
 

2 Predicting Stock Prices 

Mathematicians and economists have studied stock price 

predictions for many years.  In this chapter, the theory of 

efficient markets presented will show that though no one can 

consistently predict an exact future stock price, it is possible, 

on average, to exploit inefficiencies in the commodity markets 

and achieve a favorable return.  With this theoretical 

framework in hand, I describe various practical approaches 

and conclude on what I perceive to be a promising direction. 

2.1 Efficient Market Hypothesis 

The ability of capital markets to reflect and react to the data 

relating to a tradable security is known as the “Efficient Market 

Hypothesis” (EMH).  Paul Samuelson first coined this term in 

seminal work [Samuelson 1965] and the fact that he was 

awarded the Nobel Prize in economics shows the importance 

of the EMH concept to generations of investors.  Simply, the 

EMH states that the price of a stock is the consensus of all 

investors and other players in the market.  If a disproportionate 

group believes that a security is undervalued, the buyers will 

outnumber the sellers, driving the price up until it has reached 

equilibrium.  Similarly, an overvalued commodity will attract 

fewer buyers than sellers, so that its price will drop. 
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In a perfect market, one that is completely efficient, the price 

of a commodity reflects all information that pertains to it in any 

way.  This includes published reports and press releases, 

articles in newspapers, magazines or electronic media as well 

as macro-economic trends, the political climate and strategic 

as well as tactical plans of the companies.  New information 

and decisions would immediately lead to an adjustment of the 

price of the commodity.   

The efficient market hypothesis is typically formulated in a 

weak, semi-strong and a strong form.  The weak form of 

market efficiency assumes that security prices follow patterns 

with specific cycles of upward and downward trends.  Analysts 

subscribing to the weak form of the efficient market hypothesis 

generally search for specific patterns in charts or the product 

and management structure of a company to identify under- or 

overvalued stocks.  This includes all investment advisors who 

make a living researching particular companies, markets and 

industries.  Prominent representatives of this guild are 

Goldman Sachs, Merrill Lynch, Salomon Smith Barney and 

Lehman Brothers. 

Followers of the semi-strong form of the EMH assume that the 

prices of all securities reflect all publicly available data.  This 

includes fundamental business data, press releases as well as 

rumors, which possibly spread inaccurate information about 

the underlying commodity.  By implication, the only possible 

means of consistently benefiting from the stock market would 

be to act on non-public or internal information about a 
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company.  This is usually information held by the directors of 

the relevant companies and includes plans and strategies.  

Much of this information can affect the stock prices if leaked to 

the general investment public.  However, doing business on 

non-public information is called “insider trading” and is 

punishable by law.   

Persons subscribing to the semi-strong form of the efficient 

market hypothesis build portfolios with a long-term gain in 

mind, based on the assumption that the stock market has 

traditionally outperformed risk-free investments over periods of 

ten years or longer.  The most renowned representative of this 

school of thought is Warren Buffet and his Berkshire 

Hathaway Mutual Fund. 

In contrast, the strong form of the efficient market hypothesis 

suggests that stock prices reflect all data relevant to the 

security, both publicly available and non-public information.  

This form is generally rejected by the investment community 

and expressed eloquently by Farmer and Lo.  They argue that 

taken to its logical conclusion, no biotechnology company 

would attempt to develop a vaccine for the AIDS virus, 

because “if the market for biotechnology is efficient in the 

classical EMH sense, such a vaccine can never be developed 

– if it could, someone would have already done it!  This is 

clearly an absurd conclusion because it ignores the challenges 

and gestation lags of research and development in 

biotechnology” [Farmer, Lo 1998]. 
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Much work has been done by a variety of persons on the EMH 

to verify if price movements are indeed stochastic and 

unpredictable.   

As early as 1963, C.W.J. Granger analyzed stock behavior 

based on linear models and spectral analysis and found 

evidence of inefficiencies [Granger 1963].  These findings 

were supported by the research from Niederhoffer and 

Osborn, by showing that professional portfolio management 

statistically achieved greater returns than amateur or random 

selections [Niederhoffer, Osborn 1966].   

As Ambachtsheer showed, only the introduction of massive 

databases and complex algorithms permit reasonably 

consistent investment success [Ambachtsheer 1994].  Studies 

like the one by Per H. Ivarsson on inter-bank foreign exchange 

trading show that there continues to be extensive interest in 

the subject [Ivarsson 1997].  The conclusion of many authors 

is that inefficiencies exist and can be exploited given a 

coherent investment strategy. 

Not surprisingly, exchanges with better infrastructure, players 

that are more sophisticated and better regulatory frameworks 

are more efficient than others.  In general, the opportunities 

are more pronounced in smaller, less developed markets like 

the Bombay or Helsinki stock exchange, as opposed to the 

New York Stock Exchange, as Samuelson convincingly 

argued [Samuelson 1965]. 
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Though it is unlikely that the debate regarding the efficiencies 

of markets will ever have a formal conclusion, the 

overwhelming evidence shows that even if stock markets are 

not gold mines, they do offer opportunities, given a coherent 

strategy.  This view was succinctly expressed by Boldt and 

Arbit:  “...trading carefully and searching for opportunities 

caused by a bias in conventional thinking seem to be the keys 

to success for professional investors in a highly competitive, 

but not strictly efficient, market” [Boldt, Arbit 1984].   

2.2 Mathematical Modeling Techniques 

Traditionally stocks were researched using fundamental 

analysis, a method by which the financial health of the 

company is evaluated and compared to those of competitors 

in the same industry and the market as a whole.   

Warren Buffet is probably the most famous investor who used 

this approach successfully over decades.  He has amassed a 

fortune both for himself and his investors of the Berkshire 

Hathaway Mutual Fund.  At the annual meetings in Omaha, 

Nebraska, he makes investing sound simple with statements 

like his conviction to judge a company only by “its inner 

values” and that they “buy if we like what we see” [Heller 

2000].  However, the sheer number of potential investment 

opportunities does not permit an in depth analysis of 

management personalities, business models as well as 

financial health.  Consequently, computers were introduced 
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very early to analyze quantitative data from a variety of 

companies to help identify potential winners. 

Frequently this analysis focuses on the comparison of many 

different ratios which investors weight relative to their 

importance.  The most common and widely quoted ratio 

continues to be price-to-earnings, though all other values from 

the balance sheet, profit and loss statement and cash flow can 

be taken into account.  Rüegg-Stürm and the training 

materials from the Financial Training Company introduce all 

common ratios used in the financial evaluation of companies.  

Both provide an intuitive tutorial on the topic [Rüegg-Stürm 

1997] [The Financial Training Company 1998] 

It is worth emphasizing that the ratios do not represent 

absolute quantities, but should only be used for comparison of 

companies in the same industry, region or market.  Also, all 

ratios can only serve as one indication and should not be 

viewed in isolation. 

Earning

Price
multiple P/E =   Equation 2.2.1 

The P/E multiple or price/earnings ratio compares the closing 

price of the stock with the earnings of the last 12 months.  A 

high value is often a reflection of lofty expectations of stock 

price and may indicate that the stock is overpriced. 
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Sales

Profit Gross
MarginProfit  Gross =   Equation 2.2.2 

The Gross Profit Margin determines a company’s trading 

activity.  It indicates a company’s profit margin by showing the 

relationship between sales and direct production costs. 

Sales

Profit TradingNet 
margin  Operating =   Equation 2.2.3 

The Operating Margin indicates the profitability of sales, taking 

into account the volume of activity.  Net trading profits should 

be before tax, interest paid and income from investments. 

Sales

Overheads
Rate Overhead =   Equation 2.2.4 

The Overhead Rate forms the bridge between gross profit and 

trading profit to sales in the previous two ratios.  If there is a 

significant upward movement in this ratio, it may be a cause 

for concern. 

Employed Capital

ProfitNet 
 Capitalon Return =   Equation 2.2.5 

This Return on Capital Employed ratio measures the overall 

efficiency of the business but is only meaningful if compared 

within the same industry.  Manufacturing, for example, tends 

to be more capital intensive than service industries and will 
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exhibit a lower return on capital ratio.  “Capital Employed” 

should include share capital, reserves and long-term loans. 

sLiabilitieCurrent 

AssetsCurrent 
RatioCurrent =   Equation 2.2.6 

Based on the balance sheet figures, the Current Ratio 

comments on the working capital position of the company and 

is generally accepted as a measure of short-term solvency.  

This ratio is particularly pertinent for “dot.com” companies. 

sLiabilitieCurrent 

Stock less AssetsCurrent 
RatioQuick =   Equation 2.2.7 

The Quick Ratio or “Acid Test” indicates a company’s ability to 

pay it debts quickly.  Stock and “work-in-progress” are 

generally excluded, since they are not readily convertible to 

cash. 

Materials ofCost 

days 365Stock x 
TurnoverStock =   Equation 2.2.8 

The Stock Turnover ratio indicates the stock turnover period in 

days.  If this value increases, it could indicate excessive or 

obsolete stock, a negative indicator, particularly for “high-tech” 

companies, where the life cycle of a product is relatively short. 

SalesCredit 

days 365 x Debtors
Turnover Debtors =   Equation 2.2.9 
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The Debtors Turnover indicates the average period of credit 

taken by customers and is useful in determining the possible 

existence of bad debts. 

Fundsr Shareholde

Debt BearingInterest 
Gearing =   Equation 2.2.10 

This Gearing ratio helps measure the long-term strength of a 

company.  High gearing indicates a high risk and susceptibility 

to economic fluctuations.  It may also indicate that the 

company would have difficulties borrowing additional funds. 

Dividend

Profit 
Cover Dividend =   Equation 2.2.11 

The Divided Cover calculates the number of times the 

company could have paid the dividend amount out of profit.  A 

high dividend cover may indicate that the company is 

financially sound, having retained considerable amounts of 

profit for investment back into the company or that the 

dividend was very low.  The latter may be sign of expansion. 

Market Total

100 x ShareMarket 
ShareMarket  Relative =  Equation 2.2.12 

The Relative Market Share measures the market share of the 

company as a percentage compared to its major competitors. 

Calculating ratios like these does not require significant 

processing power.  As computer capacity and processing 
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power increased, it became easier for analysts to visually 

inspect graphs of individual stock prices and values derived 

from them.  This led to the birth of a new school of stock 

analysis based on charting techniques. 

2.2.1 Charting Techniques 

Charting techniques work with the visual representation of the 

stock price graph over a selected period.  By enhancing the 

diagrams with secondary time series documenting perceived 

trends, the chartists identify trends or trading opportunities.   

All of these charting techniques represent common analysis 

tools and are frequently quoted by all major investment 

magazines, including Capital, Börse and Wirtschaftswoche in 

German and Forbes, Money Magazine and Barron’s in the 

United States.  Bookstaber describes and explains these 

techniques in detail and shows which combination of triggers 

he considers particularly valuable [Bookstaber 1985]. 

One notable proponent of these techniques is Chrystyna 

Bedrij, chief investment officer at Griffin Securities in New 

York.  She publishes a one-page document three to four times 

a week, called “The X list” and has gained notoriety for having 

produced portfolio recommendations with returns in excess of 

60% since 1997.  Her recommendations are naturally only 

available to paying customers, but frequently appear on public 
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web sites with a one or two week delay, including 

MoneyCentral on MSN.com. 

Like the many ratios discussed earlier, analysts have devised 

numerous charting techniques worth consideration.  

Comparable to the Price-to-Earnings ratio in importance, the 

most basic enhancement used by chartists to a stock price is 

the trend line.  It is defined by connecting local maxima or 

minima with a straight line.  The area between the two lines is 

called the trend channel and provides an indication of the price 

tendencies. 
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Figure 2.2.1: Trend Lines and Trend Channel 
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This technique is as much an art as a science since the quality 

of the implicit statement depends on the “correct” identification 

of the local maxima and minima.   

Another somewhat subjective indicator is the support and 

resistance line.  Similar to trend lines, these floors and ceilings 

are usually based on psychological barriers, which are 

frequently associated with round numbers. 
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Figure 2.2.2: Resistance Line 

In the example above, the Spiegel stock price has repeatedly 

challenged the US$ 9.00 level, but there seems to be a barrier 

preventing it from passing this value. 

The momentum (Mt) of a price is defined as follows, where Pt 

is the price of the stock at time t: 
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nt

t
t P

P
M

−

⋅=100  Equation 2.2.13 

Using this definition, it is possible to supplement the graph of a 

stock with its momentum for different values of n.  The 

momentum indicator can help identify trend reversals and is 

designed to show the strength of the movement.  A reversal in 

the momentum from values smaller than 100 to bigger than 

100 are interpreted as buy signals and vice versa.  

Interestingly, some analysts draw trend channels into the 

momentum lines to identify buy and sell signals.   

Spiegel Corp. Stock Prices and Momentum
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Figure 2.2.3: Momentum for n=7 
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Like many indicators, this technique can help identify 

opportunities, though some analysts claim that it primarily 

documents historic opportunities, instead of predicting the 

future.  On 1/12/99 and 4/30/99 the momentum value in the 

diagram above climbed above 130, documenting a purchase 

opportunity that would have resulted in a profitable trade.  It 

subsequently rose further and broke through the 140 level 

confirming the momentum. 

The trend confirmation indicator (TCIt) is the ratio of two 

moving averages Dn and Dm, of n and m days, with n<m:  

100⋅=
m

n
t D

D
TCI   Equation 2.2.14 

A TCI value below 100 is usually interpreted as a signal 

forecasting a change in trends.  Values above 100 confirm the 

current trend and provide an indication of its strength. 
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Spiegel Corp. Stock Prices and Trend Confirmation 
Indicator
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Figure 2.2.4: Trend Confirmation Indicator with n=5 and m=10 

We see that this indicator can, at times, provide helpful 

predictions.  On 4/30/99, for example, the TCI climbed to 

above 110, which would have allowed for a lucrative 

investment in the Spiegel stock. 

Another popular indicator graphs a short and a long term 

moving average on the same graph.  Common values for this 

moving average (MA) comparison are 50 and 200 days.  A 

simple trading rule states that if the short term moving average 

crosses the long term moving average from below (above), the 

stock price shows a trend of increasing (decreasing) strength 

and promises to continue rising (falling).   
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Figure 2.2.5: Comparison of the 50 and  200 Day Moving Average  

In this example, this MA indicator triggered a buy signal on 

1/9/99 and indeed, the stock price rose from around US$ 6.00 

to close to US$ 9.00.    It did not, however, identify the 

subsequent decrease in stock price, nor did it trigger any other 

buy or sell signals in the period displayed. 

Trend Oscillators (TOt) are the relationship between the 

current price and a moving average. 

100⋅=
n

t
t D

P
TO  Equation 2.2.15 

This indicator is based on the theory that commodities 

oscillate within a defined trend channel over extended periods.  
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Given this indicator, it is possible to fine-tune the timing of a 

purchase.  Values above 110 (below 90) are generally 

interpreted as a “buy” (“sell”) signal. 
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Figure 2.2.6: Trend Oscillator with a 10-Day Moving Average 

Again, we see that on 1/12/99 and on 4/30/99 the trend 

Oscillator exceeds 110 and are followed by values up to 130.  

A purchase on either of these days would have been followed 

by a substantial increase in price within a few days. 

The over-bought/over-sold indicator (OBOSt) is designed to 

identify stocks that are currently traded at an inefficient price. 

100⋅
−
−

=
nn

tn
t LH

PH
OBOS  Equation 2.2.16 
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In this equation, the values Hn and Ln are the high and low 

prices in the previous n days.  Generally, it is assumed that a 

value over 90 forecasts a price reduction while a result below 

10 indicates a price increase. 
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Figure 2.2.7: The Over-Bought/Over-Sold Indicator with n=20 

The OBOSt indicator clearly reacts more sensitively than the 

previous ratios, resulting in numerous buy and sell signals.  

Like the previous charting techniques, it identified the 4/30/99 

buying opportunity.  However, there were also some “false 

alarms” at the beginning of February and on March 20, 1999. 

These issues showed that even the chartists are not infallible 

and in 1986, Frankel and Froot suggested that it is necessary 

to take the expectations from both fundamentalists and 
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chartists into account, if one is to understand financial markets 

[Frankel, Froot, 1986].  As an example, they analyzed the 

value of the US dollar and devised a meta-model, based on a 

combination of models.  They showed that the complex 

behavior in the years before the paper was published could be 

explained by the inter-play between these chartist and 

fundamentalist schools of thought. 

After the stock market crash on October 19, 1987, non-linear 

dynamics and especially deterministic chaotic systems 

became a major topic both among the financial press and 

academic literature.  Since the violent swings could not be 

explained with the usual assumptions, this approach was seen 

as an alternative model for the stock market. 

Hsieh, for example, analyzed the S&P 500 Index between 

1982 and 1990 and concluded that non-linear methods offer 

promising new venues in the attempt to model this data [Hsieh 

1990].  His extensive tests show evidence that the stock 

returns tested are not independent and identically distributed.   

Hutchinson also bases his work on the assumption that 

financial time series are fundamentally non-linear in nature 

[Hutchinson 1994].  He shows that though it is difficult to 

benefit from them, models based on radial basis functions 

provide better forecasts than linear predictors.   

This was good news to the proponents of complex, chaotic 

models and a variety have been developed and tested over 

the past years.  With their proliferation, a third approach to 
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stock evaluation evolved and Robinson and Zigomanis 

propose the extension of the work of Frankel and Froot to 

include the expectations of the non-linear dependence of 

financial data in order to optimize these models [Robinson, 

Zigomanis 1999]. 

The following sections address mathematical prediction 

models starting with linear auto-regressive methods as a base 

line.  Subsequently, I focus on more advanced non-linear 

approaches using k-nearest neighbors, Markov Models and 

artificial neural networks. 

2.2.2 Auto-Regressive Models 

The literature usually distinguishes between two types of 

Linear Models:  AR(p) or Auto-regressive Models of degree p 

have the form 

∑
=

−=
ρ

ρϕ
1

,
ˆ

i
itit XX  Equation 2.2.17 

and MA(q) or Moving Average Models of degree q are defined 

as follows 

∑
=

−=
ρ

θ
1i

itit ZX  Equation 2.2.18 

where Zt are elements of a white noise process.   
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Though the two can and frequently are combined to form 

ARMA (p,q) models, we concentrate on AR(p) models 

because any MA(q) process can be represented as an AR(∞) 

process.   

The explicit representation of an AR(p) model entails the 

determination of the p weights ϕip, which is frequently 

accomplished with the  Durbin-Levinson algorithm.  Brockwell 

and Davis show an elegant derivation for this method that 

uses a recursive scheme to circumvent the need for a large 

matrix inversion [Brockwell, Davis 1986].   

The algorithm requires a stationary process with a constant 

arithmetic mean and an autocovariance function such that 

γ(0)>0 and γ(h)→0 as h→∞.  For the algorithm, the mean 

squared error of the prediction νn is defined as  

( )2

11
ˆ

++ −= nnn XXEv  Equation 2.2.19 

Using the standard definition for the estimated autocovariance 

function  

( ) ( )( )∑
−

=
+ −−

−
=

hN

i
hii XXXX

hN
h

1

1
γ  Equation 2.2.20 

it follows that  

( )v0 0= $γ  Equation 2.2.21 
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The coefficients of the AR models are calculated using the 

following equation. 

( ) ( )

1

1

1
,1

−

−

=
−∑ −−

=
n

n

i
in

nn v

inn γϕγ
ϕ   Equation 2.2.22 

The AR(1) model follows immediately: 

( )
( )

ϕ
γ
γ1 1

1

0, =  Equation 2.2.23 

Given this recursive anchor and the following equations, it is 

possible to compute ϕn,m for n=2, 3,… and m=1,…n as well as 

νn providing the coefficients for the AR(n), n>1, models. 
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 ( )2
,1 1 nnnn vv ϕ−= −  Equation 2.2.25 

AR(n) models compute a weighted mean of past values.  

Though very useful and easy to compute, the method does not 

perform well when the underlying system contains non-linear 

dependencies.   
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The results from Hsieh indicate that most financial data are 

non-linear in nature resulting in a natural disadvantage for 

these models [Hsieh 1990].  Additionally, due to their simple 

nature they are used widely as a baseline for comparison but 

consequently offer no competitive advantage. 

In an effort to benefit from the extensive research done for AR 

models and the numerous well-documented algorithms that 

exist, it is possible to enhance the basic algorithm in various 

ways.  By dividing the input space into two or more regions, 

defined by the Euclidean distance to their respective centers in 

n-dimensional space it is possible to generate different local 

linear models.  Each approximates the function linearly in their 

respective input spaces.  The prediction is the weighted sum 

of individual models, based on the distance to the input space.  

This generalization requires sufficient data to generate several 

local models and the quality of the results depends on the 

choice of the centers used to define the separate regions, but 

generally helps to reduce the model error. 

Mâlâroiu, Kiviluoto and Oja proposed a different enhancement 

to generic time series prediction [Mâlâroiu et al 1999].  After 

preprocessing the target time series to zero mean and unit 

variance, they separate it into different independent spectral 

components using the FastICA package in MATLAB.  Each 

component is then filtered to reduce the effects from supposed 

noise, by applying a high-pass and/or low-pass filter.  The 

individual components are then modeled using the AR method 



40 Predicting Stock Prices 

and combined by calculating the weighted sum of each 

prediction. 

Hsieh developed a similar model, which decomposes 

exchange rate futures contracts into a (linear) predictable and 

a (non-linear) unpredictable component [Hsieh 1993].  He 

focused on US dollar contracts traded on the Chicago 

Mercantile Exchange for the British Pound, German Mark, 

Japanese Yen and Swiss Franc.  Though this approach does 

not accurately calculate the expected prices, it is able to 

isolate the autoregressive volatility of the data allowing him to 

forecast the prediction risk. 

In the Santa Fe Time Series prediction competition organized 

by Weigend and Gershenfeld, Sauer concentrated on the 

prediction of data set A, the intensity of a detuned NH3-FIR 

Laser [Weigend, Gershenfeld 1993, Sauer 1993].  By using 

delay coordinate embedding, he successfully built local-linear 

models to predict the output data.  In the same competition, 

Lewis, Ray and Stevens modeled the time series A, B and C, 

which additionally included physiological and foreign currency 

exchange data.  They used multivariate adaptive regression 

splines in another example where a linear concept is 

expanded in scope so that it can be applied to the non-linear 

domain. 
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2.2.3 K-Nearest Neighbors Models 

The k-nearest-neighbors models (KNN) search the training 

data for historic points in n-dimensional space that correspond 

to the current configuration.  The assumption is that similar 

configurations in the past are followed by values, which can be 

interpreted as predictions for the future.  Usually the 

predictions are the weighted sum of k of these nearest 

neighbors based on distance, hence the name. 

In its basic form, the algorithm defines a data window ΚΚ t = (xt 

... xt-n-1) where xt is the value of the time series at time t.  As a 

next step, it calculates the distance dt-m between ΚΚ t and ΚΚ t-m for 

all m<t-n.  A common metric used is the Euclidean distance, 

shown in the following equation, though numerous alternatives 

are possible.   

( )∑
−

=
−−−− −=

1

0

2
n

i
mititmt xxd  Equation 2.2.26 

The resulting scalars are sorted in increasing order so that the 

k closest data windows ΚΚ t1 … ΚΚ tk, can be identified.  Now 

simply taking the value following the historic neighbors xt1+1, … 

xtk+1, the system has identified k predictions for the future value 

of the time series. 

Commonly, these k nearest neighbors are averaged, using the 

distances dt1 … dtk as a means of weighting mechanism. 
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Frequently, the algorithm is extended by including values from 

related time series yt, or zt, representing the trading volume 

and general economic data like inflation, interest and 

unemployment rates, as well as the price history of major 

indexes or related stocks.  This tends to increase the 

dimensionality of the data window, but does not affect the 

complexity of the remaining algorithm.   

( )lttmttntt zzyyxx −−−−= ..,..,.. 1tê  Equation 2.2.28 

This is a general model and performs well both for linear and 

non-linear time series.  The results of the model can be 

reconstructed because the system can list the points it used 

for input, making the predictions very transparent. 

The quality of the model deteriorates when the time series 

enters “uncharted territory” or domain space for which no 

previous examples exist.  This can be avoided somewhat by 

normalizing the input, though this usually increases the error 

for the known input space.   
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2.2.4 Markov Models 

Markov Models (MMs) assume that it is only possible to obtain 

certain observations of the system that describe its state, 

possibly incompletely.  In the space-time continuum, the 

system „jumps“ from one state to the next.  The idea is that if 

one observes the system long enough, one can note the 

progression from any state σx to state σy
1, σy

2... σy
n.  With this 

information at hand, it is possible to calculate the probability 

that the state following σx will be σy
i for all i.  If the system 

should end up in state σx in the future, it is possible to 

determine the likelihood for each state that it will be the next 

one. 

When we apply this method to time series analysis, we first 

have to define our data window ω.  Given a training set of N 

data points we are now able to define N-ω=P training tuples.  

Each of these tuples represent a move in ω-space from state 

σt-1 = (st-ω, ... , st-1) to state σt = (st-ω+1, ... , st).  This can also be 

interpreted as the functional f(σt-1) → σt where 1 ≤ t ≤ P.  In the 

next step, we divide the ω-space into k ≤ P clusters.  This is 

done by dividing the bounded ω-dimensional hypercube into 

ΚΚ=nω smaller hypercubes or by randomly selecting ΚΚ points 

and attaching each tuple to its nearest representative.  The 

second method would necessitate the definition of a metric to 

identify the “nearest” point, with all common variants possible. 
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Having now categorized the states, one would have to 

determine the probabilities of a transition between any two 

states by counting the total number of transitions from one 

state to another.  Once the probabilities are calculated, the 

model is fully specified and can be used to predict the next 

state if a new point is presented.  The prediction follows from 

the most probable state.  Calculating the weighted mean of all 

follower states can extend this model.  Many schemes are 

conceivable, with linear and exponential weights used most 

commonly.   

The state of a financial time series is frequently identified both 

by the price and volume of the recent trading days.  This 

algorithm is also frequently enhanced by including related time 

series as described in the KNN models. 

Fraser and Dimitriadis used MMs in speech research and 

recognized their possibilities for time series prediction when 

they became aware of the Santa Fe competition [Fraser, 

Dimitriadis 1993].  Their contribution focused on data set D, a 

numerically generated series representing a chaotic process.  

The authors describe their use of Baum’s EM algorithm, which 

iteratively adjusts the model parameters to maximize the 

likelihood of its observations and apply the resulting model to 

forecast the data.  For every point, they are able to map the 

probability density making it possible to attach a confidence to 

the predicted value.  The latter is especially appealing for 

stock trading predictions. 
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Poritz and Rabiner also came from the speech recognition 

field and used Markov Models to forecast the likelihood of a 

particular word given a certain beginning of a phrase [Poritz 

1998] [Rabiner 1989].  In their work, the states described 

recent words in a phrase.  Given numerous historic examples, 

the system is able to question every interpreted word and 

replace it with one that “makes more sense”, or 

mathematically expressed, where the likelihood of its 

placement in a particular position is higher. 

2.2.5 Artificial Neural Network Models 

Artificial neural networks (ANN) are based on research of the 

human brain.  Here neurons receive input from n different 

electrical sources, weight the inputs through an electrical 

resistance and sum the results.  The output of the neuron is a 

transformation of this sum and is fed into the next neuron.  An 

ANN simulates this operation within a computer program. 

The human brain consists of approximately 1010 neurons, all of 

which are active simultaneously and can be interconnected.  

The computer equivalent consists of only a few tens or 

hundreds of the electronic "neurons" called a unit, and 

normally only one is active at any one time. 
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Input Layer 

Prediction 

Hidden Layer 

 

Figure 2.2.8: Artificial Neural Network 

In the figure above, one can detect a strict hierarchy, with 

clearly identifiable layers.  Each layer is fully connected to the 

next.  Though recurrent connections are conceivable and 

sometimes used, we will restrict ourselves to feed-forward 

ANNs with this structure.  The bottom layer in the diagram 

represents the input layer.  The activation of this layer is 

determined by the input into the system, for example It-1, It-2,..., 

It-n.  The input data is then propagated to the next (hidden) 

layer as represented by the connecting line in Figure 2.2.8.  

Each of the four units in the middle layer sum their weighted 

inputs and scale the output using the transfer function σ(h). 
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The Ii in this case are the values from the input units and the 

weights wj,i represent the axon or weight connection between 

input i and hidden unit j.  It is common to use a sigmoidal 

function for σ (h), like 
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( ) ( )βσ
he

h
21

1
−+

=  Equation 2.2.30 

or 

 ( ) ( )σ βh h= tanh  Equation 2.2.31 

with the alternatives being linear or sinusoidal functions for an 

input between -π and π.  Similarly, the output unit or prediction 

sums and transforms the activation values from the hidden 

layer. 
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The example in the figure contains only one hidden layer and 

an output layer with one unit, though more output units and 

more layers are possible.   

The output unit contains the desired prediction and depends 

on all the weights in the net.  The ANN has to „learn“ the data 

to search its configuration space for a good set of weights.   

This is usually done using the back propagation algorithm.  In 

it, we define the error of the prediction of a particular pattern 

as a function of the weight vector to the output unit as follows, 

where Oi is the output of the ANN and Ti represents the target 

value. 



48 Predicting Stock Prices 

( ) ( )∑
=

−=
max

1

2

2

1 i

i
ii TOwE

v
 Equation 2.2.33 

By now differentiating the error expression with respect to 

each weight wij in Equation 2.2.33 we can determine an 

expression that will reduce the error using the gradient 

descent method with a step-size ç. 
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The error is then propagated  to the next layer of units where 

the same algorithm is then used.  This update routine can be 

applied after the presentation of each pattern (on-line learning) 

or collected for all the patterns in a training set (batch mode 

learning).  After running through all training patterns, the 

model is verified on the test set.  Training continues as long as 

the test error is reduced with each iteration.  This ensures that 

the ANN does not start modeling stochastic noise in the 

training set, a process called "overfitting."  It is common for the 

error to vary dramatically in the first iterations, so that many 

algorithms permit the definition of a minimum number of 

iterations to be tested. 

From this description, it is obvious that this method is 

computationally considerably more expensive than the 

previous algorithms.  Also, there is no easy analytical method 

to determine the number of units necessary in the hidden 
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layers, or to make other topological decisions so that it is 

necessary to find the optimal configuration using trial-and-

error.  The high number of degrees of freedom poses some 

difficulties as well, since it reduces the stability during the 

convergence process.  However, the gain, once a good 

configuration is found, is a truly non-linear function predictor. 

This difficulty associated with models built using artificial 

neural networks is exemplified by an experiment conducted by 

White [White 1989].  He attempted to predict the quarterly IBM 

stock prices with a static network topology of five input and 

five hidden units.  The single output unit was trained with data 

points from the second quarter of 1974 until the first quarter of 

1978.  The resulting artificial neural network was used to 

predict prices from the second quarter of 1972 until the first 

quarter of 1974 as well as the second quarter of 1978 until the 

first quarter of 1980.  Though the network was able to model 

the training set well, the project had no control over the extent 

of the training on the network, so that its ability to generalize 

was unsatisfactory.  For the two test sets, the correlation 

between the predicted and the real values was 0.0751 and –

0.0699 respectively.  This example shows that this powerful 

tool can not be applied blindly without tailoring the network to 

the specifics of the time series. 

With increased complexity and consideration however, ANNs 

offer good opportunities.  Rehkugler and Poddig show the 

potential of ANNs in an experiment, which included only three 

input values and was designed to predict the movement of the 
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German stock index DAX [Rehkugler, Poddig 1990].  Instead 

of using the prices of the index itself, the ANN was based on 

the nominal interest rate, a business confidence indicator and 

free liquidity, defined as follows: 

GNP

M1
=L  Equation 2.2.35 

In this equation, the money supply M1 is divided by the gross 

national product, GNP.  In order to eliminate seasonal swings, 

the input to the ANN included only the change in value 

compared to the previous year.  The system was trained with 

this delta data from the first quarter 1965 with 6 years worth of 

information.  The topology included different numbers of 

hidden layers each with different number of units.  The 

network had five output units.  One was trained to calculate a 

simple rise/fall predictor with the values 1 or 0 respectively.  

The remaining four output units defined index changes of 

bigger than 10%, between 0% and 10%, between 0% and      

–10% or smaller than –10%.  During every training cycle, only 

one of these four units was trained with the value 1.  The 

others were set to 0. 

After training, the network was tested with 68 values.  For the 

rise/fall indicator, values of 0.5 or greater were interpreted as a 

rise, while lower values were considered a falling prediction.  

For the four categorization output units, the algorithm 

assumed that the output with the highest value was the 

“winner” and interpreted it as the prediction. 
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As a simple trading strategy, the program simulated a 

purchase of the index as if it were a stock if the prediction was 

positive and it did not already own it.  Similarly, it sold the 

index, if it owned it and the network predicted a decrease.  

The basis for this decision was the first rise/fall indicator.  The 

table below summarizes the results. 

 
Topology Rise/Fall Output Categorization Return 
3-5 49 correct, 19 false 43 correct, 25 false 177.28% 
3-5-5 49 correct, 19 false 47 correct, 21 false 160.23% 
3-9-7-5 44 correct, 24 false 44 correct, 24 false 142.29% 

Table 2.2.1: First Experiment [Rehkugler, Poddig 1990] 

Interestingly, the return as well as the correct prediction 

frequency responded negatively to increased complexity in the 

network.  Nevertheless, the average annual returns well over 

100% suggest an opportunity, although transaction costs are 

not considered. 

Since this artificial neural network effectively produced two 

different outputs, the two scientists simplified the output in a 

second experiment to the simple rise/fall indicator.  This 

approach ensured that the secondary categorization goal did 

not interfere with the desired prediction.  In an effort to 

improve the forecasts, the output in this second experiment 

was interpreted more stringently: Only outputs over 0.9 and 

under 0.1 were considered rise or fall predictors respectively.  

All other values specified an undefined state and resulted in a 
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“hold” strategy for the hypothetical stock.  The results are 

shown in the table below: 
Topology Rise/Fall Output Return 
3-1 32 correct, 13 false 225.16% 
3-2-1 42 correct, 16 false 194.39% 
3-3-1 43 correct, 14 false 237.65% 
3-4-1 44 correct, 19 false 194.36% 

Table 2.2.2: Second Experiment [Rehkugler, Poddig 1990] 

The results indicate that the specialized approach increased 

returns considerably, and that the number of undecided states 

primarily helped reduce the number of false predictions.  It is 

also noteworthy that the increase in network complexity 

reduced the undecided states and improved the number of 

correct predictions.  Though the return did not immediately 

benefit from the increased quality of the predictions, one 

should question whether a simple portfolio management 

strategy is an adequate measure for this model. 

In an attempt to improve the generalization ability of artificial 

neural networks, Utans and Moody extended the methodology 

in a study that was designed to predict the Standard & Poor 

(S&P) rating for assorted companies [Utans, Moody 1991].  

These ratings define the risk associated with an investment in 

a particular company or market.  S&P categorize the 

companies in 18 discrete steps.  Since these ratings are 

updated infrequently, this ANN helped interpolate the rating 

between official releases. 
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The ANN used ten financial ratios as input data, a hidden layer 

and a single output unit, which categorized the risk rating for 

the company between 2 and 19, in the order of decreasing 

risk.  The hidden units used sigmoidal transfer functions.  In 

contrast, the output unit used a piece-wise linear transfer 

function in order to reduce the complexity and thereby 

increasing the training speed.   
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The authors tested this configuration with different numbers of 

hidden units, in order to determine the optimal topology.   
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Figure 2.2.9: Utans, Moody Experimental Training and Test Error 

The results show a pronounced change of trend in the training 

error.  This point coincides with the minimum test error, 
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indicating that the optimal configuration should include three 

hidden units. 

As a next step, Utans and Moody defined the importance of 

the i input data by defining the sensitivity of the output to the 

input. 
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By sorting the sensitivity in decreasing order, the two authors 

identified the test error as more of the input data was 

removed. 
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Figure 2.2.10: Utans, Moody Test Error with Removed Input Data 

This approach shows that the removal of two input data 

actually helped improve the test error of the resulting ANN.   
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In a separate effort to improve the performance of the model, 

the authors applied the Optimal Brain Damage (OBD) method, 

as presented by Le Cun [Le Cun et al 1990].  This approach 

defined the influence of each weight in the network through 

the saliency function, defined in the equation below. 
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By resetting the weights with the lowest saliency, their effect 

on the output is effectively removed.  The resulting network is 

retrained so that it can adjust to this “brain damage.”  The 

figure below shows the effect of this adjustment to the test 

error. 
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Figure 2.2.11: Utans, Moody Experiment with Optimal Brain 
Damage 
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These two comparisons both showed a promising 

improvement but were strangely not combined into a single 

model.  

The results of these two ANNs were categorized by the 

deviation of the actual S&P classification.  The table below 

shows that percentages for each error group. 

 
Deviation  8 Input Units, No OBD 10 Input Units, with OBD 

0 31.1 % 29.1 % 
1 39.3 % 39.3 % 
2 15.8 % 17.9 % 

>2 13.8 % 13.7 % 

Table 2.2.3: Error with Reduced Input and ODB Methods 

Approximately 70 % of the test set were categorized correctly 

or were only off by one, resulting in reasonably accurate 

predictor for the S&P risk rates.  

In a different attempt to optimize the network topology and 

improve the ability to generalize, Fahlman and LeBiere 

introduced cascade-correlation networks [Fahlman, LeBiere 

1990].  In contrast to the standard back-propagation algorithm, 

in these networks the size of the hidden layer is not static.  

Initially, a two-layer network is trained until the error for each 

vector pair in the training set falls below a defined threshold.  

When this occurs, a neuron is added to the hidden layer.  The 

synaptic weights between the input layer neurons and the new 
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neuron are adjusted to maximize the magnitude of the 

correlation between its activation and the output layer error. 

Deppisch, Bauer and Geisel generalize this idea in their paper 

on hierarchical networks [Deppisch, et al 1991].  The concept 

envisioned training an ANNs until it is no longer able to model 

the complexities of input data.  In a second step, a new ANN is 

trained to predict the residues of the original model.  Finally, 

the two ANNs are used together as a predictor of the time 

series. 

+ =

 

Figure 2.2.12: Hierarchical Networks 

The diagram above shows the combination of two ANNs but 

this procedure could be extended indefinitely to continually 

reduce the residual model.  The final output is the sum of all 

sub-models. 

The authors tested this approach on the chaotic coupled 

differential Rössler equations defined in the equation below. 
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In order to approximate the optimal learning per network, the 

first ANN had a topology using one input x value and two 

hidden units to predict the next x value.  Network 1 was trained 

103 epochs until it produced an average test error of 10-2 and 

then supplemented with a second ANN with a 1-6-1 topology 

until the test error reached a minimum.  In Network 2, the 

original 1-2-1 ANN was trained until it produced an average 

output error of 10-3 and was then supplemented with the same 

1-6-1 ANN.  As a comparison the following diagram include 

the test error of the 1-2-1 without a secondary ANN and the 

error of an ANN where all eight hidden units are trained from 

the beginning. 
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Figure 2.2.13: Training Error for Hierarchical Networks 

Not surprisingly, the 1-2-1 network “learned” the data quicker 

than the more complex 1-8-1 network.  After several thousand 

epochs it caught up and eventually produced a slightly lower 

training error.  The first hierarchical network initially improved 

the simpler model only slightly.  It only showed a significant 

error reduction after 104 epochs reducing the training error by 

almost two orders of magnitude.  The second network 

immediately caught up this level and was apparently able to 

continue improving its model even in the next epochs.  After 

106 epochs, the training error leveled off for all models. 

A possibly more significant measure of the quality of the model 

was the prediction quality measured by the test error.  The 

diagram below shows a comparison of the most successful of 

the hierarchical models in comparison to a linear predictor. 
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Figure 2.2.14: Test Error for Different Prediction Horizons 

Though significantly larger, the hierarchical predictor is an 

order of magnitude better than the linear model and though 

unsurprisingly both errors increase with a longer prediction 

horizon, the ANN remains about ten times better throughout 

the domain shown in Figure 2.2.14. 

The experiment shows that hierarchical networks are able to 

offer advantages in at least some cases.  The difference in 

training and test errors point to overfitting, an issue that would 

need to be addressed, if this approach were to be used in a 

system. 

Artificial Neural Networks also received a big push in 

popularity from two entries by Wan (data set A) and Mozer 

(data set C) to the Santa Fe Time Series Prediction 

Competition [Weigend, Gershenfeld 1993, Wan 1993, Mozer 
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1993].  The latter also showed that these models could be 

applied successfully in the financial domain, an aspect of 

particular relevance to this paper. 

Networks based on radial basis functions have also been 

applied to financial time series prediction.  As early as 1986, 

Hutchinson showed that these non-linear models performed 

better than linear and univariate models in a simulated stock 

trading comparison [Hutchinson 1986].  Building on the 

theoretical foundation, he developed a system that was also 

applicable to stock option pricing, showing the versatility of the 

approach. 

Parkinson analyzed preprocessing techniques and their 

application to financial time series prediction using neural 

networks [Parkinson 1999].  He proposes a method whereby it 

should be possible to compare scaling, logarithmic transforms, 

smoothing, differences and ratios as well as normalization.  

However, the sheer number of combinations of these 

preprocessing techniques makes it difficult to identify which 

one of them optimally suits what kinds of data. 

Nevertheless, artificial neural networks have been applied 

extensively to predict financial time series.  Zimmermann 

enthusiastically supports their usage, because they combine 

the non-linearity of multi-variate calculus with the number of 

variables typically used in linear algebra [Zimmermann 1994].  

Working with him, Braun developed several applications for 

the prediction of the DAX, which included manual optimization 
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techniques like weight and input pruning as well as the 

merging of hidden units and layers [Braun 1994]. 

2.2.6 New Approaches to Financial Market Analysis 

In recent years, several new agent based approaches to the 

analysis and prediction of financial data have gained 

popularity.  In 1997, Arthur, Holland, LeBaron and Tayler 

proposed an artificial stock market (ASM) where N simulated 

players, called agents, each had the option to buy, sell or keep 

their current position [Arthur et al 1997].  The experiment was 

permitted to run for 250,000 periods during which each agent 

was permitted to execute orders once.  Each agent forecast 

the price of each commodity using auto-regressive models, 

which it adapted using genetic algorithms.  The trading rules 

were based on a parameterized strategy, which was permitted 

to evolve using a genetic algorithm over the course of the 

experiment.  This project spawned several relevant research 

initiatives. 

One was the experiment by Joshi and Bedau, who assume 

that investors continually explore and develop expectation 

models, buy and sell assets based on the predictions of the 

models that perform best and confirm or discard these models 

based on their performance over time [Joshi, Bedau 1998].  

They used the ASM to explore the volatility of prices and 

average wealth earned by the investors as a function of the 

frequency of strategy adjustments.   
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In their experiments, they simulated a market with a fixed 

number N=25 of agents.  Time was discrete and in each 

interval, the agents had to decide whether to invest their 

portfolio in a risky stock or a risk free asset, analogous to a 

Treasury Bond.  There was an unlimited supply of the risk free 

assets and it paid a constant interest rate of r=10%.  The risky 

stock, issued in S shares, paid a stochastic dividend that 

varied over time governed by a process that was unknown to 

the agents.  

The agents applied forecasting rules to their knowledge of the 

stock’s price and dividend history and performed a risk 

aversion calculation and decided how to invest their money at 

each time period.  The price of the stock rose if the demand 

exceeded the supply and fell if the supply exceeded the 

demand.  Each agent can submit a bid to buy or an offer to 

sell fractions of shares at the previous period’s price. 

Their results were classified in to four different classes of 

behavior depending on the frequency of their updates using 

the genetic algorithm.   
Genetic Interval Volatility 

of Prices 
Average wealth 

earned 
Complexity of 

Forecasting Rules 
Never Low Low Low 

Every Iteration Low High Very Low 
102 < interval < 103 High Low Very High 
103 < interval < 104 Moderate High High 

Table 2.2.4: ASM Investor Types as a Function of GA Interval 
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Not surprisingly, the volatility of the simulated market was low, 

if the investors never updated their forecasting model, since 

each remained with the set of rules they were originally 

endowed with.  Interestingly, the volatility of the price structure 

remains low when the agents update their rules at every 

interval and increases dramatically as the genetic interval 

increases to somewhere between 102 and 103.  With this 

configuration, the complexity of the forecasting rules was also 

very high.  At the same time, the average wealth earned by 

the investors was high if they adjusted their strategy on every 

iteration, then dropped to a low as soon as there are some 

changes, but peaked if the investors modify their strategy 

every 103 to 104 intervals. 

This work was used to explain the rapid increase in volatility of 

the financial markets in recent years, by implying that the 

average trading strategies of the investment community has 

changed.  Since it is assumed that professional investors, 

which represent the traditional players, do not adjust their 

strategy very rapidly, the authors suggest that this increase is 

due to privat investors, which tend to trade with a higher 

frequency and have presumably grown their share of the 

trading volume with the increasing ease of online trading via 

the Internet 

Also based on the ASM, Kurumatani proposes a virtual stock 

market, Vsmart, where researchers worldwide can inquire 

about stock prices, and can execute purchases and sales, just 

like in its real world counterpart [Kurumatani et al 2000].  



Mathematical Modeling Techniques 65 

Unlike actual markets, no actual money will transfer ownership 

and all trades, trading histories and results are open to all 

participants.  This results in complete transparency and 

hopefully in some insights into the dynamics of stock markets, 

multi-agent research and profitable trading strategies as well 

as human decision-making. 

To this end, the authors provide a Simple Virtual Market 

Protocol, SVMP, which allows the academic community to 

automate the transaction chain via the Internet.  This process 

allows autonomous agents to retrieve current and historic 

market data, which can be processed using any kind of 

algorithm.  Using the resulting predictions, the agent can send 

order inquiries.  The central VSmart Server matches offers 

and bids, thereby determining the resulting price and providing 

an immediate response whether the order resulted in a 

transaction. 
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Figure 2.2.15: The VSmart  Virtual Stock Market 

Since all transactions are tracked and available for all 

participants, this open approach can bring together 
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heterogeneous agent types.  A human interface via the 

Internet, even allows participants, who have not fully 

automated the transaction chain to interact with the server.  

Due to its completely transparent design, this project promises 

to provide interesting results, when it goes live. 

In 1990, Granger hypothesized that trading volume and price 

movements were related [Granger 1990].  Karpoff found that 

stock price and trading volumes are related for bull markets, 

supporting this Grangers causality [Karpoff 1987].  Taking this 

work as a basis, Chen, Yeh and Liao extended the algorithms 

used in the ASM to analyze the old saying on Wall Street that 

“it takes volume to make price move” [Chen et al, 2000].  They 

developed a similar artificial agent based stock market and 

tested for Granger causality between these two components 

and showed that the relationship exists in all examples tested.  

This finding also emphasized the validity of the agent based 

simulations and reinforced this new methodology. 

Ingber and Mondescu developed an interesting alternative 

based on an Adaptive Simulated Annealing (ASA) approach to 

generate buy and sell signals for S&P futures contracts 

[Ingber, Mondescu 2000].  The algorithm fits short-time 

probability distributions to observed data using a maximum 

likelihood technique on the Lagrangian.  It was developed to fit 

observed data to the following function. 

( )tdzFdtfdF xF σ+=  Equation 2.2.40 
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Using this equation, it defined the market momentum as 

follows: 

s

F

F

F

f
dt

df

22σ

−
=Π  Equation 2.2.41 

In these equations, f F represents the drift, σ the standard 

deviation defining the volatility, F(t) is the S&P future price and 

dz the standard Gaussian noise with zero mean and unit 

standard deviation.  The parameter x was used to adjust the 

system to the current market conditions.  The system sampled 

the data with different time resolutions ∆t and averaged actual 

tick data that fell into a particular sample interval.   

The ASA algorithm calculated optimal parameters for the drift f 

F and the parameter x in the equations above as soon as 

sufficient data was available in the trading day and periodically 

thereafter.  By then defining the null momentum  

x

F
F
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f
220 σ

−=Π  Equation 2.2.42 

the momentum uncertainty band  

dtF x

F

σ
1

=∆Π  Equation 2.2.43 
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the system was able to execute a simple trading rule for long 

(“buy”) and short (“sell”) signals.   

If ΠF > MΠF
0 then signal = buy 

If ΠF < -MΠF
0 then signal = sell 

The threshold parameter M was used to limit the number of 

transactions by defining a momentum uncertainty band around 

the null momentum value.   

The system was tested with different sampling intervals ∆t, 

data windows W and threshold parameters M.  The σ 

parameter was continually updated.  The results presented in 

the paper included US$ 35 transaction costs for each buy and 

sell combination and show the trading profit for two specific 

days, June 20 and June 22, 1999.  Depending on the 

parameter selection for ∆t, W and M, the system generated a 

gain of up to US$ 2285 or loss of up to US$ 1125.  It does not 

state how much money was available for investment in total.  

Nevertheless, these results show how mathematical methods 

usually used in physics can be successfully applied to the 

financial trading domain. 

No doubt, these are not the last new prediction strategies as 

scientists “keep forging ahead with always more potent 

algorithms, which alone would allow them to remain ahead of 

the pack” as Lequarré predicts.  However, this race will 

continue, as “patterns in the price tend to disappear as agents 

evolve profitable strategies to exploit them” [Lequarré 1993].   
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