where the infimum is taken over all possible sequences {my}, my € M, not
having accumulation points in M. For the domain D we assume that there
exists a constant c¢; > 0, such that

(9.20) mes,, (B(ai,d) N Blag,d)) > c; d"”

for all points a1, ay € D, satisfying the condition
1
(921) d= d(&l,&g) < 56(D) .

Now we deduce the well-known form of Morrey’s lemma for differential forms
on Riemannian manifolds. For the special case of functions compare with

[GT] §12.1 and [Re] §2.1.

9.22. Theorem. Suppose that the manifold M satisties the properties
I), II), and III) with the constant § > 0. Let D CC M be a domain such
that 6 < 6(D)/2 and (9.20) holds. Let w € Wit?(M) be a differential form
of degree k, 0 < k < n, p > 1. If for every point a € D and for every
r < 6(D)/2 the inequality

(9.23) / |dw|Pdopyg < c5r"PHe
B(a,r)

holds, then the differential form w can be redefined on a set of measure zero
such that for all ay,as € D, d(ay,az) < d, we get

(9.24) inf )/\dw\dSM < S g5 ,
Cr
ol

v€l'(ay,a2

where cg is the constant from Lemma 9.7.

Proof. If we replace in Lemma 9.7 the function p by the value of the
differential form dw, the theorem follows directly with the help of (9.20). O

10 Estimate for the energy integral

Here we present an estimate for the energy integral of the differential form
dw € WT,.
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We need a quantity, the fundamental frequency of the free membrane
Y(a,r). G. Pdlya and G. Szego6 [PS] §5 worked out a similar idea in two
dimensions.

Let a € M be a fixed point and let ¥(a,r) C M be a geodesic sphere
and a manifold of dimension n — 1. Let w € W'?(X(a,r)), degw = k,
1 <k <n-—1, be a differential form. We define the quantity

( f |dgw|de”‘1> ’
b

(a,r)

(10.1) p(a,r) = inf T
<inf [ —wo\deM)p

“0 S(a,r)

where the operator dyx, denotes the differential operator on ¥(a, r) and where
wy is a differential form with constant coefficients and degwy, = degw. Here
dH"! is the element of the (n—1)-dimensional Hausdorff measure on X(a, ).

10.2. Theorem. If the differential form dw is in the class W75, then
with some (3, for every a € M and for every § < riy;(a) the function

1
rn—p+B

Ga(r) = / |dw|Pdv

B(a,r)
is increasing on (0, 0).

10.3. Remark. From the proof it will be clear that we can choose

o,
10.4 =2 inf _
(10.4) 5 ” ren(r%m)m(a,r) n+p

where vy, 15 are the constants of (5.1) and (5.2).

Proof. Let a € M be a fixed point. We prove that for some 3 > 0 the
derivative ¢/ (r) > 0 almost everywhere in (0,0). For almost every r € (0, 6)
we have with (9.2)

d
< / |dwl? dupg = / \dw[P dH™ .
dr

B(a,r) (a,r)
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The condition ¢/ (r) > 0 is equivalent to the inequality

(10.5) (n—p+8) / \dw|? dupg < 7 / \dw|? dH™ |

B((l,’l") Z(G,T‘)

We take ry € (0,0), choose £ > 0 such that ro+¢ < § and define the function

1 for t<ry,
o) =4 l4+ry/e—t/e for

t € [ro,m0 + €],
0 for t>rg+e.
For every differential form wy with constant coefficients, degwy = degw, the
function ¢(d(a,m)) (w(m) — wy) belongs to the class W’ (M) and is equal

to 0 for m € M\ B(a,r + ¢). Because of Theorem 5.6 the differential form
w is A-harmonic, therefore (5.5) yields

(A, dw), d(@(d(a,m) (= w0)) dvag =0

M

and we get

[ éld(a,m)(A(m, dw), dw) duy
M

— /(A(m, dw),do N (w — wp)) dopg.
M

Because ¢(d(a,m)) =0 on M\ B(a,ro+ €) we obtain

/ o (A(m, dw), dw) dvy

B(a,ro+¢)

< [ gl — wol A, dw)l oy

ro<d(a,m)<ro+e

1
< - / IVd(a, m)| |w — wo| | A(m, dw)| du .

ro<d(a,m)<ro+e

Observing that
|Vd(a,m)| =1 in B(a,0)
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with (5.1) and (5.2) and with (9.2) we get

21 / |[dw|Pdvy, < lug / |w — wo| |[dw|P~ dvag
B(a,ro) ¢ ro<d(a,m)<ro+e
1 ro+e
< - / dt / lw — wol |dw|P~taH™ " .
c o 3(a,t)

Passing to the limit ¢ — 0, one gets

(10.6) / dwlPdope < 15 / lw — wol [dw[P~ L dH™
B(a,ro) Y(a,ro)
= 1/2].

Next we employ the following modified form of the Young inequality

p _
ab < T—ap+p
p p

for a,b > 0 and some 7 > 0. We reach to

__p___P_
T -1 hp—1

p 1
1.7 1 < = / W — woP dH 4 P2 / \dw|? dH™
X(a,ro) ¥(a,ro)
P —
= T— [1 -+ b 7'7ﬁ [2 .

The differential form w belongs to W?(3(a, ry)) for almost every ry € (0, 9).
Choosing the optimal constant differential form wy in I; we obtain from (10.1)

1
(10.8) I, = / lw — wol? dH™ 1 < e / \dsw|? dH™ .

2(a,r0) Y(a,ro)

If we think of |dw| as a composition of |dsw| and the projection to the or-
thogonal direction of dyw, we see that

|dsw] < |dw| .

Combining (10.6), (10.7) and (10.8) yields

P -1 -
2 / |dw|Pdup < (VQ T +? Tp_—pl) / |dwPdH™ .
pu(a,ro)? p
B(a,ro) 3(a,ro0)
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Setting

we get
1 —1
2 [ delaon < (Satero) (e [ (el
vy p p
B(a,ro) 3(a,r0)
< plaro)™ [ (dwpdE
3(a,ro0)
< O [ jdwpan
c
3(a,ro0)

with ¢ = inf, ¢ rp(a, 7). The theorem follows with 3 = Zc—n+p. D

Now we can state an estimate for the energy integral of a differential form
of the class W7T,. For the subdomain D CC M we set §(D) as in (9.19).

10.9. Theorem. If the differential form dw is in the class W75, then
for every a € D and for every § < §(D)/2 and ¢ < ripj(a) the estimate

(10.10) / |dw|Pduag < c5 7" PP
B(a,r)

holds for r € (0, 6], with 5 from (10.4) and
1 P
(1011) Cy = W/|dw| dUM s
D/

where D' = {m € M : dist(m, D) < §(D)/2}.

Proof. By Theorem 10.2 we have at every point a € D

rn—P-f—,@
/ dwolPdon < 5 / ldw[Pdung
B(a,r) B(a,9)
for all » < 4. Therefore we get (10.10) with the constants above. 0
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We want to say something about the constant § (10.4), especially about
the fundamental frequency p(a,r) in (10.1). Let a € M be a fixed point
and let ¥(a,r) C M be a geodesic sphere. With a differential form w €
WhP(S(a,r)), degw =k, 1 < k < n — 1, we define another quantity

1
< f |dgw|de"1)
>(a,r)

(10.12) e(a,r) = sup
( [ |w-— w0|PdH”—1>

>(a,r)

where dyx, denotes again the differential operator on ¥(a,r) and where wy is
again a differential form with constant coefficients, degwy = degw. We have

wla,r) < e(a,r)

and Theorem 10.2 and Theorem 10.9 remain valid with the quantity e(a,r)
instead of u(a,r), i.e. we can choose 3 to be

12
g =— f —n+p.
Vo rel%%),é) 7’8(@, T) n-—r-p

For example in [He] §3.3 we find the following Poincaré inequality with
proof.

10.13. Lemma. Let M be a compact Riemannian manifold of di-
mension n and let 1 < p < n be a real number. There exists a positive
constant A = A(M, p) such that for every w € WP(M) we have

(10.14) (/]w—w]pde> gA(/]dw]pde>
M M

— 1
where W = mesn(M)Awade.

1 1
P P

Because we know that 3(a,r) is a compact Riemannian manifold of di-
mension n — 1 and 1 < p < n — 1 we get with Lemma 10.13 and with
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— % n—1 . .
Wo = s (5@ Z(&fr) wdH"™ ! the inequalities

( f |dgw|de”_1> ’
=

a7r)

e(a,r) >

T =

(f \w—w\de"1>;

3(a,r)

L
-

Now the problem of finding a lower bound for 3 or €(a, ) is reduced to the
problem of finding the best constant for the Poincaré inequality.

In the euclidean case IR" (see for example [BI] §1) we get for the ball
B = B(z,r) and for f € W'?(B), 1 < p < oo, the Poincaré inequality

1 = fellpe < 27 7 [V fllpn
with fB = mgf(x) dz.

If we have a geodesically complete Riemannian manifold the situation
becomes more difficult, because the Sobolev embedding Theorem 3.4 might
be false. For example in [Au] §2.7 or in [He| §3.5 we find the following
theorem.

10.15. Theorem. The Sobolev embedding theorem holds for a com-
plete manifold M with Ricci curvature bounded from below and positive
radius of injectivity.

For the definition of Ricci curvature see for example [Jo] §3.3. When we
have a complete manifold M it follows that it is only possible to find an A
in (10.14) if for example the Ricci curvature is bounded from below and the
radius of injectivity is positive.

The search for Poincaré inequalities in various situations has been in-
tensive in recent years. For example in [Se] is shown that every regular,
n-dimensional complete metric space, that is also an oriented manifold of
dimension n and satisfies a linear local contractibility condition, admits a
Poincaré inequality.

We should also mention that in [KI] geometric estimates for a similar
quantity to (10.12) are shown, they also bring us to estimates of the constant
in the Poincaré inequality on Riemannian manifolds.
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