
 

4 Methodology 

4.1 Overview 

NELION is an Internet based personal investment tool and 

portfolio management software.  It retrieves stock data from 

the Internet, manages it and generates investment 

suggestions and portfolio updates via e-Mail and alerts via 

short messaging system, SMS.  Additionally, an investor can 

view his portfolio via a web page and can manipulate his 

preferences and execute purchases or sales. 

The system is separated into a task agent, an administration 

tool and an HTML interface, each of which attaches to the 

common NELION database. 
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Figure 4.1.1: Block Diagram NELION 

4.2 The HTML Interface 

The HTML Interface provides an investor using NELION with a 

means to manage his portfolio and edit his preferences.  After 

entering his e-mail address as a user name and the 
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associated password under www.nelion.net the investor gets 

an overview of his porfolio including the current value, stocks 

owned and current recommendations.  A graph compares the 

return on investment of his portfolio compared to the Dow 

Jones Industrial Index as well as the Nasdaq.   

From this main page, the investor can select hyperlinks that 

allow him to maintain his investment preferences and account 

parameters, buy or sell or research specific stocks. 

4.3 The Administration Tool 

The Administration Tool is designed for the administration of 

the data, parameters and tasks on the database.  As such, it is 

only used by the NELION system manager and does not 

require any investment experience, since it only provides a 

means to maintain data but does not contain any logic for 

stock prediction or portfolio distribution. 

The data entry screens mirror the structure of the database 

and consequently include a data entry screen for all the major 

tables.  For the investor data, the Administration Tool provides 

one page for the data kept in the investor table.  Additionally, 

there are pages to view the current portfolio, its development 

in a graphical format, the purchasing and sales history, as well 

as the return on investment. 

The stock interface includes pages with lists of the 

mathematical models and current predictions with different 

horizons, in addition to the standard information, such as the 

company name and ticker, current price and volume.  A 
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parameter dialog allows the administrator to maintain all the 

adjustable settings of the system, while the task list shows the 

jobs that the task agents are currently working on, or that is 

waiting for execution by one of them. 

4.4 The Database 

The database is the central store of information and has to 

scale to several gigabytes in size in order to be able 

accommodate historic data, models, recommendations and 

portfolio histories for thousands of stocks and investors.  The 

diagram below shows a simplified conceptual data model.  

The additional tables required for the model storage have not 

been included for simplicity.  The complete data model is 

shown in Appendix D.  The primary keys for each table is 

included and underlined in the figure.  
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Figure 4.4.1: Simplified Conceptual Data Model 
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The historic price and volume data for each stock that is 

tracked is stored in a separate table, which is created when 

the stock is entered.  The figure above only shows one 

representative table, StockData. 

The system hinges on the two main entities, stocks and 

investors.  For each stock, the system stores the company 

name, stock exchange abbreviation called the ‘ticker” as well 

as the volatility.  The internal Stock_ID number is the primary 

key of the table and used as a foreign key in all related tables.  

The correlation between all stocks, for example, uses the two 

Stock_IDs as its primary key and merely stores the correlation 

as an attribute.  The prediction table needs two additional 

fields, the prediction interval and the prediction date, as a 

primary key and stores the percentage prediction increase or 

decrease as a positive or negative float as its only attribute.  

The stock model component is only represented by a single 

table, which defines its own internal model number Model_ID 

as a primary key.  The additional tables that are required to 

store the assorted models are not included in the diagram. 

The investor entity requires less support tables but contains 

more fields within the table itself but also uses an Investor_ID 

as a primary key.  Besides the investor name and his e-mail 

addresses for update and notification purposes as well as 

SMS updates, the system stores the investment preferences 

in the form of risk adversity parameters, expected minimum 

annual return as well as the minimum transaction volume.  

Additionally, it tracks parameters that control how frequently 

the investor receives e-mails with an update of the current 
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portfolio and purchase and sale recommendations.  In order to 

be able to show the change in portfolio value from one e-mail 

to the next, it also stores the account value from the last 

update.  Furthermore, it maintains a field for the cost of each 

transaction. 

Lastly, each investor has an investor type, where three 

different options are possible: A “Test Investor” is used to 

simulate trading behavior and the resultant portfolio for 

different configurations in a past period, so that a new 

potential user of the system can select a configuration with the 

desired characteristics.  For these investors, the system 

maintains a start and end date for this test.  An “Auto-Trader” 

is an automatic investor that autonomously acts on the 

investment recommendations in a “live” simulation on current 

data.  This function allows the analysis of the system as a 

proof of concept.  Finally, there is the “Normal Investor”, who 

receives regular updates, but that has to update his purchases 

and sales on the system, whether they were recommended or 

not. 

The portfolio, purchases and recommendation tables provide 

the link between investors and stocks, since each investor has 

a portfolio containing zero or more stocks.  Each inherits the 

respective internal identifiers as foreign keys.   

The purchase table shows when these stocks were purchased 

and sold and at what price these transactions were executed.  

The current and historic recommendations are kept in the 

corresponding table along with their recommendation dates. 
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The parameters are not connected to the remaining tables, 

since they only store system values, which will be read by the 

task agent or Administration Tool for specific functions.  The 

table describes the six parameters that are stored in this table. 
Parameter Description 
TimerInterval Specifies the frequency with which the Administration 

Tool updates the task list on the screen 
BankRate Guaranteed Interest Rate from the broker or bank 
Diff2NY Time difference to the New York Stock Exchange.  

This is used to schedule the Internet download task 
Mutation The likelihood of mutation in the genetic algorithm 
SMS Threshold If the value of a stock changes more than this 

threshold, an SMS message is sent to all investors 
who own the stock, as well as the System 
Administrator 

SMS for System 
Administrator 

The SMS e-mail address of the system administrator 

Table 4.4.1: System Parameters 

The task table has an implicit link to the stocks and investors, 

since all tasks relate to one of these two entities.  Due to this 

dual connection, there cannot be an explicit database 

constraint and the referential integrity of the link has to be 

verified by the task agent. 

4.5 The Task Agent 

The task agent supports the stock prediction and portfolio 

management calculations, as well as the Internet interface.  It 

retrieves individual tasks from the task list, marks them as 

“taken” until they have been executed and then deletes them 

from the database.   

The task agent can perform nine different tasks.  The Internet 

Load function to retrieve data from the World Wide Web is 
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always the first step.  Given this data, the next tasks, 

calculating the volatility, mathematical models and the 

correlation between stocks can be executed.  These tasks can 

be grouped together into a single task for a new time series.  

Further tasks include sending a portfolio update, possibly 

including transaction recommendations, to the investor.  

Lastly, the task agent executes the test investor function and a 

background thread that performs model optimization with a 

genetic algorithm.  All of these are explained in detail in the 

following sections. 

4.5.1 Internet Load 

The Internet Load function connects to the Internet and 

downloads historic price and volume data for each stock 

tracked by NELION.  If a stock has just been added to the 

system so that the data table is empty, it will attempt to load 

data starting from January 1, 1980.  In case this function was 

not invoked for several days, it retrieves missing data in one 

download, bringing the stock data up-to-date. 

The system stores the closing price for every day since the 

stock has started trading.  On weekends, public holidays and 

days where the trading volume was nil, it assumes that the 

price has not changed but still inserts a record into the 

corresponding table.  This facilitates the monthly model 

calculation, which uses the last day of each month as a basis.  

Additionally, it allows for consistent correlation calculations of 
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stocks that are traded in different markets and with different 

public holidays. 

Significant changes in the stock price tend to signify dramatic 

occurrences either for the stock itself or for the market as a 

whole.  Since this may require the attention of the investor, the 

system notifies the administrator and all investors who own a 

stock via a mobile phone SMS message.  The sensitivity of 

this threshold is controlled by the SMS threshold parameter, 

which defaults to 20% so that stock price changes that exceed 

that value will result in a message. 

4.5.2 Calculate Volatility 

The volatility of each stock is calculated using the following 

equation: 
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This value measures the mean absolute percentage change in 

price over the entire interval for which the system has data.  

Though it treats public holidays like regular trading days, it 

ignores weekends. 
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4.5.3 Calculate Models 

For each stock, NELION calculates prediction models of four 

different types: Autoregressive models of degree n (ARN), 

artificial neural networks (ANN), k-nearest neighbor models 

(KNN) and Markov models (MM).  Since the system permits 

prediction horizons of one day, seven days (one week) and 30 

days (one month), it calculates models for each of these.  As 

input, it correspondingly uses the closing stock prices of the 

last n days, weeks or months to predict the closing stock price 

one prediction interval into the future. 

This function serves as a bootstrap for the genetic algorithm 

described below, which uses the available models to further 

search the parameter space for better predictors. 

The data was divided into a test and a training set but in order 

to capture trends throughout the available data, each input 

tuple had a 50% chance of being assigned to one of the two. 

The quality of a model was measured by calculating the 

normalized mean squared error (NMSE) of the predictions in 

the test set.   
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Since each stock price time series has a different dynamic, 

NELION calculates models of each type and prediction 
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horizon with various parameter combinations and stores the 

best two configurations of each type on the database.  The 

details of each model type are described in the following 

paragraphs. 

The autoregressive models (ARN) use the Durbin-Levinson 

algorithm described in Chapter 2 to calculate a linear 

prediction model.  The only parameters that could be adjusted 

for the model type were the number of input values, which 

ranged between two and 14 values.  It stored the best two 

models for each prediction horizon on the database.  

The artificial neural network (ANN) models in NELION use a 

single hidden layer with a single output unit, which represents 

the prediction of the model.  The units in the input layer are 

mapped to the input tuple of the network.  Each unit in the 

hidden and output layers is fully connected to the previous 

layer and has an additional link to a threshold input, which has 

a constant input of one.   

Since the model is only defined for an input range of between 

zero and one, all input data is normalized to a range between 

zero and 0.5.  This ensures that all values remain within unity, 

since the stock prices in our experiments never doubled their 

value within one unit of the investment horizon. 

As suggested by Weigend and Nix, the hidden units have a 

sigmoidal transfer function while the output unit uses a linear 

transfer function [Weigend, Nix, 1994].  The artificial neural 

network was trained using the back propagation network as 

described in Chapter 2.  The learn rate and momentum 
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parameters were set to 0.1 for all units, but in an effort to 

speed up convergence, the learn rate was left dynamic and 

increased or decreased by a factor two if consecutive updates 

were in the same direction.   
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Figure 4.5.1: Artificial Neural Network 

The system used batch learning so that weight updates on 

each link were performed after every epoch since this proved 

to be more reliable than on-line learning.  Since the test error 

initially tends to exhibit rather erratic behavior, NELION 

imposes a minimum number of 500 epochs.  Learning was 

stopped after three consecutive epochs increased the test 

error or until it reached a maximum number of learning 

epochs.  This value was set at 1000 for an investment horizon 

of one day, 2000 for one week and 3000 for one month.  

These values were identified through experimentation and 

helped some configurations, which remained near the 

minimum error but never achieved three consecutive 

increases. 

NELION tested all combinations of artificial neural network 

models with between two and 14 input units and between two 
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and 14 hidden units and stored the best two for each 

prediction interval. 

The k-nearest neighbors (KNN) models algorithm retrieves 

each tuple in the test set and searches the training set for the 

constellations, which resemble the given pattern most closely.  

NELION calculates all models with between two and 14 input 

values and identifies between k=2 and k=14 “nearest 

neighbors.”  The distance from the input tuple to the tuples in 

the training set is calculated using the Euclidean metric, 

though the genetic algorithms described below can select 

between this and a Gaussian or constant metric.   

The prediction for each tuple is the weighted average of the k 

nearest neighbors, where the weight of each neighbor is 

inversely proportional to the distance as shown in the equation 

below. 
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The Markov models (MM) use between four and 14 input 

values and select between four and 20 random states from the 

training set.  The system then assigns each tuple in the 

training set to one of these states and then counts the number 

of transitions from one state to another.  Given these numbers, 

it is possible to calculate the probability of each transition.  The 

prediction was the weighted outcome of between one and all 
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states used in the model.  The weighting algorithm is the same 

as for k-nearest neighbors algorithm. 

4.5.4 Calculate Correlations 

The correlation between stock x and stock y measures how 

closely the two time series are related and is calculated as 

follows: 
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In the formula above, xi represents the price of time series x at 

a specific time i and x is the mean price for all i.  The task 

calculates the correlation between the given time series and 

all other time series tracked in the system.  If time series x 

equals time series y, the correlation is unity by definition.   

4.5.5 Send E-Mail Update 

In order to provide the investor with an update on his portfolio, 

its total value and the loss or gain for each stock currently 

held, the system periodically sends an e-mail to the specified 

address.  The frequency of these messages is set for each 

investor, though the task can be created manually at any time 

for one specific or all investors.  
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4.5.6 Calculate Recommendation 

Given models for all stocks tracked in NELION, the system 

calculates predictions for investment horizons on a daily, 

weekly and monthly basis.  It is assumed that the transactions 

executed by the investor have a negligible influence on the 

stock market as a whole.  The system uses the model with the 

lowest NMSE to predict the future stock price.  It is worth 

noting, that the MM and KNN models use the entire historic 

data to predict the future stock prices and not only the test set, 

as was done during the model calculation. 

The predictions for each stock are stored on the database as 

the percentage change from the current stock price and form 

the basis of a recommendation for each investor.  Additionally, 

however, the recommendations take the current portfolio as 

well as risk adversity parameters of the investor into account 

by calculating the relative risk of all favorable future portfolios.  

The parameters pertain to stock correlation, volatility, model 

error and trading volume as well as a minimum transaction 

amount. 

The correlation between two stocks measures the likelihood of 

congruent movement in response to external market forces, 

like interest rate changes, new laws, political conflict or acts of 

nature.  The volatility measure described above measures the 

variability of the stock price.  Stocks with a high volatility tend 

to show erratic price movements, making them a riskier 

investment than those with a low volatility.  NELION is able to 

forecast some stocks with greater precision than others, 
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resulting in a lower NMSE for these time series.  An investor 

can specify that the recommendations should favor these 

stocks, since this would decrease the risk of the resulting 

portfolio.  A stock with a high turnover volume tends to show 

greater price stability.  Additionally, the transactions by the 

investor affect the market price of the stock to a lesser degree 

for stocks with a high volume.  Consequently, this reduces the 

risk associated with these kinds of stock. 

In order to identify the portfolio with the lowest relative risk 

given the investor parameters, NELION calculates the risk of 

the current portfolio using the following equation. 

∑∑
= =

⋅⋅
=

n

i

n

j ji

jijiji

O

ELC
Risk

1 1 ,

,,,   Equation 4.5.5 

In this equation, the factors in the numerator (Ci,j for the 

correlation, Li,j for the volatility and Ei,j for the measure of error) 

increase the risk of the portfolio and the volume factor Oi,j in 

the denominator decrease it.   

The dependence on the correlation Ci,,j is defined as follows, 

where C represents the investor specific correlation 

parameter, Ii is the portfolio value currently invested in stock i 

of and ρi,,j is the correlation between stock i and j. 

( )( )[ ] 11,, +−= jijiji IICC ρ   Equation 4.5.6 

Similarly, the volatility, error and volume components are 

defined as follows. 
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( )[ ] 11, +−= jiji llLL   Equation 4.5.7 

( )[ ] 11, +−= jiji eeEE   Equation 4.5.8 

( )[ ] 11, +−= jiji ooOO   Equation 4.5.9 

In these equations, L, E and O represent the investor 

parameters for volatility, model error adversity and volume 

preference respectively and must be in the interval [0,1].  The 

terms li, ei, and oi represent the volatility, model error and 

current trading volume for the stock i. 

The relative weight of each factor is determined by the 

relationship between each parameter.  A comparatively large 

value of L, for example, increases the weight of the volatility 

characteristics, which can be interpreted as a particular risk 

adversity as it pertains to volatility. 

Each of the individual factors is reduced to unity in case one of 

the parameters C, L, E and O vanishes, making the risk 

calculation independent of that component.  This is equivalent 

to the investor stating that the corresponding component 

should not be considered in his risk calculation.   

Several boundary conditions were handled as exception cases 

in NELION.  If the trading volume oi of a particular stock was 

zero, the entire term in the double sum was disregarded.  This 

is equivalent to disregarding this stock completely.  If all 

investor parameters were set to zero, all terms in the double 
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sum would be unity and the calculated risk would be the same 

for all possible portfolios.  This is equivalent to the investor not 

making any statement regarding his investment preferences 

and is disallowed by the system. 

It is important to note that the equation above represents a 

relative risk calculation and that it does not map directly to a 

physical quantity.  It does, however, permit NELION to 

compare the relative risk associated with different portfolios by 

initially calculating the relative risk value for the current 

portfolio and then searching for portfolios with a lower relative 

risk.   

This is done using the gradient decent method over this n2-

dimensional parameter space.  The standard algorithm is 

restricted to prevent the recommendation of negative 

ownership of specific stocks, called “short positions.”  The 

system starts its search with a step size of one and iteratively 

calculates the resultant portfolio.  In case the resultant portfolio 

does not have a lower relative risk, the step size is reduced by 

a factor two and the iteration is restarted.  This process 

repeated until the step size has diminished to 10-8.   

Once the optimal portfolio is calculated, NELION filters it to 

ensure that the minimum transaction limit for the investor is 

not violated.  This restriction prevents the system from 

recommending purchases or sales, where the cost of the 

transaction outweighs the benefit of it.  This filter also validates 

that a sale suggestion of a particular stock does not result in a 

portfolio, where the sale of the remaining stocks of the same 
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company would force a transaction that would fall below the 

minimum transaction volume at the current price.  In such a 

case, the system would recommend selling all of the stocks for 

this company.   

For example, if NELION finds the optimum by selling 60 of the 

100 stocks of company XYZ in the portfolio, and the future 

sale of the remaining 40 stocks would result in a transaction of 

less than the minimum transaction volume, it would 

recommend selling all 100 stocks. 

In order to ensure that the expected portfolio return specified 

by the investor is met, the portfolio selection only includes 

stocks, for which the system has predicted a price increase 

greater than this threshold.  This results in a customized 

portfolio recommendation for each investor, which is sent to 

his e-mail address for the next investment horizon.  For the 

auto-investors, the recommendations are “executed” 

immediately, so that the purchases and the portfolio are 

updated automatically. 

4.5.7 New Time Series 

This task combines the tasks that are necessary for each new 

time series: Internet Load, Calculate Volatility, Calculate 

Models and Calculate Correlations. 
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4.5.8 Test Investor 

In order to identify parameters that correspond to the risk and 

return expectations of an investor, NELION provides the Test 

Investor function.  This task simulates the behavior of an 

investor for a specified period in the past so that the outcome 

of the resulting portfolio can be analyzed.   

This function is designed with the assumption that test 

investors with all different parameter combinations are created 

on a specific database.  The investors are then tested in a 

defined interval of sufficient length to be able to analyze their 

behavior.   

Assuming that the dynamics of the past hold in the future, one 

can then aggregate the results from many different parameter 

combinations.  It is then possible to make statistical 

statements about investors with certain parameter 

combinations so that a potential user of NELION can select 

the risk and return structure suitable for his needs. 

4.5.9 Parameter Selection with the Genetic Algorithm 

Since the computer running the task agent only responds to 

requests entered into the task list on the database, it spends 

the majority of its time waiting for new jobs.  This processing 

time is nevertheless available for productive tasks at no 

incremental costs.  In order to take advantage of this power, 

NELION starts a background thread to search the parameter 
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space of the prediction models using a genetic algorithm if no 

other tasks need to be addressed immediately. 

Genetic algorithms imitate the gene selection process from 

nature to mix different traits from two parents, in the hope of 

generating a child that can outperform either parent, as 

defined by some fitness function.  Much like in its biological 

equivalent, where an animal, the genotype, is defined by its 

genetic makeup, its phenotype, a mathematical model can be 

specified by a series of parameters.  These parameters are 

encoded in a string of bytes of a finite length. 

Biological reproduction entails the selection of specific genes 

from the two parental phenotypes.  Similarly, a mathematical 

genetic algorithm maps this crossover function to the random 

selection of bytes from the phenotypes of the two parents 

resulting in a child phenotype, which has inherited some 

features from either of its parents. 

Biological mutation is a process by which a specific gene was 

not inherited from either parent but is randomly generated, 

frequently through some sort of defect or external influence.  

In the overwhelming majority of cases, this leads to children 

with undesirable characteristics.  However, occasionally, this 

leads to a new trait that increases the likelihood of survival and 

begins to dominate the population thereafter.  This dynamic 

can be imitated in genetic algorithms by selecting random 

bytes instead of inheriting them from one of the parents on 

occasion. 
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The child phenotype can be used to generate a new 

mathematical model, which can be trained and tested.  If the 

model error is lower than either of its parents, it is apparently 

superior and can replace one of the two parents. 

For each stock and model type (ANN, ARN, MM and KNN) the 

system stores two models with the lowest test error as 

parents.  Using these two models, the algorithm uses 

crossover and mutation to generate new models, calculate the 

predictive quality of them and to replace the worse of the 

existing parent models if the child test error is lower than either 

of them.  The likelihood of mutation is controlled through a 

system parameter, which can be anywhere between 0% (no 

mutation) and 50%, meaning that on average every second 

byte is randomly selected with no heritage from either parent 

phenotype.   

The resulting phenotype is converted back to a genotype by 

interpreting the string and populating the parameters of a new 

model.  These parameters are validated to ensure a valid and 

sensible configuration.  The specific parameters and validation 

depends on the model type and are shown in the table below. 
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Model  Parameter Validation 

ARN # input values 

• Can not be more than twice the # of input 
values of either of the parent models 

• Can not be more than 32 
• Must be at least 1 

# input values (units) 

• Can not be more than twice the # of input 
values of either of the parent models 

• Can not be more than 32 
• Must be at least 1 

# hidden units 

• Can not be more than twice the # of input 
values of either of the parent models 

• Can not be more than 32 
• Must be at least 1 

ANN 

Transfer Function • Must be 1 or 2 representing the constant 
a in the transfer function 

# input values 

• Can not be more than twice the # of input 
values of either of the parent models 

• Can not be more than 32 
• Must be at least 1 

# of nearest neighbors 
(“k”) 

• Can not be more than twice the # of 
nearest neighbors of either of the parent 
models 

• Can not be more than 32 
• Must be at least 1 

Metric • Must be 1, 2 or 3 representing Euclidean, 
Gaussian or Constant functions 

KNN 

Weighting • Must be 1, 2 or 3 representing Euclidean, 
Gaussian or Constant functions 

# input values 

• Can not be more than twice the # of input 
values of either of the parent models 

• Can not be more than 32 
• Must be at least 1 

# states 

• Can not be more than twice the # of 
states of either of the parent models 

• Can not be more than 32 
• Must be at least 1 

# states used to 
calculate prediction 

• Can not be more than # states 
• Must be at least 1 

MM 

Weighting • Must be 1, 2 or 3 representing Euclidean, 
Gaussian or Constant functions 

 Table 4.5.1: Genetic Algorithm Parameter Validation 
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Given the verified parameters, the system calculates the 

model and if its test error is lower than that of either of the 

other two models, the system replaces it on the database. 
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