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Abstract
A fundamental property of scientific data is that the true value of a quan-
tity can not be determined with arbitrary precision. It is only possible to
enclose it using intervals or characterize the uncertainty using probability
distributions. This property is shared by all types of real-valued data, both
measurements and simulation results. Examples include measurements of
basic physical quantities like velocity as well as long-term temperature fore-
casts that are computed using climate models. The uncertainty of quantities
is an important information that is often indicated using confidence intervals
in tables and graphical representations like 1D plots. However, for 2D and
3D data, the uncertainty can not be adequately represented using standard
visualization methods in most cases.

This thesis proposes methods to facilitate analysis and visualization of
uncertain scalar, vector and tensor fields. The focus is on the extraction of
spatiotemporal geometric and topological features, e.g. isocontours and cri-
tical points, from the fields. The approaches are are well founded on pro-
bability theory. We employ parametric and nonparametric random fields as
mathematical models for the uncertainty and spatial correlations. The pro-
bability distributions are estimated from ensemble data that combine results
of multiple simulation runs which are based on, e.g., varying simulation
parameters. Furthermore, we introduce condition analysis to feature-based
visualization. Condition numbers quantify the sensitivity, i.e. the amplifica-
tion or attenuation of uncertainty of features relative to the uncertainty of
the input fields.

We propose a generic approach to probabilistic feature extraction that
is the basis for the estimation of spatial distributions of various features in
uncertain fields. In this framework, probabilities for the existence of features
can be computed from local marginal distributions and formal feature defi-
nitions. Numerically, the probabilities can be estimated using Monte Carlo
integration. To overcome the high computational cost of this approach, we
propose fast approximate methods which employ surrogate functions and
lookup tables for the estimate feature probabilities. The proposed methods
are evaluated qualitatively and quantitatively using uncertain fields from
climate and biofluid mechanics simulations as well as medical imaging.
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Zusammenfassung
Eine grundlegende Eigenschaft von naturwissenschaftlichen Daten ist, dass
der wahre Wert einer Größe nicht beliebig genau bestimmbar ist. Es ist ledig-
lich möglich, ihn durch Intervalle einzugrenzen oder die Unsicherheit durch
eine Wahrscheinlichkeitsverteilung zu charakterisieren. Dies gilt für alle re-
ellwertigen Daten, sowohl für Mess-, als auch für Simulationsergebnisse.
Beispiele sind Messungen von grundlegenden physikalischen Größen wie
Geschwindigkeit oder auch langfristige Temperaturvorhersagen, die durch
Klimamodelle berechnet werden. Die Unsicherheit von Ergebnissen ist ei-
ne wichtige Information, die in Natur- und Ingenieurwissenschaften häufig
durch Konfidenzintervalle in 1D-Plots und Tabellen angezeigt wird. Im Ge-
gensatz dazu ist es bisher bei der Visualisierung von 2D- und 3D-Daten
mithilfe von Standardmethoden meist unmöglich, die Datenunsicherheit zu
repräsentieren.

Diese Arbeit stellt wahrscheinlichkeitstheoretisch fundierte Methoden
vor, die die Analyse und Visualisierung von Skalar-, Vektor- und Tensor-
feldern mit Unsicherheiten ermöglichen. Der Fokus liegt dabei auf der Ex-
traktion von raumzeitlichen geometrischen und topologischen Merkmalen
aus den Feldern (z.B. Isokonturen und kritische Punkte). Wir nutzen para-
metrische und nichtparametrische Zufallsfelder, um Variabilität und räum-
liche Korrelation mathematisch zu modellieren. Die Wahrscheinlichkeitsver-
teilungen werden aus Ensemble-Datensätzen geschätzt, die mehrere Simu-
lationsergebnisse (z.B. basierend auf variierenden Simulationsparametern)
zusammenfassen. Wir untersuchen die Konditionszahlen von Merkmalsex-
traktionsmethoden, um die Sensitivität, d.h. die Verstärkung oder Abschwä-
chung der Unsicherheit der Ergebnisse relativ zu Unsicherheiten in den Ein-
gangsdaten abzuschätzen.

Wir stellen einen allgemeiner Ansatz für die probabilistische Merkmals-
extraktion vor, der die Basis für die Berechnung räumlicher Wahrscheinlich-
keitsverteilungen von verschiedenen Merkmalen in Skalar-, Vektor- und Ten-
sorfeldern bildet. In diesem Framework werden Wahrscheinlichkeiten für
die Existenz von Merkmalen aus lokalen Randverteilungen und formalen
Merkmalsdefinitionen berechnet. Numerisch können die Wahrscheinlichkei-
ten durch Monte-Carlo-Integration bestimmt werden. Um den hohen Rech-
enaufwand dieses Ansatzes zu vermeiden, schlagen wir schnelle Berech-
nungsmethoden vor, wobei Merkmalswahrscheinlichkeiten näherungsweise
mit Hilfe von Surrogatfunktionen bzw. Lookup-Tabellen geschätzt werden.
Die vorgeschlagenen Methoden werden anhand von Daten aus Klima- und
Biofluidmechaniksimulationen sowie aus der medizinischen Bildgebung qua-
litativ und quantitativ evaluiert.

v



Acknowledgements

First and foremost I would like to thank Hans-Christian Hege for introduc-
ing me to the field of uncertainty visualization and for offering me the possi-
bility to be part of the Department of Visualization and Data Analysis at the
Zuse Institute Berlin (ZIB). His guidance, creativity and tremendous support
made this work possible. I am grateful to Prof. Dr. Christof Schütte, vice
president of the ZIB, for his encouragement and support. The atmosphere at
the Department of Visualization and Data Analysis was inspiring and mo-
tivating and the discussions I had with my colleagues sharpened my mind
and advanced our research. In particular, I want to thank Uli Homberg, Nor-
bert Lindow, Cornelia Auer, Olaf Paetsch, Stefan Zachow, Hans Lamecker,
Johannes Schmidt-Ehrenberg, Steffen Prohaska, Dagmar Kainmüller, Martin
Grewe, Daniel Baum, Vincent Dercksen and Alex Kuhn. My special thanks
go to Christoph Petz and Britta Weber for their commitment and extensive
support, especially while we worked on the papers. It was a pleasure to be
part of the team. I am indebted to all Amira developers, past and present,
who created a powerful, flexible software package that proved to be a great
foundation for the contributions of this thesis.

The cooperation with Leonid Goubergrits, Jens Schaller (Charité Berlin)
and Leonardo Agudo Jácome (Federal Institute for Materials Research and
Testing) was fruitful and I want to thank them for interesting discussions
throughout the years. Their applications underlined the significance of vi-
sualization for their domains and were a great source of inspiration and
motivation. I am also grateful to the colleagues in the scientific community
for their helpful reviews and the productive discussions.

Last but not least, I want to thank my family for everything.

vi



Contents

Abstract iii

Zusammenfassung v

Acknowledgements vi

1 Introduction 1
1.1 Uncertainty in Science and Engineering . . . . . . . . . . . . . 1
1.2 Uncertainty Quantification and Visualization: Challenges and

Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 7
2.1 Uncertainty Visualization . . . . . . . . . . . . . . . . . . . . . 7
2.2 Feature Extraction Methods . . . . . . . . . . . . . . . . . . . . 9
2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Mathematical Models for Uncertain Fields 15
3.1 Errors and Uncertainty . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Uncertainty Model . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Uncertain Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Ensemble Data . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Probabilistic Models for Discretely Sampled Fields . . 19

3.4 Gaussian Random Fields . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 Joint Distributions and Correlation Structure . . . . . . 20
3.4.2 Local Marginal Distributions in Gaussian Fields . . . . 21
3.4.3 Parameter Estimation . . . . . . . . . . . . . . . . . . . 23

3.5 Nonparametric Probabilistic Models . . . . . . . . . . . . . . . 23
3.5.1 Empirical Distributions . . . . . . . . . . . . . . . . . . 24
3.5.2 Histograms . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.3 Kernel Density Estimation . . . . . . . . . . . . . . . . 24

3.6 Nonparametric Discrete Random Fields . . . . . . . . . . . . . 26
3.6.1 A Toy Example . . . . . . . . . . . . . . . . . . . . . . . 26

vii



viii Contents

3.6.2 Marginalization in Nonparametric Fields . . . . . . . . 26
3.6.3 Principal Components (PC) Transformation . . . . . . 29

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Condition Numbers and Sensitivity Analysis 31
4.1 Condition Numbers and the Propagation of Uncertainty . . . 31
4.2 Condition Analysis of the Isocontour Problem . . . . . . . . . 32

4.2.1 Average Condition Numbers . . . . . . . . . . . . . . . 33
4.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Condition Analysis of Anisotropy Isosurface Extraction from
DTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.1 Uncertainty Model for DTI . . . . . . . . . . . . . . . . 38
4.3.2 Signal to Noise Ratio (SNR) . . . . . . . . . . . . . . . . 39
4.3.3 Condition Numbers of Anisotropy Index Computation 39
4.3.4 Uncertainty Propagation . . . . . . . . . . . . . . . . . . 41
4.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Isocontours of Random Fields in Continuous Domains 47
5.1 Isolines and Isosurfaces . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Computational Problems of Isocontour Extraction . . . 48
5.1.2 The Probabilistic Ansatz . . . . . . . . . . . . . . . . . . 48

5.2 Continuous Extension of Discrete Fields . . . . . . . . . . . . . 49
5.2.1 Level Crossings in Continuous Random Fields . . . . . 49
5.2.2 Interpolation of PDFs . . . . . . . . . . . . . . . . . . . 49

5.3 Local Measures for the Positional Uncertainty of Isocontours 51
5.3.1 Isocontour Density . . . . . . . . . . . . . . . . . . . . . 51
5.3.2 Point-Wise Level-Crossing Probabilities . . . . . . . . . 53
5.3.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Visualization Methods . . . . . . . . . . . . . . . . . . . . . . . 56
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Feature Probabilities in Discrete Random Fields 67
6.1 A Generic Framework . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 Feature Indicator Functions . . . . . . . . . . . . . . . . 68
6.1.2 Feature Probabilities . . . . . . . . . . . . . . . . . . . . 68
6.1.3 Numerical Integration . . . . . . . . . . . . . . . . . . . 68

6.2 Cell-Based Level-Crossing Probabilities . . . . . . . . . . . . . 69
6.2.1 Indicators Functions for Level Crossings . . . . . . . . 70
6.2.2 Level-Crossing Probabilities for Different Cell-Types . 70
6.2.3 Visual Mapping . . . . . . . . . . . . . . . . . . . . . . . 73
6.2.4 Results and Discussion . . . . . . . . . . . . . . . . . . 74



Contents ix

6.3 Feature Probabilities in Uncertain Vector Fields . . . . . . . . 82
6.3.1 Feature Types and Models for Vector-Valued Random

Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.2 Critical Points in 2D . . . . . . . . . . . . . . . . . . . . 83
6.3.3 Critical Points in 3D . . . . . . . . . . . . . . . . . . . . 86
6.3.4 Swirling Motion . . . . . . . . . . . . . . . . . . . . . . 86
6.3.5 Computation of Feature Probabilities . . . . . . . . . . 87
6.3.6 Visual Mapping . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.7 Results and Discussion . . . . . . . . . . . . . . . . . . 87

6.4 Fast Approximation Methods . . . . . . . . . . . . . . . . . . . 98
6.4.1 Approximate Crossing Probabilities Based on Bivariate

Distribution Functions . . . . . . . . . . . . . . . . . . . 99
6.4.1.1 Standardization of the Bivariate Probability

Integral . . . . . . . . . . . . . . . . . . . . . . 99
6.4.1.2 Vertex- and Edge-Based Approximations . . 100
6.4.1.3 The Linked-Pairs Approximation . . . . . . . 101
6.4.1.4 Results and Discussion . . . . . . . . . . . . . 107

6.4.2 Surrogate Functions . . . . . . . . . . . . . . . . . . . . 113
6.4.2.1 General Formulation . . . . . . . . . . . . . . 113
6.4.2.2 Creating the Training Set . . . . . . . . . . . . 114
6.4.2.3 Estimation of Feature Probabilities using K-

Nearest-Neighbors (K-NN) . . . . . . . . . . 115
6.4.2.4 K-NN Surrogate Functions for Level-Crossing

Probabilities . . . . . . . . . . . . . . . . . . . 116
6.4.2.5 K-NN Surrogate Functions for Critical-Point

Probabilities . . . . . . . . . . . . . . . . . . . 117
6.4.2.6 Implementation . . . . . . . . . . . . . . . . . 118
6.4.2.7 Results . . . . . . . . . . . . . . . . . . . . . . 118
6.4.2.8 Discussion . . . . . . . . . . . . . . . . . . . . 122

6.5 Model Selection for Discrete Random Fields . . . . . . . . . . 126
6.5.1 Spatial Correlation . . . . . . . . . . . . . . . . . . . . . 126
6.5.2 Parametric or Nonparametric Models? . . . . . . . . . 128

7 Conclusions & Outlook 131

Appendices 135

A Basics of Random Variables and Probability Distributions 137
A.1 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.2 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.3 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . 138
A.4 Marginals of Multivariate Gaussian Distributions . . . . . . . 139



x Contents

B The Approximate Distribution Induced by the Linked-Pairs Ap-
proximation 143

C Condition Numbers of Anisotropy Isosurface Computation 147

Bibliography 150



1
Introduction

Numerical quantities with continuous range, like scalar values y ∈ R, can be
measured only with finite precision. Therefore, their exact ‘true’ values are
unknown, i.e., all measured values of such quantities are afflicted with some
uncertainty. In favorable cases, this uncertainty is small, but it is always
present. This is true both for deterministic and random variables. While de-
terministic variables take infinitely precise values that practically cannot be
determined, random variables take intrinsically random values regardless
of the measurement. Thus, the ‘true’ values of measurands are unknow-
able and observations are only interpretable if, additionally to the measured
values, also their uncertainties are expressed. A measured result, therefore,
should always include two entities: the measured value and some indication
of its uncertainty [TK94, Joi08].

1.1 Uncertainty in Science and Engineering
Almost all numerical data is affected by uncertainty because it comes either
from measurements or from numerical computations that are afflicted by
model uncertainty, discretization and quantization errors and influenced by
boundary and initial conditions that are often based on measured data. Er-
ror estimation and analysis of error propagation, therefore, is ubiquitous in
science and engineering and drawing conclusions from uncertain data is the
normal case, not an exception. The most common way to represent, analyze,
and deal with uncertainty is to employ methods from probability theory and
statistics, see, e.g., [Fel71,For08,Lir02]. Feynman et al. stated in their famous
textbook [FLS63]: “Our most precise description of nature must be in terms
of probabilities.”

Complementary to the probabilistic approach, some other frameworks
to represent uncertainties have been developed. For example, one alter-
native approach is the modelling of data uncertainty using fuzzy sets that
were introduced by Zadeh [Zad65] as an extension of the classical concept
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2 Introduction

of crisp sets. Membership functions are used to describe degrees of mem-
bership of elements of fuzzy sets. Intervals can be considered as specific
fuzzy sets with full degree of membership. Data in fuzzy representation
can be processed using interval arithmetic. Fuzzy sets are used in many
disciplines such as geography to model various kinds of uncertainty rang-
ing from classifications to uncertain measurements [Lod08]. Possibility theory
was developed as an extension to fuzzy sets and fuzzy logic and is an al-
ternative to probability theory [DP01]. However, these approaches are less
commonly used compared to probabilistic methods. Thus, this thesis does
not employ fuzzy/possibility theory and focuses on uncertainties described
using methods from probability theory and statistics.

1.2 Uncertainty Quantification and Visualization:
Challenges and Objectives

In order to facilitate informed decision making based on scientific data, the
uncertainties that are present in the data must be quantified. For example,
consider predictions that are computed numerically using climate models
(e.g. forecasts for average temperatures). In addition to the absolute values
and trends in the results, the uncertainty and variability of the data are
crucial aspects that need to be considered when interpreting the predictions.
Quantitative estimates of uncertainty are also important for, e.g. comparing
different climate models.

Theoretical foundations and methods for uncertainty quantification have
been developed in disciplines such as metrology, statistics and numerical
analysis and are used in many areas of application. The majority of tables
and 1D-graphs in publications in science and engineering express uncer-
tainty or provide error estimates. Evidently, uncertainty is an important
part of the information that has to be represented and communicated in or-
der to prevent erroneous conclusions about the data. However, the majority
of 2D and 3D visualization and feature extraction methods still ignore errors
and uncertainties of data as well as their propagation through the different
stages of data analysis. Thus, to control the propagation of uncertainties
through the visualization pipeline and to convey the resulting uncertainties
to the user is a major challenge for visualization research [JS03].

In particular, one important area of visual data analysis is the visualiza-
tion of scalar, vector and tensor fields, either by direct display or by extrac-
tion and depiction of topological or geometrical features. We are interested
in how uncertainty affects such features.

A key objective of this thesis is to establish a mathematical basis for mod-
elling uncertainty of scalar-, vector- and tensor fields. We use the term field
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for all types of these fields. Mathematically, we consider the fields as func-
tions y : RN → R`, where N is the number of space dimensions and ` is the
dimensionality of the values. For example, a physical scalar quantity like
temperature in a three-dimensional domain can be modelled by a function
R3 → R. We aim at an uncertainty model for these fields based on probabil-
ity theory, since this leads to quantifiable and easily interpretable results. An
important category of data for representing uncertainty are ensemble data.
They are commonly used, e.g., in climate research and weather forecasting.
Mathematical models for uncertain fields must be able to represent the struc-
ture of ensemble datasets well – including the probability distributions and
spatial correlations.

Based on such mathematical models, we want to address the computa-
tion and depiction of uncertain equivalents to topological and geometric fea-
tures. Important features in scalar fields are isocontours (we use this term to
denote isolines, isosurfaces, and higher dimensional counterparts) or, more
general, level sets. The uncertainty related to position and shape of isocon-
tours has been discussed earlier [GR04, KWTM03, RLBS03, JS03]. However,
none of these approaches were interpretable in terms of probability theory
or statistics.

Among the most important features in vector fields are critical points
(sources, saddles and sinks) and cores of swirling motion (vortices). We
aim at a general framework to compute probabilities for the existence of
such features from mathematical representations of uncertain vector fields.
An interesting question from the application point of view is the locality of
features, i.e., the question how far regions, in which some feature is notably
present, are extended. Another objective of this thesis is to evaluate the pro-
posed methods and apply them to datasets from science and engineering.

1.3 Contributions
This thesis is based on the work presented in these peer-reviewed papers:

• K. Pöthkow and H.-C. Hege. Positional Uncertainty of Isocontours:
Condition Analysis and Probabilistic Measures. IEEE Transactions on
Visualization and Computer Graphics, 17(10):1393–1406, 2011.

• K. Pöthkow, B. Weber, and H.-C. Hege. Probabilistic Marching Cubes.
Computer Graphics Forum, 30(3):931 – 940, 2011.

• K. Pöthkow and H.-C. Hege. Uncertainty Propagation in DT-MRI
Anisotropy Isosurface Extraction. In D. Laidlaw and A. Vilanova, edi-
tors, New Developments in the Visualization and Processing of Tensor Fields,
Mathematics and Visualization, pages 209 – 225. Springer, Berlin, 2012.
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• C. Petz, K. Pöthkow, and H.-C. Hege. Probabilistic Local Features in
Uncertain Vector Fields with Spatial Correlation. Computer Graphics
Forum, 31(3):1045 – 1054, 2012.

• K. Pöthkow, C. Petz, and H.-C. Hege. Approximate Level-Crossing
Probabilities for Interactive Visualization of Uncertain Isocontours.
International Journal for Uncertainty Quantification, 3:2:101–117, 2013.

• K. Pöthkow and H.-C. Hege. Nonparametric Models for Uncertainty
Visualization. Computer Graphics Forum, 32(3):131 – 140, 2013.

• K. Pöthkow and H.-C. Hege. Accelerated Probabilistic Feature Ex-
traction Using Surrogate Functions. Under Review, 2014.

During the work on this thesis the author also contributed to the paper
by Goubergrits et al. [GSK∗12]. The main contributions presented in this
thesis are listed below.

Mathematical Models for Uncertain Fields. We propose to employ discrete
random fields as mathematical model for uncertain fields (Chap. 3). In the
simplest case all random variables in a field conform to some type of para-
metric probability distribution, e.g., Gaussian and are assumed to be statis-
tically independent (uncorrelated).

However, in most applications such a simplified model does not appro-
priately represent the structure of the data. Specifically, the correlation struc-
ture is one of the essential properties of a random field and it has to be con-
sidered in order to compute accurate results. We propose models that take
arbitrary spatial correlations into account. As an extension to discrete random
fields we introduce methods to employ three types of nonparametric models
for uncertain fields: empirical distributions, histograms and kernel density
estimates (KDE). These models represent different types of distributions in
a flexible manner while still considering spatial correlations.

Sensitivity Analysis and Estimation of Uncertainty Propagation. To de-
scribe the propagation of errors from the input data to computed features,
we introduce condition analysis to feature-based visualization (Chap. 4). Us-
ing condition numbers, we assess the sensitivity and quantify the amplifica-
tion or attenuation of uncertainty relative to perturbations of the input data
by different steps in a data processing and visualization pipeline. We derive
the condition number of the isocontour problem and show how average con-
dition numbers can aid the selection of thresholds that correspond to robust
isocontours (Sect. 4.2).

The second area of application for condition analysis is diffusion tensor
image (DTI) data and the calculation of related scalar indices. DTI is an
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important data acquisition technique for the investigation of diffusion pro-
cesses of molecules, most notably for the study of neurological disorders in
the human brain. In Sect. 4.3 we investigate the propagation of errors and
uncertainty from the initial diffusion tensor field through the anisotropy
measures (fractional anisotropy, FA, and relative anisotropy, RA) to the iso-
surfaces of these measures. We quantify the amplification or attenuation
of uncertainty using the condition numbers of the respective anisotropy in-
dices. Using this approach, we show that – in a first order approximation –
the propagation of uncertainty for isosurface extraction using FA and RA is
equal. We present results for phantom and brain DTI data.

Uncertain Equivalents to Features in Scalar and Vector Fields. We propose
several local probabilistic measures as uncertain equivalents of features in
scalar, vector and tensor fields. In a first step, we investigate the positional
uncertainty of isocontours (Chap. 5). We assume that the data have been
sampled on nodes of some mesh. For the case of statistically independent
random variables, our approach works on the level of PDFs that are inter-
polated between sample points. We define the isocontour density (ICD) and
the level-crossing probability field (LCP) that quantify positional uncertainty of
isocontours for all points in a continous domain.

As an extension to these approaches, we present a general computational
framework for probabilistic feature extraction (Chap. 6). Relevant features
are defined for given grid entities using indicator functions. Probabilities for
the existence of these features are computed as integrals over local marginal
probability density functions (PDFs) and computed using Monte Carlo (MC)
integration. The proposed procedure can be applied to any type of mesh,
both structured and unstructured.

Based on the generic framework, we propose methods to compute spa-
tial distributions of local features from uncertain scalar and vector fields
considering the local correlation structure. These distributions can be used
to display important structures of the data. For scalar random fields, we
focus on level-crossing probabilities (Sect. 6.2). In order to reveal the proba-
bility for the occurrence of an isocontour of a given isolevel at some spatial
location, we compute probabilities that grid cells are crossed by an isocon-
tour. In vector-valued fields we consider critical points (sources, sinks and
saddles) and swirling motion vortex cores (Sect. 6.3). But the proposed gen-
eral approach can be applied to other local features in scalar, vector and
tensor fields as well.

Fast Approximation Methods. MC integration is a straightforward way to
estimate the feature probabilities. However, a major disadvantage is the
high computational cost that prevents interactive data analysis. To overcome
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this drawback, several approximation methods have been developed. In
addition to two specific approaches for cell-wise level-crossing probabilities
in discretized Gaussian fields, we propose a flexible approximation method
based on surrogate functions. The surrogate functions are constructed from
attributes of example grid cells and their feature probabilities (the training
set) and can predict probabilities for new grid cells and datasets. We provide
a quantitative and qualitative evaluation of the generalization performance
and show that the results computed by surrogate functions approach the
ground truth for increasing sizes of the training sets.

The estimated feature probabilities can be used for visualizations that
not only give an impression of the uncertainty, but also allow quantitative
analysis of the data. We demonstrate the utility of these methods by apply-
ing them to data from biofluid mechanics and climate research simulations.
We also discuss the impact that model selection has on the respective results
and give recommendations for choosing adequate probabilistic models in
various areas of application.



2
Related Work

This chapter provides an overview of existing methods that address the
analysis and visualization of fields that are affected by uncertainty. The
next section discusses related work on visual representations of uncertainty
and theoretical frameworks for classification and evaluation of visualization
methods. In Sect. 2.2 we concentrate on feature extraction methods that take
uncertainties into account. We discuss the relation of these publications to
this thesis in Sect. 2.3.

2.1 Uncertainty Visualization
An early introduction to uncertainty visualization describing various aspects
of uncertainty propagation and several visualization methods was presented
by Pang et al. [PWL97]. Johnson and Sanderson considered the representa-
tion of uncertainty to be a major challenge in visualization research [JS03].
Surveys of publications on the visualization of field data that is affected by
uncertainty were presented by Brodlie et al. [BAOL12] as well as Potter et
al. [PRJ12]. MacEachren et al. [MRH∗05] presented a review of several ap-
proaches that were developed specifically for geography and cartography
to represent uncertainty of data and for improving decision making when
dealing with uncertainty. Torre Zuk [Zuk08] presented a theoretical frame-
work to aid the development and qualitative evaluation of visualizations
that support reasoning under uncertainty.

In several different areas of visualization research methods to represent
data uncertainty have been proposed. The visualization of ensemble data
was addressed by Potter et al. [PWB∗09] and Sanyal et al. [SZD∗10]. Both pa-
pers present visualization tools for weather forecasts and simulated climate
data. Sanyal et al. also conducted an evaluation of their tool’s efficiency.
Kinkeldey et al. [KMKS13] investigated the effectiveness of noise lines used
as annotations to represent attribute uncertainty. Potter et al. [PKXJ12] pro-

7
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posed to compare ansatz PDFs to histograms and compute statistical dis-
tance measures for interactive visualization. Liu et al. [LLBP12] used Gaus-
sian mixture models to approximate large ensemble datasets for volume
visualization.

Love et al. [LPK05] described methods to manipulate ensemble data,
assess uncertainty propagation and adapt well known visualization meth-
ods. Methods to display uncertain data using volume rendering include
special transfer functions that take mean values and variances into account
[DKLP01,DKLP02]. Pfaffelmoser and Westermann [PW12,PW13a] presented
methods to visualize the local as well as the global correlation structure of
random fields. Yang et al. [YXK13] developed an approach to estimate co-
variances and cross-covariances for stochastic simulation results in 2D and
visualized them using glyphs. Günther et al. introduced mandatory crit-
ical points with corresponding merge and split graphs for random scalar
fields where all variables have finite support [GST14]. For uncertain multi-
variate data Feng et al. [FKLT10] proposed methods to display variants of
scatter plots and parallel coordinate plots that take the probability density
functions of the data into account.

Visualization of Uncertain Vector Fields. Visualizations of uncertain vec-
tor fields can be created using texture mapping approaches as proposed
by Botchen et al. [BWE05]. Hlawatsch et al. [HLNW11] introduced glyphs
for the static visualization of unsteady flow with uncertainty indicated by
angular confidence intervals. Specific visualization techniques for uncer-
tain flow fields include uncertainty glyphs [WPL96], stream ribbons and en-
velopes showing streamline uncertainty [LPSW96] and the incorporation of
uncertainty in reaction-diffusion visualizations [SJK04]. The uncertainty of
particle positions and movements was estimated and visualized by Lodha
et al. [LFC02]. Allendes Osorio and Brodlie [AOB09] adapted LIC (Line
Integral Convolution) visualization methods to indicate directional uncer-
tainties in vector fields. Zuk et al. [ZDG∗08] used glyphs and an interactive
tool to visualize and explore uncertain bidirectional vector fields. Bhatia et
al. [BJB∗12] visualized uncertainty introduced by streamline computation of
crisp vector fields. Pfaffelmoser et al. proposed an approach to estimate and
visualize the uncertainty of gradient vector directions and magnitudes in 2D
scalar fields [PMW13]. They provide closed form solutions for mean values
and covariances, derive confidence intervals and employ those quantities for
glyph and colormapping visualization methods.

Visualization of Probabilistic Image Segmentations. In medical applica-
tions, uncertainties of segmentations are of interest. Kniss et al. [KUS∗05]
presented a volume rendering approach that allows the user to interactively
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explore the class probabilities of segmentations and uncertainty of surface
boundaries by deferring the classification decision to the rendering stage.
Uncertainty of tissue classification in medical volume data was also visual-
ized by animation using fuzzy time-dependent transfer functions for direct
volume rendering by Lundström et al. [LLPY07]. Saad et al. [SHM10] used
shape and appearance knowledge to evaluate and visualize segmentation
uncertainty of medical data sets. Praßni et al. [PRH10] used the uncertainty
of probabilistic segmentation algorithms as a cue for the improvement of the
segmentation results in a semi-automatic work flow.

2.2 Feature Extraction Methods
An alternative to direct display of uncertain fields is the estimation of prob-
abilities for the existence of meaningful features in the field. Features can
be defined locally, e.g. such that probabilities can be estimated for all points
in a domain, or globally where distributions of spatially extended structures
(e.g. streamlines in flow fields) are of interest.

Uncertainty of Lines and Surfaces. The uncertainty of surface shapes and
positions of isolines and isosurfaces was addressed in several publications.
Pang et al. [PWL97] created fat surfaces by displaying two surfaces that
enclose the volume in which the true (but unknown) surface is located.
Grigoryan and Rheingans [GR04] used point primitives for rendering un-
certain surfaces: A large number of points were randomly displaced along
the isosurface normals in a distance proportional to the uncertainty, random
numbers, and a user-defined scale factor. Pauly et al. [PMG04] presented
a formulation of likelihood and confidence maps that describe the possible
surface reconstructions from point cloud data for the whole domain. In-
stead of describing the uncertainty of a single surface, certainty measures
are displayed using cut planes in a volume.

Isosurfaces in uncertain data were presented by Johnson and Sander-
son [JS03] where a combined volume and surface rendering was applied
to display surface uncertainty. Rhodes et al. [RLBS03] used color and tex-
ture mapping on isosurfaces to indicate areas of high data uncertainty. The
uncertainties of the surface’s position and shape are not visualized by this
approach. Note that there was no specification of the mathematical model
describing the uncertainty in references [JS03] and [RLBS03]. Kindlmann et
al. [KWTM03] used the magnitude of the flowline curvature as a measure
for isosurface uncertainty and mapped this to surface color. Djurcilov et
al. [DP00] presented contour lines that are stippled in areas of high uncer-
tainty and continuously drawn in regions where the data is reliable. Zehner
et al. [ZWK10] proposed to combine isosurfaces with additional geometry
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to indicate the positional uncertainty and show spatial confidence intervals.
The distribution parameters were computed from ensemble data and col-
ormapped to mean isosurfaces.

Allendes Osorio and Brodlie [AB08] modeled the uncertainty of scalar
fields using random fields. To display spatial distributions of uncertain iso-
lines they computed the probability that the scalar value at a given position
is contained in an interval between an isovalue and a second user-defined
parameter. The positional uncertainty of isolines and isosurfaces can be
quantified using level-crossing probabilities. A formulation of first-crossing
probabilities that can be computed and visualized quickly using a ray cast-
ing approach was presented by Pfaffelmoser et al. [PRW11]. For 2D en-
semble data Pfaffelmoser et al. [PW13b] proposed a different approach us-
ing nonparametric modelling to visualize the uncertainty of contour lines.
Schlegel et al. [SKS12] proposed to use Gaussian process regression – also
known as Kriging – for interpolation between sample points of discretely
sampled and scalar valued Gaussian random fields and investigated the
influence of varying parameters of correlation functions on level-crossing
probabilities. Whittaker et al. [WMK13] presented a nonparametric ap-
proach for visualizing ensembles of isocontours that is based on a measure
of data depth. The previous five papers present the approaches which are
most closely related to the methods introduced in this thesis.

Features in Uncertain Vector Fields. A global approach to feature extrac-
tion is uncertain vector field topology which was presented by Otto et al.
[OGHT10]. This includes the estimation of distributions for sources and
sinks as well as the topological regions of the field. Subsequent work ex-
tended these methods to detect closed streamlines [OGT11a] and topological
structures of 3D vector fields [OGT11b].

Probabilities for the existence of vortex cores – for which several criteria
can be employed – in vector valued random fields can be computed locally
using joint distributions representing the uncertainty in a given neighbor-
hood [OT12] (published parallel to [PPH12]). Friman et al. presented meth-
ods to compute spatial distributions of path lines in blood flow measure-
ments [FHH∗11].

Most of the approaches for uncertain vector fields are based on local fea-
tures of crisp vector fields. Particularly for flow fields there exists a large
body of work, see e.g. [HH89, PVH∗03, LHZP07, MLP∗10]. A specific in-
dicator of critical points in 2D and 3D vector fields is the Poincaré-Hopf
index [GTS04,TG09]. Polthier and Preuß presented operators to classify vec-
tor field singularities in piecewise constant vector fields [PP02]. Centers of
locally swirling flow can be detected using the approach presented by Su-
judi and Haimes [SH95]. Szymczak [Szy11] proposed methods to compute
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Morse decompositions given a user-specified error bound and with respect
to perturbation of the piecewise constant input vector field.

Feature Detection andUncertainty Analysis for Diffusion TensorMRI Fields.
There are some general approaches to the analysis of uncertainties in Dif-
fusion Tensor Imaging (DTI). Pajevic and Basser [PB03] introduced a non-
parametric statistical method, the DTI bootstrap, and used it to confirm
that the tensor components are usually normally distributed due to thermal
noise. They also estimated probability distributions for various other tensor-
derived quantities. Koay et al. [KCPB07] presented a framework to analyze
error propagation in DTI for different diffusion tensor representations. Con-
sidering objective functions for nonlinear least square optimizations they
formulate error propagation equations that relate tensor-derived quantities
to the diffusion-weighted MRI data. However, this method is restricted to
the propagation of variances and does not directly yield the resulting prob-
ability distributions. Schultz et al. [SSSSW13] proposed to embed PDFs into
a reproducing kernel Hilbert space and derived specific glyph based visual-
ization methods.

Another area of research (indirectly related to Chap. 4 and 5 of this the-
sis) is the investigation of uncertainty of fiber tracks in the brain computed
from DTI data. Jones [Jon03] used bootstrapping to determine confidence
intervals for fiber orientations (cones of uncertainty). Anderson [And01] in-
vestigated the effects of noise in DTI data of human brains to fiber tracking,
while Lazar et al. [LA03] focused on tractography in synthetic tensor fields.
The sensitivity of fiber tracking results to parameter changes was investi-
gated by Brecheisen et al. [BVPtHR09]. Friman et al. [FFW06] proposed a
Bayesian approach to generate distributions of fiber tracks. The advantage
of the latter approach is that prior knowledge about the fiber tracks can be
incorporated using a fully probabilistic framework.

Several papers analyze the impact of noise and uncertainty on scalar
DTI indices. Pierpaoli and Basser [PB96] statistically compared rotationally
variant and invariant anisotropy indices. They show that for in vivo mea-
surements the invariants are, in general, superior to the rotationally variant
indices. Papadakis et al. [PXH∗99] studied the signal to noise ratios (SNR)
of different anisotropy measures using data from simulations and in vivo
experiments. Chang et al. [CKPB07] used matrix perturbation theory to
estimate the uncertainty of several DTI-derived parameters including FA,
RA and the direction of the principal eigenvectors. Compared to bootstrap
approaches this method requires significantly fewer diffusion weighted im-
ages. The work of Hasan et al. [HAN04] focused on the question whether
FA is more robust to noise than RA. For that they derived an analytical
expression that directly relates RA and FA and that can be evaluated us-
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ing Monte Carlo simulation. References [PXH∗99, HAN04, CKPB07] all state
that, in general, FA is superior to RA regarding to noise immunity and un-
certainty propagation. One of the aims of this thesis is to consider a further
processing step and to assess the robustness of anisotropy isosurfaces, i.e.
thresholding, of FA and RA.

Isosurfaces in anisotropy scalar fields generated from DTI data have been
used by Zhukov et al. [ZMB∗03] to create segmentations of the ventricles, the
corpus callosum, and the internal capsule of the human brain. Large con-
nected components of isosurfaces of FA have been used as segmentations of
major brain structures by Schultz et al. [STS07]; they used additional infor-
mation in the tensor field to automatically detect the specific brain region
being represented by the isosurface segment. In a clinical study Snook et
al. [SPB07] used anisotropy isosurfaces for the comparison of different stages
of neurodevelopment.

2.3 Discussion
The term ’uncertainty’ is used with different meanings and for addressing
different problems, even in the narrow field of data visualization. For in-
stance, Jänicke et al. [JWSK07] and Wang et al. [WYM08] attribute some
’average uncertainty’ or ’local statistical complexity’ to spatial or spatiotem-
poral domains to characterize spatial variance of data values and thereby to
identify significant parts of datasets. For some applications the uncertainty
related to categorical variables is important, e.g. for segmentation [LLPY07,
PRH10] and the visualization geographical information [MRH∗05,KMKS13].

In this thesis, however, statistical parameters or nonparametric distribu-
tions are attributed to each sample point or cell in a computational grid to
express the uncertainty of data values due to measurement errors and other
sources of uncertainty.

Some of the papers mentioned above employ ad-hoc-concepts of un-
certainty which are not interpretable in terms of probability theory and
statistics or fuzzy theory, e.g. [RLBS03, GR04], while the vast majority of
the publications above which consider the uncertainty of data values in
some spatial domain employ parametric probability distributions. How-
ever, most of the methods are restricted to Gaussian distributions and many
assume the random variables to be statistically independent (uncorrelated),
e.g. [OGHT10, AB08].

The approaches presented in this thesis are well-founded on concepts
from probability theory. For the probabilistic modelling using discrete ran-
dom fields both Gaussian and nonparametric distributions can be employed.
The assumption of statistical independence between points in a domain is
useful only if there is prior domain knowledge or evidence supporting a
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white noise model. However, to accurately model uncertain data for many
applications the consideration of spatial correlation is essential. Our meth-
ods are not custom-tailored for a specific task. The rather general approach
and the flexibility related to probabilistic modelling make them useful in a
broad range of application domains.
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3
Mathematical Models for

Uncertain Fields

All data based on a measurement that is not just simple counting is un-
certain. This chapter gives a brief overview of different manifestations and
causes of errors or uncertainties in science and engineering, and establishes
mathematical models that are well-founded in probability theory and statis-
tics. New contributions to data visualization are the modeling with random
fields employing parametric and nonparametric models and approaches to
compute correct local marginal distributions from various types of fields.
For general references in probability theory and statistics see e.g., Feller
[Fel71], for random fields e.g., Adler et al. [ATW09], and for uncertainty
in measurements e.g., Fornasini [For08]. This chapter is based on the pa-
pers [PH11, PWH11, PPH12, PH13].

3.1 Errors and Uncertainty

In general, data uncertainty consists of several parts. Systematic and random
errors occur in all measurements. Rounding and discretization lead to addi-
tional uncertainty. It is important to distinguish between the terms error and
uncertainty. In a measurement where significant random errors can occur, an
observed value may, by chance, be very close to the true value. In this case
the error is low, while the uncertainty (assessed by repeated measurements)
is high [TK94].

Systematic Errors. An error that always occurs in the same way and ex-
tent if a measurement of some quantity is repeated, is called systematic error.
It can be additive (constant shift) or a multiplicative (deviation of constant
percentage). Reasons for systematic errors can be calibration deficits, envi-
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ronmental conditions, or too simple models of the measured quantity. As
the errors are constant over repeated measurements it is not possible to de-
tect and eliminate them with only one measurement procedure. Sometimes
it is possible to compare results of multiple measuring devices or methods,
and thereby to minimize the systematic error. In general it is assumed that
most values have an unknown systematic error that is impossible to elimi-
nate completely.

Random Errors. At each repetition of a measurement random errors affect
the results differently and randomly. Multiple observations can be statisti-
cally analyzed and the quantity can be described by statistical parameters.
If the quantity has a deterministic value, i.e., is not a result of a stochastic
process, several reasons can lead to random fluctuations; this includes inter-
ference of the environment with the measurement process, like background
noise that occurs when e.g., temperature, humidity or vibrations influence
the measurement.

Other Reasons for Uncertainty. Other sources of uncertainty lie in the mea-
surement devices and the computers that process the data. The precision of
a result is always limited, for instance by the number of bits of floating point
variables. Quantization or discretization of continuous phenomena to sam-
ple point or grid based representations lead to uncertainty as well [PWL97].

3.2 Uncertainty Model

We do not distinguish between ’raw’ measured data and data computed
from measured data: conceptually we consider the possibly complex com-
putation as part of the measurement process. For a brief overview of con-
cepts from probability theory that are employed below, see Appendix A. In
the following we assume occurrence of additive errors only, i.e. we assume
that an observed value can be written as

observed value = true value + systematic error

+ random error.

Thus, we do not consider multiplicative errors. Furthermore, as systematic
errors have to be dealt with in a highly application-specific way, we assume
that systematic errors have been minimized and are negligible. Hence we
consider the simplified case

observed value = true value + random error.
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Let h ∈ R be the true value of of the quantity of interest. We model the
uncertainty, the observational errors as a random variable Z such that the
random variable

Y = h + Z (3.1)

represents the observation. The i-th observation is regarded as the i-th real-
ization of the random variable

νi = h + Zi . (3.2)

We assume that the sample mean Y converges to the true value h in a series
of many observations and thus

E(Z) = 0. (3.3)

The random variable Z is assumed to be described by a probability density
function (PDF) ϕ(y) such that

E(Z) =
∫ ∞

−∞
ϕ(y) y dy = 0 (3.4)

holds. From this it follows that

µ = E(Y) = h (3.5)

and the random variable Y has the PDF f (y) := ϕ(y− h). The cumulative
distribution function (CDF)

F(a) =
∫ a

−∞
f (y) dy (3.6)

provides the probability that a realization of Y is less than or equal to a. The
spread of the random values can be characterized by the standard deviation
σ =

√
E(Y− E(Y))2 or its square σ2, the variance.

Possible distributions f are, e.g., uniform or normal distributions. The
normal (or Gaussian) distribution plays a fundamental role in applications,
because it represents the distribution of random variables in many natural
phenomena as well as the distribution of measured values of deterministic
quantities. A theoretical explanation of this fact is provided by the central
limit theorem, see, e.g., [Fel71].

The distributions fi can be acquired in various ways depending on the
input data and the quantities one is interested in. The unknown expected
value E(Y) can be estimated by the arithmetic mean; the standard deviation σ

by the sample standard deviation s. Sometimes, for example if the distributions
are unknown or non-parametric, more advanced statistical methods such
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as bootstrapping, jackknifing or other resampling techniques are needed to
analyze the data [Fel71, MME05].

3.3 Uncertain Fields

As input for the analysis of spatial data we consider an uncertain field with
values in R`, living in an N-dimensional spatial domain I∗ ⊆ RN . The true
values at all positions x ∈ I∗ are assumed to be described by a continuous
unknown `-valued function

h : I∗ → R`, x 7→ h(x).

The variable x may embody space, time and other parameters. In practice
the function h(x) can only be measured at a finite set of M points xj ∈ I , j ∈
{1, 2, ..., M} where I ⊂ I∗. We assume that the points form a computational
grid and are close enough to exhibit a sampling rate that exceeds the Nyquist
rate. Depending on the application the data may be defined on the vertices
(nodes) or other grid entities, see Sect. 3.3.2.

The uncertainties are modeled by considering the components of the `-
dimensional vectors Yxj as random variables. These random vectors form a
parameter-discrete random field [ATW09] written as

{Yxj : xj ∈ I}. (3.7)

The space of values that the random variables can take on is called state
space while the space of locations in the domain is called parameter space of
the random field. The complete discretized random field with `-dimensional
state space and N-dimensional parameter space can also be represented us-
ing a single random vector Y ∈ R`M. For example, a 3D vector field with
` = 3 can be written as

Y = (Yx0 , Yx1 , . . . YxM−1)
T = (Yx,0, Yy,0, Yz,0, Yx,1, . . .)T. (3.8)

3.3.1 Ensemble Data

In many cases the uncertainty of data sets is represented by storing L real-
izations νi ∈ R`M, comprising an ensemble {νi| i ∈ {1, 2, . . . , L}}. Each νi con-
tains values for all ` variables at all M vertices and thus represents a single
obsevation (snapshot) of the field. In space R`M the terms data point, real-
ization and ensemble member have equivalent meaning. The realizations are
acquired by repeated measurements or numerical simulations with varying
input parameters. It is assumed that the space of possible realizations is
sampled reasonably well by the ensemble. We assume that the distribution
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of the random vector Y can be described by a probability density function
(PDF) f .

As the PDF of the statistical population from which an ensemble is drawn
is typically unknown, an important task is the model selection, which con-
strains the function f such that known conditions, e.g., regarding smooth-
ness are fulfilled and that f can be estimated from the available data.

3.3.2 Probabilistic Models for Discretely Sampled Fields

In a parametric setting, assumptions about the type of probability distribution
are made, based on knowledge of the application domain or on statistical
tests. For example, assuming that Y conforms to a multivariate Gaussian
distribution one needs to estimate its characterizing parameters, namely its
mean vector µ ∈ R`M and covariance matrix Σ ∈ R`M×`M. These parameters
should be good estimates for the true expected values and covariances of the
underlying distribution from which the ensemble was drawn.

Nonparametric models allow a more flexible representation of probability
distributions. Nonparametric methods aim at an optimal fit for the entire
PDF f , while parametric methods aim at good estimates for the parameters
of a fixed type of PDF.

The estimated PDFs can be used to compute feature probabilities (e.g.
for level crossings in scalar fields or critical points in vector fields) using
Monte Carlo integration. In this thesis, we focus local features that can be
identified by operators acting locally on data values in the neighborhood of
a point in the field. To refer to grid entities like nodes, edges, faces and
volume cells, we use the term η-cell: a 0-cell is a vertex, a 1-cell is an edge, a
2-cell is a polygon, a 3-cell is a polyhedron, and so on. The sampling grid is
a N-dimensional grid composed of N-cells that discretize a N-dimensional
geometric domain in RN . Cη denotes the set of all η-cells of a grid. The size
of the neighborhood thus depends on the feature definition and the local
grid structure.

3.4 Gaussian Random Fields

In many applications it is assumed that the random variables are Gaussian
distributed. Of course, not all uncertain scalar, vector and tensor fields are
normally distributed, but for many of them this is approximately the case
for fundamental reasons (central limit theorem). Whether or not a given
field is Gaussian, can either be statistically tested or assured by empirical
knowledge and statistical considerations. An example of the second case are
measurements of blood flow and tissue velocity by phase contrast MRI; due
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Figure 3.1: Illustration of a parameter-discrete scalar random field with random
variables Yxj associated with the nodes of a two-dimensional regular grid. Here, all
local marginal distributions conform to Gaussian distributions.

to the inherent noise in MRI the resulting vector fields are uncertain and can
be shown to be correlated Gaussian random fields [FHH∗11].

3.4.1 Joint Distributions and Correlation Structure

In general the random variables in a field are not statistically independent.
For Gaussian fields the dependencies between the different points in the
field can be quantified using covariances or correlation coefficients.

For a field Y given as a combined random vector conformable to Eq. (3.8)
and consisting of `M random variables Yi the variances and covariances can
be represented by a covariance matrix

Σ = [Cov(Yi, Yj)]i=1,2,...,(`M);j=1,2,...,(`M).

Then, Y conforms to a multivariate Gaussian distribution Y ∼ N (µ, Σ)
with µ = [E(Y1), E(Y2), . . . , E(Y(`M))], it can be uniquely described by a joint
probability density function

f (y) =
1

(2π)(`M/2) det(Σ)1/2
exp

(
− 1

2 (y− µ)TΣ−1(y− µ)
)

with y ∈ R`M.
Note that we do not require the covariances to be defined by some an-

alytic correlation function (e.g., exponential or linear). Both covariances
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between values at different vertices in the field and, if ` > 1, covariances
between different values at each vertex are considered. Thus, statistical de-
pendencies between any two values in a discretized multivariate random
field independent of the distance between the vertices can be represented
using this model. The full covariance matrix quadratically with the number
of sample points M.

This model is very flexible as it allows arbitrary correlations. However,
further assumptions about the structure of the correlations are made for
many applications. For example, correlation functions model correlations that
depend only on the distance h between the respective points in the field.
Exponential correlation functions of the form

R(h) = exp(−γ h), (3.9)

where γ is the falloff rate of spatial correlation, are frequently used [Abr97,
PRW11, SKS12].

In Sect. 6.4.2.5 we show how correlation functions can be used to model
random fields such that the local marginal distributions have compact rep-
resentations, i.e. few parameters and, thus, low memory complexity.

3.4.2 Local Marginal Distributions in Gaussian Fields

In order to compute local feature probabilities for a cell c ∈ Cη the com-
ponents of Y that do not correspond to that cell have to be marginalized
out, yielding a local random vector Yc. The probability distribution of Yc

represents not only the point-wise `-valued uncertain data of that location,
but captures also the spatial correlation of the data in its local neighbor-
hood. Let Kc be the number of degrees of freedom for cell c then Yc ∈ R`Kc .
To compute a marginal PDF fc from higher dimensional PDF f we have to
compute

fc(yc) =
∫

f (yc, z)dz, (3.10)

where we have reordered the components of row vector y such that vector z
contains all dimensions of Y that are not in Yc, and (yc, z) = y. In general,
this high-dimensional integration is difficult to perform. However, marginal-
ization of parametric Gaussian distributions has the elegant property that
the marginals are again Gaussian distributions for which the components
of the means vector and covariance matrix that do not correspond to c are
simply deleted, see Sect. A.4 in the appendix for a proof.

The marginal distribution for Yc consisting of `Kc random variables has
the reduced covariance matrix

Σc : Cη → R`Kc×`Kc . (3.11)
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Yc =
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 ∼ N (µ̂, Σ̂)

c

Figure 3.2: Illustration for the star of a vertex c in a triangulated domain with
uncertain vectors defined per triangle. The marginal PDFs are indicated for each
vector. The local correlated random vector Yc consists of all vector components of
the neighborhood of c.

The total number of the marginalized covariance matrices is proportional
to the number of cells. Similarly, mean values can be condensed to cell
neighborhoods, yielding

µc : Cη → R`Kc . (3.12)

The correlated random vector Yc for each η-cell c and the neighborhood
of c is defined by a multidimensional normal PDF fc that is described by
µc and Σc. It is a specific property of Gaussian fields the Σc and µc are
independent of mean values and covariances that correspond to cells outside
the neighborhood. Fig. 3.2 depicts the neighborhood of a 0-cell (node) of an
uncertain vector field defined on the faces of a triangulated domain (2-cells).

Example. Consider a problem where the task is to compute probabilities
for classes of realizations of the random field that are characterized by the fact
that m ≤ (`M) random variables Yi are constrained to subsets Si. Since the
`M random variables representing the random field are possibly correlated,
we have to integrate the `M-dimensional density function f (y1, . . . , y`M).
Assuming that the `M random variables have been ordered such that the
constrained random variables are the first m ones, we have to compute inte-
grals of the form

P(Y1 ∈ S1, . . . , Ym ∈ Sm) =∫
S1

dy1 . . .
∫
Sm

dym

∫
R

dym+1 . . .
∫
R

dy`M f (y1, . . . , y`M). (3.13)
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This means, we have to marginalize the variables Ym+1, . . . , Y`M and to com-
pute the remaining m-dimensional integral. We can utilize the nice property
given in Eq. (3.10) that marginalized distributions are again Gaussian distri-
butions with the ’right’ means and covariances:∫ ∞

−∞
dym+1 . . .

∫ ∞

−∞
dy`M

1
(2π)(`M/2) det(Σ)1/2

exp
(
− 1

2 (y− µ)TΣ−1(y− µ)
)

=
1

(2π)m/2 det(Σc)1/2 exp
(
− 1

2 (yc − µc)
TΣc

−1(yc − µc)
)

=: fc(y1, . . . , ym) (3.14)

where fc is the density function for the reduced m-dimensional random vec-
tor Yc and yc, µc and Σc are the quantities y, µ and Σ with the (`M)− m
rows/columns deleted that correspond to the marginalized variables Ym+1 . . . Y`M.
Plugging Eq. (3.14) into Eq. (3.13) yields

P(Y1∈S1, . . . , Ym∈Sm) =
∫
S1

dy1 . . .
∫
Sm

dym fc(y1, . . . , ym). (3.15)

3.4.3 Parameter Estimation
Given L realizations {νi| i ∈ {1, 2, . . . , L}} of the random field Y , i.e. a sam-
ple of observations with components ν

(j)
i , j ∈ {1, . . . , `M}, the sample means

µ̂(j) =
1
L

L

∑
k=1

ν
(j)
k

and the entries of the sample covariance matrix

Ĉov
(j,k)

=
1

L− 1

L

∑
l=1

(ν
(j)
l − µ̂(j))(ν

(k)
l − µ̂(k))

for all j, k ∈ {1, . . . , `M} are unbiased estimates of the means µ(j) and co-
variances Σ(j,k), respectively.

3.5 Nonparametric Probabilistic Models
We assume that the underlying probability distribution is sampled by L re-
alizations {νi∈{1,...,L}} with νi ∈ R`M. In contrast to parametric models that
employ a specific type of probability distribution, the structure of a nonpara-
metric model is not predefined but determined from empirical data. The
term ‘nonparametric’ does not mean that these models are parameter-free.
The number and type of parameters is flexible, in contrast to parametric
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methods that work with a specific model that is fixed in advance. Apart
from the following models there are several other possible approaches; see
Scott’s book [Sco92] for a comprehensive overview.

3.5.1 Empirical Distributions

Given a collection of L data sets, an associated random vector is said to
conform to an empirical distribution Y ∼ Emp(νi) if it can only take values
that are present in the collection. The corresponding PDF is parameter-free
and consists of a combination of scaled δ-functions

f (y) =
L

∑
i=1

φiδ(y− νi) (3.16)

with weight factors φi and ∑ φi = 1. The CDF is a piecewise constant func-
tion with steps at the locations of the sample points [Sco92, section 2.1]. This
model performs no inter- or extrapolation.

3.5.2 Histograms

The relative frequency of data points in bins defined by a (regular) discretiza-
tion of the codomain R`M locally estimates the density of samples. The PDF
is piecewise constant while the CDF is piecewise linear. Random samples,
e.g. for Monte Carlo methods, can be drawn from a histogram distribution
by selecting a bin at random (with probabilities proportional to the numbers
of points in the bins) and drawing from an uniform distribution with the
extent of that bin.

3.5.3 Kernel Density Estimation

In many cases the population is known (or with good reasons assumed)
to be smooth. Then empirical and histogram distributions are not smooth
enough. Kernel density estimation (KDE) aims to approximate the true un-
derlying distribution using a sum of basic kernel functions. The method is
also called ’kernel smoothing’ since it can be interpreted as a convolution of
an empirical distribution with a kernel.

Kernel Estimator. A kernel estimator for the density of a sampled distri-
bution is defined by

f (y, H) =
L

∑
i=1

φiκ(y; νi, H), (3.17)

where κ is a kernel, L is the number of data points νi and H is the bandwidth
matrix. The weight factors φi can be interpreted as prior probabilities for the
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corresponding components of the estimate. For large datasets with many
data points νi the density function is usually constructed differently, e.g. us-
ing the expectation maximization algorithm (EM). The properties of the PDF
differ depending on the kernel. Random sampling of that PDF can be per-
formed by choosing a kernel at random (for each sample) with probability
φi and then drawing from that kernel distribution.

Multidimensional Kernels. The crucial parameter for a Gaussian kernel
κN (y; νi, H) in a multidimensional state space is the bandwidth matrix H.
There are three common choices for the type of bandwidth matrix H: (i)
scaled identity matrices H = H2 I, which means that each kernel is radially
symmetric with constant variance in all directions, (ii) diagonal matrices

H = diag(H2
1 , H2

2 , ..., H2
`M) (3.18)

that contain individual bandwidths for all dimensions but do not repre-
sent any correlation, and (iii), symmetric positive definite matrices that can
represent individual bandwidths and any linear dependencies between the
dimensions. The third variant is the most general.

Other frequently used types of kernels include the rectangular, triangular
and the Epanechnikov kernel. However, the choice of the kernel type is not
as crucial for the smoothing quality as the bandwidth parameters [Sil92, p.
43].

Automatic Bandwidth Selection. The aim of bandwidth selection is to min-
imize the mean integrated squared error

MISE(H) = E
(∫

( f (x, H)− f ∗(x))2 dx
)

.

where f is the kernel density estimate and f ∗ is the true underlying PDF.
Though f ∗ is unknown in practice, using asymptotic analysis MISE can be
approximated by asymptotic MISE (for L → ∞), and useful information can
be extracted from this quantity [Sco92, JMS96].

While for a single 1D distribution, "in the hands of an expert, interactive
visual choice of the smoothing parameter is a very powerful way to analyze
data" [JMS96], for more complex data this approach is not suited.

In case the sample standard deviations σi are reasonable descriptions of
the distribution dispersion in dimension i, automatic bandwidth selection
methods can lead to good results. A simple bandwidth selection method
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that we used in our implementation is Silverman’s rule of thumb

Hi =

(
4

d + 2

)1/(d+4)

L−1/(d+4)σi, (3.19)

where d is the dimensionality of the distribution and L is the number of data
points. Alternative methods include Scott’s rule of thumb and computation-
ally more expensive approaches like cross-validation [Sco92].

3.6 Nonparametric Discrete Random Fields

3.6.1 A Toy Example

We consider a discretized scalar field with 2 grid points and an ensemble
consisting of L = 50 realizations. The joint distributions of the random
variables Y1, Y2 are visualized in Fig. 3.3. In subfigure (a) the realizations
are indicated by linear interpolants, and in (b) by a scatterplot with the red
points depicting the positions of the δ-peaks of the corresponding empir-
ical distribution. In (c) a 2D histogram is shown and in (d) and (e) two
different kernel density estimates are indicated, see Sect. 3.6.3. In (f) a para-
metric Gaussian distribution, created using maximum likelihood estimation,
is shown for comparison.

3.6.2 Marginalization in Nonparametric Fields

Like in the case of Gaussian fields we have to solve Eq. (3.10) to obtain a
local marginal random vector Yc from Y. This is necessary for the compu-
tation of local feature probabilities. While we can utilize the marginaliza-
tion property given in Eq. (3.14) for Gaussian fields, in other cases of non-
Gaussian fields this high-dimensional integration can be difficult to perform
or even intractable. However, in the following we show that marginals of
nonparametric distributions can be computed by employing model-specific
approaches.

Empirical Distributions. Marginalizing out the spare dimensions from Y ∼
Emp(νi) is performed by projecting the points νi ∈ R`M orthogonally to the
cell’s subspace yielding νi,c ∈ R`Kc . That means the spare dimensions are
discarded and the marginal random vector is then Yc ∼ Emp(νi,c).

Histograms. The solution for Eq. (3.10) in the case of histogram PDFs can
be obtained indirectly by first projecting the data points νi to get νi,c and then
computing the histogram for the subspace of c. If the bin sizes are fixed, this
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(a) (b)

(c) (d)

(e) (f)
Figure 3.3: A toy example of a discretized scalar field with just 2 grid points and
an ensemble consisting of L = 50 realizations. Depicted are joint distributions of
the random variables Y1, Y2. The subfigures (a-e) visualize nonparametric distribu-
tions, while subfigure (f) shows a parametric Gaussian distribution for comparison:
(a) empirical distribution, depicted by linear interpolants (each line shows a sample);
(b) empirical distribution, depicted as scatterplot; eigenvectors of the covariance ma-
trix displayed in light blue; (c) 2D histogram; (d) KDE using a Gaussian kernel; (e)
KDE using a Gaussian kernel and principal components transformation. Note that
the PDF in (e) represents the correlation of the data better than that in (d).
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is equivalent to solving a discrete marginalization problem by summing up
the counts of all bins over the dimensions that are marginalized out.

Kernel Density Estimates. To obtain a local random vector we marginalize
out the other dimensions from the kernel estimates. For that we compute
Eq. (3.10) for the PDF in Eq. (3.17):

fc(yc) =
∫ L

∑
i=1

φiκ(yc, z; νi, H)dz. (3.20)

For arbitrary kernels κ this is, again, a difficult problem, but for Gaussian
kernels we can utilize the marginalization property of parametric Gaussian
distributions (see Sect. A.4 in the appendix) and by interchanging summa-
tion and integration. The PDF is then

fc(yc) =
L

∑
i=1

φiκ(yc; νi,c, Hc), (3.21)

where νi,c are the projected data points (see above) and Hc is the marginal
bandwidth matrix, which contains the entries of H that correspond to the
marginal distribution. Interchanging summation and integration is possible
for kernels that are valid PDFs. This is a special case of Fubini’s theorem
[Kal02, p. 14].

For all possible marginals Yc of Y we have to make sure that the local
PDF fc is a correct marginal of the random field. Specifically, the marginal
distributions for each cell must be consistent over multiple neighborhoods
that contain it. Due to the large number of cells in a field, manual band-
width selection is not feasible and we have to employ automatic bandwidth
selection. To make the bandwidth estimates consistent for methods like Sil-
verman’s rule we define

d̄ = E(`Kc) (3.22)

to have a fixed value for the number of dimensions for all cells {c} of interest
and substitute d̄ for d when we apply Eq. (3.19). The number of data points
L will usually be constant for the field. This works analogously for Scott’s
rule.

These marginalization properties have important implications. For any
distribution from which we can draw samples, an approximate solution for
marginal distributions can be easily computed. Of course, this approach
does not reduce the theoretical complexity of marginalization in the general
case, but it is a way to obtain accurate approximations. The results are given
in terms of kernel estimators and not as parameters of the distributions that
were approximated.
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3.6.3 Principal Components (PC) Transformation

In Sect. 3.5.3 the most commonly used types of bandwidth matrices were
described. The most general type, which only restricts the matrix to be
symmetric and positive definite, can accurately represent correlations in the
distribution. A disadvantage is that for high dimensional state spaces a large
number of bandwidth parameters have to be specified or estimated.

An approach that combines the simplicity of diagonal matrices with the
possibility to represent correlation in KDE is to perform a principal component
transformation [SS04]. Before estimating the density, a principal component
analysis (PCA) of the data points νi is computed. Rewriting the data points
as column vectors (with the empirical mean µ subtracted) of a matrix

A =
[
(ν1,c − µ) (ν2,c − µ) · · · (νL,c − µ)

]
we can compute the Karhunen-Loève transform

B = KLT(A) =
[
ν′1,c ν′2,c · · · ν′L,c

]
.

Now the transformed points ν′i,c are centered and given with respect to the
PCA modes, i.e. the basis given by the eigenvectors of the covariance matrix
of the data is used. The matrix m resulting of the KLT describes the trans-
formation between the original coordinate system and the PCA modes. The
data points can be mapped using

ν′i,c = m (νi,c − µ) and νi,c = (m−1 ν′i,c) + µ.

We perform KDE for the transformed points ν′i and with respect to the PCA
modes. The principal components are uncorrelated. Thus, we can employ
diagonal bandwidth matrices given by Eq. (3.18) without any unwanted loss
of correlation.

Fig. 3.3 (d) shows a kernel density estimate using a Gaussian kernel with
diagonal bandwidth matrix for the original basis, while (e) shows a density
estimate computed with respect to the eigenvector basis (using PC trans-
formation). Density estimation on the transformed data points results in a
PDF that represents the correlation of the data much better than the PDF
estimated directly for the original basis.

3.7 Discussion

In this chapter we established models for uncertain fields that are well-
founded on stochastic methods. Our approach is suitable for all applications
which acquire data using standard uncertainty estimation and for which the
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assumptions stated in Sect. 3.1 and 3.3 are appropriate. Parametric models
allow a compact representation of uncertainty and can be analysed using a
vast amount of statistical tools. However, in contrast to previous methods
that were restricted to Gaussian fields we also presented a more flexible non-
parametric approach that is able to work with various types of distributions.
For KDE we proposed an approach to compute correct (consistent) marginal
distributions, perform a principal component transformation in order to effi-
ciently capture correlations and use automatic bandwidth selection to obtain
a model for local feature extraction.

The task of model selection where the aim is to find the optimal proba-
bilistic model for a given dataset and considering other application specific
constraints is discussed in the context of actual results from probabilistic
feature extraction methods in Sect. 6.5.



4
Condition Numbers and

Sensitivity Analysis

Before we investigate uncertain equivalents of features we address the ques-
tion of how uncertainty is propagated from the input data to the solution
of a numerical computation. Let us consider a problem where we have to
compute some quantity ("feature") ρ ∈ Rm from input α ∈ Rn. Since α is
not exactly known, we should instead consider an input set D that contains
all perturbed inputs α̃, i.e. instead of a pointwise mapping α 7→ ρ(α) a set-
valued mapping ρ : D → E = ρ(D). The effect of perturbations of input data
on the output quantities – also called the condition of a problem (ρ, α) – can
be expressed by some measure of a ratio of output versus input sets [DH03].
Parts of this chapter are based on the papers [PH11] and [PH12].

4.1 Condition Numbers and the Propagation of Un-
certainty

A condition number describes the sensitivity of a solution for a given problem
to perturbations of the input data, independently of the algorithm and the
character of the perturbations. Let ‖·‖ be norms in Rm and Rn. If a pertur-
bation ε distorts the input α to α + ε then the absolute normwise condition of
a problem (ρ, α) is defined (in a first order approximation) as the smallest
number κabs ≥ 0 with the property that there is a real number δ > 0 so that
for all 0 < ‖ε‖ < δ the inequality

‖ρ(α)− ρ(α + ε)‖ ≤ κabs ‖ε‖ (4.1)

holds. A problem is said to be well-conditioned if κabs is low and it is said to
be ill-conditioned if κabs is high. The exact meaning of low and high depends
on the problem at hand.

31
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If we assume that ρ(α) is (totally) differentiable, because of the mean
value theorem the condition number can be calculated through the deriva-
tive:

κabs = ‖∇α ρ(α)‖, (4.2)

where ∇α is the gradient in parameter space Rn. The relative condition
κrel =

||α||
||ρ(α)||κabs describes the propagation of relative errors.

The condition number κabs is a dimensionful quantity. Its unit of mea-
surement is [unit of output data] per [unit of input data]. The quantity
relates the errors of (in general) different dimensions; loosely speaking, κabs
can be seen as the amplification factor of input errors. Its absolute size there-
fore depends on the units used. Condition numbers in different datasets
therefore can be compared only if the same units of measurements are used
in each dataset.

4.2 Condition Analysis of the Isocontour Problem

Before we investigate uncertainty propagation of isocontour extraction, crisp
(or "certain") level sets and isocontours are revisited. A scalar field is a
function y : RN → R with x 7→ y(x) and its gradient is the vector field
∇y(x) =

(
∂y(x)
∂x1

, . . . , ∂y(x)
∂xN

)
, where x1 . . . xN are the Cartesian coordinates.

The points xc ∈ RN where ‖∇y(xc)‖ = 0 are called critical points of y. A level
set of y for constant level ϑ ∈ R is defined as

Ω = {xs ∈ Rd : y(xs) = ϑ}. (4.3)

or Ω = y−1(ϑ).
In computer graphics and visualization isocontours and isosurfaces are ex-

tracted from scalar fields using e.g. marching squares or marching cubes
[LC87] algorithms. These methods only find (N − 1)-dimensional intersec-
tions of y with a given isovalue ϑ. The resulting isocontours do not necessar-
ily contain all points of the true level set. In particular they do not contain
the complete set of critical points xc with y(xc) = ϑ if these points form a
N-dimensional plateau.

To determine which parts of an isocontour are the result of well or ill-
conditioned computation we determine the absolute normwise condition for
the isocontour problem. By means of the condition number we can assess
where potential errors and uncertainty are attenuated or amplified even if no
information about the uncertainty of the data is available. Additionally the
isovalues leading to contours that, on average, are well or ill-conditioned are
of interest. This information can be used to aid the selection of thresholds
for isocontour extraction or segmentation.
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To extract isocontours from a scalar field we have to solve y(x) = ϑ

to find the level-crossing points. If the gradient ∇y(x) is invertible, then,
according to the inverse function theorem, we can write y−1(ϑ) = x. The
derivative satisfies

‖(y−1)′(ϑ)‖ = ‖∇y(x)‖−1. (4.4)

Thus, the absolute normwise condition of the problem (y−1, ϑ) is

κabs(x) = ‖∇y(x)‖−1. (4.5)

Fig. 4.1 shows an example of a one-dimensional function. The calcula-
tion of x1 is well-conditioned while the calculation of x2 is ill-conditioned.
In other words, the position of the level crossing at x1 is less prone to per-
turbations of y than the position of x2. With Eq. (4.5) we can see that in
case of a plateau in y, where the norm of the gradient is zero, the extraction
of an isocontour is an ill-posed problem. The condition number κabs pro-
vides an estimate for the propagation of input error to positional error of
the isocontour.

4.2.1 Average Condition Numbers

To investigate which of the isocontours are well- or ill-conditioned we com-
pute average condition numbers with respect to the possible isovalues. For
that we define the total condition of the isocontour y−1(ϑ)

κ̂abs(ϑ) =
∫

y−1(ϑ)
κabs(x)dω

and use the area (or length)

a(ϑ) =
∫

y−1(ϑ)
1 dω

of that isocontour to calculate the average condition number. We are inter-
ested in the condition of isocontours regardless of their size. So we choose to
weight the average condition by the average area because κ̂abs(ϑ) scales with
the size of the isocontour. For the isosurfaces in the interval [ϑ1, ϑ2] ⊂ R the
average condition number is

κ̄abs([ϑ1, ϑ2]) =

∫ ϑ2
ϑ1

κ̂abs(t)dt∫ ϑ2
ϑ1

a(t)dt
. (4.6)
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Figure 4.1: Calculation of the intersection point x1 of y(x) with threshold ϑ is well-
conditioned, while calculation of x2 is ill-conditioned, i.e., the position of x1 is less
sensitive to perturbations of y than the position of x2.

Federer’s Coarea formula [Fed69], c.f. also [SSD∗08]∫
R

∫
y−1(t)∩ I∗

q(x)dω dt =
∫
I∗

q(x) ‖∇y(x)‖dV, (4.7)

where q : I∗ → R is any function defined on the same domain I∗ as y,
allows us to express integrals over level sets as integrals over the domain.

Restricting the thresholds to the interval [ϑ1, ϑ2] we can rewrite Eq. (4.6)
using integrals over Vt = {x ∈ Rd | ϑ1 ≤ y(x) ≤ ϑ2}:

κ̄abs([ϑ1, ϑ2]) =

∫
Vt

1 dV∫
Vt
‖∇y(x)‖dV

. (4.8)

This formulation is numerically more convenient than integrals over sur-
faces, since calculating the sum over potentially diverging values of κabs(x)
can lead to overflows or accuracy issues. It also saves us from having to
generate many isosurfaces. Instead, we approximate the result of (4.8) by
computing sums over the discretized scalar field and its gradient magnitude
field.

4.2.2 Examples
Fig. 4.2 shows plots with average condition numbers κ̄abs for small ranges
of possible isovalues and isosurfaces with the condition mapped to surface
color for two scalar fields given on uniform grids. Arrows indicate the used
isovalues in the plots. On (spatial) average, the isocontours for isovalues
at the minima of κ̄abs have the best condition numbers while those at the
maxima have the worst average condition numbers in each dataset. The
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.2: The average condition number is shown for isosurfaces in the fuel dataset
(a) and the Q field of a flow dataset (b). For comparison the histograms are included.
Figures (c), (e) and (g) show isosurfaces for ϑ = 113, ϑ = 119 and ϑ = 125 in the
fuel dataset; (d), (f) and (h) show isosurfaces for ϑ = −2, ϑ = 0 and ϑ = 1 in the Q
field. The isosurfaces in (e) and (f) have relatively high average condition numbers
and should be considered less reliable than the other surfaces.
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selection of thresholds is often based on histograms so, for comparison, we
also depict the histograms in the respective subfigures.

Our first example is the fuel dataset (freely available at http://www.volvis.
org), describing the density of fuel during an injection process. The plot
showing average condition numbers in Fig. 4.2a was computed using 70 dis-
joint equally sized intervals on the range (0, 255). It indicates that isovalues
close to zero yield diverging condition numbers. Additionally there are sev-
eral less significant peaks. These peaks are not present in the histogram
which means that the average condition plot is better suited for the selection
of reliable thresholds. In Fig. 4.2c, 4.2e and 4.2g isosurfaces for ϑ = 113,
ϑ = 119 and ϑ = 125 in the fuel dataset are shown. The isosurface close to a
saddle point (Fig. 4.2e) is relatively ill-conditioned.

Fig. 4.2b represents average condition numbers of isosurfaces in the Q
field (Okubo-Weiss parameter [Hun87]) of a smoothed vector field. We used
a single timestep from a simulation of flow around an airfoil. Again the
average condition numbers were computed using 70 disjoint equally sized
intervals on the range (−9, 9). The plot exhibits several peaks, some of which
are not visible in the histogram. In Fig. 4.2d, 4.2f and 4.2h isosurfaces for
ϑ = −2, ϑ = 1 in the Q field enclose areas of high strain and high vorticity
respectively.

4.2.3 Discussion
Isosurfaces for ϑ ≈ 0 in the Q field (similar to Fig. 4.2f) have previously
been used to show the separate regions of dominant strain and vorticity
[SWTH07, RB09]. However, the isovalue ϑ = 0 is a possibly problematic
choice because it yields the most ill-conditioned isosurface in the whole
dataset because parts of the level set lie in areas with very low (or zero)
gradient magnitude. Generally speaking, all isosurfaces close to critical
points, plateaus in particular, or other areas of low gradient magnitude
("near-plateaus") are on average relatively ill-conditioned.

These results can be related to those of Bajaj et al. [BPS97] and Pekar et
al. [PWH01] who identified the significant isosurfaces, specifically those that
separate homogenous regions in a dataset. They show that a high average
(or total) gradient magnitude is a good criterion for isosurfaces to be consid-
ered to be the most "meaningful" ones in a dataset. Empirically, we found
out that isovalues corresponding to surfaces with maximal average gradient
magnitude also correspond to those with the best average condition num-
bers.

http://www.volvis.org
http://www.volvis.org


Condition Analysis of Anisotropy Isosurface Extraction from DTI 37

4.3 Condition Analysis of Anisotropy Isosurface Ex-
traction from DTI

Diffusion Tensor MRI provides estimates for the major orientations of water
diffusion within tissue. From these, conclusions about the microstructure of
the tissue can be drawn. For example, the dominant direction of anisotropic
diffusion in white matter of the brain corresponds to the orientation of neu-
ral axons. Several data acquisition and processing techniques for DTI have
been established and used to assess the development or pathology of white
matter for a variety of diseases, see, e.g., [LBMP∗01, Fil09] and, for a current
overview, [LSMC11].

Diffusion tensor fields are computed from diffusion weighed MR images
and usually defined on some regular grid. In Euclidean space each tensor
D(xj) associated with a point xj ∈ R3 can be represented by a symmetric
matrix. Note that we will drop the argument xj where applicable to simplify
notation. In order to extend the discretely sampled tensor field to a field in
a continuous domain, various reconstruction schemes have been proposed,
see, e.g., reference [HSNHH10]. Each tensor is uniquely described by its
eigenvalues λ1, λ2, λ3 and its eigenvectors e1, e2, e3 that satisfy Dei = λiei
for i ∈ {1, 2, 3}. Diffusion tensors are positive definite, i.e. all eigenvalues
are positive.

The large amount of information makes analysis and visualization of
tensor fields difficult. A simplified representation of a tensor field can be
achieved by mapping the tensor values to scalar quantities. There is a variety
of such quantities that are all based on the tensors’ eigenvalues, e.g., total
and mean diffusivity, relative (RA) and fractional anisotropy (FA) among
others [EK06]. All these measures are invariant under rotation and scaling
of the coordinate system, as well as sorting of the eigenvalues. This chapter
focuses on anisotropy measures and their isosurfaces. The FA and RA are
given by

FA =

√
1
2

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

λ2
1 + λ2

2 + λ2
3

(4.9)

and

RA =

√
1
2

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

λ1 + λ2 + λ3
. (4.10)

We use the term anisotropy index (AI) to denote both FA and RA. The
level sets of the AI with respect to a threshold ϑ are the sets of all loca-
tions x where AI = ϑ, also written as AI−1(ϑ). We assume that regularity
conditions are fulfilled that guarantee that these level sets are surfaces. For
display, such level sets are usually approximated by triangulated isosurfaces
and then displayed, or they are raycasted directly. Surfaces of this kind have
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been used for the segmentation of important anatomic structures of the hu-
man brain [ZMB∗03, STS07].

DTI data, like all measured data, is affected by errors and uncertainty.
This means that the true values of measured and derived quantities are un-
known and the data can be safely interpreted only if the uncertainties are
considered. The impact of noise and uncertainty on the results of several
data acquisition schemes and processing methods in DT-MRI has been thor-
oughly studied (see Sect. 2.2). However, until now authors have only in-
vestigated the uncertainty of the resulting values and have not considered
uncertainty propagation during thresholding and isosurface extraction.

In this section we study the propagation of errors and uncertainty from
the initial tensor field through the anisotropy measures to the isosurfaces
of these measures. For this we estimate the amplification or attenuation of
uncertainty by the condition numbers of the numerical problem (Sect. 4.3.3).
We also address the question whether one measure is more immune to un-
certainty than the other.

4.3.1 Uncertainty Model for DTI
We model the uncertainty of the tensor field’s eigenvalues using a discrete
random field {λi(xj)}, where xj runs through the vertices of the sampling
grid. The values are distorted by additive measurement errors, i.e. an obser-
vation λi is given by

λi = λ0
i + λ̃i (4.11)

where λ0
i is the true but unknown quantity. We assume that each λ̃i is a zero-

mean random variable. This means, we assume that the systematic errors
have been minimized and can be neglected. A measure for the uncertainty
of λi is the standard deviation σλi or its square, the variance σ2

λi of λ̃i. The
variance can be estimated analytically from the variances of the diffusion
weighted MR images [KCPB07]. The specific probability distributions can
be estimated using parametric and non-parametric statistical methods. For
example, it has been shown that the DT eigenvalues are affected by additive
Gaussian noise [PB03]. Assuming that noise is the result of a combination
of many sources of measurement errors, e.g. thermal noise, vibrations and
background radiation, the presence of Gaussian noise is explained by the
Central Limit Theorem which states that the distribution of a sum (or mean)
of n random variables converges to a normal distribution for sufficiently
large n.
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4.3.2 Signal to Noise Ratio (SNR)
In previous work the signal to noise ratio (SNR) was used to compare the
noise immunity of RA and FA [HAN04, PXH∗99]. For this chapter two dif-
ferent definitions of SNR are relevant. Let y be the function of interest (e.g.
an image or a signal). When referring to complete datasets or images we use
the average intensity µy and the standard deviation σy of the noise to define
the global

ŜNRy =
µy

σy
, (4.12)

assuming σy is constant for the whole image. A local SNR can be defined for
all points x in a dataset as

SNR(x)y =
y(x)
σy(x)

, (4.13)

where σy(x) is the specific standard deviation at location x, see [Mur01, pp.
299-300].

4.3.3 Condition Numbers of Anisotropy Index Computation
The absolute normwise condition for FA is given by

κabs
FA = ‖∇λFA‖ =

∣∣∣∣∣∣∣∣ (∂FA
∂λ1

,
∂FA
∂λ2

,
∂FA
∂λ3

)T ∣∣∣∣∣∣∣∣ =
√

1
2
|λ1 + λ2 + λ3|(
λ2

1 + λ2
2 + λ2

3

) (4.14)

and describes the propagation of absolute errors. The relative normwise
condition is given by κrel

FA = ||(λ1,λ2,λ3)||
FA κabs

FA and describes the propagation of
relative errors. Similiarly, the absolute normwise condition for RA is given
by

κabs
RA = ‖∇λRA‖ =

∣∣∣∣∣∣∣∣ (∂RA
∂λ1

,
∂RA
∂λ2

,
∂RA
∂λ3

)T ∣∣∣∣∣∣∣∣ = 3
√

λ2
1 + λ2

2 + λ2
3√

2(λ1 + λ2 + λ3)2
(4.15)

and the relative normwise condition is given by κrel
RA = ||(λ1,λ2,λ3)||

RA κabs
RA. Fig.

4.3a-4.3c show the FA, RA and their condition numbers for a 1D tensor field
varying between isotropy and linear anisotropy, i.e. λ1 increasing (linearly)
in x direction while λ2 = λ3 = 1 are kept constant.
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Figure 4.3: In (a)-(c) the FA, RA and their condition numbers are shown for a
1D tensor field varying between isotropy and linear anisotropy, i.e. λ1 increases
linearly in x direction while λ2 = λ3 = 1 are constant. The condition numbers for
isosurface extraction are shown in (d). In (e) the equality of the combined condition
numbers for FA and RA is indicated. Throughout this example field the combined
condition numbers are constant.
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4.3.4 Uncertainty Propagation

Combined Condition Numbers. Recall that the absolute normwise condi-
tion of the isocontour problem (y−1, ϑ) is

κabs
y−1(ϑ)(x) = ‖∇y(x)‖−1. (4.16)

We denote the condition numbers for isosurface extraction from anisotropy
fields by κabs

FA−1(ϑ)
and κabs

RA−1(ϑ)
. They are shown in Fig. 4.3(d) for the 1D

tensor field.
Using the condition numbers we can estimate the propagation of uncer-

tainty. Let λ̃ = ‖(λ̃1, λ̃2, λ̃3)‖ be a (random) perturbation of the eigenvalues.
Then first order estimations of the perturbation of the results for FA and RA
are given by

F̃A = κabs
FA λ̃ and R̃A = κabs

RA λ̃. (4.17)

Note that these are rough estimates because the Taylor series is truncated
after the first term, i.e., covariances between the eigenvalues and higher
derivatives are not considered. Analogously, the error propagation for iso-
surface extraction is estimated by

˜FA−1(ϑ) = F̃A κabs
FA−1(ϑ) and ˜RA−1(ϑ) = R̃A κabs

RA−1(ϑ), (4.18)

where ˜FA−1(ϑ) and ˜RA−1(ϑ) are perturbations of the isosurface point posi-
tions.

Obviously these two steps can be integrated into one, resulting in a sin-
gle measure for error propagation that we refer to as the combined condition
numbers

κabs
FA,FA−1(ϑ) = κabs

FA κabs
FA−1(ϑ) and κabs

RA,RA−1(ϑ) = κabs
RA κabs

RA−1(ϑ), (4.19)

which relate the perturbations of the eigenvalues to the perturbations of the
isosurfaces, i.e.

˜FA−1(ϑ) = λ̃κabs
FA,FA−1(ϑ) and ˜RA−1(ϑ) = λ̃κabs

RA,RA−1(ϑ). (4.20)

We also use the condition numbers to estimate the standard deviation
(or standard error) of the FA and RA:

σFA = σλκabs
FA and σRA = σλκabs

RA. (4.21)

Comparison of FA and RA. The graphs in Fig. 4.3a, computed for a simple
1D tensor field, show the nonlinear nature of FA and RA. For small values
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Figure 4.4: The synthetic spiral DT dataset is visualized by ellipsoid glyphs with
FA mapped to glyph color.

of λ1 the curves have a steep slope, while for increasing values the slope
gets more flat. This means that the sensitivity of the functions depends on
the actual values of all eigenvalues. On the left side of the plot in Fig. 4.3(a)
small changes of λ1 lead to large changes of FA and RA, i.e. perturbations
are amplified. On the right side of the plot perturbations are attenuated. Both
effects are stronger for FA than for RA.

We can observe these properties in the plots of the condition numbers in
Fig. 4.3b. On the left side of the plot κabs

FA is larger than κabs
RA and vice versa

on the right side. On the other hand the condition numbers in Fig. 4.3b
for isosurface extraction show a different behavior. On the left side of the
plot κabs

FA−1(ϑ)
is smaller than κabs

FA−1(ϑ)
and vice versa on the right side. This

corresponds to right side of the graph for FA in Fig. 4.3a which is closer to a
plateau than that of RA, i.e. the isosurface extraction is more ill-conditioned.

If we compare Fig. 4.3b with Fig. 4.3d we see that where κabs
FA < κabs

RA
holds also κabs

FA−1(ϑ)
> κabs

RA−1(ϑ)
holds, and vice versa. Indeed the combined

condition numbers are equal:

κabs
FA,FA−1(ϑ) = κabs

RA,RA−1(ϑ). (4.22)

This means that – in a first order approximation – the propagation of uncer-
tainty for isosurface extraction in FA and RA fields is equal. This equality is
indicated in Fig. 4.3e.
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FA

(a) FA (b) κabs
FA (c) SNRFA

RA

(d) RA (e) κabs
RA (f) SNRRA

Figure 4.5: Textured slices in the spiral dataset showing from left to right:
anisotropy measure, absolute condition and SNR (assuming constant ŜNRλ=20
for all eigenvalues). First row: FA, second row RA.

Examples. We employ a synthetic spiral DTI dataset generated as described
by Bergmann et al. [BLS05] that is visualized using ellipsoid glyphs in Fig.
4.4 with FA mapped to glyph color. The FA, RA, κabs

FA , κabs
RA and SNR are

shown in Fig. 4.5. Note that the FA values are higher than RA as well as the
κabs

FA values are higer than κabs
RA, i.e. absolute errors are amplified more for FA

than for RA. Nevertheless the higher FA values lead to a higher SNR relative
to RA. We exemplarily assume a constant ŜNR = 20 for all eigenvalues.

To apply our methods to real world data we consider a brain dataset
consisting of 148 x 190 x 160 DTs. The eigenvalue fields are smoothed using a
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Figure 4.6: Textured slices in the brain dataset showing from left to right: anisotropy
measures, condition numbers for the anisotropy measures and condition numbers for
isosurface extraction. First row: FA, second row RA.

3D Gaussian kernel with a standard deviation of 1.2 voxel widths to estimate
the mean values from the noisy data. The FA and RA as well as κabs

FA , κabs
FA−1(ϑ)

,

κabs
RA and κabs

RA−1(ϑ)
are shown in Fig. 4.6.

In Appendix C we show the equality in Eq. (4.22) for the 2D case where
analytical treatment is still readily comprehensible. The condition numbers
of the AI computations and the isosurface extraction problem from phantom
and brain DTI data are shown in Sect. 5.5. There, the equality given in Eq.
(4.22) can also be visually verified for the uncertain isosurfaces. For the 3D
datasets the numerical gradient estimation introduces additional errors, but
the differences between the combined condition numbers for FA and RA are
below 1%.
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4.3.5 Discussion
Our outcomes reproduce the previous result [PXH∗99,HAN04,CKPB07] that
FA yields higher SNR than RA, see Fig 4.5. This finding has led to the con-
clusion that FA is more immune to noise and uncertainty. This statement is
true, but applicable only if the intended final result is an immediate depic-
tion of diffusion anisotropy.

However, in some applications isosurface extraction or thresholding are
subsequent steps in visual analysis of DTI anisotropy. If this step is included
too, the uncertainty propagation from the eigenvalues to the spatial position
of the isosurface has also to be considered. For sensitivity analysis of isosur-
face extraction not only the scalar field but also the gradient magnitude has
to be taken into account. Our results show that in this context there is no
clear superiority of FA compared to RA.

Our results also have implications for fiber tracking. Many fiber tracking
algorithms use thresholds of FA to restrict the resulting tracks to anisotropic
areas of the brain. The uncertainty of the shape of these areas leads to
uncertainties in the resulting fiber tracks. This is related to the sensitivity
of fiber tracking results to variations of the anisotropy threshold that was
investigated by Brecheisen et al. [BVPtHR09].
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5
Isocontours of Random Fields

in Continuous Domains

A standard technique for visualizing crisp scalar fields, i.e. fields that are
not afflicted with uncertainty, is to depict level sets, which under certain
regularity conditions are (N − 1)–dimensional isocontours.

We are interested in equivalents to isocontours in uncertain data. Ob-
viously the position and shape of an isocontour is not precisely defined in
this case. It is our aim to quantify the positional uncertainty of isocontours
with respect to a given isovalue from a random field defined according to
the models given in Chap. 3. This chapter is based on the publications
[PH11, PH12].

5.1 Isolines and Isosurfaces

We recall a few basic definitions and facts about crisp scalar fields and iso-
contours, c.f. [Mil63], [PT88], [Mat02]. Assume that the data values are in-
terpolated in I∗ by a smooth function y (C1 or higher). A point p in I∗ is
called a critical point of y if ∇yp = 0. Other points of I∗ are called regular
points of y. Given a real number ϑ we call y−1(ϑ) the ϑ-level of y, and we say
it is a critical level (and that ϑ is a critical value of y) if it contains at least one
critical point of y. Other real numbers ϑ are called regular values of y and
the corresponding levels y−1(ϑ) are called regular levels. From the inverse
function theorem it follows that for a regular value ϑ, y−1(ϑ) is a smooth,
codimension one submanifold of I∗, which we then call isocontour (if it is
non-empty). For a critical value ϑ the corresponding critical level y−1(ϑ) is
not manifold. At a saddle point with value ϑ, connected components of the
critical level touch. Maxima and minima with value ϑ are isolated points in
the ϑ-level.

47
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A critical point p is called non-degenerate if the Hessian Hp y is non-
singular, i.e. det Hp y 6= 0. From the Morse Lemma it follows that non-
degenerate critical points are isolated. If all critical points of function y are
non-degenerate (and thus are isolated), y is called Morse function. If a func-
tion contains degenerate critical points, the level set y−1(ϑ) can be 0- to N-
dimensional, since points with ∇yp = 0 can form arbitrary regions in the
domain. We will refer to regions of degenerate points as plateaus.

5.1.1 Computational Problems of Isocontour Extraction

The foregoing might look like mathematical sophistry, but it is algorithmi-
cally relevant. Depending on the interpolation and reconstruction method,
the resulting isosurface can vary. In case trilinear interpolation is used,
marching cubes type algorithms have to deal with ambiguities. An explana-
tion of these cases and literature on dealing with these ambiguities is given,
for example, in [NY06]. Computing level sets for non-Morse functions at a
value ϑ containing plateaus is even more complicated. Marching cubes type
algorithms that assume y−1(ϑ) to be a N− 1-dimensional surface, inevitably
fail. An extension of the marching cubes algorithm dealing with degenerate
critical levels has been suggested by Weber et al. [WSH03]. Even if the level
set contains no critical points, problems occur if it is close to a plateau: the
condition number ‖∇y(x)‖−1 is then large, i.e. the computation of the iso-
contour is ill-conditioned, independently of the algorithm, see Chap. 4. The
computed results therefore are not reliable and the visual impression of the
computed contour can be misleading.

5.1.2 The Probabilistic Ansatz

Due to the fact that scientific data is affected by uncertainty and also due
to the computational problems described above we aim for a probabilistic
formulation. We are interested in quantities that describe how likely it is that
an isocontour exists at each location of a domain, given a scalar random
field. Different approaches are presented in this chapter and Sect. 6.2.

The probabilistic procedure does not have to deal with degenerate or
ambiguous cases separately as it is the case for marching cubes and related
algorithms. Probabilities for the occurrence of level crossings for critical
isovalues or non-Morse functions (with respect to the mean values, for ex-
ample) are computed correctly without treating any special cases. Fig. 6.4
illustrates the difference between the deterministic and the probabilistic ap-
proach by comparing a crisp isoline with results computed using methods
introduced in Sect. 6.2.
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5.2 Continuous Extension of Discrete Fields
Many visualization techniques and feature extraction methods require func-
tions as input that are defined in a continuous domain. In order to apply
standard visualization techniques one needs to specify for uncertain data
what happens in regions between sample points. One possibility is to extend
the parameter-discrete random field {Yxj : xj ∈ I} to a parameter-continuous
random field {Yx : x∈RN} with properties like, e.g., covariances between ar-
bitrary locations that smoothly interpolate the covariances between discrete
locations.

5.2.1 Level Crossings in Continuous Random Fields

The analysis of level sets in parameter-continuous random fields is an area
of active research in mathematics, see, e.g., [AT07]. This research is trig-
gered by applications in natural sciences, in which randomness is required
to describe certain phenomena, see, e.g., [ATW09]. Depending on its covari-
ance, a random field might be rather non-smooth. Its smoothness is directly
determined by the differentiability of the covariance C̄ at distance 0.

Given a random field and a level set Ω ⊂ RN that corresponds to some
threshold ϑ, the following quantities are of interest: for random fields from
RN to RN , the number of level crossings υB in some subset B ⊂ RN , and for
random fields from RN to RN′ with N > N′, the geometric measure (length,
area, volume, ...) AB of the intersection Ω ∩ B. Then υB and AB itself are
random variables, but currently there is no known way to compute their
distribution for non-trivial situations. A tool to understand the distributions
are Rice formulae; they allow to express the expectation values and higher
moments of υB and AB as integrals over a function that depends on the joint
distribution of the random field and its derivative [AW09].

For Gaussian random fields it can be shown (i) that the level sets are con-
tinuous, but in general are non-differentiable, and (ii) that their Hausdorff
dimension is larger than N − 1 [Adl81]. Obviously, these objects do not
represent what we are interested in: Instead of approximating level sets of
the underlying field, level sets are considered whose properties are largely
determined by covariances of measurement errors. A more adequate math-
ematical model is described below.

5.2.2 Interpolation of PDFs

As described earlier, we consider as input uncertain data represented by
a parameter-discrete random field {Yxi : xi ∈ I} with parameter set I ⊂
RN , state space S = R, and random variables Yxi that can be described by
PDFs fi(y). In the following we additionally assume that the probability
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Figure 5.1: Linear interpolation between two normal distributions given at two
sample points x1 and x2.

distributions for all Yxi are of the same type, e.g., are all uniform or are all
normal. We further assume that the PDFs can be functionally represented
by their expected values µi = E(Yxi) and a finite number of m̂ − 1 central
moments E((Yxi−µi)

m), where m ∈ {2, . . . , m̂}.
To build a continuous extension we consider a continuous parameter set

I∗ ⊆ RN that contains all sample points xi. Given that the PDFs at the
sample points are all of the same type, the most natural assumption is that
the PDFs between the sample points, and thus in all x of I∗, are also of
that type. Therefore we extend the discrete model defined at the sample
points xi, i ∈ {1, 2, ..., n} to a continuous model in the whole domain I∗
by (i) interpolating the expected values µi and the m-th roots of the central
moments ςm,i = E((X − µ)m)

1
m in parameter space and (ii) inserting these

interpolated values in the PDFs. This is a rather general method; it can be
applied to all kinds of PDFs that can be parametrized by their moments.
(Note that simple blending of PDFs between grid points would in general
not preserve the type of the distribution; for instance blending two normal
distributions would yield a bimodal distribution.)

For the functions µ(x) and ςm(x) with x ∈ I∗ all sorts of interpolants
can be used. For simplicity we use linear tensor product interpolation in the
following.

As an example, assume that the random variables Yxi are normally dis-

tributed fi(y) = 1
σi
√

2π
exp

(
− 1

2

(
y−µi

σi

)2
)

with y ∈ S. The interpolated PDF

is then obtained by substituting the expected values µi and standard devia-
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tions σi by interpolants µ(x) and σ(x) ≡ ς2(x):

f (x, y) =
1

σ(x)
√

2π
exp

(
−1

2

(
y− µ(x)

σ(x)

)2
)

. (5.1)

Fig. 5.1 shows an example in one dimension with linear interpolation be-
tween two sample points x1 and x2.

5.3 Local Measures for the Positional Uncertainty of
Isocontours

In this section the aim is to quantify the positional uncertainty of isocontours
based on the continuous extension of the discretely sampled input data.
Because of the practical relevance of the Gaussian distribution all examples
and explicit formulae in the following are provided for this case. However,
the formulae are valid for arbitrary probability distributions, unless stated
differently, and in many cases also explicit formulae can be easily derived.

5.3.1 Isocontour Density
We consider isocontours in I∗ ⊂ RN . Using an interpolated PDF f (x, y)
we compute a spatial density of an isocontour by simply evaluating this
function at a given isovalue ϑ ∈ R for all points x ∈ I∗. For that we introduce
a function

gϑ(x) := f (x, y = ϑ), (5.2)

which we call isocontour density (ICD). It provides the probability density
with respect to ϑ at position x which is a measure for the spatial distribution
of the uncertain isocontour. The quantity gϑ(x)dy is the probability that
the true but unknown function takes a value in the interval [ϑ, ϑ + dy] at
position x. Note that f is a normalized PDF for a specific x with respect to
the state space S (i.e. in y-direction). Thus, the values of gϑ(x) are probability
densities with respect to S, not I∗. For normally distributed data and given
interpolants µ(x) and σ(x) the ICD follows directly from Eq. (5.1):

gϑ(x) =
1

σ(x)
√

2π
exp

(
−1

2

(
ϑ− µ(x)

σ(x)

)2
)

. (5.3)

An example graph of gϑ(x) for the 1D case between two sample points x1,
x2 is given in Fig. 5.2.

Due to the continuous interpolation the values of gϑ(x) at the grid points
only depend on the probability distributions that are given there: gϑ(xi) =
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fi(ϑ). That means gϑ(x) is a continuous function. As µ(x) and σ(x) are piece-
wise linear functions, gϑ(x) is non-differentiable at the grid boundaries and
differentiable within the grid cells.

For the limit σ(x)→ 0 we expect gϑ(x) to return a crisp isocontour. If we
consider limσ(x)→0 gϑ(x) and use the following definition of the Dirac delta
distribution for x ∈ R [Kan98]

δ(x) = lim
m→0

1
m
√

π
exp

(
−
( x

m

)2
)

, (5.4)

with support {0}, then

lim
σ(x)→0

gϑ(x) = δ(ϑ− µ(x)). (5.5)

So, if σ(x) vanishes (i.e. no uncertainty is considered) then the support of
gϑ(x) is identical the set of ϑ-level-crossings of µ(x), i.e. the level set

Ω = {xs ∈ I∗ : µ(xs) = ϑ}. (5.6)

For a symmetric distribution like the Gaussian distribution, at a fixed
spatial position xc ∈ I∗ ⊆ R (1D case) the interpolated PDF f (xc, y) takes its
maximum at y = µ(xc). From this it follows that, if σ(x) is constant, gϑ(x)
takes its local maxima at the points xs ∈ Ω.

The function gϑ(x) can be related to the condition numbers of isocontour
extraction. Recall that Eq. (4.1) describes the relation of perturbations of the
input data to the perturbation of the result. How does gϑ(x) propagate the
uncertainty represented by the standard deviation of the input data?

Assuming that an interval [xj, xk] ⊂ I∗ contains a level-crossing µ(x) = ϑ

and that σ(x) is constant (σj = σk), the inflection points xa, xb of gϑ(x) can be
calculated using elementary calculus. If [xa, xb] ⊆ [xj, xk], we can consider
the distance between xa and xb to be a measure of the spread of gϑ(x).
With regard to the fact that the inflection points of a normal distribution are
located one standard deviation from the mean we define the spread of gϑ(x)
as

sgϑ
=

1
2
|xa − xb|. (5.7)

Simple calculation shows that

1
2
|xa − xb| = σj,k

1
|µj − µk|

. (5.8)

As we assume linear interpolation, |µj − µk| is the derivative of µ(x) with
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Figure 5.2: Example graph for the ICD in a 1D grid cell. The values gϑ(x) are
computed from the interpolated PDF f (x, y) with respect to threshold ϑ.

respect to x in the interval [xj, xk]. From this it follows that

sgϑ
= κabs σj,k, (5.9)

where κabs is the condition number for the calculation of level-crossings of
µ(x) (cf. Eq. (4.5)). This shows that the ICD propagates the uncertainty of
the input data proportionally to the condition number.

5.3.2 Point-Wise Level-Crossing Probabilities

An alternative approach to calculate spatial distributions of isocontours is
described in this section. Again, we consider a parameter-discrete random
field {Yxi : xi ∈ I} as a model for the uncertain input data (described in
Sect. 3.3). For simplicity we consider a one dimensional parameter set first.

Let xj, xk ∈ I be adjacent sample points with associated random variables
Yx j, Yxk and PDFs f j(y), fk(y). If we assume monotonic interpolants between
the realizations then we have at most one crossing of the constant level line
y = ϑ. The probability for a level-crossing along the line segment [xj, xk]

then is

P[xj,xk ](ϑ crossed) = P(Yx j ≤ ϑ)P(Yxk ≥ ϑ)

+P(Yx j ≥ ϑ)P(Yxk ≤ ϑ). (5.10)
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Figure 5.3: Comparison between the ICD gϑ(x) and the LCP Pϑ(x) for different
Gaussian input distributions in 1D. The probability density f (x, y) is indicated by
a colormap.

The probabilities on the right side of this equation can easily be calculated by
the cumulative distribution functions F(·)(ϑ) that provide the probability that
Y(·) is less or equal to ϑ. So, the level-crossing probability can be expressed
as

P[xj,xk ](ϑ crossed) = Fj(ϑ) (1− Fk(ϑ))

+(1− Fj(ϑ)) Fk(ϑ). (5.11)

With that it is possible to calculate a level-crossing probability between each
two adjacent vertices of the grid. However, it is desirable to get a probability
for each point in a continuous domain.

Using the interpolation scheme introduced in Sect. 5.2 it is possible to
compute a CDF from interpolated PDF f (x, y) and thus subdivide the grid



Local Measures for the Positional Uncertainty of Isocontours 55

cells in order to compute probabilities for subsegments i.e.

P[x,x+∆x](ϑ crossed).

We are then able to find the limit

Pϑ(x) = lim
∆x→0

P[x,x+∆x](ϑ crossed) (5.12)

which evaluates to level-crossing probability (LCP)

Pϑ(x) = 2 Fx(ϑ) (1− Fx(ϑ)) (5.13)

where Fx(ϑ) =
∫ ϑ
−∞ f (x, y)dy is the CDF of the interpolated PDF. Equation

(5.13) gives the probability that for two independent realizations ya and yb
of a random variable distributed according to the interpolated PDF f (x, y)
one of them is greater or equal to ϑ while the other is less or equal to ϑ.

To show the range of function values we consider Pϑ as a function of Fx

in the interval [0, 1]. Obviously Pϑ is not negative. Because Pϑ = 2(Fx − F2
x )

we can write
dPϑ

dFx
= 2(1− 2Fx).

From dPϑ/dFx = 0 and Fx ∈ [0, 1] it follows, that the function Pϑ(x) takes a
maximum at F(max)

x = 1
2 . Thus, the maximum value of Pϑ is Pϑ(

1
2 ) =

1
2 and

therefore Pϑ(x) ∈ [0, 1
2 ].

If Pϑ(x) is maximal then

F(max)
x (ϑ) =

1
2
= 1− F(max)

x (ϑ)

holds. This means that prob(Yx ≤ yϑ) = prob(Yx ≥ yϑ) = 1
2 = prob(Yx ≤

y 1
2
) = prob(Yx ≥ y 1

2
) if y 1

2
is the median of the PDF fx(y). Thus, Pϑ(x) takes

its maximum if the isovalue ϑ is equal to the median of the interpolated PDF
f (x, y).

For normally distributed input data the LCP evaluates to

Pϑ(x) =
1
2

(
1− Erf

(
µ(x)− ϑ√

2 σ(x)

))
, (5.14)

where Erf is the error function.

5.3.3 Comparison

While the ICD maps points x ∈ I∗ to probability densities, LCP maps points
to probabilities. The cardinality of the range of gϑ(x) depends on f (x, y). The
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Figure 5.4: The probability Pϑ(x) (LCP) for an uncertain isocontour in a slice of
the Fuel dataset is displayed using a colormap in combination with the crisp isoline
µ−1(ϑ) of the mean field (black).

density values gϑ(x) are relatively low in case of large values of σ(x) and
high in case of small values of σ(x) because f is normalized with respect to
the state space. As we have shown in Sect. 5.3.2 the range of Pϑ(x) is always
[0, 1

2 ] and does not depend on the spread of the input distributions. The
positions of the maxima of gϑ(x) and Pϑ(x) are not necessarily identical.
Comparisons for three different pairs of input distributions are shown in
Fig. 5.3.

The ICD can be computed directly for data with analytically defined
PDFs. For LCP we need CDFs which for the major practical cases are also
available, either as closed analytical expressions or as fast numerical approx-
imations. For instance for normally distributed input data the Erf function
has to be computed; an efficient and accurate approximation was proposed
by Winitzki [Win08]. If such approximations are used, both approaches are
suitable for interactive real-time visualization of uncertain fields.

We will use the LCP exclusively in the remainder of this chapter, because
a probability field is more easily interpretable than probability densities with
respect to the state space. The fact that the range of Pϑ(x) does not depend
on the input data also simplifies the visual mapping.

5.4 Visualization Methods

The definitions in the previous sections are used as a basis for the design of
interactive visualization methods that depict uncertain isolines and isosur-
faces, and do not only give an impression of the uncertainty, but also depict
quantitative measures.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Isosurfaces of the fuel dataset with a fixed (artificial) standard deviation
σ = 5. The condition number for µ−1(ϑ) is color-mapped in the top row. The LCP is
depicted by volume rendering in the middle row. The bottom row displays combined
renderings of the LCP and the mean surface. The left column of images use isovalue
ϑ = 90 and reveal low positional uncertainty; the right column (ϑ = 22) uncovers
higher positional uncertainty due to higher condition numbers.

The pure display of the distribution in 3D data can be difficult to inter-
pret (cf. Fig. 5.5). In order to improve 3D impression, we can depict both the
crisp isocontours µ−1(ϑ) of the mean field and the spatial distribution via
the LCP.

To uncover the reason for the spatial distribution of an uncertain isocon-
tour, both condition number κabs and the standard deviation σ(x) of the
input distributions can be depicted side by side in two images. The con-
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(a)

(b) (c)

Figure 5.6: Uncertain isosurface bounded by two clipping planes to display Pϑ(x)
inside the mean surface (a). Normal distributions are considered as input data in (a)
and the closeup (b). When considering uniform distributions we obtain the spatial
distribution depicted in (c).

dition number on crisp isosurfaces is shown by a colormap. In addition to
that, the values of the standard deviation σ(x) can be indicated by the length
of line glyphs, see Fig. 5.9d.

For two-dimensional input data, the LCP can easily be displayed as a 2D
distribution using a colormap. For each texel the LCP has to be evaluated
with respect to a given isovalue ϑ. The visualization of uncertain isosurfaces
in real time is realized using GPU-based ray casting [KW03]. Instead of em-
ploying user-defined transfer functions, the LCP is evaluated and the values
are mapped to transparency and color which then are used in a emission-
absorption model for ray integration. For combined volume and surface
rendering the intersection of the ray and µ−1(ϑ) is tested in each step of the
ray integration.
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5.5 Results

In the following we apply the visualization methods to various datasets.
Using a non-optimized implementation we achieve frame rates between 5
and 25 fps on an Intel Xeon X5550 2.66 GHz system with a GeForce GTX 285
GPU.

Fuel Dataset. As an example, an uncertain isoline in a slice of the fuel
dataset is depicted in Fig. 5.4. We assume normal distributions as input
data and artificially set the standard deviation to be constant σ = 5 (about
2% of the range of values in the dataset) because no information about the
uncertainty was available. The LCP is displayed using a colormap and in
combination with the crisp isoline µ−1(ϑ). In Fig. 5.5 isosurfaces in the same
dataset are shown. The condition number mapped to surface color (top row),
a volume rendering of the LCP (middle row) and a combined rendering
of the LCP and the mean surface are displayed for isovalues ϑ = 90 and
ϑ = 22. The combined rendering (bottom row) improves 3D impression of
the visualization compared to the volume rendering alone. The uncertain
isosurfaces in the second row reveal higher position uncertainty compared
to the first row due to higher condition numbers in the respective areas.
The fact that position uncertainty inside a closed mean surface is occluded
when surface and volume rendering are combined can be met by the user
by placing clipping planes to make the interior of the mean surface visible,
cf. Fig. 5.6 (a). A close-up is shown in Fig. 5.6 (b). For comparison, the LCP
considering uniform instead of normal distributions as input is displayed in
Fig. 5.6 (c).

Medical Volume Data. Medical volume data from CT scanners usually does
not contain explicit uncertainty information, but the amount of noise in the
scans can be used as an estimate. An approach that was also used by Firbank
et al. [FCHW99] to compute the signal to noise ratio is based on analysis of
homogenous subsets of images (i.e. areas with constant signal). In case no
area with constant signal is available in a dataset alternative methods such
as single image SNR estimation [TSP01] should be applied.

As an example we considered a dataset used for planning an implant
in the middle ear of a patient. Here the size and number of connected
air pockets is important. We estimated the standard deviation of the noise
from areas that contain air only. The noise was approximately normally
distributed. We denoised the CT scan using a median filter and considered
this as µ(x). The estimated standard deviation (σ ≈ 13.4) is used to display
an uncertain isosurface that depicts air pockets in the middle ear (shown
in Fig. 5.7). This shows that the topology of the isosurface is not clearly
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(a)

(b)

Figure 5.7: Isosurface with condition numbers mapped to color (a) and an uncertain
isosurface in a CT scan of the middle ear region (b).

defined. The mean isosurface has several distinct parts that are connected
by relatively large LCP values. Thus, the number, size and shape of air
pockets are highly uncertain. This also implies that a segmentation of these
areas by thresholding can lead to erroneous results.

Simulated Climate Data. Uncertainty in climate simulations is often repre-
sented by ensembles which contain multiple results for the simulated quanti-
ties. As an example we use daily average hindcast data from the DEMETER
project [Pal04] where the results of 7 different climate models and 9 different
sets of simulation parameters each constitute ensembles with 63 members.
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(a)

(b) (c)

Figure 5.8: Simulated climate data: The ensemble mean µ(x) for the temperature
field at 2 m altitude is shown in (a), the standard deviation σ(x) in (b), a histogram
for the ensemble values at a single location in (c).

This way, the simulation accounts for both model uncertainty and uncer-
tainty of the input data.

To prepare for the extraction of uncertain isocontours, the data in a tem-
perature field ensemble for February 20th, 2000 is analyzed statistically. For
each location x we compute the ensemble mean µ(x) and standard devia-
tion σ(x) (see Fig. 5.8a–5.8b). Again, we model the uncertainty by normal
distributions. In Fig. 5.8c the histogram of temperatures at a single location,
but considering all ensemble members, is shown.

From these fields we are able to extract uncertain isolines (isotherms)
using the LCP. Fig. 5.9a–5.9c depict uncertain isolines for -25◦C, 0◦C and
25◦C, respectively, which reveal highly varying position uncertainty around
the crisp ensemble mean isoline (black).

From DEMETER not only temperatures at the two-meter level but also
temperatures at the pressure levels 850 hPa, 500 hPa and 200 hPa above the
earth’s surface are available. We analyze the ensembles for these levels in
the same manner as the two-meter temperature field and use all results to
construct a volume dataset with pressure mapped to the third coordinate.
This volume is used for the extraction of uncertain isotherm surfaces. In
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(a)

(b)

(c)

(d)

(e)

Figure 5.9: Uncertain isotherms lines for -25◦C, 0◦C and 25◦C are shown in (a)-(c),
respectively. The crisp mean isoline is drawn in black. On the mean isotherm surface
(ϑ = 25◦C) the condition numbers are mapped to color and the values of σ(x) are
depicted by the length of line glyphs in (d). The resulting uncertain isosurface is
displayed in (e).

Figure 5.10: Uncertain isotherm surface for 0◦C. Note the ridges extending down-
wards to the earth’s surface that are not indicated by the crisp isosurface.



Discussion 63

Fig. 5.9d the condition numbers for the crisp mean surface is displayed by a
colormap for isovalue ϑ = 25◦C and the values of σ(x) are indicated by the
length of line glyphs at that surface. The corresponding uncertain isotherm
surface is shown in Fig. 5.9e. Comparing Fig. 5.9d to Fig. 5.9e we see that
low values of σ(x) with high values of κabs and high values of σ(x) with low
values of κabs both can result in similar amount of position uncertainty. Fig.
5.10 shows an uncertain isotherm surface for 0◦C. This example shows that
volume rendering of the LCP reveals also structural information that crisp
isosurfaces do not display: possible topological changes of crisp isosurfaces
are indicated as well as ridges of Pϑ.

DTI Data. We computed the condition numbers and estimate the propaga-
tion of uncertainty to the anisotropy indices and the related isosurfaces for
a synthetic spiral and a brain DTI dataset.

In Fig. 5.11 the condition numbers κabs
FA−1(ϑ)

, κabs
RA−1(ϑ)

, κabs
FA,FA−1(ϑ)

and the

relative differences between κabs
FA,FA−1(ϑ)

and κabs
RA,RA−1(ϑ)

are shown along with

two corresponding uncertain isosurfaces. The values of κabs
FA−1(ϑ)

are lower

than κabs
RA−1(ϑ)

, while the relative differences between κabs
FA,FA−1(ϑ)

and κabs
RA,RA−1(ϑ)

are smaller than 1%. The uncertain isosurfaces in Fig. 5.11(c) and (f) are de-
picted by volume renderings of Pϑ combined with crisp isosurfaces FA−1(ϑ)

and RA−1(ϑ).
For the brain dataset, we computed the uncertainty propagation from

the DTI eigenvalues to the scalar anisotropy indices, cf. Sect. 4.3.4. From
the FA and RA fields and the corresponding uncertainty estimations for
ŜNRλ = 10 and ŜNRλ = 20 we generated the uncertain isosurfaces shown
in Fig. 5.12 (see also Fig. 4.6). We chose the threshold ϑ = 0.5 for FA that was
used previously for the segmentation of brain structures using isosurfaces
[STS07]. The threshold for the corresponding RA isosurface is ϑ ≈ 0.32.
Again, the spatial distributions of the isosurfaces are indicated by volume
renderings of Pϑ that surround the mean (crisp) surfaces.

5.6 Discussion
Compared to previous approaches to isosurface uncertainty the methods
presented in this chapter differ in regard to mathematical modelling and
visualization methods.

Modeling and Computation. Rhodes et al. [RLBS03] do not use an error
model, but assume that uncertainty is somehow quantified ("error value")
and provided in the data set. Grigoryan and Rheingans [GR04] computed
the position of point primitives (depicting a probabilistic surface) by mul-
tiplying an uncertainty value, a random number and a user-defined scale
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FA

(a) κabs
FA−1(ϑ)

(b) κabs
FA,FA−1(ϑ)

(c) Pϑ,FA

RA

(d) κabs
RA−1(ϑ)

(e) Relative differences
κabs

FA,FA−1(ϑ)
− κabs

RA,RA−1(ϑ)

κabs
FA,FA−1(ϑ)

(f) Pϑ,RA

Figure 5.11: Textured slices in the spiral dataset: condition number for isosurface
extraction for FA (a) and RA (d), combined condition for FA (b) and relative differ-
ences between the combined condition numbers (e). In the right column uncertain
isosurfaces (assuming constant SNR=20 for all eigenvalues) are depicted.

factor. When applying the method to data from tumor-growth simulations
the authors use the error estimation from the simulation as input, while for
clinical data they extract crisp isosurfaces and use the inverse density gradi-
ent magnitude at the surface points as an uncertainty measure. Their model
does not consider probability distributions.

As we have shown in Sect. 4.2 the inverse gradient magnitude at the
points of an isocontour is the absolute normwise condition. The position
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FA

(a) (b)

RA

(c) (d)

Figure 5.12: Uncertain isosurfaces for ŜNRλ = 10 (left) and ŜNRλ = 20 (right)
using FA (top) and RA (bottom). The mean crisp isosurfaces are shown in white
while the level-crossing probabilities are mapped to color for volume rendering. The
threshold is ϑ = 0.5 for FA and ϑ = 0.32 for RA.
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uncertainty of an isocontour, however, depends on the product of the condi-
tion number and the uncertainty of the input data. The ICD and LCP can be
computed from datasets with uncertainty given by arbitrary probability dis-
tributions (with a finite number of moments) and in arbitrary-dimensional
parameter spaces. The results of these functions are probabilities and prob-
ability densities, which means, that our methods quantify uncertainty in a
statistically well-founded way.

Visual Mapping. The "error value" used by Rhodes et al. [RLBS03] is
mapped to crisp isosurfaces by color or texture for visualization but the
authors do not address positional uncertainty. Grigoryan and Rheingans
[GR04] propose a heuristic to show the position uncertainty of surfaces.
Clouds of point primitives are placed along the normals of crisp surfaces.
An evaluation shows that this approach is more suitable to clarify position
uncertainty compared to color coding. Zuk [Zuk08] points out that the user-
defined scale factor in reference [GR04] may lead to an arbitrary Lie Factor
in the visualizations.

The visualization methods presented in Sect. 5.4 are based on Pϑ(x) and
thus the output is a function of the input data only, i.e. there are no user-
defined parameters. Difficulties in interpreting visualizations arise in areas
of an image where the mean surface is normal to the camera vector. There,
the amount of positional uncertainty is difficult to recognize. This can usu-
ally be worked around by the user by interactively changing the viewpoint.
The separate display of the condition number κabs and the standard devia-
tion σ(x) of the data at the surface points helps the user to understand why
a given uncertain isosurface has a specific spatial distribution.



6
Feature Probabilities in
Discrete Random Fields

The methods to compute and visualize the positional uncertainty of isocon-
tours presented in the previous chapter are based on discretely sampled
uncertain scalar fields that are modelled by discrete random fields given
on a computational grid, assuming that the random variables are spatially
uncorrelated. A continuous extension of the discrete field is obtained by
interpolating the PDFs such that the point-wise measures given in Eq. (5.2)
and (5.11) can be evaluated.

In the following, we propose a framework that differs in two respects.
We formulate a generic approach for computing grid cell-wise probabilities
for the occurrence features where

1. any desired type of local feature can be defined using specific indicator
functions, and

2. the computation of probabilities takes spatial correlations of the ran-
dom field into account by integrating over multidimensional PDFs that
are associated with the respective grid cells and their neighborhood.

This chapter is based on the publications [PWH11, PPH13, PPH12, PH13,
PH14].

6.1 A Generic Framework
We assume that the data have been sampled on nodes of some mesh and
that the uncertainty is modelled using an `-valued discrete random field as
described in Chap. 3. In order to reveal the probability for the occurrence
of a feature at some spatial location, we compute probabilities that features
exist at each cell c ∈ Cη where Cη denotes the set of all cells in the grid for

67
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which the feature is defined. The proposed procedure can be applied to any
type of mesh, both structured and unstructured.

6.1.1 Feature Indicator Functions

Let Kc be the number of degrees of freedom for cell c, e.g. the number of
adjacent vertices for a polyhedral cell or the number of adjacent triangles for
a vertex in a triangular mesh, then Yc ∈ R`Kc . A feature indicator I is a boolean
function defined for an η-cell c and a realization of Yc that determines if a
feature occurs or not:

I : Cη ×R`Kc → {0, 1} (6.1)

Note that the neighborhood size of a cell is in general not the same for every
cell in the grid, and depends on the combinatorial grid topology.

6.1.2 Feature Probabilities

Let I be a feature indicator defined on η-cells of a parameter-discrete random
field (parametric or nonparametric) defined on a computational grid. The
cell-wise probability for the occurrence of the feature is then

Pc =
∫
D

fc(yc)dyc =
∫

R`Kc

fc(yc) I(c, yc)dyc = E(I(c, ·)), (6.2)

where D = {yc ∈ R`Kc | I(c, yc) = 1} and fc is probability density function
of the (`Kc)-variate distribution associated with cell c and yc is a realization
of Yc. The probability Pc can also be considered as the expected value of the
feature indicator I in cell c and with respect to fc.

6.1.3 Numerical Integration

The integral in Eq. (6.2) can be approximated using Monte Carlo sampling.
For each type of PDF a specific sampling method has to be employed. To
draw samples from a Gaussian distribution, e.g. to sample from a parametric
normal distribution or a Gaussian kernel for KDE, we apply a 2 step algo-
rithm. Uncorrelated samples conforming to a uniform distribution are gen-
erated and converted to normally distributed values using the Box-Muller
transform [BM58]. These samples are adjusted to the multivariate normal
distribution by applying a Cholesky decomposition to the covariance matrix
and multiplying the samples with the lower triangle matrix [Gen04, p. 197].
Refer to Chap. 3 for methods to sample from nonparametric distributions.
Gentle provides a comprehensive overview of random sampling algorithms
in his book [Gen04]. In case KDE is used with the PC transformation method
each Monte Carlo sample has to be transformed back to the original basis
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for the evaluation of I because indicator functions are defined with respect
to this basis and not in terms of the PCA modes.

The number of vector components `Kc can vary depending on the grid
topology. For example, there can by vertices with different numbers of ad-
jacent triangles in a triangulated 2D domain. The realizations evaluated by
the indicator function I. From the ratio of samples that agree to the respec-
tive feature to those that don’t we compute the feature probability for each
grid cell. The number of samples can be manually set to a sufficient value,
such that no significant Monte Carlo noise is observable anymore. Using
pseudocode the algorithm can be summarized as follows:

for each cell c {
estimate density fc

#features← 0

for 1 . . . #samples {
y← random sample (y1, . . . , y(`Kc))

T ∼ fc(y)

if(I(c, y) == 1) #features← #features + 1

}
Pc ← #features/#samples

}

The computational complexity for calculating the feature probability of one
grid cell using MC integration is O(ε−2), where ε is the integration error.
This integration method can be computationally very expensive, depend-
ing on the size of the grid, the probability distributions and the number of
samples (or predefined ε). Thus, it is desirable to find simplifications and
approximations in order to speed up the computations, cf. Sect. 6.4.

6.2 Cell-Based Level-Crossing Probabilities
Based on the general approach presented in the previous chapter we aim to
formulate a method to quantify the spatial distribution of isocontours in a
discrete random field Y taking the spatial correlations into account.

Any realization y of Y defines a grid function. For any grid function
imagine an extension to a C0 function y∗ that is defined in the continuous
domain and that interpolates between the sample points xj such that in each
η–cell c (η ≤ N) the extremal values are taken at the vertices of c. Exam-
ples for such interpolations are linear interpolation for simplicial cells and
η−linear interpolation for η−dimensional polytope cells.

Let J be the set of indices of the vertex points of cell c. Then cell c
crosses the ϑ-level of y∗ if and only if in the set of differences (yj − ϑ)j∈J
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both signs occur. Equivalently, cell c does not cross the ϑ-level of y∗, if and
only if all differences (yj − ϑ)j∈J have the same sign. We want to compute
the probability that a η-cell c of the N-dimensional sample grid crosses the
ϑ-level of interpolated realizations of the random variables Yj∈J . We call this
the ϑ-level-crossing probability of cell c and denote it by Pc(ϑ-crossing).

The main differences of this approach compared to the methods pre-
sented in Chap. 5 are that (i) the results are computed per grid cell and not
per point in the continuous domain and (ii) the correlation structure of the
field is considered.

6.2.1 Indicators Functions for Level Crossings

To compute level-crossing probabilities in uncertain scalar fields (` = 1) with
cells c ∈ Cη and η ≥ 1, i.e. probabilities that intersections between the field
and a predefined level (or isovalue) ϑ exist, we use the indicator function

Icross(c, yc) =

{
0 ∀ yi,c (yi,c ≤ ϑ) ∨ ∀ yi,c (yi,c > ϑ)

1 otherwise,
(6.3)

where yi,c are the components of yc.
In order to compute the probability we have to integrate the joint density

function fc of the random vector Yc over regions where the indicator function
Icross has value 1. Adapting Eq. (6.2) we obtain a special case of the general
feature probability formula

Pc(ϑ-crossing) =
∫
D

fc(yc)dyc =
∫

R`Kc

fc(yc) Icross(c, yc)dyc,

where D = {yc ∈ R`Kc | Icross(c, yc) = 1}.
The general procedure to compute such probabilities can be applied to

any type of mesh entity, for example to arbitrary polyhedral cells in grids of
arbitrary dimension d. In the following we consider exemplarily edges, rect-
angles and cuboids (duals of voxels) in such grids. Obviously the procedure
can be extended to η-simplices or arbitrary η-polyhedra with η ≤ d.

6.2.2 Level-Crossing Probabilities for Different Cell-Types

An equivalent and intuitive formulation to compute the level-crossing prob-
ability is to integrate the joint density function fc over sets {yj ∈ R | yj ≤ ϑ}
and {yk ∈ R | yk ≥ ϑ} using Eq. (3.15).
Alternatively we can compute the probability

Pc(ϑ-crossing) = 1− Pc(ϑ-non-crossing) , (6.4)
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(a) (b)

Figure 6.1: Example for the 1D case (edge): (a) The marginal distributions at the
grid points are shown in blue. Exemplarily, one realization of the linear interpolant
is shown (green solid line); other realizations with lower probability are indicated
(green transparent lines). In the depicted case the ϑ-level-crossing probability is
relatively high. In (b) a density plot of the joint distribution with a correlation
coefficient of 0.75 is displayed. The quadrants constituting the integration domain
for the computation of the level-crossing probability are indicated by the hatched
grey area.

which in cells of dimension greater then one is less expensive to calculate.
In the following we show more specific equations for crossing probabilities
for several different grid cell types.

Edges (1-cells). For a scalar field in one or more dimensions we consider
two random variables Y1, Y2 that are associated with adjacent grid points
x1, x2. Consider the random vector Yc = [Y1, Y2] where the joint probability
distribution is described by a bivariate PDF fc(y1, y2) with y1, y2 ∈ R, see
Fig. 6.1.

The ϑ-level-crossing probability is given by

Pc(ϑ-crossing) = P(Y1 ≤ ϑ, Y2 > ϑ) + P(Y1 > ϑ, Y2 ≤ ϑ)

=
∫

y1≤ϑ

dy1

∫
y2>ϑ

dy2 fc(y1, y2) +
∫

y1>ϑ

dy1

∫
y2≤ϑ

dy2 fc(y1, y2) (6.5)
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Figure 6.2: Example for the computation of a level-crossing probability in 2D:
The marginal distributions at the grid points are shown in blue. Exemplarily, one
realization of the bilinear interpolant is shown in green (the particular one, where
all random variables take the value of their means). The ϑ-level-crossing probability
of the interpolant is relatively low in this specific case.

Figure 6.3: Four distinct configurations for the marching squares algorithm. The
other configurations can be constructed by inverting, rotating and mirroring the
grid points. The integrals of the probabilistic formulation correspond to these cases.

Alternatively:

Pc(ϑ-non-crossing) = P(Y1 ≤ ϑ, Y2 ≤ ϑ) + P(Y1 > ϑ, Y2 > ϑ)

=
∫

y1≤ϑ

dy1

∫
y2≤ϑ

dy2 fc(y1, y2) +
∫

y1>ϑ

dy1

∫
y2>ϑ

dy2 fc(y1, y2).

(6.6)

Since the four quadrants

{(y1, y2)|y1 ≤ ϑ and y2 ≤ ϑ},
{(y1, y2)|y1 ≤ ϑ and y2 > ϑ},
{(y1, y2)|y1 > ϑ and y2 ≤ ϑ} and

{(y1, y2)|y1 > ϑ and y2 > ϑ}

are disjoint and their union is R2 we can read off Eq. (6.4).
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Rectangles (2-cells). For a scalar field in two or more dimensions we con-
sider Yc = [Y1, Y2, Y3, Y4] at the grid points x1, x2, x3, x4 that are the corners
of a pixel, see Fig. 6.2. The joint probability distribution is described by a
four-dimensional Gaussian PDF fc(y1, y2, y3, y4) with y1, y2, y3, y4 ∈ R.

Using integrals over fc we can compute probabilities for the different
cases of the marching squares algorithm, see Fig. 6.3. Probabilities for the four
distinctive cases are:

Pϑ,1 =
∫

dy1

∫
dy2

∫
dy3

∫
dy4

(y1 > ϑ∧ y2 > ϑ∧ y3 > ϑ∧ y4 > ϑ)

fc(y1, y2, y3, y4) (6.7)

Pϑ,2 =
∫

dy1

∫
dy2

∫
dy3

∫
dy4

(y1≤ ϑ∧ y2 > ϑ∧ y3 > ϑ∧ y4 > ϑ)

fc(y1, y2, y3, y4) (6.8)

Pϑ,3 =
∫

dy1

∫
dy2

∫
dy3

∫
dy4

(y1≤ ϑ∧ y2≤ ϑ∧ y3 > ϑ∧ y4 > ϑ)

fc(y1, y2, y3, y4) (6.9)

Pϑ,4 =
∫

dy1

∫
dy2

∫
dy3

∫
dy4

(y1≤ ϑ∧ y2 > ϑ∧ y3≤ ϑ∧ y4 > ϑ)

fc(y1, y2, y3, y4) (6.10)

The remaining 12 cases can be constructed by rotating and mirroring the
grid points.

The level-crossing probability for a pixel can be computed by considering
the complement of the cases where no level crossing occurs:

Pc(ϑ-crossing) = 1−
∫

dy1

∫
dy2

∫
dy3

∫
dy4

(y1≤ ϑ∧ y2≤ ϑ∧ y3≤ ϑ∧ y4≤ ϑ)
∨(y1 > ϑ∧ y2 > ϑ∧ y3 > ϑ∧ y4 > ϑ)

fY(y1, y2, y3, y4) (6.11)

Cuboids (3-cells). For a scalar field in three or more dimensions we con-
sider 8 random variables located at the corners of a cuboid, whose joint prob-
ability function is an 8-dimensional Gaussian PDF. Of the 28 = 256 cases, we
have 254 cases with crossing (comprised of 14 distinct marching cubes cases)
and 2 cases without crossing. The simplest way to compute level-crossing
probabilities again is to use Eq. (6.4) and compute probabilities that no level
crossing occurs, analogously to Eq. (6.11).

6.2.3 Visual Mapping

We employ a visual mapping for discrete fields that is similar to the meth-
ods described in Sect. 5.4. The main difference is that the smallest scale of
features that can be resolved for visualization is determined by the com-
putational grid while the continuous methods can reveal finer structures



74 Feature Probabilities in Discrete Random Fields

(a)

(b)

Figure 6.4: Uncertain isolines for a synthetic 2D dataset. The expected values con-
form to a sine pattern (with a low amount of noise added) on the left that gradually
approaches a plateau on the right as seen in (a). The variances and covariances are
constant. In (b) the probabilities for ϑ = 0 are color mapped while the crisp isoline
of the expected values is shown in black. While the computation of isolines is ill-
conditioned at critical points (especially plateaus) the probabilistic ansatz does not
suffer from this problem and calculates high probabilities for the whole plateau.

due to the interpolation of the PDFs (in contrast to the possible interpola-
tion of probabilities in the discrete setting). We show crisp isosurfaces of the
mean values because in many cases it represents the most probable shape of
the isosurface. This surface is augmented with the volume rendered level-
crossing probabilities. This visual design corresponds to traditional 2D plots
with error bars where the mean value is shown like a crisp, certain value
that is augmented with the standard deviation. The development of refined
visual designs conveying uncertainty as well as assessment of their visual
effectiveness is a promising area of research but it is beyond the scope of
this thesis.

6.2.4 Results and Discussion

To illustrate the essential properties of the methods we apply them to syn-
thetic datasets. We show the method’s effectiveness for real world data by
applying it to ensemble datasets from climate research and biofluid mechan-
ics. The computations were performed on an Intel Xeon X5550 2.66 GHz
system.
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(a)

(b) (c)

Figure 6.5: Uncertain isosurfaces in a synthetic 3D dataset. The expected values
are given by an analytic formula and the variances are constant. The correlation
coefficient is globally set to 0 in (a), to 0.65 in (b) and to 0.95 in (c). The probabilities
are displayed using direct volume rendering and a crisp isosurface of the expected
values is shown in white. The results show that increasing correlation between the
grid points (from (a) to (c)) decreases the level-crossing probabilities in the proximity
of the mean surface and leads to more localized spatial distributions of uncertain
isocontours.

Synthetic Datasets. Fig. 6.4 shows uncertain isolines for a synthetic 2D
dataset. The expected values of the input data (with a low amount of noise)
correspond to a sine pattern on the left side of the image that gradually
blends to a plateau on the right, see, shown in Fig. 6.4a. The variances and
covariances are constant. The probabilities in the grid of 1000× 250 pixels
were computed using 4000 samples per pixel in 225 seconds. In Fig. 6.4b
the level-crossing probabilities for ϑ = 0 are mapped to color while the crisp
isoline in the mean value field is shown in black. Uncertain isosurfaces in
a synthetic 3D dataset are displayed in Fig. 6.5. The expected values of the
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Figure 6.6: Assessment of normality for 5 randomly chosen distributions from the
temperature field ensemble using a Q-Q-Plot. The distributions do not show severe
deviations from the normal distribution, i.e. small differences compared to a linear
shape.

input data are given by the simple analytic formula µ(x, y, z) = (cos(7x) +
cos(7y) + cos(7z)) exp(−4.5r), where r =

√
x2 + y2 + z2. The variances are

constant in the 3 images. A global correlation coefficient (for each pair of
vertices) is varied to study the influence of correlation and set to 0 in 6.5a, to
0.65 in 6.5b and to 0.95 in 6.5c. The probabilities in the grid of 256× 256× 128
voxels were computed using 1600 MC samples each in ≈ 45 minutes for each
result. The level-crossing probabilities (ϑ = 0.013) are displayed using DVR.
A crisp mean isosurface is shown in white.

Fig. 6.4b illustrates that the computation of crisp isolines is ill-conditioned
at critical points (especially plateaus) while the probabilistic ansatz does
not suffer from this problem and calculates high probabilities for the whole
plateau.

Results from Climate Simulations. We apply the algorithm to daily aver-
age hindcast data from the DEMETER project [Pal04]. Data from this project
was also employed for the results in Chap. 5. The means, variances and
covariances are computed from a temperature field ensemble for Feb 20th,
2000. To check whether the modelling of the data using Gaussian distribu-
tions is appropriate we assess normality using a Q-Q plot [Job91, p. 63]. An
example is shown in Fig. 6.6 where quantiles for 5 randomly chosen distri-
butions from the temperature field ensemble are displayed. In this field the
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(a) (b)

(c) (d)

Figure 6.7: Results for a 2 metre temperature field from climate simulations: The
ensemble means are shown in (a). The level-crossing probabilities for ϑ = 0◦C
are colormapped in (b). For comparison the relative count of crisp isolines in the
63 ensemble members crossing the respective grid cell is shown in (c). The results
computed using point-wise LCP (Eq. (5.10), i.e. not considering correlation) are
shown in (d). While the latter result overestimates the spatial distribution of the
uncertain isoline the distribution in (b) is more localized and similar to (c).

data data approximately Gaussian distributed.

Results for the 2 meter temperature field are shown in Fig. 6.7. The en-
semble means are shown in 6.7a. The level-crossing probabilities (ϑ = 0◦C)
are mapped to color in 6.7b. The probabilities in the grid of 144× 73 pixels
were computed using 8.000 samples per pixel in 11 seconds. For compari-
son the relative count of crisp isolines in the 63 ensemble members crossing
the respective grid cell is shown in 6.7c. The probabilities, computed using
point-wise LCP employing Eq. (5.10) and not considering correlation, are
displayed in 6.7d. The corresponding mean isoline is depicted in black. We
combine the 2 meter data set with temperature fields of pressure levels 850,
500 and 200 hPa in the earth’s atmosphere to obtain a 3D ensemble where
the third coordinate represents air pressure. We compute means, variances
and covariances for all hexahedral grid cells. Fig. 6.8 shows uncertain isosur-
faces ϑ = 0◦C. For Fig. 6.8a the probabilities are computed using point-wise
LCP (not considering correlation). For the probabilities that are displayed
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(a)

(b)

Figure 6.8: Uncertain isosurfaces ϑ = 0◦C in a 3D temperature field. In Fig. (a)
the probabilities computed using point-wise LCP (not considering correlation) are
shown. For Fig. (b) correlation was considered and the level-crossing probabilities
reveal a more localized spatial distribution of the uncertain isosurface.
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(a) (b) (c)

(d) (e) (f)

Figure 6.9: (a) A single member of the scalar field ensemble displayed as a heightmap
with an isoline. Color mapped level-crossing probabilities computed from (b) the
empirical distributions, (c) histograms, (d) kernel density estimates with untrans-
formed data and (e) kernel density estimates working with PC transformation. The
isoline of the mean field is shown in black. (f) For comparison: Level-crossing prob-
abilities computed using a parametric Gaussian model.

in Fig. 6.8a correlation was taken into account. The probabilities in a grid
resampled to 432× 219× 68 voxels were computed using 8.000 samples per
pixel in 194 minutes.

Comparison of Probabilistic Models. To illustrate the differences between
the models described above we computed level-crossing probabilities for 5
different models that were derived from a synthetic ensemble dataset. The
ensemble consists of 32 realizations of a sine pattern where Gaussian noise
and a varying bias were added to all scalar values in every ensemble mem-
ber, which leads to skewed distributions. 1D marginal distributions for a
single vertex of the field are shown in Fig. 6.10. The empirical distribution is
drawn in red, the histogram in blue, a parametric normal distribution in yel-
low and a kernel density estimate in violet. Fig. 6.9 (a) shows a single mem-
ber of the ensemble displayed as a heightmap with an isoline. Level-crossing
probabilities for the same isovalue are displayed using color mapping in Fig.
6.9 (b)-(f). Due to the skewed distribution the maximal probabilities are ex-
pected to occur off the isoline of the mean field. Indeed, this can be observed
in Fig. 6.9 (b), (d) and (e). However, with the Gaussian model in Fig. 6.9 (f)
the ridges of the probability field coincide with the isoline of the mean field.
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Figure 6.10: 1D marginal distributions, red: empirical distribution, blue: his-
togram, yellow: normal distribution (parametric model), violet: kernel density esti-
mate

In the results computed from histograms and KDE without PC transforma-
tion (Fig. 6.9 (c) and (d), respectively) we observe that the probabilities are
higher and the spatial distributions are wider, compared to the other mod-
els. This is due to fact that these models cannot adequately represent the
correlations present in the data. For this reason we did not consider these
models in the subsequent examples.

We also compared the models computed from the 2 meter temperature
ensemble, day 90 of the 2000-02 hindcast, from a climate simulation of the
DEMETER project [Pal04]. To quantify the goodness of fit of the data to the
Gaussian distribution we performed the Shapiro-Wilk test on 1D marginal
distributions at each vertex of the grid. The resulting p-values that indi-
cate the probability that the ensemble values were drawn form a Gaussian
distribution are visualized in Fig. 6.11 (b). Fig. 6.11 (a), (c) and (d) show
level-crossing probabilities for the isovalue ϑ = 24◦C using color mapping.
We can observe that the most significant differences between KDE and the
Gaussian model occur in the center and lower center of the dataset – regions
where the ensemble tends to be non-Gaussian, as indicated by the low p-
values of the Shapiro-Wilk test. Fig. 6.11 (c) contains thin features with more
detail, whereas Fig. 6.11 (d) appears more smoothed out. The regions with
significant differences between KDE and the parametric Gaussian model are
highlighted by white boxes in the figures.

Level-crossing probabilities for the pressure field on the vessel and aneu-
rysm wall are mapped to color in Fig. 6.12. In Fig. 6.12 there are also struc-
tures in the KDE result (b) that are not present in the Gaussian result (c).
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(a)

(b)

(c)

(d)

Figure 6.11: Level-crossing probabilities (ϑ = 24◦C) in the 2 meter temperature
field from a climate simulation of the DEMETER project [Pal04] are mapped to
color. The results were computed using (a) empirical distributions, (c) KDE and
(d) a parametric Gaussian model. The results of vertex-wise Shapiro-Wilk tests
(p-values) are visualized in (b). The regions with the most significant differences
between (c) and (d) are highlighted by white boxes.
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(a)

(b)

(c)

Figure 6.12: Level-crossing probabilities for the pressure field on the vessel and
aneurysm wall are mapped to color. The probabilities were computed using (a)
empirical distributions, (b) KDE and (c) a parametric Gaussian model.

6.3 Feature Probabilities in Uncertain Vector Fields

In previous work several approaches to visualize uncertain vector fields have
been proposed, see Sect. 2.2. However, most of the methods assume the vec-
tors of the field to be statistically independent, i.e. only point-wise marginal
are considered distributions but no spatial correlations. Taking the corre-
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lations into account increases the dimensionality of the data compared to
independent distributions. Direct visualization (using e.g. glyphs) is there-
fore very challenging or not feasible at all.

6.3.1 Feature Types andModels for Vector-ValuedRandomFields

We propose methods to compute spatial distributions of local features from
uncertain vector fields considering the local correlation structure. These dis-
tributions can be used to display important structures of the data. In this
thesis we focus on critical points (sources, sinks and saddles) and swirling
motion vortex cores, but the proposed general approach can be applied to
other local features as well.

The following methods are based on discretized random vector fields
that are sampled on cells or nodes of structured or unstructured grids as
described in Chap. 3. The resulting probabilities for the presence of a feature
at spatial locations are defined in terms of feature indicator functions which
were introduced in Sect. 6.1 and computed using a Monte Carlo method.
An interesting question from the application point of view is the locality of
features, i.e. the question how far regions, in which some feature is notably
present, are extended.

For the computation of feature probabilities both parametric Gaussians
and nonparametric models can be employed. Whether or not a given field
is Gaussian, can either be statistically tested or assured by empirical knowl-
edge and statistical considerations. An example of the second case are mea-
surements of blood flow and tissue velocity by phase contrast MRI; due to
the inherent noise in MRI the resulting vector fields are uncertain and can be
shown to be correlated Gaussian random fields [FHH∗11]. However, com-
plex flows can also exhibit clearly non Gaussian distributions, e.g., in some
cases there may be multimodal distributions due to the multistability of the
system.

6.3.2 Critical Points in 2D

Isolated critical points in a crisp vector field v(x) are defined to be the points
of the domain where the vector field is 0, e.g., the set of x with v(x) = 0, and
the vector field is non-zero in an infinitesimal small neighborhood of those
points.

The Poincaré index relates the occurrence of critical points in a volume
to the vectors on the surface of that volume. It measures the signed winding
number of the vectors along the surface of an oriented topological sphere.
If the index is non-zero, the sphere encloses an isolated critical point. The
sign of the Poincaré index is the same as the sign of the determinant of the
Jacobian matrix of the vector field at the critical point.
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Figure 6.13: Winding number calculation of a saddle point in a piecewise constant
triangulated vector field. Following vectors in counter-clockwise direction from v0
to v4, vectors rotate clockwise, yielding the winding number of −1.

In 2D, the vectors along a path are traversed in counter-clockwise direc-
tion as illustrated in Fig. 6.13, vector directions along the path cover a circle
an integer multiple of times.

We use the Poincaré index for the identification of critical points by con-
sidering the vectors on the surface of the neighborhood. We compute dis-
crete angles between adjacent vectors in [−π, π), i. e., the smaller angle of
the two possible rotation directions. This is equivalent to component-wise
linear interpolation of vectors, and can be seen as follows: consider two
linearly interpolated vectors v0 and v1,

v(t) = (1− t)v0 + tv1, (6.12)

with t ∈ [0, 1]. The vector product v0 × v(t) is

v0 × v(t) = (1− t)v0 × v0 + tv0 × v1 = tv0 × v1. (6.13)

Thus, for t ∈ (0, 1], rotation angles are in the same direction as the smaller
angle between v0 and v1, i.e., the angular range covered by two linearly
interpolated vectors is the same as the angle between the start- and end
vector of the interpolation.

Piecewise Constant Fields. For piecewise constant tangent vector fields
of a curved triangulated domain, we compute the Poincaré index for the
nodes of the triangulation by considering vectors and triangles of the node’s
oriented star. The star of a node consists of all triangles with the node being
one of the triangle’s vertices, ordered in counter-clockwise orientation w.r.t.
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4

∑
i=0

θi 6= 2 π

Figure 6.14: Star of a curved surface, incident angles around the center sum to less
than 2π. Vector angles are measured in flattened space.

the triangle normals. The angle of adjacent tangent vectors are measured in
tangent space, i.e., triangles and vectors are first transformed in common flat
space by unfolding the triangles along their common edge. For computing
the Poincaré index in curved surface domains, the Gaussian curvature of the
geometry needs to be considered. The Poincaré index is then

idx(c, v) =
∑K−1

i=0 ](vi, v(i+1)%K)

∑K−1
i=0 θi

, (6.14)

for a node with an oriented star of K triangles with incident angles θi and
tangent vectors vi. The index is integer valued and denotes the number of
oriented windings of the vectors around the center. Technically, the index is
rounded to the nearest integer to account for floating point issues.

Continuous Fields. The discrete formula is correct as well if vectors are
interpolated linearly along the edges of the grid. This holds especially for
triangular grids and bilinear rectangular grids, the most common cases. For
tangent vectors in 2D flat space given on the nodes of a grid, the denomina-
tor of Eq. (6.14) is 2π, the index is computed for the 2-cells; vectors of the
nodes are traversed in counter-clockwise order.

Classification. The sign of the Poincaré index in 2D allows to discriminate
between source/sink/center types of critical points (index > 0) and saddle
type critical points (index < 0). To further distinguish between sources and
sinks, we compute the divergence of the vector field. According to Gauss’
theorem the total divergence of a volume element can be computed by con-
sidering the flux through a closed surface. For piecewise constant tangent
vector fields, Polthier and Preuß [PP02] defined the divergence operator for
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a vertex c by

div(c, v) =
1
2

∫
∂star(c)

< vi, ni >, (6.15)

the sum over the triangles of c’s star, and ni the exterior normal for each tri-
angle along the star. For interpolated 2D fields, the divergence is computed
as the sum of fluxes through the edges. The indicator functions are then

Isource(c, v) =

{
1 idx(c, v) > 0 ∧ div(c, v) > 0

0 otherwise
(6.16)

Isink(c, v) =

{
1 idx(c, v) > 0 ∧ div(c, v) < 0

0 otherwise
(6.17)

Isaddle(c, v) =

{
1 idx(c, v) < 0

0 otherwise
. (6.18)

Center type critical points with index 0 and divergence = 0 are not handled
here. When dealing with numerical data, a divergence of exactly 0 does
practically not occur. In the case of incompressible fluids that are known
to be divergence-free center identification is performed by Icenter = Isource +

Isink.

6.3.3 Critical Points in 3D

Analogously to the 2D case, the Poincaré index in 3D is given by the sum
of oriented solid angles of the vectors of the volume’s faces [GTS04]. For
triangular faces of a tetrahedron with linearly interpolated vectors defined
on the tetrahedron nodes, the vectors of a face span a spherical triangle with
solid angle in [−2π, 2π). The solid angles of all 4 faces divided by 4π is the
Poincaré index in {−1, 0,+1}. Index −1 identifies sinks and saddles with
an one dimensional stable manifold, index +1 identifies sources and saddles
with an one dimensional unstable manifold. This leads to the indicator
functions

I+(c, v) =

{
1 idx(c, v) > 0

0 otherwise
(6.19)

I-(c, v) =

{
1 idx(c, v) < 0

0 otherwise
. (6.20)

6.3.4 Swirling Motion

Swirling motion core-lines in 3D vector fields, as defined by Sujudi and
Haimes [SH95], are lines where (i) the Jacobian J of the vector field has 2
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complex eigenvalues, and (ii) the real eigenvector is parallel to the vectors
along the lines. In a tetrahedral grid with vectors given on the grid nodes,
the Jacobian is constant and vectors interpolate linearly within each tetrahe-
dron. Thus, swirling motion cores are straight lines within a tetrahedron.
We thus define our swirling motion feature indicator Iswirl on the vectors of
a tetrahedron by 1 if a swirling motion core passes through the tetrahedron
and 0 otherwise.

6.3.5 Computation of Feature Probabilities
Let Vc be a random vector in which all components of the vectors of the
neighborhood of c are combined and which is described by a local PDF
fc which represents the the (`Kc)-variate distribution, where ` is the dimen-
sionality of the vectors and Kc is the number of degrees of freedom. The PDF
can be a Gaussian or any nonparametric distribution introduced in Sect. 3.5.
Then Eq. (6.2) can be adapted to conform to the vector notation leading to

Pc =
∫
D

fc(vc)dvc =
∫

R`Kc

fc(vc) I(c, vc)dvc = E(I(c, ·)), (6.21)

where D = {v ∈ R`Kc | I(c, v) = 1} for feature indicator I. Depending on the
feature and the type of grid Pc can be defined for 0-cells (e.g. critical points
at vertices in piecewise constant fields) or higher dimensional cells (such as
tetrahedra for which Iswirl is evaluated).

6.3.6 Visual Mapping
We employ two different methods to display the probabilities computed in
2D domains. The first method uses a heightmap with an additional col-
ormapping. The second method uses an additive blending of distinct colors
for source, sink and saddle probabilities. The first method is superior for flat
domains, especially if they contain overlapping spatial distributions. The
second method makes it possible to depict multiple probability fields simul-
taneously in a single visualization, and works well for fields with peaked
and rather sparse spatial distributions. For 3D data we show colored nested
transparent isosurfaces of the probability fields that indicate the spatial dis-
tribution of the respective features. To provide context and give a basic im-
pression of the uncertain vector field’s trends we display LIC visualizations
of the mean field µ in 2D fields and streamlines for 3D fields, respectively.

6.3.7 Results and Discussion
We applied the probabilistic feature extraction methods to datasets from
climate simulations and biofluid mechanics. Additionally, to illustrate basic
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.15: Synthetic dataset. From left to right: sources, saddles and sinks;
top: correlation considered, bottom: correlation neglected. Note that the ranges of
probabilities differ between the correlated and uncorrelated case and have been scaled
for visualization. LIC visualizations display the mean field µ.

properties of the methods and show the impact of spatial correlation, we
present a synthetic example.

Synthetic Dataset. First, we applied our method to a dataset based on the
formula proposed by Otto et al. [OGHT10]. With

vc(x, y) =

(
−x(1− x)(1 + x)(1− y2)− xy2

y(1− y)(1 + y)(1− x2) + yx2

)
, (6.22)
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(a) (b)

(c) (d)

Figure 6.16: Color coded probabilities for singularities in the wall shear stress vec-
tor field from a simulated cerebral aneurysm blood flow at a single simulation time
step. The mean wall shear stress vector field µ is indicated by a low-contrast LIC
visualization. Probabilities for the different critical point types are encoded by dif-
ferent colors: sinks in violet, sources in green and saddles in blue. Intensities are
scaled by the probabilities. Colors are blended additively. Depicted are: All critical
points of the 9 ensemble members (a), probabilities considering spatial correlations
(b), probabilities with correlations of vector components only (c) and probabilities
with correlations neglected (d).

we created an ensemble dataset with L = 32 members and r = 0.2 by

vi(x, y) = vc(x + r cos φi, y + r sin φi), (6.23)

with i ∈ {1, . . . L}, φi =
2πi

L , sampled on rectangular grids in [−1, 1]2 with
1282 samples. We computed the sample mean and sample covariance from
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(a)

(b) (c)

Figure 6.17: Critical point probabilities of the aneurysm wall-shear stress vector
field at three subsequent time steps.

this ensemble. In Fig. 6.15 (a),(b) and (c) the resulting probabilities are pre-
sented. Probabilities for the singularities are very close to the singularity
distribution of the ensemble dataset. For the results in (d),(e) and (f) the
correlations were neglected (the non-diagonal covariances are set to zero).
Consequences of that are misclassifications of critical points and overesti-
mation of probabilities. The expected values for the total number of critical
points (equal to the sum of cell-wise probabilities) in the whole domain are:

correlation E(#source) E(#saddle) E(#sink)
considered 1.9 1.0 1.9
neglected 57.3 111.6 57.4

Thus, by considering spatial correlations these numbers reproduce very close-
ly the numbers of critical points in every ensemble member. Probabilities are
significantly overestimated in the uncorrelated case.

Blood FlowFields fromHemodynamics SimulationData. We inspected un-
certain features of the wall-shear stress vector field and the blood flow ve-
locity field in a cerebral aneurysm, resulting from time-dependent biofluid
mechanical simulations. Aneurysm geometry was reconstructed from an in-
dividual patient. Modelling parameters are affected by uncertainty: patient-
specific flow-rates could not be measured in clinical practice and are taken
from a textbook; the hematocrit value of the blood changes over time. To in-
spect the impact of these uncertainties on the positions of flow singularities,
we studied an uncertain vector field defined by an ensemble of simulation
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(a) (b)

Figure 6.18: Uncertain flow features over a full heart cycle in a cerebral aneurysm
visualized by nested semi-transparent isosurfaces. Streamlines of the mean vector
field reveals some context. (a) Critical point probabilities with Poincaré index > 0
(blue) and < 0 (violet). (b) Probabilities for swirling motion cores.

results obtained with 9 different parameter configurations. From the ensem-
ble we estimated the sample mean vectors µ̂ and sample covariance matrices
Σ̂.

Fig. 6.16 depicts probabilities for source, sink and saddle type critical
points at a single time step of the simulation. Fig. 6.16 (a) depicts the crit-
ical points of all 9 ensemble members by colored spheres. The points are
computed for the nodes of the triangulated surface, multiple occurrences
of critical points at the same nodes are possible. Critical points of differ-
ent ensemble members are close-by. In (b), critical point probabilities of the
uncertain vector field with µ̂ and Σ̂ are depicted. The similarity to (a) is
high but non-vanishing probabilities also occur in other areas of low vector
magnitude where the amount of uncertainty exceeds the mean. We studied
the influence of the covariances by assuming statistical independence of the
vectors among one another in (c), and of all components of the random vec-
tor in (d), i.e., by dropping all the covariances. In both cases, the distinctive
power for the type of critical point diminishes, indicated by the white color,
resulting from an additive blending of colors associated to high probabilities
for all critical point types.

Three subsequent time steps at t = 0.57s, 0.61s and 0.63s at a heart cycle
of 1s are displayed in Fig. 6.17. During time, the probabilities for critical
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(a)

(b) (c)

Figure 6.19: Probabilities for the existence of critical points in the wall shear stress
field on the vessel and aneurysm wall employing (a) empirical distributions, (b)
KDE and (c) parametric Gaussian models. The mean vector field is shown using
LIC.

points of sinks and saddles disappear pair-wise. The following table lists
the expected values for the number of saddles and sinks on the left (El)
and right (Er), for the time steps of Fig. 6.17. The areas over which the
expectations were computed are indicated by rectangles.
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(a) (b) (c)

Figure 6.20: Probabilities for the existence of vortex cores in the blood flow velocity
field are displayed using nested isosurfaces (top row). 2D slices through the proba-
bility fields in the dome region are shown in the second row. The probabilities were
computed using (a) empirical distributions, (b) KDE and (c) a parametric Gaussian
model.

t/s El(#saddles) El(#sinks) Er(#saddles) Er(#sinks)
0.57 0.99 0.99 0.26 0.26
0.61 0.23 0.22 0.2 0.19
0.63 0.03 0.03 0.01 0.01

Results in 3D are presented in Fig. 6.18. We computed means and co-
variances for a single parameter setting, but for all time-steps of a heart
cycle simulation. Pointwise statistical analysis of physical quantities over
heart cycles is common practice in the application domain, see e.g. [BRM∗08,
GSK∗12]. A Gaussian model can be a too rough approximation for the ve-
locities of the pumping flow. Thus, more flexible probabilistic models are
beneficial, see below for comparisons between different models. In (a) the
critical points are depicted. As blood is an incompressible fluid, all criti-
cal points are of saddle-type. Critical point probabilities are more focused
at vessel bifurcations and more fuzzy in the dome region of the aneurysm.
Critical point type distinction with Poincaré index > 0 (1D unstable mani-
fold) and < 0 (1D stable manifold) is observable as well. Probabilities for
Sujudi-Haimes swirling motion cores are depicted in (b). The time-variation
of vortical structures is higher in the dome-region of the aneurysm in com-
parison to the vortical flow in the vessels.
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To inspect the variability of the results with respect to probabilistic mod-
elling we represent the variability of the vectors over one cardiac cycle using
3 different models. Fig. 6.19 shows probabilities for the existence of critical
points in the WSS field on the vessel and aneurysm wall. In Fig. 6.19 we
can see that some critical points which are present in the results in (a) and
(b), but not present in (c). Here, the Gaussian model fails to represent the
structure of the vector field correctly. In turn some of the features that are
visible in (b) and (c) are not present in (a) because critical points are missed
due to the sparse discrete sampling of the state space. Probabilities for the
existence of vortex cores in the blood flow velocity field are displayed using
nested isosurfaces in the top row of Fig. 6.20. 2D slices through the prob-
ability fields in the dome region are shown in the second row. There are
big differences between the empirical distributions and both the KDE and
the Gaussian model. In (a) the spatial distributions are more compact and
the probabilities are higher while in (b) and (c) the spatial distributions are
wider (less peaked). Note that the absolute probability values are rather low
because of strong spatial correlation. Roughly speaking, strong correlations
lead to smooth realizations of the vector field with few critical points and
vortex cores whereas weak correlations result in more chaotic realizations
with a higher relative number of features.

Wind Velocity Fields from Climate Simulation Data. We analyzed ensem-
ble datasets from the DEMETER project [Pal04] to obtain distributions for
singularities in the 10-meter-wind velocity vector fields. For each time step
similar to the temperature fields, 63 realizations of daily average wind veloc-
ities constitute an ensemble, where the results are generated by 7 different
climate models and 9 different sets of simulation parameters. From these
results we compute the means µ and covariances Σ for each grid cell of the
rectilinear 2D grid.

In Fig. 6.21 the probabilities for singularities in the uncertain 10-meter
wind vector field are shown as a heightfield with colormapping. The mean
vector field µ is indicated as a LIC visualization below the height field. In
Fig. 6.21 (a) the probabilities for the existence of sources, (b) saddles and (c)
for sinks are shown. Source- and sink probabilities are mainly high over the
landmass, especially mountains attract this behavior. This is reasonable, as
source and sink behavior in a 2D slice denote lifting and falling wind. An
overview of saddle probabilities for all time steps is included in the movie
in the supplementary material.

Fig. 6.22 shows the influence of spatial covariances. Displayed are cut-
outs of sink probabilities in Middle America. In (a), spatial covariances
are considered, in (b) only vector-wise covariances are considered, and in
(c) no covariances are considered. Including spatial covariances drastically
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(a)

(b)

(c)

Figure 6.21: Probabilities for singularities in the daily average wind vector field
from the climate simulation dataset are shown as a heightfield with colormapping.
(a) sources, (b) saddles, (c) sinks.
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(a)

(b)

(c)

Figure 6.22: Cutout of the probability fields for sinks: (a) With correlations, (b) just
vector-wise correlations, (c) without consideration of correlations.
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reduces the probabilities; the influence of the vector-wise covariances of (b)
is practically not distinguishable from (c).

Discussion. The results show that our approach for the computation of
probability fields for local features considering local covariance structures
works very well in practice. As depicted in Fig. 6.16a and 6.16b, singular-
ities in the aneurysm wall-shear stress vector field of the ensemble mem-
bers agree very well with the computed probability fields. Ensemble critical
points are clustered, the probability fields are localized as well. Following
critical point probability fields over time as done in Fig. 6.17 confirms the
fact of crisp singularities that critical points with index +1 and −1 appear
or disappear pairwise. Probabilities for sinks and saddles fade out simul-
taneously with roughly the same amount. Recent studies have shown that
low wall-shear stress in the dome region is connected to increased rupture
risk of certain cerebral aneurysms [GSK∗12]. The time evolution of prob-
abilities of critical points, particularly their spatial stability and variability,
as shown in the supplementary movie, provides information that domain
experts considered as important.

Our approach allows to distinguish between different critical point types.
This classification proved to produce meaningful results. The spatial co-
variances capture spatial derivatives very well. In the synthetic dataset of
Fig. 6.15, practically no overlapping classifications are found. In the wall
shear stress field of the aneurysm dataset, regions with high overlapping
probabilities for different critical point types are rare and differentiation is
precise, even if the different critical point probabilities are very close-by.
Some more overlap is observable in 3D, but the different regions are still
fairly separated. Singularities in the climate wind velocity dataset are much
less separated. Notable differences between source, saddle and sink proba-
bilities are also observable in Fig. 6.21.

We applied the Sujudi and Haimes swirling motion vortex core criterion
on piecewise linear vector fields without filtering or strength assessment.
In a crisp vector field, this leads to discontinuous line segments with a lot
of clutter due to weak swirling behavior. Nevertheless, the resulting prob-
abilities in the aneurysm dataset in Fig. 6.18 correspond very much to the
main vortices. This is due to an implicit smoothing effect in the uncer-
tainty setting, where weak features are spatially less concentrated and have
lower probabilities. The chosen vortex criterion is more direct, compared to
other methods using vortex indicating scalar fields, like e.g. λ2 [JKJTM06].
The scalar fields would require additional processing steps (thresholding or
ridge extraction) to yield Boolean feature detectors.

The proposed feature indicators are defined on the smallest possible
scales represented by the sampling grid. The interpretation of the results
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must account for this. In case features on larger scales are of interest, indi-
cator function domain sizes would need to be adjusted accordingly.

Computation times differ depending on the type of model and the data
set. Empirical distributions are the simplest model for which the compu-
tation of feature probabilities is the computationally least expensive. The
calculations of the results above took only a few seconds on an Intel Xeon
X5550. For the models that create continuous PDFs, the computational
complexity is much higher, because Monte Carlo integration has to be per-
formed. We chose the number of samples manually for each dataset, such
that no Monte Carlo noise was observable anymore. The computation of
2D results took several minutes, the 3D results several hours. For the same
number of samples, the sampling of KDE distributions takes slightly more
time compared to the parametric Gaussian model due to the PC transfor-
mation and an additional random number that has to be computed for each
sample to select the KDE component. An advantage of our local approach
is that only local covariances are needed and thus the memory requirements
are not quadratic in the number of cells as it would be if the complete cor-
relation structure was stored.

Our method for critical point detection is closely related to the method
proposed by Otto et al. [OGHT10, OGT11b, OGT11a]. Both methods com-
pute scalar fields to indicate relative critical point strengths. We compute
cell-wise probabilities, Otto et al. density fields that are normalized to an
integral of 1. The approaches differ significantly. We consider critical points
as local features, whereas Otto et al. consider them as global features. Thus,
results are not directly comparable. Saddle detection ability is intrinsic in
the local approach, more algorithmic effort (computation of the gradient of
the squared velocity of the uncertain vector field) is needed in the global
approach. The global approach seems to be insensitive to neglecting cor-
relations; this deserves further research. The implementation complexity
differs; we think that our local method is conceptually easier and easier to
implement. However, our approach is limited to local features. Similar to
crisp vector field analysis, features that are global by nature such as (closed)
streamlines or separatrices are detectable with global methods only.

6.4 Fast Approximation Methods

A disadvantage of the estimation method presented above is the high com-
putational cost of the Monte Carlo (MC) integration. In the following we
introduce several approximation methods to overcome this drawback. In
addition to two specific approaches for cell-wise level-crossing probabilities
in discretized Gaussian fields we propose a flexible approximation method
based on surrogate functions. The surrogate functions are estimated from
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example grid cells and their feature probabilities (the training set) and can
predict probabilities for new grid cells and datasets. We provide a quanti-
tative and qualitative evaluation of the approximation errors and show that
the results computed using surrogate functions converge to the ground truth
for increasing sizes of the training sets.

6.4.1 ApproximateCrossing Probabilities Based onBivariate Dis-
tribution Functions

For the specific case of level-crossing probabilities in Gaussian fields with
exponential correlation functions, Pfaffelmoser et al. [PRW11] presented a
raycasting approach that computes first-crossing probabilities along rays us-
ing lookup-tables for fast evaluation. The results of this method depend on
the viewing direction.

Our aim is to improve the computation of local cell-wise level-crossing
probabilities considering arbitrary spatial correlations independently of the
viewing direction, i.e. they are objective, in the sense that they are inde-
pendent of the viewing and rendering conditions. Since the input data is
usually given on some grid, it is a natural choice to consider grid cells and
to compute cell-related probabilities. The numerical computation of high-
dimensional integrals in general is expensive, both with deterministic and
MC methods. There are two ways to deal with this problem: either uti-
lize specific properties of the problem to facilitate the computation, or find
good and fast approximations of the integrals. Here we consider the latter
approach: we compute approximate univariate and bivariate distribution
functions that can be evaluated in the rendering step using table lookups.

We will consider two possibilities for approximating the probabilities.
The maximum edge crossing method considers pairwise correlations between
two random variables at a time. The linked-pairs method iteratively traverses
the vertices of a grid cell and considers joint and conditional probabilities
between subsequent vertices. This algorithm induces an n-dimensional ap-
proximate distribution, where n is the number of vertices. Depending on
the order in which the vertices are traversed, different approximate proba-
bility distributions occur; an optimal distribution is selected by optimizing
the Bhattacharyya distance to the original distribution.

6.4.1.1 Standardization of the Bivariate Probability Integral

We define the events Y+
i = (Yi > ϑ) and Y−i = (Yi ≤ ϑ). The edge-level-

crossing and non-crossing probabilities given in Sect. 6.2.2 can also be ex-
pressed by

Pc(ϑ-crossing) = P(Y−1 ∩Y+
2 ) + P(Y+

1 ∩Y−2 )
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and

Pc(ϑ-non-crossing) = P(Y−1 ∩Y−2 ) + P(Y+
1 ∩Y+

2 ) (6.24)

These results depend on the parameters µ1, µ2, Cov1,1, Cov2,2, Cov1,2 and
ϑ. The integral in Eq. (6.6) can be expressed in terms of the standard normal
cumulative distribution function Φ(y1, y2, ρ), with correlation coefficient ρ =
Cov1,2
σ1 σ2

, standard deviation σi =
√

Covi,i and integration bounds given by the
stochastic distance function

Ψi =
µi − ϑ

σi
,

such that

Pc(ϑ-crossing) = 1−
(
P(Y1 ≤ ϑ, Y2 ≤ ϑ) + P(Y1 > ϑ, Y2 > ϑ)

)
= 1−

(
Φ(−Ψ1,−Ψ2, ρ) + Φ(Ψ1, Ψ2, ρ)

)
. (6.25)

This is a very convenient formulation because Φ(y1, y2, ρ) can be efficiently
evaluated using a 3D lookup table [PRW11].

In general, integrals for distributions with n > 2 dimensions

Pc(ϑ-crossing) = 1−
(
P(Y−1 ∩Y−2 . . . ∩Y−n ) +

P(Y+
1 ∩Y+

2 . . . ∩Y+
n )
)

(6.26)

can not be evaluated in closed form or using lookup tables (due to quickly in-
creasing memory requirements). Numerical integration schemes, e.g. Monte
Carlo methods, can be used for estimation.

6.4.1.2 Vertex- and Edge-Based Approximations

To facilitate fast interactive visualization expensive numerical integration
must be avoided. In addition to the trivial approach that simply neglects
the correlation structure we propose two approximations for level-crossing
probabilities that can be evaluated very efficiently, but consider correlations.

Statistically Independent Vertices. The first, highly simplified approach
completely neglects the correlation structure and computes probabilities un-
der the assumption that all random variables are statistically independent.
The level-crossing probability for cell c is then

Qc = 1−
(
P(Y+

1 )P(Y+
2 ) . . . P(Y+

n ) + P(Y−1 )P(Y−2 ) . . . P(Y−n )
)
. (6.27)
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However, this way the spatial distribution of uncertain isocontours is often
overestimated [PRW11, PWH11].

Maximum Edge Crossing Probability. The second measure to approximate
the cell-level-crossing probability is the maximum edge-level-crossing prob-
ability over all edges. Taking spatial correlations into account, the smallest
grid entity to consider is an edge that connects any two points (Y1, Y2) of a
cell. If a cell with n vertices and m edges contains a level-crossing, at least
one of its edges contains a level-crossings as well. The converse is obviously
true as well: as soon as a level-crossing occurs between any two vertices,
the cell has a level-crossing. Thus, the edge-wise level-crossing probability
is a lower bound for the cell integral. As an approximation for the cell-wise
level-crossing probability, we use the maximum lower bound, e.g.,

Rc = max
i=1...m

(
1−

(
P(Y+

i,1 ∩Y+
i,2) + (P(Y−i,1 ∩Y−i,2)

))
, (6.28)

where Yi,1 and Yi,2 are the random variables associated with the vertices
that are connected by edge i. In other words, we reduce the n-dimensional
distribution to 2D marginal distributions to find the edge with maximum
level-crossing probability.

To get an intuition why the edge-wise level-crossing probability is indeed
a lower bound consider the example of a single triangular cell with indepen-
dent Gaussian distributions at the vertices Y1,2,3 ∼ N (0, 1). For the isovalue
ϑ = 0, the maximum edge crossing probability is Rc = 0.5. In contrast, the
cell-wise crossing probability is Pc = 1− (P(Y+

1 ∩ Y+
2 ∩ Y+

3 ) + P(Y−1 ∩ Y−2 ∩
Y−3 )) = 0.75. Generally, for cells with n > 2 vertices the cell-wise crossing
probability is larger or equal to the maximum edge-wise probability because
a crossing may also occur on other edges than the one corresponding to the
maximum crossing probability.

6.4.1.3 The Linked-Pairs Approximation

For the third approximation, more correlations are considered. Both 2D joint
and conditional probabilities for level-crossings between any two variables
of a cell can be evaluated using lookup tables. To exploit that, pairwise
conditional probabilities are evaluated in a step by step fashion from vertex
to vertex of a cell, see Fig. 6.23. We s4how that this method induces an
approximate distribution that is again normally distributed. The approach
has a degree of freedom in the choice of the traversal order of the vertices
{x1, x2, . . . , xn} that can be described by a spanning tree. The Bhattacharyya
distance is used to compare the different choices to the original distribution.
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(a)

(b)

Figure 6.23: Example for the computation of a level-crossing probability in a tri-
angular cell. The marginal distributions at the grid points are shown in blue. Ex-
emplarily, one realization of the interpolant is shown in green. Fig. (1) corresponds
to the consideration of the complete covariance matrix in Eq. (6.26) while (2) shows
the approximation using pairwise correlations in Eq. (6.31).

Approximate Probabilities. We approximate P(Y+
1 ∩Y+

2 . . . ∩Y+
n ) by

P̃(Y+
1 , Y+

2 , . . . , Y+
n ) := P(Y+

1 ∩Y+
2 ) P(Y+

3 |Y
+
2 ) . . . P(Y+

n |Y+
n−1) (6.29)

with conditional probabilities

P(Y+
i |Y

+
i−1) =

P(Y+
i−1 ∩Y+

i )

P(Y+
i−1)

.

The choice of pairwise joint probabilities that need to be evaluated in
Eq. (6.29) was chosen arbitrarily, but influences the result. The joint proba-
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Figure 6.24: One example for a spanning tree of a rectangular grid cell is shown.
The choice of pairs of vertices on the edges of the tree determines the pairwise corre-
lations that are taken from the input distribution and used to compute the remain-
ing correlations according to Eq. (6.33). In this particular case ρ̃1,3 = ρ1,2 ρ2,3,
ρ̃1,4 = ρ1,2 ρ2,4 and ρ̃3,4 = ρ2,3 ρ2,4.

bilities in each term determine which of the pairwise correlations are consid-
ered. A natural choice does not exist. To make the choice of pairs of vertices
explicit, we reformulate (6.29) such that the parameter k ∈ {1, 2, . . . , nn−2}
identifies a spanning tree over all vertices of the cell. The approximate prob-
ability is given by

P̃(Y+
1 , Y+

2 , . . . , Y+
n ; k) =

P(Sk
1 ∩ Sk

2)
P(Sk

3 ∩ Sk
4)

P(Sk
3)

P(Sk
5 ∩ Sk

6)

P(Sk
5)

. . . (6.30)

where {S1, . . . , Snn−2} are the nn−2 possible spanning trees over n vertices, and
each tree is given as an edge list Sk = {{Sk

1, Sk
2}; {Sk

3, Sk
4}; . . .}. A method for

the optimal choice of k will be derived below. Analogously we can define
P̃(Y−1 , Y−2 , . . . , Y−n ; k). The approximate level-crossing probability is given by

P̃c = 1−
(

P̃(Y+
1 , Y+

2 , . . . , Y+
n ; k) + P̃(Y−1 , Y−2 , . . . , Y−n ; k)

)
. (6.31)

Approximate Distribution. For the evaluation of the approximation P̃c in
Eq. (6.30) only the pairwise correlations between random variables as given
by the spanning tree Sk are used. This algorithm induces a new joint distri-
bution for all variables. Starting from the original Gaussian random vector
Yc ∼ N (µ, Σ) of a grid cell c, we derive the approximate distribution and
show that the approximated distribution is again a multivariate normal dis-
tribution

Ỹc ∼ N (µ, Σ̃).



104 Feature Probabilities in Discrete Random Fields

(a) (b)

(c) (d)

Figure 6.25: (Approximate) crossing probabilities are plotted for a rectangular grid
cell and random vector with constant unit variance, varying mean values in (1)-(3)
and varying correlation coefficient in (4). The isovalue ϑ = 0 is constant. In (1)
µ1 = µ2 vary between −4 and 0 with constant µ3 = µ4 = 0. In (2) µ1 = µ2 = µ3
vary between −2 and 2 with µ4 = −2. In (3) µ1 varies between −2 and 2 with
µ2 = µ3 = µ4 = −2. In (4) all µi = 0 are constant. In (1)-(3) the correlation
coefficient ρ = 0.9 is constant. In (4) ρ varies between 0 and 1.

The expected values are identical for Yc and Ỹc.

The covariance matrix Σ̃ that is induced by the approximation is com-
puted as follows: Starting from Y1 we evaluate the correlations of the cell
in a step by step fashion. Traversing the spanning tree Sk from a cell vertex
Y1 gives an ordered list of edges {(i, j)}. For each edge (i, j) we extend the
distribution iteratively with ρi,j describing the correlation between Yi and Yj.
Thus, we extend the random vector Yc by Yi or Yj, respectively, depending
on which one was not already included in a previous step. According to the
derivations in Appendix B the correlation coefficients for this distribution
are

ρ̃i,j = ρi,j, (6.32)
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(a) (b)

(c) (d)

Figure 6.26: Absolute approximation errors and Bhattacharyya distances for square
cells with realistic covariance matrices (taken from the climate simulation dataset)
and expected values µi = ϑ are depicted in scatter plots (1),(2) and histograms
(3),(4). In (1) the parameter k for Eq. (6.30) was chosen randomly while for (2) the
optimal k with minimal DB was chosen for each cell. In (3) the histograms for DB
with (blue) and without (purple) optimal choice of k is shown. In (4), The linked-
pairs approximation error with (blue) and without (purple) optimal choice of k, and
the maximum-edge approximation error (green) are shown.

and
ρ̃l,j = ρ̃l,iρi,j, (6.33)

where l 6= i. After iterating over all edges we can compute Σ̃ from the
correlation coefficients ρ̃i,j.

In other words, ρ̃i,j is the product of the correlation coefficients along the
path of the spanning tree connecting the variables Yi and Yj, see Fig. 6.24 for
an example.
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Figure 6.27: Transparent grey surface encloses the space of all possible correlations
between 3 random variables. Given the correlations between variable 1 and 2 by ρ12
and correlation between variable 2 and 3 by ρ23, the red surface depicts the computed
correlation between variable 1 and 3 in the linked-pairs approximation.

Optimizing the Approximate Distribution. The linked-pairs crossing proba-
bility P̃c computed in Eq. (6.31) depends on the choice of a specific spanning
tree k for the vertices of c. We expect the probability to be close to the true
crossing probability if the approximate multivariate distribution is similar
to the original distribution. Thus, it is our aim to choose k such that the
difference between the original distribution of Yc and the approximate dis-
tribution of Ỹc is minimal. As measure for the difference between the orig-
inal and the approximate distribution, we use the Bhattacharyya distance.
The Bhattacharyya distance for Gaussian distributions with identical means
is given by

DB(k) =
1
2

ln

 det((Σ + Σ̃k)/2)√
det(Σ) det(Σ̃k)

 .

To obtain the optimal tree we create Σ̃k for all trees k enumerated by the
Prüfer sequence [Prü18], compute DB(k) and choose kmin such that DB is
minimal, i.e. we solve

kmin = arg min
k

DB(k), (6.34)
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and consider kmin in Eq. (6.31). The effect of the optimization is depicted in
Fig. 6.26 where the approximation error in relation to DB is shown.

Relationship to Graphical Models. Each spanning tree of a cell can also be
interpreted as a graphical model that describes the statistical dependencies be-
tween the corresponding random variables. More precisely, it is a Bayesian
network that contains only the connections between random variables that
are present as edges in the spanning tree. The model clarifies that the vari-
ables that are not connected are conditionally independent in the approximate
distribution. The restriction to 2D marginal distributions means that each
probability can only depend on one other variable.

6.4.1.4 Results and Discussion

Comparison of the Approximation Methods. For a quantitative analysis of
the approximation we compared the cell-wise level-crossing probability Pc

(Eq. (6.26)) that was numerically estimated using MC sampling (see Sect. 6.1)
to the corresponding values of the linked-pairs approximation P̃c, the maxi-
mum edge crossing probability Rc and Qc (assuming independent vertices)
for simple synthetic datasets.

The probabilities are plotted in Fig. 6.25 for rectangular grid cells and
random vectors with constant unit variance, varying mean values in Fig. 6.25
(1)-(3) and varying correlation coefficient in Fig. 6.25 (4). The cell-wise prob-
abilities Pc are drawn in blue, the approximation P̃c in magenta, Rc in green
and Qc in yellow. The isovalue ϑ = 0 is constant. In Fig. 6.25 (1) µ1 = µ2 vary
between −4 and 0 with constant µ3 = µ4 = 0. In Fig. 6.25 (2) µ1 = µ2 = µ3

vary between −2 and 2 with µ4 = −2. In Fig. 6.25 (3) µ1 varies between −2
and 2 with µ2 = µ3 = µ4 = −2. In Fig. 6.25 (4) all µi = 0 are constant. In
Fig. 6.25 (1)-(3) the correlation coefficient ρ = 0.9 is constant. In Fig. 6.25 (4)
ρ varies between 0 and 1.

From the DEMETER 2 meter temperature ensemble we estimated the
mean values and covariances for all rectangular grid cells. Fig. 6.28 de-
picts the correlation structure of the grid cell distributions by displaying the
square roots of the eigenvalues of the correlation matrices, i.e., the standard
deviations of the distribution in the spaces of their eigenvectors. Values close
to 0 denote a flat distribution in the corresponding eigenvector direction, i.e.,
a high correlation. As depicted, correlations in the dataset are on average
very high in at least two eigenvector directions.

In Fig. 6.29 the uncertain isotherm contour for 0◦ C in the temperature
field from a climate simulation is displayed. Fig. 6.29 (a) shows the crossing
probabilities Pc for all pixels estimated using a MC computation with 5000
samples. Fig. 6.29 (c) shows the probabilities of the linked-pairs approxi-
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(a) (b)

(c) (d)

Figure 6.28: Color mapped square roots of the eigenvalues (in decreasing order) of
the correlation matrices of the 2D climate dataset. Histograms of the values are
displayed on top of the colormap in logarithmic scale.

mation P̃c while the absolute differences, i.e. |P̃c − Pc|, are depicted in 6.29
(d). Analogously the crossing probabilities Qc assuming uncorrelated values
and the difference image |Qc − Pc| as well as the maximum edge crossing
probabilities Rc and the difference image |Rc − Pc| are displayed. Note that
the ranges of the colormaps are individually adjusted for Qc. In Fig. 6.29 (b)
the probabilities along the green line indicated in Fig. 6.29 (a) are shown as
1D-graphs.

In Fig. 6.30 the crossing probabilities for a 3D temperature field from the
same set of climate simulations are shown. The discretized random field
for this example consists of hexahedral grid cells. In Fig. 6.30 (1) the joint
cell-wise crossing probabilities Pc estimated by MC sampling, (2) Qc assum-
ing uncorrelated values, (3) approximate probabilities P̃c, and (4) maximum
edge crossing probabilities Rc are displayed. To allow a quantitative com-
parison in (5) the probabilities along a straight line in the datasets are shown
as 1D-graphs. The single-threaded computation times for the 3D results on
an Intel i7 with 2.6 GHz are:

Time in seconds
Monte-Carlo integration (1000 samples/voxel) 23

max. edge method 0.17
linked-pairs method 0.11



Fast Approximation Methods 109

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.29: Results for the 2D climate dataset: (1) joint cell-wise crossing proba-
bility Pc estimated by MC sampling. (3) approximate probabilities P̃c. (4) difference
image |P̃c−Pc|. (5) crossing probabilities Qc assuming uncorrelated values. (6) dif-
ference image |Qc − Pc| (7) maximum edge crossing probabilities Rc. (8) difference
image |Rc − Pc|. Note that the ranges of the colormaps are individually adjusted
for Qc. In (2) the probabilities along the green line indicated in (1) are shown as
1D-graphs.
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(a) (b)

(c) (d)

(e)

Figure 6.30: Results for the 3D climate dataset: (1) joint cell-wise crossing prob-
ability Pc estimated by MC sampling. (2) crossing probabilities Qc assuming un-
correlated values. (3) approximate probabilities P̃c. (4) maximum edge crossing
probabilities Rc. In (5) the probabilities along a straight line in the datasets are
shown as 1D-graphs.
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Discussion. The major advantage of the approximation methods is that the
crossing probabilities can be evaluated using lookup tables which results
in much faster computation times compared to MC integration of the n-
dimensional PDFs. Another advantage of the lookup method compared to
the MC integration is that it does not suffer from MC noise.

Like Pfaffelmoser et al. [PRW11] the approximations employ a 3D lookup
table for crossing probabilities considering correlation. The motivation for
their work was to develop a fast raycasting solution. Instead of local cell-
wise crossing probabilities they compute first-crossing probabilities along
a ray which yields viewpoint-dependent results. In contrast, the results of
our methods do not depend on any direction. By restricting correlation
functions to the type exp(−|distance|) they could compute all probabilities
along each ray. The resulting correlation coefficients corresponding to mul-
tiple pairs of random variables along a ray are similar to the covariance ma-
trices induced by our approach to compute the approximate level-crossings
using P̃c, i.e. the correlation coefficients along the path are multiplied, cf. Eq.
(6.33). Probabilities computed with the linked-pairs approximation over- or
underestimate the true level-crossing probability. In contrast, the maximum
edge probability yields a true lower bound.

In Fig. 6.27, the volume enclosed by the semi-transparent grey surfaces
illustrates the space of valid correlation matrices, e.g., positive-semidefinite
matrices, for 3 random variables. The red opaque surface depicts the result
for the computed correlation in the linked-pairs approximation. The approx-
imation over- or underestimates the real correlation. Correlation matrices
that are computable with the linked-pairs approximation are located on a
2d subspace of all valid correlation matrices. The approximation projects
the unused correlation onto that subspace. Note that the red surface depicts
only one traversal order k; matrices on two additional surfaces are used in
the approximation for the remaining two traversal order choices.

In the optimization step for the choice of parameter k in Eq. (6.30) we
proposed using the Bhattacharyya distance as quality measure for the ap-
proximation. Fig. 6.26 (1) confirms that this is a good measure, as a posi-
tive correlation between Bhattacharyya distance DB and approximation er-
ror exists. Choosing the optimal parameter k significantly decreases the
Bhattacharyya distances and the approximation errors, as can be read off in
Figs. 6.26 (2), (3) and (4). In that example, the linked-pairs approximation
outperforms the maximum-edge approximation for optimized choice of k,
but not for randomly chosen k. Searching for the linked-pairs approxima-
tion with lowest Bhattacharyya distance as proposed in Eq. (6.34) requires
a traversal over all spanning trees for each cell. The number of spanning
trees increases with O(exp(n ln n)), with n the number of cell vertices, what
can be costly for cells with many vertices. The search is independent from
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a specific threshold value ϑ, and can thus be performed in a preprocessing
step, allowing interactive evaluation afterwards.

A limitation of the proposed approximations is that they do not allow to
improve accuracy using a parameter or additional terms of a series expan-
sion. As we focused on the evaluation of one and two dimensional distribu-
tions it is clear that we can not reach arbitrary accuracy.

The results of the synthetic datasets in Fig. 6.25 and the climate data in
Fig. 6.29 reproduce the result from previous work that spatial correlations
have a significant impact on crossing probabilities. In all results the differ-
ences between Pc and Qc are significant. In Fig. 6.25 (a) the graph also shows
qualitatively different behavior compared to the other methods. For rectan-
gular grid cells (2D data), see Fig. 6.25, P̃c overestimates Pc in most cases,
while Rc underestimates it. P̃c is closer to Pc, a large approximation error of
Rc from Pc, up to over 0.2, can be observed in Fig. 6.25 (d). For the climate
dataset, see Fig. 6.29 however, almost all deviations are below 0.1. The ap-
proximation of the crossing probability Pc both using P̃c and the maximum
edge-crossing probability Rc yields quantitatively and qualitatively good re-
sults. Visual impressions are true to the results of Pc. The 3D example yields
similar results. In Fig. 6.30 we can observe that neglecting the correlation
leads to much overestimated probabilities Qc while P̃c and Rc approximate
Pc quite well.

The approximation methods reduce the computation of level-crossing
probabilities to evaluations of uni- and bivariate CDFs. This is implemented
using lookup tables to avoid expensive numerical integration during render-
ing. In the maximum edge crossing approximation the edge-related cross-
ing probabilities of a grid cell are computed and the maximum is taken. In
the linked-pairs approximation, pairwise correlations are evaluated step by
step, spanning all random variables of a cell. This induces an approximate
distribution that is again normally distributed. We used the Bhattacharyya
distance for choosing the optimal approximation and showed that it is a
good measure for minimizing the approximation error.

Above results confirm that it is essential to consider spatial correlations.
Both approximation methods, the maximum edge crossing method and the
linked-pairs method show comparable good results for real world data.
While the maximum edge crossing method is conceptually simpler and pro-
vides a lower-bound for real cell-wise probabilities, linked-pairs requires a
preprocessing step and – for the datasets analyzed – outperforms the max-
imum edge crossing method in terms of accuracy. The approximated level-
crossing probabilities are in good agreement with the true cell-wise crossing
probabilities, although pathological cell configurations exist where the error
can be high. Experiments show that the approximation works very well in
practice, and differences are hardly observable in the visualizations.
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6.4.2 Surrogate Functions

In previous sections Pc was either computed using computationally expen-
sive Monte Carlo (MC) integration or approximated using pre-computed
lookup tables for low dimensional distribution functions, see Sect. 6.4.1.

Computation times of several minutes to hours were reported for MC
integration. While the approximation methods are much faster, they have
two important drawbacks: (i) they are fixed formulations for level-crossing
probabilities with no obvious way to adapt them to other types of features
and (ii) they exhibit a fixed approximation error that cannot be reduced
systematically.

In this section we propose surrogate functions for significantly accelerated
estimation of feature probabilities. In domains like statistical data analysis
or experimental design surrogate functions (or surrogate models) are often
used as a tool to efficiently predict unobserved outcomes that would other-
wise be costly to obtain [QHS∗05,GCD∗10,ONK03]. For feature probabilities
– instead of solving the integral for each grid cell – we construct a function
that maps cell attributes to the resulting probability and evaluate this func-
tion for all grid cells. Interpreting it as a regression problem we can also
refer to the attributes as the independent variables and to the probability as
the dependent variable. The model can either be built in a preprocessing
step (by performing MC integration for a large number of distributions) and
stored on disk or it can be incrementally refined in an online-learning pro-
cedure. A variety of models such as generalized linear models or support
vector machines can be used for this purpose. For our implementation we
have chosen K-nearest-neighbors (K-NN) regression [Alt92] because it can
be quickly evaluated and the results only depend on the single parameter
K. This parameter matches our intuitive conception of a smoothing constant
w.r.t. attribute space.

The approach has three main advantages. First, the computation of fea-
ture probabilities for a field using the surrogate function is orders of magni-
tude faster than MC integration. Second, the approach is flexible; surrogate
functions for various types of features can be constructed. And third, as the
accuracy of the surrogate model increases by adding more sample points to
the training set, the resulting probability fields approach the ground truth.
Thus, this method overcomes the main disadvantages of previous approxi-
mation methods.

6.4.2.1 General Formulation

The aim for the formulation of a surrogate function is to quickly and effi-
ciently estimate results that are otherwise costly to obtain. For our specific
problem of probabilistic feature extraction we want to define a function that
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estimates probabilities much faster than MC integration while still being
able to reach high accuracy. Depending on the definitions, different features
will lead to different surrogate functions but the overall approach is generic.

Consider a grid cell in a discretized random field with a PDF fc(yc) for
which the resulting probability Pc can be computed according to Eq. (6.2).
In practice, fc and I are uniquely defined by a finite number of attributes,
e.g. expected values and covariances for Gaussian distributions, a sample
of realizations for nonparametric distributions or parameters specifying the
feature indicator. Let u be a vector with du = dim(u) that combines all these
attributes in a serialized fashion, then we can rewrite the probability Pc as
P(u) to make its dependency on the attributes explicit.

A function
ζ : Rdu → [0, 1], (6.35)

that maps the attribute vector u to a probability that is approximately equal
to the ’true’ probability

ζ(u) ≈ P(u) (6.36)

is called a surrogate function or surrogate model for P(u). The approximation
error depends on the complexity of ζ and on the choice of its parameters.
Candidates for the choice of ζ include regression methods based on support
vector machines, generalized linear models and K-NN.

6.4.2.2 Creating the Training Set

Before ζ can be used to predict probabilities it has to be defined by process-
ing a set of examples using a model fitting/training procedure. We call the
set of tuples

U = { (ui, P(ui)) | i ∈ {1, . . . , nζ} } (6.37)

a training set, where ui is the i-th attribute vector for a grid cell selected
from some input data set (discretized random field), P(ui) is the feature
probability and nζ is the number of training examples. In a training step
ζ(u) is determined to reflect the training data as good as possible in order to
predict the unknown value of P(u) for new examples with attribute vectors
u.

In some applications the acquisition of each training example can be
very expensive, e.g. in cases where experiments have to be carried out. For
feature probabilities however, we can compute P(ui) for any ui using MC
integration. Thus, the only cost in our case is processing time. There are two
different ways to perform the model fitting, pre-computation and incremen-
tal learning.



Fast Approximation Methods 115

Pre-Computation. To construct the surrogate function ζ in a preprocessing
step we randomly draw nζ attribute vectors ui of cells from a set of fields.
The pre-computation consists of the following steps, to be repeated for all
nζ training examples:

1. randomly select a cell from a discretized random field

2. combine the attributes for the cell into vector ui

3. compute P(ui) using MC integration

4. add (ui, P(ui)) to U

After that the training algorithm can be executed for U to obtain ζ(u) which
is then ready to be evaluated. Either U or the model that is derived by the
training algorithm can be stored on disk to make it available for later use
and avoid repeated pre-computation.

Incremental Learning. Instead of computing a large number of probabil-
ity values in advance we can also incrementally refine ζ(u). We define a
maximum error εmax and start with an empty set U. For each cell in the
input data set we determine u and estimate the prediction error ε for the
current version of ζ(u). For some types of surrogate functions the error
can be estimated in terms of function values. Alternatively we can con-
sider the distance of u to the training examples as an error metric, assuming
that the prediction error increases proportionally. If ε is larger than εmax

we compute P(u) using MC integration, store it in the resulting field and
also store (ui, P(ui)) in U. In case εmax < ε we evaluate ζ(u) and store the
value in the resulting field. Some learning algorithms can efficiently update
the surrogate model using new training examples, e.g. online Gaussian pro-
cesses [CO02, DW13]. For methods for which this is impossible (i.e. where
the learning algorithm always processes the complete training set) the train-
ing algorithm can be re-run as soon as the size of U has grown a predefined
fraction compared to the last run.

6.4.2.3 Estimation of Feature Probabilities using K-Nearest-Neighbors
(K-NN)

The K-nearest-neighbors (K-NN) algorithm is one of the simplest super-
vised learning methods. It stores all training examples and does not explic-
itly derive a generalization. Its predictions for regression problems are based
on (weighted) averages of known examples. In the following we present two
specific formulations of K-NN surrogate functions for feature probabilities.
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6.4.2.4 K-NN Surrogate Functions for Level-Crossing Probabilities

Attribute Vectors. To formulate a surrogate function for the computation
of level-crossing probabilities we need to define attribute vectors that com-
pletely characterize the probability integral to be approximated. For Gaus-
sian fields the uncertainty of all scalar values corresponding to a cell c can be
modeled by a joint random vector Yc ∼ N (µc, Σc). Then, a simple approach
is the direct representation of the threshold ϑ, all expected values µi and all
covariances σi,j of the PDF fc

u = (ϑ, µ1, . . . , µdc , σ1,1, σ1,2, . . . , σdc,dc).

However, the dimensionality of u can be reduced by expressing the level-
crossing probability in a standardized form, i.e. in terms of stochastic dis-
tance functions Ψi = µi−ϑ√

σi,i
, and correlation coefficients ρi,j =

σi,j√
σi,i σj,j

, see
[PRW11, PPH13]. The attribute vector can now be defined using Ψi and ρi,j
(all off-diagonal entries of the correlation matrix)

u = (Ψ1, . . . , ΨKc , ρ1,2, . . . , ρKc,Kc−1) (6.38)

For triangular cells this reduces the dimensionality du of u from 10 to 6. For
grids with other cell types (e.g. tetrahedra or hexahedra) attribute vectors
can be defined analogously but with larger numbers of attributes.

Using this definition of u we can perform one of the learning approaches
described in Sect. 6.4.2.2. For K-NN the learning algorithm does not create a
generalization of U but it creates efficient data structures such that searching
for nearest neighbors can be performed quickly.

Function Evaluation. To evaluate ζK(u) for a given vector u and predict
the corresponding level-crossing probability, we look up the K members
(ui, P(ui)) ∈ U where ui are closest to u. The function is then evaluated as

ζK(u) =
1
K
K
∑
i=1

P(ui). (6.39)

An alternative approach is to weigh the summands depending on the dis-
tance

ζK(u) =
K
∑
i=1

wiP(ui). (6.40)

where

wi =
β(|u− ui|)

∑Kj=1 β(|u− uj|)
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Figure 6.31: Generalization performance (level-crossing probabilities): Mean
squared prediction errors (MSE) of level-crossing probabilities estimated using 5-
fold cross validation for increasing sizes of training sets of the K-NN surrogate
functions are shown in a log-log plot. The number nζ of training examples which
are randomly subsampled from a large training set increases from 125 to 512 000
(from left to right). The varying results for different values of K are indicated using
distinct colors.

and β : R+ → R is a monotonically decreasing function, e.g., a inverse
(reciprocal), half-Gaussian or linear function.

6.4.2.5 K-NN Surrogate Functions for Critical-Point Probabilities

To represent uncertain vector fields and compute probabilities for the exis-
tence of critical points we need to consider random vectors of higher dimen-
sionality. The uncertainty of all vectors adjacent to a cell c can be modeled by
a joint random vector Yc ∼ N (µc, Σc) with PDF fc, see Eq. (3.8). For Gaus-
sian fields we could characterize this distribution using an attribute vector
consisting of all expected values and covariances. However, with a larger
number of dimensions it is becoming more and more challenging to sample
the space of attribute vectors and to obtain a reasonably accurate surrogate
function ζK(u).

For 2D Gaussian random vector field given on a regular grid with rect-
angular grid cells and four 2D vectors located at the vertices of each cell we
model the correlations using exponential functions, cf. Eq. (3.9). This allows
us to represent Yc using an attribute vector with relatively few dimensions.
Locally, for each cell c we fit two functions to the correlation coefficients that
are empirically estimated from ensemble data. The first function we consider
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is called autocorrelation function R1(h) = exp(−γ1 h), where h = ‖xi − xj‖ is
the Euclidean distance between the two respective vertices of c and γ1 is
the parameter that describes the falloff rate of spatial correlation. R1 quan-
tifies the correlation between corresponding components of the vector field
at different locations of the grid, e.g. Corr(yi,1 , yj,1) where yi,1, yj,1 are com-
ponents of Yc. The second function is called the cross-correlation function
R2(h) = r exp(−γ2 h), and quantifies the correlation between the different
components of the vector field, e.g. Corr(Yx,i, Yy,j). For h = 0 the value
R2(0) = r = Corr(Yx,i, Yy,i) is the correlation between the two components
at vertex i, i.e. between the x-direction and y-direction. We estimate the
parameters γ1, γ2 and r locally for Yc using least squares.

These parameters together with the mean values and standard deviations
constitute the attribute vector

u = (µ1, . . . , µdc , σ1, σ2, . . . , σdc , γ1, γ2, r). (6.41)

that we use for 2D vector fields. The dimensionality is du = 8 + 8 + 3) =

19. The modelling error of the exponential function approach compared to
considering arbitrary correlations is investigated below.

For critical-point probabilities, instead of a single probability we can
store probabilities for the existence of sources, saddles and sinks for each
ui which results in a 3-valued surrogate function. After applying one of the
model-fitting approaches described in Sect. 6.4.2.2 we can evaluate ζK(u)
analogously to Eq. (6.39).

6.4.2.6 Implementation

The methods were implemented to create and evaluate surrogate functions
based on K-NN in C++ following the derivations given above. To get high
performance with regard to the nearest-neighbor search we utilized the
approximate nearest-neighbor library ANN that was published under the
LGPL. A detailed description of the method and its performance were pub-
lished by Arya et al. [AMN∗98]. The computational complexity for the esti-
mation of the feature probability at one grid cell using the K-NN method is
O(Kdu log nζ). The performance regarding accuracy and computation times
for the surrogate functions of feature probabilities is evaluated empirically
in the next section.

6.4.2.7 Results

We evaluate the methods introduced above by computing feature probabil-
ities for uncertain scalar and vector fields using K-NN surrogate functions
of varying complexity. The most important quality of surrogate functions is
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Figure 6.32: Level-crossing probabilities in an uncertain temperature field for ϑ =
24◦C in (a) - (e) and in a wall pressure field in (f) - (j) are depicted using color
mapping with the mean isoline shown in black. In (a) - (c) and (f) to (h) the cell-
wise probabilities are computed using a K-NN surrogate function where the number
nζ of training examples increases from 125 to 512 000 with parameter K = 4. For
comparison results computed using the linked-pairs approximation are shown in
(e) and (j) and the benchmark result computed using MC integration is shown in
(d) and (i). Note that the quality increases with larger nζ and that (c) and (h)
approximate the MC results more closely than (e) and (j). Both data sets are not
part of training data, i.e. the K-NN results are out-of-sample predictions.
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the ability to generalize to new (out-of-sample) data. In the following, we ex-
amine the generalization performance using two different approaches. First,
we estimate mean prediction errors using cross validation of training sets
with varying sizes and varying parameter K. Second, we compare K-NN
results to a reference result that was calculated using MC integration with
many samples and that we consider the ground truth for this evaluation. All
computations were performed on an Intel Xeon X5650 with 2.66 GHz using
a single-threaded implementation.

Pre-Computation. The training sets for ζK(u) were computed using the
pre-computation approach, see Sect. 6.4.2.2. For level-crossing and critical-
point probabilities we took training examples from time series of 2 me-
ter temperature fields and 10 meter wind fields, respectively, which were
provided by the DEMETER project [Pal04]. For level-crossing probabili-
ties the creation of the training set U with nζ = 512 000 took several min-
utes. For critical-point probabilities the creation of the training set U with
nζ = 2 048 000 took several hours. Most of the computation time is neces-
sary for Monte Carlo sampling (50000 MC samples per cell for level-crossing
probabilities, 80000 MC samples per cell for critical point probabilities). The
smaller training sets that are considered in the following are random sub-
samples of the large training sets.

Note that the resulting surrogate functions are not specific to particular
data sets. By definition of the attribute vector in Eq. (6.38) the surrogate
function for level-crossing probabilities does not depend on the parameter
ϑ. The training sets are stored on disk to avoid repeated pre-computation.

Level-Crossing Probabilities. To estimate the generalization performance of
ζK for level-crossing probabilities we computed mean squared prediction er-
rors (MSE) using 5-fold cross validation for increasing sizes of training sets.
That means that we divided the data set into 5 parts where four-fifths that
are used for training ζK and one fifth is used for testing. For all examples
(ui, P(ui)) in the test subset the squared error of the prediction

(P(ui)− ζK(ui))
2

is computed and averaged. This is repeated and averaged for the 5 possible
choices of the test subset. The results are shown in Fig. 6.31 using a log-log
plot. The number nζ of examples which are randomly subsampled from the
large, initially created training set increases from 125 to 512 000 (from left
to right). The test subset is taken from the nζ examples so the actual train-
ing sets contain 100, . . . , 409 600 examples. The varying results for different
values of K are indicated using different colors.
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nζ time (seconds) MSE

125 1.30 3.52× 10−4

1000 1.54 1.26× 10−4

512 000 3.25 6.76× 10−6

ground truth (MC) 696.68 –
linked-pairs 1.13 5.52× 10−5

(a)

nζ time (seconds) MSE

125 1.90 7.17× 10−4

1000 2.30 1.77× 10−4

512 000 3.81 9.71× 10−6

ground truth (MC) 7340.97 –
linked-pairs 1.64 8.80× 10−5

(b)

Table 6.1: Computation times and approximation errors (MSE) for level-crossing
probabilities in the results depicted in Fig. 6.32. Values are given for the (a) temper-
ature field and (b) wall pressure field.

We also computed level-crossing probabilities for two discretized ran-
dom fields from different data sources: an uncertain temperature field en-
semble that was not part of the cross validation data set and a vessel wall
pressure ensemble from a blood flow simulation. Fig. 6.32 shows results
computed for the temperature field for ϑ = 24◦C in Fig. 6.32 (a) - (e) and
in the wall pressure field in Fig. 6.32 (f) - (j) that are depicted using color
mapping with the mean isoline shown in black. In Fig. 6.32 (a) - (c) and
(f) to (h) the cell-wise probabilities are computed using a K-NN surrogate
function where the number nζ of training examples increases from 125 to
512 000 with parameter K = 4. For comparison results computed using the
linked-pairs approximation are shown in Fig. 6.32 (e) and (j) and the bench-
mark results computed using MC integration is shown in Fig. 6.32 (d) and
(i). Note that the quality increases with larger nζ and that the K-NN re-
sults with the largest training set approximate the MC results much more
closely than the linked-pairs method. Both data sets are not part of training
data, i.e. the K-NN results are out-of-sample predictions. The computation
times and mean squared prediction errors (MSE) estimated for all cells of
the respective fields are given in Table 6.1.
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Critical-Point Probabilities. We investigated the generalization performance
of ζK for critical point probabilities analogously to the level-crossing case.
The mean squared errors (MSE) of probabilities for the existence of critical
points that are estimated using 5-fold cross validation for increasing sizes
of training sets of the K-NN surrogate functions are shown in Fig. 6.33 in a
log-log plot. The number nζ of examples which are randomly subsampled
from a large training set increases from 250 to 2 048 000 (from left to right).
The varying results for different values of K are indicated using different
colors.

Probabilities for the existence of sinks (critical points) in an uncertain
wind velocity field in Fig. 6.34 (a) - (e) and in a blood flow field in (f) - (j) are
depicted using color mapping. For the blood flow field the parameters of
the Gaussian field were estimated from an simulation ensemble of 100 real-
izations of turbulent flow through an artificial heart valve. Both data sets are
not part of training data, i.e. the K-NN results are out-of-sample predictions.
In Fig. 6.34 (a) - (c) and (f) to (h) the cell-wise probabilities are computed us-
ing a K-NN surrogate function where the number nζ of training examples
increases from 1k to 2M with parameter K = 4. For comparison the bench-
mark results computed using MC integration are shown in Fig. 6.34 (d) - (e)
and (i) - (j). The results in Fig. 6.34 (e) and (j) are computed for random fields
with arbitrary correlations. For the results in all the other subfigures, spatial
correlation is modelled using exponential correlation functions. Note that
the approximation quality increases with larger nζ and that there are only
minor observable differences between the two correlation models (e.g. in the
vicinity of the north and the south pole). The computation times and mean
squared approximation errors (MSE) estimated for all cells of the respective
fields are given in Table 6.2.

6.4.2.8 Discussion

The results show that the feature probabilities estimated using the K-NN
surrogate functions can achieve good accuracy. The generalization perfor-
mance, as investigated using 5-fold cross validation of the training sets, im-
proves for increasing numbers nζ of training examples. This applies to both
level-crossing and critical-point probabilities. The rate of improvement w.r.t.
increasing nζ , however, depends on the dimensionality of the attribute vec-
tors u. The MSE decreases more quickly for the level-crossing probabilities
with du = 6 compared to the critical-point probabilities (du = 19). The dif-
ference in the amount of training examples that is is needed to significantly
improve the accuracy is due to the curse of dimensionality, see, e.g. [Bis06, pp.
33-38]. For a given number of points distributed in space the ’sparsity’ in-
creases quickly for an increasing number of dimensions. Note that the differ-
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Figure 6.33: Generalization performance (critical-point probabilities): Mean
squared prediction errors (MSE) of probabilities for the existence of critical points
that are estimated using 5-fold cross validation for increasing sizes of training sets of
the K-NN surrogate functions are shown in a log-log plot. The number nζ of train-
ing examples which are randomly subsampled from a large training set increases
from 250 to 2M (from left to right). The varying results for different values of K
are indicated using different colors.

ent orders of magnitude of the absolute MSE values are due to the different
ranges of probabilities in the results as well as due to the different counts of
cells/training examples with zero or almost-zero probabilities.

The parameter K can be interpreted as a smoothing parameter w.r.t. the
attribute space. The cross validation shows that the choice of K has an
impact on the accuracy of the predictions: on average K = 1 lead to the
poorest performances, K = 4 and K = 8 performed well and for K = 16
the accuracy decreased again, see Fig. 6.31 and 6.33. We chose K = 4 for
the subsequent examples because it performs well and it is computationally
advantageous as it leads to relatively few queries for nearest neighbors. To
create surrogate function that generalize well to new fields it is beneficial
to express the attribute vectors u in a normalized way. For example, using
the attributes defined in Eq. (6.38) the feature probability is expressed in
terms of the standard normal distribution which makes the resulting ζK
scale invariant.

The results computed for the out-of-sample data sets show that the accu-
racy and generalization performance is good – both qualitatively and quan-
titatively – if the training sets are large enough. Generalization performance



124 Feature Probabilities in Discrete Random Fields

Wind Field Blood Flow Field

nζ = 1k

(a) (f)

nζ = 8k

(b) (g)

nζ = 2M

(c) (h)

0

Pc

0.03

(d) (i)

MC /
arbitrary

correlations

(e) (j)

0

Pc

0.0035

Figure 6.34: Probabilities for the existence of sinks (critical points) in an uncertain
wind velocity field in (a) - (e) and in a blood flow field in (f) - (j) are depicted using
color mapping. In (a) - (c) and (f) to (h) the cell-wise probabilities are computed us-
ing a K-NN surrogate function where the number nζ of training examples increases
from 1k to 2M with parameter K = 4. For comparison the benchmark results com-
puted using MC integration are shown below the separator line. The results in (e)
and (j) are computed for random fields with arbitrary correlations. For the results
in all the other figures, spatial correlation is modelled using exponential correla-
tion functions. Note that the approximation quality increases with larger nζ and
that there are only minor observable differences between the two correlation models.
Both data sets are not part of training data, i.e. the K-NN results are out-of-sample
predictions.
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is good, even if the data arise from completely different data sources, i.e.
when the training is performed on climate simulation results and feature
probabilities are predicted for blood flow simulations. For level-crossing
probabilities the accuracy employing the complete training set (512k exam-
ples) is significantly better compared to the linked-pairs method. While the
linked-pairs method is faster the controlled approximation is the major ad-
vantage of the surrogate function approach. The critical-point probabilities
shown in Fig. 6.32 and 6.34 show that the smaller training sets lead to ar-
tifacts and low approximation accuracy. However, when the large training
sets are considered, only very minor differences to the reference results that
were computed for the exponential correlation model are observable. There
are also some minor differences between the MC results using the exponen-
tial correlation model and those using arbitrary correlations, but all signifi-
cant features (i.e. regions with relatively high feature probabilities) are very
similar. This is evidence that the exponential correlation functions are an
appropriate model for both types of CFD ensembles. Note that none of the
distributions of the fields shown in Fig. 6.32 and 6.34 are part of the training
sets, i.e. the probabilities are out-of-sample predictions.

An important limitation of the surrogate function approach is the dif-
ficulty to represent more complex probability distributions (e.g. given by
an nonparametric estimator) efficiently in an attribute vector u. While it is
theoretically possible to represent a distribution using kernel density esti-
mation and store a set of realizations in u, we need to consider values for
the complete cell for each realization such that even a moderate amount of
realizations will lead to very high dimensional u. A possible option to over-
come this limitation in the future is to employ sparse kernel density estima-
tion [CHH04] for nonparametric discrete random fields. Another limitation
is that a single function ζ cannot estimate feature probabilities defined for
cells that have varying numbers of neighbors.

We chose K-NN regression for our surrogate functions because it (i)
works well with large training sets, provided they fit into memory, (ii) can
model nonlinear functions, (iii) has only one hyperparameter that needs to
be optimized, and (iv) is rather straightforward to implement. An investi-
gation of other regression methods for the estimation of surrogate functions
is left for future work. A major challenge will be to find regression methods
that perform well with such large training sets. Candidates include gen-
eralized linear models (binomial regression) and nonparamtric regression
approaches employing kernel approximations. Standard SVM regression
with nonlinear kernels as well as Gaussian process regression does not scale
well enough to hundreds of thousands or millions of training examples. The
computational complexity of SVMs is between quadratic and cubic for the
training set size [BL07].
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nζ time (seconds) MSE

1000 0.44 3.14× 10−5

8000 0.86 2.16× 10−5

2048000 9.71 5.24× 10−6

ground truth (MC) 525.28 –

(a)

nζ time (seconds) MSE

1000 3.07 4.54× 10−7

8000 8.04 7.63× 10−8

2048000 37.17 2.25× 10−8

ground truth (MC) 7340.97 –

(b)

Table 6.2: Computation times and approximation errors (MSE) for critical-point
probabilities in the results depicted in Fig. 6.34. Values are given for the (a) the
wind field and (b) the blood flow field, both modeled using exponential correlation
functions.

The main advantage of the surrogate function approach is the significant
reduction of computation times compared to MC integration. Depending on
the data set the computation can be accelerated by up to 3 orders of magni-
tude. Further acceleration is expected to be possible using parallelization of
the computations. The approach opens up the possibility for the user to em-
ploy probabilistic feature extraction during exploratory data visualization
which was otherwise prevented by the high computational cost of MC sam-
pling. Compared to previous approximation methods surrogate functions
are a general approach that can be employed for many types of features. In
particular, it allows to quickly estimate critical point probabilities which was
not possible using previous approaches. Another advantage is that surro-
gate functions provide controlled approximations of the feature probabilities
i.e. the approximation error can be systematically reduced by adding more
examples to the training sets.

6.5 Model Selection for Discrete Random Fields

6.5.1 Spatial Correlation

In the results, the impact of spatial correlation on the feature probabilities
is clearly visible. In Fig. 6.35 the impact of changing covariance between
two adjacent grid points on the level-crossing probability is shown for two
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pairs of input distributions with unit standard deviation. As the covari-
ance increases, the crossing probability slightly decreases for the first case
and decreases significantly for the second case. Recall that high covariance
Cov(Y1, Y2) means that, for example, a positive deviation from the mean of
a realization of Y1 also implies a positive deviation of a realization of Y2. For
that reason, the effect of decreasing probability is larger for the second case
while for the first case the effect is smaller because of the different mean
values of the Gaussians.

Fig. 6.5 shows that increasing correlation between the grid points de-
creases the probabilities surrounding the mean crisp surface which leads to
thinner spatial distributions of uncertain isocontours. As we can see in Fig.
6.7 neglecting correlation leads to overestimation of the uncertain isolines’
spatial distributions. The distribution in Fig. 6.7b is thinner than the dis-
tribution in Fig. 6.7d and it is similar to Fig. 6.7c which we regard as a
ground truth. In Fig 6.8 the probabilities for the cuboid case show thinner
spatial distributions compared to the LCP-method described in Chap. 5 that
neglects correlation.

Neglecting spatial correlations for the estimation of feature probabili-
ties in vector fields has two notable effects. First, the ability to distinguish
between critical point types is reduced, and second, probabilities are signif-
icantly over-estimated, see Sect. 6.3.7. The reason for this is that neglecting
correlation corresponds to a white-noise-model for the uncertainty. Distur-
bance of vector fields by white noise leads to a much larger number of critical
points and thus higher cell-wise probabilities. Spatial covariances between
adjacent samples are more important, the differences between fully uncor-

Figure 6.35: The impact of changing covariance between two adjacent grid points
on the level-crossing probability is shown for two pairs of input distributions with
σi = 1. As the covariance increases the probability decreases slightly for the first
case and significantly for the second case.
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related random variables and vector-wise correlated random variables are
not that large. Localized high probability areas for critical points do not
necessarily have counterparts in the mean vector field, as can be observed in
Fig. 6.17 (b) and (c). It is therefore not sufficient to annotate features of the
mean field with probabilities.

6.5.2 Parametric or Nonparametric Models?

The feature probabilities that were computed using the different probabilis-
tic models show distinct quantitative and qualitative characteristics. In case
empirical distributions are employed, the resulting probability fields are
sparse and non-smooth. Empirical distributions that are used to compute
level-crossing probabilities lead to results that are very similar to spaghetti
plots, which are commonly used to visualize climate data. The usage of
KDE leads to smooth probability fields that nicely capture the variability
and the detailed structure of the features. The parametric model also leads
to smooth results, but it introduces errors where the data is non-Gaussian.
Depending on the data characteristics, the differences between KDE and the
parametric Gaussian model can be significant or only subtle.

Selecting a suitable statistical model for a given dataset is crucial for
achieving results that are neither biased, nor otherwise erroneous. The usage
of empirical distributions for probabilistic feature extraction has the advan-
tage that the results directly reflect the underlying numerical ensemble data.
A disadvantage is that, depending on the condition number of the feature
extraction problem, the position of features with non-zero probability can
be unstable, cf. Sect. 4.2. The actual ensemble members are arbitrary in the
sense that they are just one possible sampling of the underlying distribution
and a different set of samples would be valid as well. Additionally, the re-
sults may suggest that the uncertain field is modelled by discrete probability
distributions when the quantities in fact vary according to continuous dis-
tributions. KDE methods are used to get smooth reconstructions of the con-
tinuous distributions underlying a dataset and they can represent skewed
or multimodal data. Jones compared CDFs that were computed using ker-
nel smoothing to empirical distribution functions, which can be regarded as
a special case with bandwidth H = 0 [Jon90]. His investigation revealed
that any smoothing Hu > H > 0 (for some upper bound Hu) decreases the
integrated mean squared error. Parametric models are constructed by de-
termining optimal estimates for a fixed set of parameters from a dataset.
While the estimated parameters converge for increasing sample sizes, the
error that can be introduced by incorrectly specifying the model (for a phe-
nomenon that is really non-Gaussian) cannot be removed by taking more
samples. Statistical tests should be used to measure the goodness of fit.
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Figure 6.36: Schematic diagram for the model selection task for ensemble data.

The aim should be to obtain a good balance between goodness of fit and
model simplicity. Empirical distributions are a simple model that is useful if
the aim is the direct representation of ensemble data or if fast computation
times are required. Parametric models should be used if a reasonable fit
to the data can be ascertained. KDE is the best choice for datasets that are
known to describe continuous phenomena but for which no assumptions
about a fixed type of parametric distribution can be made. However, with
KDE it is also possible to accurately approximate parametric distributions;
this makes it an all-purpose tool for continuous random variables. The pro-
cess of model selection for ensemble data is summarized in a schematic in
Fig. 6.36.
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7
Conclusions & Outlook

For the interpretation of scientific data, the uncertainties associated with it
must be taken into account. While quantitative indications of uncertainty
are ubiquitous in science and engineering (provided in tables and 1D plots
for example), uncertainty cannot be adequately represented using standard
feature extraction and visualization methods for 2D and 3D fields in most
cases.

This thesis introduced methods to analyze field data that is afflicted with
uncertainty. Our approaches facilitate the estimation of the propagation of
uncertainty from the raw data to derived quantities and features that are
important for the interpretation of the data. All approaches are well-founded
in probability theory and statistics.

As mathematical model for uncertain scalar, vector and tensor fields, we
employed discrete random fields. In this framework, a variety of probabilistic
models can be employed. Different models have proven to be useful for var-
ious applications. In the simplest case we assume that all random variables
in a field conform to some type of parametric probability distribution, e.g.
Gaussian, and are statistically independent. More complex models consider
fields with arbitrary spatial correlations and/or nonparametric distributions (em-
pirical distributions, histograms and kernel density estimates (KDE)). In con-
trast to several previous approaches that were restricted to Gaussian fields
our approach is more flexible and able to work with various types of dis-
tributions. The models described in Chap. 3 ensure that correct (consistent)
marginal distributions can be obtained from the random field in order to
perform local evaluation of the data. For KDE, we proposed an approach to
perform a principal component transformation in order to efficiently capture
correlations and use automatic bandwidth selection. We used these models
a basis for local feature extraction.

We introduced the concept of condition numbers to feature-based visu-
alization (Chap. 4). Specifically, we applied it to isocontour extraction from
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scalar fields and to anisotropy index computation from diffusion tensor (DT)
fields to examine the sensitivity to uncertainties in the input data. Using con-
dition numbers of the isocontour problem the amplification or attenuation
of uncertainty can be locally estimated independently of the contouring al-
gorithm. The average condition numbers of isocontours has been shown to
aid the selection of thresholds that correspond to robust isocontours. Previ-
ous work on DT-MRI [PXH∗99, HAN04, CKPB07] had shown that fractional
anisotropy (FA) yields higher SNR than relative anisotropy (RA), i.e., that
FA is more immune to noise than RA. However, when extracting isosurfaces
from the anisotropy fields our condition analysis in Sect. 4.3 indicates that
the propagation of uncertainty from the DT eigenvalues to the isosurface
position is approximately equal for FA and RA. This equality was shown both
analytically using a first order approximation and empirical results.

Based on the probabilistic models for uncertain fields, we derived statis-
tically founded point-wise measures for the spatial distribution of uncertain
isocontours in continuous domains (Chap. 5). Assuming that the random vari-
ables are uncorrelated, we spatially interpolate probability density functions
between the grid points and define two quantities, the isocontour density and
the level-crossing probability field. The measures are employed in interactive
visualization methods for uncertain 2D and 3D volume data. For the 3D
case, the introduced quantitative measures are used as procedural transfer
functions in GPU assisted ray casting. No preprocessing is necessary and
interactive frame rates are achieved.

In Chap. 6, we presented a general framework for the extraction of prob-
abilistic local features from uncertain scalar and vector fields. In contrast to
the approach presented in Chap. 5, this method associates feature proba-
bilities to each grid cell of a discrete random field and not to all points in
a continuous domain. This enables (i) the definition of any type of feature
using indicator functions and (ii) the consideration of the spatial correlation
structure. The feature probabilities are computed using Monte Carlo (MC)
integration of the local multivariate marginal distributions.

Using this generic framework, we devised methods to estimate level-
crossing probabilities in scalar random fields (Sect. 6.2), i.e., probabilities for
the existence of an isocontour in given grid cells. Due to the considera-
tion of correlation, this approach leads to more accurate results compared
to Chap. 5. The probabilistic procedure does not have to deal with degen-
erate or ambiguous cases separately like it is the case for marching cubes
and related algorithms. Probabilities for the occurrence of level crossings for
critical isovalues or non-Morse functions (with respect to the mean values,
for example) are computed correctly without treating any special cases.

For vector-valued random fields, we defined probabilistic equivalents to
critical points and cores of swirling motion (Sect. 6.3). Our results indicate
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significant differences in the spatial locality of features and show that the
consideration of correlation is essential for obtaining correct results. In con-
trast to previous global methods [OGHT10,OGT11a,OGT11b], we take a dif-
ferent perspective on the topic. Our local method is able to extract features
even in divergence-free fields and to detect saddle points in a straightfor-
ward way. It works on different grid types including surface vector fields.

To overcome the high computational cost of the MC integration, we in-
troduced fast approximation methods for the estimation of feature proba-
bilities. For cell-wise crossing probabilities in Gaussian fields, we proposed
methods based on univariate and bivariate distribution functions that can
be evaluated in the rendering step using lookup tables. A more general ap-
proach is the construction of surrogate functions from training data. The func-
tions map the attributes describing the probability distributions that corre-
spond to grid cells to feature probabilities. This way, the computation times
are reduced by multiple orders of magnitude compared to MC integration.
We demonstrated the utility of surrogate functions based on nonparametric
K-NN regression by showing good generalization performance for unob-
served data.

The methods were applied to scalar, vector and tensor fields from en-
gineering, medicine, and climate research. Several features that are useful
for domain-specific analysis were detected, e.g., probabilities for the exis-
tence of critical points in the wall shear stress field of simulated blood flow
in an aneurysm. Regions of low wall shear stress have been linked to rup-
ture risk for specific types of cerebral aneurysms [GSK∗12]. Comparing the
results computed from multiple probabilistic models, we found some signifi-
cant differences regarding spatial distribution, smoothness and the ability to
represent subtle details in the data. This highlights the importance of care-
ful model selection depending on the respective application as discussed in
Sect. 6.5.

Challenges for future work mainly lie in two areas. The first area is the
extension of the framework to features that are defined globally. The big
impact of correlations observed with the local method raises the question
whether the results of global methods, if extended to consider correlations,
would also be affected significantly. Here, the numerical solution of stochas-
tic differential equations based on correlated noise will be key. Global fea-
tures that are defined in terms of stochastic paths, similar to the approach
by Otto et al. [OGHT10], can possibly be extended to consider correlations
but should be carefully studied regarding the convergence of the resulting
distributions. The methods presented in this thesis are formulated for addi-
tive perturbations only. To account for multiplicative noise, e.g., as speckle
noise, or for other phenomena that can not be modelled as additive noise,
an adapted approach will be necessary. Another challenge is the extension
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to data that is inherently multi-scale and, e.g., defined on hierarchies of dis-
cretizations (multi-grids).

The evaluation of the perceptual effectiveness of visualization methods
for uncertainty in 2D and 3D data is beyond the scope of this thesis and
constitutes a second area of further research. To investigate the influence
of various visual representations on inference and decision making, formal
user studies are required. MacEachren et al. provided a survey of previ-
ous work about the utility of uncertainty visualizations on decision mak-
ing [MRH∗05]. The authors also provide a list of challenges that should be
considered for visual design. However, the majority of the papers and ap-
proaches address specific tasks in geography and cartography. A more gen-
eral analysis and empirical evaluation of visualization methods for various
application domains will be highly useful to enable better understanding of
uncertain data.
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A
Basics of Random Variables
and Probability Distributions

In this appendix we revisit some fundamental concepts of probability theory
that are necessary for the formulation of the uncertainty models in Chap. 3.
For a more detailed exposition, refer to probability textbooks, e.g. [Fel71].

A.1 Events

An event E consists of a set of outcomes of a non-deterministic experiment
with an associated probability P(E). The set of all possible outcomes is
called sample space Ω which is finite or countable in case of discrete phe-
nomena and uncountably infinite in case of continuous phenomena. The
probabilities associated to all events of a sample space must satisfy the Kol-
mogorov axioms [For08, p. 91].

A.2 Random Variables

A random variable Y is a variable that does not have a fixed, single value.
It can take on different all possible values that are elements of the sample
space Ω, i.e. the value is subject to random variations. This randomness can
be used as a mathematical representation of uncertainty about the true value
of a physical quantity, e.g., due to measurement uncertainty and/or quantifi-
cation errors. Lists of random variables describing multi-valued phenomena
are called multivariate random variables or random vectors.
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A.3 Probability Distributions

Obviously, in most casis not all realizations y ∈ Ω of Y are equally likely. The
representation of the distribution of probabilities for all possible outcomes
depends on whether Y is a discrete or continous random variable.

Probability Mass Functions (PMFs). For a discrete random variable Y, a
PMF is a functions that gives the probabilities for the event that Y is equal
to some value. For example, if

Y ∼ Bernulli(p), (A.1)

then the PMF is

f (y, p) =

p if y = 1,

1− p if y = 0.
(A.2)

The probability for the event that Y = 1 is

P(Y = 1) = 1− (P = 0) = p. (A.3)

Probability Density Functions (PDFs). In case Y is a continuous random
variable a different approach is necessary because there are uncountably in-
finite outcomes and each single-point outcome has probability zero. Instead
of a probability a probability density is assigned to each value using a PDF.
Integrating over subsets of the sample space (e.g. intervals) gives the prob-
ability that the random variable take a value from this subset. For example
for a random variable Y ∈ R with an associated PDF f we can compute the
probability that Y is contained in an interval using

P(a ≤ Y ≤ b) =
∫ b

a
f (y)dy. (A.4)

The function
F(y) =

∫ y

−∞
f (v)dv (A.5)

gives the probability that Y is less or equal to y and is called cumulative
distribution function (CDF) of Y. For example if Y ≥ 0, λ > 0 and

Y ∼ Exponetial(λ), (A.6)

then the PDF is
f (y) = λ exp(−λ y) (A.7)
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and the CDF is
F(y) = 1− exp(−λ y). (A.8)

In case Y = (Y1, Y2, . . . , Yn)T is a random vector then the joint distribution
can be described by a multivariate PDF

fY(y) = fY(y1, y2, . . . , yn). (A.9)

The multivariate CDF as well as probabilities related to Y can be computed
using n-dimensional integration over fY.

A.4 Marginals of Multivariate Gaussian Distributions

In this section we determine the marginal distribution of a multivariate
Gaussian. The marginal is needed to obtain correct local cell-wise distri-
butions in discrete random fields as discussed in Chap. 3 and 6. We mainly
follow the approach of Bishop [Bis06, p. 88] but the proof that the marginal
is again a Gaussian that can be expressed using the partitioned mean vector
and covariance matrix of the joint distribution is a well known result and
can also be found in, e.g. [MKB79, p. 63] or [Sun04, p. 23].

Let Y = (y1, y2, . . . , yn)T be a n-dimensional random vector that conforms
to a multivariate normal distribution

Y ∼ N (µ, Σ). (A.10)

The density is given by

f (y) =
1

(2π)n/2|Σ|1/2 exp
(
−1

2
(y− µ)TΣ−1(y− µ)

)
. (A.11)

We can rewrite the vector as

Y = (Ya, Yb)
T, (A.12)

where Ya = (y1, y2, . . . , ym)T and Yb = (ym+1, . . . , yn)T are components of Y.
We are now interested in the marginal distribution of Ya. That means that
we want to compute the density

f (ya) =
∫

f (ya, yb)dyb. (A.13)

We separate the mean vector as µ = (µa, µB)
T, the covariance matrix Σ

such that

Σ =

[
Σaa Σab

Σba Σbb

]
(A.14)
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and the precision matrix Λ = Σ−1 such that

Λ =

[
Λaa Λab

Λba Λbb

]
. (A.15)

Then we can rewrite the quadratic terms in the exponent of the Gaussian as

−1
2
(y− µ)TΣ−1(y− µ) =

−1
2
(ya − µa)

TΛaa(ya − µa)−
1
2
(ya − µa)

TΛab(yb − µb)

−1
2
(yb − µb)

TΛba(ya − µa)−
1
2
(yb − µb)

TΛbb(yb − µb). (A.16)

We want to integrate out yb so we first consider the terms involving yb. Let

m = Λbbµb −Λba(ya − µa),

then the terms of Eq. (A.16) involving yb can be written as

−1
2

yT
b Λbbyb + yT

b m =

−1
2
(yb −Λ−1

bb m)TΛbb(yb −Λ−1
bb m) +

1
2

mTΛ−1
bb m. (A.17)

This way the dependence on yb is transformed into the standard quadratic
form of a multivariate Gaussian PDF and one term that does not depend on
yb. We can exponentiate the quadratic form and see that the integration to
compute Eq. (A.13) will take the form∫

exp
(
−1

2
(yb −Λ−1

bb m)TΛbb(yb −Λ−1
bb m)

)
dyb

which is an unnormalized Gaussian. Thus, the result of this integral is the
reciprocal of the normalization constant which depends on the determinant
of the covariance matrix but neither on the mean vectors nor ya and yb. We
can complete the square and integrate out yb and the only term depending
on ya that remains is 1

2 mTΛ−1
bb m. We combine this with the other terms from

Eq. (A.16) which depend on ya and plug in m to obtain

1
2
(Λbbµb −Λba(ya − µa))

TΛ−1
bb (Λbbµb −Λba(ya − µa))

−1
2

yT
a Λaaya + yT

a (Λaaµa + Λabµb) + const.

= −1
2

yT
a (Λaa −ΛabΛ−1

bb Λba)ya + yT
a (Λaa −ΛabΛ−1

bb Λba)
−1µa + const. (A.18)
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where ’const.’ represents quantities that do not depend on ya. Using the fact
that the quadratic form in the exponent of any Gaussian can be written as

−1
2
(y− µ)TΣ−1(y− µ) = −1

2
yTΣ−1y + yTΣ−1µ + const.

we can see from Eq. (A.18) that

Σya = (Λaa −ΛabΛ−1
bb Λba)

−1 (A.19)

and
µa = Σaa(Λaa −ΛabΛ−1

bb Λba)µa. (A.20)

Using matrix identities for Eq. (A.14) and (A.15) we can confirm [Bis06, p.
89] that

cov(ya) = Σaa = Σya . (A.21)

Similarly the expected value is

E(ya) = µa. (A.22)

That means that the marginal density f (ya) is again a Gaussian distribution
that can be expressed using the partitioned covariance matrix and mean
vector of f (ya, yb).
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B
The Approximate Distribution
Induced by the Linked-Pairs

Approximation

In the following, we show that the approximate distribution for Ỹ is again
a multivariate normal distribution, and derive a formula for computing the
covariance matrix of that approximate distribution. Without loss of gener-
ality, distributions with zero mean are assumed. Pairwise correlations are
iteratively added to a multivariate distribution, yielding again another mul-
tivariate distribution that serves as input for the next step. By re-ordering
random variables, we always extend the last variable of a random vector.

Given a n-dimensional multivariate normal distribution of the random
vector Y = [Y1, Y2, . . . , Yn] with covariance matrix Σ = (ρijσiσj)1≤i,j≤n, vari-
ances σ2

i and ρii = 1, we consider a second random vector Ȳ = [Yn, Yn+1]

with a two-dimensional normal distribution that describes the extension of
Y by another variable. The covariance matrix of Ȳ is

ΣȲ =

(
σ2

n ρn,n+1σnσn+1

ρn,n+1σnσn+1 σ2
n+1

)
. (B.1)

Covariances between the first n − 1 variables and n + 1 are not explicitly
stated. In the following, the PDF of the joint distribution of the two distri-
butions is computed.

With fY(y1, . . . , yn), the PDF describing Y, and fyn+1(yn+1|yn) the PDF of
the conditional distribution of yn+1 given yn, the joint PDF is given by the
product of both PDFs, as fyn+1 is independent from y1 . . . yn−1:

f (y1, . . . , yn+1) = fY(y1, . . . , yn) fyn+1(yn+1|yn) (B.2)
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The n dimensional multivariate normal distribution is given by:

fY(y1, . . . , yn) =
1

(2π)n/2 |Σ|1/2 exp
(
−1

2
(y1 . . . yn)Σ−1(y1 . . . yn)

T
)

(B.3)

The conditional density for yn+1 given yn is again normally distributed with
mean µ̄ = αyn, where α = ρn,n+1

σn+1
σn

and variance σ̄2 = σ2
n+1(1− ρ2

n,n+1). It
is then

fyn+1(yn+1|yn) =
1√

2πσ̄2
exp

(
− (yn+1 − αyn)2

2σ̄2

)
, (B.4)

and can be written in matrix form as

fyn+1(yn+1|yn) =
1√

2πσ̄2
exp

(
−1

2
(ynyn+1)

(
α2/σ̄2 −α/σ̄2

−α/σ̄2 1/σ̄2

)(
yn

yn+1

))
.

(B.5)

Using the following identity for the inverse of the (n+ 1)× (n+ 1) matrix
and employing block matrix notation


Σ−1 0
...

0 · · · 0

+



0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 0 0

0 · · · 0 α2/σ̄2 −α/σ̄2

0 · · · 0 −α/σ̄2 1/σ̄2





−1

=

(
Σ αΣn

αΣT
n α2Σn,n + σ̄2

)
,

where Σn is the nth column of Σ and Σn,n the entry at (n, n) of Σ, the joint
distribution f can be written as

f (y1, . . . yn+1) =
1

(2π)
n+1

2 |Σ|
1
2 |σ̄2| 12

exp

−1
2
(y1 . . . yn+1)

(
Σ αΣn

αΣT
n α2Σn,n + σ̄2

)−1


y1

...

yn+1


 . (B.6)

With α2Σn,n + σ̄2 = σ2
n+1 and

Σ∗ =

(
Σ αΣn

αΣT
n σ2

n+1

)
(B.7)
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the joint distribution is finally

f (y1, . . . yn+1) =
1

(2π)
n+1

2 |Σ∗|
1
2

exp
(
−1

2
(y1 . . . yn+1)Σ∗

−1(y1 . . . yn+1)
T
)

.

(B.8)
It is left to show that |Σσ̄2| = |Σ∗|. Applying the block matrix formula for
determinants ∣∣∣∣∣

(
A B

C D

)∣∣∣∣∣ = |A||D− CA−1B| (B.9)

to Eq. (B.7) yields the desired equality:

|Σ∗| = |Σ||σ2
n+1 − αΣT

n Σ−1αΣn|
= |Σ||σ2

n+1 − α2ΣT
n (0 · · · 01)T|

= |Σ||σ2
n+1 − α2Σnn|

= |Σ||σ2
n+1 − α2σ2

n |
= |Σ||σ2

n+1(1− ρ2
n,n+1)|

= |Σ||σ̄2|
= |Σσ̄2|. (B.10)

The last column of Eq. (B.7) contains the covariances between Y1, · · ·Yn and
the last variable Yn+1. The covariances are

αΣN = (ρi,nρn,n+1σiσn+1)1≤i≤n, (B.11)

i.e., the correlations to variable Yn are multiplied by ρn,n+1 for variable Yn+1.
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C
Condition Numbers of
Anisotropy Isosurface

Computation

Let D(x, y) be a diffusion tensor field in R2 where each tensor is described
by its eigenvalues λi and eigenvectors ei. The fractional anisotropy is given
by

FA =

√
1
2

√
(λ1 − λ2)2

λ2
1 + λ2

2
(C.1)

and the relative anisotropy by

RA =

√
1
2

√
(λ1 − λ2)2

λ1 + λ2
. (C.2)

With the derivatives

∂FA
∂λ1

=
λ2
(
λ2

1 − λ2
2
)

|λ1 − λ2|
(
λ2

1 + λ2
2

)3/2

and
∂FA
∂λ2

=
λ1λ2

2 − λ3
1

|λ1 − λ2|
(
λ2

1 + λ2
2

)3/2

we can determine the absolute normwise condition for FA computation

κabs
FA =

∣∣∣∣∣∣∣∣ (∂FA
∂λ1

,
∂FA
∂λ2

)T ∣∣∣∣∣∣∣∣ = |λ1 + λ2|
λ2

1 + λ2
2

. (C.3)
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Analogously, for RA we can write

∂RA
∂λ1

=
2 (λ1 − λ2) λ2

|λ1 − λ2| (λ1 + λ2)
2

∂RA
∂λ2

=
2λ1 (λ2 − λ1)

|λ1 − λ2| (λ1 + λ2)
2

κabs
RA =

∣∣∣∣∣∣∣∣ (∂RA
∂λ1

,
∂RA
∂λ2

)T ∣∣∣∣∣∣∣∣ = 2
√

λ2
1 + λ2

2

(λ1 + λ2)
2 . (C.4)

For an explicit formulation of Eq. (4.16) we use the gradient

∇FA =

(
∂FA
∂x

,
∂FA
∂y

)T

(C.5)

with

∂FA
∂x

= −

(
λ2

1 − λ2
2
) (

λ1
∂λ2

∂x
− λ2

∂λ1

∂x

)
|λ1 − λ2|

(
λ2

1 + λ2
2

)3/2 (C.6)

and

∂FA
∂y

= −

(
λ2

1 − λ2
2
) (

λ1
∂λ2

∂y
− λ2

∂λ1

∂y

)
|λ1 − λ2|

(
λ2

1 + λ2
2

)3/2 , (C.7)

leading to the condition number for isosurface extraction

κabs
FA−1(ϑ) =√√√√√√√√√√√


∣∣∣∣∣∣∣∣∣
(λ2

1−λ2
2)

λ1
∂λ2

∂y
−λ2

∂λ1

∂y


(λ2

1+λ2
2)

2

∣∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣∣
(λ2

1−λ2
2)

λ1
∂λ2

∂x
−λ2

∂λ1

∂x


(λ2

1+λ2
2)

2

∣∣∣∣∣∣∣∣∣
2(λ2

1 + λ2
2

)
(λ1 − λ2)

2 .

(C.8)

Similarly for RA

∂RA
∂x

= −
2 (λ1 − λ2)

(
λ1

∂λ2

∂x
− λ2

∂λ1

∂x

)
|λ1 − λ2| (λ1 + λ2)

2 (C.9)
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and

∂RA
∂y

= −
2 (λ1 − λ2)

(
λ1

∂λ2

∂y
− λ2

∂λ1

∂y

)
|λ1 − λ2| (λ1 + λ2)

2 (C.10)

give the condition number

κabs
RA−1(ϑ) =

2

√∣∣∣∣λ2
∂λ1

∂y
− λ1

∂λ2

∂y

∣∣∣∣2 + ∣∣∣∣λ2
∂λ1

∂x
− λ1

∂λ2

∂x

∣∣∣∣2
(λ1 + λ2)

2 . (C.11)

By elementary algebra it can be shown that the relation

κabs
FA κabs

FA−1(ϑ) = κabs
RAκabs

RA−1(ϑ) (C.12)

holds. This means that in a first order approximation the propagation of
uncertainties from the eigenvalues to uncertainties of isocontour-positions is
equal for FA and RA.
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