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Abstract

Scalar reaction-diffusion type partial differential equations (PDE) exhibit a phenomenon called

blow-up. A solution blows-up in finite time if it ceases to exist in the solutions space, i.e. the

norm grows to infinite. On the other hand, in reaction-diffusion type PDE there exists the notion

of global attractor, the maximal compact invariant set, that attracts all bounded solutions. In this

thesis we study a hidden kinship between solutions in the global attractor and blow-up solutions

in analytic PDEs by allowing for complex time.

In the first chapter we prove that heteroclinic orbits in one-dimensional unstable manifolds are

accompanied by blow-up solutions. Furthermore, we study in more detail the quadratic nonlinear

heat equation

ut = uxx + u2,

and the heteroclinic orbit starting from the unique positive equilibrium. In this setting we show,

that blow-up solution can be continued back to the real axis after the blow-up, but continuations

along different time paths do not coincide. The proof relies on analyticity of unstable manifolds.

This does not hold for center manifolds. In the second chapter we show that in special cases we

can continue one-dimensional center manifolds of PDEs to sectors in the complex plane.

Using the result of the second chapter, we prove the existence of blow-up solutions of PDEs in the

presence of one-dimensional non-degenerate center manifolds.





Zusammenfassung

Skalare partielle reaktions-diffusions Differentialgleichungen (PDE) weisen das Phänomen des “blow-

ups” auf. Eine Lösung “blows-up” in endlicher Zeit, falls sie aufhört im Lösungsraum der PDE zu

existieren, also die Norm gegen unendlich geht. Auf der anderen Seite existieren globale Attrak-

toren - sie sind die maximale, kompakte und invariante Menge, die alle beschränkten Lösungen

anzieht. In der vorliegenden Arbeit untersuchen wir den Zusammenhang des globalen Attraktors

und “blow-up” in analytischen PDEs durch die Benutzung von komplexer Zeit.

In dem ersten Kapitel zeigen wir, dass heterokline Lösungen auf eindimensionalen instabilen

Mannigfaltigkeiten zusammen mit einem “blow-up” Orbit kommen. Wir studieren weiterhin die

quadratische nichtlineare Wärmeleitungsgleichung

ut = uxx + u2,

und den heteroklinen Orbit, der von dem eindeutigen Gleichgewicht startet. In diesem Beispiel

sind wir in der Lage zu zeigen, dass der “blow-up” Orbit durch die komplexe Zeit am “blow-

up” Zeitpunkt vorbei zurück auf die reelle Zeitachse fortgesetzt werden kann. Allerdings müssen

die Fortsetzungen entlang verschiedener komplexer Zeit Pfade nicht übereinstimmen. Der Beweis

benutzt die Analytizität der instabilen Mannigfaltigkeit. Zentrumsmannigfaltigkeiten hingegen sind

nicht analytisch. Dennoch können wir im zweiten Kapitel zeigen, dass sich eindimensionale PDE

Zentrumsmannigfaltigkeiten in speziellen Fällen in Sektoren der komplexen Ebene fortsetzen lassen.

In dem dritten Kapitel zeigen wir unter der Verwendung der Resultate des zweiten Kapitels die

Existenz von “blow-up” Lösungen auf eindimensionalen Zentrumsmannigfaltigkeiten.
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Introduction and Overview

Current developments in the analysis of dynamics of partial differential equations (PDEs) seem to

pursue two opposite directions.

On the one hand, the concept of global attractors has received ongoing attention, ever since their

discovery by Olga Alexandrowna Ladyschenskaja in the 1970s. By definition the global attractor

is the maximal compact invariant set that attracts all bounded sets, see e.g. [51], [20].

On the other hand there is the phenomenon of finite time blow-up. A solutions blows up in finite

time if it becomes unbounded in finite time.

Assuming analytic nonlinearities this thesis attempts to reconcile both concepts by passing to

the complex time domain. The solution flow to a differential equation satisfies the complex flow

property as long as the solution is analytic. Here complex flow property is the same as complex time

path independence. Consider for example a solution flow Φ : D ⊂ C × X → X with appropriate

phase space X. Then for z1, z2 ∈ C and u0 ∈ X it holds,

Φ (z1,Φ (z2, u0)) = Φ (z1 + z2, u0) = Φ (z2,Φ (z1, u0)) ,

if there is no singularity in the interior of the two different complex time paths from zero to z1 +z2,

i.e. the solution is analytic in the interior.

The idea to establish a dichotomy between bounded solutions and in particular equilibria and

unbounded solutions is not as new as it may sound. Indeed the well-known theorem of Liouville

(1809–1882) is a first result in that direction.

Theorem (Liouville’s theorem). An entire complex analytic function that is uniformly bounded

must be constant.

Suppose we have found a nonconstant solution in a global PDE attractor in real time. The

complex time continuation can not remain uniformly bounded by Liouville’s theorem. In other

words the solution must blow up in finite time or tend to infinity as time tends to complex infinity.

Our results extend and refine this first superficial observation.

Generic solutions of PDEs however exist neither for negative nor for complex time. Extensions

to complex time can be obtained by using analytic semigroups. They allow to solve PDEs in sectors

of the complex time domain, but do not allow to solve PDEs in negative real time. This is where
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invariant manifold theorems from the theory of dynamical systems come into play. Unstable man-

ifolds, for example, consist of all complex-valued solutions which exist and converge to equilibrium

in backwards time. In variational settings global attractors consist of the union of all such unstable

manifold. We consider parabolic differential equations of the reaction-diffusion type

ut = uxx + f (u) ,

with entire f and in particular f (u) = u2. The latter equation is called nonlinear heat equation.

In the parabolic setting the unstable manifolds are finite dimensional, [22]. The PDE reduces to

an ordinary differential equation (ODE) on them. The analysis of the ODEs allows us to construct

complex time continued solutions and thus in complex time Liouville’s theorem applies.

Once we have established a connection between blow-up solutions and solutions in the global at-

tractor, in particular equilibria, heteroclinic and homoclinic orbits, immediately a lot of interesting

questions arise, for example

(i) Which blow-up solutions can really be related to bounded solutions on the global attractor

via complex time detours?

For example consider the positive equilibrium u+ of the quadratic nonlinear heat equation

ut = uxx + u2,

with Dirichlet boundary conditions, [48]. The equilibrium u+ has a one-dimensional unstable

manifold W u, [48]. Then we encounter finite time blow-up above u+, on W u. Below u+

we obtain a uniformly bounded heteroclinic solution from u+ to u ≡ 0. Through complex

W u and complex time extension, both solutions are one and the same solution evaluated at

different complex time paths.

(ii) In the presence of blow-up the set of all uniformly bounded eternal solutions is the proper

replacement of the global attractor. If this set, itself, is bounded then we call it the eternal

core. The analysis in this thesis suggests a hidden kinship between blow-up and eternal core.

The question how this kinship actually manifests is a guiding thread of this thesis.

In this thesis we are only able to scratch the surface of these questions. In Chapter 1 we show

that there exists indeed a connection between bounded eternal solutions, in particular heteroclinic

orbits, equilibria and blow-up solutions. In the example of the quadratic nonlinear heat equation,

the blow-up solution on the unstable manifold of u+ can be analytically continued through complex

time back to the real axis. The real time blow up introduces a branched Riemann surface by

analytic continuation of the blow-up solution around the singularity along different complex time

paths. The Riemann surface is connected to the local behaviour of the heteroclinic orbit at the

connected equilibria.
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We will elaborate in the next two Chapters 2 and 3 on the idea developed in Chapter 1. We

show that under extra conditions the purely local analysis of a one-dimensional center manifold

can already guarantee the existence of blow-up solutions. In other words, the existence of blow-up

is shown by local analysis around a single equilibrium. More specifically we prove the existence

of a real initial condition which has blow-up in a complex time half strip. Furthermore, we show

that there exists a family of complex initial conditions with arbitrarily small imaginary part and

real finite time blow-up. However we can not exclude the possibility that the blow-up time goes to

infinity if the imaginary part goes to zero. Moreover, we obtain a relation between the branch-type

of the analytic continuation of the blow-up orbit and the behaviour of the solution close to the

equilibrium. As far as we know this is the first time blow-up in parabolic PDEs is proven and

described by complex time extensions of bounded solutions.

Each of the chapters contains its own introduction and overview over the existing literature and

can be seen as rather independent part. For the sake of readability we included an Appendix that

contains important Theorems.
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Chapter 1

Blow-up of the nonlinear heat

equation

Abstract

In this chapter we analyze the equation ut = uxx+u2 with Dirichlet boundary conditions. We show

that the complex unstable manifold of the unique positive equilibrium u+ is foliated by heteroclinic

orbits, which are complex time continuations of the real time blow-up orbit. We furthermore show

that the blow-up solution can be continued back to the real time axis after blow-up, but analytic con-

tinuations along different paths do not coincide. Thus blow-up can be detected by regular solutions

and even proven rigorously by numerical methods.

1.1 Introduction

In this chapter we study the nonlinear heat equation with Dirichlet boundary conditions, i.e

ut = ∆u+ up, x ∈ Ω ⊂ RN , u|∂Ω = 0. (1.1)

It is well-known that solutions may blow-up, see [48], [24]. For example the following questions

are addressed for different p and N .

(i) What is the blow-up rate of solutions?

Suppose that the solutions blows-up at time T > 0, i.e. ‖u (t, x)‖∞ → ∞ for t ↗ T . The

question is at which rate the norm approaches infinity, e.g. is there a function g : (0, T )→ R+

such that

‖u (t, x)‖∞ ≤ g (t) , t ∈ (0, T ) .

One might expect that blow-up of solutions happens due to the reaction term, since the

Laplace operator regularizes the solution. The pure reaction part ut = up has an explicit
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solution

u (t) =

(
1

c− t

)1/(p−1)

.

If the sup-norm of u is bounded by the ODE rate, i. e.

|u (t, x)| ≤ C
(

1

T − t

)1/(p−1)

, ∀ (t, x) ∈ (0, T )× Ω. (1.2)

the blow-up is called type-I blow up. There are several theorems which give sufficient condi-

tions on p and N such, that every blow-up is of type-I. But inequality (1.2) does not always

hold. Then the blow-up is called type-II blow up.

For solutions in complex time the definition of blow-up rate is not straight forward anymore.

In the complex plane, we can take time limits tn → T from various directions and it is not

clear whether the limit is independent of the sequence. Consider for example the function

f (t) := t−1e−1/t, t ∈ C \ {0} .

As long as we take a sequence tn → 0 with positive real part the limit will be zero, whereas

otherwise the limit might become unbounded or does not exist at all. In complex analysis,

there is the notion of sectoral limits [10]. A sectorial limit exists at t = 0 if the function f (t)

converges uniformly to the same value inside a sector attached to zero. In the above example

the sectorial limit is defined for subsectors of the right complex half plane.

(ii) What is the blow-up set?

The blow-up set is the following set

B :=
{
x ∈ Ω̄ : ∃(xk, tk) ∈ Ω× (0, T ), such that (xk, tk)→ (x, T ) and |u (tk, xk)| → ∞

}
.

It has been shown that, if Ω is convex, the blow-up set is compact and thus contained in the

interior of Ω. Furthermore, there are examples in which the blow-up set consist of discrete

points and one can even construct solution (for a different nonlinearity) such that the blow-

up set contains an open set, [48]. Moreover one can construct solutions with prescribed

sign changing blow-up profiles [14]. But still the definition of the blow-up set has the same

difficulty as the blow-up rate, since tk can be complex.

(iii) How does the blow-up profile look like?

This question is more abstract. One possible answer is to study rescaled versions of the

solution u. Here the blow-up rate becomes important, since type-I blow-up solutions converge

to equilibrium in rescaled coordinates.

For T = 0, the following change of coordinates
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s = − log−t, y =
x√
−t
, w = (−t)1/(p−1)u. (1.3)

transforms equation the nonlinear heat equation to

ws = ∂yyw +
y

2
wy +

1

p− 1
w = |w|p−1w. (1.4)

One can show by Pohozaev identity [48] and assuming subexponential growth for |y| → ∞,

that equation (1.4) has only constant equilibria, i.e.

w = 0, w = ±
(

1

p− 1

)1/(p−1)

.

This yields the following convergence result [63],

Theorem 1.1.1. If x = 0 is a blow-up point and

|u (t, x)| ≤ C

(T − t)1/(p−1)
, (x, t) ∈ I × (0, T ),

then for any K > 1,

(T − t)1/(p−1)u
(
t, y
√
T − t

)
→
(

1

p− 1

)1/(p−1)

,

uniformly for |y| ≤ K as t↗ 0.

A better description, e.g. asmyptotic rates of convergence or convergence on sets

|y| ≤ K
√
|log (T − t)| can then be obtained by a very subtle analysis of the “center-stable

manifold” of the linearisation around the equilibrium w+. The main problem is, that due to

the weighted spaces in which the solution is considered, there is no known proper functional

analytic setting to really obtain a center-stable manifold [54], [53] so that it can not be more

than a guideline for the analysis. This makes the analysis of converging solutions much more

complicated, since one needs to control the information coming from large |y|, see among

many others [34], [8].

There have also been attempts to study the complex-valued nonlinear heat equation [27], [41]

for real time only, as one can under that circumstances rewrite (1.11) as system of real and

imaginary part of u = v + iw.

vt = vxx + v2 − w2,

wt = wxx + 2wv.
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Especially [41] was able to derive detailed asymptotic expansions of the blow-up profile close

to the blow-up.

(iv) A further question asked already by [59] concerns the continuation of solutions after blow-up.

One possibility to tackle the problem is monotone approximation from below, which let to

the notion of complete blow-up, see e.g. [4], [31], [36], [46], [48].

Consider the following truncations of the nonlinearity f defined by fk (u) := min (u, k). Then

the equation to the truncated nonlinearity

ukt = ∆uk + fk

(
uk
)
, uk (0) = u0,

possess global solutions. For any k the solution uk coincides with the solution u of (1.1) as

long as u is below k. Suppose now, that u is positive and blows up at time T . Then the

solutions uk monotonically approximate u from below before the blow-up and even exist after

the blow-up. So the question is now, if the solutions uk converge for k →∞ and t > T , that

is in which sense the function

ū (t, x) := lim
k→∞

uk (t, x) ,

exists.

The time of complete blow-up is defined as follows

Tc := inf {t ≥ T, ū (t, x) =∞, ∀x ∈ Ω} .

Note, that after Tc, the solution is unbounded for all x ∈ Ω. This implies that there are

no “weak” solutions that are compatible with point wise approximations from below, e.g.

solutions of weaker integrability or measure-valued solutions after blow-up. A solution blows-

up completely at T if Tc = T . The quadratic one-dimensional nonlinear heat equation has

only complete blow-up [48].

In this chapter we take a different point of view to address the questions posed above which

we started to develop in [55]. We will especially tackle the problem of continuation, since in the

situation of complete blow-up we are lacking a proper notion of continued solutions. We consider

the quadratic nonlinear heat equation

ut = uxx + u2, x ∈ (−1, 1) , u (±1) = 0. (1.5)

and try to address the following questions

(i) Can we prove the existence of blow-up by studying only bounded solutions?
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(ii) Can we extend the solution after blow-up though complex time back to the real axis? And

do analytic continuations coincide after real axis along different paths of continuation?

In Section 1.2 we prove that if there exists a one-dimensional fast unstable manifold of an

evolution equation of the form

ut = Au+ f (u) ,

which contains a heteroclinic orbit connecting two equilibria, there must be a complex-time

blow-up orbit starting with real initial data and a real time blow-up orbit starting with complex

initial data.

We give a more detailed description for blow-up solutions of equation (1.5). Equation (1.5) possesses

a positive equilibrium u+ with one-dimensional fast unstable manifold W u. Locally the manifold

is a graph Υ over the eigenspace of the fast unstable mode. One side of the fast unstable manifold

is a heteroclinic orbit to zero, whereas the other side is a blow up orbit, [48].

We denote the solution flow of equation (1.5) by Φ. The domain to which we can continue

solutions are so called spall strips.

Definition 1.1.2 (Spall strip). For any δ > 0 and 0 < T < T1 we denote the upper/lower spall

strip as

S± (δ, [T, T1]) := {t ∈ C \ [T, T1] , 0 ≤ ±Im (t) ≤ δ} .

δ

0 T T1

Figure 1.1: Spall strip domain

We will prove the following theorem.

Theorem 1.1.3. There exists a δ > 0 such that the time analytic continuations of the real blow up

orbit on the fast unstable manifold of u+, i.e. Φ (t, (τ,Υ (τ)), 0 < τ < δ exists and has the following

properties:

(i) It blows up completely after at time T .

(ii) It can be continued to upper and lower spall strips S± (δ, [T, T1]) for some

T1 < 2C0 max

{
max
x∈I

v0 (x)

w0 (x)
, ‖u+‖∞

}
.

The constant C0 > 0 depends only on the heat semigroup.
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(iii) The upper and lower time path continuations do not coincide after T1 > 0

We furthermore show that the branch-type of the complex-time continuation is related to the

quotient of the eigenvalues of the eigenfunctions to which the heteroclinic orbit is tangent at u+

resp at u ≡ 0. If the quotient is rational, the heteroclinic orbit lives on the a compact root-type

Riemann surface, whereas if the quotient is irrational it will live on the Riemann surface of the

logarithm.

There have already been previous attempts to the question of analytic time continuations,

mainly [27] and [37], [38].

Masuda [37], [38] has already proven the following results for the quadratic nonlinear heat

equation with Neumann boundary conditions

Define the constant a as follows

a :=
1

2

∫ 1

−1
u0 (x) dx.

Theorem 1.1.4. Let u0 be a non-negative function ( u0 6= 0 ) in W 2
p (Ω), p > n , and set a = Pu0.

If
∥∥∂2

xu0

∥∥
p
/ |a|2 is sufficiently small, then there exists a unique solution uj ( j = 1, 2 ) of the

quadratic nonlinear heat equation with Neumann boundary conditions which is analytic in t ∈ Dj

as a W 2
p (Ω)-valued function and converges to u0 as t→ 0, |arg t| < θ , in the norm of W 2

p (Ω).

This result shows the existence of analytic continuations for solutions with almost constant

initial data in the regions D1,2. Note, that D1 = D̄2, see Figure 1.2.

Im (t)

Re (t)t0

D1

Figure 1.2: Existence of solution in complex time

Theorem 1.1.5. Let uj , j = 1, 2 be as in Theorem 1.1.4. If
∥∥∂2

xu0

∥∥
p
/ |a|2 is sufficiently small

and u1 (t, ·) = u2 (t, ·) for some t ∈ D1 ∩D2 for Re (t) > t0 + δ, then is u0 a constant function.

The proofs of Masuda rely on the implicit function theorem with respect to the explicit solution

to spatially constant initial conditions.

Also [27] has tackled the problem of the quadratic nonlinear heat equation. They considered the

equation for real and imaginary part of u = v + iw separately, but for real time only

10



(
vt

wt

)
=

(
vxx

wxx

)
+

(
v2 − w2

2vw

)
, (1.6)

and x ∈ R.

They observed that the image of the real time flow t ∈ R 7→ η (t, v0, w0) of the reaction term

(
vt

wt

)
=

(
v2 − w2

2vw

)
, (1.7)

is a circle in R2 if w0 6= 0. If the image of the ODE flow of the reaction term in a system of

reaction-diffusion equations is a convex subset of R2 and the diffusion parts do not couple, then

the system possesses a maximum principle [62], [12]:

If the initial and the boundary conditions of system (1.6) is contained in the interior of a solu-

tion to (1.7), then is the solution of (1.6) contained in the interior for all positive times.

Note, that the maximum principle may not hold anymore if the diffusion parts start to couple.

This happens if one rotates the time axis into the complex plane, e.g. t 7→ eiθt, which yields the

equation

(
vt

wt

)
=

(
cos θ − sin θ

sin θ cos θ

)[(
vxx

wxx

)
+

(
u2 − v2

2vw

)]
.

But if we solve (1.5) along complex time paths that are parallel to the real time axis (θ = 0),

we can always rewrite the equation as a system of real and imaginary part of the form (1.6).

Using the maximum principle, [27] also proved convergence to zero if the initial values v0 (x),

w0 (x) satisfy

v0 (x)−Bw0 (x) < 0, ∀x ∈ R,

and some B ∈ R.

We will use a very similar result to show existence and convergence of complex time analytically

continued solutions for times with large real part.

Throughout the chapter we need the following definitions.

Definition 1.1.6 (Sector). We denote by Sr,α sectorial subsets of the complex plane, that is

Sr,α :=
{
seiϕ ∈ C, 0 < s < r, |ϕ| < α

}
.

Furthermore the unbounded sector S∞,α is abbreviated by Sα.
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Definition 1.1.7 (Strip). We denote by Str1,r2,δ rectangular subsets of the complex plane, that is

Str1,r2,δ := {x+ iy ∈ C, r1 < x < r2, |y| < δ} .

The strip St0,r2,δ is abbreviated by Str2,δ and the unbounded half-strip St0,∞,δ by Stδ.

Definition 1.1.8 (Time p–path). We define a path γ : I → C, t 7→ t + iδ̃ for some fixed δ̃ and

some interval I as time parallel-path or time p–path, since the line γ is parallel to the real axis.
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1.2 The unstable manifold theorem and its complex consequences

We analyze the equation

ut = Au+ f (u) , (1.8)

with f (0) = 0 and Df (0) = 0.

(i) Consider the complex separable Banach spaces Z, Y and X such that the embeddings Z ↪→
Y ↪→ X are continuous.

(ii) A : Z → X is a bounded operator.

(iii) A is a sectorial operator with |Re (σ (A))| ≥ δ > 0.

(iv) f ∈ Cω (Z, Y ) and f (R) ⊂ R.

(v) The operator A has a compact resolvent.

As canonical example one should think of the quadratic nonlinear heat equation with X =

L2 (I,C), Y = H1
0 (I,C) and Z = H2 (I,C) ∩H1

0 (I,C), I = (−1, 1).

We also assume that there exists a second real-valued equilibrium u+ of the equation (1.8)

whose linearization A+ := A+Df (u+) has similar properties to A.

The above conditions imply the existence of stable and unstable manifolds around u ≡ 0 and

u+, see e.g. [33], [22] and [26]. Since the resolvent of A is compact, the spectrum is discrete and we

can construct strong unstable manifolds. The operator A introduces spectral projection to each of

the discrete eigenvalues, see Appendix. Throughout this chapter, we make the further assumption

that the largest eigenvalue of A+ is algebraically and geometrically simple with eigenvalue µ > 0

and eigenfunction ϕµ. This implies, that the strong unstable manifold associated to µ is one-

dimensional. We will denote the associated spectral projection P+ and P− = Id− P+.

Also by [22] we know that the strong unstable manifold is actually analytic, that is the graph

Υ : (−a, a) → Z− is an analytic function which can be extended to a complex neighborhood of

zero. Here Z− := P−Z. The flow on the strong unstable manifold is a one-dimensional analytic

differential equation

q̇ = µq + P+f (qϕµ + Υ (q)) ,

Instead of f (qϕµ + Υ (q)) we will also write f (q,Υ (q)).

The solution semigroup of ordinary differential equations can be extended to a group in complex

time. This will be important together with the fact that the ordinary differential equation depends

analytically on the initial data on the unstable manifold, see for example [23].

13



We begin with a very simple Lemma about the connection of unbounded and bounded solutions

for analytic systems. It is a direct corollary to Vitali’s theorem 4.2.7 and its general form 4.2.11.

Lemma 1.2.1. Consider a map Φ : R+ × U ⊂ C→ Z with the following properties

(i) Φ (t, 0) = 0, t > 0,

(ii) Φ (t, ·) ∈ Cω (U,Z) for t > 0.

U ⊂ C is an open and connected neighbourhood of zero. Assume that there exists an element q0 ∈ U
and a sequence of pairwise different qm ∈ U with limm→∞ qm = q0 ∈ U such that

lim
t→∞

Φ (t, qm)→ p∗, m ∈ N ∪ {0} , p∗ ∈ Z.

Then for all q ∈ U holds,

lim
t→∞

Φ (t, q) = p∗, q ∈ U.

Proof. Consider any sequence tn ↗∞ and define the family of analytic functions fn defined as the

time tn – maps of the neighborhood U , i.e.

fn : U → Z, fn (u) := Φ (tn, q) .

By assumption the set U0 is defined as

U0 :=
{
z ∈ U : lim

n→∞
fn (z) exists

}
,

non–empty and has a limit point q0 ∈ U . Thus by Vitali’s theorem 4.2.7 or 4.2.11 we know that

the family fn converges uniformly to an analytic function f : U → Z for all q̃0 ∈ U . Note, that

the limit exists for the full sequence and not just for a subsequence. Here it is important, that

the claim does not follow by compactness properties, but uses the analyticity of the functions. By

assumption we have f (qm) = p∗ and the sequence qm also has an interior limit point. We can

conclude that f is constant by the identity theorem 4.2.6, that is f ≡ p∗. Thus, the full sequence

converges to p∗

lim
n→∞

Φ (tn, q) = p∗.

Since the sequence tn was arbitrary the claim holds for any sequence tn ↗∞.

Remark 1.2.2. Note, that this theorem does not follow from Montel compactness. We get the

limit on the full sequence and not just a converging subsequence and furthermore, we do not require

any compactness of the image of fn. The existence of the limit follows from assumptions on the

regularity and give stronger convergence results.

Lemma 1.2.3. Consider a map Φ : R+ × U ⊂ CN → Z, with the following properties

(i) Φ (t, 0) = 0, t > 0,
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(ii) For t > 0, Φ (t, ·) ∈ Cω (U,K) where K is a compact subset of Z

U is an open and connected neighborhood of zero. The equilibrium zero is assumed to have at

least one unstable direction, that is there exists 0 6= p0 ∈ Z and qn ∈ U converging to zero with

Φ (n, qn) = p0. Furthermore assume, that the flow is analytic with respect to the initial data as

long as it stays bounded and has values in a compact subset K ⊂ Z. Then Φ (t, U) can not stay

uniformly bounded with t > 0.

Proof. The proof argues by contradiction. Assume that the time n–maps stay uniformly bounded,

that is consider the (uniformly bounded) family

fn : U → K ⊂ Z, fn (u) := Φ (n, u) .

By Montel compactness theorem 4.2.5 there exists a subsequence f̃n := fñ(n) of fn converging

uniformly to an analytic function f̃ . Then we have for q̃n := qñ(n)

‖p0‖ =
∥∥∥f̃n (q̃n)

∥∥∥ ≤ ∥∥∥f̃n (q̃n)− f̃m (q̃n)
∥∥∥+

∥∥∥f̃m (q̃n)
∥∥∥ , m, n ∈ N.

For all ε > 0, since the convergence is uniform, we can choose, m, n large enough such that∥∥∥f̃n (q̃n)− f̃m (q̃n)
∥∥∥ < ε.

Now choosing n large enough, we also have∥∥∥f̃m (q̃n)
∥∥∥ < ε.

This implies ‖p0‖ < 2ε. Since the argument holds for any ε we can conclude p0 = 0, which is a

contradiction.

Remark 1.2.4. The proof even shows that the functions Φ (·, U) can not stay bounded for any

(complex) neighborhood Ũ ⊂ U arbitrarily close to zero for all positive time t > 0.

Remark 1.2.5. The proof also works, if the Φ (t, ·) is only locally analytic for any q ∈ U . Analyt-

icity on the full set U follows by analytic continuation.

The two Lemmata can be connected the theory of stable and unstable manifolds in dynamicals

systems.

Lemma 1.2.6. Consider a semi flow Φ : SZ ⊂ R+ × Z → Z of the differential equation (1.8).

Assume that the real fast unstable manifold of u+ is one-dimensional and contains a heteroclinic

orbit from u+ to equilibrium u− ≡ 0. Then solutions on a complex neighborhood in the fast unstable

manifold of equilibrium u+ can not stay uniformly bounded for real positive time.

Proof. The proof proceeds by contradiction.
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(i) Denote the analytic graph of the one–dimensional real fast unstable manifold by Υ. The real

analytic graph can be extended to an analytic function on some complex neighborhood U of

the equilibrium, see Figure 1.3.

(ii) Denote by fn the time n - map of the neighborhood U , i.e.

fn : U → Z, fn (q0) = Φ (n, (q0,Υ (q0)) .

where (q0,Υ (q0)) is on the heteroclinic orbit. Assume that the family fn stays uniformly

bounded.

Take any sequence tm ∈ R with |tm| small enough and tm → δ. Define um ∈ C by

um := P+ (Φ (tm, (u0,Υ (u0)))) ,

where P+ is the projection on the tangent space of the strong unstable manifold W su (u+)

and δ small enough such that the projection is still contained in U , i.e.

P+ (Φ (tm, (q0,Υ (q0)))) ∈ U.

. The existence of the projection P+ is due to theorem 4.1.5. The sequence of qm converges

to qδ0 ∈ U . By construction each (qm,Υ (qm)) is on the heteroclinic orbit and it holds

lim
t→∞

Φ (t, qm) = u−.

Since we assumed that the flow stays uniformly bounded, we can apply Lemma 1.2.1 to obtain

lim
t→∞

Φ (t, U) = u−.

This contradicts u+ ∈ U .

Remark 1.2.7. The Lemma shows that, a flow that depends analytically on the initial condition,

can not change the limit point if the flow stays uniformly bounded. This implies, that there might be

a kinship between grow-up, blow-up and the global attractor of differential equations in the complex

domain.

The Lemma required the mere existence of a real heteroclinic orbit. But we can similarly also

prove that there exists grow-up or blow-up even if we do not have such heteroclinic orbit, but a

finite-dimensional analytic unstable manifold by Lemma 1.2.3.

The theorem tells us that the equilibria of analytic systems are related to blow-up or grow-up

of dynamical systems in the complexified domain. Next we show that the solution must actually

possess blow-up and that the analytic time continuation of the blow-up orbit is also a real time

heteroclinic orbit. Indeed, the one-dimensional fast unstable manifold is foliated by heteroclinic

orbits and there exists a non-empty boundary to the foliation, which is a blow-up orbit.
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Lemma 1.2.8. Consider the setting of Lemma 1.2.6. Define the set H̃ as follows

H̃ :=

{
u0 ∈ U ⊂ C, sup

t∈R+

‖Φ (t, (u0,Υ (u0))‖Z <∞

}
,

and the set H as the connected component of H̃ that contains U ∩ R−. Then H is foliated by real

time heteroclinic orbits with complex initial data and furthermore all real time heteroclinic orbits

are time p - path continuations of the real heteroclinic orbit.

Proof. We proceed by the following steps.

(i) Take any q0 ∈ U . Then there exists a r > 0 such that a small ball Br (q0) in the tangent

space of the fast unstable manifold is filled by the complex time flow of q0. The proof argues

via the complex one-dimensional equation on the fast unstable manifold

q̇ = µq + f̃ (q,Υ (q)) , q (0) = q0. (1.9)

where f̃ := Psuq. For small enough q0 we know that µq0 + f̃ (q0,Υ (u0)) 6= 0 for q0 6= 0 and

thus the separation of variables formula is well-defined

t (q, q0) =

∫ q

q0

1

µτ + f (τ,Υ (τ))
dτ, (1.10)

for any q ∈ Br (q0). This also implies an explicit estimate on the time t (q, q0) needed to go

from q0 to q

|t (q, q0)| ≤ 2

∣∣∣∣ q − q0

µq0 + f (q0,Υ (q0))

∣∣∣∣ .
(ii) The next step is to prove that the set H is open. Take any q0 ∈ H. Then by assumption there

exists an M > 0 such that ‖Φ (t, (q0,Υ (q0))‖Z < M . The main problem is that the time t

is unbounded. Thus we can not simply take small perturbations of the initial condition and

argue by continuous dependence of initial data of time t maps and let t go to infinity. The

idea to remedy that problem is that every initial condition q̃0 in the unstable manifold close

to q0 can be reached by solving the reduced equation (1.19) for a small complex time q0 given

by (1.10). First note, that since the real time flow of q0 is uniformly bounded, there exists a

δ > 0 such that we can extend the solution analytically to complex time strip

S := {t ∈ C, |Im (t)| ≤ δ} .

Take any q̃0 ∈ Br (q0) with r > 0. By the previous step we can choose an r > 0 small

enough such that the neighborhood Br (q0) is obtained by the complex time flow of q0 with

imaginary part less than δ. Thus there exists a tq̃0 := t (q̃0, q0) ∈ C such that u = Φ (tq̃0 , q0)
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and |Im (t (q̃0, q0))| ≤ δ. Due to time analyticity, the complex flow property holds and we

obtain

Φ (t, (q̃0,Υ (q̃0))) = Φ (t,Φ (tq̃0 , (q0,Υ (q0)))) = Φ (tq̃0 ,Φ (t, (q0,Υ (q0)))) .

This implies q̃0 ∈ H.

(iii) SinceH is open we can apply Lemma 1.2.1 to obtain thatH is foliated by real time heteroclinic

orbits. Note that the backwards in time convergence is given by definition since H is a subset

of the fast unstable manifold.

(iv) All in all we can conclude a foliation of the fast unstable manifold as indicated in Figure 1.3.

u− u+

Figure 1.3: Heteroclinic foliation of the fast unstable manifold

The set of heteroclinic orbitsH on the fast unstable manifold is open and we study its topological

boundary. We show that the boundary is non-empty and that it is a blow-up orbit. The blow-up

orbit has a complex time analytic continuation into the positive or negative complex half-plane and

it is heteroclinic along time p - paths.

Lemma 1.2.9. The set ∂H ∩U is not empty. The boundary orbits consist of a complex conjugate

pair of finite time blow-up orbits with time analytic continuation into the positive or negative com-

plex plane. The time p - paths of the analytic continuation are heteroclinic orbits and contained in

H.

Proof. First we prove that H must have a boundary. As a consequence of Lemma 1.2.6, we know

that there must exist a q0 ∈ U such that the forward flow is unbounded. This element can not be

contained in H. Assume on the contrary that the boundary of the set ∂H ∩ U is empty. Then H

must be open, connected and closed relative to U and thus H = U , which can not be true. We can

assume, that there exists q0 ∈ ∂H ∩ U . The proof of the Lemma argues by contradiction. Assume

that q0 was a grow up orbit.

(i) Take q̃0 ∈ U ∩ R−. Arguing as in Lemma 1.2.8 we consider the differential equation on the

fast unstable manifold

q̇ = µq + f (q,Υ (q)) .
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u− u+

(a) Path in the unstable manifold

T T1

T T1
Im (t)

Re (t)

(b) Associated complex time path of real blow-up orbit

Figure 1.4: Relation between real and imaginary time path in the unstable manifold

Also here we use separation of variables to solve the equation

tq0 =

∫ q0

q̃0

1

µτ + f (τ,Υ (τ))
dτ.

Thus taking any closed path κ : [0, 1]→ U with κ (0) = q0 and κ (1) = q0 enclosing the origin

we get by Cauchy theorem

tq0 =

∮ q0

q̃0

1

µτ + f (τ,Υ (τ))
dτ =

1

2iπµ
.

This implies that we can take a purely imaginary time path to encircle zero in the fast unstable

manifold. Since multiplication with the imaginary unit corresponds to a rotation of π/2 real

and imaginary trajectories are always orthogonal to each other, see Figure 1.4.

(ii) By the above argument we can find a complex time path γ (s) : [0, s0) → C for some s0 > 0

such that

q (γ (s) , q̃0) ⊂ H ∩ U, q (γ (s0) , q̃0) = q0.

By assumption, the real positive time flow for any solution Φ (t, (q (γ (s) , q̃0) ,Υ (q (γ (s) , q̃0)))

stays bounded for all 0 ≤ s < s0 and thus the real and complex time flow commute, i.e.

Φ (t, (q0,Υ (q0))) = Φ (γ (a) + t, (q̃0,Υ (q̃0))) , t > 0.
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For any ε > 0 we can choose a t0 > 0 large enough such that

‖Φ (t0 + t, (q̃0,Υ (q̃0)))‖ < ε, t > 0.

This implies for ε small enough

‖Φ (t0 + t, (q0,Υ (q0)))‖ = ‖Φ (γ (a) ,Φ (t0 + t, (q̃0,Υ (q̃0))))‖ < 2ε,

for all t > 0. This contradicts the grow-up assumption.

(iii) Note that this also proves, that the one sided imaginary time flow of q0 is contained in H.

This gives an estimate for the maximal complex time strip where the function can stay regular.

Corollary 1.2.10. The real heteroclinic orbit has blow-up in a strip of size 1
4πµ .

1.3 The non-linear heat equation

In this section, we will focus on the complex nonlinear heat equation with quadratic nonlinearity

ut = uxx + u2, x ∈ (−1, 1) , u (±1) = 0. (1.11)

Consider the space Z := H2 (I) ∩H1
0 (I), Y := H1

0 (I) and X := L2 (I). Here all the functions

are complex valued. The Laplace operator A := ∂xx is a bounded operator from Z to X and

generates an analytic semigroup [33],

A : D (A) := H2 (I) ∩H1
0 (I) ⊂ L2 (I) 7→ L2 (I) .

By Sobolev embedding theorems, the quadratic nonlinearity f (u) := u2 is analytic from f : Z → Y

as well as a function f : Y → X. By [33], [22] the local solution is analytic in time with values in

Z.

We give a more advanced description of the time analytic continuation of the blow-up orbit of

Lemma 1.2.9. The nonlinear heat equation has an unique positive equilibrium u+ and it is well-

known that solutions starting above u+ exhibit finite time blow-up. Furthermore, the fast unstable

manifold is one-dimensional and solutions that start below u+ converge to zero.

We follow the idea of [27] to disprove blow-up of solutions on the unstable manifold of u+ with

complex initial conditions. In particular, we show, that the real blow-up orbit stays uniformly

bounded on time p-paths with non-vanishing imaginary part. Note, that along time p-paths the

equation (1.11) can be written as real system of real and imaginary part for u = v + iw
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vt = vxx + v2 − w2,

wt = vxx + 2vw.
(1.12)

Different from [27], we consider Dirichlet boundary conditions, but we use the same maximum

principle to show boundedness of solutions. The system (1.12) possesses a maximum principle [62],

[49], [12]. One corollary from these maximum principles is that the solutions of systems of the form

wt = ∆w + f (w) where w ∈ R2 is contained in the ODE solution ẇ = f (w) if the ODE solution

defines a convex set and the initial condition and boundary condition lies in the interior of the

convex set.

The ODE solutions of equation (1.12) are circles, see Figure 1.5. We prove that the non-real initial

conditions on the fast unstable manifold of u+ are contained in such circles.

Figure 1.5: Solution to the ODE flow

ODE results

The maximum principle of the parabolic system (1.6) allows to use the ODE flow to the quadratic

equation U̇ = U2 to show a priori estimates on PDE solutions.

Explicit solution of the ODE Consider the differential equation

U̇ (t) = U2 (t) , t ∈ C, U (0) = U0 ∈ C,

The equation has an explicit solution, which can be obtained by separation of variables.

U (t) :=
1

1/U0 − t
. (1.13)

The flow η (t, U0) is defined as the solution U (t). The solution maps straight lines in t = reiθ,

r ∈ R to circles, if it exists as a map to the complex plane C.

But one can also consider the solution U (t) as an analytic function from the complex plane

to the Riemann sphere Ĉ for all t ∈ C. The Riemann sphere is the set C ∪ {∞} together with
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the charts Ũ1 := U and Ũ2 = U−1. The two charts coincide almost everywhere. The domain of

definition of each chart is C. Using the second chart, i.e. introducing Ũ2 (t) := U−1
1 (t) yields the

differential equation
˙̃U2 (t) = −1, t ∈ C, (Ũ2)0 = U−1

0 .

This has the trivial solution Ũ2 (t) = U−1
0 −t, which is the same as (1.13). Note that the solution even

exists if Ũ2 = 0, that is |U | =∞. This implies, that the imaginary part of Im
(
Ũ2 (t)

)
= Im

(
U−1

0

)
is a conserved quantity for the real time flow. To study the behaviour for unbounded t one has to

use the chart Ũ1, in which all orbits converge to zero. The point zero is the only point that can not

be described in the chart Ũ2. Since there is a conserved quantity in the Ũ2 chart, there also exists

a conserved quantity in the Ũ1 chart.

Writing the function U (t) := V (t) + iW (t), it can also be seen by explicit calculation the

quantity

H (t) := V 2 (t) +
(
W (t)−W−1

0

)2
,

is conserved by the flow. This gives the following definition.

Definition 1.3.1 (Solution circle/disk). A circle of the form

Cv0 :=
{

(u, v) ∈ R2, u2 + (v − v−1
0 )2 = R2

}
,

is a solution to the ODE and called solution circle. The interior of the circle is called solution disk.

Some ODE results We use properties of the flow η to prove invariance principles of the PDE.

The proofs are based on an idea of [27].

Lemma 1.3.2. Consider a straight half line γ (s) := seiφ, s ≥ 0, 0 < φ < π of initial conditions.

Then the curve z (s) := η (t, γ (s)), where η is the ODE flow of U̇ = U2, is convex for each fixed

t > 0.

Proof. Recall that a plane curve s 7→ z (s) ∈ C is convex if the curvature

κ (s) := Re
(
iz′z̄′′

)
,

does not change sign. Explicit calculation of κ (s) yields

κ (s) =
2t sin(φ)

((st− cosφ)2 + sin(φ)2)3
.

Since the straight line starts in the upper half plane, i.e. 0 < φ < π, we have sinφ > 0 and the

curvature is always positive for t > 0, see Figure 1.6a.

22



(a) Evolution of straight line in invariant region for

0 = t0 < t1 < t2 < t3

u0

(b) Initial condition in invariant region

Figure 1.6: Invariant region in complex domain

The straight line is transported by the ODE flow and traces a convex domain, see Figure 1.6b.

A solution, which is contained in a solution disk and starting to the left of a straight line, must

converge to zero. This idea is due to [27] and allows to prove the following a priori estimate on the

analytic continuation.

Lemma 1.3.3. Assume that the initial condition u0 (x) := v0 (x) + iw0 (x) is contained in the

solution disk of s0e
iϕ, 0 < ϕ < π and 0 < max arg u0 (x) < π, see Figure 1.6b. Then the ODE

solution η (t, u0 (x)) satisfies the following inequality

‖η (t, u0 (x))‖∞ ≤


(

(α/s0 − t)2 + β2/s2
0

)−1/2
for αt < 1/s0,

(αβt)−1 for αt ≥ 1/s0.

with α := cosφ and β := sinφ.

Proof. By the explicit representation of η
(
t, seiϕ

)
, we obtain

∣∣η (t, seiϕ)∣∣ =
1

(rα− t)2 + r2β2
.

where r = s−1, s−1
0 ≤ r <∞.

The derivative with respect to r is

∂rη
(
t, seiϕ

)
=

2 (rα− t)α+ 2rβ2(
(rα− t)2 + (rβ)2

)2 r
2.

Setting the derivative to zero we obtain

2 (rα− t)α+ 2rβ2 = 0⇒ r = tα.

Thus as long as αt < 1/s0 we have r = r0, i.e.

‖η (t, u0 (x))‖∞ ≤
(

(r0α− t)2 + r2
0β

2
)−1/2

,
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and for αt > r0 we have

‖η (t, u0 (x))‖∞ ≤
1

αβt
.

In particular does the solution converge to zero as expected.

Lemma 1.3.4. Assume, that the smooth function u0 (x) := v0 (x) + iw0 (x) : (−1, 1) → C,

u0 (±1) = 0 has positive imaginary part and positive boundary derivative. Then an angle 0 < ϕ < π

exists, such that u0 (x) is to the left of the half-line z (s) := seiϕ. The angle ϕ satisfies

ϕ = min
x∈I

arctan

(
w0 (x)

v0 (x)

)
.

Proof. On any compact subset K ⊂ I, w0 (x) is uniformly bounded from below and there exists a

δ > 0 such that

δ < arctan

(
w0 (x)

v0 (x)

)
< π − δ, x ∈ K.

The only problem may occur at the boundary. Expansion of x close to the boundary gives for

x = ±1 + y.

∓(w0)x (±1) y + Cy2

∓(v0)x (±1) y + Cy2
> c1 > 0. (1.14)

for y small enough. This implies, that ϕ is positive and less than π.

Lemma 1.3.5. Again, let the smooth function u0 (x) := v0 (x)+ iw0 (x) : (−1, 1)→ C, u0 (±1) = 0

have positive imaginary part and positive boundary derivative. Then the solution is contained in

an invariant ODE disk.

Proof. The proof is similar to the proof above. Geomtrically it is already clear, that since the initial

condition is contained in a cone in the upper half-plane, we can find in invariant ODE disk.

(i) We need that the curve γ (x) := (v0 (x) , w0 (x)) is contained in a circle around iR of radius

R for some R > 0. Thus we have to calculate

R∗ := sup
x∈I

R (v0 (x) , w0 (x)) ,

where R (y, z) is defined as follows

R (y, z) :=
y2 + z2

2z
.

The expression for R (y, z) comes from the equation y2 + (R − z)2 = R2 solved for R and

describes the circle around iR containing the point (y, z) and the origin. We need to show

that R∗ is bounded.
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(ii) Consider any compact subset K ⊂ I. Define α := minK ϕ (x) > 0. This implies

sup
x∈I

R (v0 (x) , w0 (x)) = sup
x∈I

v0 (x)2 + w0 (x)2

2v0 (x)
≤

4 ‖u0‖2∞
minx∈K w0 (x)

<∞. (1.15)

(iii) The only problem can occur at the boundary of I. Here we obtain again by expansion close

to the boundary with x = ±1 + y, y > 0 small enough

R (v0 (x) , w0 (x)) ≤ (v0)2
x (±1) y2 + (w0)2

x (±1) y2 + Cy3

∓(w0)x (±1) y + Cy2
< c1y. (1.16)

Analysis of the PDE

Denote by u+ the unique positive, symmetric equilibrium of stationary problem

uxx (x) + u2 (x) = 0, u (±1) = 0.

The linearisation is hyperbolic and has simple eigenvalues and a one-dimensional analytic fast

unstable manifold W u. The graph of the unstable manifold Υ (τ) is analytic, see [22].

Lemma 1.3.6. There exists a r > 0 such that the positive time flow Φ (t, (τ,Υ (τ)), t > 0 is

bounded for τ ∈ C \ R+ and |τ | < r.

Proof. The proof is based on the ODE results.

(i) The L2-normalized eigenfunction ϕ (x) to the fast unstable manifold is positive [48]. It satisfies

the equation

ϕxx + 2u+ϕ = µϕ, ϕ (±1) = 0, µ > 0.

for some µ > 0. Thus by Hopf lemma we obtain

min {∓ϕx (±1)} = δ > 0.

(ii) Assume first that τ < 0. Then u+ (x) + τϕ (x) + Υ (τ) ≤ u+ (x) for all x ∈ I and |τ | small

enough. This implies, that the solution converges to zero for τ < 0.

(iii) Consider the initial data u0 (τ) := u+ + τϕ + Υ (τ) with τ ∈ C \ R and |τ | < r. Since we

consider solutions on the fast unstable manifold we know, that the graph Υ is of quadratic

order at zero. This implies, that for small enough τ the imaginary part of u+ + τϕ+ Υ (τ) is

positive and has positive boundary derivative.

(iv) The claim follows by Lemma 1.3.5.
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Corollary 1.3.7. The real time flow on the complex fast unstable manifold stays bounded in the

slit disk of the fast unstable manifold.

Remark 1.3.8. From the perspective of Lemma 1.2.9 we have shown, that the boundaries of the

two complex conjugated heteroclinic nests (see Figure 1.3) coincide. More precisely it is the positive

real blow-up orbit. Furthermore note, that we also have proven, that the every heteroclinic obtained

in Lemma 1.3.6 is actually a time p – path of the single real time heteroclinic orbit.

Continuation back to the real axis For the nonlinear heat equation one can extend the

heteroclinic orbit up to the real axis, but not back onto the real axis as indicated in Figure 1.3

directly after blow-up.

Naturally the question arises what happens to the analytic continuation of the real heteroclinic

orbit along time p – paths. We can show, that even if we are not able to continue the solution back

to the real axis immediately after the blow-up, we can continue back to the real axis after some

time T1 > 0.

In this paragraph we prove that the solution can be continued to the regions S±, see Figure 1.7.

S+

S−

Im (t)

T T1
Re (t)

δ

−δ

Figure 1.7: Domain of existence of continued solutions

This is already true, due to Lemma 1.2.9 since it implies, that solutions along time p-pathes

are heteroclinic orbits. Once the solution is close to zero, which is completely stable, we can tilt

the time path to obtain a solution on the real time axis. But in this paragraph, we derive an upper

estimate for the time T1.

The next to Lemma give a lower bound on the blow-up rate. The proofs are very similar to the

real-valued case in [48].

Lemma 1.3.9. If ν0 := ‖u0‖∞ < r. Then the flow Φ (t, u0) is regular along t = reiθ for |θ| < π
2

for at least time r = 1
C2ν0

, where C > 0 is independent of ν0.

Proof. Since the Laplace operator generates an analytic semigroup in the space of continuous

functions [33], we solve the variation of constants formula

u (t) = T (t)u0 +

∫ z

0
T (z − s)u (s)2 ds.
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Taking the sup-norms we obtain

ν (t) := ‖u (t)‖∞ ≤ Cν0 + C

∫ r

0
ν2 (s) ds.

since t is contained in the sector of the left half-plane. We can compare this inequality to the

solution η
(
t, C2ν0

)
/C. The difference of the solutions satisfies the inequality

h (r) := η
(
r, C2ν0

)
/C − q (r) ≥ C

∫ r

0

(
q (s) + η

(
s, C2q0

)
/C
)
h (s) ds,

Since h (0) > 0 we have h (s) > 0 for all 0 < s < r. By Gronwall inequality h (s) <∞ as long as

q (s) + η
(
s, C2ν0

)
/C < 2η

(
s, C2ν0

)
/C <∞. But η

(
s, C2ν0

)
/C exists up to time r = 1

C2ν0
.

The lower blow-up rate estimate gives an estimate on the blow-up time.

Corollary 1.3.10. Suppose that |t− T |p ‖u (t− T )‖∞ ≤ M < ∞ for some 0 < p < 1. Then does

the solution u (t, x) stay regular until T .

Proof. Argue by contradiction. By Lemma 1.3.9 and assumptions, it holds,

|T − t| ≥ 1

C2 ‖u (T − t)‖∞
≥ |T − t|

p

MC2
.

Since p < 1, this gives a contradiction for t close enough to T .

The two Lemmata above give a lower bound on the existence time depending on the initial con-

dition. This allows to prove, that the analytic continuations of the blow-up orbit can be continued

back to the real axis once they are small enough. We show first that this is not true without the

Laplace operator.

Proposition 1.3.11. Consider the ODE flow of

ut (t, x) = u2 (t, x) , x ∈ I := (−1, 1)

u (0, x) := u0 (x) ∈ C0 (I,R+) , u0 6≡ 0,
(1.17)

and Dirichlet boundary conditions. Then the solution to equation (1.17) exists for all t ∈ C\ [T,∞)

and is unbounded on [T,∞), where T := 1
maxx∈I u0(x) .

Proof. We can solve equation (1.17) explicitly and calculate the blow-up time for each point x ∈ I,

u (t, x) = η (t, u0 (x)) =
1

1
u0(x) − t

.

Thus the blow-up time T (x) is T (x) = 1
u0(x) .

Note, that x→ ∂I implies T (x)→∞ and also T = minx∈I tb (x) = 1
maxx∈I u0(x) . Now the claim

follows by the intermediate value theorem.
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Let us compare the ODE flow (1.17) with the PDE semiflow φ (t, u0), for real initial conditions

0 ≤ u0 6= 0, but allowing for, both, real and complex times t. We keep Dirichlet conditions in either

case. We have seen how the ODE solution u (t, x) must blow up whenever t returns to the real

axis after T = 1
maxx∈I u0(x) , no matter which complex detour our time path t might take. Due to

the presence of the Laplacian uxx, however, the PDE solution u (t, x) may behave quite different.

We have already seen how the Laplacian generates complete blow-up in the real domain, due to

infinite propagation speed outwards from the singularity. In the complex time domain, in contrast,

the Laplacian prevents quadratic tangencies at the boundary, via the Hopf Lemma. Moreover the

initially real spatial profile u0 (x) is pushed into the complex upper half plane, for small imaginary

times t = iδ, provided that u0 satisfies

(u0)xx + f (u0) ≥ 0.

Immediately afterwards, comparison with a straight line solution η (t, s exp (iφ)) strikes, and traps

the solution for all later real times,

t = iδ + τ, τ ≥ 0.

We formulate this simple argument in the following theorem. The uniform boundedness, and

decay, established here will allow us to even return to the real axis itself, boundedly.

Also note, the proof is completely different from Masuda [38]. He used the explicit spatial

constant solution to show boundedness on the real axis again. For initial conditions u0 that are

close to a spatial constant profile, the ODE flow η (t, u0 (x)) is also uniformly bounded for t ∈ C \(
1

maxx∈I u0(x) ,
1

minx∈I u0(x)

)
. In particular, for spatially constant solutions 1

maxx∈I u0(x) = 1
minx∈I u0(x)

and the solution just blows up at a single time point. Masuda showed that solutions, which are

sufficiently close to a spatially constant solution the Laplacian can not desynchronize the blow-up

much for different x. But he has also shown, that time analyticity is immediately destroyed by the

Laplacian operator.

Theorem 1.3.12. Let 0 ≤ u0 (x) = u+ (x) + w (x) with wxx (x) + w2 (x) ≥ 0 and w 6≡ 0. Then

the flow blows up at some finite time 0 < T < ∞ completely. However, there exists a upper and

lower spall strip S (δ, [T, T1]) with T1 < 2C0 max
{

maxx∈I
v0(x)
w0(x) , ‖u+‖∞

}
to which the solution can

be extended. The constant C0 > 0 depends only on the heat semigroup. In particular, it can be

continued after time T1 back to the real axis.

Proof. By the maximum principle we can assume that there exists a time 0 < t0 < T such that

ut (t0, x) ≥ 0. By the Hopf Lemma ut (t0, x) has a positive boundary derivative, i.e.

±utx (t0,±1) > c0 > 0.

We can expand the function around t = t0 + τ with respect to τ ∈ R, |τ | < ε,
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u (t0 + iτ, x) = u (t0, x) + iτut (t0, x)− τ2g (τ, x) .

where g (τ, x) is bounded and differentiable with respect to x. The imaginary part of the

boundary derivative is

±Im (ux (t0 + τ,±1)) = ±τutx (t0,±1)∓ τ2Im (gx (τ,±1)) > c0τ +Mτ2.

Choosing ε > 0 small enough, implies that the imaginary part of the boundary derivative is

positive. Thus, we can apply Lemma 1.3.5 to show that the solution exists for any positive t̃ ∈ R+,

i.e. ∥∥u (t0 + iτ + t̃, ·
)∥∥
∞ ≤M <∞.

From Lemma 1.3.4 we know, that the solution function u (t0 + iτ) is to the left of a straight

line of angle ϕ > Cτ for C = minx∈I
w0(x)
2v0(x) . Furthermore it is contained in a solution disk to s0e

iϕ

with s0 < ‖u (t0 + iτ, ·)‖∞ < 2 ‖u0‖∞ for τ and t0 small enough.

From Lemma 1.3.3 the solution satisfies the following bound

∥∥u (t0 + iτ + t̃, ·
)∥∥
∞ ≤

1

t̃ cosϕ sinϕ
≤ 1 + ε

Ct̃τ
.

for t̃ > 2 ‖u0‖∞ and any ε > 0, if one chooses τ small enough.

Lemma 1.3.3 guarantees the existence of solutions, when solving along a slanted time line

t = (1− i)r/
√

2, if the sup-norm of the initial condition is less than, i.e. if ‖u0‖∞ < 1√
2C0r

. Thus,

we can solve back to the real axis, boundedly, if

√
2τ

1 + ε
< Ct̃τ ⇒

√
2

1 + ε
< Ct̃.

This implies that we need to wait for time

T1 = 2C0 max

{
max
x∈I

v0 (x)

w0 (x)
, ‖u+‖∞

}
<∞,

until we can return back to the real axis. The solution exists on an upper and lower spall strip

S± (δ, [T, T1]) .

Remark 1.3.13. We can choose in particular w = ϕ, where ϕ is the first eigenfunction at u+.

This time estimate is unfortunately far from optimal. One might expect continuation to spall

strip where T = T1, i.e. the real blow up singularity becomes just a singleton from the complex

time point of view. At the present we are not able to resolve the question.
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Description of continued solutions Using the Cauchy formula we can prove that blow-up

solutions on the fast unstable manifold can not coincide after blow up again.

Γ+

Γ−

Im (t)

Re (t)T T1

(a) Time path

u0u+0

(b) Path in the fast unstable manifold

Figure 1.8: Time path and solution in the local complex tangent space

The main idea is depicted in Figure 1.8. Choosing the time paths Γ±, the path the solution

u (Γ±, x) traces in the unstable manifold is shown on the right. The argument, why the solution

does not close up again, is that the eigenvalues at zero and u+ are not the same. Suppose, that

the local flow around zero and u+ is one-dimensional and purely linear with eigenvalues µ0 and µ1.

To pass from u0 to the other side of the equilibrium u+ would then take time t0 = iπ
µ1

, whereas it

would take time t1 = iπ
µ0

at zero. Thus the solutions along Γ± can only coincide if t0 = t1 + 2nt1

for some n ∈ N.

Lemma 1.3.14. The eigenvalue µ of the linearization at u+ (x) satisfies π2

4 < µ.

Proof. We want to show that the largest eigenvalue of the operator

L := ∂xx + 2u+ (x)

is not equal to the absolute value of the first eigenvalue at zero. For that reason, we follow closely

the discussion on Sturm-Liouville problems in [57]. For Sturm - Liouville problems, we can express

the largest eigenvalue by the Rayley quotient.

R (Q) :=

∫ 1
−1−Q

2
x (x) + 2u+ (x)Q2 (x) dx

‖Q‖2L2

.

By [57] the eigenvalue µ satisfies the following variational principle

µ := max
Q∈H1

R (Q) .

Thus, we can test with any function to obtain a lower bound of µ. Taking Q = u+ we obtain

R (u+) =

∫ 1
−1−((u+)x)2 (x) + 2(u+)3 (x) dx

‖u+‖2L2

=

∫ 1
−1−((u+)x)2 − 2(u+)xx (x) (u+) (x) dx

‖u+‖2L2

=
‖(u+)x‖L2

‖u+‖2L2

≤ µ.
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This yields the inequality

‖(u+)x‖2L2 ≤ µ ‖u+‖2L2 . (1.18)

We can expand (u+)x (x) :=
∑∞

n=0 anen (x) where en (x) := sin
(
nπ
2 (x+ 1)

)
is the eigenbasis at

zero. By Plancherel we can rewrite inequality (1.18) as

∞∑
n=1

n2π2

4
a2
n ≤ µ

∞∑
n=1

a2
n,

for

u+ =

∞∑
n=1

anen,

If, it holds that u+ (x) 6= sin
(
π
2 (x+ 1)

)
, also π2

4 < µ holds. As simple calculation yields

−π
2

4
sin
(π

2
(x+ 1)

)
+ sin

(π
2

(x+ 1)
)2
6= 0,

for x = 0.

The previous lemma allows to show that the blow-up singularity is indeed a branch point of the

analytic continued solutions. We summarize the results of the chapter in the following theorem,

which was already quoted in the introduction.

Theorem 1.3.15. There exists a δ > 0 such that the time analytic continuations of the real blow

up orbit on the fast unstable manifold of u+, i.e. Φ (t, (τ,Υ (τ)), 0 < τ < δ exists and has the

following properties:

(i) It blows-up completely at time T .

(ii) It can be continued to upper and lower spall strips S± (δ, [T, T1]) for

T1 < 2C0 max

{
max
x∈I

v0 (x)

ϕ (x)
, ‖u+‖∞

}
.

The constant C0 > 0 depends only on the heat semigroup.

(iii) The upper and lower time path continuations do not coincide after T1 > 0

Proof. The first two claims are already known or have already been shown. The idea to prove the

third claim is to choose a complex time path as indicated in the Figure 1.8 and to show that the

solution after continuation along path Γ+ and Γ− does not coincide.

Since the fast unstable manifold is analytic, we have can consider the reduced equation

q̇ = µq + f̃ (q) , q (0) = q0, (1.19)
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where f̃ (u) := Psuu (q,Υ (q)) is an analytic function vanishing of quadratic order. Since f̃

respects the real axis, real q0 implies that the solution q (t) is real for real time t. Take now q0 > 0.

The solution to the nonlinear heat equation with initial condition

u0 = u+ + q0ϕ+ Υ (q0) .

blows-up.

The time needed to pass from the right side of u+ to the left side of u+ (see Figure 1.8) is

t = iπ
µ .

This is due to the Cauchy formula by separation of variables of the reduced equation (1.19).

By Cauchy residue theorem, the total time needed to go around the stationary solution u+ is

2t =

∮
1

µq + f̃ (q)
dq =

2πi

µ
.

The factor two is due to conjugation symmetry. Furthermore the heteroclinic orbit converges to the

first eigenfunction at zero, since the heteroclinic orbit does not change sign. This implies, that the

heteroclinic converges to zero on the slow stable manifold and is tangent to the first eigenfunction.

Similarly as in the fast unstable manifold we prove that the time needed to pass from right to

left around u− in the first eigenfuction is close to

t =
4i

π2
.

But from Lemma 1.3.14 we know that π2

4 < µ which implies, that the solution is not real. In

particular the solution is not real when going first for time iπ
µ and then along the real heteroclinic

orbit for time t > 0, such that the reduced equation on the slow stable manifold holds and then for

time −iπµ .

Remark 1.3.16. Alternatively we could also argue by analytic linearization [3]. The reduced one-

dimensional analytic differential equation on the fast unstable resp. slow stable manifold can be

linearized analytically and we have the pure flow of the linear part. This gives the same result as

the Cauchy formula.

Remark 1.3.17. The proof indicates that the Riemann surface introduced by the analytic contin-

uations of the blow-up orbit is induced by the quotient of the eigenvalues µ and µ̃ at the connected

equilibria of the heteroclinic orbit. If the quotient is rational, then is the Riemann surface compact

otherwise non-compact. Suppose the quotient satisfies µ̃
µ = m

n for some n ∈ N and m ∈ Z < 0. This

implies that going for time inµ into the complex plane and then back for time −imµ̃ gives a closed

orbit. Note, that the time path encircles many singularities and we can just make a statement about

the net branching.
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This allows to study how the branch point of the blow-up orbit changes depending on a parameter

as for example, in the following equation

ut = uxx + λu+ u2, λ ∈ R, x ∈ (−1, 1) , u (±1) = 0.

Upper blow-up rate estimate We prove a geometric characterization of blow-up points: If

there is blow-up at t = 0 and x = 0, the image of the function D 7→ u (t+ i, 0) must cover a

half-plane in the complex plane, see Figure 1.9. In particular, the image can not be contained in

any sector of opening less than π. This surprising result follows from analytic functions theory.

Since we already now, that the solution on the fast unstable manifold is contained in the upper

half-plane by Lemma 1.3.6, we also have an upper estimate on the blow-up rate for complex time.

Note, that in contrast to lower estimates upper blow-up rate estimates are more difficult to obtain,

and is not clear how to transfer the proofs e.g. in [48] from the real to the complex case. As already

mentioned in the introduction, upper blow-up rate estimates allow for rescaled coordinates. In

rescaled coordinates, the blow-up point becomes an equilibrium.

Γ

Im (t)

Re (t)T T10

Figure 1.9: Complex time disk attached to the blow-up point

Lemma 1.3.18. Consider the solution constructed in Theorem 1.3.12. Then it holds |u (t, x)| ≤
M

Im(t) for some M > 0 independent of x. The constant M > 0 is related to the height δ of the time

strip in which the solution exists.

Proof. The image of u (S+ \ R, I) is contained in the upper half-plane of the complex plane by

Lemma 1.3.6.. The point evaluation δx : C0 (I)→ C

δx (u) := u (x) ,

is a bounded linear functional. The function ux (t) := δx (u (t)) is a holomorphic function. Take

now a disk in the upper half-plane tangent to t∗ of radius δ/2. First assume δ = 2. Then the

function ux (t) is a holomorphic function from the unit disk to C. The proof follows from the

classical subordination [10] principle as follows

(i) Set z = t− t∗ − i and define the function

ũx (z) := ux (t∗ + i+ z)− ux (t∗ + i) .
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The function ũx is a holomorphic function on the unit disk at zero with ũx (0) = 0. Further-

more, the image ũx (D) is contained in a shifted upper half-plane.

(ii) Next we look for a Möbius transformation Γ (z) := z+b
cz+d , which satisfies

Γ (0) = 0, Γ (∞) = 1, Γ (iα) = −1.

for some α ∈ R. The first two conditions yield b = 0 and c = 1. The last condition implies

d = −2iα, thus

Γ (z) =
z

z − 2iα
.

The line t 7→ iα+ t, t ∈ R is mapped to the unit circle since

|Γ (t+ iα)| =
∣∣∣∣ t+ iα

t− iα

∣∣∣∣ = 1, t ∈ R.

Now, we choose α such that ũx (D) ⊂ Γ−1 (D). The inverse transformation is given by

Γ−1 (z) =
−2iαz

1− z
.

(iii) Consider the function ω (z) = Γ ◦ ũx. The function is a holomorphic self-map of the unit disk

and satisfies ω (0) = 0. Thus by Schwarz lemma |ω (z)| ≤ |z|. This implies ũx (z) = Γ−1 (ω (z))

and thus

sup
|z|≤r
|ũx (z)| ≤ sup

|z|≤r
|Γα (ω (z))| ≤ sup

|z|≤r
|Γα (z)| ≤ 2α

1− r
,

for any r < 1.

(iv) Rescaling time, we can always rescale a disk of radius δ/2 to the unit disk. This gives the

estimate

sup
|z|≤r
|ũx (z)| ≤ 2α

1− 2rδ−1
.

for r < δ/2.

Remark 1.3.19. This implies that the nontagential limit of ux (t) (t− t∗) to t∗ exists.

Remark 1.3.20. The result is quite astonishing, since we do not just get an a priori estimate on

the blow-up rate very easily, but we also get a geometric condition on the range of the image of

points close to blow-up from the lower blow-up rate estimate. Suppose, that there exists an interval

Ĩ ⊂ I and a disk Ω in the upper complex plane touching the real axis such, that im
(
u
(

Ω, Ĩ
))

is

contained in a sector of the upper half-plane, then the solution is bounded on Ĩ up to the real axis.

Then we get subordination of the solution by some p < 1 of the Cayley transform, which contradicts

blow-up by Corollary 1.3.10.
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(a) Solution for p = 3 (b) Solution for p = 4

Figure 1.10: Real time ODE invariant solutions for different ẋ = xp

Remark 1.3.21. For p > 1 all of the proofs in this Chapter also hold. The main reason is, that

also in the case p > 1 there exists invariant regions of the ODE flow for positive solutions, see

Figure 1.10. All the arguments of section 1.3 work analogously.
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1.4 Outlook

In the first part of this chapter we have shown that the global attractor introduces unbounded

solutions in the complex domain. In particular in the presence of heteroclinic orbits, there are also

blow-up solutions.

In the second part, we studied the concrete example of the quadratic nonlinear heat equation.

Here, we were able to derive finer results. For example there exists an analytic continuation of the

blow-up orbit to a complex time strip cut out a finite time interval. Furthermore we showed that

the analytic continuation along different paths around the blow-up point does not close.

Quite recently a paper [9] with numerical simulations of the quadratic nonlinear heat equation

with periodic boundary conditions in complex time appeared. The numerical simulations suggest,

similar to our rigorous proven results in the Dirichlet case, that complex time continuation after

the blow-up introduces a Riemann surface and in particular continuations along different paths

around the singularity do not close up. Even though the analysis is purely numerical it indicates

how continued solutions on the Riemann surfaces look like and give a starting point of a more

detailed study of continued solutions.

In the next chapter, we pursue the approach from the first part. We try to deepen the connection

between blow-up solutions and the eternal core. In particular, we will show that a one-dimensional

center manifold can already be enough to prove the existence of finite time blow-up. In contrast to

the heteroclinic orbit, which is a non-local object, the center manifold allows to conclude blow-up

by local analysis around a single equilibrium without considering any global properties of the flow.
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Chapter 2

Continuation of center manifolds to

complex sectors

Abstract

In this chapter, we analyze one-dimensional center manifolds of analytic reaction-

diffusion equation

ut = Au+ f (u) , f (0) = 0, Df (0) = 0,

with sectorial operator A. We show that if the unstable spectrum of A is empty and the equilibrium is

weakly unstable of quadratic order, there exists an analytic continuation of the real center manifold

into complex sectors.

2.1 Introduction

The results of the previous chapter crucially depended on the analyticity of stable and unstable

manifolds. By analyticity we were able to describe the flow on the unstable manifold by an analytic

ordinary differential equation (ODE). By the ODE we proved the existence of blow-up solutions by

local analysis close to an equilibrium.

Center manifolds however need not to be analytic even for analytic systems, e.g. [58], [33].

In this chapter we show that it is still possible to analytically continue the graph of one-dimensional

center manifolds of PDEs to complex sectors. This is already known for ODEs [25], but to the best

of our knowledge not for PDEs. We will use the continued center manifold in the next chapter to

analyze the connection between local center manifolds and blow-up solutions.

Consider the following abstract evolution equation

ut = Au+ f (u) , f (0) = 0, Df (0) = 0. (2.1)
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The standard center manifold theory, see Appendix 4.1, guarantees the existence of a center

manifold under certain assumptions on A and f . One important assumption is that A is a sectorial

operator, such that the spectrum on the imaginary axis is finite and the rest of the spectrum is

bounded away from the axis. The spectral splitting allows for projections, which decompose the

space X = X0 ⊕Xh into the center space resp. hyperbolic part of A.

The center manifold is an invariant manifold that is close to the equilibrium a graph ψ : X0 → Xh.

It contains in particular all solutions, which stay small enough for all positive and negative real

times.

We want to study whether we can continue the graph of the center-manifold to complex values.

Here one needs to clarify what extension means. We can, on the one hand, try to continue the

center manifold as geometric object, i.e. extend the graph function ψ to a larger, complexed valued

domain by analytic continuation. On the other hand we can also try to extend the center manifold

by its dynamical properties, i.e. to characterize the set of small complex-valued initial conditions,

such that solutions exist for all real times after suitable cut-off of the nonlinearity.

It is not clear a priori that both approaches will give the same extensions of the real center manifold.

We will address this question in the next chapter, where we will prove, that among the non-unique

real center manifolds there exists an unique center manifold, which contains small complex-valued

solutions and is also analytic. Thus the two extensions coincide. Furthermore, this special center

manifold is linked to blow-up solution.

In this chapter we will take the first approach. As already mentioned, the graph is not necessarily

an analytic function, which manifests for example in divergent power series of the power series

expansion ψ. Or the power series expansion can be zero when the graph contains exponentially flat

terms, that can not be represented by power series. From a technical point of view the failure of

analyticity stems from the multiplication of the nonlinearity f with a cut-off function in the proof

of the existence of center manifolds. It is clear that cut-off functions can not be analytic. That is

why we use the invariance equation of the center manifold as in [25] to obtain an analytic extension.

Plugging u (t) = x (t) + ψ (x (t)) into equation (3.1) gives the following invariance equation for ψ

ψx (x)P0f (x, ψ (x)) = Ahψ (x) + Phf (x, ψ (x)) . (2.2)

The linear operator Ah = PhA is still a sectorial operator which is why we attempt to solve the

invariance equation with “time” x in sectorial regions of the complex plane. Again, this has the

advantage that we do not have to consider any cut-off function at all. But the disadvantage is that

it is not clear whether solutions on the continued graph share the dynamical properties of solutions

on center manifolds, e.g. that they contain all globally bounded solutions of the system after cut-off.

Throughout the chapter we use the following definition.
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Definition 2.1.1 (Sector). We denote by Sr,α sectorial subsets of the complex plane, that is

Sr,α :=
{
seiϕ ∈ C, 0 < s < r, |ϕ| < α

}
.

Furthermore, the unbounded sector S∞,α is abbreviated by Sα.
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2.2 A simple example

In this section we consider a very simple example, which already conveys the main idea. Consider

the following system of ordinary differential equations.

ẋ = x2, x ∈ R,

ẏ = −y + x2, y ∈ R.
(2.3)

The equation has a one-dimensional center manifold at zero with center direction x. The

standard center manifold theory guarantees the existence of an invariant center manifold over x.

This implies that we may look for solutions of the form y = ψ (x). Plugging this ansatz for y into

the system (2.3) gives the following invariance equation

ψxx
2 = −ψ + x2. (2.4)

Usually one tries to expand ψ as power series ψ (x) :=
∑∞

n=2 ψnx
n. The power series ansatz in

equation (2.4) yields the following recursion of the coefficients ψn.

−nψn−1 = ψn, n ≥ 3, ψ2 = −1.

The recursion can be solved explicitly and gives ψn = (−1)n+1(n− 1)!. The power series for ψ

does not converge for any small x.

Throughout this work, we will take a different approach to equation (2.4). Since we assume,

that the center space is one-dimensional, we can view the center direction x as new “time” of

equation (2.4) and ask for which “times” there is a solution of equation (2.4). Setting z = − 1
x

transforms equation (2.4) to

ψz = −ψ + z−2. (2.5)

Equation (2.5) is a non autonomous linear differential equation, which we attempt to solve by

variation of constants

ψ (z) = e−(z−z0)ψ0 +

∫ z

z0

e−(z−s)s−2ds.

Since we look for solutions with ψ (z0)→ 0 for z0 → −∞ we have

ψ (z) =

∫ z

−∞
es−zs−2ds =

∫ ∞
0

e−τ (z − τ)−2 dτ. (2.6)

The integral converges as long as z < 0. We could also look for analytic continuation of ψ to

complex z. For z 6∈ R+ the integral in equation (2.6) is well-defined. This immediately implies
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that we can analytically continue the integral to C \ {R+} or, in the original coordinates, we can

continue ψ (x) to C \ {R−}.
Furthermore, we recover the alternating factorial sum of the power series expansion by partial

integration of equation (2.6)

ψ (z) = −z−2 − 2

∫ ∞
0

e−τ (z − τ)−3 dτ = −z−2 + 2z−3 + 6

∫ ∞
0

e−τ (z − τ)−4 dτ.

Repeated partial integration yields the alternating factorial sum. Note, that since the error

term is multiplied by a factorial it does not become small.

Remark 2.2.1. For the infinite dimensional case sectorial regions become important. Note, that

the change from x to z maps a sector at zero to a sector at negative infinity, that is

x = reiφ ⇔ z = −r−1e−iφ.

This simple observation is why we can obtain similar results also in the infinite dimensional case.

2.3 Extension of center manifolds to complex sectors

We restrict to the case in which the unstable spectrum of A is empty.

2.3.1 Setting

In this section we study the following setting.

ut = Au+ f (u) . (2.7)

Let the assumptions for the center manifold theorem hold, see Appendix 4.1 with f (u) ∈
Cω (V, Y ) and Z = D (A) and Y = D (Aα) for some 0 < α < 1. V ⊂ Z is a neighborhood of zero.

Furthermore, let the following conditions hold

σ (A) ⊂ R− ∪ {0} , (2.8)

dim ker (A) = 1, (2.9)

f (R) ⊂ R. (2.10)

Note, that the first condition can actually be replaced by the usual sectorial assumption, i. e.

that the spectrum is contained in a sector in the complex plane. The sector to which we can extend

the semigroup associated to A determines the sector to which we can extend the graph of the center

manifold. The third condition is natural, if the differential equation leaves the real axis invariant.

The actual limitation is the second condition.
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By Theorem 4.1.6 we obtain a local center-manifold of the real equation. The center manifold

theorem guarantees the existence of solutions of the form

u (t) = x (t) + ψ (x (t)) ,

where ψ : Ck (X0, Zh) and x (t) ∈ X0.

This implies that we can rewrite the system (2.7) for solutions as mentioned in the beginning

of this chapter

ẋ = P0f (x, ψ (x)) , (2.11)

ψx (x)P0f (x, ψ (x)) = Ahψ (x) + Phf (x, ψ (x)) . (2.12)

The operator Ah and its corresponding spaces are well-defined by Appendix.

For simplicity we make the following non-genericity assumption

P0fxx (0, 0) = 1, (2.13)

such that the projected equation vector field starts quadratically in x. The quadratic term is

solely determined by the vector field itself and does not depend on the graph ψ.

Remark 2.3.1. Note, that we can rescale time, such that whenever P0fxx (0, 0) > 0 equation (2.13)

holds.

2.3.2 Generation of evolutions in complex time domains

In this preliminary section, we show that the differential equation

ψx = γ (x)Ahψ, (2.14)

generates an evolution that can be extended to sectors for functions γ that are also analytic on

sectors in the complex plane. Since we assumed that the spectrum of Ah is on the real line, we can

actually extend the evolution to the right half-plane.

The basic idea of this chapter, that a change of time zx = γ (x) transforms equation (2.14) into

standard linear form. Instead of following that approach, we take explicit care of the time change.

For real time an evolution satisfies the following properties [33].

Definition 2.3.2 (Evolution). A family of operators G (t, s) ⊂ L (X) is said to be an evolution

operator for problem (2.14) if

(i) G (t, s)G (s, r) = G (t, r), G (s, s) = Id, 0 ≤ r ≤ s ≤ t ≤ T ,

(ii) G (t, s) ∈ L (X,D), 0 ≤ s < t ≤ T ,
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(iii) t→ G (t, s) is differentiable in (s, T ] with values in L (X) and

∂tG (t, s) = γ (t)AG (t, s)

We extend the definition of evolutions analogously to semigroups to sectorial regions.

Lemma 2.3.3. Assume that there exists θ < π
2 , such that Γ (t, s) :=

∫ t
s γ (τ) dτ satisfies Γ (t, s) ∈ Sθ

for all t− s ∈ Sθ.
Define the following function

G (t, s) := T (Γ (t, s)) . (2.15)

Then G (t, s) is an evolution of the differential equation (2.14).

Proof. Note, that the function G (t, s) is well-defined by definition since Γ (t, s) is always contained

in the domain of definition of the semigroup T (z).

(i) By definition T (0) = Id and thus G (s, s) = 0.

(ii) Furthermore, due to additivity of the integral we have the semigroup property of T (z)

G (t, s)G (s, r) = T (Γ (t, s) + Γ (s, r)) = T (Γ (t, r)) = G (t, r) .

(iii) Obviously G (t, s) ∈ L (X,D (A)) holds for t − s ∈ Sα by the properties of the analytic

semigroup.

(iv) And also

∂tG (t, s) = ∂tT (Γ (t, s)) = Aγ (t)T (Γ (t, s)) = γ (t)AΓ (t, s) .

We will only consider very particular functions γ (x) := 1
x2+h(x)

with h (x) ∈ O
(
|x|3
)
. The

essential idea is that the change of coordinates z = −1
x maps sectorial regions into each other, see

Figure 2.1.

Note, that the left sector is bounded whereas the region on the right is unbounded and contained

in the left half-plane. The analytic semigroup generated by Ah can be extended to the whole left

half-plane.

Lemma 2.3.4. Assume, that h (x) = 1
x2+γ(x)

with γ (x) ∈ O
(
|x|3
)

. Then the integral

Γ (x, s) :=

∫ x

s
h (s) ds,

can be approximated by

Γ (x, s) = −x−1 + s−1 +O

(
log

(
|x|
|s|

))
,

for small enough |s| , |x|. Furthermore, for each 0 < φ < pi
2 there exists a constant r > 0, such that

the real part of Γ (x, s) positive if Re (s) < Re (x), s, x ∈ Sθ,r.
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Figure 2.1: Time regions

Proof. For small enough |x| and |s| we can expand γ (x) as geometric series, which yields the

following integral: ∫ x

x0

h (s) ds =

∫ x

s

1

s2

∞∑
n=0

(
−γ (s)

s2

)n
ds. (2.16)

Since γ (x) ∈ O
(
|x|3
)

, we know that the n-term is bounded by Cnsn. This implies

Γ (x, s) = −x−1 + s−1 +O

(
log

(
|x|
|s|

))
.

We set x = reiφ and x0 = r0e
iφ for |φ| < π

2 to obtain∫ x

s
h (s) ds = −e

−iφ

r
+
e−iφ

s
+O

(
log
(r
s

))
.

This implies that the real part of Γ (x, x0) is

Re (Γ (x, x0)) ≥ cos (φ)

[
1

s
− 1

r

]
− C log

(r
s

)
.

Setting 1
s = τ

r for some τ > 1, we obtain by concavity of the logarithm, that the following

inequality holds for small enough r > 0,

cos (φ)

r
[τ − 1]− C log τ >

cos (φ)

r
− C > 0,

Note, that the estimate is uniform in sectors where cos (φ) is bounded from below.

Corollary 2.3.5. For every 0 < φ < π
2 exists an r > 0 such, that evolution G (x, s) is well-defined

on Sφ,r. In particular for x, s ∈ Sφ,r with Re (s) < Re (x) the operator G (x, s) : X → Z is bounded.

The next lemma shows, that the evolution G (x, s) inherits regularization properties from the

semigroup T (z).

Lemma 2.3.6. For x− s ∈ Sθ the evolution G (x, s) satisfies the following properties
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(i) lims∈Sθ→0A
nG (x, s) = 0.

(ii) ‖AαG (t, s)‖ ≤M
(

1
−1
x

+ 1
s

)α
exp

(
−β
(−1
x + 1

s

))
.

for some β > 0 for all s, x, n.

Proof. From equation (2.15) we have for some β > 0,

lim
s∈Sθ→0

‖AnG (t, s)‖L(X,X) = lim
s∈Sθ→0

C

∣∣∣∣−1

t
+

1

s

∣∣∣∣n exp

(
−β
(
−1

t
+

1

s

))
= 0.

Secondly we have,

‖AαG (t, s)‖ ≤ C

|Γ (t, s)|α
exp

(
β

(
1

t
− 1

s

))
.

But by Lemma 2.3.4 we obtain that |Γ (t, s)| ≥ C
1
t
+ 1
s

for small enough t and s.

Corollary 2.3.7. Consider the variational formulation

u (t, s) = G (t, s)u (s) +

∫ t

s
G (t, σ) f (s) ds, (2.17)

where f is complex-differentiable with values in D (Aα) for some 0 < α < 1. Then u (t, s) is

complex differentiable with values in D (A).

2.3.3 Sector in the positive real plane

We want to solve the invariance equation

ψx (x) =
Ah

P0f (x, ψ (x))
ψ (x) +

Phf (x, ψ (x))

P0f (x, ψ (x))
= γ (x, s, ψ)Ahψ + g (s, ψ (s)) .

Assume that the operator γ (x, s, ψ)Ah generates the evolution G (x, s, ψ). Then the variation

of constants formula is

ψ (x) =

∫ x

0
G (x, s, γ) g (s, ψ (s)) ds.

The difficulty is that both, the evolution G (x, s, γ) and the function g (s, ψ (s)) depend on ψ.

We split the dependence into three steps.

(i) Show that the following differential equation yields a well-defined evolution

ψx = (x2 + γ (x))−1Ahψ,

where γ is an analytic function from a sector to complex plane C that decays at least like |z|3

close to zero.
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(ii) Show that the equation

ψx (x) (x2 + γ (x)) = Ahψ (x) + Phf (x, ψ (x)) , (2.18)

has a solution ψ (γ) that depends continuously on γ.

(iii) Show, that the map F : ψ̃ → ψ
(
P0f

(
x, ψ̃

)
− x2

)
has a fixed point ψ. The function ψ is

then a solution of the equation (2.2) in a sector in the complex plane.

Lemma 2.3.8. Consider the evolution generated by

ψx = (x2 + γ (x))−1Ahψ,

for x ∈ Sθ,r0 with 0 < θ < π
2 .

Define the set

U :=
{
γ ∈ Cω (Sθ,r0 ,C) ∩ C0

(
S̄θ,r0 ,C

)
, ‖γ‖U ≤M

}
, ‖γ‖U = sup

x∈Sθ,r0

∣∣∣∣γ (x)

|x|3

∣∣∣∣ ,
for some fixed constant M > 0 and r0 > 0 to be chosen during the proof. Then it holds

lim
γ̃→γ

sup
x∈Sθ,r0

x−2

∫ x

0
‖G (x, s, γ̃)−G (x, s, γ)‖L(Yh,Zh) ds = 0.

Proof. Throughout the proof we suppress constants that do not depend on δ, s and x into a generic

constant C. Using Lemma 2.3.3 we obtain

‖G (x, s, γ)−G (x, s, γ̃)‖L(Yh,Zh) =
∥∥∥T (Γ (x, s))− T

(
Γ̃ (x, s)

)∥∥∥
L(Yh,Zh)

. (2.19)

But since T is generated by the sectorial operator Ah we can represent the semigroup T (z) by

the Dunford integral, see for example [33]

T (Γ (x, s)) =
1

2πi

∫
ω
eλΓ(x,s)R (λ,Ah) dλ.

where ω is a the boundary curve of a sector in the negative real half-plane containing σ (Ah).

Due to the Dunford integral representation we can calculate the difference (2.19) as follows

G (x, s, γ)−G (x, s, γ̃) = C

∫
ω

(
eλΓ(x,s) − eλΓ̃(x,s)

)
R (λ,Ah) dλ = C (I1 + I2) . (2.20)

Writing down the path integral in (2.20) we obtain

I1 =

∫ ∞
0

eiφ
(
eλe

iφΓ(x,s) − eλeiφΓ̃(x,s)
)
R
(
λeiφ, Ah

)
dλ,

I2 =

∫ ∞
0

e−iφ
(
eλe
−iθΓ(x,s) − eλe−iφΓ̃(x,s)

)
R
(
λe−iφ, Ah

)
dλ.
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We prove everything for I1 since the result follows completely analogously for I2. Pulling out

eλe
−iφΓ(x,s) gives

I1 =

∫ ∞
0

eiφeλe
iφΓ(x,s)

(
1− eλeiφ(Γ̃(x,s)−Γ(x,s))

)
R
(
λeiφ, Ah

)
dλ. (2.21)

We get the following inequality

∣∣∣Γ (x, s)− Γ̃ (x, s)
∣∣∣ =

∫ x

s

∣∣∣∣ γ (s)− γ̃ (s)

(s2 + γ (s)) (s2 + γ̃ (s))

∣∣∣∣ ds
≤ 2 ‖γ̃ − γ‖U log

|x|
|s|
.

Furthermore we have∣∣∣eλeiφΓ(x,s)
∣∣∣ ≤ ∣∣∣∣exp

[
λ cos (φ− θ)

(
1

Re (x)
− 1

Re (s)

)
+ C2λ

(
log

(
Re (x)

Re (s)

))]∣∣∣∣ .
But since the spectrum is on the real axis, we can make φ such large, that π

2 < φ − θ < 3π
2 .

This implies cos (φ− θ) < 0. Now choosing Re (x) small enough we get for some x̃ ≥ 1
C3Re(x) for

some C3 > 0 ∣∣∣eλeiφΓ(x,s)
∣∣∣ ≤ exp

(
λx̃

(
1− 1

τ

))
,

where s = xτ for some 1 < τ .

Furthermore, from [33] we know that ‖R (λ,Ah)‖L(Yh,Xh) decays for large |λ|,

(1 + λ)α
∥∥∥R(λeiφ, Ah)∥∥∥

L(Yh,Xh)
≤M <∞.

Thus changing τx = s in the integral 2.21 yields

∫ x

0

∥∥∥∥∫ ∞
0

eiφeλe
iφΓ(x,s)

(
1− eλeiφ(Γ̃(x,s)−Γ(x,s))

)
R
(
λeiφ, Ah

)
dλ

∥∥∥∥ ds
≤ Cx

∫ 1

0

∫ ∞
0

exp (λx̃ (1− 1/τ + C log (1/τ))) |1− exp (λ log (1/τ) δ)| (1 + λ)−α dλdτ.

Set z = 1
τ which implies −z−2dz = dτ and thus with x̃ = Cx−1, the integral becomes,

x

∫ 1

0

∫ ∞
0

exp (λ (x̃ (1− 1/s) + C log (1/τ))) |1− exp (λ log (1/τ) δ)| (1 + λ)−α dλdz

≤ Cx
∫ ∞

1

∫ ∞
0

exp (λ (x̃ (1− z) + C log (z))) |1− exp (λ log (z) δ)| z−2 (1 + λ)−α dλdz.

After shifting and reversing z, we obtain
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x

∫ ∞
1

∫ ∞
0

exp (λ (x̃ (1− z) + C log (z))) |1− exp (λ log (z) δ)| z−2 (1 + λ)−α dλdz

= x

∫ ∞
0

∫ ∞
0

exp (λ (−x̃z + C log (1 + z))) |1− exp (λ log (1 + z) δ)| (z + 1)−2 (1 + λ)−α dλdz

Using the concavity of logarithm we get log (1 + z) ≤ z. This implies for x̃ := x̃ − C the

following bound,

x

∫ ∞
0

∫ ∞
0

exp (λ (−x̃z + C log (1 + z))) |1− exp (λ log (1 + z) δ)| (z + 1)−2 (1 + λ)−α dλdz

≤ Cx
∫ ∞

0

∫ ∞
0

exp (−λx̃z) |1− exp (λ log (1 + z) δ)| (z + 1)−2 (1 + λ)−α dλdz.

Our goal is to show, that the integral converges to zero with δ → 0 uniformly in x2.

Suppose we have shown, that the integral is uniformly bounded after dividing by x2, i.e.

x−1

∫ ∞
0

∫ ∞
0

exp (−λx̃z) |1− exp (λ log (1 + z) δ)| (z + 1)−2 (1 + λ)−α dλdz < C0 <∞, ∀x ∈ Sθ,r.

Then we can argue by contradiction. Assume, that exists an ε > 0 and sequences γn, γ̃n ∈ U
with ‖γ̃n − γn‖U = δn ≤ 1

n , xn ∈ Sθ,r such, that the following holds

ε ≤ x−2
n

∫ x

0
‖G (xn, s, γ)−G (xn, s, γ̃)‖L(Yh,Zh) ds

≤ C

xn

∫ ∞
0

∫ ∞
0

exp
(
−λzx−1

n

)
|1− exp (λ log (1 + z) δn)| (z + 1)−2 (1 + λ)−α dλdz.

Define the following sequence of functions

fn (λ, z) := x−1
n exp

(
−λzx−1

n

)
|1− exp (λ log (1 + z) δn)| (z + 1)−2 (1 + λ)−α .

Consider any fixed λ > 0 and z > 0. Then the pointwise limit of fn (λ, z) is zero, i.e.

lim
n→∞

fn (λ, z) ≤ lim sup
n→∞

exp
(
−λzx−1

n

)
x−1
n lim sup

n→∞
[exp (λ log (1 + z) δn)− 1] = 0.

This implies by dominated convergence theorem

lim
n→∞

1

xn

∫ ∞
0

∫ ∞
0

exp
(
−λzx−1

n

)
|1− exp (λ log (1 + z) δn)| (z + 1)−2 (1 + λ)−α dλdz

= lim
n→∞

∫ ∞
0

∫ ∞
0

fn (λ, z) dλdz

= 0.
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This is a contradiction.

Now we prove that the integral

x−1

∫ ∞
0

∫ ∞
0

exp (−λx̃z) |1− exp (λ log (1 + z) δ)| (z + 1)−2 (1 + λ)−α dλdz,

is uniformly bounded for all 0 < |x| < r.

We bound the integral as before by getting rid of the logarithm (and modification of the constant

x̃),

x−1

∫ ∞
0

∫ ∞
0

exp (−λx̃z) |1− exp (λ log (1 + z) δ)| (z + 1)−2 (1 + λ)−α dλdz

≤ Cx−1

∫ ∞
0

∫ ∞
0

exp (−λx̃z) (z + 1)−2 (1 + λ)−α dλdz.

We change to polar coordinates z = r cos (ϕ), λ = r sin (ϕ) to obtain

x−1

∫ ∞
0

∫ ∞
0

exp (−λx̃z) (z + 1)−2 (1 + λ)−α dλdz

= x−1

∫ ∞
0

dr

∫ π/2

0
exp

(
−r2 sinϕ cosϕx̃

)
r (r cosϕ+ 1)−2 (1 + r sinϕ)−α drdϕ.

For each r we now rewrite the inner integral as the sum of three integrals. First consider the

integral from 0 to ϕ0 << 1. That implies by setting x̃ := x̃
2

∫ ϕ0

0
exp

(
−r2 sinϕ cosϕx̃

)
r (z + 1)−2 (1 + λ)−α dϕ

≤
∫ ϕ0

0
exp

(
−r2ϕx̃

)
r (r + 1)−2 dϕ =

1− exp
(
−r2x̃ϕ0

)
rx̃ (1 + r)−α

.

Thus, the following estimate holds∫ ∞
0

∫ ϕ0

0
r exp

(
−r2ϕx̃

)
(r/2 + 1)−α =

∫ ∞
0

1− exp
(
−r2x̃ε

)
rx̃ (1 + r)−α

≤ C

x̃
.

A similar estimate holds for π/2− ϕ0 < ϕ < π/2.

Furthermore we have

∫ ∞
0

∫ π/2−ϕ0

ϕ0

exp
(
−r2 sinϕ cosϕx̃

)
r (1 + r sinϕ)−α (r cosϕ+ 1)−2 dϕdr

≤
∫ ∞

0
dr

∫ π/2−ε

ε
exp

(
−r2x̃ϕ0

)
r (1 + r sinϕ)−α (r cosϕ+ 1)−2 dϕdr

≤ C

x̃
.
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Lemma 2.3.9. There exists a sector Sθ,r for some r > 0, θ > 0 to be chosen during the proof, there

exists a unique analytic function ψ : Sθ,r → Zh with

‖ψ (x)‖Zh ≤ ν |x|
2 for x ∈ Sθ,r,

which solves equation (2.18).

Proof. Consider the sets

M := {ψ ∈ Cω (Sθ,r, Zh) , ‖ψ (x)‖M ≤ ν} , ‖ψ (x)‖M := sup
x∈Sθ,r0

∥∥∥∥ψ (x)

x2

∥∥∥∥
Zh

,

U :=
{
γ ∈ Cω (Sθ,r0 ,C) , ‖γ‖U ∈ M̃

}
, ‖γ (x)‖U := sup

x∈Sθ,r0

∣∣∣∣γ (x)

x3

∣∣∣∣ .
By Lemma 2.3.4 the evolution of G (x, s, γ) is analytic for x − s ∈ Sθ,r0 . For functions in the

set M and γ ∈ U consider the mapping F : M × U →M :

F (ψ, γ) (x) :=

∫ x

0
G (x, s, γ) g (s, ψ (s)) ds, (2.22)

with g (s, ψ (s)) := Ph(x,ψ(x))
(x2+γ(x))

. We want to show that the mapping F (ψ, γ) (x) : M → M is

continuous and a uniform contraction in ψ for appropriate r, ν > 0. Then we can apply contraction

mapping principle with parameters to conclude.

(i) The set M is complete.

‖ψn − ψm‖∞ ≤ ‖ψn − ψm‖M < ε.

This implies that ψn converges to an analytic function ψ. Furthermore holds ‖ψ‖M ≤ ν.

(ii) The function F (ψ, γ) (x) is analytic with values in Zh by Lemma 2.3.7 for all θ < π/2.

(iii) There exists a r > 0 such that for all x ∈ Sθ,r and ψ1, ψ2 ∈MC we get

‖F (ψ1, γ) (x)− F (ψ2, γ) (x)‖M ≤ sup
x∈Sθ,r0

|x|−2
∫ x

0
‖G (x, s, γ)‖L(Yh,Zh) ‖g (s, ψ1 (s))− g (s, ψ2 (s))‖Yh ds.

By Lemma 2.3.6 we have the following estimate

‖G (x, s, γ)‖L(Yh,Zh) ≤ C

(
1

−1
Re(x) + 1

Re(s)

)α−1

exp

(
−β
(
−1

Re (x)
+

1

Re (s)

))
.

Furthermore, we have

‖g (s, ψ2 (s))− g (s, ψ1 (s))‖Yh ≤ C2

(
|s|+ |s|2

)
‖ψ2 − ψ1‖M .
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To obtain a contraction in M we prove that the following integral becomes arbitrarily small

∫ x

0

∣∣∣∣∣
(
−1

Re (x)
+

1

Re (s)

)α−1

|s|−1 exp

(
−δ
(
−1

Re (x)
+

1

Re (s)

))∣∣∣∣∣ ds.
for small enough x. Set x = reiφ and s = τeiφ to obtain

∫ r

0

∣∣∣∣∣
(
−1

Re (r)
+

1

Re (s)

)α−1

τ−1 exp

(
−β
(
−1

Re (r)
+

1

Re (s)

))∣∣∣∣∣ dτ
≤ C

∫ r

0

(
−1

r
+

1

s

)α−1

τ−1 exp

(
−β̃
(
−1

r
+

1

s

))
dτ,

with 0 < β̃ < β cosφ. Furthermore, cos (φ) is uniformly bounded from below. We set

z := −1
s + 1

r , which changes the integral to

∫ r

0

(
−1

r
+

1

s

)1−α
s−1 exp

(
−β̃
(
−1

r
+

1

s

))
ds

≤
∫ ∞

0
zα−1 exp

(
−β̃z

) ∣∣r−1 − z
∣∣−1

dτ <∞.

Choosing r0 small enough yields by dominated convergence theorem

‖F (ψ1, γ) (x)− F (ψ2, γ) (x)‖Zh ≤ q ‖ψ2 − ψ1‖M ,

for some q < 1 indepenent of γ.

(iv) To show that F is a self-map, we need to establish the bound ‖ψ (x)‖M ≤ η |x|
2 for x ∈ Sθ,r.

By definition of g we have

lim
x→0
|x|−2

∫ x

0
‖G (x, s, γ)‖L(Yh,Zh) ‖g (s, ψ (s))‖Yh

≤ |x|−2
∫ z

0
‖G (x, s, γ)‖L(Yh,Zh) ‖gxx (0) + q (s)‖Yh

with q (s) ∈ O (|s|). The existence of an appropriate constant C follows by the previous

calculation. Doing essentially the same as above we obtain the estimate∫ x

0

∣∣∣∣∣
(
−1

Re (x)
+

1

Re (s)

)α−1

|x|−2 exp

(
−δ
(
−1

Re (x)
+

1

Re (s)

))∣∣∣∣∣ ds
≤
∫ ∞

0
zα−1 exp

(
−β̃z

)
r−2

∣∣r−1 − z
∣∣−2

dτ ≤ C
∫ ∞

0
zα−1 exp

(
−β̃z

)
=: η̃. <∞

Set now η := η̃ ‖gxx‖ to obtain the claim.
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(v) If F : M×U →M is continuous the contraction mapping principle would imply the continuous

dependence of the fixed point on γ. To prove continuity we use Lemma 2.3.8. We have to

show that the following holds,

lim
(ψ̃,γ̃)→(ψ,γ)

∥∥∥F (ψ̃, γ̃)− F (ψ, γ)
∥∥∥
M

= 0.

From equation (2.22), we obtain

F
(
ψ̃, γ̃

)
(x)− F (ψ, γ) (x) =

∫ x

0
G (x, s, γ̃) g

(
s, ψ̃ (s)

)
−G (x, s, γ) g (s, ψ (s)) ds.

This implies

∥∥∥F (ψ̃, γ̃)− F (ψ, γ)
∥∥∥
C
≤ sup

x∈Sθ,r
|x|−2

∫ x

0

∥∥∥(G (x, s, γ̃)−G (x, s, γ)) g
(
s, ψ̃ (s)

)∥∥∥ ds
+ sup
x∈Sθ,r

|x|−2
∫ x

0

∥∥∥G (x, s, γ)
(
g
(
s, ψ̃ (s)

)
− g (s, ψ (s))

)∥∥∥ ds.
We have already shown that the second term converges to zero for ψ̃ → ψ and the first term

converges to zero by Lemma 2.3.8.

(vi) Applying now the contraction mapping principle depending on a parameter we obtain that

there exists for each γ ∈ U a unique fixed point ψ (γ) of equation (2.18) fixing γ and this

fixed point depends continuously on γ.

The function γ still depends on ψ. But since we have shown continuous dependence on γ of the

fixed point ψ, we can use an additional fixed point argument to prove the existence of a solution

to the full equation. Even though we will employ Schauder’s fixed point theorem in the last step,

uniqueness is not a problem, since the real center-unstable manifold is unique and has to coincide

with ψ on the real axis. Since ψ is analytic a the sector around the real axis, we know that ψ is

the unique analytic continuation of the real center-unstable manifold. For analytic continuation in

Banach spaces see Section 4.2.1.

Theorem 2.3.10. The function G : M 7→ Cω (Sθ,r0 , Xh) defined by

G
(
ψ̃
)

:= ψ
(
γ
(
ψ̃
))

, γ
(
ψ̃
)

:= P0f
(
x, ψ̃ (x)

)
− x2,

has a fixed point for small enough r0 and 0 < θ < π
2 .
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Proof. By Theorem 4.2.5 the set M is compact, convex subset of Cω (Sθ,π, Xh). G is continuous,

since

∥∥∥γ (ψ̃1

)
− γ

(
ψ̃2

)∥∥∥
U
≤ C sup

x∈Sθ,r
|x|−3

(
|x|
∥∥∥ψ̃1 (x)− ψ̃2 (x)

∥∥∥
Z

+
∥∥∥ψ̃1 (x)− ψ̃2 (x)

∥∥∥2

Z

)
≤ C

∥∥∥ψ̃1 − ψ̃2

∥∥∥
U
.

By Lemma 2.3.9 is G a self map of M .

Schauder’s fixed point theorem gives the existence of a fixed point ψ̃ ∈M which satisfies

ψ̃ (x) = ψ
(
γ
(
ψ̃
))

(x) =

∫ x

0
G
(
x, s, P0f

(
x, ψ̃ (x)

)
− x2

)
g
(
s, ψ̃ (s)

)
ds.

This is the variational formulation of solutions to equation (2.2).

Remark 2.3.11. A similar arguments holds for any center manifold for which the lowest order

term of the center manifold dynamics is obtained by the direct projection onto the center-manifold

and not induced by the graph function ψ.

Remark 2.3.12. Similarly, one can extend graphs of center-unstable manifolds to complex sectors.

2.4 Complexification of the real center manifold

In the previous section, we have proved the existence of an analytic continuation of the graph ψ of

the center-unstable manifold to complex x to sectors of opening less than π
2 .

In this section, we want to analyze complex valued center manifolds constructed by dynamical

properties. In particular, we want to construct center manifolds for complex values that are in

sectors with larger opening angle.

ut = (Au+ f (u)) . (2.23)

The results of this section would also follow using the standard center manifold theory for

equation (2.23) and cut-offs in the complex plane, which are smooth as functions from R2 in .

However in this section we take a different approach, which is closer to real-valued partial differential

equations.

Equation (2.23) can be written as a real two-dimensional system for u = v + iw,

(
vr

wr

)
=

(
Av + h (v, w)

Aw + g (v, w)

)
, (2.24)
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with h (v, w) := Re (f (v + iw)) and g (v, w) := Im (f (v + iw)).

We can apply the usual real center manifold theorem to the system (3.6). The center manifold

theorem guarantees the existence of a neighborhood U ⊂ R × R and a (smooth) graph ψθ : U →
Zh × Zh such that all small solutions have to be contained in the graph of ψθ. If we consider

(x1, x2) ∈ U and set x = x1 + ix2, it is clear that the graph ψθ does not just exist in sectors of

opening less then π
2 , but surprisingly in a full neighbourhood of the origin. Moreover, it is also not

clear, whether it is an analytic function of the complex variable x. We can not use the invariance

equation anymore to obtain analyticity. Nevertheless, small solutions are time analytic since they

do not feel the cut-off. We use the center manifold ψ to prove via the reduced dynamics of solutions

on the center manifold of (3.6) that solutions on the center manifold stay small for all real r. Then

the solution must be time analytic. So time analyticity follows a posteriori and not because the

center manifold ψ is analytic from the very beginning.

2.4.1 The real two dimensional center manifold

In this subsection we consider the equation u = v + iw on the space X ×X.

The real two dimensional system We consider the following system of equations (3.6),

(
vt

wt

)
=

(
Av

Aw

)
+

(
g (v, w)

h (v, w)

)
. (2.25)

Note, that by definition of the complexification of A we have

A0

(
v

w

)
:=

(
Av

Aw

)
= A (v + iw) .

We consider the differential equation (2.25) in the space Z̃ := Z×Z, Ỹ := Y×Y and X̃ := X×X.

We prove that the operator Aθ is a sectorial operator if A is a sectorial operator and |θ| ≤ δ for

some δ > 0.

We prove that the rotated operator is still a sectorial operator on X ×X.

Lemma 2.4.1. The operator A0 is a sectorial operator, if A is sectorial.

Proof. By definition the operator A0 is written in components A0 (v, w) = (Av,Aw) .

Consider the equation eigenvalue equation of Aθ,

(λ−A0) (v, w) = (ṽ, w̃) .

which has a unique solution as long as λ 6∈ σ (A). This implies that for θ < π
2 the operator A0

is sectorial. Also the resolvent estimates hold
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‖(v, w)‖X×X ≤ C
∥∥∥((λ−A)−1 ṽ, (λ−A)−1 w̃

)∥∥∥
≤ ‖λ−A‖−1 (‖ṽ‖X + ‖w̃‖X) .

It is also true that the eigenspaces are direct products of the eigenspaces of the real-valued

operator.

Corollary 2.4.2. Suppose that
{
ukn, k ∈ 1, ...kn

}
is a eigenbasis to the eigenspace of eigenvalue λn

and operator A. Then the eigenspace to λn and operator A0 has the following basis(
ukn
0

)
,

(
0

ukn

)
k ∈ 1, ...kn.

We can prove a further corollary for simple eigenvalues.

Corollary 2.4.3. Suppose, that there is a simple eigenvalue λ = 0 of the real equation Au = 0.

Then the kernel of A0 is two-dimensional and spanned to the direct product of the kernel functions.

Since the operator A0 is closed it satisfies the assumption of the center manifold theorem in

X ×X.

We denote the center manifold of equation (2.25) by ψ (x1, x2) := (ψ1 (x1, x2) , ψ2 (x1, x2)).

Corollary 2.4.4. Assume that (v, w) solves equation (2.25) for small enough v, w. Then

u (t) := v (t) + iw (t) ,

solves equation (2.23).

Taylor expansion of the center manifold Instead of writing equation (2.23) as explicitly as

system for real and imaginary part, we could have considered the center manifold ψ as a map from

R2 to Zh from the very beginning. The cut-off function is not complex differentiable, but smooth

as a function of R2. The standard center would then guarantee the existence of a smooth center

manifold depending in R2 with values in the complex Banach space Zh, see Appendix.

In the next Lemma, we show that the Taylor expansion of the real two-dimensional center

manifold is induced by the Taylor expansion of the real one-dimensional center manifold.

Lemma 2.4.5. The Taylor coefficients of the center manifolds ψ (x1, x2) are induced by the real

one-dimensional center manifold Υ (x), i.e. for any finite N ∈ N we have

TN (ψ (x1, x2)) = TN (Υ (x1 + ix2))

where TN is the Taylor expansion up to order N .
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Proof. For anyN ∈ N consider the Taylor expansion of the real center manifold Υ (x) :=
∑N

n=2 anx
n,

where x ∈ R. We know that the Taylor series solves the truncated polynomial equation

TN (DΥ (x)P0f (x,Υ (x))) = TNAΥ (x) + TNPhf (x,Υ (x)) , (2.26)

and is unique.

We need to show that the following equation,

TN (DψP0 (g (x1, x2, ψ (x1, x2)) , h (x1, x2, ψ (x1, x2))))

= TN (A0ψ (x1, x2)) + TN (Ph (g (x1, x2, ψ (x1, x2)) , h (x1, x2, ψ (x1, x2)))) ,
(2.27)

is solved by Υ. Then we could conclude by uniqueness of the power series expansion. Uniqueness

is here implied by the equation (2.27) in the space of power series which start with second order,

[58].

On the left hand side of the equation we obtain,

Dψ =

(
∂x1ψ1 (x1, x2) ∂x2ψ1 (x1, x2)

∂x1ψ2 (x1, x2) ∂x2ψ2 (x1, x2)

)(
f1 (x1, x2)

f2 (x1, x2)

)
with (f1 (x1, x2) , f2 (x1, x2)) = P0 (g (x1, x2, ψ (x1, x2)) , h (x1, x2, ψ (x1, x2))).

The Taylor expansion Υ (x) to any finite order is by definition analytic and unique by the center

manifold theorem.

Since we can consider not just x ∈ R, but also x ∈ C equation (2.26) does hold for complex values

of x. Thus also the following equation holds

TN (DΥ (x)P0f (x,Υ (x))) = TNAΥ (x) + TNPhf (x,Υ (x)) , x ∈ C.

Rewriting this equation as system of real and imaginary part we obtain exactly the system

(2.27). This follows from the Cauchy-Riemann equations.

Set Υ (x1 + ix2) := Υ1 (x1 + ix2) + iΥ2 (x1 + ix2),

DxΥ (x)P0f (x,Υ (x)) =
(
∂x1Υ1 (x1 + ix2) + i∂x1Υ2 (x1 + ix2)

)
(f1 (x1, x2) + if2 (x1, x2))

= ∂x1Υ1 (x1 + ix2) f1 (x1, x2)− ∂x1Υ2 (x1 + ix2) f2 (x1, x2)

+ i∂x1Υ1 (x1 + ix2) f2 (x1, x2) + i∂x1Υ2 (x1 + ix2) f1 (x1, x2) .

Since we are only interested in truncations, the Cauchy - Riemann equations hold and we have

to any finite order

DxΥ (x)P0f (x,Υ (x))

= ∂x1Υ1 (x1 + ix2) f1 (x1, x2) + ∂x2Υ1 (x1 + ix2) f2 (x1, x2)

+ i∂x2Υ2 (x1 + ix2) f2 (x1, x2) + i∂x1Υ2 (x1 + ix2) f1 (x1, x2) .
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But this can be written as matrix vector multiplication of the form(
∂x1Υ1 (x1, x2) ∂x2Υ1 (x1, x2)

∂x1Υ2 (x1, x2) ∂x2Υ2 (x1, x2)

)(
f1 (x1, x2)

f2 (x1, x2)

)
,

which gives the left hand side of invariance equation (2.27).

By definition of A0 is the linear part

TNAΥ (x) = TNA0

(
Υ1 (x1 + ix2) ,Υ2 (x1 + ix2)

)
.

which is the linear part of equation (2.27).

Also since f is analytic, it can be represented as power series, which implies, that the power

series of the real and imaginary parts, g, h are the real and imaginary parts of power series of f .

This implies that the complex polynomial also solves the truncated invariance equation of the

real system and the claim follows by uniqueness of the Taylor expansions of the center manifold.
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Chapter 3

Complex center manifold and blow-up

Abstract

In this chapter we consider solution of the equation

ut = Au+ f (u) , f (0) , Df (0) = 0,

with equilibrium u = 0 and sectorial operator A. We show that if f is analytic and A generates an

analytic semigroup whose spectrum has a single eigenvalue zero, then there exists an orbit that has

finite real time blow-up.

3.1 Introduction

In this chapter, we study the following abstract evolution equation

ut = Au+ f (u) , f (0) = 0, Df (0) = 0, (3.1)

with analytic nonlinearity f . The equation (3.1) can also be a system of differential equations.

The solution flow is denoted by Φ (t, u0). One should think for example of equations of the following

type

Example 3.1.1.

ut = ∆u+ λup + u2, λ ∈ R,

ut = ∆u+ eu + λu, λ ∈ R,

ut = ∆u+ f (u) , u ∈ RN ,

ut −∆u+ (u · ∇)u+∇p = f (x) , ∇ · u = 0, x ∈ R3, u ∈ R3.

The goal of this chapter is to show that the two opposed worlds of blow-up and bounded

solutions are actually closely related. More precisely we show the following two theorems.
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Theorem 3.1.2. Assume, that the assumptions of Section 3.3 hold. In particular, assume, that the

origin is an weakly unstable equilibrium with one-dimensional center manifold and empty unstable

spectrum. Then there exists δ > 0 and a real initial condition u0, such that the solution Φ (t, u0)

must have finite time blow-up in the half strip

Sδ = {t ∈ C, Re (z) > 0, |Im (z)| < δ} .

The constant δ does only depend on the local expansion of the center manifold around the equilibrium

at the origin.

The next theorem is essentially a reformulation of the first theorem.

Theorem 3.1.3. Under the conditions of Theorem 3.1.2 there exists for any δ > 0 an initial

condition u0 with |Im (u0)| ≤ δ such that the solution Φ (t, u0) (3.1) has blow-up at a real time

0 < T (u0) ∈ R+ <∞.

The theorems connect stationary solutions and the local analysis of small solutions to its coun-

terpart blow-up. Even though this results seems to be very surprising at first sight, at the heart of

the argument is the ordinary Liouville’s theorem:

Theorem 3.1.4 (Liouville’s theorem). An analytic function can not stay uniformly bounded on

the whole complex plane.

The idea is to use the reduced flow close on the center manifold to construct a time analytic

orbit, which would contradict Liouville’s theorem if it was analytic (but not necessarily uniformly

bounded) on the whole complex plane.

The analysis has a similar flavour to the proof of blow-up by heteroclinic orbits in Chapter 1.

The main argument was that a real homoclinic orbit induces a foliation of the complex unstable

manifold with heteroclinic orbits and that this foliation is actually due to a single complex time

orbit. On the boundary of the heteroclinic foliation, there must be a blow-up orbit.

In this chapter, we do not study heteroclinic connections, but homoclinic orbits. We will prove

that there exists a foliation with homoclinic orbits of the analytic continuation of one-dimensional

center manifolds. On the boundary of the homoclinic foliation, there again must exist a blow-up

homoclinic orbit.

The main tool to prove the result is center manifold theory. The dynamics of solutions on center

manifolds is close to the equilibrium governed by an ODE. In our case small solutions, which live

in an infinite dimensional space, follow a one-dimensional dynamics.

From the standard center manifold theory of ODEs [58], [35] and PDEs [26], [21], [22] we know

that there exists a center manifold for the real equation under suitable conditions on equation (3.1).
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Unfortunately, as addressed in Chapter 2 the center manifold is not necessarily analytic even if the

system is analytic. Detailed analysis of analytic continuations of center manifolds for certain ODEs

have been addressed in literature, e.g [25], but to the best of our knowledge not for PDEs. The

solution to the problem is not to use the algebraic properties of the center manifold (e.g. Taylor

expansions, invariance equation) but to take also into account the dynamical properties. It is the

manifold that contains, after suitable cut-off, all bounded solutions. Therefore, we will also consider

the equation (3.1) as a real system of equations by writing real and imaginary parts separately,

see Chapter 2. In this situation the standard center manifold theory guarantees the existence of a

center manifold of real dimension two with corresponding graph function Υ. The center manifold

is not unique. We show that there are nests of small homoclinic orbits that foliate the regions

H± of the center manifold, see Figure 3.4. This implies that the center manifold is unique in the

regions H±. Furthermore, we show, that the center manifold is even analytic in H±, i.e. that the

function Υ is actually an analytic function Ψ of one complex variable. We can study the analytic

continuations of Ψ. We will show that if the unstable spectrum of A is empty, there exists indeed

a unique center manifold that is analytic in the bean region B := H± ∪H0. This implies that the

unique real orbit on the unstable part of the center manifold has complex finite time blow-up.

Throughout this chapter we fix the following notation.

Definition 3.1.5. We denote as time p - path a line in the complex plane that is parallel to the

real axis, which is a set γ of the form

γ := {t+ iδ, t ∈ R} .

We will also denote by Z, Y,X (complex) Banach spaces.
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3.2 Homoclinic orbits and blow-up - the main idea

In this section we outline the main idea of the proof of Theorems 3.1.2 and 3.1.3. At the heart

of the argument is Liouville’s theorem for complex analytic functions - the only globally bounded

analytic functions are constant. The blow-up solutions of Theorems 3.1.2 and 3.1.3 will be on the

center manifold of the equilibrium at zero. The local analysis of the center manifold allows to show

that there exists a solution of equation (3.1) which is bounded in the following region of complex

time, see Figure 3.1 (c).

One can also show that if the orbit was also analytic in the left out half-strip, it would stay

globally bounded and thus constant by Liouville’s theorem, which contradicts the assumption that

the initial condition is not an equilibrium.

To be more specific, we prove the Theorems in the following steps:

(i) Show that in the real two dimensional center manifold, the regions H± are foliated by real

time homoclinic orbits with complex initial conditions. The proof relies on the analysis of the

reduced equation on the center manifold

ẋ = xp, x ∈ C, t ∈ R, p ∈ N. (3.2)

The homoclinic orbits remain small and are not affected by the cut-off employed in the

construction of the center manifold. They are thus solutions of equation (3.1), see Section

3.4. This also implies that the center manifold Υ is unique on H±.

(ii) Next, we show that the real time homoclinic orbits stem from one and the same complex time

solution. They are evaluations along complex time paths, which are parallel to the real axis,

i. e. along time p-paths. The center manifold Υ is then complex analytic on H±, i.e. there

exists a complex analytic function Ψ such that

Υ (x1, x2) = (ReΨ (x1 + ix2) , ImΨ (x1 + ix2)) .

We show next that Ψ can be analytically continued to the bean region B, if the unstable spec-

trum is empty. This is rather delicate, since if one was able to define an analytic continuation

from H− and from H+ it is still not guaranteed that they coincide on the common domain

of definition, e.g. the real axis. However, if the unstable spectrum is empty, the two different

analytic continuations coincide because of uniqueness of the center-unstable manifold. See

Section 3.5.

(iii) The center manifold is analytic in the bean region B, and it is actually filled by the complex

time flow of a single orbit, see Figure 3.1.
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H−

H+

H0

(a) Bean region of analyticity of the center manifold

P0u

(b) Part of the center manifold traced by the complex

time flow

Ret

Imt

(c) Region in complex time, where the constructed or-

bit stays bounded by center manifold analysis

Figure 3.1: Relationsship between center manifold and complex time path
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(a) Solution for p = 2 (b) Solution for p = 3 (c) Solution for p = 4

Figure 3.2: Solutions of the reduced equation for real time

(iv) By Liouville’s theorem we know that the orbit must either have grow-up or blow-up. Assume

that there does not blow-up in finite time. Then, since the function is holomorphic in C,

instead of solving along the real time axis we solve the equation along an time orbit parallel

to the real axis, that is in the red or blue region. We know that the solution is homoclinic

there. The imaginary and the real time flow commute and we end up close to the origin for

times with large real part. This contradicts blow-up.
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3.3 Setting

The assumptions we make are basically those which allow to conclude the existence of a center

manifold. The center manifold theorem for partial differential equations has been studied, e.g. in

[21], [35], [58], [26] and [22]. See also the Appendix.

As already said in the introduction, we will consider equations of the form,

ut = Au+ f (u) , u (0) = u0,

with solution flow to u by Φ, i.e.

Φ (t, u0) := u (t, u0) .

For the existence of a center manifold we need the following assumptions.

Assumption 3.3.1. Let the following assumptions hold throughout this chapter.

(i) The (complex) Banach spaces X,Y and Z are continuously embedded, that is X ↪→ Y ↪→ Z.

(ii) A ∈ L (Z,X)

(iii) For some k ≥ 2 there exists a neighborhood U ⊂ Z of zero, such that f ∈ Ck (U, Y ) and

f (0) = 0, Df (0) = 0.

(iv) The spectrum of σ (A) has a finite number of eigenvalues with zero real part and the other

eigenvalues are bounded away from the imaginary axis.

Moreover the hyperbolic part should generate unique eternal solutions, i.e.

Assumption 3.3.2. There exists γ > 0 such that for every 0 ≤ η ≤ γ and any f ∈ Cη (R, Yh) the

linear problem

u̇h = Ahuh + f.

has a unique solution u = Khf ∈ Cη (R, Zh). Furthermore the linear map Khf belongs to

L (Cη (R, Yh) , Cη (R, Zh)) and there exists a continuous map C : [0, γ]→ R such that

‖Kh‖ ≤ C (η) .

Assumption 3.3.3 (Resolvent estimates). Assume that there exist postive constants ω0 > 0, c > 0

and α ∈ [0, 1) such that for all ω ∈ R, with |ω| ≥ ω0 we have that iω belongs to the resolvent of A,

and

‖R (iω,A)‖L(X) ≤
c

|ω|
, (3.3)

‖R (iω,A)‖L(Y,Z) ≤
c

|ω|1−α
. (3.4)
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Here does R (λ,A) denote the resolvent operator, that is

R (λ,A) := (λ−A)−1 .

We end this subsection with a useful Remark [21].

Remark 3.3.4. In Hilbert spaces we do not need equation (3.4) for the center manifold theorem

to hold.

In addition to this standard assumptions we will assume throughout this section the following

(i) The nonlinearity is analytic from Z to Y , f (u) ∈ Cω (Z, Y ).

(ii) The nonlinearity f maps real values to real values.

(iii) The spectrum of A is real, σ (A) ⊂ R.

(iv) The kernel of A is one-dimensional, dim ker (A) = 1.

(v) The quadratic term of the reduced flow on the center manifold is positive, P0fxx (0, 0) > 0.

We will set without loss of generality P0fxx (0, 0) = 1.

(vi) The unstable spectrum of A is empty.

Remark 3.3.5. Assumption (iii) is mainly technical nature. Throughout the proofs, it will become

clear, that we only need a sectorial operator.

This setting allows to define the following system of differential equations by spectral projections

such that u = x+ y with x := P0u and y := Phu,

ẋ = P0f (x+ y) ,

ẏ = PhAy + Phf (x+ y) ,
(3.5)

where P0 is the projection on the center space and Ph on the hyperbolic part.

Consider now the real and imaginary part of u := v+ iw separately on Z̃ := Z×Z, Ỹ := Y ×Y
and X̃ := X ×X, i.e. for t = reiθ.

(
vr

wr

)
=

(
Av + g (v, w)

Aw + h (v, w) .

)
(3.6)

with g (v, w) := Re (f (v + iw)) and h (v, w) := Im (f (v + iw)).

In Chapter 2, we have shown that the system possesses a real two dimensional center manifold

which is locally a graph Υ (x1, x2).
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By Lemma 2.4.5 the reduced equation on the center manifold is of the form

(
(x1)r

(x2)r

)
=

(
x2

1 − x2
2

2x1x2

)
+ o(x2

1 + x2
2). (3.7)
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3.4 The reduced equation

In this subsection we analyse the reduced equation on the center manifold. The reduced system is

complex one-dimensional or real two-dimensional.

Purely polynomial ordinary differential equation Consider complex-valued solutions of the

differential equation

ẋ = xp, x ∈ C, t ∈ C, p ∈ N. (3.8)

We show that solutions are nests of homoclinic orbits for t ∈ R, see Figure 3.2. This is

immediately clear from the explicit solution

x (t) =

(
1

x−p+1
0 − t

)1/(p−1)

, Im
(
x−p+1

0

)
6= 0.

The perturbed polynomial equation We use solutions of the purely polynomial equation to

show that solutions of higher order perturbations of equation (3.8) possess similar invariant regions.

Here we, will just consider the quadratic case n = 2, since the other cases follows analogously. We

consider a perturbed system for x = x1 + ix2, that is

ẋ1 = x2
1 − x2

2 + f (x1, x2) ,

ẋ2 = 2x1x2 + g (x1, x2) ,
(3.9)

with f, g ∈ o
(∣∣x2

1 + x2
2

∣∣).

F1

F2

F3

F4

D+D−

T0

a0 a1

Γ+Γ−

Figure 3.3: Invariant regions of perturbed quadratic flow

We want to show that orbits starting in the upper part of the blue diamond D+ will end up in

the red diamond D− and then converge to zero, see Figure 3.3.

Let us start with the invariance of the diamond-like regions D±. It is enough to show the

invariance on each face of the diamonds. Consider the face F1 first.
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Lemma 3.4.1. For any a0 < 0 and β > 0 we can choose a0 < a1 < 0 such that

−β
(
x2

1 − x2
2

)
+ 2x1x2 ≤ 0, (3.10)

for x2 = β (x1 − a0) with x1 ∈ I := [a0, a1].

Proof. Setting x2 = β (x1 − a0) in inequality (3.10) gives

−β
(
x2

1 − β2 (x1 − a0)2
)

+ 2x1β (x1 − a0) ≤ 0.

Since we want to exclude sign changes in I we have to solve

−β
(
x2

1 − β2 (x1 − a0)2
)

+ 2x1β (x1 − a0) = 0,

for x1. The solutions are

x± = a0 ±
|a0|√
1 + β2

.

Thus for

a1 ≤ a0

(
1− 1√

1 + β2

)
. (3.11)

holds x± 6∈ [a0, a1]. For any a0 < 0, β > 0, we can choose a1 small enough such that the inequality

(3.11) holds. Furthermore for any x1 = a0, it holds −βx2
1 ≤ 0.

Remark 3.4.2. Since we can choose a0 as small as we like and get strict inequalities, the invariance

holds for small perturbations of the quadratic vector field.

Remark 3.4.3. The argument for the face F2 is completly similar by conjugation symmetry (x2 7→
−x2). Also the case 0 < a0 < a1 is proven analogously by the symmetry x1 7→ −x1 and x2 7→ −x2.

We can use the results of the real system to show, that the complexified solution is actually

homoclinic in closed regions as indicated in Figure 3.3.

Lemma 3.4.4. The complex equation

ẋ = x2 + o
(
|x|3
)
, x ∈ C, t ∈ R, (3.12)

possesses two regions in the complex plane with homoclinic orbits, see Figure 3.3. Furthermore, the

counter clockwise resp. the clockwise rotated vector field points to the inside of the homoclinic orbit

in the upper resp. lower half plane.
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Proof. We rewrite the complex equation as a real two dimensional system. Set x = x1 + ix2 in

equation (3.12) to obtain the system

ẋ1 = x2
1 − x2

2 + o
((
x2

1 + x2

)2)
,

ẋ2 = 2x1x2 + o
((
x2

1 + x2

)2)
.

which is of the form (3.9).

By the considerations of equation (3.8) we can concentrate on the upper half-plane. The proof

consists in following two steps:

(i) The diamonds D+ and D− are invariant under the forward resp. the backwards flow. From

Lemma 3.4.1 we already know the invariance of the faces F1, F2, F3 and F4. Note, that the

axis x2 = 0 is also invariant, since the equation (3.12) is invariant under complex conjugation.

Furthermore we need to prove that the flow on the lines Γ−,Γ+ in Figure 3.3 points to the

inside of D− resp. to the outside of D+.

(ii) The maximum drift in the direction x2 in the triangle T0 is bounded, such that if the solution

starts on the boundary Γ+ at radius r it hits Γ− on a radius arbitrary close to r.

For the proof we change to polar coordinates by setting (x1, x2) = reiφ. The differential equation

for (r, φ) is

ṙ = r2 cos (φ) + o(r2),

φ̇ = r sinφ+ o(r).

The boundaries Γ± of the invariant triangle T0 are characterized by the angles 0 < φ+ < φ− < π.

(i) The conditions on φ−, φ+ imply sin (φ±) > 0. Thus, for small enough r the flow points

outside resp. inside the triangle T0.

(ii) For small enough r > 0 we can consider r as a graph over φ, i. e.,

dr

dφ
=

r

tanφ
+O(r2). (3.13)

Integrating equation (3.13) from φ− to φ+ gives (setting φ± = π/2± α for some α > 0)∣∣∣∣log

(
r(φ+)

r (φ−)

)∣∣∣∣ ≤ Co(r).
By taking r small, the drift due to the higher order terms in T0 becomes arbitrary small.

(iii) Consider now the orbit to
(
x0

1, x
0
2

)
∈ Γ+ for

(
x0

1, x
0
2

)
small enough. Since the orbit can not

leave the invariant regions D+ in backwards resp. D− in forward time, see Figure 3.3, the

α and ω limit set is not empty and has to be the unique equilibrium x1 = x2 = 0. The real

time flow is thus a homoclinic orbit.
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(iv) The last step is to show that the orbit γ (t) := (x1 (t) , x2 (t)), t ∈ R is an orientable curve.

Since the orbit is a non intersecting closed curve the Jordan curve theorem implies orientabil-

ity.

For p := (p1, p2) ∈ γ the inner product between the inwards normal n (p) := (n1 (p) , n2 (p))

and the rotated vector field (−2p1p2, p
2
1 − p2

2) + o
(
p2

1 + p2
2

)
is

κ (p) := −2n1 (p) p1p2 + n2 (p)
(
p2

1 − p2
2

)
+ o

(
p2

1 + p2
2

)
.

Since κ (p) depends continuously on p and the vector field never vanishes, the sign of κ can

not change. This implies that the vector field either points always to the outside or always

to the inside of the curve.

(v) We need to find a single point p ∈ γ such that the vector field points inside. Take p = (0, p2) ∈
γ which gives

κ (p) = p2
2 + o

(
p2

1 + p2
2

)
> 0.

Remark 3.4.5. By the proof it is clear that we can choose φ± = π
2 ∓α with α as close to π

2 as we

like. But only if we also choose |x1| , |x2| small enough.

Remark 3.4.6. Although the above argument is due to complex time rotation, we avoid any explicit

usage of time analyticity. We just assume that we have an unique projected real two dimensional

vector field in the region H±.
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3.5 Blow-up on the center manifold

In this subparagraph, we prove analyticity of the one-dimensional center manifold if no unstable

spectrum present.

The analyticity originates from two different sources. The first source is the invariance equation

as analyzed in Chaper 2. The second source are homoclinic orbits, whose existence is guaranteed

in Lemma 3.4.4. The main idea is first to show the existence of homoclinic orbits in the center

manifold the two-dimensional real system and then secondly argue that the homoclinic orbits,

since they are small solutions, are actually time analytic. Thus, we can continue the solutions into

complex time. The continued solution along complex time paths parallel to the real time axis is

also homoclinic and have to be contained in the center manifold of the real system. In that region

the real two dimensional real center manifold is actually a single complex time orbit.

A second important concept is the center unstable manifold. It is necessary in the construction

to remedy the following difficulty:

We need to have a single orbit, whose complex time flow as indicated in Figure 3.6 sweeps the

regions on the left. By the above argument the center manifold is analytic in the regions H±. We

can of course study the analytic continuation of the center manifold from H+ or H−. Assume we

could actually continue both manifolds back to the real axis. Then it is not clear whether they

coincide.

But the unstable spectrum is empty. Then we can argue via the center-unstable manifold. The

center-unstable manifold is always unique. In this case it is also of real dimension two. By the

previous Chapter, we can extend the unique real center-unstable manifold to the complex sector

H0 by extension of the graph function. Solutions on the graph satisfy a reduced equation. The

reduced equation allows to show that solutions on the extension of the center manifold converge to

zero for negative real time. This implies that the extension has to be contained in the unique two

dimension real center-unstable manifold. But since the homoclinic orbits enter the region H0, they

also must be contained in the center-unstable manifold and thus also in the analytic continuation

of the real center-unstable manifold.

Lemma 3.5.1. Under the assumptions of Section 3.3 the real center manifold of the two dimen-

sional system is complex analytic in the regions H±.

Proof. We take the following steps:

(i) Show that in the regions H±, each real time homoclinic orbit on the center manifold can be

extended to a complex time strip,

Sδ = {z ∈ C, |Imz| ≤ δ}

for some δ > 0. Then show that the solution stays small with δ small enough and converges

to zero along time in Sδ along time paths parallel to the real axis (time p-paths).
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(ii) Solutions of (3.1) along time p - paths can be viewed as a solution of the two dimensional real

system by writing real and imaginary part separately. Thus each time p - path in Sδ gives a

homoclinic orbit and must be contained in the 2d real center manifold. This implies that the

region H± are foliated by homoclinic orbits, which are actually complex time p-pathes of one

and the same homoclinic orbit. The center manifold is actually analytic.

By Lemma 3.4.4 the flow of the line segment Γ+ is homoclinic.

(i) Consider a solution of (3.6) with initial condition x0 :=
(
x0

1, x
0
2

)
∈ Γ+ on the center manifold.

Since the solution is a small homoclinic orbit by Section 3.4, it is actually a solution to the

complex system (3.1). Define u0 :=
(
x0

1 + ix0
2,Υ

1
0 (x0) + iΥ2

0 (x0)
)
. There exists for any ε > 0

a Tε such that ‖Φ (t, u0)‖Z ≤ ε for all times t ∈ R, Tε < |t|.
As long as the flow is analytic in time, the real time flow and the imaginary time flow

commute. Thus take some δ > 0 small enough such, that the time the Φ (t, u0) has an

analytic continuation onto a strip from [−Tε, Tε]× [−δ, δ], [33], [22]. Furthermore there exist

constants c2, c1 > 0 as small as we like such

‖f (u)‖Y ≤Mε2,

for ‖u‖Z ≤ c1. This implies for |t| ≥ Tε with 2ε < c1,

‖Φ (δ + iδ,Φ (t− δ, u0))− Φ (t, u0)‖Z
≤ ‖Φ (δ + iδ,Φ (t− δ, u0))− Φ (t− δ, u0) + Φ (t− δ, u0)− Φ (t, u0)‖Z

≤ CM
∫ δ

0

∥∥∥T (eiπ/4 (t− s)
)∥∥∥

L(Y,Z)
ε2ds+ 2ε ≤ δMC̃ε2 + 2ε.

The above equation holds as long as

δMC̃ε2 + 2ε < c1.

Choosing ε small enough this equation holds along the complete path.

(ii) Along each time path of the form t = iδ + τ , τ ∈ R, the complex flow Φ (τ,Φ (iδ, u0)) solves

the equation for the real system (3.6). Since all small solutions have to be contained in the

center manifold, we know that all time p-pathes for imaginary time less than δ are homoclinic

orbits in the real two dimensional center manifold Υ0. Because the real center manifold is of

dimension two, it is locally already foliated by the time p - homoclinic orbits, which are also

of dimension two.

(iii) The homoclinic solutions satisfy an reduced equation in the real time direction, i.e. system

(3.9). But since the homoclinic orbit is time analytic, we can also solve into complex time.
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By complex analyticity we have for x (t) := P0u (t), t = t0 + it1 and x (t) := x1 (t) + ix2 (t)

the following equation

∂t1x1 (t) = −∂t0x2 (t) = −2x1 (t)x2 (t) + o
(
x2

1 + x2
2

)
,

∂t1x2 (t) = ∂t0x1 (t) = x2
1 (t)− x2

2 (t) + o
(
x2

1 + x2
2

)
.

This vector points to the interior of the projected orbit to Φ (t, u0), t ∈ R. Thus the flow

stays uniformly bounded for all positive imaginary times.

(iv) Similar arguments hold for H−.

(v) Now, we define the graph function Ψ in H± as follows

Ψ± (x) := P0u (t (x)) , x ∈ H±.

The reduced solution x (t) is invertible by inverse functions theorem in the analytic category,

because the derivative ẋ never vanishes in H±.

The previous argument did not depend on the fact that the unstable spectrum is empty, but to

prove the next Lemma we need that the unstable spectrum is empty.

H−

H+

H0

(a) Bean region of analyticity of the center manifold (b) Region of analyticity of the center manifold

and the reduced flow

Figure 3.4: Region of analyticity of the center manifold

Lemma 3.5.2. Let the assumption of Section 3.3 hold. Then the there exists an analytic center

manifold Ψ in the region bean region B, see Figure 3.4.
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Proof. We have already defined the center manifolds Ψ± : H± → Z. We need to show that there

exists a unique analytic function Ψ : B → Z, which coincides with Ψ± in H±.

(i) The real center manifold is unique for x > 0. We know by Theorem 2.3.10 that there exists

an analytic continuation Ψ0 of the unique one-dimensional real center manifold Υ0 (x, 0) onto

the sector H0. Furthermore, we have shown, that the function Ψ0 is of small quadratic order

in H0. On the sector H0, we can solve the reduced equation for r > 0 small enough

ẋ = x2 + f (x,Ψ0 (x)) , x ∈ Sθ,r, t ∈ Dx ⊂ C.

Due to the ODE analysis in Section 3.4, solutions in H0 converges to zero for negative real

times.

(ii) Chapter 2 has proven that there exists a unique center-unstable manifold Υ̃ of the real system

of real dimension two. It contains by definition all orbits that converge to zero in real negative

time. This implies in particular that Υ|H0 = Ψ0 and also Υ|H± = Ψ±.

(iii) The analysis in Section 3.4 showed that the homoclinic orbits in H± enter the sector H0.

This implies that the analytic continuation of the unique real center manifold coincides on

a connected open set with the analytic center manifold of H±. Thus we can conclude that

there exists an analytic continuation Ψ of the unique one-dimensional real center manifold to

the bean region, see Figure 3.4

Proof of theorem 3.1.2.

(i) As long as the flow stays bounded in the region H0, we can use the one-dimensional analytic

center manifold from flow 3.5.2 to reduce the flow to a complex-valued scalar differential

equation, that is

ẋ = x2 + P0f (x,Ψ (x)) = x2 +O
(
|x|3
)
. (3.14)

(ii) We use separation of variables to obtain

t =

∫ x1

x0

1

x2 + f (x,Ψ (x))
dx. (3.15)

as time needed to go from x0 to x1. Take any x± ∈ ∂H0 ∩ ∂H±. Then for x0 ∈ R+ small

enough there exists a complex valued time path γ± (s), such that

x (γ± (s) , x0) ⊂ H0
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and x (γ± (s1) , x0) = x±. This can be seen by calculating the integral explicitly using the

geometric series

1

x2 + P0f (x,Ψ (x))
=

1

x2

∞∑
n=0

hn (x) ,

with h (x) := P0f(x,Ψ(x))
x2

and h ∈ O (|x|).
Integral (3.15) is

∫ x1

x0

1

x2
hn (x) dx =

∞∑
n=0

∫ x1

x0

1

x2
+ a0

1

x
+ g (x) dx,

with g (x) = x−2
∑∞

n=2 h
n (x) = O (1).

Thus

∞∑
n=0

∫ x1

x0

1

x2
+ a0

1

x
+ g (x) dx =

1

x0
− 1

x1
+ a0 log

(
x1

x0

)
+ o (|x1 − x0|) .

Choose x± = x0
1∓iα to obtain

t =
±iα
x0

+ a0 log (1± iα) +O (αx0) .

Note, that formula (3.15) is valid along the whole time path. In particular we can choose

α = τ0x0, which gives

t = iαx−1
0 +O (1)

Since we can choose the angle φ+ of the lines Γ± as small as we like, we can first take α small

such, that x+ ∈ Γ+ and then choose x0 small enough, such that the above calculation holds.

This implies, that the solution to the reduced equation enters the invariant triangle T0, see

Figure 3.3.

(iii) By construction the real time solution of x (t, x±) = x
(
t, x
(
±iαx−1

0 , x0

))
, t ∈ R is a homo-

clinic orbit. Thus the solution u (t) := (x (t) ,Ψ (x (t))) is bounded in the complex time region

of the form

S := {t ∈ C, |Imz| ≥ τ0 ∧ Rez ≤ 0} .

as shown in Figure 3.1.

(iv) By Liouville’s theorem we know that the orbit can not stay bounded in the region C \ S.

(v) To exclude grow-up in S, we argue by contradiction. Assume that there exists grow-up, i. e.

the solution was entire. Then again by analyticity the imaginary and real time flow commute.

Furthermore for any δ > 0, there exists a t > 0 large enough so that
∣∣x (t+ iαx−1

0 , x0

)∣∣ ≤ δ.
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This is possible by the results of Section 3.4. Now taking δ > 0 small enough we can know,

that the solution must exist at least for time iαx−1
0 , so that we can continue the solution

uniformly bounded back to the real axis. This is a contradiction to Liouville’s theorem.

(vi) There must be finite time blow-up in S.

Theorem 3.1.3 is a corollary to 3.1.2.

Proof of theorem 3.1.3. By Theorem 3.1.2 we have a real initial condition u0 such, that there exists

complex time blow-up at time T := T1 +iT2 with T1 > 0. Since the solution converges in backwards

time to zero, we can choose for any δ > 0 a T̃1 < 0 such, that∥∥∥ImΦ
(
T̃1 + iT2, u0

)∥∥∥ < δ.

Defining ũ0 := Φ
(
T̃1 + iT2, u0

)
yields a complex initial condition with real time blow-up at time

T (ũ0) := T1 − T̃1.

3.6 Analytic center manifold and branching

Analogously to the heteroclinic case, there exists a relation between the branch type of the center

manifold and the branch type at the finite time blow-up. It is unclear how the solution at infinity

connects back to the origin. We will prove a simple first Lemma towards that direction.

x1 x0

(a) Path in the center manifold

Γ+

Γ−

0 T

(b) Corresponding time path

Figure 3.5: Time and center manifold path

Suppose for a moment that the center manifold analytic Ψ was analytic in a neighborhood of

the equilibrium. Then there exists time paths Γ± and a time T such that by following the time

paths, such that the difference of the analytic continuation of the solution to u0 := (x0,Ψ (x0)) is

related to the power series expansion of Ψ, see Figure 3.5.
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Theorem 3.6.1. Assume, that the center manifold Ψ : U ⊂ C → Zh is analytic on some neigh-

borhood U of zero. If P0f (x,Ψ (x)) := x2 +
∑∞

n=4 ψnx
n, then there exists a time T > 0 such that

the continuations along Γ± coincide.

Proof. Analyticity of the center manifold in a neighborhood of the equilibrium implies that the

reduced equation

ẋ = h (x) := P0f (x,Ψ (x)) , (3.16)

is analytic and valid in a neighborhood of the equilibrium.

By the preceding section we know that the red and the blue paths in the center manifold are

generated by complex time paths Γ±. In advance, we do not know that the time paths will coincide

at the point x1. The equation (3.16) is solvable by separation of variables∫ x(t)

x0

1

h (x)
dx = t.

This implies for x (tr) = x (tb) = x1, where x (tr) is the continuation along the red path and

x (tb) is the continuation along the blue path,

tr − tb =

∫ x(tr)

x0

1

f (x,Ψ (x))
dx−

∫ x(tb)

x0

1

f (x,Ψ (x))
dx =

∮ x(tr)

x(tb)

1

f (x,Ψ (x))
dx

=

∮ x(tr)

x(tb)

g (x)

x2
dx = g′ (0) = 0,

by the Cauchy formula since g (x) := (1 +
∑∞

n=2 ψn+2x
n)−1.

Remark 3.6.2. If the center manifold was analytic, the third order term of the reduced vector field

induces the branch type.

Analyticity of the center manifold gives a restriction on the branch-type of the blow-up orbit.

But also the converse is true. If the blow-up orbit is not branched, then the center manifold is

analytic and the third order term of the vector field must vanish.

Theorem 3.6.3. Consider the blow-up orbit of Theorem 3.1.2 and empty unstable spectrum. If

the time analytic continuations in the negative and positive complex plane conincide for some big

enough T1 > 0, and the solution does not have blow-up, but in a domain

S := {z ∈ C, |Im (z)| < c1, T0 < Re (z) < T1} , c1 > 0.

Then exsists a neighborhood U ⊂ C of zero and an analytic function Ψ : U → Zh, such, that Ψ is

a center manifold.
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Proof. The idea is to show that the projection of the blow-up orbit on the center manifold maps

C \ S to a neighborhood of the origin, see Figure 3.6.

(i) We again consider the reduced flow on the center manifold. Since conjugation symmetry

along Γ± holds and the solutions coincide after t > T1, we know that the solution u (t) is

real for t > T1. Furthermore, we know that the orbit converges subexponentially to zero with

t > T1. It follows the real one-dimensional center manifold and the reduced equation holds

for times Re (t) > T1. This implies that

x (t) := P0u (t) , ẋ = P0ut (t) , t ∈ C \ S,

never vanishes. Thus we can analytically invert the function x (t) on C\S. The function t (x)

is analytic in a neighborhood of zero take out zero.

Now, we define the function

Ψ (x) := Phu (t (x)) .

The function Ψ exists as an analytic function. Since analytic maps are open it maps the

domain C \ S to an open neighborhood U of the origin take out the origin.

(ii) But the function Ψ is bounded, such that the origin is a removable singularity and Ψ can be

extended to a whole neighborhood by Riemann singularity theorem.

P0u

t

Figure 3.6: Center manifold and complex time orbit
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3.7 Outlook

In the one-dimensional setting, there exist a lot of literature with a detailed study of global attrac-

tors their topology and heteroclinic connections [15], [32] for dissipative systems. There have been

approaches to extend the results to grow-up solutions [45].

Our result show that there is a relation between blow-up of solutions and the global attractor

of reaction diffusion equations with entire nonlinearities if one allows for complex time.

We can prove for example, that non-degenerate saddle-node bifurcations come with a (possibly

complex time) blow-up orbit. For an introduction to bifurcation theory for partial differential

equations, see for example [29].

Theorem 3.7.1. Consider the equation

ut = Au+ f (λ, u) ,

where f ∈ Cω (R× Z, Y ) and let A satisfy the conditions of Section 3.3. Assume furthermore that

there exists a λ0 such, that

Au0 + f (λ0, u0) = 0,

for some u0. Furthermore assume, that Dλf (λ0, u0) 6∈ im (A+Duf (λ0, u0)).

Let ker (A+Duf (λ0, u0)) = span (v0) and

Duuf (λ0, u0) (v0, v0) 6∈ im (A+Duf (λ0, u0)) . (3.17)

then

(i) There exists a continuously differentiable curve (u (s) , λ (s)) through (λ0, u0) such that

Au (s) + f (λ (s) , u (s)) = 0,

(ii) At (λ0, u0) there exists a blow-up homoclinic orbit, if

〈Duuf (λ0, u0) (v0, v0) , v0〉 > 0.

and A+Duf (λ0, u0) has empty unstable spectrum.

Proof. The first statement follows from Theorem I.4.1. in [29]. The second statement follows from

Theorem 3.1.2, since condition (3.17) implies

P0Duuf (λ0, u0) (v0, v0) = 〈Duuf (λ0, u0) (v0, v0) , v0〉 > 0.

Remark 3.7.2. Similar results can also be obtained for pitchfork bifurcation.
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But of course there remain many open questions about the connection between global attractor,

eternal core, blow-up and analytic continuation of blow-up solutions.

(i) By the analysis of the ODE invariant regions for p > 2 we obtain different flow invariant

regions in the center manifold with possible blow-up. How are these regions related to each

other?

(ii) If the unstable part is not empty the situation becomes more complicated. In the proof of

Theorem 3.1.2 we used the uniqueness of the center unstable manifold to construct a solution

that is bounded everywhere in the complex time plane, but on a half-strip. In the half-strip

we concluded the existence of blow-up. In the presence of unstable spectrum the center

manifold is still unique in the homoclinic regions H±, but the analytic continuations from

H± do not necessarily coincide on the common domain of definition. This implies, that one

needs different methods and perhaps also extra assumptions to prove of similar result as in

Theorem 3.1.2.

(iii) Another question is what happens if the center-manifold of the real equation is not one-

dimensional, but of higher dimension? One can try to prove blow-up of solutions similarly to

the one-dimensional case, but the complexified reduced equation is now of real dimension four

or higher and much harder to study. But as in the one-dimensional case, the blow-up can be

induced by a low-dimensional ordinary differential equation close to equilibria and prove the

existence of large enough regions in complex time in which the solutions remains bounded to

conclude blow-up in the remaining part.

(iv) Moreover, the relation of the Riemann surface induced by analytic continuations of the blow-

up orbit around the blow-up time T and the complex analytic continuation of the center

manifold function Ψ around the origin is unclear. We have already seen in Chapter 1 and also

in Section 3.6 that the branch types are related, but at the current moment the description

is very coarse.

(v) Another important example is the three-dimensional Navier-Stokes equation. The Navier-

Stokes equation also allow for a center manifold [26] and solutions are analytic in time, see

for example [56] as long as they are bounded. If we consider the non-linearity f or the viscosity

ν as a parameter, that is if we solve

ν∆u+ (u · ∇)u+∇p = f (x) ,

with periodic boundary conditions, see [56] we can look for equilibria with one-dimensional

center manifold and empty unstable spectrum. The main problem then to apply theorem 3.1.2

directly is that the nonlinearity vanishes along any possible center direction. Suppose, that

the kernel of the linearization around u0 is one-dimensional, and that v0 is the corresponding

eigenfunction. The nonlinear part projected on the kernel is
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P0 ((v0 · ∇) v0) = 〈(v0 · ∇) v0, v0〉L2
= 0,

for any v0 ∈ H1 and ∇ · v0 = 0. But since we almost proved the Theorem 3.1.2 when the

projected equation has no quadratic term, but starts with a higher order term, a detailed

analysis of the center manifold may still yield the existence of a real time blow-up solution

for a complex initial condition with arbitrary small imaginary part.

It is however not clear, how this type of blow-up is related to the question of blow-up of real

initial data in real time. Especially in the case of the Navier-Stokes equation, the possible

real blow-up might be of a completely different type. So if solutions on the global attractor

induce blow-up, in what sense it is true that blow-up solutions induce solutions on the global

attractor?

(vi) In general one also might attempt to obtain a more detailed picture of the blow-up and

attractor structure at bifurcations. For example, consider the saddle-node bifurcation. In

the non-degenerate case blow-up homoclinics occur at the bifurcation point. Changing the

parameter even further yields a heteroclinic connection of two non hyperbolic equilibria. Ac-

cording to the proofs in Chapter 1 the heteroclinic connection induces a blow-up heteroclinic.

It would be worthwhile to have a more detailed picture at the bifurcation points, e.g. how

the blow-up homoclinic relates to the blow-up heteroclinic and also whether the heteroclinic

orbit can persist if one changes the parameter even further.
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Chapter 4

Appendix

4.1 The center manifold theorem

We briefly review the center manifold theorem for partial differential equations. The material is

mainly taken from [21] and supplemented by [35], [58], [26] and [22].

Consider an equation of the form

ut = Au+ f (u) .

To conclude the existence of a center manifold assume the following.

Assumption 4.1.1. Let the following assumptions hold throughout this chapter.

(i) The Banach spaces (complex) X,Y and Z are continuously embedded, that is X ↪→ Y ↪→ Z.

(ii) A ∈ L (Z,X)

(iii) For some k ≥ 2 there exists a neighborhood U ⊂ Z of zero, such that f ∈ Ck (U, Y ) and

f (0) = 0, Df (0) = 0.

(iv) The spectrum of σ (A) has a finite number of eigenvalues with zero real part and the other

eigenvalues are bounded away from the imaginary axis.

The last assumption guarantees the existence of spectral projections, see next Section, which

allow for a decomposition of Z, Y,X.

X0 = im P0X ⊂ Z, Ph = Id− P0, Xh := PhX, Yh := PhY, Zh := PhZ.

Moreover the hyperbolic part should generate unique eternal solutions, i.e.
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Assumption 4.1.2. There exists γ > 0 such that for every 0 ≤ η ≤ γ and any f ∈ Cη (R, Yh) the

linear problem

u̇h = Ahuh + f,

has a unique solution u = Khf ∈ Cη (R, Zh). Furthermore the linear map Khf belongs to

L (Cη (R, Yh) , Cη (R, Zh)) and there exists a continuous map C : [0, γ]→ R such that

‖Kh‖ ≤ C (η)

Assumption 4.1.3 (Resolvent estimates). Assume that there exist positive constants ω0 > 0, c > 0

and α ∈ [0, 1) such that for all ω ∈ R with |ω| ≥ ω0, we have that iω belongs to the resolvent of A,

and

‖R (iω,A)‖L(X) ≤
c

|ω|
, (4.1)

‖R (iω,A)‖L(Y,Z) ≤
c

|ω|1−α
. (4.2)

Here does R (λ,A) denote the resolvent operator, that is

R (λ,A) := (λ−A)−1 .

We end this subsection with a useful Remark [21][Remark 2.16]

Remark 4.1.4. In Hilbert spaces we do not need equation (4.2) for the center manifold theorem.

Spectral projections

One important tool to prove the center manifold theorem are spectral projections, which project

the space X onto a stable, unstable and center part, [21][Theorem A.7]

Theorem 4.1.5. Consider a closed operator A : D (A) ⊂ X → X. Assume, that the spectrum

σ (A) can be separated by a closed curve Γ into two parts σ+ and σ−, where σ− contains only finitely

many of points. Then the following holds,

(i) There exists a decomposition of X = X+ ⊕X−, where X± is invariant under A.

(ii) A|X− ∈ L (P−D (A) , X−).

(iii) The spectra of the restrictions coincide with σ± (A), that is σ
(
A|X±

)
= σ±.

(iv) The projection P− of X to X− is given by the following formula

P− =
1

2πi

∫
Γ

(λId−A)−1 dλ

(v) P−A = AP−.
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By Theorem 4.1.5 the following projections are well-defined.

(i) The projections P0 and Ph define a decomposition of X = X0 ⊕Xh, where X0 := im P0 and

Xh := im Ph.

(ii) P0A = AP0.

(iii) The operator A0 := A|X0 is well defined with spectrum σ (A0) := σ0 := σ (A) ∩ iR.

(iv) The operator Ah := A|Xh is well defined with spectrum σ (Ah) := σ+ ∪ σ− with

σ± := {λ ∈ σ (A) , ±Reλ ≥ 0}.

Furthermore, similar method can be used to prove the existence of semigroup associated to

subsets of the spectrum by appropriate resolvent integrals whenever Assumption 3.3.3 holds, see

[22].

The center manifold theorem

In this section, we state the center manifold theorem, see [21]. The center manifold contains all

global solutions close to an equilibrium and is in general non-unique. But the Taylor expansion at

the origin of center manifolds is unique.

Theorem 4.1.6. Let the assumptions 3.3.1 and 3.3.2 hold, then there exists a map ψ (E0, Zh) with

ψ (0) = 0, Dψ (0) = 0,

and a neighborhood of the origin O ⊂ Z such that the manifold

M0 = {u0 + ψ (u0) ; u0 ∈ E0} ⊂ Z,

has the following properties:

(i) M0 is locally invariant, that is if u (0) ∈M0∩O and u (t) ∈ O for all t ∈ [0, T ], then u (t) ∈M0

for all t ∈ [0, T ].

(ii) M0 constains the set of bounded solutions staying in O for all t ∈ R, i.e if u is a solution of

(3.1) satisfying u (t) ∈ O for all t ∈ R then u (0) ∈M0.

Remark 4.1.7. The local center manifold is in general non unique, but all graphs ψ have the same

Taylor expansion at the origin. This is due to the cut-off functions used in the proof of the local

version of the center manifold.

Corollary 4.1.8. Solutions on the center manifold satisfy a reduced, finite dimensional differential

equation

u̇0 = A0u0 + P0f (u0, ψ (u0)) ,

and furthermore the graph of the center manifold itself obeys the following differential equation

Dψ (u0) u̇0 = Ahψ (u0) + Phf (u0, ψ (u0)) . (4.3)
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4.2 Holomorphic functions

Here, we recap some theorems about holomorphic functions, mainly based on [7], [6].

Definition 4.2.1 (Entire functions). An analytic function on Cω (C) is called entire. Denote by

M (r) the supremum of the entire function on circles around the origin, that is

M (r) := sup
|z|=r
|f (z)| .

Then the order ρ of f is defined as

ρ = lim sup
r→∞

log logM (r)

log r
.

Equivalently we know, that of f is of finite order ρ if and only if

M (r) = O
(
exp

(
rρ+ε

))
for any ε > 0.

For example is the exponential function of order ρ = 1, since log(cr)
log r → 1. The order of an

analytic function relates to the coefficients of its power series representation [6][Theorem 2.2.2].

Theorem 4.2.2. An entire function f is of finite order ρ if and only if

ρ = lim sup
n→∞

(
−n log n

log an

)
. (4.4)

4.2.1 Holomorphic functions in Banach spaces

We introduce the concept of analytic function f : Ω ⊂ X → Y where X,Y are Banch spaces and

Ω is an open and connected subset of X. The material is based on [2], [39], [52].

For X = C the concept of analytic functions is straight forward.

Definition 4.2.3 (Weak and strong holomorphic functions). A function f : Ω → Y is called

strongly holomorphic if

lim
z̃→z

f (z̃)− f (z)

z̃ − z
exists in the topology of Y . The function f is called weakly holomorphic if 〈y∗, f (z)〉 is holomorphic

for all y∗ ∈ Y ∗.

The main theorem is that weakly holomorphic function are strongly holomorphic and that the

Cauchy formula holds.

Theorem 4.2.4. Let f : Ω→ Y be weakly holomorphic. Then does following holds:

(i) The function f is strongly holomorphic.
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(ii) For a closed path Γ ⊂ Ω ∫
Γ
f (t) dt = 0.

Furthermore, all properties which can be described in the weak topology inherit the properties

of holomorphic function, e.g. if the function f : C→ Y is weakly bounded, then it is constant. The

notion of weak compactness also yields a generalization of Montel compactness.

Theorem 4.2.5. Assume that Y is separable and K ⊂ Y is compact. Let the family of func-

tions fn : Ω ⊂ C → K ⊂ Y be uniformly bounded and weakly holomorphic. Then there exists a

subsequence fk ,converging to a holomorphic function f uniformly on compact subsets of Ω.

Furthermore, the following version of the identity theorem holds:

Theorem 4.2.6. Suppose that Ỹ ⊂ Y is a closed subspace and f : Ω→ Y is holomorphic. Assume,

that there exists a convergent sequence (zn) ∈ Ω such, that the limit z ∈ Ω and f (zn) ∈ Ỹ for all

n ∈ N. Then f (z) ∈ Y for all z ∈ Ω.

A second theorem with a lot of interesting consequences is Vitali’s convergence theorem.

Theorem 4.2.7. Let fn : Ω → Y be holomorphic and bounded on compact subsets. Assume that

the set

Ω0 :=
{
z ∈ Ω : lim

n→∞
fn (z) exists

}
,

has a limit point in Ω. Then there exists a holomorphic function f : Ω→ X such that

f (k) (z) = lim
n→∞

f (k)
n (z)

uniformly on compact subsets.

Now, let X be any Banach space. A function f : Ω→ Y is called analytic or holomorphic if it

is locally representable by a converging power series, i.e. for all x ∈ Ω there exists a r > 0 such

that for ‖x̃− x‖ < r we have

f (x̃) =
∞∑
n=0

Pn (x̃− x) ,

where Pn are Banach space valued polynomials of degree n. The problem is how to extend the

concept of weak holomorphicity if the domain is already a Banach space. We introduce the concept

of G - holomorphicity.

Definition 4.2.8 (G – holomorphicity). A mapping f : Ω→ Y is called G – holomorphic if for all

x ∈ Ω and x̃ ∈ X the mapping

fx̃ (λ) : Ωx ⊂ C→ Y

is holomorphic on Ωx0 := {λ ∈ C, x+ λx̃ ∈ Ω}.
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The notion of G – holomorphicity yields the following theorem.

Theorem 4.2.9. For a mapping f : X → Y the following is equivalent

(i) f is holomorphic.

(ii) f is continuous and G – holomorphic.

(iii) f is continuous and f |Ω ∩M is holomoprhic for every finite dimensional subspace M ⊂ E.

Remark 4.2.10. Actually, weak G - holomorphicity is already sufficient, since weakly G - holo-

morphic functions are G-holomorphic.

Theorem 4.2.11. Let X be separable. Each bounded subset of analytic functions fn : Ω → Y is

relatively compact with respect to uniform convergence on compact subsets.

4.3 Incomplete Gamma function and exponential integral

In this section we briefly summarize the properties of the incomplete Gamma function. This

material is taken from [1], [42] and [43]. The incomplete Gamma function Γα (z) is defined by the

following integral

Γα (z) :=

∫ ∞
z

tα−1e−tdt

For z 6= 0 is Γ (z, α) is entire in α.

For α = 1 we obtain the principal branch of the exponential integral function Ei.

The incomplete Gamma function is the solution of the following differential equation

Γ′′α +

(
1 +

1− α
z

)
Γα = 0

For α < 1 and |ph (z)| < π we have the following integral relation

Γα (z) =
zαe−z

Γ (1− α)

∫ ∞
0

t−αe−t

z + t
dt.

Pulling out z, we obtain

Γα (z) =
zα−1e−z

Γ (1− α)

∫ ∞
0

t−αe−t

1 + t/z
dt,

which yields the following asymptotic expansion for large |t|,

Γα (z) ≈ zα−1e−z. (4.5)
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