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Kurzfassung

Topologische Phasen der kondensierten Materie sind Gegenstand intensiver theoretischer
und experimenteller Forschung. Die wohl bekanntesten Beispiele für solche Phasen sind:
der Quanten-Hall Effekt, Topologische Isolatoren und Topologische Supraleiter. Letztere
weisen sich durch spezielle Anregungen, die Majoranazustände, aus, welche man sich als
die Hälften eines Elektrons vorstellen kann und die der Oberfläche eines solchen topologis-
chen Supraleiters getrennt voneinander existieren können. Die Majoranazustände haben
aufgrund ihren besonderen Eigenschaften ein großes wissenschaftliches Interesse geweckt.
Sie besitzen eine nicht-Abelsche Flechtstatistik, welche sie zu nützlichen Bauteilen für
einen möglichen fehlertoleranten Quantencomputer macht. In diesem Zusammenhang
sind vor allem topologisch supraleitende Drähte wichtig, da in diesen die Positionen
der Majoranazustände als die Drahtenden, den Oberflächen eines eindimensionalen Sys-
tems,eindeutig bestimmt sind.

Topologisch supraleitende Drähten treten zwar nicht in der Natur auf können aber
von verfügbaren Materialien, Halbleiter- oder ferromagnetische Nanodrähten und kon-
ventionellen Supraleitern, konstruiert werden. Die Nanodrähte können aufgrund des
Proximity-Effekts supraleitende Eigenschaften übernehmen und eine topologisch nicht-
trivial Phase aufweisen. Inzwischen wurden mehrere Experimente an solchen Hybrid-
strukturen durchgeführt und von Messergebnissen berichtet, welche mit den theoretischen
Vorhersagen konsistent sind.

Die meisten theoretischen Arbeiten an solchen Drähten sind auf ein eindimensionales
effektives Model beschränkt, den p-Wellen Supraleiter. Ein Nanodraht ist aber normaler-
weise ein quasi-eindimensionales System, mit einem kontinuierlichen, longitudinalen und
einem quantisierten, transversalen Freiheitsgrad.

In dieser Doktorarbeit untersuchten wir die Verallgemeinerung eines topologisch supralei-
tenden Drahtes zu einem Mehrkanalsystem, indem wir einen zweidimensionalen p + ip-
Supraleiter auf die Geometrie eines schmalen Streifens beschränkten. Solche Systeme
können eine topologisch nichttriviale Phase aufweisen, welche durch die Existenz einer
Nullenergieanregung, ein Majoranazustand, gekennzeichnet ist. Wir haben den Effekt
verschiedener geometrischer Drahtendungen auf das Niedrigenergiespektrum eines solchen
Drahtes untersucht und beobachtet, dass sich innerhalb der Energielücke des Supraleit-
ers Zustände ansammeln, welche sich um die Nullenergie scharen. In der Zustandsdichte
könnten diese den Majoranazustand verdecken und daher die Identifizierung der topolo-
gischen Phase wesentlich erschweren. Des weiteren haben wir die topologische Phase eines
Mehrkanalsystems unter dem Einfluss eines Unordnungspotentials erforscht und eine Serie
topologischer Phasenübergänge bei ansteigender Unordnungsstärke gefunden. Im Niedri-
genergiespektrum des Drahtes werden die Phasenübergänge von der charakteristischen
Dyson-Singularität begleitet.
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Abstract

Topological phases of matter have been the subject of intense experimental and theoretical
research during the last years. Prominent examples are the Quantum Hall Effect, Topo-
logical Insulators or Topological Superconductors. The latter host special excitations, the
Majorana states, at their boundaries, which can be thought of as the halves of an electron
that can exist separately in this special case. These Majorana states have attracted great
interest as they exhibit so-called non-Abelian braiding statistics, which could make them
useful tools in the search for fault-tolerant quantum computation. In this context topo-
logically superconducting wires are particularly useful as the Majorana states are located
unambiguously at the wire’s end, where they form localized end states.

Topologically superconducting wires are not known to exist in nature but they can
be engineered from commonly available ingredients: semiconductor or ferromagnet nano-
wires and conventional superconductors. The nano-wires can inherit superconductivity by
the proximity effect and can then exhibit a topologically nontrivial phase. By now, several
experiments have been performed on such hybrid structures, reporting measurements that
are consistent with the existence of a topologically superconducting phase in the nanowire.

Most theoretical investigations on these systems, so far, have been restricted to a one-
dimensional effective model: The one-dimensional p-wave superconductor, which is the
prototype of a topologically superconducting wire. A nanowire, however, is in general in a
quasi-one dimensional regime, with a continuous longitudinal but a quantized transverse
degree of freedom.

In this Thesis we study the multichannel generalization of a topologically supercon-
ducting wire by means of a two-dimensional p+ ip-superconductor that is restricted to a
narrow-strip geometry. Such systems can be in a topological phase, characterized by the
existence of a zero-energy excitation at the wires end—the Majorana bound state. We
study the effect of various geometrical terminations on the low-energy spectrum of such a
wire and find that subgap states tend to accumulate around zero energy. In a density-of-
states measurement, these states potentially obscure the Majorana state thereby hindering
the detection of the topological phase. We further investigate the effect of disorder on a
multichannel wire and find that it induces a series of phase transitions with a reentrant
topological phase. Due to disorder-localized states accumulating in the superconducting
gap, the low-energy spectrum for a disordered wire contains a signature of the topological
phase transitions as well: a singularity in the density of states, which is the well-known
Dyson-singularity.
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1 Introduction

The discovery of topological phases of matter marks a milestone of modern physics, that
changed our understanding of phases in condensed matter and transitions between them.
The traditional classification of phases of matter, going back to Landau, distinguishes
phases by symmetries that are spontaneously broken at a transition point; an approach
that has been successfully employed to explain many phenomena. Examples are the liquid-
to-solid transition, where atoms break the translational symmetry upon ordering into a
crystal, and ferromagnetism, associated with a broken rotational invariance of the mag-
netic field. More exotic phenomena include superfluids, in which a global U(1)-symmetry
associated with the conservation of the number of atoms is broken, or superconductors,
which break a local gauge symmetry coupling to photons and leading to the expulsion of
magnetic fields from the material, known as the Meissner effect [Altl 09].

With the discovery of the Quantum Hall Effect in 1980 by Klaus von Klitzing et al.
[Klit 80], who was subsequently awarded with a Nobel prize, it was realized that this
concept of symmetry breaking is not sufficient to explain all states of matter that are
observed in experiments. In fact, two states sharing the same symmetries can still be
profoundly different in being separated by a quantum phase transition and distinguished
by a topological quantum number. This quantity, though being a property of the system’s
bulk, has important consequences on the physics at the boundaries as it is linked to the
existence of robust edge states. A Topological Insulator, for example, is a material that
is insulating in its bulk, with an excitation gap just like an ordinary band insulator,
but has metallic edge states at its boundaries. These boundary modes are insensitive
to imperfections, like impurities, or smooth variations of system parameters [Hasa 10,
Qi 11]. Similarly, there exist Topological Superconductors, whose edge state are even
more peculiar as they host special excitations: the Majorana states. Intuitively, these
can be viewed as the halves of an electron, which, at the surface of a superconductor, are
physically separable but together still form one fermionic state. These Majorana states
exhibit remarkable properties which make them of great interest in the search for fault-
tolerant, the topological, quantum computation. Topological superconductivity is not
known to appear naturally, however, it is possible to engineer systems resembling it and
an immense experimental effort is happening currently to realize those [Mour 12, Das 12,
Nadj 14, Wied 15].

In the following we will give a brief overview over the field of topological phases of
matter and will then focus on the topic of this thesis, topologically superconducting wires.
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1 Introduction

1.1 Topological Phases of Matter

1.1.1 From The Quantum Hall Effect to Topological Insulators

The Quantum Hall effect is so important to modern physics not only because it is an exam-
ple for a quantum effect on macroscopic scales but also– and arguably more importantly–
is it the first example of a so-called topological phase of matter.

It had been known before that a quantum analog of the standard Hall effect exists
in the sense that the Hall conductance develops steps at high magnetic fields [Ando 74,
Engl 78, Kawa 78]. The revolutionary finding by von Klitzing et al. [Klit 80] was that
these plateaus are actually quantized in integers of the so-called conductance quantum
G0 = e2

h to an unheard-of accuracy. As opposed to the naive expectation, imperfections
of the system such as disorder cannot affect this measured value and, as long as the effect
is present, even the underlying material has no influence on it.

Various successful approaches exist to describe the phenomenology of the Quantum
Hall Effect [Laug 81, Pran 12], but ultimately this perfect quantization1 is a consequence
of the observed phase’s topological nature: An (integer) topological quantum number n,
the TKNN invariant named after its inventors Thouless, Kohmoto, Nightingale, and Nijs,
can be defined for a periodic system, which determines the current in the presence of an
edge [Thou 82]. Even though the current is mostly flowing at the system boundaries, its
existence is a property of the bulk only, explaining its insensitivity to local perturbations.

An important feature in the discussion of the Quantum Hall conductance and topological
protection of phases is the existence of a mobility gap. In fact, it is a necessary condition
for the invariance of the conductance and the closing of the bulk gap is a hallmark for a
phase transition between phases with different topological quantum numbers. As we will
see later, this statement is generally true for topological phases of matter.

The transport in a Quantum Hall state is due to n-channel helical edge states at the
boundaries of the system, which is made intuitive in a semi-classical picture: Electrons
are forced on closed circular paths by a strong magnetic field in the bulk of the system.
At the edges these circles are interrupted and the electrons move unidirectional on half-
circles along the boundary line, see Fig. 1.1. The helicity of the electrons’ motion forbids
backscattering thereby causing the observed insensitivity to disorder; an impurity sitting
at the edge just bends the boundary. This edge current is of great interest in two very
different ways: On the one hand as the signature of a novel phase, on the other hand as a
platform to study single (or few) channel transport and nano-scale electronics [Pran 12].

With the fundamentally new physics and the potential for applications found in the
Quantum Hall Effect, it suggests itself to search for other topologically protected phases.
A particularly interesting question is whether a similar phase could be realized without
the presence of a strong magnetic field or whether one could even find a material that by
itself is topologically non-trivial.

The first model to realize a Quantum Hall effect without a magnetic field was the Hal-
dane model [Hald 88], which combines fermions on a honeycomb lattice with a complex
arrangement of magnetic fluxes in each unit cell of the honeycomb model to obtain a zero

1In fact, this quantization is so accurate and universal, that it is used for calibration and even the
definition of units.
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1.1 Topological Phases of Matter

~B

Figure 1.1: Schematic view of the semiclassical picture of edge states in the Quantum
Hall Effect. The electrons paths, indicated by black arrows, are bended into
circles in the bulk by a perpendicular magnetic field ~B while at the edges chiral
propagating states are found.

net-magnetic field though time-reversal symmetry is broken. The actual breakthrough in
the field, however, happened only in 2006, when Kane and Mele pointed out that Rashba
spin-orbit coupling in graphene can give rise to what they called the Quantum Spin Hall
Effect then and what is now known as the first Topological Insulator [Kane 05a]. Loosely
speaking, this time-reversal invariant model combines two copies of the standard Quan-
tum Hall Effect with opposite helicities for the two Kramers partners. From this picture
it becomes intuitively evident that the TKNN invariant vanishes and a new topological
invariant needs to be employed. In the present case the topological phase is character-
ized by a Z2-number [Kane 05b], distinguishing a topologically trivial and a nontrivial
phase; the latter with dissipationless edge states, insensitive to weak disorder and in-
teractions, protected by time-reversal symmetry. In the 3-dimensional analogs of the
time-reversal-invariant Topological Insulators four independent Z2-numbers classify the
topological phase [Roy 09, Moor 07, Fu 07b]. However only one of them indicates a phase
with a metallic surface state that is protected against perturbations, the Strong Topo-
logical Insulator. The other quantum numbers are so-called weak topological invariants
whose associated surface states are not stable against all perturbations breaking transla-
tional invariance.
The existence of topological insulator phases has been predicted for certain materials
[Bern 06, Fu 07a] and signatures of them have been observed experimentally [Koni 07,
Hsie 08, Xia 09, Zhan 09]. These achievements have stimulated great interest and by
now a whole field of research is concerned with the study of topological phases of matter
[Hasa 10, Hasa 11, Qi 11].
In the classification of topological phases of matter a crucial role in determining what
kind of phases can occur is played by the symmetries respected by a system [Schn 08,
Kita 09, Schn 09, Ryu 10]. The two basic symmetries are time-reversal and particle-hole
symmetry, both of which are represented by anti-unitary operators which can square to
either +1 or −1. A further symmetry, the chiral symmetry, arises from the combination of
these two operators, yielding 10 different possible combinations to categorize a (gapped)
noninteracting Hamiltonian, the so-called symmetry classes. The topological quantum
number that characterizes a phase in a particular class depends on the dimension of the
system and indicates whether a topologically non-trivial phase can exist at all and, if so,

3



1 Introduction

Figure 1.2: Figure from Ref. [Schn 08]: The table for topological classifications of
quadratic, non-interacting Hamiltonians H with different symmetries. TRS
refers to time-reversal symmetry and PHS refers to a particle-hole symmetry.
SLS is the chiral (or sublattice) symmetry. The symmetry class of the Quan-
tum Spin Hall effect (2D), AII, allows only for a Z2-type characterization of
the topological phase. This means that next to the trivial phase there is only
one non-trivial one. The same is true for 3D topological insulators. The con-
ventional Quantum Hall effect, however, is in class A and has a Z classification:
The integer plateaus. One concludes immediately that no Quantum-Hall effect
can occur in three dimensions.

how many distinct phases could appear, see Fig. 1.2.
This classification scheme suggests that that also superconductors, which have a gapped

excitation spectrum, can exhibit topologically non-trivial phases. It turns out that not
only can these phases be found but also they host very special quasi-particle excitations,
the Majorana states.

1.1.2 Topological Superconductors and Their Excitations

The topological classification discussed above applies to quadratic Hamiltonians, thus,
in the discussion of topological superconductors a mean-field treatment is appropriate.
Physically this is justified as the models we will be concerned with generally deal with
proximity-induced superconductivity. The corresponding Hamiltonian can then be ex-
pressed in the framework of the Bogoliubov-de Gennes (BdG) equations

Ĥ =
1

2

∫
dx
(
ψ̂†(r) , ψ̂(r)

)(Ĥ0 ∆̂

∆̂† Ĥ†0

)(
ψ̂(r)

ψ̂†(r)

)
, (1.1)

where ψ(x) are fermionic annihilation (creation) operators in real space. Ĥ0 is the normal-
state Hamiltonian, which can also contain a disorder potential, and ∆̂ is the pairing
potential, which will be a function of the momentum operator p̂. In principle, the electrons’
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1.1 Topological Phases of Matter

spin can be included formally in this Hamiltonian by giving doubling the degrees of freedom
of all entries in the above Hamiltonian: ψ(†)(x) would become a spinor, and Ĥ0 and ∆̂
become 2×2-matrix operators. In the following we will restrict to spinless superconductors
as these provide the simplest models of a topological superconductor. For equal-spin
pairing to occur, the Pauli principle requires the pairing potential to be an odd function
of momentum, which in its simplest– linear– form is the so-called p-wave superconductor.

The quasi-particle solutions to the above particle-hole symmetric Hamiltonian are su-
perposition of electrons and holes

γε =

∫
dx
(
uε(x)ψ(x) + vε(x)ψ†(x)

)
, (1.2)

where (uε(x), vε(x))T is the eigenvector of the Bogoliubov-de Gennes Hamiltonian in
Eq. 1.1 for the eigenenergy ε. The Hamiltonian is particle-hole symmetric in the sense
that for every solution with positive energy ε, there exists a solution at −ε with a corre-
sponding eigenvector (v∗ε(x), u∗ε(x))T . Thus, a redundancy is built into the framework as
solutions at positive and negative energies correspond to a single fermionic state

γε = γ†−ε . (1.3)

This equation implies that if an excitation at zero energy occurred, it would fulfill the
so-called Majorana condition Γ† = Γ and could be thought of as half a fermion. As the
BdG equation has an even dimension by construction such Majorana excitations have to
appear in pairs that could in principle gap out to finite energies but, as we will see below,
in certain cases this can be avoided.

As already mentioned before, the simplest version of a topologically nontrivial super-
conductor is that of a p-wave superconductor, particularly one with pairing of the p+ ip
type:

Ĥ =
1

2

∑
k

(
ĉ†k ĉ−k

)( ξk ~∆′(kx + iky)
~∆′(kx − iky) ξ∗−k

)(
ĉk
ĉ†−k

)
(1.4)

where ξk = ~2k2/2m − µ and k = |k|. Such a system has been considered already
in the study of the superfluid phases of Helium [Volo 76, Volo 99b, Volo 99a] but its
importance in the context of their special zero-energy excitations has only been pointed
out in 2000 by Read and Green, see Ref. [Read 00]. In a 2-dimensional system the p-wave
superconductor hosts Majorana states as introduced above bound to the core of vortices
in the superconducting parameter and, for an odd number of vortices, at the edge of the
system. In a strictly 1-dimensional setting Majorana bound states appear as localized
end states, where they can be viewed intuitively as the spatially separated halves of an
electron [Kita 01]. The occupation of the latter does not enter the total energy of the
system; it is decoupled. Consequently, there exists a two-fold degenerate ground state
with the subspace spanned by two states distinguished by their occupancy of this fermion.
As the superconductor can absorb only pairs of electrons, the Cooper pairs, transitions
between these two ground states, which are accompanied by a unit change in the number
of fermions, are protected by fermion parity.
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1 Introduction

The existence of Majorana states can be seen as a signature of topological superconduc-
tivity but the great interest and extensive research [Alic 12, Been 13a] on those excitations
were sparked by a peculiar property: Their non-Abelian braiding statistics[Ivan 01]. In a
2-dimensional setup braiding paths are non-trivial in the sense that a particle can be taken
around another one on a closed, non-contractable circle. Such an operation corresponds
to a double exchange of two particles and will not change the two-particle wavefuncion
when dealing with fermions or bosons. Particles do not necessarily have to follow bosonic
or fermionic statistics but could, in principle, pick up any phase under exchange; then
they are called anyons [Wilc 82]. As a phase factor, being a complex number, is commu-
tative, the order in which several anyons are braided does not matter, they are ’Abelian’
anyons. If the particles are associated with degenerate states that span a subspace in the
Hilbert space, then a braiding process is associated with a unitary rotation in this degen-
erate subspace, which is generally non-commutative; such particles are called ’non-Abelian
anyons’.

With the help of braiding operations on several particles it is in principle possible to
define logical operations that can be used for topological quantum computation [Naya 08].
For these braiding protocols it is only important how often which particle has been taken
around another one but not what the exact path was. In other words, only the topology
of the braiding protocol matters, making them insensitive to local perturbations. Even
though it has been shown that Majorana bound states do not allow for the implementation
of all possible logical operations [Naya 08, Free 02], they are still useful tools in the search
for universal topological quantum computation.

Even though there is speculation on whether the fractional Quantum-Hall state at filling
5/2, SrRuO4-components or some oxide-interfaces might be p-wave superconductors, so
far, no topological superconductors are known to occur in nature. However, it is possible to
engineer those phases on the basis of systems which support proximity-induced supercon-
ductivity. The first proposal in this direction involved the surface of a strong topological
insulator in contact to a superconductor, turning into an effective two-dimensional spin-
less p+ ip-superconducting state [Fu 08]. Even though such a two-dimensional topological
superconductor is of great interest, for general purposes of detecting and manipulating Ma-
jorana bound states they are not ideal. The vortices needed for those bound states might
be poorly, or even not at all, accessible and their positions and number will generally not
be known precisely. In contrast, in a topologically superconducting wire the Majoranas
are unambiguously localized at the ends of the wire and easily accessible to, for instance,
transport experiments. In the following section, such wires and their realizations will be
discussed.

1.2 Topologically Superconducting Wires

It has been pointed out by Kitaev in 2001, see Ref. [Kita 01], that a 1-dimensional system
with p-wave superconducting pairing exhibits a parameter range with a topologically non-
trivial phase signalized by the existence of a zero-energy bound state at the wire’s ends—a
Majorana state. As mentioned above, these states can be viewed as the halves of an
electron that decouple from the system, which can be seen easily in a tight-binding version

6



1.2 Topologically Superconducting Wires

� + t
a1 a2L

Figure 1.3: Schematic view of the topologically non-trivial phase of the Kitaev chain. The
grey shaded regions mark the electronic sites (j = 1 · · ·L), each with two
Majorana operators. At the special point ∆ = t, µ = 0 discussed in the main
text, the onsite terms (equal j) vanish and the Majoranas are coupled only to
their nearest neighbours at the next site j, j+1 for j = 1, L−1, signified by thick
grey lines. The Majorana operators at the two ends of the chain decouple from
the rest of the system and form together a fermionic zero-energy excitation.

of a p-wave superconductor

H = −
N∑
j=1

µc†jcj + t
(
c†jcj+1 + c†j+1cj

)
−∆

(
cjcj+1 + c†j+1c

†
j

)
(1.5)

where µ is the chemical potential, t is the normal hopping parameter and ∆ ≥ 0 the
superconducting parameter, which is assumed to be real for simplicity. One can formally
split up the electron operators into their real and imaginary parts cj = a2j−1 + ia2j , which
are hermitian operators describing Majorana fermions, yielding

H = − i
2

N∑
j=1

µa2j−1a2j + (t+ ∆)a2ja2j+1 + (−t+ ∆)a2j−1a2j+2 . (1.6)

Consider the special point in the non-trivial phase ∆ = t and µ = 0, where the Majorana
fermions connect only to neighboring electronic sites but not within one site, see Fig.1.3
and the operators at the ends, a1 and a2L remain uncoupled. These are the Majorana
end states and the fermion f = a1 + ia2L that they recombine to, defines the ground state
degeneracy. The topological phase associated with this picture extends in parameter space
and has a boundary to a trivial phase at ±2t = µ. Away from the special point discussed
here, the Majorana states will not sit only on a single site but it will have a wavefunction
extending into the wire, however, exponentially decaying on a scale of the superconducting
coherence length ξ ∝ 1/∆. These zero-energy endstates are robust to moderate amounts
of disorder.

1.2.1 Realizations of P-wave Superconducting Wires

The continuum generalization of the tight-binding model introduced above is a spinless
p-wave superconducting wire, described in the Bogoliuobov-de Gennes picture by a one-
dimensional version of Eq. 1.4. Such wires do not exist by themselves in nature but one
can engineer one-dimensional or quasi-one dimensional systems that exhibit an effective
p-wave pairing. Proposals include proximity-coupled topological insulator edges [Fu 08],

7



1 Introduction

SC

TI

x

B(x)
Δ(x)

Figure 1.4: Left panel: Sketch of a topological insulator edge with helical edge state in
proximity to a superconductor with spin-singlet Cooper pairs; Right Panel:
Spatial profile of pairing potential and magnetic field as discussed in the main
text. Majorana bound states will form at the boundaries.

semiconductor wires with strong spin-orbit coupling on a conventional superconductor
[Oreg 10, Lutc 10], or ferromagnetic wires in proximity to superconductor with spin-orbit
coupling [Duck 11, Chun 11, Pott 12].

Topological Superconductivity at the Surface of a Topological Insulator: The first
attempts to construct a system that harbors Majorana states involved the surfaces of 3-
dimensional or 2-dimensional topological insulators [Fu 08]; here, we focus on the second
case. The edge of a quantum spin hall insulator as introduced in Ref. [Kane 05a] is a
gapless, chiral system, which can be proximity coupled to an s-wave superconductor easily
as counter-propagating modes carry opposite spins, see Fig. 1.4. For Majorana states to
form a time-reversal symmetry breaking term is needed, such as an additional magnetic
field . The Bogoliubov-de Gennes Hamiltonian of such a system reads

H0 = vF pτzσx −B(x)τzσz −∆(x)τyσy , (1.7)

where σi/τi are Pauli matrices in the spin/ electron-hole subspace, respectively, vF is the
Fermi velocity and x the longitudinal coordinate along the edge. For Majorana bound
states to occur, the magnetic field B and the pairing potential ∆ can in principle coexist
and vary spatially in an appropriate fashion, but here we concentrate on the case were
only on of the is non-zero at a time, see Fig. 1.4.

In a region where B = 0 but ∆ 6= 0, the system will show an effective p-wave pairing
potential, however, still obeying time-reversal symmetry. For Majorana states to occur, a
boundary has to be created. A region with ∆ = 0 and B 6= 0 will be gapped as well and
simulate a vacuum to the this effecitve one-dimensional p-wave superconductor. At the
boundary between these two, a zero-energy Majorana state appears.

Similarly, on the surface of a strong topological insulator a state resembling a 2-dimensional
p + ip superconductor is found, which has recently been investigated experimentally
[Wied 15].

Spin-Orbit Coupled Semiconductor Wire on a Superconductor The previous setup
in a way relied on a topologically superconducting state being formed when proximity-
coupling an already topological state. However, it is also possible to construct an effective
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1.2 Topologically Superconducting Wires

p-wave superconductor from less exotic ingredient: a semiconductor wire with fairly strong
spin-orbit coupling, subject to a magnetic field and a conventional s-wave superconductor
[Oreg 10, Lutc 10], see Fig. 1.5. This is the system, which is experimentally best explored
and most relevant to this Thesis. The general idea is that if one succeeds to induce super-
conductivity into a spin-polarized system, the pairing is necessarily of a spin-triplet and
therefore odd in momentum. The underlying superconductor has s-wave pairing, which
creates spin-singlet Cooper pairs, and without any further ingredients no superconductiv-
ity can be induced in the wire. This problem can be overcome with the help of spin-orbit
interactions as can be seen below.

We choose again a description in the Bogoliubov-de Gennes picture

H(p) = (p2/2m− µ)τzσ0 + αpτ0σx +Bτzσz + ∆τyσy , (1.8)

where, again, σi/τi are Pauli matrices in the spin/ electron-hole subspace, respectively.
Further, m is the effective mass and µ the chemical potential. The magnetic field B sep-
arates the two spin bands such that one obtains a spin-polarized system when the chem-
ical potential µ is placed in between them. The spin-orbit coupling α allows proximity-
induced superconductivity to be effective for the ’polarized’ system as it breaks the spin-
polarization axis in the wire and gives a finite singlet component to each pair of electronic
excitations with momentum p,−p. Then, p-wave and s-wave type pairing terms coexist,
with the first one dominating when |B| >

√
∆2 + µ2. In this case, the wire is in a topo-

logically non-trivial phase with Majorana bound states at its end. In the opposite case,
|B| <

√
∆2 + µ2, the magnetic field is not strong enough to polarize the wire, which is

thus in its trivial, and no zero-energy states appear.

The low-energy part of the excitation spectrum exhibits two gaps: one at the Fermi
points p =

√
2µm, controlled by ∆, and one at the center of the Brillouin zone p = 0,

controlled by B and ∆. The latter is crucial to the existence of Majorana states and
controls the entire physics in the limit of strong spin-orbit coupling mα2 � B. There,
the Hamiltonian can be restricted to small momenta and one recovers the topological
insulator edge in Eq. 1.7. The opposite limit mα2 � B is adiabatically connected, but in
this case the low energy subspace can be directly mapped onto a p-wave superconductor,
a one-dimensional version of Eq. 1.4. This can be seen by writing the Hamiltonian in a
basis of states that diagonalize the semiconductor wire in the absence of a superconductor
and evaluating the effect of the pairing term perturbatively in this basis [Alic 11]. The
difference of these two cases before the pairing term is taken into account are illustrated
in Fig. 1.5.

As semiconductor wires, such as InAs or GaAs are readily available to experiments and
well studied, a lot of experimental effort is going on to realized such systems [Mour 12,
Das 12, Deng 12, Will 12, Rokh 12, Chur 13, Deng 14]. The individual observables that
can be used to probe the topological phase will be discussed below. Here we only note
that the wires used here are generally believed to be in a multichannel regime, which can
also lead to a multichannel p-wave superconductor, which will be discussed in Chapter 2.

Ferromagnetic Wires Proximity Coupled to a Superconductor with Spin-Orbit Interac-
tions Above, we discussed the possibility of creating an effective p-wave superconducting
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SC

B α
mα2 ≪ B
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ε(p)
mα2 ≫ B

p

ε(p)

Figure 1.5: Left Panel: Illustration of semiconductor wire with spin-orbit coupling α and
perpendicular magnetic field B on a superconductor; Right Panel: Normal
state dispersion for the different limits of the topological non-trivial phase,
mα2 � B and mα2 � B, with spin direction for bands indicated.

state with the help of spin-orbit interactions in the wire where superconductivity should
be induced. However, the spin-orbit coupling does not necessarily have to be in the wire
but it could also be in the superconductor. This is the idea of another set of proposals
to obtain Majorana states involving a ferromagnet (or half-metal) wire in proximity to a
superconductor with strong spin-orbit coupling. In the latter, spin-polarization axis for
the Cooper pairs is broken, which will allow a proximity effect to spin-polarized electrons
in the wire to pair. The induced superconducting gap in the wire is then proportional to
the spin-orbit coupling strength [Duck 11, Chun 11, Pott 12].

In principle, this scenario does not require an actual wire but it is enough to place a chain
of magnetic atoms, forming a ferromagnet, on top of a superconductor. This approach
has been realized recently in an experiment with Fe-atoms deposited on the surface of
Pb, demonstrating the existence of zero-energy states strongly localized at the ends of the
chain [Nadj 14].

1.2.2 Signatures of the Topological Phase in Transport Experiments on Wires

In the course of the last years many ways have been theoretically proposed to measure
Majorana states and thereby prove the existence of the topologically superconducting
phase. Some of those have been realized experimentally and the aim of this subsection
is to give a brief overview over those efforts, focusing on the transport properties of the
wires.

One of the simplest measurements that can be made to probe the topological super-
conductor is a measurement of the local density of states at one of the wire’s ends. For
this, a junction between a normal metal lead and the proximity coupled semiconductor
wire is created with a tunneling barrier in the normal region. For weak tunneling, the
conductance at a voltage bias V [Blon 82]

GNS(eV ) =
2e2

h
tr
(

1− ree(eV )r†ee(eV ) + reh(eV )r†eh(eV )
)

(1.9)
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1.2 Topologically Superconducting Wires

Figure 1.6: Left Panel: Picture of the experimental setup for a semiconductor wire (InSb)
deposited on top of a superconducting electrode (NbTiN); Right Panel: Differ-
ential conductance dI/dV as function of bias voltage. Different curves corre-
spond to different magnetic fields from B = 0T to B = 490mT and are offset
for clarity. Figures taken from Ref. [Mour 12]

with the normal and Andreev reflection matrices for an electron impinging from the normal
lead ree and reh, reflects the tunneling density of states at the wire’s end at ε = eV .
This can be understood in a picture of resonant tunneling: If the barrier is strong, an
electron will be reflected there with a high probability. Andreev reflection can only occur
if an electron passes to the superconductor, a process that is strongly suppressed unless
promoted by a state that is formed between the superconductor and the barrier. In a p-
wave superconductor, the Majorana state at zero energy will allow electrons to tunnel to
the interface resonantly where they Andreev reflect. The corresponding conductance will
exhibit a peak around zero energy, which should be quantized to 2e2/h [Law 09, Wimm 11].

Several experiments aimed to measure this conductance peak in topologically supercon-
ducting wires fabricated from semiconductor wires [Mour 12, Das 12, Deng 12, Chur 13,
Finc 13]. An example of the experimental setup and the corresponding data for the dif-
ferential conductance dI/dV taken from Ref. [Mour 12] are shown in Fig. 1.6. In all
experiments, the results are compatible with the theoretical expectations in that the zero-
bias peak in the differential conductance shows up in a reasonable parameter range. Even
though this can be caused by a Majorana bound state at the end of the wire, these mea-
surements are not smoking-gun signatures of the topologically superconducting phase. In
particular such a signature in the conductance does not necessarily have to originate from
a Majorana bound state. Various mechanisms have been discussed to also cause a zero-
bias peak, for example by disorder [Liu 12], a smooth confinement potential [Kell 12b] or
the Kondo mechanism [Lee 12].

Another way of observing a zero-energy states that has been pursued in an experiment
[Nadj 14] is to measure the local density of states with a STM-tip. With this it was also
possible to also the localization of this bound state at the wire end.

Many more schemes to distinguish the topological non-trivial from the trivial phase have
been suggested theoretically and are awaiting for experimental realization. For example,
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the existence of a Majorana state has a unique signature in the ballistic limit of a normal
metal-superconductor junction: Creating a quantum point contact in the normal metal and
tuning the gate voltage to the single or few channel limit, one finds a first conductance step
that is quantized to 2e2/h is the superconductor is in a topologically non-trivial phase, as
opposed to 4e2/h for a conventional superconductor or e2/h without any superconductor.
In the presence of disorder, this signature is robust in the single-mode regime whereas the
other two cases suffer from localization [Wimm 11]. Another possibility is to consider non-
local transport for a topologically superconducting wire with normal metal leads attached
to both ends[Nils 08, Fu 10]. A process called crossed Andreev reflection, which consists
of a Cooper pair made up of electrons from the two different wires entering the wire, is
enhanced by the presence of Majorana bound states and yields, for instance, a maximally
correlated current noise.

Yet another promising route for the detection of Majorana states are topological Joseph-
son junctions. These are built from two p-wave wires, with Majorana states at their ends,
which are connected by a normal metal piece. The pairing potentials of the two super-
conductors have a relative phase difference φ. The Majoranas at the two connected ends
hybridize and form a fermionic bound state with an energy that is 4π-periodic in the phase
difference [Kita 01].

E = E0 cosφ/2 . (1.10)

In such setups, a dissipationless current—the Josephson current—may flow, which is just
the derivative of the energy with respect to the phase and therefore also 4π-periodic, in
contrast to the conventional 2π Josephson current. This is called the fractional Josephson
effect. In a many-body state, this bound state can be either occupied or not and the
two cases correspond to opposite Josephson currents. The energy spectrum of the two is
related by shifting φ→ φ+ 2π, causing an ambiguity in the ground state. In principle, a
single electron can be added to the junction at low energy cost, which leads to a transition
between those two ground states. However, as the superconducting wires, acting as leads
to the junction, can only supply pairs of electrons, the Cooper pairs, such a transition is
forbidden by the conservation of fermion parity. One says that the fractional Josephson
effect is protected by fermion parity.

In a real system, this protection will always be broken by coupling to the environment,
making it impossible to observe the fractional Josephson effect directly in the current-
phase relation. Several theoretical proposals are dealing with the dynamics of the junction
instead which can be used to reveal its topological nature. For example, it has been
pointed out that the 4π-periodicity could be observed in the Shapiro steps, which are
plateau-like features in the current-voltage characteristics of a dc-current biased Josephson
junction exposed to an additional ac-voltage or current bias [Jian 11, Domi 12]. This
has been probed experimentally for semiconductor wires, see Ref. [Rokh 12], finding
results consistent with the theoretical predictions. Other works consider the dynamics
[San 12, Piku 12] and current noise [Badi 11] of voltage-biased Josephson junctions.

Another possibility to examine the Majorana state is by probing directly its non-Abelian
statistics [Alic 11]. Within the semiconductor model, a Majorana end state can be moved
around by modulating the chemical potential spatially by means of many small gates
below the wire that can be controlled individually. Then, one can build networks of
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Figure 1.7: Visualization of a braiding protocol for two Majoranas at a T-junction of topo-
logically superconducting wires. Blue regions indicate topologically non-trivial,
grays regions trivial phases.

topologically superconducting wires and use those for braiding. For instance, at a T-
junction, two Majoranas can be braided in a simple protocol as visualized in Fig. 1.7.
Such a realization would certainly be a smoking-gun signature, however, is currently still
out of experimental reach.

1.2.3 Disorder in P-wave Superconducting wires

A general feature of topological phases is their robustness to small, local perturbations that
conserve the essential symmetries, such as disorder. Also p-wave superconductivity, and
thereby the existence of the Majorana end state, is protected against moderate amounts of
disorder. However, for spin-triplet pairing, Anderson’s theorem [Ande 59] does not apply
and one expects disorder to be effective once it becomes strong enough. Indeed, disorder
causes states to localize in the superconducting gap which accumulate at zero-energy,
eventually causing a topological phase transition [Motr 01]. Considering Gaussian white
noise chemical potential disorder, µ→ µ+ V (x), with

〈V (x)〉 = 0 and 〈V (x)V (x′)〉 =
v2
F

l
δ(x− x′) , (1.11)

where vF is the Fermi velocity and l is the normal-state mean free path used to parametrize
the disorder strength, an analytical analysis of this phase transition can be performed
[Brou 11a]. At a critical disorder strength l = ξ/2 a delocalization at zero energy due to
the disorder-localized states occurs, causing the Majorana states at the ends to gap out.
This transition is accompanied by a universal signature in the density of states: the Dyson
singularity

ν(ε) =
1

ε |ln ε|3
. (1.12)

This result is valid for a p-wave superconducting wire with a certain disorder strength.
It is important to note, however, that when considering this as the effective model of, say,
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a semiconductor wire on a conventional superconductor the effective disorder strength can
deviate from the one in the parent wire. In particular, it depends on the Zeeman field B,
see Eq. 1.8, needed to drive the semiconductor wire into a topologically non-trivial phase,
see Ref. [Brou 11b].

1.2.4 Quasi-One Dimensional P-wave Superconductors

The Kitaev-chain introduced above is the tight-binding model of the prototypical p-wave
superconductor, the effective model of the proximity coupled semiconductor and ferro-
magnet wires. In this thesis we will be concerned with a multichannel generalization of
this model which is introduced here. We consider spinless electrons with superconducting
pairing in a strip geometry. The simplest multichannel generalization of the Kitaev chain
is a square lattice with Nx ×Ny lattice sites, where Ny � Nx [Pott 10]. There is normal
nearest neighbor hopping and a superconducting pairing term, which in real space involves
also nearest neighbors

H =
∑
i,j

[
−µc†i,jci,j − t

(
c†i+1,jci,j + c†i,j+1ci,j + h.c.

)
+
(
i∆xc

†
i+1,jc

†
i,j −∆yc

†
i,j+1c

†
i,j + h.c.

)]
, (1.13)

where the indices i, j label the x, y-coordinate as x = ia, y = ja, with the lattice constant
a and run from 1 to Nx, Ny,respectively. µ is the chemical potential, t is the hopping
strength, and ∆x, ∆y are the superconducting pairings strengths associated with a mo-
mentum in x, y. We will consider the continuum version of this model, which is obtained
by considering the limit of a→ 0, while keeping the length L = Nxa and width W = Nya
constant [Kell 12a]. Upon identifying µ + 4t → µ, ~2/ta2 → 2m, and ∆x/ya/2~ → ∆′x/y
we find a Hamiltonian

H =

L∫
0

dx

W∫
0

dy
(
ψ†(x, y), ψ (x, y)

) [1

2

(
p̂2 − µ

)
σz + ∆′xp̂xσx + i∆′yp̂yσy

](
ψ (x, y)
ψ†(x, y)

)
(1.14)

with the momentum operator p̂ = (p̂x, p̂y). In the following we will restrict to the limit
of a narrow strip W . ξ = ~/m∆′x, in which bound states appear only at the ends of the
wire at x ' 0, L and no lateral edge modes at y ' 0,W appear [Pott 10]. Particularly in
the limit of a very narrow wire W � ξ the Hamiltonian can be simplified: the transverse
momentum will be of the order of the inverse width 〈p̂y〉 ∼ ~

W . Thus, the pairing energy
associated with the transverse direction is much smaller than the corresponding kinetic
energy

〈∆′yp̂y〉 ∼
~2

mξW
=

~2

mW 2

W

ξ
� 〈

p̂2
y

2m
〉 ∼ ~2

mW 2
, (1.15)

and can be treated in perturbation theory. The zeroth-order Hamiltonian can then be
solved analytically with the wavefunctions quantized in the transverse direction with a
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wavenumber ky = ~nπ/W , n = 1, 2, .... The number of occupied transverse channels N is
determined by the chemical potential

N = int

(
W

π

√
k2
F − ξ−2

)
, (1.16)

with k−1
F � ξ. Each transverse channel independently forms a one-dimensional p-wave

superconductor with an energy spectrum

En(kx) = ± ~2

2m

√
(k2
x − k2

n)2 + 4
(
kxξ−1

)2
(1.17)

k2
n = k2

F −
n2π2

W 2
(1.18)

and a Majorana bound state at each end. The wavefunction of the Majorana in the n-th
channel at, for instance, the left end x ' 0 is

φn(x, y) ∝ sin
(nπy
W

)
sin(knx)e−x/ξ (1.19)

up to a normalization factor. In total there will be N decoupled Majorana states at each
end of the wire.

The effect of the perturbation on the low-energy spectrum is then two couple the zero-
energy states which causes them to gap out in pairs [Kell 12a]. For an odd number of
channels one therefore recovers a topologically non-trivial phase while an even number of
channels will result in a trivial phase without Majorana bound states. In particular, upon
changing the chemical potential one can change the parity of the number of channels,
which causes an alternation between topologically trivial and non-trivial phases [Pott 10,
Kell 12b], see Fig. 1.8 a). The gapped-out states will form subgap states that cluster
around zero energy, see Fig. 1.8 b). The low-energy spectrum of such a multichannel
p-wave superconductor will be discussed in the main text, see Chapter 2.

For wires that are broader, W ' ξ, the perturbative treatment employed before is
analytically not justifiable. However, in a numerical analysis the same qualitative behavior
is found [Kell 12a].

A different way to think about this perturbative approach is in term of the symmetry
classification introduced before, see Fig. 1.2. The full Hamiltonian 1.14 has only particle-
hole symmetry, placing the system in symmetry class D, which allows for a topological
phase that is characterized by a Z2-number. This is just some binary value indicating
whether a Majorana bound state is present or not. In zero-th order in the superconducting
transverse coupling ∆′py an effective time-reversal symmetry (with the corresponding
operator T 2 = 1) is restored, which results in a chiral symmetry. In particular the reduced
system is in symmetry class BDI and the topological invariant is a Z-number, which
corresponds here to the total number of Majorana bound states at each wire end.

The description with the strip geometry employed results in an effective Hamiltonian
in the subspace of occupied channels, where to zeroth order each channel is an inde-
pendent one-dimensional p-wave superconductor at a renormalized chemical potential
µn = ~2/2mk2

n. In principle one could also employ a picture of equivalent channels,
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b)a)

Figure 1.8: Spectrum of a multichannel p-wave superconducting wire as a function of the
chemical potential. Panel a) Figure from [Pott 10]: Alternation of topologically
trivial and non-trivial phases as the parity of the number of channels changes,
W ∼ ξ; Panel b) Figure from [Kell 12a]: The clustering of subgap states
around zero-energy for narrow wires W � ξ.

where the number of channels is fixed and the chemical potential is the same for all of
them. For the physics discussed in the main part of this thesis, these two approaches are
qualitatively similar.

As discussed above, the model of a semiconductor wire in proximity to a s-wave su-
perconductor yields an effective p-wave superconductor. In an experiment, those wires
will generally be in a multichannel regime. This does not imply immediately an effective
multichannel p-wave superconductor but there is a parameter range in which the model
discussed in this section can be realized, which will be discussed in Chapter 2

1.3 Methods: Scattering Theory

The main method used in the projects comprising this thesis is the formalism of scattering
theory, a description of quantum transport valid for low temperatures and voltages, and in
the absence of interactions [Land 57, Land 87, Butt 86, Butt 88]. It provides a powerful
framework to treat mesoscopic systems [Been 91, Been 97]. We here review briefly its
main aspects.

1.3.1 General Introduction

A system, such as a wire can be described by its scattering properties by attaching a
number of leads, in which electronic wave can propagate freely, to it. The system under
study is then viewed as a scatterer and many physical observable can be deduced in this
approach. Here, we will consider only the cases of one or two metallic leads, which could
have several transverse modes.

Consider now the case of two leads attached to a scattering region, see Fig. 1.9, with N
propagating modes arising from a transverse quantization. We restrict to one transverse,
the y, direction and consider a hard-wall boundary confinement of width W . The basis
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Figure 1.9: Left panel: Schematic view of a scatterer with a scattering matrix S connected
to two leads with incoming modes c+

n , c̃−n and outgoing modes c−n , c̃+
n . Right

panel: The concatenation of a scattering matrix of a wire with length L and a
short piece of length δL to a combined scattering matrix S(L+ δL).

states in the leads are then electronic wavefunctions at an excitation energy ε propagating
to the left and right

ψ±,n(x, y) =

√
2m

W~kn
sin
(nπy
W

)
e±iknx ,

kn =

√(
k2
F −

n2π2

W 2

)
(1.20)

with n = 1, · · · , N and the electron mass m. One could also consider a multichannel
lead arising from a strip geometry such as in Sec. 1.2.4, which would add a transverse
wave function ∝ sin(nπy/W ) to the basis states and modify the momentum and velocity
k(ε), v(ε)→ kn(ε), vn(ε) accordingly.

The scatterer connects the different basis states with coefficients c±n in the left lead
and c̃±n in the right lead. For notational convenience we will suppress the dependence on
the energy for the coefficients in the following. There is a set of coefficients propagating
towards the scatterer, C in, and one set Cout leaving it

C in =

(
c+

c̃−

)
, Cout =

(
c−

c̃+

)
, (1.21)

where c+ = (c+
1 , c

+
2 , ..., c

+
N )T . These coefficients are related to each other by the scatterer,

which is captured in a scattering matrix

Cout = S(ε)C in , S(ε) =

(
r(ε) t′(ε)
t(ε) r′(ε)

)
, (1.22)

which has to be unitary S†S = 1 and describes reflection in the left/right lead r, r′ and
transmission from the left to the right t and vice versa t′.

If the scatterer is a superconductor, electrons can be reflected or transmitted into as a
hole; a process called Andreev reflection [Andr 64]. It is the scattering formulation of the
proximity effect, where a electron is absorbed into a superconductor, where it has to form
a Cooper pair, which happens by the emission of a hole. This process can be incorporated
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into the scattering matrix with an electron-hole grading of the basis states

ψ
(e)
±,n(x) =

1

2πvF

(
1
0

)
e±ikF x , (1.23)

ψ
(h)
±,n(x) =

1

2πvF

(
0
1

)
e∓ikF x , (1.24)

Note that for hole-like wave functions the group velocity is reversed, such that right-
moving modes have negative momentum −kF . With this, the coefficients for incoming

and outgoing waves become vectors c±n =

(
c
±(e)
n

c
±(h)
n

)
and the reflection and transmission

matrices double their dimensions accordingly

r(′)(ε) =

(
r

(′)
ee (ε) r

(′)
eh(ε)

r
(′)
he(ε) r

(′)
hh(ε)

)
, t(′)(ε) =

(
t
(′)
ee (ε) t

(′)
eh(ε)

t
(′)
he(ε) t

(′)
hh(ε)

)
. (1.25)

In a similar fashion one could also take a spin-degree of freedom into account, which is,
however, not relevant in the following.

The symmetries that are obeyed by the system acting as a scatterer restrict also the scat-
tering matrix. Considering the system’s Hamiltonian in a Bogoliubov-de Gennes formula-
tion in momentum space, particle-hole symmetry can be expressed as σxH

∗
−kσx = −Hk,

and a form of time-reversal symmetry that will be considered later as σzH
∗
−kσz = Hk,

where σi are Pauli matrices acting in particle-hole space. The latter is obeyed for example
in the p + ip-wave superconducting Hamiltonian introduced in Eq. 1.4, when ∆′ky = 0.
These symmetries can be translated to the scattering properties and are expressed in terms
of the scattering matrix as

S(ε) = σxS
∗(−ε)σx and S(ε) = σzS

T (ε)σz , (1.26)

respectively.

The scattering matrix can in principal be found by solving for the wave function in the
scatterer, which from now on will be a wire, and matching it to the free modes in the
leads with the initial condition that one coefficient of incident wave is 1 while all others
are zero. However, an analytical solution can not always be found, as for example in the
presence of disorder. In this case, one can construct the scattering matrix for a wire of
length L by concatenating it from many small, identical pieces of length δL. If those
pieces are short enough, their scattering matrices can be calculated analytically in Born
approximation to linear order in δL. The coefficient of the scattering matrix connecting
a particular incoming, initial state φi(x) at energy εi to a particular outgoing, final state
φf (x) at energy εf is

δSi,f = δi,f − 2πiδ(εf − εi)
δL∫
0

dx dx′ φ∗f (x)φi(x
′)T (x, x′) , (1.27)
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with the T -operator T (x, x′) = 〈x|T̂ |x′〉. The latter contains the information on the
scatterer and can be written in the Born series

T̂ = V̂ + V̂
(
εi − Ĥ0 + iη

)−1
V̂ + V̂

(
εi − Ĥ0 + iη

)−1
V̂
(
εi − Ĥ0 + iη

)−1
V̂ + · · · ,

(1.28)

where V̂ is the part of the Hamiltonian that distinguishes the short piece of the wire from
the leads, where Ĥ = Ĥ0. With this, the scattering matrix δS can be obtained to linear
order in δL, which for disorder requires the second order Born approximation in T̂ .

Two scattering matrices of adjacent scatterers can be combined to a single one with
an infinite series expansion, taking into account all possible paths an electron could take.
The scattering matrix of a wire with length L+ δL, S(L+ δL), can thus be obtained from
the concatenation of S(L), with reflection and transmission matrices r(′)(L), t(′)(L), and
δS,with reflection and transmission matrices ρ(′), τ (′), see Fig. 1.9. For instance,

r(L+ δL) = ρ+ τ ′r(L)τ + τ ′r(L)ρ′r(L)τ + · · · = ρ+ τ ′ r(L)
1

1− ρ′r(L)
τ

t(L+ δL) = t(L)τ + t(L)ρ′r(L)τ + t(L)ρ′r(L)ρ′r(L)τ + · · · = t(L)
1

1− ρ′r(L)
τ . (1.29)

In this way one can construct the scattering matrix at arbitrary lengths.

1.3.2 Probing Topological Phases with a Scattering Matrix

An, in the context of this thesis, important feature of scattering matrices is the information
on the scatterer’s topological phase encoded in them: the reflection amplitude of a wire at
ε = 0 allows for a direct computation of the topological quantum number characterizing
the topological phase [Fulg 11]. In particular, if the wire is in its topologically non-
trivial phase the Majorana bound state at its end will give rise to resonant Andreev
reflection [Wimm 11], which shows up explicitly in the scattering matrix. We here review
the approach given in Ref. [Fulg 11] for the symmetry classes of interest to this thesis,
class D and BDI, adapting the arguments to scattering matrices in the basis of electrons
and holes.

The scattering matrix of a p-wave superconducting wire at ε = 0 can be parametrized
as

r(ε = 0) =

(
ree reh

r∗eh r∗ee

)
=

(
U 0
0 U∗

)(
τ iκ
−iκ τ

)(
V 0
0 V ∗

)
, (1.30)

where U and V are unitary matrices, and τ, κ are real diagonal matrices. In the limit of a
very long wire the reflection matrix becomes unitary, which implies that the elements of
τ tend either to zero or to one and the elements of κ are restricted by τ2 + κ2 = 1. For
a scattering matrix describing a class-BDI wire an additional restriction V = UT reflects
the chiral symmetry.

The topological quantum number Q equals the number of Majorana bound states at
the wire’s end. This quantity is found by connecting the wire to a metallic stub with hard
wall boundary conditions at the other end and count the number of bound states that
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r(0)rN

Figure 1.10: Sketch of the setup considered to determine the number of bound states at a
wire’s end (blue) with the help of a metal stub.

are formed in the metal, see Fig. 1.10. It equals the dimension of the zero-space to the
equation

12N = rNr(ε = 0) , (1.31)

where 12N os the identity matrix of dimension 2N and rN = −12N is the reflection matrix
at the other end of the metal stub. In particular, we are looking for the solutions to the
equation

det(1− r) = 0 , (1.32)

which is fulfilled whenever r has an eigenvalue −1. Further, we know that the classification
of topological phase in class D is due to a Z2 number, such that there can be at most one
such eigenvalue. All other eigenvalues of r are either one or phases that come in conjugate
pairs. Thus, in class D the determinant of the reflection matrix suffices to characterize
the topological phase

QD = det r(ε = 0) (1.33)

In class BDI several Majorana bound states can occur such that the determinant cannot
serve as the quantum number and the dimension of the zero-space has to be found in a
different way. Using the fact that for long wires τ2 = τ and κ2 = κ one finds

1− r =

(
U † τ
iUT −iτ

)(
U∗ −iU
τ +iτ

)
(1.34)

The dimension of the zero-space of this product is readily found as the number of zero-
eigenvalues of τ . This number equals the non-zero eigenvalues of κ, which are also the
eigenvalues of the submatrix of r describing Andreev reflection and one finds

QBDI = −i tr reh , (1.35)

1.3.3 Density of States

Another useful feature for scattering matrices lies in their relation to the density of states.
Consider a setup in which a wire is connected to a metallic lead at, say, the left end and
subject to hard wall boundary conditions at the right one. Then, only reflection is defined
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and constitutes the scattering matrix r(ε, L), with eigenvalues eiφn(ε,L), the scattering
phases.

The total scattering phase φ(ε, L) =
∑

n φi(ε, L) = det r(ε, L) is defined only modulo
2π but is sensitive to the number of states by transitions through its branch cuts. More
specifically, as the wire length L is increased eφ(ε,L) moves around the unit circle and the
total number of states at energy ε increases by one each time the phase passes through
2π. This is captured in Friedel’s sum rule, which explicitly relates the density of states to
the scattering (reflection) matrix [Hews 93]

ν(ε) =
1

2πi

∂

∂ε
lim
L→∞

(ln det r(ε, L)− ln det r(ε, 0)) . (1.36)

To study the density of states it is therefore necessary to follow the evolution of the
reflection matrix under increments of the wire length. In some cases the analysis can be
carried out analytically: by choosing a suitable parametrization for the scattering matrix it
is possible to explicitly calculate the change of these parameters under changes of the wire
length L→ L+ δL from Eq. 1.29. This way, a Langevin equation can be derived, whose
solution can be used to obtain the density of states. Such an approach has been employed
to study chiral wires [Brou 00] but also to analyze the disorder-induced topological phase
transition in a 1-dimensional p-wave superconductor [Brou 11a]. Such a phase transition
has an unambiguous signal in the density of state, the Dyson-singularity mentioned in
Sec. 1.2.3, which allowed for an identification of the critical disorder strength.

1.4 Outline

In this Thesis we will consider various aspects of multichannel p-wave superconducting
wires. In Chapter 2 we will investigate the low energy spectrum of subgap states in a
p + ip-superconducting wire, which is formed by the gapped Majorana states from the
different channels. We will consider various wire geometries and disorder potential. In
Chapter 3 we will investigate the stability of the topological phase to a disorder potential
and calculate the topological quantum number at arbitrary disorder strengths. By this we
identify critical disorder strengths associated with topological phase transitions. Finally, in
Chapter 4 we study the density of states in the gap as a wire is driven through the disorder-
induced topological phase transitions and discuss their signatures in this observable.
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2 Endstates in multichannel spinless p-wave
superconducting wires

Multimode spinless p-wave superconducting wires with a width W much smaller than the
superconducting coherence length ξ are known to have multiple low-energy subgap states
localized near the wire’s ends. Here we compare the typical energies of such endstates for
various terminations of the wire: A superconducting wire coupled to a normal-metal stub
and a weakly disordered superconductor wire. Depending on the termination, we find that
the energies of the subgap states can be higher or lower than for the case of a rectangular
wire with hard-wall boundaries. This chapter is based on Ref. [Ried 12].

2.1 Introduction

In the current search for Majorana fermions in nano-wire geometries [Been 13b, Alic 12]
an important theoretical challenge is to understand the multiplicity of possible fermionic
bound states that can form at the ends of the wire and how a possible Majorana bound
state can be identified among them. This is particularly relevant for multichannel geome-
tries, in which fermionic states localized near the ends of the wire are expected to occur
at energies much smaller than the excitation gap for bulk excitations if the wire width is
much smaller than the superconducting coherence length. In this chapter we explore the
dependence of these sub-gap end-states on the details of the termination of the wire and
on impurity scattering.

The interest in isolating Majorana fermions arises because their non-local properties
and non-abelian braiding statistics render them potentially useful for fault tolerant quan-
tum computation [Kita 03, Free 98, Read 00, Ivan 01, Kita 06, Naya 08, Wilc 09]. Majo-
rana fermions occur — at least theoretically — at the ends of one-dimensional spinless
p-wave superconductors [Kita 01]. Recent proposals suggest ways of engineering solid-
state systems that effectively behave as spinless p-wave superconductors by combining
an s-wave superconductor and a topological insulator [Fu 08, Cook 11], a semiconductor
[Sau 10, Alic 10, Oreg 10, Lutc 10], or ferromagnet [Duck 11, Chun 11, Choy 11, Mart 12,
Kjae 12]. Building on the proposals of Refs. [Oreg 10, Lutc 10], two experimental groups
have reported an enhanced tunneling density of states at the ends of InAs and InSb wires
in proximity to a superconductor, consistent with the existence of Majorana bound states
at the ends of these wires [Mour 12, Das 12], whereas a number of other groups claim the
observation of Majorana bound states using different methods [Will 12, Rokh 12, Deng 12].

Whereas the original proposals for Majorana fermions in wire geometries focused on
one-dimensional systems, it is by now well established that the topological superconduct-
ing phase with Majorana end states may persist in a quasi-one-dimensional multichan-
nel setting [Wimm 10, Pott 10, Lutc 11, Pott 11a, Pott 11b, Stan 11, Zhou 11, Kell 12a,
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2 Endstates in multichannel spinless p-wave superconducting wires

Pott 12, Lim 12, Gibe 12, Tewa 12b]. A difference between the quasi-one-dimensional and
one-dimensional settings is, however, that a possible zero-energy Majorana state localized
at the wire’s end may co-exist with other fermionic sub-gap states, analogous to those
found in vortex cores of bulk superconductors [Caro 64]. For the case of an N -channel
spinless p + ip superconductor with a rectangular geometry and with width W much
smaller than the superconducting coherence length ξ, three of us recently showed that
the number of such fermionic subgap states is ∼ N/2, and that their typical energy is
εtyp ∼ ∆(W/ξ)2, ∆ being the superconducting gap size [Kell 12a]. The lowest-lying and
highest-lying fermionic subgap states have energies εmin ∼ εtyp/N lnN and εmax ∼ Nεtyp,
respectively. The fermionic subgap states also exist in a non-topological phase without
zero-energy Majorana end-state, thus posing a potential obstacle for the identification of
the topological phase through the observation of an enhanced density of states near zero
energy.

Potter and Lee [Pott 12] observed that the dependence of the energy of the lowest-
lying fermionic subgap state on system parameters changes qualitatively if the rectangular
geometry of Ref. [Kell 12a] is replaced by a geometry with rounded ends. They point
out that the calculation of the energy of the fermionic subgap state for the rectangular
geometry is plagued by a subtle cancellation, which does not appear for a generic wire
ending. In particular it was found in Ref. [Pott 12] that the lowest-lying fermionic subgap
state has an energy significantly above the prediction of Ref. [Kell 12a] for a wire with
width W ∼ ξ and rounded ends.

Motivated by these observations we present here a detailed investigation of the effect that
the wire termination has on the energies of the fermionic subgap states for the multichannel
spinless p+ ip superconductor. Remarkably, we find that, depending on the details of the
wire ending, the energies of the fermionic subgap states can be significantly above, as well
as below the rectangular-wire case of Ref. [Kell 12a]. We find an increase of the energies
of the subgap states if an arbitrarily-shaped normal layer is attached to the wire’s end,
the magnitude of the increase being consistent with the estimate of Ref. [Pott 12] for a
wire with rounded ends. On the other hand, the presence of impurities — weak enough to
preserve the topological phase [Motr 01, Brou 11b] — on average reduces the energies of
the fermionic end states below the estimate of Ref. [Kell 12a], while a smooth confinement
(with a slowly increasing potential energy providing the confinement along the wire’s axis)
leads to even smaller energies of the fermionic subgap states.

Our results are derived for the two-dimensional spinless p + ip superconducting strip
of width W . The model of a spinless p + ip superconductor is an effective low-energy
description for the various proposals to realize one-dimensional or quasi-one-dimensional
topological superconductors, provided the number N of propagating channels at the Fermi
level is chosen equal to the number of spinless (i.e., helical or spin-polarized) channels in the
case of the semiconductor or ferromagnet proposals. (The edges of a topological insulator
always have N = 1, so that a multichannel p + ip model is not relevant in that case.)
A mapping between the spinless p-wave model and the semiconductor-wire proposals is
given in Chapter 2.3.

The remainder of this chapter is organized as follows: In Sec. 2.2 we briefly review the
symmetries of the model (2.2) and the reason for the appearance of multiple low-lying
states if the wire width W is much smaller than the superconducting coherence length
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ξ. In Sec. 2.4 we describe the scattering theory of fermionic subgap states with arbitrary
wire endings and in Sec. 2.5 we discuss the p+ ip model with weak disorder. We conclude
in Sec. 2.6.

2.2 p+ ip-Model

Our calculations are performed for a two-dimensional spinless p+ip superconductor, which
is described by the two-component Bogoliubov-de Gennes Hamiltonian, which we write as

H = H0 +Hy +HV , (2.1)

with

H0 =

(
p2

2m
− µ

)
τz + ∆′pxτx,

Hy = −∆′pyτy,

HV = V (r)τz. (2.2)

Here τx, τy, and τz are Pauli matrices in particle-hole space, ∆′ specifies the p-wave super-
conducting order parameter, µ = ~2k2

F/2m and m are the chemical potential and electron
mass, and V (r) a potential that describes the confinement at the ends of the wire as
well as the scattering off impurities. The two-dimensional coordinate r = (x, y), where
0 < y < W , with hard-wall boundary conditions at y = 0 and y = W . The superconduct-
ing order parameter derives from proximity coupling to a bulk superconductor, so that no
self-consistency condition for ∆′ needs to be employed.

Hypothetical end states are localized within a distance of the order of the superconduct-
ing coherence length ξ = ~(∆′m)−1 from the wire’s ends. For thin wires with W � ξ it
is a good starting point to analyze the Hamiltonian H = H0 +HV without the term Hy.
The Hamiltonian H0 has a chiral symmetry [Tewa 12a], τyH0τy = −H0, and there exist

N = int [(W/π)
√
k2

F − ξ−2] (2.3)

Majorana bound states at each end of the wire [Kell 12a, Pott 12, Gibe 12, Tewa 12b].
The stepwise increase of the number of Majorana end states for wire widths W such that

(W/π)
√
k2

F − ξ−2 is an integer is accompanied by a closing of the bulk excitation gap of

H0. Inclusion of the potential term HV does not lift the degeneracy of the Majorana end
states, since HV preserves the chiral symmetry, although it may change the boundaries of
the phases with different N if HV is nonzero in the bulk of the wire. In contrast, the term
Hy breaks the chiral symmetry and couples the N Majorana bound states, giving rise to
(generically) int (N/2) fermionic states at each end and a single Majorana end state if N is
odd. If W � ξ the splitting of the end states is small in comparison to the bulk energy gap
∆ = ∆′~kF , and the resulting fermionic states cluster near zero energy [Kell 12a, Pott 12].

A schematic picture of the end-state spectrum as a function of W is shown in Fig.
2.1. The end states are characterized by the energy εmin of the lowest-lying fermionic end
state, the typical end-state energy εtyp, and the energy εmax of the highest-lying end state.
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2 Endstates in multichannel spinless p-wave superconducting wires

Figure 2.1: Schematic picture of the spectrum of low-energy excitations of the a p + ip
wire as a function of its width W . The gap for bulk excitations closes at those

values of W for which (W/π)
√
k2

F − ξ−2 is an integer. When the bulk gap is

finite, there are low-energy subgap states localized near the ends of the wire.
In the text, we use εmin to denote the energy of the lowest-lying fermionic
subgap state, εtyp for the typical energy of a subgap state, and εmax for the
energy of the highest-lying fermionic subgap state.

For small N these three energy scales are comparable, but for large N they may differ
considerably. The energy εmin serves as the “energy gap” protecting the topological state
and sets the required energy resolution if the presence or absence of a Majorana end state
is detected through a tunneling density of states measurement.

The specific case of a rectangular wire geometry, with hard-wall boundary conditions
at each end of the wire and without disorder, was investigated in Ref. [Kell 12a]. We now
investigate two other possible terminations, as well as the effect of disorder on the energies
of subgap endstates in multichannel spinless p-wave superconducting wires.

2.3 Relationship between the p+ ip and the Proximity-Coupled
Semiconductor Model

A practical realization of a the p + ip model can be found in semiconducting nanowires
with strong spin-orbit coupling, laterally coupled to a standard s-wave superconductor and
subject to a Zeeman field. In the following we discuss the precise relationship between the
models. A related discussion can also be found in Ref. [Alic 10].

In two dimensions, and without coupling to the superconductor, the Hamiltonian for
this system reads

HN =
p2

2m
− µ+Bσx + ασypx − α′σxpy, (2.4)

where α and α′ set the strength of the spin-orbit coupling and B > 0 is the Zeeman
energy of the applied magnetic field. In the limit of a narrow wire (width W much smaller
than the coherence length ξ of the induced superconductivity), subgap states as well as
the above-gap quasiparticle states have a vanishing expectation value of the transverse
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momentum ky, which allows us to treat the transverse spin obit term as a perturbation,
initially setting α′ = 0. Without the term proportional to α′ different transverse channels
do not couple to each other and the eigenfunctions of the Hamiltonian HN are of the form

ψ±n,k(r) ∝
(
e−iθk

±1

)
1√
W
eikx sin

πny

W
, (2.5)

where the angle θk is defined as

sin θk =
αk√

B2 + α2k2
, cos θk =

B√
B2 + α2k2

, (2.6)

and the corresponding energies are

ε±k,n =
~2k2

2m
+

~2π2n2

2mW 2
− µ±

√
B2 + α2k2. (2.7)

Upon laterally coupling the semiconductor wire to an s-wave superconductor, the exci-
tations are described by the Bogoliubov-de Gennes Hamiltonian

HBdG =

(
HN ∆σy
∆σy −H∗N

)
=

(
p2

2m
− µ+Bσx + ασypx

)
τz

− α′σxpy + ∆σyτx, (2.8)

where τx, τy, and τz are Pauli matrices in electron-hole space. Without the transverse
spin-orbit coupling α′, the Bogoliubov-de Gennes Hamiltonian has a chiral symmetry,
τyHτy = −H. In the basis of the normal-state eigenfunctions ψ±n,k, the Bogoliubov-de
Gennes Hamiltonian (2.8) takes the form

HBdG =

(
~2k2

2m
+

~2π2n2

2mW 2
− µ

)
τz + σzτz

√
B2 + α2k2

+ ∆σyτx cos θk + ∆σzτx sin θk

− α′py(σz cos θk + σy sin θk).
(2.9)

In the limit, when both ∆ and the spin orbit energy are smaller than the Zeeman
splitting, the s-wave pairing term proportional to σy is ineffective, and each transverse
channel separately maps to two spinless p-wave superconductors, one for ψ+

n,k and one for

ψ−n,k. Neglecting |αk| in comparison to B, the corresponding pairing term ∆ sin θkσzτx ≈
−∆′kσzτx, with

∆′ = −α∆

B
. (2.10)

Without the term proportional to α′, the transverse channels in Eq. (2.9) can be treated
independently (at least in the bulk of the wire, see below). If µ < B, only the “−” channels
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(eigenspinors of σz with eigenvalue −1) in Eq. (2.9) are topologically nontrivial and can
possibly have end states [Read 00]. Projecting the Bogoliubov-de Gennes Hamiltonian in
the rotated basis (2.9) onto these channels, one finds an effective Hamiltonian of the form

Heff
BdG =

(
~k2

2m
+

~2π2n2

2mW 2
− µ−B

)
τz

+ ∆′~kτx + α′py , (2.11)

Without the transverse spin-orbit coupling α′, the effective Hamiltonian (2.11) has chiral
symmetry and N Majorana end states at each end of the wire. The chiral symmetry is
broken by the transverse spin-orbit coupling α′. Because of the particle-hole symmetry
of the Majorana modes, the matrix elements of this perturbation between the N Majo-
rana end-state of Heff

BdG with α′ = 0 are the same as the matrix elements of the p-wave
superconducting pairing Hy of Eq. (2.2), if we identify ∆′ = α′ in the expression for Hy.

If the condition µ < B is not met, the relation between the semiconductor and p + ip
models is more complicated. For transverse channels for which ~2π2n2/2mW 2 < µ − B
the wire ends represent a chiral-symmetry-preserving perturbation that gaps out eventual
Majorana end states, so that such channels may be disregarded when considering low-
energy end states. For transverse channels for which

µ−B <
~2π2n2

2mW 2
< µ+B (2.12)

the Majorana end state in the “− band” (eigenspinors of σz at eigenvalue −1 in the
rotated basis) is protected in the presence of the chiral symmetry, and only perturbations
that lift the chiral symmetry can lead to a splitting of these end states. Projecting the
Bogoliubov-de Gennes Hamiltonian in the rotated basis (2.9) onto these channels, one
again an effective Hamiltonian of the form (2.11), but with the additional restriction that
only those transverse channels that meet the condition (2.12) are considered. The number
N of transverse channels that meet this condition may be smaller than the original number
of propagating channels in the semiconductor.

2.4 Normal Metal Stub

In this section, we consider a quasi-one-dimensional spinless p+ip superconductor without
disorder and coupled to a normal-metal stub at its end. We choose coordinates, such that
the spinless superconductor occupies the space x > 0, 0 < y < W , see Fig. 2.2. Such a
wire ending is relevant, e.g., for the experimental geometry of Ref. [Mour 12], in which
a topological phase is induced in a semiconductor nanowire by laterally coupling it to a
superconductor, while a part of the wire sticks out from under the superconductor and is
pinched off by a gate at a finite distance.

We take the Hamiltonian of the normal stub to be real and symmetric, in order to
preserve the chiral symmetry of the Hamiltonian H0. Following Ref. [Kell 12a] we first
solve for the wavefunctions ψ(j) of the N Majorana modes for the Hamiltonian H0 and
then treat Hy in perturbation theory. The potential term HV is set to zero throughout
this calculation.
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The Majorana states have support in the normal stub as well as in a segment of the
superconducting wire of length∼ ξ. In the superconducting region x > 0 the wavefunctions
ψ of the Majorana states can be written as

ψ(r) =
∑
n

an−φn−(r) + an+φn+(r), (2.13)

where the basis states φn±, n = 1, 2, . . . , N , read

φn±(r) =

(
eiπ/4

e−iπ/4

)√
2m

W~kn
e±iknx−x/ξ sin

(nπy
W

)
,

(2.14)

with

kn =
√
k2

F − (nπ/W )2. (2.15)

The basis states φn± have been normalized to unit flux. The above expressions for the
basis states and their normalization are valid up to corrections of order (W/ξ)2, which we
neglect throughout this calculation.

The coupling to the normal-metal stub imposes boundary conditions on the coefficients
an±, which we express in terms of the scattering matrix Snn′ of the normal stub,

an+ =
∑
n′

Snn′an′−, an− =
∑
n′

S∗nn′an′+, (2.16)

Because the Hamiltonian of the normal stub is real and symmetric, the scattering matrix
Snn′ is unitary and symmetric, Snn′ = Sn′n, which ensures that the 2N equations (2.16)
have N independent solutions, corresponding to the N Majorana end states.

For finding an explicit representation of the N Majorana states ψ(j), j = 1, 2, . . . , N we
use the fact that the scattering matrix S and the Wigner-Smith time-delay matrix[Wign 55,
Smit 60] Q = i~S†∂S/∂µ of the normal stub can be simultaneously decomposed as

S = UTU, Q = U †diag (τ1, . . . , τN )U, (2.17)

where U is an N × N unitary matrix and the τi > 0, i = 1, 2, . . . , N , are the so-called
“proper time delays”. With this decomposition, a solution to the boundary conditions
(2.16) is given by

a
(j)
n+ = Unj , a

(j)
n− = U∗nj , j = 1, 2, . . . , N. (2.18)

The N states that are defined through these coefficients,

ψ̃(j)(r) =
∑
n

a
(j)
n−φn−(r) + a

(j)
n+φn+(r), (2.19)
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2 Endstates in multichannel spinless p-wave superconducting wires

Figure 2.2: Schematic drawing of a spinless p-wave superconducting wire (S) coupled to
a normal-metal (N) stub at one end. The top panel shows a rectangular stub,
the bottom panel shows a chaotic cavity attached to the superconducting wire.

are Majorana modes (they satisfy ψ̃(j)∗ = τxψ̃
(j)), but they are not necessarily orthonor-

mal. In order to construct an orthonormal set, we first calculate the scalar product Mjl

of the modes ψ̃(j),

Mjl =

∫ ∞
0

dx

∫ W

0
dy ψ̃∗(j)(r)ψ̃(l)(r)

+

∫
stub

drψ̃∗(j)(r)ψ̃(l)(r) (2.20)

=
∑
n

2mξ

~kn
Re

(
UnjU

∗
nl +

UnjU
∗
nl

1− iknξ

)
+ 2τjδjl,

Here we used the relation between the Wigner-Smith time delay matrix and the nor-
malization of scattering states in order to perform the integration over the sub, see Ref.
[Smit 60]. The overlap matrix M is real, positive definite, and symmetric. It is manifestly
diagonal if the scattering matrix S and the time-delay matrix Q are diagonal or in the
“large-stub limit”, which is defined as the limit in which the mean inverse dwell time ~/τ̄
is much smaller than the superconducting gap. In both cases, one obtains an orthonor-
mal basis for the N Majorana modes by setting ψ(j) = ψ̃(j)/

√
Mjj . In the general case,

M is not diagonal, however, and one has to construct an orthonormal system with the
help of the orthogonal transformation O that diagonalizes M , i.e., OTMO = λ2, where
λ = diag (λ1, λ2, . . . , λN ) is a diagonal matrix with positive elements. The corresponding
orthonormal basis set one thus obtains reads

ψ(j)(r) =

N∑
n=1

ψ̃(n)(r)Onjλ
−1
n . (2.21)

Inclusion of Hy, which breaks the chiral symmetry, gives rise to a splitting of the N
degenerate Majorana end states constructed above. With respect to the unnormalized
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states ψ̃(j), this splitting is described by the N ×N matrix

H̃
(1)
jl = 〈ψ̃(j)|Hy|ψ̃(l)〉

=
4i∆′m

W

∑
nn′

nn′[1− (−1)n+n′ ]

(n′2 − n2)
√
knkn′

×
∑
±

[
Im

UnjU
∗
n′l

kn′ ± kn
+

2

ξ
Re

UnjU
∗
n′l

(kn′ ± kn)2

]
, (2.22)

where we neglected corrections smaller by a factor of order (W/ξ)2. The matrix H̃
(1)
jl is

antisymmetric and purely imaginary, which ensures the existence of a single zero-energy
bound state if N is odd. In order to find a true effective Hamiltonian H(1), the eigenvalues
of which represent the energies of the fermionic end states, one should transform to the
basis of orthogonal states ψ(j) introduced in Eq. (2.21),

H(1) =
1

λ
OT H̃(1)O

1

λ
. (2.23)

In the special case N = 2, this transformation can be carried out for an arbitrary scattering
matrix S and the energy of the resulting single fermionic bound state is

ε =
|H̃(1)

12 |√
M11M22 −M2

12

. (2.24)

We now discuss two particular realizations of a metal stub in detail.

2.4.1 Rectangular Stub

First, we consider a rectangular stub of length L attached to the spinless p-wave super-
conducting wire, see Fig. 2.2a. For this geometry, both the scattering matrix S and the
Wigner-Smith time-delay matrix Q are diagonal,

Snn′ = −e2iknLδnn′ , Qnn′ =
2mL

~kn
δnn′ , (2.25)

with kn given by Eq. (2.15). Since there is no mixing between different channels, the zero
energy modes ψ̃(j) already form an orthogonal basis. The effective Hamiltonian in the

normalized basis ψ(j) = ψ̃(j)/
√
Mjj has H

(1)
jl = 0 if j + l is even and

H
(1)
jl =

4i∆y~jl
W (ξ + 2L)(l2 − j2)

∑
±

{
sin[L(kj ± kl)]

kl ± kj

+
2W

πξ

cos[L(kj ± kl)]
(kl ± kj)2

}
(2.26)

if j + l is odd, up to corrections smaller by a factor of order (W/ξ)2.
The second term in the effective Hamiltonian (2.26) is smaller than the first one by a

factor of order W/ξ. However, only this second term contributes in the limit L = 0 in
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2 Endstates in multichannel spinless p-wave superconducting wires
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Figure 2.3: Typical and maximal energies of fermionic subgap states in a spinless p-wave
superconductor with a rectangular normal-metal stub of length L as a function
of L/W for different channels numbers (N = 15, 27, 55, 99). The maximal
energies εmax have a finite-N correction of order εm/

√
N , which is why the

curves for εmax still show an N dependence for large N .

2 4 6 8

0.02

0.04

0.06

1 2 3 4 5

0.10

0.20

Figure 2.4: Level density of fermionic subgap states for a rectangular stub in the limit
of large N , for L/W = 0.1 (left) and L/W = 3 (right). The level density is
measured in units of νm = N/εm.

which there is no normal metal stub [Kell 12a]. This is a variation of the cancellation
effect pointed out by Potter and Lee [Pott 12]. We now analyze the eigenvalues of the
effective Hamiltonian H(1) for finite L, when the first term between brackets dominates.

Since no closed-form expressions for the eigenvalues of H(1) could be obtained, we
numerically diagonalized H(1) and investigated the dependence of the minimum, typical,
and maximal positive eigenvalues on the ratio L/W as well as the channel number N . For
L ∼W , this analysis gives

εtyp ∼ εm ≡
W∆

ξ
, (2.27)

see Fig. 2.3. The maximum and minimum energies of the subgap states scale as εmin ∼
εtyp/N , εmax ∼ εtyp. A similar analysis for k−1

F � L � W gives estimates for εmin, εtyp,
and εmax which are smaller by a factor L/W , whereas for L � k−1

F , they are smaller
by a factor L3k2

F/W . A crossover to the results of Ref. [Kell 12a] takes place for L .
(W 2/k2

Fξ)
1/3. In the limit of large N the energies of the fermionic subgap states are best

described through their level density, which is shown in Fig. 2.4.
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2.4 Normal Metal Stub
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Figure 2.5: Level density of fermionic subgap states in the small-cavity limit (left) and
large-cavity limit (right). The level density is measured in units of νs = N/εs

and νl = N/εl for the left and right panels, respectively.

2.4.2 Chaotic Cavity

As a second example, we consider a chaotic cavity attached to the end of the superconduct-
ing wire, see Fig. 2.2b. In this case, the unitary matrix U is randomly distributed in the
unitary group [Been 97], whereas the proper delay times have the probability distribution
[Brou 97]

P (τ1, ..., τN ) ∝
N∏
j=1

θ(τj)τ
−3N/2−1
j e−Nτ̄/2τj

×
∏
i<j

|τi − τj |, (2.28)

with the average delay time τ̄ . In this case, the matrix U is not diagonal, and the prescrip-
tion of Eq. (2.23) needs to be used in order to construct the effective Hamiltonian H(1) for
the low-energy subgap states. As in the previous case, we could not obtain closed-form
expressions for the energies of the fermionic subgap states and had to resort to a numerical
analysis, in which the unitary matrices U were generated according to the Haar measure
on the unitary group and the time-delays τi according to the probability distribution given
above, following the method described in Ref. [Crem 02]. This analysis gives different re-
sults for the limiting cases of a “small cavity” and a “large cavity”, corresponding to the
inverse mean dwell time ~/τ̄ large or small in comparison to the superconducting gap ∆.

Small-cavity limit. In the small-cavity limit, the normalization of the N Majorana
states ψ(j) is dominated by the integration over the superconducting wire. Not counting
the Majorana states, the excitation spectrum of the cavity has a gap comparable to the
bulk excitation gap ∆. Upon including Hy one obtains N fermionic subgap states, which
have a typical energy

εtyp ∼ εs ≡
W∆

ξ
, (2.29)

and εmax ∼ εtyp, εmin ∼ εtyp/N . The precise location of the subgap states depends on the
precise scattering matrix of the cavity. The mean level density for an ensemble of cavities
is shown in the left panel Fig. 2.5.

Large-cavity limit. In the large-cavity limit, the overlap matrix Mjl is dominated by
the in-cavity parts of the wavefunctions, so that the Majorana modes ψ̃(j) are already

33



2 Endstates in multichannel spinless p-wave superconducting wires

Figure 2.6: Top: Distribution of energies of fermionic subgap end states in a spinless p-
wave superconductor with N = 7 channels , as a function of ξ/l. The red
lines indicate the mean calculated from the local distribution of eigenvalues.
The black lines, which are a linear fit to the mean values in red, share an
approximate common intercept at the horizontal axis at ξ/l = c−1 = 0.7.
Dotted grey lines indicate the unperturbed energies. Energies are measured in
units of the bulk gap. The lattice parameters used in the numerical calculation
correspond to kFW = fF ξ ≈ 23.5.

orthogonal and the effective Hamiltonian H
(1)
jl = H̃

(1)
jl /

√
4τjτl, with H̃

(1)
jl given in Eq.

(2.22). Not counting the Majorana states, the cavity’s excitation spectrum has a gap of
order ET = ~/πτ̄ [Mels 96], where τ̄ is the mean dwell time in the cavity. In this case, the
typical energy of the fermionic subgap states is

εtyp ∼ εl ≡
ETW

ξ
, (2.30)

while εmax ∼ εtyp and εmin ∼ εtyp/N . The mean level density of the subgap states for an
ensemble of cavities is shown in the right panel of Fig. 2.5.

2.4.3 The case W ∼ ξ

The results of the main text were derived for the case W � ξ, wire width much smaller
than the superconducting coherence length. This is the appropriate limit if the induced
superconductivity is weak. It applies, e.g., in the semiconductor model if there is a barrier
interface between the superconductor and the semiconductor nanowire, which suppresses
the strength of the induced superconductivity and, hence, increases ξ. The limit W � ξ
ensures that all int (N/2) fermionic subgap states have energy well below the bulk gap ∆.
For wider wires, the condition W � ξ may be violated (but this is not necessarily so; see
Sec. 2.6), although the lowest-energy states remain localized near the wire’s ends as long
as W . ξ. (For W � ξ, the lowest-energy subgap states are extended along the wire’s
edges [Kell 12a, Zhou 11].)

Here, we discuss how our results are modified when W and ξ become comparable. Our
discussion must be limited to εmin, because the energies of the fermionic states extend up
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2.5 p+ ip-Model with Disorder

to and into the bulk spectrum if W & ξ, so that the energy scales εtyp and εmax have lost
their meaning. For the case of a p + ip superconductor with a normal-metal stub, which
was discussed in Sec. 2.4, we have verified that our estimates for εmin remain qualitatively
valid up to W ∼ ξ. A numerical investigation similar to that of Fig. 2.7 of Sec. 2.5 shows
that the lowest fermionic subgap levels in a p + ip model with a rectangular ending are
only weakly dependent on disorder, and on the average decrease with a common factor
(1− cξ/l), although the value numerical constant c differs from that obtained in the limit
W � ξ of the main text. An example is shown in the top panel of Fig. 2.6 below.

2.5 p+ ip-Model with Disorder

Whereas strong disorder is known to destroy the topological superconducting phase in the
p + ip model in one dimension, weak disorder with mean free path l > ξ/2 preserves the
topological phase [Motr 01, Brou 11b]. In this section we investigate the effect of weak
disorder on the energies of the fermionic subgap states in a multichannel rectangular p+ip
model. Because the disorder is necessarily weak (strong disorder suppresses the topological
phase), the effect of disorder can be treated in perturbation theory.

Starting point of our analysis is the chiral-symmetric Hamiltonian H0, which has N
normalized Majorana bound states |ψ(j)〉, j = 1, 2, . . . , N at each end of the wire. We take
a rectangular geometry, with a wire end and hard-wall boundary conditions at x = 0, and
take the potential V (r) to be a Gaussian white noise potential with mean 〈V (r)〉 = 0 and
variance

〈V (r)V (r′)〉 =
v2

F

kFl
δ(r− r′), (2.31)

where l is the mean free path and vF = ~kF/m the Fermi velocity. In our perturbative
analysis we treat both the impurity potential V and the transverse superconducting order
as perturbations and write

H = H0 + U, (2.32)

where U = Hy + HV contains the superconducting correlations coupling to py as well as
the impurity potential.

The effective Hamiltonian Heff describing the splitting of the N Majorana states into
fermionic subgap states can be found using the degenerate perturbation theory of Kato
[Kato 49] and Bloch [Bloc 58]. (For additional details on this methodology see also Refs.
[Mess 81] and [Jord 08].) Defining P =

∑
|ψ(j)〉 〈ψ(j)| as the projector onto the zero-

energy subspace and Q = 1− P , we can then write using Bloch’s method

Heff = PUP − PU Q

H0
UP + PU

Q

H0
U
Q

H0
UP − 1

2

(
PU

Q

H2
0

UPUP + PUPU
Q

H2
0

UP

)
.

(2.33)

It is essential to note that the disorder potential V (r) alone cannot lift the degeneracy of
the Majorana end states at any order of the perturbation theory. This can be understood
directly from the observation that the disorder potential V (r) does not break the chiral
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2 Endstates in multichannel spinless p-wave superconducting wires

symmetry of the unperturbed Hamiltonian H0 that is responsible for the N -fold degen-
eracy. On the level of perturbation theory this can be understood immediately through
the particle-hole symmetry present in the Majorana bound states and the knowledge that
for each perturbative diagram that connects Majoranas through the positive energy bulk
states there is a canceling path through the negative energy states.

Keeping terms to first order in Hy and up to second order in HV only, we obtain

Heff = H(1) +H(2) +H(3a) −H(3b), (2.34)

with

H
(1)
jl = 〈ψ(j)|Hy |ψ(l)〉 ,

H
(2)
jl = −〈ψ(j)|Hy

Q

H0
HV +HV

Q

H0
Hy |ψ(l)〉 ,

H
(3a)
jl = 〈ψ(j)|Hy

Q

H0
HV

Q

H0
HV |ψ(l)〉+ permutations,

H
(3b)
jl =

1

2

∑
k

(V
(2)
jk H

(1)
kl +H

(1)
jk V

(2)
kl ), (2.35)

where

V
(2)
jl = 〈ψ(j)|HV

Q

H2
0

HV |ψ(l)〉 . (2.36)

The effective Hamiltonian Heff is antisymmetric, which implies that the diagonal elements
of all the above terms are zero. The first-order term H(1) describes how the transverse
superconducting correlations lift the degeneracy of the N Majorana modes in the absence
of disorder. The second-order term H(2) is linear in the disorder potential. Its elements
are random variables with zero mean and standard deviation that does not appreciably
change with ξ. The third order term contains two terms, the first of which is also a random
variable with zero mean and with a root-mean-square proportional ξ.

The term H(3b) contains corrections to the effective Hamiltonian arising from the renor-
malization and re-orthogonalization of wavefunctions at the first order of the perturbation

theory. Since this term is a weighted sum of first order elements H
(1)
jl , it is the only one of

the higher-order perturbation corrections that gives a systematic dependence of energies
on the disorder strengths. To see this in more detail, it is instructive to separate the
diagonal and the off-diagonal elements of V (2) in the expression for H(3b),

H
(3b)
jl =

1

2
(V

(2)
jj H

(1)
jl +H

(1)
jl V

(2)
ll )

+
1

2

∑
k 6=j

(V
(2)
jk H

(1)
kl +H

(1)
jk V

(2)
kl ). (2.37)

The first term here is the most important because the weights V
(2)
kk are positive definite

random variables. A simple scaling analysis predicts that these variables have both mean
and standard deviation proportional to the ratio ξ/l of coherence length and mean free
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2.6 Conclusions

path. This term effectively renormalizes the entire first order contribution, on average
driving the energies of the fermionic subgap states towards zero. The second term, which
contains the contribution from the off-diagonal elements of V (2), is less important because
the disorder potential here connects different Majorana modes. These matrix elements
are therefore randomly distributed with zero mean and a root mean square proportional
to the coherence length.

Motivated by these observations, we write the effective Hamiltonian in the form

H ≈ ∆′y

[(
1− cξ

l

)
H(1) +H ′

]
, (2.38)

where c = (l/Nξ)
∑

k V
(2)
kk is a number of order unity, and

H ′ = H(2) + (H(3a) − 1

2
{V (2) − cξ

l
,H(1)}). (2.39)

The correction H ′ has zero mean.
We have numerically diagonalized a lattice version of the Hamiltonian (2.2) in order to

provide numerical evidence for the applicability of the above arguments. Details of the
relationship between the continuum and lattice models can be found in Ref. [Kell 12a].
Results of the numerical simulations are shown in Fig. 2.7. For weak disorder, the per-
turbation H(2) dominates the response of the fermionic subgap states, and the energies
of the fermionic subgap states may both increase or decrease, depending on the specific
realization of the disorder potential. While large fluctuations persist, for stronger disorder
the quadratic-in-disorder perturbation H(3b) leads to a systematic decrease of the energies
of the fermionic subgap states, which is well described by a linear dependence on ξ/l,
consistent with the first term in Eq. (2.38).

2.6 Conclusions

In this chapter, we have investigated fermionic subgap states localized near the end of a
spinless p-wave superconducting wires for two terminations of the wire — a normal-metal
stub and a smooth confining potential — and in the presence of weak disorder. The
three scenarios give qualitatively different estimates for the energies of the subgap states.
However, they share the common feature that a wire with N transverse channels with a
width W that is much smaller than the superconducting coherence length ξ has int (N/2)
fermionic end states, all with energy much below the bulk excitation gap ∆. These states
appear for the topological phase (which has a Majorana fermion at the wire’s end), as well
as for the non-topological phase (which does not).

The appearance of low-energy fermionic end states poses an obstacle to the identification
of Majorana fermions through a measurement of the tunneling density of states at the
wire’s end, unless the energy resolution of the experiment is good enough to resolve the
splitting between the fermionic end states. The corresponding energy scale εmin scales
proportional to ∆/kFξ ∼ ∆2/µ in the most favorable scenario we considered (wire’s end
coupled to a small normal metal stub), which is the same dependence as the subgap
states in a vortex core [Caro 64]. The important difference with the subgap states in a
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2 Endstates in multichannel spinless p-wave superconducting wires

Figure 2.7: Distribution of energies of fermionic subgap end states in a spinless p-wave
superconductor with N = 7 channels (dots), as a function of ξ/l. For small
amounts of disorder the term H(2) dominates, pushing the subgap energies
up or down with equal probability. At stronger disorder the term in H(3b) ∝
ξ/l eventually dominates and pulls all energy levels towards zero. The red
lines indicate the mean calculated from the local distribution of eigenvalues.
The black lines, which are a linear fit to the mean values in red, share an
approximate common intercept at the horizontal axis at ξ/l = c−1 = 2.2.
Dotted grey lines indicate the unperturbed energies. Energies are measured
in units of ε0

typ = ∆W 2/ξ2. The lattice parameters used in the numerical

calculation correspond to kFW ≈ 23 and kF ξ ≈ 320.

vortex core is, however, that the number of fermionic end states is limited, so that there
exists a maximum energy εmax, whereas no such maximum energy exists in a vortex. Other
terminations, such as a rectangular end with or without disorder, or a smooth confinement
potential, give significantly smaller values for εmin, and, hence, lead to stricter requirements
for the energy resolution required to separate an eventual Majorana state from fermionic
end states.

The recent experiments that reported the possible observation of a Majorana fermion
involved semiconductor nanowires with proximity-induced superconductivity [Mour 12,
Das 12]. Effectively, the induced superconductivity in these wires is of spinless p-wave
type. However, it should be emphasized that this does not imply that the effective de-
scription of such a semiconductor wire with N transverse channels is a p + ip model
with the same number of transverse channels. Instead, only those channels in the semi-
conductor that are effectively spinless (i.e., spin polarized or helical, depending on the
relative strength of the applied magnetic field and the spin-orbit coupling) appear in the
effective description in terms of a p + ip model. (This latter distinction was overlooked
in Ref. [Tewa 12b].) Typically, this number is smaller than the number of transverse
channels in the semiconductor. In particular, the nanowires of the experiments of Refs.
[Mour 12, Das 12] are believed to be thin enough that they map to a single-channel p+ ip
model. Hence, we do not expect that the mechanism for the generation of fermionic end
states we consider applies to those experiments. However, it will apply to nanowires with
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2.6 Conclusions

a larger diameter, which we thus expect to exhibit a clustering of low-energy fermionic
states in the topologically trivial as well as the topologically nontrivial phases. In this
context, it is important to note that the condition that W � ξ does not a priori prevent
the applicability of our analysis to thicker wires, because the effective pairing potential ∆
may decrease with W for proximity-induced superconductivity in the limit of thick wires
(see Ref. [Duck 11] for an example in which ∆ ∝W−1).
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3 Reentrant topological phase transitions in
a disordered spinless superconducting wire

In a one-dimensional spinless p-wave superconductor with coherence length ξ, disorder
induces a phase transition between a topologically nontrivial phase and a trivial insulating
phase at the critical mean free path l = ξ/2. Here, we show that a multichannel spinless
p-wave superconductor goes through an alternation of topologically trivial and nontrivial
phases upon increasing the disorder strength, the number of phase transitions being equal
to the channel number N . The last phase transition, from a nontrivial phase into the
trivial phase, takes place at a mean free path l = ξ/(N + 1), parametrically smaller than
the critical mean free path in one dimension. Our result is valid in the limit that the wire
width W is much smaller than the superconducting coherence length ξ. The content of
this chapter has been published in Ref. [Ried 13].

3.1 Introduction

In one dimension, spinless superconductors appear in two topologically distinct phases. In
one of these phases, usually referred to as the “trivial phase” the excitation spectrum is
adiabatically connected to the ionic insulator. The other phase is “topologically nontriv-
ial”. Topologically protected zero-energy bound states appear at junctions between the
trivial and nontrivial phases [Read 00, Kita 01]. These bound states are particle-hole sym-
metric and two of these combine to form a single fermionic excitation, which is why they
are referred to as “Majorana bound states” [Wilc 09, Been 13b]. Interest in these systems
has peaked after recent proposals to construct topological superconductors out of hybrid
structures involving standard BCS superconductors and semiconductors [Oreg 10, Lutc 10]
and reports of their subsequent experimental realization [Mour 12, Das 12].

The Pauli principle enforces that spinless superconducting correlations are odd in mo-
mentum. In a one-dimensional setting, this means that they must be of p-wave type.
Unlike for s-wave superconductors, where the Anderson theorem protects the supercon-
ducting correlations against impurity scattering [Ande 59], backscattering by impurities
suppresses p-wave superconducting order. In a one-dimensional wire any small amount
of disorder already leads to subgap states at arbitrarily low energies, but it takes a finite
amount of disorder to drive the system from the nontrivial superconducting phase into the
trivial phase [Motr 01, Brou 11b]. For short-range disorder with normal-state mean free
path l, the transition between these phases takes place if [Brou 11b]

l =
ξ

2
, (3.1)

where ξ is the superconductor coherence length. Here and below we assume that the
superconductivity is weak, ξ much larger than Fermi wavelength λF.
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3 Reentrant topological phase transitions in a disordered spinless superconducting wire

The one-dimensional description applies only if the system width W does not exceed
the Fermi wavelength λF. If W ≥ λF, the normal-state has N = int (2W/λF) > 1
propagating channels at the Fermi level, and without disorder the topologically nontrivial
phase exists if N is odd, but not if N is even [Wimm 10, Pott 10, Lutc 11, Stan 11,
Zhou 11, Kell 12a]. Numerical simulations and weakly-disordered perturbation theory
indicate that the topological phases are stable against weak disorder in the multichannel
case, too [Ried 12, Pott 11a, Pott 11b].

It is the purpose of this chapter to provide an analytical theory of the effect of disorder
on the topological phase in the N -channel p-wave superconductor. Our main result is that
increasing the disorder strength drives the system through a sequence of N topological
phase transitions, taking place at

l =
nξ

N + 1
, n = 1, 2, . . . , N. (3.2)

In particular, a topologically nontrivial phase persists for disorder strengths up to l =
ξ/(N + 1), significantly larger than the critical disorder strength (3.1) at which the topo-
logical phase transition takes place in one dimension. Our analytical theory, as well as the
precise location of the phase transitions given in Eq. (3.2), is valid in the limit of thin wires,
width W � ξ. We have verified numerically that the alternation of topological phases
persists for wire widths up to W ∼ ξ. Note that the existence of N phase transitions is
consistent with the known results for the weak disorder limit l → ∞ (nontrivial phase if
N is odd, and trivial phase if N is even), as well as the strong disorder limit l ↓ 0 (system
is in the trivial phase).

3.2 Multichannel p+ ip Superconductor

For the derivation of Eq. (3.2) we consider a spinless p-wave superconducting wire of length
L, width W , and chemical potential µ > 0 coupled to ideal normal-metal leads at its two
ends. The Bogoliubov-de Gennes Hamiltonian of the system reads

H =

(
p2

2m
+ V (x, y)− µ

)
σz +

1

2

{
∆′x, px

}
σx + ∆′ypyσy, (3.3)

where σx, σy, and σz are Pauli matrices in particle-hole space. The Hamiltonian (3.3)
has particle-hole symmetry, σxHσx = −H∗, which places it in the (Altland-Zirnbauer)
symmetry class D [Altl 97]. The superconductor occupies the volume 0 < x < L, and the
two leads are at x < 0 and x > L respectively, see Fig. 3.1 (inset). The superconducting
order parameters ∆′x and ∆′y are nonzero for 0 < x < L only. The superconducting
coherence length is

ξ = ~/m∆′x. (3.4)

Although ∆′x = ∆′y for an isotropic superconductor, we have chosen to use different sym-
bols in order to underline the very different roles of these two parameters in the calculation
that follows. We assume that the superconductivity is proximity-induced, so that we can
treat ∆′x and ∆′y as externally-imposed parameters without self-consistency requirements.
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3.3 Mapping to Disordered Metal at ε = 0

The impurity potential has zero average and short-range fluctuations described by the
Gaussian white noise correlator

〈V (x, y)V (x′, y′)〉 = γδ(x− x′)δ(y − y′) (3.5)

and is zero in the leads.
We determine the topological phase from the zero-energy reflection matrix r of the

superconducting wire [Fulg 11]. In the particle-hole notation, the reflection matrix r for
quasiparticles incident from the left takes the form

r =

(
ree reh

rhe rhh

)
, (3.6)

where particle-hole symmetry imposes that rhh = r∗ee and rhe = r∗eh at zero energy. Follow-
ing Fulga et al., the topological phase can be calculated from the determinant Q = det r
[Fulg 11]: The topologically nontrivial phase has Q = −1, whereas the topologically triv-
ial phase has Q = 1. (Note that particle-hole symmetry requires det r to be real; As no
extended quasiparticle states exist in the superconductor away from the critical points, r
must be unitary and hence |det r| = 1.)

In the thin-wire limit W � ξ the transverse pairing ∆′y may be treated perturbatively
[Kell 12a]. Without the transverse pairing, the Bogoliubov-de Gennes Hamiltonian H has
an additional chiral symmetry σyHσy = −H [Tewa 12b], which places it in the symmetry
class BD I. With the chiral symmetry, the topological superconducting phases are char-
acterized by an integer number Qchiral. The topological quantum number Q is related to
Qchiral as

Q = (−1)Qchiral . (3.7)

The absolute value |Qchiral| can be interpreted as the number of Majorana bound states
at the end of the wire, when the normal metal leads are replaced by insulating ends
[Fulg 11]. The quantum number Qchiral can be calculated from the zero-energy electron-
holes reflection matrix reh as [Fulg 11]

Qchiral = −i lim
L→∞

tr reh. (3.8)

The limit L→∞ is taken in order to ensure that the reflection matrix r is unitary.

3.3 Mapping to Disordered Metal at ε = 0

With the chiral symmetry present it is possible to express the zero-energy reflection ma-
trix r in terms of the system’s normal-state scattering matrix at a slightly renormalized
chemical potential µ̃ [Adag 14]. To this end, we first rotate the Hamiltonian (3.3) to the
Majorana basis

H̃ = e−iπσx/4Heiπσx/4

= −
(
p2

2m
− µ+ V

)
σy + ∆′xpxσx. (3.9)
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3 Reentrant topological phase transitions in a disordered spinless superconducting wire

At zero energy, the eigenvalue equation for H̃ consists of two decoupled equations describ-
ing particles that are exposed to an imaginary “gauge field” of magnitude ~/ξ and pointing
in opposite directions for the two equations [Hata 96, Brou 97]. This “gauge field” may
be transformed away by the (non-unitary) transformation

ψ(x, y)→ ψ̃±(x, y) =


ψ(x, y) if x < 0,

ψ(x, y)e
±x
ξ if 0 < x < L,

ψ(x, y)e±L/ξ if x > L.

(3.10)

The wavefunctions ψ̃±(x, y) satisfy the standard Schrödinger equation for the zero-energy
wavefunction of a disordered wire,(

p2

2m
− µ̃+ V

)
ψ̃±(x, y) = 0 , (3.11)

where µ̃ = µ+ ~∆′x/2ξ.
After the gauge transformation, the wire is described as a disordered normal metal

wire, whose scattering matrix, S̃, properties are well known, see Ref. [Been 97]. It can be
written in a polar decomposition

S̃ =

(
r̃ t̃′

t̃ r̃′

)
=

(
U 0
0 V

)(
−
√

1− τ̃
√
τ̃√

τ̃
√

1− τ̃

)(
UT 0
0 V T

)
, (3.12)

with the N × N unitary matrices U , V and τ̃ = diag (τ̃1, τ̃2, . . . , τ̃n). The asymptotic
probability distribution of the eigenvalues τ̃n in the limit of large L is well studied in
the literature [Been 97]. The result is best parameterized in terms of the “Lyapunov
exponents” τ̃n = cosh−2(xnL), which are self-averaging for large L, with mean

〈xn〉 =
n

(N + 1)l
, n = 1, 2, . . . , N, (3.13)

and small fluctuations of order 1/
√

(N + 1)lL.

3.4 Scattering Matrix in class BDI and Qchiral

Transforming back to the basis of the original Hamiltonian (3.3) allows us to express the
reflection matrix r in terms of the reflection matrix r̃ (for particles incident from the left)
and the transmission matrix t̃′ (for particles incident from the right) of the normal-state
scattering problem specified by Eq. (3.11), which can be used to calculate the topological
quantum number Qchiral, see Eq. 3.8. We first sketch the derivation of the full scattering
matrix.

The general solution to the Hamiltonian in Equ. 3.9 is composed of plane waves in the
leads that are connected with each other by the wavefunctions in the wire

ψn(x) =
1√
2



(
ae
bh

)
eiknx +

(
be
ah

)
e−iknx x ≤ 0(

b′e
a′h

)
eiknx +

(
a′e
b′h

)
e−iknx x ≥ L

ψe(x)

(
1
0

)
+ ψh(x)

(
0
1

)
0 ≤ x ≤ L

. (3.14)
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3.4 Scattering Matrix in class BDI and Qchiral

The scattering matrix relates the coefficients of the incoming waves ae/h, a
′
e/h to the ones

of the outgoing waves be/h, b
′
e/h.

The basis rotation e−iπσx/4 that is applied to the p-wave Hamiltonian corresponds to
a basis change from (1, 0), (0, 1) to (1, i), (i, 1). At zero energy the new basis describes
two different decoupled excitations, that are denoted as c±, c

′
± and de/h, d

′
e/h, where the

subscript ± indicates plane waves traveling to the right/left. From the basis change the
new coefficients c, d are uniquely related to the old ones a, b.

The gauge transformation defined in Eq. 3.10 amplifies/suppresses exponentially the
excitations c/d when passing from the left to the right lead. They can be related to each
other with components of the normal metal scattering matrix S̃ in Eq. 3.12 accounting for
the exponential factor (

c−
c′+

)
=

(
r̃ t̃′e−L/ξ

t̃eL/ξ r̃′

)(
c+

c′−

)
, (3.15)(

d−
d′+

)
=

(
r̃ t̃′eL/ξ

t̃e−L/ξ r̃′

)(
d+

d′−

)
. (3.16)

Using these results we can transform back to the original electron-holes basis and find
for the scattering matrix S of the class BDI-superconductor

S =

(
r t′

t r′

)
=


U 0 0 0
0 U∗ 0 0
0 0 V 0
0 0 0 V ∗



−ρ ρ̄ τ τ̄
−ρ̄ −ρ −τ̄ τ
τ τ̄ ρ −ρ̄
−τ̄ τ ρ̄ ρ



UT 0 0 0
0 U † 0 0
0 0 V T 0
0 0 0 V †

 ,

(3.17)

where we abbreviated

ρ =
[
1 + τ̃ z2

−
]−1√

1− τ̃

ρ̄ = i
[
1 + τ̃ z2

−
]−1

z̃+z−τ

τ =
[
1 + τ̃ z2

−
]−1

z+

√
τ̃

τ̄ = i
[
1 + τ̃ z2

−
]−1

z−
√
τ̃(1− τ̃) , (3.18)

with z+ = cosh(L/ξ) and z− = sinh(L/ξ).
Writing out explicitly the normal reflection part ree and the electron-hole reflection part

reh, we find

ree = [1 + t̃′t̃′† sinh2(L/ξ)]−1r̃,

reh = i sinh(L/ξ) cosh(L/ξ)[1 + t̃′t̃′† sinh2(L/ξ)]−1t̃′t̃′† . (3.19)

Returning to Eq. (3.8), we find that topological number Qchiral can be expressed as a
sum over the eigenvalues τ̃n(L) of t̃′t̃′†,

Qchiral = lim
L→∞

N∑
n=1

sinh(L/ξ) cosh(L/ξ)τ̃n(L)

1 + τ̃n(L) sinh2(L/ξ)
. (3.20)
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3 Reentrant topological phase transitions in a disordered spinless superconducting wire

The mean free path in the normal state l = λF~2v2
FαN/(2γ) is calculated from the reflection

matrix for a short segment of length dL as tr
(
reer

†
ee

)
= NdL/l, which is obtained in the

first order Born approximation. αN is a numerical factor that depends on the width W
and reads

αN = N

[
3

2

N∑
n=1

(
(WkF /π)2 − n2

)−1

+2
N∑

n<m=1

√
((WkF /π)2 − n2)−1((WkF /π)2 − n2)−1

]−1

. (3.21)

Substituting this result into Eq. (3.20), we find that

Qchiral =
N∑
n=1

Θ

[
1− nξ

(N + 1)l

]
, (3.22)

where Θ(z) = 0 if z < 0 and 1 otherwise. Hence, upon increasing the disorder strength,
the topological quantum number Qchiral stepwise decreases from Qchiral = N in the limit
of zero disorder to Qchiral = 0 in the strong disorder limit. The transitions take place at
the critical disorder strengths of Eq. (3.2). The topological quantum number Q is given
by Eq. (3.7).

3.5 Topological Phases for Disordered p+ ip Superconducting
Wire

When the transverse coupling proportional to ∆′y is taken into account, the chiral sym-
metry is broken, and the topological quantum number Qchiral is no longer meaningful.
The quantum number Q remains well defined, however. Since the effect of ∆′y is small
if W � ξ [Kell 12a], the value of Q remains unchanged upon inclusion of the transverse
coupling. Upon increasing the disorder strength, we therefore expect alternation between
topological trivial (Q = 1) and nontrivial (Q = −1) phases until, in the limit of strong
disorder, l < ξ/(N + 1), the system remains in the trivial state. As long as W � ξ, the
transition points should exhibit only a weak dependence on the transverse coupling ∆′y.
In fact, not only the form of the phase diagram does not change upon breaking the chiral
symmetry, also the properties of the phase transitions are expected to remain unaffected,
a phenomenon known as “superuniversality” [Gruz 05].

Alternatively (and equivalently), for a superconductor wire with hard-wall ends, the
transverse coupling pairwise gaps out the Qchiral Majorana bound states at each end of
the superconducting wire, leaving behind a single Majorana state if and only if Qchiral

is odd. Since Qchiral decreases stepwise from N to zero upon increasing the disorder
strength, the number of Majorana bound states at the end of the wire with ∆′y taken into
account alternates between 0 and 1, the transitions taking place precisely at the disorder
strengths given in Eq. (3.2). Since the presence or absence of a single Majorana fermion
is topologically protected, inclusion of the transverse coupling ∆′ypy for sufficiently small
W/ξ does not affect these transitions or the transition points.
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3.6 Numerical analysis

For broader wires, W ∼ ξ, the transverse coupling can not be treated perturbatively,
and the results for the chiral limit ∆′y → 0 at best have qualitative validity if the transverse
coupling is included. In this respect, we note that the topological phase transitions no
longer take place at weak disorder l� λF if W ∼ ξ. This can be seen from Eq. (3.2) upon
substituting W ∼ (N + 1)λF, which gives l ∼ nλF. Equation (3.13), which was essential
for establishing the transition points, is derived under the assumption of weak disorder,
l� λF [Been 97], and no longer has quantitative validity if this condition is violated.

3.6 Numerical analysis

In order to further support our conclusions and to investigate the regime W ∼ ξ, we
have performed numerical simulations of the Bogoliubov-de Gennes Hamiltonian (3.3).
We calculate the reflection matrix r by concatenating short segments of length δL� λF.
We refer to Ref. [Brou 11a] for a description of the numerical method. The scattering
matrix of a short segment is calculated to lowest order Born approximation. For technical
reasons the numerical data were obtained by varying the magnitude of the superconducting
parameters ∆′x and ∆′y and keeping a fixed mean free path l.

First, we verify our analytical results in the chiral limit, ∆′y = 0. Figure 3.1 shows the
topological numberQchiral as a function of the ratio ξ/l for a wire withN = 9 channels. The
figure clearly shows the stepwise decrease of Qchiral upon increasing the disorder strength
in comparison to the superconducting order. For coherence lengths of the order of the
localization length (N + 1)l the transition points closely follow the theoretical prediction
(3.2). We attribute the quantitative deviation of the transitions at large Qchiral, when
ξ ∼ l, where the relevant Lyapunov exponent xn is comparable to the inverse mean free
path, to a failure of the estimate (3.13) in this regime [Been 97].

The effect of the transverse coupling on the phase transitions is shown in Fig. 3.2. Both
panels of Fig. 3.2 show the value of Q = det r as a function of (N + 1)l/ξ and of ∆′y/∆

′
x at

a fixed realization of the random potential V (i.e., at a fixed value of the mean free path
l). The top panel of this figure shows representative numerial data for a weakly disordered
wire (λF/l = 0.011), where all transitions take place within the limit W � ξ. As expected,
the sequence of topologically trivial and nontrivial phases does not significantly depend
on the transverse coupling ∆′y in this case. The bottom panel shows data for strong
disorder (λF/l = 0.43), where the condition W � ξ is no longer satisfied for small values
of ξ/l. The disorder strength is chosen such that the condition W ' ξ is met roughly at
the 6th transition. For the necessarily finite wire lengths L in the numerical simulations,
finite-size effects lead to a blurring of the topological phase transitions. The occurrence of
values of det r different from −1 or 1 signals a breakdown of the insulating behavior of the
superconductor. This behavior is consistent with Ref. [Brou 03], where it was found that
for large N a spinless superconducting wire enters a quasi-critical region with algebraic
instead of exponentially decaying transmission [Brou 00], which persists up to wire lengths
L much larger than the normal-state localization length and out of range of our numerical
simulations. It is also consistent with the approach of the two-dimensional limit, in which
the one-dimensional thermal insulator transitions into a two-dimensional thermal metal
[Medv 10].
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3 Reentrant topological phase transitions in a disordered spinless superconducting wire
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Figure 3.1: Topological number Qchiral for a wire with width 2W/λF = 9.5 such that the
channel number is N = 9, as a function of the ratio ξ/l of disorder strength
and induced superconductivity. Data shown are for a single disorder realiza-
tion with λF/l = 0.011 and wire length L/l ∼ 2100. The red curve shows
the analytical prediction (3.22) and the blue one the numerical data. Inset:
Schematic picture of a disordered superconducting wire with two ideal normal-
metal leads.

3.7 Conclusions

In conclusion, we investigated the effect of disorder on the topological phase in a multi-
channel p-wave superconducting wire. From an analytical study in the limit of thin wires
W � ξ, we derived a series of topological phases transitions in which the system alternates
between trivial and nontrivial phases. A numerical analysis shows that this holds true also
for thicker wire W . ξ
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3.7 Conclusions
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Figure 3.2: Phase diagrams showing the topological number Q = det(r) of a wire with
2W/λF = 9.5 as a function of the ratio l/ξ and the transverse coupling ∆′y in
a spinless superconducting wire witih N = 9 channels in the limit of weak and
strong disorder (panel a) and b), resp.). The disorder strength is λF/l = 0.011
(panel a)) and λF/l = 0.43 (panel b)). The data were obtained for a wire
length L/l = 150 (panel a)) and L/l ∼ 770 (panel b)).
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4 Density of states at disorder-induced
phase transitions in a multichannel
Majorana wire

An N -channel spinless p-wave superconducting wire is known to go through a series of N
topological phase transitions upon increasing the disorder strength. Here, we show that at
each of those transitions the density of states shows a Dyson singularity ν(ε) ∝ ε−1| ln ε|−3,
whereas ν(ε) ∝ ε|α|−1 has a power-law singularity for small energies ε away from the critical
points. Using the concept of “superuniversality” introduced in Ref. [Gruz 05], we are able
to relate the exponent α to the wire’s transport properties at zero energy and, hence, to
the mean free path l and the superconducting coherence length ξ. The content of this
chapter is published in Ref. [Ried 14].

4.1 Introduction

Though stable against moderate amounts of disorder, topological phases are typically
susceptible to strong disorder. This is particularly true for topological phases in one and
two dimensions, for which strong disorder eventually leads to a localization of all electronic
states. However, there are examples in which the effect of disorder may not be simply
the transition from the topological into a topologically trivial localized phase, but more
diverse physics appears.

The most prominent such example is the quantum Hall effect where disorder is an
essential element needed to stabilize the topological phase and, hence, to explain the
quantization of the conductance.[Chal 99] In the context of time-reversal invariant topo-
logical insulators, an initially topologically trivial, metallic system may be driven into
a nontrivial phase by disorder, as it happens for topological Anderson insulators.[Li 09,
Grot 09, Guo 10b, Guo 10a] Also, when disorder preserves certain symmetries on the av-
erage, the disorder itself may drive a topological insulator into a new type of topological
phase.[Nomu 08, Ring 12, Fu 12, Fulg 14] Topological superconductors, finally, can dis-
play thermal metal [Fulg 12] or glassy phases [Crep 14] or enter a topologically nontrivial
phase upon increasing disorder strength.[Adag 14]

An example where disorder leads to a particularly rich phase diagram is that of a
multichannel spinless superconducting wire. In Ref. [Ried 13], the authors, together with
Adagideli, showed that upon increasing the disorder strength such a wire goes through
a series of topological phase transitions, alternating between states with and without a
Majorana bound state at the wire’s end.[Ried 13] For a wire with N transverse channels,
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4 Density of states at disorder-induced phase transitions in a multichannel Majorana
wire

there are N such transitions, which take place at mean-free path

l
(n)
crit =

nξ

N + 1
, n = 1, 2, . . . , N, (4.1)

where ξ the superconducting coherence length. Note that multichannel disordered wires
with chiral symmetry, but without superconducting pairing, are also known to exhibit
series of topological phase transitions as a function of the disorder strength, see Refs.
[Brou 98, Brou 00].

Whereas Ref. [Ried 13] identified the location of the topological phase transitions, it did
not discuss the system’s spectral and transport properties in the vicinity of the critical
point. A theoretical framework in which this question can be addressed was provided by
Gruzberg, Read, and Vishveshwara, [Gruz 05] who argued that there exists a “superuni-
versality”, according to which all disorder-induced critical points in (quasi-)one dimension
are of the same type as the critical point in the one-dimensional non-superconducting chi-
ral class. For the chiral class, at the critical point the density of states displays a Dyson
singularity [Dyso 53] ν(ε) ∝ ε−1| ln ε|−3, whereas away from the transition, a power law
ν(ε) ∝ ε|α|−1 is expected as ε → 0, where α is a dimensionless parameter that measures
the distance to the critical point. The statistics of wavefunctions and transmission prob-
abilities (in the case of a system coupled to source and drain leads) is parameterized by
the same parameter α. The density-of-states singularity and the associated wavefunc-
tion or transmission statistics occur in a wide range of physical systems, including lattice
models with random hopping, [Theo 76, Egga 78] quantum XY chains, [Fish 94, Fish 95]
narrow-gap semiconductors,[Ovch 77] dimerized polymer chains, [Su 79, Jack 83, Rice 82]
and single-channel spinless superconductors. [Motr 01, Brou 11a, Gruz 05] Following the
reasoning of Ref. [Gruz 05] the same critical behavior is expected to apply to the multi-
channel Majorana wire. It remains to express the non-universal dimensionless parameter
α in terms of the model parameters, the mean free path l and the coherence length ξ.

4.2 Multichannel Majorana wire

We consider a disordered spinless p-wave superconducting wire in two dimensions, in a
wire geometry with width W and length L→∞. The Hamiltonian for such a system has
the form

H =

[
p2

2m
+ V (x, y)− µ

]
σz + ∆′xpxσx + ∆′ypyσy, (4.2)

where 0 < x < L and 0 < y < W are longitudinal and transverse coordinates, respectively,
the matrices σx,y,z are Pauli matrices in electron/hole space, µ is the chemical potential, m
the electron mass, ∆′x,y are the p-wave superconducting pairing terms in the longitudinal
and transversal directions, and V (x, y) is the disorder potential, which is characterized
through the elastic mean free path l. The number of channels N is defined as the number
of propagating modes at the Fermi level in the absence of superconductivity, in particular
N = int (2W/λF), where λF is the Fermi wavelength. The model (4.2) is an effective
low-energy description of a system in which the superconducting correlations come from
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4.2 Multichannel Majorana wire

proximity coupling to a nearby s-wave spinfull superconductor, [Fu 08, Lutc 10, Oreg 10,
Cook 11, Duck 11, Ried 12] so that no self-consistency condition for ∆′x and ∆′y needs to
be accounted for. The Hamiltonian H of Eq. (4.2) has no other symmetries than particle-
hole symmetry, implying that the system is in symmetry class “D” according the Cartan
classification. [Altl 97, Ryu 10, Ever 08]

For thin wires W � ξ, with the superconducting coherence length ξ = ~/m∆′x, the
term ∆′ypyσy only has a small effect on the wavefunctions and the spectrum and can
be treated in perturbation theory. Without it, H obeys the chiral symmetry σyHσy =
−H. [Tewa 12a, Kell 12a] In the Cartan classification this corresponds to symmetry class
“BDI”. Since the presence of the chiral symmetry significantly simplifies the calculation
of the Majorana end states, Ref. [Ried 13] first analyzes the model (4.2) without the term
∆′ypyσy. Here we take the same approach.

In the absence of disorder, and without the term ∆′ypyσy, there are N Majorana bound
states at each end of the wire, with a wavefunction that decays exponentially with decay
length ξ upon moving away from the wire’s end. With disorder, but still in symmetry class
“BDI”, a suitable basis of transverse channels can be chosen, such that the wavefunction
envelope of the nth Majorana state at the wire’s left end decays as [Ried 13]

ψ
(n)
L/R(x) ∝ e−x/ξ+xn/(N+1)l, n = 1, 2, . . . , N, (4.3)

where l is the mean free path for scattering from the disorder potential V . At the critical

disorder strengths l
(n)
crit the wavefunction of the nth Majorana end state becomes delocal-

ized, indicating a (topological) phase transition. At the phase transition, the nth Majorana
end states at the two ends of the wire hybridize and annihilate. Increasing the disorder
strength therefore leads to a series of N topological phase transitions in which the N
Majorana bound states at the wire’s end disappear one by one until the system reaches
the topologically trivial state without Majorana end states.

The effect of including the term ∆′ypyσy is that Majorana end states at the same end of
the wire can annihilate pairwise. Hence, one Majorana end state remains if the number
of Majorana end states before including ∆′ypyσy was odd, and no Majorana end state
remains if the number of Majorana end states was even. Thus, for the full Hamiltonian
(4.2), the number of Majorana end states alternates between zero and one upon increasing
the disorder strength, with the transitions approximately (with corrections that vanish in
the limit W/ξ → 0) taking place at the critical disorder strengths specified in Eq. (4.1).

In Ref. [Ried 13] this conclusion was reached by attaching source and drain leads to
the Majorana wire with Hamiltonian (4.2) and formally mapping the scattering matrix of
this problem to that of the disordered wire in the normal state (at a slightly renormalized
chemical potential). In this mapping, the total quasiparticle conductance T of the Ma-
jorana wire in the limit L � ξ, Nl can be easily expressed in terms of the transmission
eigenvalues τn of the disordered wire in the normal state

T =
N∑
n=1

(τn/2)e2L/ξ

[1 + (τn/4)e2L/ξ]2
. (4.4)

The probability distribution of the transmission eigenvalues τn for large L and weak dis-
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order is known in the literature, [Been 97]

〈log τn〉 = − 2nL

(N + 1)l
, var log τn =

4L

(N + 1)l
. (4.5)

For a mean free path l near the critical value l
(n)
crit = nξ/(N + 1), the quasiparticle trans-

mission is dominated by the nth transmission eigenvalue τn. Using the parameterization

T = 1/ cosh2 z, (4.6)

one finds

〈z〉 =

(
l
(n)
crit

ξ
− l

ξ

)
L

l
, var z =

L

(N + 1)l
. (4.7)

Indeed, at the critical disorder strength (and at the critical disorder strength only) quasi-
particle wavefunctions are delocalized throughout the sample. [Akhm 11]

The mapping between the scattering matrices of the disordered wire with and without
superconductivity that was used in Ref. [Ried 13] exists for zero energy only. For that
reason, Ref. [Ried 13] could not access the density of states ν(ε) of the multichannel
Majorana wire in the vicinity of the critical points. We now show how the density of
states can be obtained from the transmission statistics of Eq. (4.6) and (4.7) using the
“superuniversality” argument of Ref. [Gruz 05].

4.3 Mapping to one-dimensional model with chiral symmetry

According to the “superuniversality” argument of Gruzberg, Read, and Vishveshwara,
[Gruz 05] the quasiparticle transmission distribution T and the density of states ν(ε) in
the vicinity of the critical point should be the same as that of a one-dimensional disordered
wire in the chiral symmetry class. (In this respect, the three chiral classes BDI, AIII, and
CII are interchangeable.) Such systems have been analyzed abundantly in the literature,
see, e.g., Refs. [Comt 95, Brou 98, Brou 01, Theo 76, Egga 78, Ston 81, Tito 01], and we
here summarize the main results of relevance to the present problem.

A prototype of the disordered wire with chiral symmetry in one dimension is described
by the Hamiltonian [Comt 95]

Hchiral = −vFpσz + w(x)σx, (4.8)

where vF is the Fermi velocity and w is a random potential with mean 〈w(x)〉 = (~vFα)/(2l̄)
and variance 〈w(x)w(x′)〉 = (~2v2

F/l̄)δ(x − x′). The parameter α measures the distance
to the critical point; l̄ is the mean free path in this system. In the vicinity of the critical
point, the transmission T = 1/ cosh2 z of such a disordered one-dimensional wire of length
L, coupled to ideal source and drain leads has a distribution given by

〈z〉 = α
L

2l̄
, var z =

L

l̄
. (4.9)
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4.3 Mapping to one-dimensional model with chiral symmetry

The density of states ν(ε) has a singularity at zero energy, which is best described through
the integrated density of states

N(ε) =

∫ ε

0
ν(ε) . (4.10)

An expression for the density of states can be derived by adapting existing calculations
of the density of states in a wire with chiral symmetry at the critical point α = 0. Here
we take Ref. [Tito 01] as our starting point, where the density of states was calculated
from the stationary distribution P (x) of the reflection eigenvalue R = tanh2(x) of a wire
with Hamiltonian (4.8), evaluated at the imaginary energy ε = −iω, ω > 0, and in the
limit of a large wire length L. In Ref. [Tito 01] this distribution is found as the stationary
solution of the Fokker-Planck equation

∂P (x)

∂L
=

∂

∂x

[
ω

vF
sinh 2x+

1

2l̄
J
∂

∂x
J−1

]
P (x), (4.11)

where J is a Jacobian which, for the case of a one-dimensional wire with chiral symmetry
takes the value J = 1 at the critical point α = 0. Solving Eq. (4.11) gives the stationary
solution

P (x) =
1

Z(a)
|J |e−a cosh 2x, (4.12)

with a = ωl/~vF and Z(a) a normalization factor. The key result of Ref. [Tito 01] is
a general relation between the integrated density of states N(ε) and this normalization
factor,

N(ε) =
L

πl̄
Im

[
a
∂

∂a
lnZ(a)

]
a→−il̄ε/~vF

. (4.13)

The calculation of Ref. [Tito 01] is easily generalized to the case α 6= 0: Nonzero α gives
rise to a constant drift term in the Fokker-Planck equation (4.11) [Brou 98] or, equivalently,
an exponential factor in the Jacobian J ,

J = e−αx. (4.14)

The stationary solution and the integrated density of states are then obtained in the same
way as described above. One finds

Z(a) = Kα/2(a), (4.15)

where Kν(x) is the Bessel function of the second kind. from which follows

N(ε) =
L

2l̄|Kα/2(2iεvF/~l̄)|2
. (4.16)

For α = 0 Eq. (4.16) reproduces the Dyson singularity ν(ε) ∝ 1/[ε ln3(εvF/~l̄)], whereas
for nonzero α one has the asymptotic dependence ν(ε) ∝ |ε||α|−1. Near the critical point
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α = 0 Eq. (4.16) is to be preferred over the asymptotic power-law dependence, because it
applies to a much wider range of energies than the simple asymptotic power law ν(ε) ∝
|ε||α|−1.

Comparing Eqs. (4.7) and (4.9), one immediately identifies

αn =
2(N + 1)

ξ

(
l
(n)
crit − l

)
, l̄ = (N + 1)l, (4.17)

as the dimensionless distance to the nth critical point for the disordered multichannel
Majorana wire, and the equivalent mean free path in the model (4.8), respectively. The
density of states and transmission statistics are governed by the distance to the closest
critical point,

|α| =
N

min
n=1
|αn|. (4.18)

4.4 Numerics

We now compare our predictions to numerical simulations of a disordered multichannel
Majorana wire. For technical reasons, we first present numerical calculations for a slight
variation of the model (4.2), in which the Majorana wire is represented by N coupled
one-dimensional channels with Hamiltonian

Hmn = δmn

[(
− ~2

2m
∂2
x − µ

)
σz − i∆′x∂xσx

]
+ umn(x)σz, (4.19)

with a disorder term umn(x) that has zero mean and variance

〈uij(x)ukl(x
′)〉 =

(~vF)2

l(N + 1)
δ(x− x′) (δikδjl + δilδjk) , (4.20)

l being the mean free path. The technical advantage of Eq. (4.19) is that the normal-
state distribution (4.5) of the transmission eigenvalues also holds up to moderately strong
disorder strengths, so that numerical calculations can be performed for (comparatively)
smaller system sizes. The Hamiltonian (4.19) anticommutes with σy, i.e., it is in symmetry
class BDI.

In order to determine the density of states, we couple one end of the N -channel wire to
an ideal lead, keeping the other end closed. Following the method of Ref. [Brou 11a] we
calculate the wire’s scattering matrix S(ε, L) as a function of the length L of the disordered
wire. The integrated density of states N(ε) can be obtained by numerically integrating
the relation

∂N(ε)

∂L
=

1

2π
Im

∂ log detS(ε)

∂L
. (4.21)

The integrated density of states obtained this way can be fitted to the functional form
(4.16), which allows us to obtain the dimensionless parameter α as a function of the
disorder strength. Results for Majorana wires with N = 1 and N = 3 are shown in
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Figure 4.1: Dimensionless distance to the critical point as a function of the ratio ξ/l of
superconducting coherence length and mean free path. The red dots show the
exponent α obtained by fitting the numerically computed integrated density of
states to the functional form in Equation (4.16) for a single-channel wire (top)
and a three-channel wire (bottom). The dashed curve is the exponent expected
from the mapping onto a single channel hopping model, see Eq. (4.18). Inset:
Example of a fit of the integrated density of states normalized by the wire
length as a function of energy. The squares show the numerically obtained
data and the continuous curve is the analytical result, Eq. (4.16), using the
value α = 0.0906 obtained from the fitting procedure. The value of l̄ can be
obtained directly from the model parameters and need not be fitted, see Eqs.
(4.17) and (4.20).

Fig. 4.1. The agreement is excellent and holds throughout the entire range of disorder
strengths, including points far away from the critical disorder strengths.

We have also performed numerical calculations for the two-dimensional Hamiltonian
(4.2) in a strip geometry. We choose the two pairing terms ∆′x and ∆′y to be equal. Since
such a system is no longer in class BDI, we expect slight deviations in the quantitative
estimates of the critical disorder strength and the dimensionless distance to the critical
point. The numerical results for a wire with N = 2 indeed show a slight deviation of the
critical disorder strength at the second phase transition, although, within the accuracy of
our numerical calculations, no deviation for the dimensionless distance α can be discerned,
see Fig 4.2.

4.5 Conclusions

We have investigated the density of states of a multichannel spinless superconducting
wire, as it goes through a series of disorder-driven topological phase transitions. Using the
concept of “superuniversality” of Gruzberg, Read, and Vishveshwara [Gruz 05], we could
establish a relation between the known quasiparticle transmission statistics at zero energy
and the singular contribution to the density of states at finite energies. A comparison with
a numerical solution of the problem is in excellent agreement with these analytical results.
Our results are a powerful demonstration of the concept of superuniversality, showing that
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4 Density of states at disorder-induced phase transitions in a multichannel Majorana
wire
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Figure 4.2: Dimensionless distance α to the critical point for the model (4.2) with ∆′x = ∆′y
and N = 2 transverse channels. The dashed line is the analytical prediction
(4.18). The continuous line is the analytical prediction Eq. (4.17) corrected for
the slight shift of the critical disorder strength at the second phase transition

by inserting the value of l
(n)
crit observed in the numerics.

in one dimension, as well as in quasi one dimension, the scaling relations for the density
of states remain valid across boundaries between symmetry classes.
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Topological phases of matter have attracted great interest in the last years. Particu-
larly, topologically superconducting wires, which harbor special excitations—the Majo-
rana states —at their ends are studied extensively in theoretical and experimental works.
Experimental realizations are based on hybrid structures of semiconductor or ferromag-
netic wires proximity-coupled to a conventional superconductor. The general idea behind
these approaches is that if one succeeds to induce superconductivity into a spin-polarized
system, the pairing potential must be odd in momentum. In the simplest case this results
in a one-dimensional p-wave superconductor, the prototype of topologically superconduct-
ing wires, which is realized in these hybrid systems as an effective low-energy theory. The
superconductivity is then topological in nature, which is signified by the existence of a
Majorana bound state at the wire’s ends—the edges of a one-dimensional system.

In real systems, one is generally not concerned with strictly one-dimensional but rather
multi-mode systems, which can lead to an effective multichannel p-wave superconductor.
The latter can be modeled with the (topologically nontrivial) two-dimensional p + ip
superconductor, characterized by the superconducting pairing potential ∆(p) = ∆′(px +
ipy), which is restricted to a narrow-strip geometry. Then, the transverse momentum py is
quantized and the number of occupied channels N is determined by the chemical potential.
Each of the channels by itself constitutes a one-dimensional p-wave superconductor, which
is coupled to the others by the transverse superconducting coupling ∆′py. The Majorana
states associated with the individual channels gap out pairwise and therefore the parity
of the number of channels decides whether the system is in a topologically non-trivial
phase or not. The gapped Majoranas form fermionic states which cluster around zero
energy. They remain well below the superconducting gap ∆, with a typical energy scale
εtyp ∝ ∆(W/ξ)2, with the wire width W and the superconducting coherence length ξ
[Kell 12a]. The energy of the lowest-lying states is even smaller by a factor 1/N . This
accumulation of states around the gap center is an indication of a small parameter in the
problem, the transverse coupling ∆′py. It can be interpreted with an additional symmetry
effectively obeyed by the system: To zero-th order perturbation theory in the transverse
coupling the wire displays an effective time-reversal symmetry, which, in the language of
symmetry classifications, places it in class BDI, where several Majorana bound states
can exist at each end; in this case one per channel. Beyond zero-th order, this symmetry
is broken. The system is now to be placed in symmetry class D and at most a single
Majorana can remain at the wire’s end. This transition happens just by the pairwise
gapping of Majorana states mentioned before. The fact that the gapped states remain
close to zero energy indicates that the perturbation theory is well justified and the wire is
effectively in symmetry class BDI. This observation can be used generally when discussing
the low-energy spectrum or topological phases of a multichannel p-wave superconductor,
allowing for an analytical treatment.
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In this Thesis we discussed several aspects of such quasi-one dimensional p-wave su-
perconducting wires. In particular we considered the effect of disorder and various wire
geometries on the low-energy spectrum, and the topological phases and spectral properties
of a p-wave superconducting wire at arbitrary disorder strength.

In Chapter 2, based on Ref. [Ried 12], we discussed the low-energy spectrum of a
multi-channel p-wave superconductor formed by the gapped Majorana states. It has been
pointed out that the clustering of subgap states with the small scaling mentioned above
is an artifact of the particular rectangular strip geometry considered [Pott 12]. The all
too perfect shape of the wire leads to destructive interference between the wave functions
of Majoranas stemming from different channels, which cancels the leading contribution to
εtyp. The first part of Chapter 2 discusses the influence of various forms of wire-endings on
the scaling of the subgap states’ typical energy scale. The general procedure we pursued
for this analysis is in terms of a scattering matrix that describes electrons entering the
metal stub and getting reflected back into the wire. Already for a short rectangular metal
stub of length k−1

F � L � W the destructive interference of the leading order term is
canceled and leads to a parametrically larger typical energy scale εtyp ∝ ∆L/ξ, which is
much smaller than the gap. For smaller lengths the cancellation from interference steps
in to recover the result from Ref. [Kell 12a]. The largest scaling of the typical energies is
observed for quadratic stubs, where εtyp ∝ εm∆W/ξ. At very large lengths L� ξ the en-
ergies of the subgap states decrease again as 1/L, which is just the decrease of level spacing
with system size. Considering a chaotic cavity for the metallic stub two different limits,
distinguished by the dwell time τ̄ of the cavity, can be considered: For small cavities,
~τ̄−1 � ∆, the scaling is again bigger and dominated by the wire width εtyp ∼ εm. The
subgap states ’live’ mainly in the wire. In contrast, in the large cavity limit τ̄−1 . ∆ most
weight of the states lies in the cavity, decreasing the typical energy scaling εtyp ∼ ~W/τ̄ξ.
The smallest energy level in these case is generally εmin ∼ εtyp/N lnN .

An important point to consider here is that the pairing potential, which, in this analysis,
was modeled as a step function that marks a clear boundary between the superconducting
wire and the normal metal stub. However, the wire is assumed to inherit the pairing
by proximity-coupling from a bulk superconductor surrounding it and the stub can then
be seen as a piece of this wire sticking out of the superconductor. The proximity effect
in the wires is due to many Andreev reflections of the wire’s electrons at the interface
with the superconductor. If the wire has a non-negligible width W ≥ k−1

F , the electrons
can be pictured as moving mainly along the longitudinal direction while bouncing off the
wires transverse boundaries. Thus, the induced pairing should decay on a scale of this
width into the stub rather than just dropping to zero. At first sight this seems to have the
implication that the destructive interference is annihilated already without the rectangular
stub, whose addition would then have no significant further effect as long as it is not too
long. However, it is also known that variations in terminating potentials that are smooth
on a scale of the coherence length ξ can have the effect of decoupling two gapped Majorana
states, see Refs. [Ried 12, Kell 12b]. An interesting task for future research would be to
study the actual behavior of the subgap states for a smooth decay of the pairing potential.

In Chapter 2, we also discussed the influence of potential disorder on the low-energy
spectrum. With respect to our previous discussion of geometries and interference of wave-
functions, one would expect that disorder would, similarly to a chaotic cavity, scramble
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the wavefunctions. This would annihilate the destructive interference, causing the leading
order of the subgap energies to reappear. For a few disorder configurations this is indeed
that case but we found that on average, disorder pushes down the subgap states down
towards ε = 0. This can be seen as the first steps in the direction of a disorder-induced
topological phase transition, which is accompanied by a closing of the excitation gap and
will be discussed below.

As a concluding remark to Chapter 2 we note that different imperfections, such as
various geometrical terminations or disorder, of a multichannel p-wave superconducting
wire can have different effects on the subgap states. In experiments probing the density of
states of such a wire one needs to take special care of what is actually measured. A zero-bias
peak in a tunneling conductance measurement could also originate from fermionic subgap
states that are present whether or not the wire is in a topologically non-trivial phase. A
good resolution of the measured peak due to low temperatures and low transmission of
the tunneling parameter could rule out this scenario.

In Chapter. 2 it was noted that weak disorder not only pushes down the subgap states
but also decreases the total gap, which turns out to be the onset of a disorder-induced
topological phase transition, which is discussed in Chapter 3. There, we consider a multi-
channel p-wave superconductor with Gaussian white noise disorder on top of the chemical
potential. In contrast to a spin-singlet superconductor, disorder can be effective in a p-
wave superconductor: localized states appear in the gap and accumulate around its center
as the disorder strength is increased. The disorder is parametrized by the mean free path
l in the normal state. There are two relevant length (or respectively energy) scales in
the system: the mean free path l and the superconducting coherence length ξ, which
parametrizes the pairing strength with respect to a clean system. We find a series of N
disorder-induced topological phase transitions, at ξ = (N + 1)l/n where n = 1, ..., N and
N is the number of channels. In each of those transitions the bulk gap closes and the
topological phase changes between trivial and non-trivial, thus, a Majorana state appears
or vanishes. At each phase transition point the system delocalizes at zero energy and
displays a perfect transmission, which otherwise is exponentially suppressed in the wire
length.

The analysis of the topological phase of a p+ ip superconducting wire is carried out by
means of a scattering matrix describing the electronic transport in metallic leads attached
to each wire end. Then, for long enough wires, the reflection matrix encodes the informa-
tion on the topological phase: for the full system (in symmetry-class D), the determinant
of the reflection matrix is +1 or −1 in the trivial and non-trivial phase respectively. In the
effective class-BDI wire the non-zero eigenvalues of the Andreev reflection matrix count
the number of Majorana bound states at each end. We showed in Chapter 3 that at zero
energy the p-wave superconductor can be mapped onto a disordered normal metal. Such
systems and their scattering matrices are well studied. What is relevant to this case is
that in a quasi-one dimensional system each channel has a different localization length
ln = nl/(N + 1) associated with it. We find that this scale individually competes for
each mode with the coherence length and a phase transition in this particular channel oc-
curs when they equal each other, independently from the other channels. The analytical
approach is strictly valid only for the zero-th order approximation to the p+ ip supercon-
ducting wire. In this case, the wire harbors N Majorana states in the clean limit which
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disappear one by one. The full system is then expected to show an alternation between
trivial and non-trivial phases, which is verified by a numerical analysis.

In a one-dimensional system a single phase transition occurs when the mean free path
is of the order of the coherence length. We showed that a multichannel wire can sustain
topologically non-trivial phases for much larger disorder strengths: Tuning the disorder,
the first phase transition occurs when l ∼ ξ while the last transition from a non-trivial to
a trivial phase happens only at l ∼ ξ/N .

The disorder-induced phase transitions happen due to an accumulation of disorder-
localized states in the superconducting gap. At the critical points enough states have
accumulated at zero energy to hybridize with the two Majorana end states in the critical
channel causing them to gap out. This process can be tracked in the density of states of the
wire, which is the subject of Chapter 4. There, it is shown that in a multichannel p-wave
superconducting wire the density of states is dominated by the channel closest to criticality.
At low enough energies the microscopic details of the system become unimportant and the
density of states exhibits a power law ν(ε) ∝ |ε||α|−1, where α is a dimensionless parameter
that measures the distance to the closest critical point, in particular the smallest values of
αn = 2(N+1)(ln−l)/ξ for n = 1, .., N . The critical disorder strength of the n-th channel for

the class-BDI system is given by l
(n)
crit = nξ/(N +1). In the full class-D Hamiltonian these

values deviate slightly from the analytical values and have to be extracted numerically.
To calculate the density of states during the phase transitions, we used an approach

following the evolution of the scattering phase, related to the density of states, under an
increase of the wire length. As the critical behavior is governed by only one channel one
can restrict to a single-channel system with the appropriate critical point. Further, the
superuniversality argument introduced in Ref. [Gruz 05] implies that the scaling of the
scattering phases of a wire with a single lead is tightly connected to the scaling of the
transmission eigenvalues for a wire with two leads. The latter is known exactly for the
class-BDI Hamiltonian from the analysis of the scattering matrix in Chapter 3. Using
these observations we can calculate the density of states at arbitrary disorder strengths
as given above. For the full p-wave superconducting wire we conjecture a similar scaling
accounted for a shift in the critical disorder strength, which is verified in a numerical
simulation.

Note that the results imply that the density of states exhibits a peak at zero energy
already at a disorder strength ∼ lN (1 + 1/2N), well before the first phase transition.
For larger channel numbers the disorder strengths in which this peaks has not appeared
is increased. The singularity in the density of states appears only for larger disorder
strengths giving rise to a wider parameter space to observe the actual Majorana state
in e.g. a tunneling conductance experiment. This can be intuitively understood when
thinking of the multichannel wire as a narrow 2-dimensional system. Localization by
disorder is much more effective in 1D as the electrons are restricted to a single degree of
freedom. Adding more channels to the system allows electrons to avoid localization to
some extent. Between the different phase transitions in the multichannel wire the density
of states is always peaked around ε = 0 and could therefore obscure the Majorana states
that come and go.

The results of this Thesis are particularly interesting in the context of experiments that
set out to measure signature of Majorana bound states in topologically superconducting
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wires [Mour 12, Das 12, Chur 13, Nadj 14].

The experiments by Mourik et al. [Mour 12], Das et al. [Das 12], and Churchill et
al. [Chur 13] aim to realize an effective p-wave superconductor with a semiconductor wire
(InSb in Refs. [Mour 12, Chur 13] and InAs in Ref.[Das 12]) that is proximity coupled to
a bulk superconductor. In all cases a magnetic field is applied to induce spin-splitting and
gates below the wire are used to change the chemical. Only a part of the semiconductor
wire is in contact with the superconductor, forming the topological superconductor, the
other part stay in the normal state. In this way a normal metal-superconductor (NS)
junction is naturally formed, with the tunneling strength controlled by an additional gate
voltage. As discussed in the introduction, the tunneling conductance reflects the density
of states at the wire end. All experiments report the existence of a zero-bias peak that
appears at a critical magnetic field, remains stable for a range of magnetic fields, and
splits when the field strength becomes too large. These observations are consistent with
the existence of a topologically superconducting phase in the wire. Using the parameters of
Ref. [Mour 12], with a spin-orbit energy of ∼ 50/, µeV and a Zeeman energy ∼ 300µeV at
the first appearance of the peak, one can assume the superconducting gap to be dominated
by the spin-orbit coupling. With this, the length scale on which a possible Majorana
state would be localized is ∼ 100nm. In Ref. [Mour 12] a normal-state mean free path
∼ 300nm, one order of magnitude less than the wire length ∼ 1µm, making the transport
quasi-ballistic. In Ref. [Das 12] a mean free path longer than the wire length is suggested,
implying ballistic transport, while in Ref. [Chur 13] the disorder strength is not specified.
Thus, a peak in the density of states at zero-bias could also be caused by disorder.

In Chapter 3 we discussed how the model of a semiconductor wire with strong spin-
orbit coupling in proximity to a superconductor is related to a p + ip-superconducting
wire. A Zeeman field B is used to spin-polarize several channels in which the induced
superconductivity will then be of a spin-triplet and thus p-wave pairing type. The gap
associated with the topological protection is proportional to the spin-orbit coupling but
scales inversely with the magnetic field ∆top ∼ ~kFα∆/B. Here, ∆ is the induced gap
without any magnetic field. Applying stronger magnetic fields thus also reduces the gap,
which, at first sight, seems to contradict the feasibility for a realization of a multichannel
wire. However, for a wider wire the reduced spacing between the transverse channels
results in an effective multichannel p-wave superconductor already for smaller magnetic
fields. Even though the experiments using semiconductor wires are believed to realize
an effective one-dimensional p-wave superconductor, the multichannel regime could be of
relevance for future experiments. In particular, the multichannel regime would be desirable
as it allows for higher disorder strengths without a singularity in the density of states due
to localized states in the gap (see the discussion above).

In the experiment by Nadj-Perge et al. [Nadj 14], where chains of Fe-atoms are placed on
bulk Pb, a superconductor with strong spin-orbit coupling, a spatially resolved measure-
ment of the density of states is performed. Also there, the authors report the observation
of a zero-bias peak, strongly localized at the chain’s ends. When the Fe-atoms build a
ferromagnetic chain, the 10 energy levels in Fe’s outer electronic shell hybridize to form
bands. The majority spin bands lie well below the Fermi level and do not contribute. The
5 minority-spin bands cut the Fermi level and each by itself forms a p-wave superconduc-
tor. This seems to realize a multichannel situation, however, 2 bands have an inverted
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dispersion relation such that their Fermi velocities are reversed. The Majorana states
that are formed in these bands are of such a nature that they gap out with 2 Majoranas
of the remaining 3 bands and only a single channel remains as an effective topological
superconductor.

If experiments were to realize topologically superconducting wires with ferromagnetic
wires instead of chains it is likely that those would be effective multichannel p-wave su-
perconductors. In this case also the maximum amount of disorder could be much stronger
than in the semiconductor wires.

In summary, the multichannel regime in a p-wave superconducting wire on the one hand
exhibits fascinating physics, like the multiple topological phase transitions, whose obser-
vation in experiment would be highly interesting, on the other hand, it also hinders the
detection of Majorana states. If a tunneling-conductance measurement on the proximity-
coupled semiconductor wire was to happen in the multichannel regime, it is likely that
the arising subgap states would obscure the Majorana state in a measurement. From this
point of view it would be more favorable to avoid the multichannel regime. However, if
these difficulties were to be controlled in an experiment it would be a great opportunity
to observe the reentrant topological transitions. The effective disorder strength could in
principle be tuned by the chemical potential but instead it would also be possible to change
the induced topological gap. In the setup using a semiconductor wire, for instance, the
gap is inversely proportional to the magnetic field providing an experimental knob which
is relatively easy to handle.

For future research it would be important to study the effect of a smoothly terminating
induced superconducting gap on the subgap states in a multichannel p-wave superconduc-
tor as well as in the multichannel semiconductor model with a single channel realizing a
topological superconductor. Another important point to bear in mind is that of the model
for the disorder used here. In the analysis we considered Gaussian white noise potential
disorder, which could result from impurities or lattice imperfections. However, another
source of disorder could be a poor contact between the wire and the superconductor, caus-
ing electrons to form charge puddles that exert an effective potential on the wire. Also, in
the case of magnetic atoms on a superconductor, there will always be some disorder in the
hopping amplitudes from variations in the distances between atoms. Then, the effective
disorder might be of a more complex form and it would be important to find a proper
description and study its effect.

64



Bibliography

[Adag 14] i. d. I. Adagideli, M. Wimmer, and A. Teker, “Effects of electron scattering
on the topological properties of nanowires: Majorana fermions from disorder
and superlattices”, Phys. Rev. B, 89, 144506, Apr 2014.

[Akhm 11] A. R. Akhmerov, J. P. Dahlhaus, F. Hassler, M. Wimmer, and C. W. J.
Beenakker, “Quantized Conductance at the Majorana Phase Transition in a
Disordered Superconducting Wire”, Phys. Rev. Lett., 106, 057001, Jan 2011.

[Alic 10] J. Alicea, “Majorana fermions in a tunable semiconductor device”, Phys. Rev.
B, 81, 125318, Mar 2010.

[Alic 11] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, “Non-
Abelian statistics and topological quantum information processing in 1D wire
networks”, Nature Physics, 7, 412–417, (2011).

[Alic 12] J. Alicea, “New directions in the pursuit of Majorana fermions in solid state
systems”, Reports on Progress in Physics, 75, 076501, (2012).

[Altl 09] A. Altland and B. Simons. Condensed Matter Field Theory. Cambridge
University Press, (2009).

[Altl 97] A. Altland and M. R. Zirnbauer, “Nonstandard symmetry classes in meso-
scopic normal-superconducting hybrid structures”, Phys. Rev. B, 55, 1142–
1161, Jan 1997.

[Ande 59] P. Anderson, “Theory of dirty superconductors”, Journal of Physics and
Chemistry of Solids, 11, 26 – 30, (1959).

[Ando 74] T. Ando, “Theory of Quantum Transport in a Two-Dimensional Electron Sys-
tem under Magnetic Fields. III. Many-Site Approximation”, Journal of the
Physical Society of Japan, 37, 622–630, (1974).

[Andr 64] A. F. Andreev, “Thermal conductivity of the intermediate state of supercon-
ductors”, Sov. Phys. JETP, 19, 1228, (1964).

[Badi 11] D. M. Badiane, M. Houzet, and J. S. Meyer, “Nonequilibrium Josephson Effect
through Helical Edge States”, Phys. Rev. Lett., 107, 177002, Oct 2011.

[Been 13a] C. Beenakker, “Search for Majorana Fermions in Superconductors”, Annual
Review of Condensed Matter Physics, 4, 113–136, (2013).

[Been 13b] C. Beenakker, “Search for Majorana Fermions in Superconductors”, Annual
Review of Condensed Matter Physics, 4, 113–136, (2013).

65



Bibliography

[Been 91] C. Beenakker and H. van Houten. “Quantum Transport in Semiconductor
Nanostructures”. In: H. Ehrenreich and D. Turnbull, Eds., Semiconductor
Heterostructures and Nanostructures, 1 – 228, Academic Press, (1991).

[Been 97] C. W. J. Beenakker, “Random-matrix theory of quantum transport”, Rev.
Mod. Phys., 69, 731–808, Jul 1997.

[Bern 06] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, “Quantum Spin Hall Effect
and Topological Phase Transition in HgTe Quantum Wells”, Science, 314,
1757–1761, (2006).
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