
1 Differential forms on IRn

By IRn we denote the n-dimensional Euclidean space consisting of elements
of the form x = (x1, . . . , xn), xi ∈ IR. The Euclidean space is equipped with
the standard inner product 〈x, y〉 =

∑n
i=1 x

iyi and the norm |x| = 〈x, x〉1/2 =

(
∑n

i=1 x
2
i )

1/2 .
By Λk(IR

n) we denote the linear space of all k-vectors, by Λk(IRn) the
space of all k-covectors or differential forms of degree k. The mutually dual
spaces Λk(IR

n) and Λk(IRn) are associated with the Euclidean space IRn. We
have Λ0(IRn) = IR = Λ0(IR

n) and Λk(IR
n) = {0} = Λk(IRn) in the case k > n

or k < 0. Further we have for every k with 1 ≤ k ≤ n

dim Λk = dim Λn−k =

(
n

k

)
.

The direct sums

Λ∗(IRn) =
⊕

0≤k≤n

Λk(IR
n) , Λ∗(IRn) =

⊕
0≤k≤n

Λk(IRn)(1.1)

generate the contravariant and covariant Grassmann algebras on IRn with
the exterior multiplication operator ∧.

Let ω ∈ Λk(IRn) be a covector. We denote by I(k, n) the set of ordered
multi-indices I = (i1, . . . , ik) of integers 1 ≤ i1 < . . . < ik ≤ n. The differen-
tial form ω can be written in a unique way as the linear combination

ω =
∑

I∈I(k,n)

ωI dx
I .(1.2)

Here ωI are the coefficients of ω with respect to the standard basis

dxI = dxi1 ∧ . . . ∧ dxik , I = (i1, . . . , ik) ∈ I(k, n)

of Λk(IRn). Let I = (i1, . . . , ik) be a multi-index from I(k, n). The comple-
ment J of the multi-index I is the multi-index J = (j1, . . . , jn−k) in I(n−k, n)
where the components jp are in {1, . . . , n} \ {i1, . . . , ik}. We have

dxI ∧ dxJ = σ(I) dx1 ∧ . . . ∧ dxn(1.3)

where σ(I) is the signature of the permutation (i1, . . . , ik, j1, . . . , jn−k) in the
set {1, . . . , n}. Note that σ(J) = (−1)k(n−k)σ(I).
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With the notions mentioned above we define

?dxI = σ(I)dxJ .(1.4)

For ω ∈ Λk(IRn) with ω =
∑

I∈I(k,n) ωI dx
I we set

?ω =
∑

I∈I(k,n)

ωI ? dx
I .(1.5)

The differential form ? ω is of degree n− k, i.e. it belongs to Λn−k(IRn) and
is called the orthogonal complement of the differential form ω. The linear
operator ? : Λk(IRn) → Λn−k(IRn) is called the Hodge star operator. For
α, β ∈ Λk(IRn) and a, b ∈ IR we have

?(aα + bβ) = a ? α + b ? β.(1.6)

It follows that

?11 = dx1 ∧ . . . ∧ dxn

and the Hodge star operator twice applied to a differential form ω of degree
k yields

?(? ω) = (−1)k(n−k)ω .(1.7)

For ω ∈ Λk(IRn) we also introduce the operator ?−1 := (−1)k(n−k)?. The
operator ?−1 is an inverse to ? in the sense that

?−1(? ω) = ?(?−1ω) = ω .(1.8)

For α, β ∈ Λk(IRn) the inner or scalar product is defined as

〈α, β〉 := ?−1(α ∧ ?β) = ? (α ∧ ?β) .(1.9)

The scalar product of differential forms has the usual properties of the scalar
product. Thus, the norm of a differential form ω ∈ Λ∗(IRn) is given by the
formula

|ω|2 = 〈ω, ω〉 = ? (ω ∧ ? ω) .
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A differential form ω of degree k is called simple if there are differential
forms ω1, . . . , ωk of degree 1 such that

ω = ω1 ∧ . . . ∧ ωk .

For α, β ∈ Λ∗(IRn) we have the following estimation of the Euclidean
norm

|α ∧ β| ≤ |α| |β| ,

if at least one of the differential forms α, β is simple. If α and β are simple
and non-zero, then equality holds if and only if the subspaces associated with
α and β are orthogonal. More generally, for α, β ∈ Λ∗(IRn) with deg α = p
and deg β = q we get

|α ∧ β| ≤ (Cp,q)
1/2|α| |β| .(1.10)

The constant Cp,q can be choosen to be
(

p+q
p

)
. For details see [Fe] §1.7.

Let A : IRn → IRn be a linear transformation with the norm |A| =
sup|x|=1 |Ax| and let ω = ω1 ∧ . . .∧ ωk be a simple differential form of degree
k, i.e. ω1, . . . , ωk ∈ Λ1(IRn). For every k = 1, . . . , n the linear operator
A# : Λk(IRn) → Λk(IRn) is defined by

A#ω := Aω1 ∧ . . . ∧Aωk .(1.11)

The operator A# is called the kth exterior power of A. It follows that the
matrix A# consists of the k × k matrices of minors. For A,B ∈ GL(n), the
linear space of n × n matrices with real entries and non-zero determinant,
the properties

(AB)# = A#B# , (A−1)# = (A#)−1 , (At)# = (A#)t(1.12)

hold, see [Fl] §2. By S(n) we denote the subspace of GL(n) consisting of the
positive definite symmetric matrices whose determinant is equal to one. We
need the following lemmas in a later proof, see also [IM] §2.

1.13. Lemma. For every matrix A ∈ GL(n) we have

At
# ? A# = (detA) ? : Λk(IRn) → Λn−k(IRn) .(1.14)
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Proof. For simple differential forms α ∈ Λn−k(IRn) and β ∈ Λk(IRn)
and with (1.9) we compute

〈α,At
# ? A#β〉 ? 11 = 〈A#α, ?A#β〉 ? 11

= A#α ∧ ? ? A#β

= A#(α ∧ ? ? β)

= A#〈α, ? β〉 ? 11

= (detA) 〈α, ?β〉 ? 11 .

Hence (At
# ? A#) β = (detA) ? β and the lemma is proved. 2

1.15. Lemma. Let G ∈ S(n) be a matrix with the representation
G = | detA|−2/nAAt for a matrix A ∈ GL(n). Then on Λk(IRn) we have

G# ? A# = | detA|
2(k−n)

n (detA)A# ? .(1.16)

Proof. Let ω = ω1 ∧ . . . ∧ ωk be a simple differential form of degree k,
then A#ω ∈ Λk(IRn) and ?A#ω ∈ Λn−k(IRn). For λ ∈ IR we have

(λG)#ω = λGω1 ∧ . . . ∧ λGωk = λkG#ω .

This together with (1.12) and (1.14) yields

| detA|
−2(k−n)

n G# ? A#ω = (| detA| 2
nG)# ? A#ω

= (AAt)# ? A#ω

= A#A
t
# ? A#ω

= (detA)A# ? ω .

2

2 Riemannian manifolds

A manifold M of dimension n is a connected paracompact Hausdorff space
for which every point has a neighborhood U that is homeomorphic to an
open subset Ω of IRn. Such a homeomorphism

x : U → Ω
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is called a local chart. A collection (Ui, xi)i∈I of local charts such that⋃
i∈I Ui = M is called an atlas. The (local) coordinates of m ∈ U , re-

lated to x, are the coordinates of the point x(m) of IRn. An atlas of class Ck,
k ≥ 2, on M is an atlas for which all changes of coordinates are Ck. That
is to say, if (U1, x1) and (U2, x2) are two local charts with U1 ∩ U2 6= ∅, then
the mapping x1 ◦ x−1

2 of x2(U1 ∩U2) onto x1(U1 ∩U2) is a diffeomorphism of
class Ck. Two atlases of class Ck are said to be equivalent if their union is
an atlas of class Ck.

A differentiable manifold M of class Ck, k ≥ 2, is a manifold together
with an equivalence class of Ck atlases.

A mapping f : M → N between differentiable manifolds M and N of the
same dimension with charts (Ui, xi)i∈I and (Uj , xj)j∈J is called differentiable
if all mappings xj ◦ f ◦ x−1

i are differentiable.
An atlas for a differentiable manifold is called oriented if all changes of

coordinates have positive functional determinant. A differentiable manifold
is called orientable if it possesses an oriented atlas.

The tangent space Tm(M) at m ∈ M is the set of tangent vectors at m.
It has a natural vector space structure. We denote by T (M) the disjoint
union of the tangent spaces Tm(M), m ∈ M. Let π : T (M) → M with
π(w) = m for w ∈ Tm(M) be the projection onto the “base point”. The
triple (T (M), π,M) is called tangent bundle of M, and T (M) is called total
space of the tangent bundle. Often the tangent bundle is simply denoted by
its total space. The total space T (M) is also a differentiable manifold.

2.1. Definition. A Riemannian metric on a differentiable manifold
M is given by a scalar product on each tangent space Tm(M) which depends
smoothly on the base point m. A Riemannian manifold is a differentiable
manifold equipped with a Riemannian metric.

Let x = (x1, . . . , xn) be local coordinates. In these coordinates, a metric
is represented by a positive definite symmetric matrix (gij(x))i,j=1,...,n where
the coefficients depend smoothly on x. The scalar product of two tangent
vectors v, w ∈ Tm(M) with coordinate representations (v1 ∂

∂x1 , . . . , v
n ∂

∂xn )
and (w1 ∂

∂x1 , . . . , w
n ∂

∂xn ) is

〈v, w〉 :=
n∑

i=1

n∑
j=1

gij(x(m)) vi ∂

∂xi
wj ∂

∂xj
.(2.2)
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In particular, one has 〈 ∂
∂xi ,

∂
∂xj 〉 = gij . The length of v is given by

|v| := 〈v, v〉 1
2 .

A well-known theorem says that each differentiable manifold M may be
equipped with a Riemannian metric. For details see [Jo] or [AMR] §5.5.

Let now [a, b] be a closed interval in IR and γ : [a, b] → M a curve of
class Ck, k ≥ 2. The length of γ is defined as

L(γ) :=

b∫
a

|dγ
dt

(t)| dt

and the energy of γ as

E(γ) :=
1

2

b∫
a

|dγ
dt

(t)|2dt .

On a Riemannian manifold M, the geodesic distance between two points
m, p can be defined by

d(m, p) := inf {L(γ) : γ : [a, b] → M a curve piecewise of class Ck,(2.3)

with γ(a) = m, γ(b) = p}, k ≥ 2 .

Any two points m, p can be connected by a curve like this, and d(m, p)
therefore is always defined. Clearly d is a metric.

Working with the coordinates (x1(γ(t)), . . . , xn(γ(t)) ) of a curve γ we use
the abreviation ẋi(t) := d

dt
(xi(γ(t)) ). The Euler-Lagrange equations for the

energy functional E are

ẍi(t) +
n∑

j=1

n∑
i=1

Γi
jk(x(t)) ẋ

j(t) ẋk(t) = 0 , i = 1, . . . , n ,(2.4)

with

Γi
jk =

n∑
l=1

1

2
gil (gjl,k + gkl,j − gjk,l) ,

where

(gij)i,j=1,...,n = (gij)
−1 and gjl,k =

∂

∂xk
gjl .
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The expressions Γi
jk are called Christoffel symbols.

2.5. Definition. A curve γ : [a, b] → M of class C2 which satisfies
(2.4) is called a geodesic curve.

Thus, geodesic curves are critical points of the energy functional. A
minimizing curve γ from m to p is a geodesic curve.

Let M be a Riemannian manifold with m ∈ M and v ∈ Tm(M). It can
be shown that there exists an ε > 0 and precisely one geodesic curve

c : [0, ε] → M

with c (0) = m and ċ (0) = v. In addition, c depends smoothly on m and v.
We denote this geodesic curve by cv.

2.6. Definition. Let M be a Riemannian manifold with m ∈ M and

Vm := {v ∈ Tm(M) : cv is defined on [0, 1]}

then the function

expm : Vm → M

with v 7→ cv(1) is called the exponential mapping of M at m.

The domain of definition of the exponential mapping always at least con-
tains a small neighborhood of 0 ∈ Tm(M). The exponential mapping expm

maps a neighborhood of 0 ∈ Tm(M) diffeomorphically onto a neighborhood
of m ∈ M.

Let now e1, . . . , en be a basis of Tm(M) which is orthonormal with ref-
erence to the scalar product on Tm(M) defined by the Riemannian metric.
Writing for each vector v ∈ Tm(M) its components with reference to this
basis, we obtain a map Φ : Tm(M) → IRn with v =

∑n
i=1 v

iei 7→ (v1, . . . , vn).
Thus we can identify Tm(M) with IRn. An isomorphism Φ : Tm(M) → IRn

is called a (n-dimensional) frame at m ∈ M, often also v is called a frame.
The local coordinates defined by the chart (U, exp−1

m ) are called Rie-
mannian normal coordinates with center m. For Riemannian polar coor-
dinates on M, obtained by transforming the Euclidean coordinates of IRn,
on which the normal coordinates with center m are based, we have the same
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situation as for Euclidean polar coordinates. It follows that for each m ∈ M
there exists a δ > 0 such that Riemannian polar coordinates may be intro-
duced on B(m, δ) := {p ∈ M : d(m, p) ≤ δ} with d(m, p) given in (2.3).

We denote by Bδ(0) := {y ∈ IRn : |y| ≤ δ} ⊂ Tm(M).

2.7. Definition. Let M be a Riemannian manifold and m ∈ M.
The radius of injectivity of m is defined by

rinj(m) := sup{δ > 0 : expm is defined and injective on Bδ(0)} .

The radius of injectivity of M is

rinj(M) := inf
m∈M

rinj(m) .

We call a Riemannian manifold geodesically complete if for all m ∈ M,
the exponential mapping expm is defined on all of Tm(M). The Theorem of
Hopf-Rinow (see for example [Jo] §1.4 or [Au] §4) shows that if a Riemannian
manifold M is geodesically complete, then every two points m, p ∈ M can
be joined by a geodesic curve of length d(m, p), i.e. by a geodesic curve of
shortest length.

For a geodesically complete Riemannian manifold M, m ∈ M, it can be
shown, that the injectivity radius rinj(m) at m is defined as the largest r > 0
for which every geodesic curve γ of length less than r and having m as an
endpoint is minimizing. One has rinj(m) > 0 for every m. The radius of
injectivity of M may be zero.

For example, the injectivity radius of the sphere Sn is π, since the expo-
nential mapping of every point m maps the open ball of radius π in Tm(M)
injectively onto the complement of the antipodal point of m.

Before we go on with Riemannian manifolds, we are now able to clarify
the connection between polyvectors and differential forms. The linear iso-
morphism Hom (Λk(IR

n), IR) ' Λk(IRn), 1 < k < n, that defines the duality
of the spaces Λk(IR

n) and Λk(IRn), associates a k-vector with a differential
form.

For example a vector a = (a1, . . . , an) ∈ IRn defines a differential form of
degree 1

ω = a1dx
1 + a2dx

2 + . . .+ andx
n.(2.8)
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We denote it by Ωa. Let u = (u1, . . . , uk), ui ∈ Λ1(IR
n), be a non-degenerated

frame. The set of all k-dimensional frames is identified with the set of simple
k-vectors. One can prove that the differential form

Ωu = Ωu1 ∧ . . . ∧ Ωuk

does not depend on the choice of the particular frame from the class of frames
equivalent with u. This fact produces a one-to-one correspondence u 7→ Ωu

of the set of simple polyvectors onto the set of simple differential forms.
Let E be the lower half-space of IRn, x1 < 0, x1 the first coordinate of

IRn. Consider E ⊂ IRn with the induced topology.

2.9. Definition. We say that a manifold M has a boundary if each
point of M has a neighborhood homeomorphic to an open set of E.

A vector bundle consists of a total space E, a base M, and a projection π :
E → M, where E and M are differentiable manifolds and π is differentiable.
A fiber is an inverse of the projection π and denoted by Em := π−1(m) for
m ∈ M.

2.10. Definition. Let (E, π,M) be a vector bundle. A section of
E is a differentiable mapping s : M → E with π ◦ s = idM. The space of
sections of E is denoted by Γ(E).

An example for a vector bundle is the tangent bundle T (M) of a differ-
entiable manifold M. A section of the tangent bundle T (M) of M is called
a vector field on M.

Let M be a differentiable manifold and m ∈ M. The vector space dual
to the tangent space Tm(M) is called cotangent space of M at the point
m and denoted by T ∗

m(M). The vector bundle over M whose fibers are
the cotangent spaces of M is called cotangent bundle of M and denoted by
T ∗(M). Elements of T ∗(M) are called cotangent vectors. It follows that a
section of T ∗(M) is a differential form of degree 1.

The space Λ∗(T ∗
m(M)) is the Grassmann algebra generated over the

cotangent space of M at the point m. The vector bundle over M with
fiber Λk(T ∗

m(M)) over m is then denoted by Λk(T (M)) and called the k-
vector tangent bundle. If M is a Riemannian manifold then Λk(T (M)) is a
Riemannian vector bundle.
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