
6 Quasiregular mappings

Let M and N be orientable Riemannian manifolds of dimension n and let
x1, . . . , xn be local coordinates in the neighborhood of a point m ∈ M. For
a mapping f : M → N we define the formal derivative Df(m) in terms of
the partial derivatives Difj . Through the identification Tm(M) ' IRn the
differentiation operator

Df(m) : Tm(M) → Tf(m)(N )(6.1)

is the linear mapping for which Df(m)ei =
∑n

j=1Difj(m)ej . We denote by
Jf(m) the Jacobian of f at the point m ∈ M, i.e. the determinant of Df(m).
For the norm of Df(m) we take the operator norm

|Df(m)| = max
|ξ|=1

|Df(m) ξ| .

Sometimes Df(m) may be replaced by f ′(m). With respect to the standard
basis of IRn we will denote by Df(m) also the corresponding matrix.

6.2. Definition. A mapping f : M → N of the classW 1,p
loc , 1 ≤ p ≤ n,

is said to be weakly quasiregular if the estimation

|Df(m)|n ≤ KJf(m)(6.3)

holds for almost every m ∈ M with 1 ≤ K < ∞. The mapping f is called
quasiregular if p is equal to the dimension of M.

The smallest constant K ≥ 1 in (6.3) is called the outer dilatation of f
and denoted dy KO(f). If f is quasiregular then one has also

Jf (m) ≤ K ′ l(Df(m))n(6.4)

almost everywhere on M for some K ′ ≥ 1. Here we have

l(Df(m)) = min
|ξ|=1

|Df(m)ξ| .

The smallest K ′ ≥ 1 in (6.4) is called the inner dilatation of f and denoted
by KI(f). The quantity

K(f) = max{KO(f), KI(f)}

26



is the (maximal) dilatation of f and a quasiregular mapping is called
K-quasiregular if K(f) ≤ K. The relationships KO(f) ≤ KI(f)n−1 and
KI(f) ≤ KO(f)n−1 hold. Thus KO(f) = KI(f) for n = 2. It follows that
we also can define a K-quasiregular mapping, 1 ≤ K <∞, to be a mapping
f ∈W 1,n

loc (M) with Jf(m) ≥ 0 a.e. and that the estimation

max
|ξ|=1

|Df(m)ξ| ≤ K min
|ξ|=1

|Df(m)ξ|(6.5)

holds for almost every m ∈ M.
If f : M → N is a quasiregular homeomorphism then the mapping

f is called quasiconformal. In this case the inverse mapping f−1 is also
quasiconformal in the domain f(M) ⊂ N and K(f−1) = K(f).

A broad view of quasiregular mappings in higher dimensions is given by
S. Rickman in his monograph [Ri].

A fundamental property of quasiregular mappings is that they are almost
everywhere differentiable and, if they are non-constant, they are also sense-
preserving discrete and open. These results are presented in [Re] §2.

6.6. Example. An important class of examples of quasiregular map-
pings is provided by mappings that distort lengths of curves by a bounded
factor. A continuous mapping f : M → N is for some L ≥ 1 of L-bounded
length distortion, or L-BLD, if f ∈ W 1,1

loc (M), if Jf(m) ≥ 0 almost every-
where on M, and if for some L the inequality

|ξ|/L ≤ |Df(m)ξ| ≤ L|ξ|(6.7)

holds for all ξ ∈ Tm(M) and for almost every m ∈ M. We say that f is
a BLD mapping if it is L-BLD for some L. In [HKM] §14 it is shown that
every L-BLD mapping is K-quasiregular with K = L2(n−1).

Many properties of quasiregular mappings can be clarified with terms
of the Riemannian geometry. First let G : M → GL(n) be a measurable
function with values in symmetric positive matrices of determinant one, such
that

λ−1|ξ| ≤ 〈G(m)ξ, ξ〉1/2 ≤ λ|ξ| ,(6.8)

for (m, ξ) ∈ M × Tm(M) and λ ≥ 1. The inner product in the tangent
space Tm(M) gives rise to a measurable Riemannian metric tensor on M.
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The norm of the tangent vector ξ ∈ Tm(M) at m ∈ M with respect to this
metric is defined by |ξ|G := 〈G(m)ξ, ξ〉1/2. Every K-quasiconformal mapping
f induces a metric tensor on M, namely

G(m) := Jf(m)−2/nDtf(m)Df(m)(6.9)

if Jf(m) 6= 0, and G(m) = Id if Jf(m) = 0. It is clear that f is conformal
with respect to this metric. We refer to G(m) as the matrix dilatation of f
at m ∈ M. The following lemma ensures the inequalities in (6.8). For the
proof see Lemma 7.9 in the case k = 1.

6.10. Lemma. Let f ∈ W 1,p(M), 1 ≤ p ≤ n, be weakly K-quasi-
regular, then the equation

K
1
n
−1|ξ| ≤ 〈G(m)ξ, ξ〉 1

2 ≤ K1− 1
n |ξ|(6.11)

holds for almost every m ∈ M and for all ξ ∈ Tm(M).

Quasiregular mappings are weak solutions of the differential system

Dtf(m)Df(m) = Jf (m)2/nG(m) ,(6.12)

commonly called the n-dimensional Beltrami equation.

7 A-harmonic differential forms and quasi-

regular mappings

This chapter connects quasilinear elliptic equations with quasiregular map-
pings. Similar results in Euclidean spaces are shown in [Iw1], [IM] and [FW].

Let M and N be orientable Riemannian manifolds of dimension n and
f : M → N a mapping of Sobolev class W 1,s

loc (M), 1 ≤ s ≤ n. We fix an
ordered multi-index I = (i1, . . . , ik) ∈ I(k, n) and its complementary multi-
index J = (j1, . . . , jn−k) ∈ I(n− k, n) (see also (1.3)), ordered in such a way
that

dxI = ? dxJ .(7.1)
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