coupling vector in order to assure energy

conservation. For higher �eld strengths, energy exchange with the �eld was assumed and

thus no velocity rescaling was applied.

The laser �elds employed in the simulations were parameterized in the frequency do-

main using a sinusoidal phase modulation as described in Section 10.2.2. Speci�cally,

1024 discrete frequency values in the range between 4.33 eV (287 nm) and 4.98 eV (249

nm) around a central frequency of 4.66 eV (266 nm) have been employed. The Gaussian

width w1/2 of the spectral amplitude was 0.19 eV. For the phase modulation parameters

the values a = π
2
, π, 3

2
π, 2π, τ = 20 fs, 40 fs, 60 fs, 80 fs, 100 fs and c = 0, π

2
, π, 3

2
π

have been used, giving rise to 80 di�erent pulse trains in total. The pulses in the time

domain are obtained by discrete Fourier transformation as E(t) =
∑

nE(ωn) exp(iωnt).

The unshaped pulse has a duration of ≈ 50 fs (full width at half maximum of 20 fs),

whereas the durations of the pulse trains vary between 150 and 2000 fs depending on the

pulse parameters. The maximum �eld amplitudes of the pulses correspond to intensities

of ≈ 7 · 1012 W
cm2 .

10.4 Results and Discussion

In this section the excited state dynamics simulations of solvated adenine under the in�u-

ence of laser pulse trains, obtained by the combined FISH-QM/MM approach outlined in

Section 10.3, will be presented. It will be demonstrated that pulse trains can be designed

which modify the course of the excited state dynamics and lead to a signi�cantly extended

residence time of adenine in the electronically excited states.

The calculated electronic absorption spectrum of adenine embedded in a water sphere

of 20 Å radius is shown in Fig. 10.2a) together with the experimental spectrum of Kohler

et al. [394]. The maximal absorption is located between 250 and 280 nm for both the

theoretical and the experimental spectrum, with a slight red shift of the theoretical spec-

trum. For a more detailed insight into the electronic structure, in addition the calculated

absorption spectrum of isolated adenine for the optimized ground state structure is shown

in Fig. 10.2b). As discussed in the literature, the electronic structure of adenine in the

low wavelength range is characterized by two bright states of ππ∗ character (La and Lb)

as well as by a low-lying dark nπ∗ state [413�415], which are also indicated in Fig. 10.2b).

The exact ordering of these states has been found to strongly depend on the used quantum

145



Chapter 10. Coherent control in the condensed phase: Laser pulse trains
for manipulating the photodynamics of solvated adenine

Figure 10.3: Population dynamics of solvated adenine induced by the fourier-limited laser
pulse at 266 nm (indicated in light blue), showing almost complete return to the ground
state after 1000 fs.

chemical method as well as on the actual molecular structure for which the calculation

is performed [125, 416�418]. This means that, within an ensemble of initial conditions

necessary to simulate a temperature-broadened spectrum, an unambiguous state ordering

cannot be given and is of minor importance for the properties of the system.

Irradiation of solvated adenine by an ultrashort resonant laser pulse of 266 nm wave-

length therefore leads to simultaneous excitation of the three lowest excited states, as

shown in Fig. 10.3. This is followed by ultrafast population transfer to the S1 state

within ∼ 50 fs, leading to almost 60 % population of this state. Subsequently, the decay

to the ground state takes place with a time constant of 475 fs, which is comparable to

the theoretical and experimental results from the literature discussed in the introductory

chapter 10.1.

In order to investigate the in�uence of the laser pulse shape on the dynamical processes

in the excited states, a set of pulse trains has been constructed based on the Fourier-limited

Gaussian pulse in the frequency domain. For this purpose, the phase modulation by a sine

function (cf. Eq. (10.2)) was applied and, in total, 80 pulse trains have been generated

by employing three parameters (a, τ , and c) with the values given in Section 10.3. These

pulse trains di�er mainly in the time delay as well as in the intensity pattern of their

subpulses. For illustration, the time pro�les of the pulse trains with parameter c = 0

are shown in Fig. 10.4. The whole set of 80 pulses has been subsequently employed in

QM/MM FISH dynamics with an ensemble of 50 trajectories, and the ability of the pulses

to e�ciently excite the adenine and to keep population in excited states has been assessed.

This allows for the construction of a three-dimensional control landscape as a function

of the parameters a, τ , and c. A two-dimensional section for the �xed value c = 0 is

presented in Fig. 10.5 for two di�erent control targets. First, the maximal S1 population
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Figure 10.4: Time pro�le of the pulse trains constructed by sinusoidal phase modulation
φ(ω) = a sin(τ(ω − ω0)), employing values for a between 0.5π and 2π and values for τ
between 20 and 100 fs.

Figure 10.5: E�ect of the laser pulses shown in Fig. 10.4 on the excited state dynamics
in adenine as function of a and τ . a) Maximal population of the S1 state after the end
of the pulse train. b) Time duration in fs until the S1 population drops below 30 % after
the end of the pulse train. High values are indicated by dark, low values by light grey
levels.
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Figure 10.6: E�ect of the laser pulses shown in Fig. 10.4 on the excited state dynamics in
adenine as function τ for �xed values of a = 2π and c = 0. Upper panel: Time duration
in fs until the S1 population drops below 30 % after the end of the pulse train. Lower
panel: Maximal population of the S1 state after the end of the pulse train.

Figure 10.7: Upper panel: E�cient pulse train (blue) obtained by superposition of the
unshaped pulse and a pulse train with a = 2π and τ = 80 fs. For visual clarity, in
the background the same pulse is shown in light blue in �vefold magni�cation. Lower
panel: Population dynamics induced by the laser pulse train which keeps the excited
state population above 40 % for 1000 fs.
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is shown in Fig. 10.5a), which demonstrates that the largest population transfer to the

S1 state is obtained for small values of a and τ . The associated temporal pulse form

is characterized by a short pulse duration of ∼ 150 fs and overlapping subpulses (cf.

Fig. 10.4), thus only small di�erences to an unshaped pulse are present. Secondly, in

order to reveal the in�uence of the pulse parameters on the time interval during which

a signi�cant population remains in the excited states, in Fig. 10.5b) the time range in

which the S1 population is kept above a threshold of 30 % is presented. The longest

time intervals are obtained for high values both of a and τ . In the corresponding pulse

trains, the total pulse duration amounts up to 2 ps and the subpulses are well separated.

Moreover, the total pulse intensity is distributed over a larger time interval, thus leading

to lower �eld amplitudes for the individual subpulses (cf. Fig. 10.4). Interestingly, these

pulses are just the least e�cient ones for achieving the �rst control target of inducing a

high population of the S1 state. In addition, for the value a = 2π, the excitation times

and maximal populations in the extended range of τ values up to 200 fs are shown in

Fig. 10.6, indicating that for the largest values of τ the nonradiative relaxation starts

to outweigh the �eld excitation due to the large time intervals between the subpulses.

Besides these �ndings for pulses with c = 0, very similar results are obtained for the other

values of c.

Based on these insights, a laser pulse has been constructed with the aim to simulta-

neously achieve a high initial excitation e�ciency and to keep the population in excited

states for a su�cient time. For this purpose the original unshaped pulse was superposed

by the pulse train obtained with the parameter values a = 2π, τ = 80 fs and c = 0.

The temporal structure of the resulting pulse beginning at t=0 fs is shown in Fig. 10.7

(upper panel). The population dynamics induced by this pulse, shown in the lower panel

of Fig. 10.7, is distinctly di�erent to that due to the unshaped pulse (cf. Fig. 10.3). Initial

excitation to all three excited states by the �rst intense subpulse is followed by ultrafast

decay of the S2 and S3 population to S1 within 50 fs.

However, before further relaxation to the ground state can occur, the next subpulse

leads to re-excitation from S1 to S2 and S3. In this way, the population is cycled between

the S1 and higher S2 and S3 states by a series of pump excitations followed by nonadiabatic

decay to the S1 state. These pump excitations induced by the substructures of the pulse

train serve to prevent the nonadiabatic relaxation from the S1 state to the ground state,

which would otherwise take place without the control pulse. In this way the population is

kept in the excited states for about 1000 fs, which is about twice as long as the intrinsic

lifetime of 475 fs. The dynamical processes under the in�uence of the pulse train are

further illustrated by the analysis of a selected trajectory as shown in Fig. 10.8. As

indicated by the background colours in the upper panel of this Figure, the dynamics takes

place mostly in the excited state manifold, between the states of which several hops occur.
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Figure 10.8: Analysis of a selected trajectory of adenine in water driven by the pulse train
shown in Fig. 10.7a). Upper panel: Energies of the electronic states S0 (black), S1 (red),
S2 (green), and S3 (blue) along the trajectory. The current state as a function of time is
indicated by the background colour. Snapshots of the structures of adenine at given time
steps are shown above. Lower panel: Normal mode displacements along the trajectory.
The displacement vectors of the selected modes showing the largest change during the
dynamics are visualized below.
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The structural snapshots at selected time steps make clear that the electronic excitation

mainly results in motion lifting the planarity of the ring system, and also partly in out-of

plane motion of the amino group as well as of the hydrogen at a carbon atom of the six-

membered ring, whereby structures in the vicinity of two conical intersections are reached

(see below). The �nal return to the ground state occurs at 1040 fs, at a con�guration

in which the energy gap to the ground state only amounts to 0.89 eV. Subsequently, the

planarity is restored, as can be seen from the snapshot at 1200 fs. Analysing the motion

in terms of normal mode displacements shown in the lower panel of Fig. 10.8 evidences

the dominant contribution of low-energy vibrations of the ring system to the nuclear

dynamics. This �nding is characteristic for all trajectories of the ensemble. Moreover,

the nuclear dynamics induced by the unshaped pulse (cf. Fig. 10.3) is also comparable,

although, as discussed above, the electronic dynamics is entirely di�erent.

From the population dynamics shown in Fig. 10.7 it becomes clear that after the pulse

train has ceased, nonadiabatic relaxation to the ground state occurs within about 500

fs, which is similar to the relaxation induced by an unshaped pulse (cf. Fig. 10.3). In

most cases the ground state is reached at a very small S1-S0 energy gap, indicating that

the transition happens in the vicinity of a conical intersection (CI). The characterization

of CIs in ring systems can be accomplished by classifying their structure according to

the Cremer Pople parameters [419], which quantify the ring puckering for a given CI. In

the case of adenine, there are two doubly degenerate CIs relevant for the nonadiabatic

dynamics [125,126], which are classi�ed as 1S6/6S1 and 2E/E2 in the notation introduced

by Boeyens [420] and are depicted in the right part of Fig. 10.9. The 1S6/6S1 CI has the

lowest energy (3.9 eV above the ground state minimum), whereas the 2E/E2 CI lies about

0.2 eV higher.

As recently found by Thiel et al., within the OM2 approach the nonadiabatic relaxation

of adenine to the ground state proceeds mostly in the vicinity of the 1S6/6S1 CI [136] both

in the gas phase and in water. In order to investigate how formed pulse trains in�uence the

dynamical pathways taken in the excited electronic states, the Cremer Pople parameters

for the �nal hops from S1 to S0 have been determined for the trajectories driven by the

pulse train of Fig. 10.7 and are shown in Fig. 10.9. Evidently, most of the trajectories hop

in the vicinity of the 1S6/6S1 CIs, similar to the case of �eld-free nonadiabatic dynamics,

while the contribution of the 2E/E2 CI is negligible. The trajectories driven by the

unshaped Gaussian pulse (not shown) behave similarly. Thus, the nonradiative relaxation

mechanism to the ground state is the same regardless if the excitation is achieved using

the unshaped Gaussian pulse or a pulse train. However, the excited state population

dynamics while the pulses are acting is fundamentally di�erent.

As discussed above, the dynamics induced by the pulse train is characterized by a

sequence of excitations and de-excitations between the S1 state and the higher-lying S2
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Figure 10.9: Distribution of Cremer-Pople parameters for the structures at �nal hops from
S1 to S0 for dynamics induced by the pulse train of Fig. 10.7. The structures of the lowest-
lying conical intersections of adenine are shown on the right. The individual structures
are classi�ed according to their similarity to the structure of a conical intersection. Blue
circles: close to 1S6/6S1, green circles: close to 2E/E2, brown circles: structure not in the
vicinity of a conical intersection.

and S3 states. This can be quanti�ed by analysing the hopping events between these

states as a function of time as shown in Fig. 10.10. The highest number of hops between

the states coincides with the presence of a subpulse. Immediately before the onset of

a subpulse, almost the complete excited state population resides in S1 (cf. Fig. 10.7).

Therefore, �rst the hops from there up to S2/S3 occur and reach their highest number

shortly before the �eld amplitude of the subpulse is maximal (cf. Fig. 10.10b)). With

increasing occupation of S2 and S3, also hops back to S1 are induced (cf. Fig. 10.10c).

The highest number of such events is reached a short time after the �eld maxima. When

the subpulse ceases, the nonadiabatic coupling between the excited states still invokes

hops from S2 and S3 down to S1, leading to rapid depopulation of these higher states

(cf. Figs. 10.7 and 10.10c)). In contrast to this behaviour, the unshaped pulse only once

excites the molecules, followed by a gradual relaxation from the bright states to the S1

state, and further to the ground state (cf. Fig. 10.3).

Therefore, on average, a trajectory driven by the pulse train resides much longer in the

higher excited states, which thus have a greater in�uence on the dynamics than in the case

of the unshaped Gaussian pulse. This can be quanti�ed by analysing the tendency of the

trajectories to move towards a CI between the S1 and S0 states when being propagated

in either of the excited states S1, S2, or S3. For this purpose, the temporal change of
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Figure 10.10: Time-averaged distribution of hopping events from the S1 up to the S2 and
S3 states (b) and back (c) for the dynamics induced by the pulse train of Fig. 10.7 (a).
The subpulses of the train consistently repopulate the higher S2 and S3 states and thus
decrease the time spent in S1 where the trajectories would quickly move towards a conical
intersection.

the S1-S0 energy gap is used to monitor if a given trajectory moves towards a CI or not.

This analysis has been performed for the trajectories driven by the pulse train for all

time periods during which they resided in an excited state and is shown in Fig. 10.11.

Evidently, when a trajectory is propagated in S1, in most cases the energy gap to the

ground state becomes smaller (in average, by -0.7 eV), indicating that the dynamics is

straightforwardly directed towards a CI. In contrast, the dynamics in S2 and S3 can lead

almost in equal measure to an increase or to a decrease of the energy gap. In average,

there is even a small bias towards the increase, as the average change is +0.02 eV for S2

and +0.1 eV for S3. This means, the longer a trajectory is propagated in the S2 or S3

states, the more strongly impeded is the approach to nuclear con�gurations in the vicinity

of an S0/S1 CI, which results in an elongated excited state lifetime. To achieve such more

frequent occupation of the S2 and S3 states, it is not necessary, as could be surmised, to

continuously irradiate the system. Instead, the above presented results show that a pulse

train with temporally well separated weak features is su�cient to keep the population in

excited states. This is mainly achieved by exploiting the di�erent shapes of the S2 and S3

potential energy surfaces, thus hindering the direct approach to the CI geometries, which

helps prevent the decay to the ground state for a longer time.
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Figure 10.11: Change of the energy gap between S0 and S1 state for all time intervals
when a trajectory resides in the states S1 (a), S2 (b) or S3 (c) for the dynamics induced
by the pulse train of Fig. 10.7. For the S1 state the average value is negative (-0.7 eV),
indicating straightforward motion towards a conical intersection. In contrast, the average
value is slightly positive for the S2 (+0.02 eV) and S3 (+0.1 eV) states, which means that
the trajectories depart from the vicinity of conical intersections.

10.5 Conclusions

It has been demonstrated how appropriately designed simple laser pulse trains can be

used to manipulate the excited state dynamics of adenine in water so as to elongate

the excited state lifetime. To this end, the combination of the FISH method with the

QM/MM approach has been introduced in order to include the water environment in the

laser driven dynamics simulations. This made it possible for the �rst time to fully simulate

the light-induced coupled electron-nuclear dynamics of a molecule interacting with its

solvent environment, thereby accounting for all degrees of freedom. Utilizing analytical

phase modulation in the frequency domain with a limited set of parameters, a pulse train

has been constructed which after initial excitation can keep the excited states in adenine

populated for a longer time. The underlying mechanism is schematically illustrated in

Fig. 10.12. It involves the sequential re-excitation from the �rst into higher excited states,

competing with the nonradiative ultrafast decay back to the �rst excited state. In this

way, the topography of higher potential energy surfaces in which the access to structures

of conical intersections is hindered can be exploited in order to prevent fast decay to the
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ground state. Such an elongation of the time period in which excited states are populated

could represent a means for increasing the �uorescence yield in molecules that intrinsically

exhibit ultrafast nonradiative relaxation. This may open fascinating new opportunities

in the context of applications using �uorescence detection, such as �uorescent labelling in

biosensing.

Figure 10.12: Schematic illustration of the laser-induced mechanism preventing immedi-
ate electronic state relaxation in adenine. After initial excitation (left part), the ensuing
dynamics lead the system to conical intersections with the ground state. However, be-
fore these are reached, subsequent features of the laser pulse train lead to the population
of higher excited states in which the direct access to structures near S0/S1 conical in-
tersections is hampered (middle part). This may ultimately enhance the probability for
radiative relaxation processes such as �uorescence (right part).

155





11 Revealing experimental control mechanisms:

Optimal dynamic discrimination of �avins

11.1 Introduction

The capability of optimal control using shaped laser �elds to selectively enhance or sup-

press a desired chemical or physical process such as formation of a speci�c reaction prod-

uct, structural isomerization, selective quantum state population or ionization has been

successfully demonstrated for a variety of examples in recent years, as discussed in Sec. 8.

In these applications, the aim was to extremize a target function corresponding to a spe-

ci�c outcome in a molecular system. However, it is often desirable not only to drive the

processes in a single system in a prede�ned way, but at the same time also to in�uence

the system's environment such as to minimize any disturbing e�ects on the detection

signal. Speci�cally, the detection of a molecule in the presence of structurally similar

surrounding is an important task in analytical sciences. Conventional approaches to such

problems can be based on high resolution spectroscopic or chromatographic techniques,

aiming to utilize minute di�erences of the analytes in order to separate them and to create

distinguishable detection signals. However, for molecules with almost identical response

in the framework of a given analytical technique, such approaches come to their limits.

As these methods are usually based on static molecular properties, it suggests itself to

consider using the dynamical behaviour of the system as a new dimension for control. In

this spirit, the optimal dynamic discrimination (ODD) technique has been theoretically

proposed [421�423]. It is based on the idea to exploit minor di�erences in the dynamical

properties of two almost identical quantum systems, the static properties of which do not

allow for their discrimination, in order to create distinguishable detection signals and thus

to signi�cantly push the limits of optimal control. On the example of simple quantum

mechanical few-level systems, the basic principles of ODD have been analysed in detail.

It was found that optimized electric �elds allowing for discrimination must drive one of

the systems as e�ciently as possible to the target state while keeping the other system's

state as much as possible orthogonal to that state. This is achieved by exploiting di�erent

multistep pathways, starting from the initial state via various intermediate ones to the

target state, thereby taking advantage of constructive or destructive interference between

the pathways. In this way, e�cient population of the target state may be achieved in

one and avoided in the other of two similar systems [422]. For isolated systems of �nite

dimension, the fundamental question of controllability has been addressed, and based on

a mathematical analysis, it has been shown that one can predict whether an arbitrarily

given target state can be reached by excitation with optimized laser �elds or not [424].
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Under realistic experimental conditions, though, the studied system is in most cases

not �nite but interacts with its environment. Nevertheless, it could be demonstrated that

the basic principles of ODD also hold in such cases, making ODD a signi�cant concept

for analytic applications. In pioneering studies, it has been shown that depletion of the

analyte �uorescence can be used as a discriminating signal in solution [425�427]. This is

achieved by employing a two-pulse pump-probe laser setup, in which one pulse prepares

an excited state and the second one induces irreversible processes such as ionization or

chemical degradation, thus decreasing the population of the excited state from which �u-

orescence could occur. In this way biological chromophores like tryptophan or ribo�avin

could be unambiguously discriminated from polycyclic organic pollutants such as naph-

thalene by di�erent amounts of �uorescence depletion, although all species show only small

di�erences in their static �uorescence spectra [425�427]. Based on these �ndings, the ques-

tion can be raised how much the sensitivity of discrimination can be still pushed further,

e.g. so as to discriminate between di�erent types of biological samples such as di�erent

species of bacteria, which might in the future have a signi�cant impact for novel health

care applications and the protection against biological hazards. In this context, the use of

optimally shaped laser �elds instead of unshaped pulses has been considered. Speci�cally,

on this account, the discrimination between the two molecules ribo�avin (RBF) and �avin

mononucleotide (FMN), which share the same chromophore (7,8-dimethyl isoalloxazine)

and only di�er in their side chain (ribityl for RBF, phosphorylated ribityl for FMN) has

been investigated experimentally [66, 428]. The �ndings obtained in these studies repre-

sent the basis for the detailed theoretical analysis presented in this chapter of the thesis,

with the aim to shed light on the molecular mechanisms underlying the ODD experiment

for RBF and FMN.

The mixed quantum-classical coupled electron-nuclear dynamics in the framework of

the FISH method o�ers a unique opportunity to directly employ experimentally obtained

optimal laser �elds in a simulation at the molecular level. This allows for the analysis of

dynamical processes and for gaining mechanistic insight into the principle of ODD, which

would not be possible based on experimental results alone. Therefore, the present chapter

also serves to illustrate the utility of FISH to complement experimental optimal control in

order to obtain a comprehensive picture of the control mechanism in complex molecular

systems.

The remainder of this chapter is organized as follows: First, the basic photophysical

properties of �avins are summarized in Sec. 11.2. The experimental results of the ODD be-

tween RBF and FMN are discussed in Sec. 11.3. Subsequently, the theoretical simulations

of the ODD process using experimental pulses are presented and discussed in Sec. 11.4.

Most of the results presented in Sec. 11.4 have been published in Refs. [67,237,429].
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Figure 11.1: Chemical formulae of ribo�avin (RBF), �avin mononucleotide (FMN) and
�avin adenine dinucleotide (FAD).

11.2 Photophysical properties of �avins

Flavins [430] represent a family of chromophores ful�lling important biological functions

as cofactors in a variety of enzymes [431], such as electron transferases [432,433], oxidases

and oxygenases [434] or bluelight photoreceptors [435, 436]. Their main function lies in

the oxidation of substrate molecules, the transfer of electron and hydrogen equivalents as

well as in their photochemical activity. All �avins are based on the same chromophore,

the aromatic 7,8-dimethyl isoalloxazine ring system, which is responsible for the optical

properties. However, they bear di�erent side groups, such as a ribityl chain (derived from

the sugar alcohol ribitol) in the case of ribo�avin (RBF), a ribityl chain with terminal

phosphate group in �avin mononucleotide (FMN), or a phosphorylated ribityl chain con-

nected to an adenosine monophosphate molecule in �avin adenine dinucleotide (FAD).

The chemical structures of these three molecules are depicted in Fig. 11.1. Their common

chromophore enables them to exhibit di�erent oxidation and protonation states [430]: The

canonical neutral oxidized form can be reduced with one or two electrons (accompanied by

protonation), leading to the radical semiquinone or the fully reduced hydroquinone form,

respectively. All three forms can also be protonated or deprotonated, leading to at least

nine di�erent species that can be present in solution or protein environment and exhibit

di�erent absorption properties. In this way, the above mentioned variety of biological

functions of �avins is achieved. Most remarkably, they are the only biological redox co-

factors which can both undergo one and two electron reactions [437]. In biological systems

such as proteins, the �avin cofactors present are FMN or FAD. The ribo�avin molecule

itself acts as a precursor for these in the human metabolism which has to be supplied by

nutrition and therefore represents a vitamin (B2). The structural, optical, and dynamical
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Figure 11.2: Calculated electronic absorption and �uorescence spectra for RBF (upper
part) and FMN (lower part) obtained using the semiempirical PM3 CI method. The
�uorescence spectra are obtained by broadening the individual transition lines of a Wigner
ensemble of 500 structures.

properties of �avins have been intensively investigated both in protein environment and

in the free molecules. In the following, the focus will be on the properties of bare RBF

and FMN, which have been used in the ODD experiments and simulations described in

the present chapter.

The common �avin species present both in solid phase and in aqueous solution is the

oxidized one, which only in the presence of reducing reagents can be transformed to the

semiquinone and hydroquinone species. Moreover, at neutral pH the uncharged forms are

dominant and are in any case the main source of �uorescence, as the quantum yield of

the charged species is very low [438, 439]. Therefore, only the oxidized neutral �avins as

depicted in Fig. 11.1 have been considered in the present chapter.

The electronic absorption spectra of both RBF and FMN in water are characterized by

four broad bands centered at 440, 375, 270, and 220 nm, respectively (cf. Ref. [438, 440]

for RBF and Ref. [441] for FMN). The spectroscopic features in this wavelength regime are

largely determined by the chromophoric isoalloxazine ring system common to all �avins.

Therefore, the spectroscopical patterns of molecules as RBF or FMN which only di�er in

the structure of their side chain are essentially identical [66]. This can also be evidenced

from the theoretical electronic absorption spectra of these two molecules calculated using

the semiempirical PM3 CI method and shown in Fig. 11.2, which are, despite some shifts

of bands, in reasonable agreement with the experimental ones. Similar results are obtained

using higher-level quantum chemical methods such as time-dependent density functional
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theory [442]. An analysis of the intense transitions shows that they are mainly composed

of ππ∗ excitations, with only small contributions of nπ∗ character. The energies and

electronic characters of the nine lowest excited electronic states for the lowest-energy

optimized geometries of RBF and FMN are summarized in Appendix E.

Upon photoexcitation to the �rst excited electronic state, dynamical processes are

initiated which have been the subject of several experimental and theoretical studies.

Employing femtosecond transient absorption spectroscopy, it could be shown that in the

initial stage of the dynamics, a coherent superposition between the bright S1(ππ
∗) state

and a close-lying nπ∗state is formed. Moreover, within the sub-ps regime, coherent oscilla-

tions of the transient absorption signal are observed which can be attributed to low-lying

vibrational modes [443]. This has been further con�rmed by femtosecond stimulated Ra-

man spectroscopy, clearly revealing the excitation of normal modes between 90 and 420

cm−1 after photoexcitation to the S1 state [444]. These processes are accompanied by a red

shift of the stimulated emission by ≈ 4000 cm−1, which is mostly due to structural relax-

ation of RBF, and to a small part also to solvent e�ects. The low-lying vibrational modes

of RBF have been in part also experimentally observed using far-infrared (terahertz) spec-

troscopy [445], and have been assigned utilizing quantum chemical calculations to torsions

of the ribityl chain as well as to out-of plane and in-plane ring deformations [445, 446].

The vibrational relaxation proceeds on a subpicosecond time scale via intramolecular vi-

brational energy redistribution (IVR) as well as by vibrational cooling due to interaction

with the solvent in the picosecond regime [444], as has been also established by time-

resolved infrared spectroscopy [447]. Theoretical calculations of infrared spectra in the

ground and �rst excited electronic state have allowed for the assignment of measured

infrared peaks and for the analysis of di�erences between both states, which mostly in-

volve slightly changed bond lengths in the isoalloxazine ring system, leading to shifts of

the corresponding normal mode frequencies [447, 448]. Furthermore, vibronic absorption

and emission spectra have been simulated, revealing that mainly progressions of in-plane

and out-of-plane as well as various stretching modes within the ring system contribute to

the vibrational structure of the emission and absorption bands [448]. Recently, also the

nonadiabatic relaxation dynamics for RBF has been simulated using ab initio molecular

dynamics combined with trajectory surface hopping [449]. In this way, the experimental

red shift of the stimulated emission due to structural relaxation could be con�rmed, and

the occurrence of nonadiabatic transitions between states of ππ∗ and nπ∗ character on

a 30 fs time scale could be established. Moreover, an analysis of the nuclear dynamics

has revealed that, immediately after electronic excitation, mainly stretching modes of the

ring system in the range between 1400-1700 cm−1 are excited. However, within less than

100 fs the vibrational energy is transferred to a multitude of other modes, in particular

to those below 1000 cm−1, which correspond to in-plane and out-of-plane motions of the
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rings as well as to torsions of the ribityl side chain. Investigation of the in�uence of water

on the dynamics has shown a stronger red shift of both absorption and emission maxima,

as well as a slightly faster IVR [449].

No return of excited state population to the ground state has been observed in the

picosecond time regime. Instead, the ground state is reached radiatively by �uorescence

which takes place in water in the case of RBF with a time constant of ≈ 5 ns and

a quantum yield of 0.26 [439] and for FMN with a time constant of 4.6 ns and the

same quantum yield [450]. The shapes of the �uorescence spectra of RBF and FMN are

also almost identical, as observed experimentally [439, 450] and shown theoretically in

Fig. 11.2. Besides the �uorescence pathway, also intersystem crossing from the singlet to

the triplet manifold takes place with reasonable quantum yield (≈0.4 in RBF), leading

to phosphorescence on a time scale of several microseconds [440]. However, since the rate

of intersystem crossing is su�ciently low (7 · 10−7s−1 [440]), the triplet manifold is only

negligibly populated within the picosecond time regime in which the laser pulses used for

the optimal dynamic discrimination described in this chapter are acting. Therefore, only

the dynamics within singlet states will be considered in the following.

11.3 Experimental ODD of RBF and FMN

The experimental ODD between RBF and FMN has been achieved by a two-pulse pump-

probe sequence using an iteratively optimized 400 nm UV pump pulse and a time-delayed

unshaped 800 nm IR probe pulse [66,428]. The optimization target was to manipulate the

�uorescence depletion induced by the pulse sequence, such as to generate a discriminating

di�erence in the amount of depletion between RBF and FMN. For this purpose, the pump

pulse was decomposed into 50 spectral parts corresponding to frequencies between 394.6

and 405.6 nm. Using a genetic algorithm, the spectral phases for each part were varied

until the optimization goal was ful�lled, giving rise to optimized UV pulses of complex

structure. The potential processes underlying the ODD control using such pulses are

schematically presented in Fig. 11.3. Excitation with a shaped UV pulse leads to popu-

lation of the S1 state and induces ultrafast coupled electron-nuclear dynamics which can

take slightly di�erent pathways in both molecules. After a time delay ∆t, the IR pulse

further excites the molecules to higher electronic states in which irreversible processes

such as ionization [451] or fragmentation [452] are likely to occur, but with di�erent ef-

�ciency for each of the two molecules. This leads to a depopulation of the excited state

manifold from which �uorescence could take place, and therefore the �uorescence yield

is depleted for one of the species and not for the other. The optimization procedure has

yielded a multitude of di�erent pulses for both optimization targets, i.e. minimization or

maximization of the �uorescence depletion ratio D(FMN)/D(RBF ). Characteristically,
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Figure 11.3: Schematic representation of the optimal dynamic discrimination between
RBF and FMN. Irradiation with a shaped UV laser pulse leads to excitation to the S1

state, as indicated by the blue arrow. After a time delay ∆t, during which the molecules
undergo dynamics in excited states, an unshaped IR pulse is applied. For one of the
molecules (here FMN, left part of the Figure), this leads to further excitation to higher-
lying states, where irreversible processes such as ionization can occur (red arrow), conse-
quently the �uorescence gets depleted (crossed red arrow). By contrast, for the second
molecule (here RBF, right part of the Figure), excitation to higher states is less favourable
(crossed red arrow), and the �uorescence (green) will remain stronger than for the �rst
molecule. With di�erently shaped UV pulses, also the reverse situation is possible.

it has been found that di�erent temporal substructures are present, which are separated

by time periods approximately equal to the oscillation periods of low-frequency normal

modes located in the �avin's side chains. Therefore, the conclusion has been made that

coherent vibrational dynamics of the side chain modes is largely responsible for e�cient

ODD. Moreover, by varying the time delay between pump and probe pulse, a typical

temporal window of less than 1 ps has been identi�ed, in which ODD is at all possible,

while for larger delays of the probe pulse no discrimination was observed. This is consis-

tent with the typical vibrational decoherence time scale of molecules in solution of less

than 1-2 ps [34]. However, a detailed picture of the processes involved cannot be drawn

based on experimental �ndings alone, which provides a strong motivation for the theo-

retical investigations presented in the remainder of this chapter. Beyond the possibility

to discriminate between two molecular species, the existence of several distinct pairs of

ODD pulses also o�ers an opportunity to use the di�erent depletion signals as a means to

determine the concentrations of both molecules in a given mixture [66,428]. In this way, a

novel method of quantitative analysis could be established which would allow determina-

tion of a substance's concentration in the presence of a spectroscopically almost identical

surrounding. Although the speci�c example of two �avin chromophores has been chosen

to illustrate the applicability of the ODD concept, the results obtained are of general im-
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portance, as they show the proof-of-principle. Therefore, ODD using shaped laser pulses

represents a promising technique to push the limits of analytical applications beyond the

current capabilities.

11.4 Simulation of ODD using experimentally shaped laser pulses

11.4.1 Computational

The simulation of ODD between FMN and RBF in the framework of the FISH method has

been performed by using experimentally optimized pulses which maximize and minimize

the �uorescence depletion ratio of both molecules, respectively.

For the multistate dynamics in the ground and the nine lowest excited singlet states

(S0-S9) the electronic structure is described employing the semiempirical PM3 CI method

[188]. As the active space, 11 occupied and 6 virtual orbitals are used, taking into account

all single excitations out of 12 reference con�gurations which have been identi�ed as the

leading con�gurations in the electronic states under consideration (cf. also Appendix,

Tables E.1 and E.2). In this way, the spectroscopic properties of the two �avin molecules

are reasonably accurately reproduced, as evidenced by the comparison with experimental

data (cf. Sec. 11.2) as well as with theoretical results obtained using TDDFT [449, 453,

454]. The energies, forces, nonadiabatic couplings, and transition dipole moments needed

for the molecular dynamics simulation are calculated �on the �y� accounting for all degrees

of freedom. For the nonadiabatic couplings and transition dipole moments between all

states the method developed by Thiel et al. is used [111].

The initial conditions (30 coordinates and momenta) for the simulation are generated

by sampling a 10 ps long ground state trajectory at 300 K which was obtained by using

the semiempirical PM3 method [188] for both molecules. The nuclear dynamics has been

carried out using the Langevin equation of motion (Eq. (2.13)), which is integrated em-

ploying a modi�ed version of the velocity Verlet algorithm [185]. For the atomic friction,

an empirical coe�cient of γ = 91.0 ps−1 for water environment is used [455]. In this way,

dissipative e�ects on the nuclear motion are approximately accounted for, enabling the

comparison of theoretical results with the experiment which was carried out in water.

Moreover, in the case of long pulses, the dissipative e�ects also ensure that the excess

of energy gained during the �eld-induced dynamics is released to the environment and

not arti�cially accumulated in the molecule. Along the nuclear trajectories, the time-

dependent Schrödinger equation (3.26) is numerically integrated in the manifold of all

electronic states, taking into account both the �eld-induced as well as the nonadiabatic

coupling. In order to determine in which state the trajectories are propagated, the hop-

ping probabilities are calculated from the electronic state populations ρii = |ci|2 using

Eq. (3.32).
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Figure 11.4: Wigner-Ville transforms of the shaped UV pulses for a) maximization of
the depletion ratio D(FMN)/D(RBF) (pulse 1) and b) minimization of that ratio (pulse
2). Analogous to the Wigner transform in the phase space, the Wigner-Ville transform is
de�ned as W (t, ω) = 2Re

´∞
0

dτ e−iωτE∗(t+ τ/2)E(t− τ/2).

The laser �elds obtained from experiment [66] are employed in the simulations ac-

cording to Eq. (3.26). For the shaped UV pulses, 50 experimental spectral phases and

amplitudes are used in order to reconstruct the �eld in the time domain according to

E(t) =
∑
n

An exp [i (ωnt+ φn)] , (11.1)

where An represents the spectral amplitude, ωn is the frequency, and φn represents the

spectral phase. The experimental frequencies correspond to wavelengths (λ = 2πc
ω
) in the

range between 394.6 nm and 405.6 nm and exhibit a temporal distribution as shown in

Fig. 11.4. In the time domain, the reconstructed pulses have a duration of ≈ 5 ps and

a maximum amplitude of ≈ 6·1011 W cm−2. The unshaped infrared probe pulse with a

wavelength of 800 nm has a maximum amplitude of ≈ 3·1012 W cm−2 and a Gaussian

envelope with a full width at half maximum of 100 fs.

Since the �uorescence depletion relies on irreversible processes such as ionization, these

e�ects must be introduced approximately in the Schrödinger equation (3.26) for the elec-

tronic states. This can be modeled by adding an imaginary component iΓ to the energy of

the highest excited state S9 which lies close to the experimentally determined ionization

limit in water [451]. In this way, irreversible population decay from S9 is introduced,

leading to a non-conservation of the total population norm
∑

i |ci|2. Subsequently, the

time-dependent coe�cients along the trajectories are recalculated and a hopping proba-

bility from the S9 state to the ionized state is introduced based on the decrease of the

population norm. This leads to a trajectory-averaged ionized state population Pion which

represents the irreversible decrease of the excited state population from which �uores-
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Figure 11.5: Electronic state population dynamics induced by an unshaped 400 nm UV
pulse (light blue) followed by an unshaped 800 nm IR pulse (light red). Left panel: Time-
dependent populations of the electronic states S0 (black), S1 (red), S2 − S3 (green) and
S4 − S9 (orange) in RBF. Right panel: Time-dependent populations of the electronic
states S0 (black), S1 (red), S2 − S3 (green) and S4 − S9 (orange) in FMN.

cence could occur, hence providing a direct measure for �uorescence depletion. In the

experiment, the latter is determined by taking the di�erence between the two �uores-

cence intensities corresponding to the shaped UV pulse alone and to both the shaped

UV pulse and the IR probe pulse, normalized to the intensity corresponding to the UV

pulse alone. In order to calculate this depletion ratio from the theoretical simulation, the

ionized populations Pion are used to determine the �uorescence depletion D as

D =
Pion(UV + IR)− Pion(UV )

1− Pion(UV )
. (11.2)

11.4.2 Results and Discussion

As outlined in Section 11.3, the experimental optimal dynamic discrimination has resulted

in optimized pump-probe pulse pairs that utilize minute di�erences in the dynamics of

the two almost identical molecules RBF and FMN to generate a measurable di�erence of

the �uorescence depletion signal. Speci�cally, for the optimization target of maximizing

the ratio D(FMN)/D(RBF ), about 12.6 % depletion has been achieved for FMN and

about 8 % for RBF. For the target of minimizing the same ratio, the depletion values

are essentially reversed, and in both cases this separation amounts to about 16 times the

standard deviation of the experiments. By contrast, the use of unshaped laser pulses

produces a depletion yield of ≈ 21 % for both molecules, thus illustrating the need for

optimized �elds in order to achieve discrimination [66].

In the experiment, the feasibility of this discrimination scheme could be impressively

demonstrated [66]. However, in order to reveal the dynamical processes behind this out-
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come on the molecular level, theoretical simulations are essential. Therefore, FISH simu-

lations in the manifold of the electronic ground as well as nine excited states have been

performed under the in�uence of both an unshaped UV/IR pulse sequence as well as of

two experimentally obtained laser �elds which have been optimized for maximizing or

minimizing the ratio of �uorescence depletion between FMN and RBF. These experimen-

tal pulses are henceforth termed pulse 1 for maximizing and pulse 2 for minimizing the

depletion ratio. As a starting point, the electronic state population dynamics induced by

an unshaped UV/IR pulse pair is shown in Fig. 11.5 for both RBF and FMN. It becomes

evident that the UV pulse is mainly responsible for excitation from the electronic ground

state S0 to the �rst excited state S1, while the IR pulse leads to further excitation to

higher electronic states, the population of which rapidly decreases after this pulse has

ended. No signi�cant return to the ground state can be observed, which is consistent

with the expected �uorescence of RBF and FMN. Small transient population di�erences

are observable after UV excitation. Most remarkably, in the case of FMN the higher-lying

states are populated with higher e�ciency, but these di�erences disappear before the IR

pulse sets in.

By contrast, the population dynamics induced by the optimized pulses 1 and 2 is

very di�erent due to their speci�c spectral and temporal structure, in particular their

longer time duration and the temporal overlap between UV and IR parts, as depicted

in Fig. 11.6. For both pulses and both molecules, the excitation process is initiated

by transitions from the ground state to the �rst excited state S1. This is followed by

further excitation to higher-lying states, in particular at t≈0.5 ps when the IR subpulse

is acting. It can be seen that by comparing the e�ect of the two pulses on the two

molecules, transient di�erences of the excited state populations are present. Furthermore,

the population of the higher states S2 − S9 is systematically smaller for RBF than for

FMN both for pulse 1 and pulse 2, similar to the dynamics driven by the unshaped

pulses. However, all these di�erences vanish after the pulses have ceased (t> +2.5 ps),

when the excited state population completely returns to S1, from which the �uorescence

will occur. This underlines the need for including also such processes into the simulation

which irreversibly decrease the excited state population and therefore lead to �uorescence

depletion. These e�ects, which can be e.g. ionization or photodegradation, are in the

present simulation approximately accounted for by allowing for irreversible population

decay from the highest excited state, as described in section 11.4.1. The empirical decay

parameter has been calibrated such that, as in the experiment, both molecules exhibit

identical depletion values when irradiated with an unshaped UV/IR pulse pair. In this

way, �ionized� state populations have been obtained which are shown in Fig. 11.7 (upper

panel). From these quantities, it becomes clear that mainly the IR subpulse at +0.5 ps

is responsible for ionization, although in the case of FMN ionized population occurs to
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a minor extent already at earlier times. The ionization yield evoked by pulse 1 is larger

than that due to pulse 2 in the case of FMN, whereas the reversed e�ect is observed

for RBF. This already demonstrates that shaped laser pulses are capable to selectively

and independently modulate the ionization e�ciency of very similar molecules. From the

ionized populations, the �uorescence depletion D has been calculated from the relative

decrease of the excited state population due to the UV/IR pulse pairs vs. due to the UV

pulse alone according to Eq. (11.2). This quantity is shown as a function of time in the

lower panel of Fig. 11.7. Since the �uorescence occurs on a signi�cantly longer time scale

than the dynamics driven by the optimal laser pulses, depletion values at intermediate

times < 2.5 ps should be interpreted as that amount of depletion which would be present if

the laser pulse had immediately ended at the given time. The comparison to the measured

depletion can be made from the �nal values at the end of the shaped pulses. It should be

noted that, in order to connect the �uorescence depletion with the ionized populations,

it has been assumed that no further population changes occur after the laser pulses have

ceased. The �nal �uorescence depletion value obtained in this way under the action of

Figure 11.6: Upper panel: Temporal structure of the shaped UV pulses 1 (blue, left part)
and 2 (blue, right part) as well as of the IR pulse (red). Middle panel: Time-dependent
populations of the electronic states S0 (black), S1 (red), S2 − S3 (green) and S4 − S9

(orange) in RBF driven by the pulse sequences shown in the upper panel. Lower panel:
Same as middle panel, but for FMN. For visual clarity, the populations have been time-
averaged over periods of 10 fs.
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Figure 11.7: Upper panel: Ionized populations Pion of RBF (black) and FMN (red) due to
pulse 1 (left) and pulse 2 (right). Lower panel: Fluorescence depletion D of RBF (black)
and FMN (red) due to pulse 1 (left) and pulse 2 (right). The laser pulses are indicated in
the background in light blue (shaped pulses 1 and 2) and light red (unshaped IR pulse).

pulse 1 is larger for FMN than for RBF, while for pulse 2 the situation is opposite (cf.

Fig. 11.7). The depletion ratios D(FMN)/D(RBF ) are calculated to be 1.4 for pulse 1

and 0.4 for pulse 2, which is in good agreement with the experimental values of 1.3 for

pulse 1 and 0.7 for pulse 2 [66].

While this result has been obtained with an IR pulse time delay of 0.5 ps, the calculated

depletion ratio shows a rapid loss of discrimination capability for larger time delays, as

depicted in Fig. 11.8, similar to the experimental �nding [66]. For time delays larger than

1 ps, the depletion ratios for both pulses approach 1.0, and discrimination is no longer

possible. As discussed in Sec. 11.3, this corresponds to the time window of coherent

dynamics in the liquid phase, thus emphasizing that the latter is necessary in order to

achieve discrimination. It should also be noticed that the use of unshaped pulses does

not allow for discrimination even for short time delays.

These results clearly con�rm the experimental observations of ODD between very sim-

ilar chromophores. However, beyond that, the theoretical simulations also o�er a unique

opportunity to gain an insight into the molecular mechanism responsible for discrimina-

tion. As outlined above, the amount of �uorescence depletion is directly related to the

ionization yield, which depends on the e�ciency of populating higher excited states above

S1. Therefore, the transition dipole moments between S1 and the higher states have been

calculated along the trajectories driven by the laser pulses 1 and 2, and averaged over

the whole ensemble. It becomes evident from Fig. 11.9a) and b) that pulse 1 induces
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Figure 11.8: Fluorescence depletion ratio as a function of the IR pulse delay for unshaped
UV pulse (black), pulse 1 (red) and pulse 2 (blue). For comparison, the experimental
data from Ref. [66] are shown in the right panel.

Figure 11.9: a), b): Average transition dipole moments for S1 → S2 − S9 transitions
for the dynamics driven by pulse 1 (a) and 2 (b) for FMN (red) and RBF (black). The
average is performed over the states S2 −S9 and over the ensemble of trajectories. c), d):
Average transition dipole moments 〈µn9〉 for S1 − S8 → S9 transitions weighted by the
state populations as 〈µn9〉 =

∑
n |cn|2|µn9|, in the time window of the IR pulse (light red)

for pulse 1 (c) and 2 (d).
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dynamical pathways which exhibit systematically larger transition dipole moments for

FMN than for RBF, indicating the stronger ionization and accordingly stronger �uores-

cence depletion in FMN. In contrast, for pulse 2 this behaviour is reversed at times after

+0.5 ps, leading to higher transition dipole moments for RBF and thus in this case to

a stronger �uorescence depletion compared to FMN. Since in the model used here the

ionization only occurs from the highest excited state S9, also the e�ciency of populating

this particular state has been analysed by calculating the averaged transition dipole mo-

ments 〈µn9〉 weighted by the populations of the respective states Sn, n=1-8, as presented

in Fig. 11.9c) and d). The pulse 1 invokes larger di�erences between these quantities

in favour of FMN, while for pulse 2, especially when the IR pulse is acting, only small

di�erences between RBF and FMN are present. These �ndings obtained by analysing the

transition dipole moments are clearly consistent with the ionization yields presented in

Fig. 11.7.

In order to establish the connection between higher transition dipole moments and the

structural changes during the dynamics, the averaged nuclear displacements have been

analysed along the trajectories in terms of the ground state normal modes. In general,

it has been found that the discriminating pulses induce conformational di�erences which

are mainly localized in the polar side chains of both molecules. The normal modes most

strongly involved typically lie in the low-frequency regime below 100 cm−1. In Fig. 11.10,

two prototype low-frequency modes of each molecule, exhibiting large displacements in-

duced by pulses 1 and 2, are shown. The excitation of these modes di�ers considerable

depending on which pulse is acting on the system: Pulse 1 invokes smaller deviations

for the normal coordinate Q2 in RBF, and also for Q4 the deviation due to pulse 2 is

transiently larger than that induced by pulse 1. For the case of FMN, there are larger

deviations after a time of 0 ps for Q2 and Q9 due to pulse 1 compared to pulse 2. Similar

observations can be made for other low-lying modes. Thus, the excitation of these modes

leads to molecular conformations which exhibit systematically higher or lower transition

dipole moments to higher excited states leading to ionization, depending on which of the

two discriminating pulses is acting. Since RBF and FMN only di�er in the side chain, dif-

ferences in the dynamical behaviour can be expected to occur in this part of the molecules

due to the interplay of the e�ect of the heavy phosphorus atom in FMN and the di�erences

of the vibrational density of states in both molecules.

11.4.3 Conclusions

In the present study, FISH simulations in a manifold of 10 electronic states of RBF and

FMN under the in�uence of experimentally shaped laser �elds have been performed to

obtain mechanistic insight into the processes leading to optimal dynamic discrimination.

This represents the very �rst application of an experimentally optimized laser �eld in
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Figure 11.10: Selected averaged normal mode displacements for RBF (upper panel) and
FMN (lower panel) induced by pulse 1 (black) and pulse 2 (red).
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Figure 11.11: Schematic illustration of the optimal dynamic discrimination by shaped
laser �elds on the example of shaped pulse 1 maximizing the FMN/RBF �uorescence
depletion ratio.

mixed quantum-classical dynamics simulations accounting for the full system complexity

including environmental e�ects. The mechanism of the discrimination process found in

this way can be summarized as depicted in Fig. 11.11: UV excitation of the molecule

induces dynamical processes in excited states which mainly a�ect the low-frequency vi-

brational modes of the side chain. The discriminating pulse e�ciently drives one of the

molecules to regions of the potential energy surface where the transition dipole moments

to higher excited states are large, such that the ionization and thus the �uorescence de-

pletion are enhanced (pulse 1 for FMN, pulse 2 for RBF). The same pulse acting on the

other molecule (RBF for pulse 1, FMN for pulse 2) suppresses the ionization (�uorescence

depletion) by keeping it in regions of the potential energy surface with lower transition

dipole moments. Thus, shaped pulses can take advantage of minute di�erences in the vi-

brational dynamics and exploit them to manipulate observables such as transition dipole

moments, which eventually allows for selective molecular discrimination. This mechanism

might represent a general toehold for the discrimination between similar molecules and

therefore opens a promising perspective for using optimally shaped laser pulses in bioan-

alytical applications, in this way increasing the selectivity beyond the current capability.
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In the present thesis, a theoretical framework for the simulation and control of ultrafast

coupled electron-nuclear dynamics in complex molecular systems has been presented and

applied. As a methodological basis served the �eld-induced surface hopping method

(FISH), which was extended for the description of complex systems including the solvent

environment. The FISH method combines the classical description of the nuclei with the

quantum mechanical treatment of the �eld-driven electronic dynamics, and thus represents

a broadly applicable tool for the simulation of laser-driven multistate dynamics in complex

systems. In particular, both the simulation of time-resolved spectroscopic observables as

well as the active laser control of molecular processes can be performed in the frame of

FISH.

Such investigations can be carried out under two complementary points of view.

Firstly, theoretical studies can be performed for problems which have not been exper-

imentally addressed so far. This allows for the prediction of new phenomena and may

help establish the conditions for experimental observation, thus providing a strong impe-

tus on the design of novel experiments. Besides that, theoretical simulations can also be

utilized as a valuable device to supplement experimental �ndings, often providing a key to

the molecular-level understanding of the studied processes. This approach is particularly

convenient in the framework of FISH, since this method allows for the use of arbitrarily

shaped electric �elds, hence experimental laser pulses can be directly employed.

This broad applicational scope has permitted in the frame of this thesis the investi-

gation of a number of intriguing problems in ultrafast spectroscopy and coherent control.

With regard to spectroscopy, the FISH method has been extended in order to simulate

experimental observables, with a particular focus set on time-resolved photoelectron spec-

tra (TRPES), which represent a sensitive probe for the coupled electron-nuclear dynamics

in molecular systems.

This new methodology has been employed to simulate the TRPES of small noble-

metal clusters. Such systems are characterized by strongly size-dependent stationary and

dynamical properties and are, due to their unique reactive and emissive properties, of

large interest in the context of novel catalytic and photonic materials. In particular, the

Ag3 cluster was chosen as a representative system whose ground state dynamics has been

already extensively studied previously. In contrast, knowledge about the excited state

properties has been scarce so far. Performing FISH dynamics simulations and calculating

the associated TRPES signal, the time scale of electronic relaxation from the initially pop-

ulated states could be determined as about a picosecond, and the accompanying dynamics

could be characterized by large-amplitude motions involving all degrees of freedom. The

use of two di�erent sets of initial conditions, both for the linear and the triangular struc-
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ture of the system, revealed slight di�erences in the relaxation time scales, but overall,

a similar electronic relaxation process leading to the lowest excited states without reach-

ing the electronic ground state has been found. These results allow for proposing novel

pump-probe experiments for the veri�cation of the theoretical �ndings.

The second cluster system for which the relaxation dynamics and TRPES has been

studied in this thesis is the anionic Au−7 cluster, for which experimental TRPES data

are available. While previous studies of the relaxation processes initiated after excitation

to the lowest excited state have revealed a fast return to the ground state accompanied

by a large structural rearrangement [62], the use of higher excitation energy leads to a

completely di�erent dynamics. The corresponding experimental TRPES data could be

explained, using FISH simulations, as due to a bulk-like electronic relaxation in an elec-

tronic manifold of high state density, without the occurrence of large-amplitude nuclear

motion. This �nding has revealed the existence of di�erent relaxation mechanisms in

small clusters, depending on the initial excitation energy.

Beyond the simulation of time-resolved observables, the FISH approach provides also

unique opportunities to simulate coherent control processes, which represents the main

focus of the applications studied in this thesis. The accuracy of FISH for the control

of strong-�eld electronic population dynamics has been assessed and validated against

numerically exact quantum dynamics simulations on the example of selective electronic

state population transfer in the K2 molecule, which has recently been also realized ex-

perimentally [374]. In this system, it has been found that, due to subtle phase-matching

conditions of the excitation �eld with the oscillations of the system's electronic coher-

ence terms, selective population of close-lying excited states can be achieved. The very

good agreement between the FISH and quantum dynamics simulations has provided a

strong fundament for the use of FISH-based simulations in the context of optimal control.

This has been exploited for studying applications of optimal control in complex molecular

systems interacting with their environment.

For optimal laser control, precisely tuned �eld-induced excitation and deexcitation

processes often play a decisive role. These are counteracted by the intrinsic molecular

relaxation phenomena, such as internal conversion, which can, in certain molecules, pro-

ceed very fast through conical intersections between electronic states, thus preventing

competing radiative processes such as �uorescence. Therefore, in this thesis the question

was raised if optimal control may be used to suppress nonradiative relaxation in order to

substantially elongate electronic lifetimes. Such a control strategy might be utilized for

�uorescence enhancement in molecules with otherwise very small �uorescence quantum

yield, which is of interest in the context of biosensing applications. In order to study this

problem, the example of the nucleobase adenine embedded in a nanometer-sized droplet

of water has been chosen. By employing an analytical pulse parameterization, a set of
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pulse trains has been constructed, and the ability of each pulse train to achieve the op-

timization goal has been assessed. It has been concluded that the sequential population

cycling in the excited state manifold, caused by the substructures of the pulse trains, is

mainly responsible for an elongation of the excited state lifetimes. This is achieved by

utilizing the topography of higher-lying excited-state potential energy surfaces, in which

the motion of the adenine molecules towards conical intersections to the ground state is

hindered and thus the nonradiative relaxation is retarded. These results represent the �rst

application of theoretical pulse shaping in a full dimensional simulation in the condensed

phase.

Besides this predictive aspect of FISH simulations for control applications, it has been

also demonstrated in this thesis that laser pulses optimized experimentally can be straight-

forwardly employed in the simulations, thus allowing for the �rst time for molecular-level

mechanistic insights into the experimentally achieved control of complex systems in the

condensed phase. Speci�cally, this approach has been utilized in order to reveal the

molecular mechanism underlying the method of optimal dynamic discrimination (ODD)

of almost identical quantum systems. This technique has been previously proved exper-

imentally to allow for the generation of distinctive signals for molecular systems that

cannot be distinguished by common spectroscopic means [66]. It is based on initiating

dynamical processes in excited states and subsequently probing the dynamics by a strong

ionizing infrared laser pulse, which depletes the measured �uorescence yield. In the present

thesis, the ODD of the two optically very similar biochromophores ribo�avin and �avin

mononucleotide has been studied. For these systems, experimental optimal control has

succeeded to generate optimized laser pulses that give rise to distinguishable �uorescence

depletion signals for the two molecules. FISH simulations of the dynamics induced by

these pulses allowed for the identi�cation of the control mechanism, which is based on

utilizing minute di�erences of the transient dynamics in the two molecules. Thereby, one

of them is driven to parts of the potential energy surfaces in which the ionization pro-

cesses are enhanced, while the other molecule is lead to regions where these processes are

suppressed. In this way, di�erent ionization e�ciencies are re�ected in di�erent amounts

of �uorescence depletion, thus providing discriminating detection signals.

Altogether, in the present thesis the strength of the mixed quantum-classical FISH ap-

proach as a valuable novel tool for the simulation of light-driven nonadiabatic dynamics

has been demonstrated. In particular, it could be shown that the applicability ranges from

small diatomics up to complex biomolecules in the condensed phase, and both spectro-

scopic observables as well as optimal control can be simulated. Irrespective of the speci�c

application, the FISH approach always allows for the study of two complementary as-

pects: The initial theoretical investigation of molecular systems, leading to the prediction

of possible experimental outcomes or strategies, as well as the use of simulations as a
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device for the interpretation of available experiments.

The results obtained from the investigations presented in this thesis allow for envi-

sioning several lines of possible subsequent research. In the context of TRPES, the study

of the time-resolved dynamics in more complex systems, such as biomolecules in solvent

environment, is desirable. Moreover, the extension of the method for simulation of TR-

PES presented here to the simulation of both energy- and angle-resolved photoelectron

anisotropy maps would represent an important advancement, and research e�ort in this

direction is presently going on [456]. With regard to coherent control, it might be of

interest to use adaptive pulse optimization in order to further improve the controllability

of excited state lifetimes. Ultimately, this may lead to invoking �uorescence in other-

wise non-�uorescent systems, which has application potential in the area of bioanalytics.

Moreover, due to the recently accomplished demonstration that the FISH method is also

capable to simulate multiphoton excitation processes [234], an extension of optimal control

which exploits the interplay of di�erent excitation regimes may be envisaged.

In summary, the results presented here provide a �rm basis for further investigations

along di�erent directions of research in ultrafast spectroscopy and molecular optimal

control, including both fundamental and application-oriented routes.
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A Computational details and supplementary material

for the model studies of Chapter 4

The model studies presented in Chapter 4 have been performed using one-dimensional

potentials. In the following, the parameters of these potentials will be given. Throughout

this chapter, atomic units are employed, i.e. Planck's constant ~ equals unity, and the

unit of mass is the electron mass me, the unit of length is the Bohr radius a0, the unit of

energy is the Hartree EH , and the unit of �eld strength is EH/ea0 with e as the elementary

charge.

For all model systems presented here, the moving particle was assigned the reduced

mass of Na2, m=20953.888 me. The quantum dynamics simulations were performed using

the second-order di�erence propagator (cf. Sec. 1.1, Footnote 3) with a numerical grid

of 256 points between 4 and 12 a0. The initial wavefunction was chosen as the lowest

eigenfunction of a harmonic oscillator potential with ω = 9.551006 · 10−4 EH, which is

characterized by a similar curvature around the minimum as the ground state potential

used Sec. A.1. In Sec. A.2 and A.3, this harmonic potential was directly employed as the

ground state. For the FISH simulations, the Wigner distribution of the lowest harmonic

oscillator eigenfunction was sampled at 0 K, and 200 (in Sec. A.3: 300) initial conditions

were generated.

A.1 Forbidden hops and internal consistency (Sec. 4.1)

The system is composed of three Morse potentials of the form

V (R) = D
(
1− e−α(R−R0)

)2
+D0 (A.1)

with the parameters

V D(EH) α(a−1
0 ) R0(a0) D0(EH)

0 0.02707 0.4218 5.8 0.0

1 0.03574 0.2872 6.2 0.0665

2 0.02416 0.3338 6.3 0.1167

of which the D and α values were obtained by �tting the Na2 potentials given in Ref. [457]

to Morse functions. For the quantum dynamics simulation a time step of 2.42 ·10−3 fs was

used. For the FISH simulation, the initial Wigner ensemble was propagated twice using

the velocity Verlet algorithm with a nuclear time step of 0.5 fs over a total propagation

time of 200 fs. The electronic state coe�cients were calculated using the fourth order
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Runge Kutta method with a time step of 2 · 10−4 fs. The �eld coupling was mediated by

electronic transition dipole moments between the states 0 and 1 as well as between 1 and

2. The speci�c values were obtained by interpolation from the data given in Ref. [457].

The electric �eld was chosen as a sequence of two Gaussian pulses as

E(t) =
2∑

i=1

Ei exp

[
−4ln2 (t− ti)

2

∆t2i

]
cos [ωi (t− ti)] , (A.2)

with the parameter values

Pulse Ei(EH/ea0) ∆ti (fs) ti (fs) ωi(EH)

1
0.002 35

50 0.06703

2 90 0.05023

A.2 Quantum coherence in FISH (Sec. 4.2)

A.2.1 General settings

The classical trajectories in the FISH simulations were propagated using the velocity Ver-

let algorithm with a nuclear time step of 0.1 fs. The electronic coe�cients were calculated

using the fourth order Runge Kutta method with a time step of 4 · 10−5 fs.

The �eld coupling was mediated for the two-state systems of A.2.2 and A.2.3 by a constant

electronic transition dipole moment of µ01 = 3.6 ea0. For the three-state system described

in paragraph A.2.4, in addition the transition dipole moment µ12 = 3.6 ea0 was employed.

The electric �eld was chosen as a sequence of two Gaussian pulses as given in Eq. (A.2).

In the following, the parameters speci�c to each model system will be summarized.

A.2.2 Model system for studying the in�uence of coherence magnitude

In order to construct the double well potential presented in Fig. 4.2, �rst, two harmonic

potentials were considered

V (R) =
k

2
(R−R0)

2 + V0 (A.3)

with the parameters given as

V k(a−2
0 ) R0(a0) V0(EH)

0 0.01912 5.825 −0.01
1 0.04 7.825 0.0
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In a second step, a 2× 2 matrix was constructed for each point on a grid between 4 and

20 a0, with the diagonal elements given by the respective values of two above harmonic

potentials, and the o�-diagonal elements were set to a value of V01 = 0.001EH. The

double well potential was then constructed from the lowest eigenvalues of all matrices as

a function of the grid points, for intermediate points during the dynamics the values were

interpolated. For the upper state potential, an exponential function given by

V = e−αR + V0 (A.4)

was used with the values α = 0.6 a−1
0 and V0 = −0.00914EH.

The following additional settings were applied for the time propagation:

Propagation time (fs) Quantum dynamics time step (fs)

120 3.02 · 10−3

The �eld was given according to Eq. (A.2) with the parameter values

Pulse Ei(EH/ea0) ∆ti (fs) ti (fs) ωi(EH)

1 varied
5

20 0.03122

2 0.002 80 0.0

where the amplitude of the �rst pulse was varied between 0.0005 and 0.004 EH/ea0. The

classical ensemble was propagated twice for the FISH simulations employing pulse 1 �eld

strengths from 0.002 to 0.004 EH/ea0.

A.2.3 Model system for studying the in�uence of coherence phase

This model system is composed of two harmonic potentials with parameters

V k(a−2
0 ) R0(a0) V0(EH)

0 0.01912 5.825 0.0

1 0.005 6.3863 −0.0007876

The following additional settings were applied for the propagation:

Propagation time (fs) Quantum dynamics time step (fs)

400 6.05 · 10−3
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The �eld was given according to Eq. (A.2) with the parameter values

Pulse Ei(EH/ea0) ∆ti (fs) ti (fs) ωi(EH)

1
0.001 5

20 0.0

2 331 0.0

The whole ensemble was propagated twice.

A.2.4 Model system for studying pump-probe excitation

For this model system, the previous two harmonic potentials were supplemented by an

additional one with the parameters

V k(a−2
0 ) R0(a0) V0(EH)

2 0.005 6.3863 0.04921

The following additional settings were applied for the propagation:

Propagation time (fs) Quantum dynamics time step (fs)

200 6.05 · 10−3

The �eld was given according to Eq. (A.2) with the parameter values

Pulse Ei(EH/ea0) ∆ti (fs) ti (fs) ωi(EH)

1 0.001
5

20 0.0

2 0.004 175.5 0.05
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A.3 Field-induced excitation and distribution of vibronic energy

(Sec. 4.3)

The employed potentials are of the harmonic form given in Eq. (A.3), with the parameters

V k(a−2
0 ) R0(a0) V0(EH)

0 0.01912 5.825 0.0

1 0.005 6.3863 −0.0007876
2 0.03 6.3863 −0.0047258

For the quantum dynamics simulation a time step of 6.05 · 10−3 fs was used. For the

FISH simulation, the initial Wigner ensemble was propagated twice using the fourth order

Runge Kutta algorithm with a nuclear time step of 0.1 fs, over a total propagation time

of 200 fs. The electronic coe�cients were calculated using the fourth order Runge Kutta

method with a time step of 4 · 10−5 fs. The �eld coupling was mediated by a constant

electronic transition dipole moment of µ01 = 3.6 ea0. The electric �eld was chosen as a

Gaussian pulse as

E(t) = E1 exp

[
−4ln2 (t− t1)

2

∆t21

]
cos [ω1 (t− t1)] , (A.5)

with the parameter values

Pulse Potentials E1(EH/ea0) ∆t1 (fs) t1 (fs) ω1(EH)

short V0+V1/V2 0.001 5 20 0.0

long
V0+V1 0.001 50 80 0.0

V0+V2 0.002 50 80 0.0

In the following Fig. A.1 the total electronic state populations induced by these pulses

are presented, supplementing the time-dependent vibrational state populations discussed

in the main part of the thesis, Sec. 4.3.
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Figure A.1: Electronic state populations after excitation from V0 to the shallow potential
V1 or to the steep potential V2, respectively, using a resonant laser pulse of (a) 5 fs and
(b) 50 fs duration (indicated as turquoise arrows).
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B Field-induced surface hopping

with decoherence correction

In order to remedy the problem of a non-decaying coherence magnitude, a modi�ed FISH

procedure including an empirical coherence decay correction is devised in the following.

This approach is tested on the example of the double-well model system considered in

Sec. 4.2 (cf. also Sec. A.2.2 above).

The method for introducing coherence decay is largely similar to the approach presented

in Ref. [117], however some modi�cations are made to account for the speci�c case of �eld-

induced excitation. The basic idea relies on the creation of Gaussian wavepackets in the

coupled electronic states and modelling the coherence decay as a function of the overlap

of these wavepackets. For this purpose, to each trajectory in a given state i a Gaussian

gi with �xed width σ is formally assigned. For the non-occupied states j, Gaussian

wavepackets gj,k are created if either (i) between two time steps n∆t1 the occupation

probabilities pj = |cj|2 increase by more than a threshold ∆p+min, or (ii) if the trajectory

has just hopped out of the particular state j 2. These Gaussians are assigned the current

trajectory values for position and momentum3, as well as a weight factor, which in case

(i) is given by the increase in probability as w(j)
k = pj(t) − pj(t − n∆t) and for case (ii)

is chosen as w(j)
k = pj(t). This weight is kept �xed for the rest of the dynamics. If more

than one Gaussian are assigned to a particular state, their weighted sum Gj =
∑

k b
(j)
k gj,k,

with b
(j)
k = Njw

(j)
k /pj is normalized, i.e. Nj is determined such that 〈Gj|Gj〉 = 1. The

Gaussians obtained in this way evolve in time governed by the forces corresponding to

the assigned state for the current value of the position coordinate in the given trajectory.

The coherence decay is then modelled in the following way: If the overlap b
(j)
k 〈gj,k|Gi〉of

the Gaussian assigned to the current state i and the n'th Gaussian assigned to another

state j drops below a threshold Smin, then the respective Gaussian in state j is deleted,

and the coe�cients for the two states are modi�ed according to

ci = ci

√
1− w

(j)
k

pi

cj = cj

√
1 +

w
(j)
k

pj
.

1∆t is the nuclear time step, n can be set larger than 1 if the correction procedure is not intended to
be employed in every step.

2In the procedure outlined in Ref. [117], the case (ii) is not considered. However, this prevents the
coherence decay after a successful state switch if the occupation probability of the old state does not
increase. Yet irrespective of an increase or decrease of this probability, decoherence should be present for
any pair of previously coupled states.

3In Ref. [117], the energy conservation condition for �eld-free electronic transitions is used instead,
and the momentum is reduced accordingly. Formally negative momenta are replaced by a value of zero.
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In addition, Gaussians can be also deleted without modifying the state coe�cients if the

occupation probabilities pj = |cj|2 decrease by more than a threshold ∆p−min. In this case,

the Gaussians in the respective state are successively removed, beginning with the last

created one, until the sum of the associated weights b(j)n exceeds |∆p−min|. Moreover, after

a surface hop, all previously existing Gaussians in the newly occupied state are removed

either, and only a single one with weight 1 is formally considered, as outlined above.

This methodology has been applied for the double-well model system investigated in

Sec. 4.2 with the computational settings as presented in Sec. A.2.2 above. In addition,

the following parameters have been employed for the coherence correction:

n σ(a−2
0 ) ∆p+min ∆p−min Smin

5 0.05 10−4 −10−4 10−4

In this way, the overcoherence in the studied example could be completely removed,

leading to correct population dynamics as shown in Fig. 4.3.
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C Electronic coherences in K2

Figure C.1: Strong-�eld dynamics of K2 driven by the optimized laser �eld shown in
Fig. 9.5 and Table 9.1. Depicted are the imaginary parts of the electronic coherence for
the pairs of states coupled by the laser �eld obtained both from full quantum dynamics
and from FISH simulations. Both results agree excellently.

189





D FISH dynamics of adenine

with electrostatic embedding

Figure D.1: Population dynamics of solvated adenine, obtained in the framework of the
electrostatic embedding technique, induced by the fourier-limited laser pulse at 266 nm
(indicated in light blue), showing almost complete return to the ground state after 1000
fs.
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E Electronic structure of RBF and FMN

State λ(nm) fe Con�guration |Ci|2(%) Type of transition
1 395.4 0.119 H→L 78 ππ∗

2 345.1 0.005
H−3→L 63 nπ∗

H−5→L 14 nπ∗

3 340.5 0.046
H→L+1 48 ππ∗

H−1→L 32 ππ∗

4 303.5 0.019 H→L+3 83 π →side chain

5 295.8 0.489

H→L+2 20 ππ∗

H−1→L+1 15 ππ∗

H→L+1 15 ππ∗

H−1→L 12 ππ∗

6 291.6 0.007
H−5→L 34 nπ∗

H−3→L+1 28 nπ∗

7 276.4 0.086 H−2→L 72 nπ∗

8 273.1 0.279

H−6→L 25 ππ∗

H−1→L 19 ππ∗

H→L+1 13 ππ∗

H−1→L+1 12 ππ∗

9 265.5 0.236
H→L+2 27 ππ∗

H−1→L 17 ππ∗

H−6→L 15 ππ∗

Table E.1: Excited electronic states of RBF obtained with semiempirical PM3-CI for
the lowest energy optimized geometry. The acronyms H and L correspond to highest
occupied and lowest unoccupied molecular orbital. The active space involves 11 occupied
and 6 unoccupied molecular orbitals. Single excitations out of the closed-shell ground
state determinant and of the following additional reference con�gurations are accounted
for: H→L, H→L+1, H→L+2, H→L+3, H−1→L, H−2→L, H−3→L, H−5→L, H−6→L,
H−10→L, H−3→L+1.
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Figure E.1: Molecular orbitals of RBF obtained from semiempirical PM3-CI.
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State λ(nm) fe Con�guration |Ci|2(%) Type of transition
1 394.2 0.120 H→L 78 ππ∗

2 340.7 0.046
H→L+1 49 ππ∗

H−1→L 36 ππ∗

3 326.4 0.005
H−3→L 70 nπ∗

H−5→L 14 nπ∗

4 299.3 0.090 H→L+3 71 π →side chain

5 295.1 0.441

H→L+3 18 π →side chain
H→L+2 16 ππ∗

H−1→L+1 14 ππ∗

H→L+1 13 ππ∗

6 281.6 0.002
H−5→L 41 nπ∗

H−3→L+1 30 nπ∗

7 273.5 0.021
H−2→L 30 nπ∗

H−1→L+1 16 ππ∗

H−6→L 15 ππ∗

8 270.5 0.323
H−2→L 40 nπ∗

H−6→L 16 ππ∗

9 265.0 0.435
H→L+2 23 ππ∗

H−1→L 23 ππ∗

H−6→L 10 ππ∗

Table E.2: Excited electronic states of FMN obtained with semiempirical PM3-CI for the
lowest energy optimized geometry. The acronyms H and L correspond to highest occupied
and lowest unoccupied molecular orbital. The active space involves 11 occupied and 6
unoccupied molecular orbitals. Single excitations out of the closed-shell ground state
determinant con�guration and of the following additional reference con�gurations are
accounted for: H→L, H→L+1, H→L+2, H→L+3, H−1→L, H−2→L, H−3→L, H−5→L,
H−6→L, H−10→L, H−3→L+1.
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Appendix E. Electronic structure of RBF and FMN

Figure E.2: Molecular orbitals of FMN obtained from semiempirical PM3-CI.
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Summary

In the present thesis, a general approach for the simulation and control of laser-driven coupled electron-

nuclear dynamics in complex molecular systems is developed on the basis of the �eld-induced surface-

hopping method (FISH). In particular, the latter is generalized to incorporate the molecular environment

and to include arbitrary laser pulse forms parameterized in the spectral domain. Moreover, a thorough

analysis and validation of the method is provided.

This theoretical framework is utilized for application-oriented studies in the �elds of ultrafast spec-

troscopy and optimal control, involving two complementary aspects: The simulation and interpretation

of available experiments, providing a molecular-level understanding of the experimental observations, and

the theoretical prediction of molecular processes, eventually stimulating novel experiments.

In order to simulate time-resolved spectroscopic observables, in particular time-resolved photoelectron

spectra, an extension of the FISH method is devised. This approach is illustrated on the example of

nonradiative relaxation of small noble metal clusters, providing both theoretical predictions as well as

analysing experimental data and revealing the underlying molecular mechanisms.

The main emphasis of the thesis, however, lies on the quantum control in complex systems. To assess

the applicability of the FISH approach in the context of coherent control, the method is validated on the

example of selective electronic state population in the potassium dimer. For this purpose, the comparison

with numerically exact quantum dynamics simulations is made, and excellent agreement is found. This

provides a basis for studying much more complex systems, enabling the investigation of two challenging

applications of condensed-phase control.

The �rst of these is motivated by the well-known �nding that in many molecular systems, initial

electronic excitation is rapidly followed by ultrafast relaxation processes which may lead the system

back to the electronic ground state. This is ultimately responsible for the vanishingly small �uorescence

quantum yields observed e.g. in certain biomolecules such as nucleobases. Therefore, the photodynamics

of the adenine molecule in aqueous environment is studied under the in�uence of theoretically designed

laser pulse trains with the aim to assess their capability to counteract the ultrafast electronic relaxation

and to elongate the electronic lifetimes. It is shown that substantially longer lifetimes are achievable

using such pulse trains, which act by keeping higher-lying electronic states populated, where the direct

access of the molecules towards conical intersections to the electronic ground state is hindered.

Besides the predictive potential of control simulations using FISH, this thesis also provides the demon-

stration that experimentally optimized laser pulses can be straightforwardly employed in theoretical sim-

ulations, thus allowing for molecular-level mechanistic insights into the experimentally achieved control.

This approach is utilized to reveal the mechanism of the optimal dynamic discrimination between the

two spectroscopically nearly identical molecules ribo�avin and �avin mononucleotide. It is shown that

the measured discriminating signals are caused by transiently di�erent dynamics induced by the shaped

laser pulses, which drive the two molecules to di�erent parts of their potential energy surfaces where the

e�ciency to generate the detection signal is enhanced in one case and diminished in the other.

Altogether, in the present thesis a new general methodology for simulation and control of light-

driven dynamics in complex systems is introduced and applied. The results presented here demonstrate

the unique potential of this approach for obtaining molecular-level insights into the ultrafast processes

in complex molecular systems, which is beyond the reach of previously available methods. This provides

a �rm basis for further investigations along di�erent directions of research in ultrafast spectroscopy and

molecular optimal control, including both fundamental and application-oriented routes.
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Zusammenfassung

Im Rahmen dieser Dissertation wurde ein allgemeines Verfahren für die Simulation und Kontrolle der

lasergetriebenen gekoppelten Kern-Elektronendynamik in komplexen molekularen Systemen entwickelt,

das auf der feldinduzierten Surface-Hopping-Methode (FISH) beruht. Insbesondere wurde diese für die

Einbeziehung der molekularen Umgebung verallgemeinert, und die Verwendung spektral parametrisierter

Laserpulse wurde ermöglicht. Darüber hinaus wurde eine grundlegende Analyse und Validierung der

Methode vorgenommen.

Die so gescha�ene theoretische Methodologie wurde verwendet, um anwendungsorientierte Unter-

suchungen auf den Gebieten der ultraschnellen Spektroskopie und der optimalen Kontrolle durchzuführen.

Grundsätzlich können dabei zwei komplementäre Aspekte im Fokus stehen: Einerseits die Simulation und

Interpretation bereits vorliegender experimenteller Ergebnisse, wodurch ein tieferes Verständnis experi-

menteller Beobachtungen auf molekularer Ebene ermöglicht wird; zum anderen die theoretische Vorher-

sage molekularer Prozesse, die einen Anstoÿ für die Durchführung neuer Experimente geben kann.

Für die Simulation zeitaufgelöster spektroskopischer Observabler, insbesondere zeitaufgelöster Pho-

toelektronenspektren, wurde eine Erweiterung der FISH-Methode ausgearbeitet und am Beispiel der

nichtradiativen Relaxation kleiner Edelmetallcluster illustriert. Für deren Verhalten konnten sowohl the-

oretische Vorhersagen getro�en, als auch experimentelle Daten analysiert und die zugrunde liegenden

molekularen Mechanismen aufgeklärt werden.

Das Hauptaugenmerk der Dissertation liegt jedoch auf dem Gebiet der Quantenkontrolle in komplexen

Systemen. Um die Anwendbarkeit der FISH-Methode für die kohärente Kontrolle zu belegen, wurde sie

am Beispiel der selektiven Besetzung elektronischer Zustände im Kalium-Dimer durch Vergleich mit exak-

ten quantendynamischen Rechnungen validiert. Dabei wurde hervorragende Übereinstimmung zwischen

den Ergebnissen beider Methoden gefunden. Dies bildet eine Grundlage für die Untersuchung weitaus

komplexerer Systeme, wie der im folgenden umrissenen Anwendungen aus dem Bereich der Kontrolle in

der kondensierten Phase.

Zunächst wurde eine Problematik untersucht, die durch die bekannte Tatsache motiviert wurde,

dass in vielen Molekülen auf die lichtinduzierte elektronische Anregung ultraschnelle Relaxationsprozesse

folgen, die das System zurück in den Grundzustand bringen. Diese sind die Hauptursache für die ver-

schwindend geringen Fluoreszenz-Quantenausbeuten in bestimmten Biomolekülen, wie z.B. Nukleobasen.

Daher wurde im Rahmen dieser Arbeit die Photodynamik des Adeninmoleküls in wässriger Umgebung

unter dem Ein�uss theoretisch konstruierter Laserpulszüge untersucht, mit dem Ziel, deren Fähigkeit

auszuwerten, der ultraschnellen elektronischen Relaxation entgegenzuwirken und die elektronischen Lebens-

dauern zu verlängern. Es wurde gezeigt, dass wesentlich längere Lebensdauern durch solche Pulszüge

hervorgerufen werden können. Dies basiert auf der Besetzung höherer elektronisch angeregter Zustände,

in denen der direkte Zugang der Moleküle zu konischen Durchschneidungen mit dem elektronischen

Grundzustand erschwert ist.

Neben dem Potential theoretischer Vorhersagen durch Simulationen optimaler Kontrolle mittels FISH

wurde in dieser Dissertation auch gezeigt, dass experimentell optimierte Laserpulse unmittelbar in Simula-

tionen angewandt werden können, wodurch die Möglichkeit zu grundlegenden mechanistischen Einblicken

in die experimentell erzielte optimale Kontrolle auf molekularer Ebene gegeben wird. Dieser Ansatz wurde

genutzt, um den Mechanismus der optimalen dynamischen Diskriminierung der zwei spektroskopisch

fast identischen Moleküle Ribo�avin und Flavin-Mononukleotid aufzuklären. Es wurde gezeigt, dass

die gemessenen Diskriminierungs-Signale auf transienten Unterschieden der Dynamik beider Moleküle

beruhen, die durch die optimierten Laserpulse hervorgerufen werden. Diese führen eines der Moleküle

in Bereiche seiner Potentialenergie�äche, in denen das Detektionssignal e�zient generiert werden kann,
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während das andere Molekül in Bereiche geleitet wird, in denen das Detektionssignal nur mit geringer

E�zienz entsteht.

Insgesamt wurde in dieser Dissertation eine neue, allgemeine Methodologie für die Simulation und

Kontrolle lichtgetriebener Dynamik in komplexen Systemen eingeführt und angewandt. Die hier vorgestell-

ten Ergebnisse demonstrieren das einmalige Potential dieses Ansatzes für den Gewinn tiefer Einblicke in

ultraschnelle Prozesse auf molekularer Ebene, was über die Anwendungsbreite bisher verfügbarer Metho-

den hinaus geht. Dies stellt eine feste Grundlage für weitere Forschungsarbeiten entlang unterschiedlicher

Richtungen in der ultraschnellen Spektroskopie und molekularen optimalen Kontrolle dar und ermöglicht

sowohl grundlegende als auch anwendungsorientierte Folgeuntersuchugen.
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