NELION: A Non-Linear Stock Prediction and Portfolio Management System

Am Fachbereich Mathematik und Informatik der Freien Universität Berlin eingereichte Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften

> vorgelegt von Thomas Schwerk Berlin, 2001

Gutachter:

Prof. Dr. Raul Rojas Freie Universität Berlin Prof. Dr. Volker Sperschneider Universität Osnabrück

Tag der Disputation: 13. Februar 2001

This dissertation is dedicated to Victoria Malaika Bonnekamp

Preface

This thesis presents a unified Internet-based portfolio management tool, NELION¹, that combines non-linear stock predictions and suggests the optimal portfolio for multiple investors, based on their specific preferences.

There exist a variety of publications on different approaches to time series analysis, especially as it pertains to financial data, including stock prices. The bulk of the work, however, optimized a certain technique to a specific set of data. There also exists a wide consensus on portfolio management theory, which describes how stocks in a portfolio should be distributed so that it conforms to the risk and return requirements of an investor. Until now, however, these two approaches have not been connected to form an automated and integrated stock prediction and portfolio management tool.

NELION connects to the Internet on a daily basis and downloads stock prices and transaction volumes to a local database. With this information at hand, it determines the volatility of the stock and the correlation between any two

At 5188 m, Nelion is the second of the twin peaks of Mount Kenya, the highest mountain in this East-African country. The silouette of the mountain is reminiscient of a local maximum of a stock chart.

stocks that are tracked on the database. The system then calculates numerous mathematical predictor models to forecast the stock price one day, one week and one month into the future. These models are continually refined through a genetic algorithm that uses the available processing power of the computer to search the model parameter space for improved configurations whenever no other tasks are awaiting execution.

Investors benefit from these models through personalized transaction suggestions, which take both their current portfolio and their risk adversity and other preferences into account. They can be notified by e-mail at defined intervals of the current state of their portfolio and receive suggestions on how to reduce its risk, while maintaining a defined return on investment. In order to limit expensive excess trades, it takes the minimum transaction value as defined by the investor into account. In case NELION identifies that a particular stock has undergone a dramatic change in stock price, the system generates an alert for all investors who own shares in the company by sending a short message via mobile phone.

NELION provides a Test Investor function that simulates trades based on historic data for any number of investor profiles. This function is designed for use with all combinations of the adjustable parameters so that the results of these trials can be analyzed and different categories of investors recommended for different risk adversity levels. Additionally, the system has an Auto Investor module that acts like an autonomous trader on real data and automatically executes unsupervised, simulated trades at defined intervals. These functions base all purchases and sales on the current stock price and include transaction costs in an effort to provide a fair measure of the success of the system.

The experiment allowed the agent to perform unlimited transactions once every weekend with no human intervention and ran for one year starting May 15, 1999 for a conservative and a high-risk investor configuration. The algorithm merely restricted negative ownership of stocks or "short" positions and was not permitted to use more cash than the US\$ 10,000 initial investment.

The results show that NELION is an effective advisor alerting a private investor to promising opportunities and showing him alternatives to reduce the risk of his portfolio while maintaining a defined level of return. The portfolio management tools provide the user with relevant information both on the portfolio history and the recommendations for the future.

Table of Contents

Preface				
1	Intro	pduction	10	
2	Pred	dicting Stock Prices	17	
	2.1	Efficient Market Hypothesis	17	
	2.2	Mathematical Modeling Techniques	21	
3	Port	folio Management	69	
	3.1	Return	70	
	3.2	Risk	71	
	3.3	The Optimal Portfolio	73	
	3.4	Applying the Theory	78	
4	Met	hodology	82	
	4.1	Overview	82	
	4.2	The HTML Interface	82	
	4.3	The Administration Tool	83	
	4.4	The Database	84	
	4.5	The Task Agent	87	
5	Imp	lementation	105	
	5.1	Overview	105	
	5.2	The HTML Interface	106	

Effi	icier	nt Market Hypothesis 7
Ę	5.3	The Administration Tool110
Ę	5.4	The Database115
Ę	5.5	The Task Agent118
6	E	xperimental Results129
6	6.1	Test Investor Identification129
6	6.2	Testing the Profiles134
6	6.3	Model Distribution138
6	6.4	Daily Operation139
7	С	onclusion140
8	A	ppendix A: Investor Profiles144
8	8.1	Conservative Investors146
8	8.2	High Risk Investors152
9	A	ppendix B: Portfolio History158
ę	9.1	Transactions by Conservative Investor158
ę	9.2	Transactions by High Risk Investor160
10		Appendix C: Screen Shots161
11		Appendix D: Conceptual Data Model167
12		Appendix E: Stocks Tracked in the Simulation168
13		Appendix F: Bibliography173
14		Appendix G: Curriculum Vitae for Thomas Schwerk.186

Table of Figures

Figure 2.2.1: Trend Lines and Trend Channel27
Figure 2.2.2: Resistance Line28
Figure 2.2.3: Momentum for n=729
Figure 2.2.4: Trend Confirmation Indicator31
Figure 2.2.5: Comparison of the 50 and 200 Day Moving Average
Figure 2.2.6: Trend Oscillator with a 10-Day Moving Average
Figure 2.2.7: The Over-Bought/Over-Sold Indicator with n=20
Figure 2.2.8: Artificial Neural Network46
Figure 2.2.9: Utans, Moody Experimental Training and Test Error
Figure 2.2.10: Utans, Moody Test Error with Removed Input Data54
Figure 2.2.11: Utans, Moody Experiment with Optimal Brain Damage55
Figure 2.2.12: Hierarchical Networks57
Figure 2.2.13: Training Error for Hierarchical Networks59
Figure 2.2.14: Test Error for Different Prediction Horizons60
Figure 2.2.15: The VSmart Virtual Stock Market65

Efficient Market Hypothesis 9		
Figure 3.2.1: The One-in-Six Rule71		
Figure 3.3.1: Risk of a Portfolio73		
Figure 3.3.2: The Efficient Frontier74		
Figure 3.3.3: The Utility Function75		
Figure 3.3.4: The Optimal Portfolio77		
Figure 4.1.1: Block Diagram NELION82		
Figure 4.4.1: Simplified Conceptual Data Model84		
Figure 4.5.1: Artificial Neural Network92		
Figure 5.2.1: Porffolio Overview via the HTML Interface107		
Figure 5.3.1: The NELION Administration Tool111		
Figure 5.5.1: The Task Agent Program119		
Figure 6.2.1: Comparison of NELION Investors with Major Indexes		