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Abstract

The prediction and experimental discovery of topological insulators brought the impor-
tance of topology in condensed matter physics into the limelight. Topology hence acts as
a new dimension along which more and more new states of matter start to emerge. One
of these topological states of matter, namely topological superconductors, comes into the
focus because of their gapless excitations. These gapless excitations, especially in one
dimensional topological superconductors, are Majorana zero modes localized at the ends
of the superconductor and exhibit exotic nonabelian statistics, which can be potentially
applied to fault-tolerant quantum computation. Given their highly interesting physical
properties and potential applications to quantum computation, both theorists and ex-
perimentalists spend great efforts to realize topological supercondoctors and to detect
Majoranas.

In two projects within this thesis, we investigate the properties of Majorana zero
modes in realistic materials which are absent in simple theoretical models. We find that
the superconducting proximity effect, an essential ingredient in all existing platforms
for topological superconductors, plays a significant role in determining the localization
property of the Majoranas. Strong proximity coupling between the normal system and
the superconducting substrate can lead to strongly localized Majoranas, which can explain
the observation in a recent experiment. Motivated by experiments in Molenkamp’s group,
we also look at realistic quantum spin Hall Josephson junctions, in which charge puddles
acting as magnetic impurities are coupled to the helical edge states. We find that with
this setup, the junction generically realizes an exotic 8π periodic Josephson effect, which
is absent in a pristine Josephson junction.

In another two projects, we propose more pronounced signatures of Majoranas that are
accessible with current experimental techniques. The first one is a transport measurement,
which uses superconducting rather than normal-metal leads to probe the Majoranas. We
predict a universal conductance as a signature, which is more robust at finite temperatures.
These predictions have already been partially checked by several experiments. The second
signature is based on Josephson junctions. Rather than directly measuring the current-
phase relation, which is able to distinguish a topological junction from a conventional one
only if fermion parity is conserved, we propose to detect topological Josephson junctions
via switching probability measurements. This provides robust signatures of topological
Josephson junctions without the requirement for a conserved fermion parity. Since this
type of measurement has already been realized for conventional Josephson junctions,
experiments on topological Josephson junctions are likely to be performed in the near
future.
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Zusammenfassung

Durch die Prognose und experimentelle Entdeckung topologischer Isolatoren ist die Rolle
der Topologie in der Festkörperphysik in den Vordergrund gerückt. So wirkt Topologie
wie eine neue Dimension, aus welcher fortwährend neue Materialzustände entspringen.
Ein solcher Zustand, welcher aufgrund seiner bandlückenlosen Anregungen auffällt, ist
der topologische Supraleiter. In eindimensionalen topologischen Supraleitern sind diese
Anregungen Majorana-Nullmoden, welche an den Enden des Supraleiters lokalisiert sind
und über eine nichtabelsche Vertauschungsstatistik verfügen. Diese Eigenschaften können
für fehlertolerantes Quantenrechnen verwendet werden. Aufgrund dieser hochgradig in-
teressanten Eigenschaften und deren Anwendung in Bezug auf Quantenrechner gibt es
große Bemühungen in der theoretischen Physik sowie Experimentalphysik, topologische
Supraleiter zu realisieren und Majoranas zu messen.

In zwei Projekten dieser Doktorarbeit untersuchen wir die Eigenschaften von Ma-
jorana-Nullmoden in realistischen Materialien, welche in vereinfachten theoretischen Mod-
ellen fehlen. Wir stellen fest, dass der Proximity-Effekt der Supraleitung, welcher für alle
existierenden topologischen Supraleiter von höchster Bedeutung ist, eine entscheidende
Rolle für die Lokalisierungseigenschaften von Majoranas spielt. Starke Proximity-Kopplung
zwischen dem normalleitenden System und dem supraleitenden Substrat kann zu einer
starken Lokalisierung von Majoranas führen, was eine Erklärung für kürzlich gemessene
Phänomene liefert. In Anlehung an Experimente, welche in Molenkamps Gruppe durchge-
führt wurden, untersuchen wir zudem realistische Quanten-Spin-Hall Josephson-Kontakte,
in welchen Ladungsansammlungen sich wie magentische Störstellen verhalten und an die
helikalen Randzustände koppeln. In solchen Konfigurationen finden wir einen exotischen
8π -periodischen Josephson-Effekt, welcher in einem störstellenfreien Josephson-Kontakt
nicht vorhanden ist.

In zwei anderen Projekten schlagen wir ausschlaggebendere Majorana-Signaturen
vor, welche mithilfe heutiger experimenteller Techniken messbar sind. Die erste Sig-
natur ist eine Transportmessung, welche supraleitende Kontakte anstelle normalleitender
Kontakte nutzt um Majoranas zu untersuchen. Wir prognostizieren einen universellen
elektrischen Leitwert, welcher robust ist bei endlichen Temperaturen. Diese Voraussagen
wurden bereits teilweise in Experimenten überprüft. Die zweite Signatur beruht auf
Josephson-Kontakten. Anstatt die Strom-Phasen-Beziehung direkt zu messen, durch
welche man einen topologischen von einem herkömmlichen Kontakt nur unter Voraus-
setzung von Fermionenparitätserhaltung unterscheiden kann, schlagen wir vor, topolo-
gische Josephson-Kontakte durch Messungen der Umschaltwahrscheinlichkeit zu detek-
tieren. Dies liefert robuste Signaturen für topologische Josephson-Kontakte ohne Fermio-
nenparitätserhaltung vorauszusetzen. Da solche Messungen bereits für herkömmliche
Josephson-Kontakte durchgeführt wurden, ist es wahrscheinlich, dass solche Experimente
in naher Zukunft auch für topologische Josephson-Kontakte realisiert werden.
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1 Introduction

It is known for a long time that free-fermion Hamiltonians, which are quadratic in
fermionic operators, have few interesting features in the sense that they are exactly
solvable. Particularly, electronic band theory is extremely successful in describing the
properties of this kind of system with translational invariance. When the band structure
is gapless at the chemical potential, the system is a metal. While if the system aquires a
band gap it is an insulator (or a BCS superconductor for Bogoliubov–de Gennes (BdG)
Hamiltonians).

For many decades, it seemed that the classification of crystals into metals and insula-
tors was complete. It was believed that all insulators have very low electric and thermal
conductivity, and are essentially the same type of material. This began to change after
the the discovery of the quantum Hall effect in 1980 [15].

The quantum Hall effect is realized in a two-dimensional electron gas subject to a
strong magnetic field perpendicular to the sample. The bulk is gapped and insulating
because of the formation of Landau levels. However, the system is different from a con-
ventional atomic insulator since the quantum Hall sample has a precisely quantized Hall
conductance of σxy = ne

2/h [16] with integer n. Although the bulk is insulating, the quan-
tum Hall insulator has gapless chiral edge modes which are perfectly conducting [17]. The
number of these edge modes exactly equals the quantized value n. It was shown by Thou-
less, Kohmoto, Nightingale and den Nijs [18] that the integer n is a topological quantity
known as a Chern number, answering the question why the quantization is so precise.

Soon after the discovery of the quantum Hall effect which requires a large magnetic
field, Haldane proposed a theoretical model [19] — the celebrated Haldane model —
which realizes quantum Hall physics in the absence of external magnetic fields. This
model describes a system of electrons hopping on a honeycomb lattice, with complex
nearest neighbor hopping amplitude. Because of this, the electrons on the two sublattices
feel opposite magnetic flux and the net flux per plaquet is zero. This intrinsic quantum
Hall effect is now termed quantum anomalous Hall effect [20] which is generally realized
in 2D systems known as Chern insulators. The Haldane model was the first model of
a Chern insulator. Although proposed almost 30 years ago, the Haldane model has no
experimental realizations in solid state systems up to now. It was only recently realized
experimentally with ultra cold atoms [21]. In solid state devices, the quantum anomalous
Hall effect is recently observed in Ref. [22].

Since Chern insulators have finite Hall conductance, they must break time-reversal
symmetry. We can build a corresponding time-reversal invariant system, called quan-
tum spin Hall insulator [23, 24, 25] by stacking two Chern insulators made of spin-up
and spin-down electrons with Hall conductances (Chern number) of opposite signs. By
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time-reversal symmetry, the quantum spin Hall insulator does not have a non-zero Hall
conductance. However, it differs from a conventional atomic insulator in that it has a
non-zero spin-Hall conductance. Moreover, it has helical edge modes, which consist of
two gapless chiral modes for spin up and down electrons propagating in opposite di-
rections. The existence of helical edge modes and non-zero spin Hall conductance in a
quantum spin Hall insulator is not described by a Z Chern number, but are related to
a Z2 topological invariant of the bulk [23]. A quantum spin Hall insulator was realized
experimentally in 2007 [26], even before the realization of the Chern insulator.

Besides Chern and quantum spin Hall insulators in 2D, there exist further free-fermion
systems in various dimensions which have insulating bulk yet differ from atomic insulators
by a topological invariant defined from their bulk electronic structure. These types of
systems are called topological insulators [27, 28] in general. Moreover, we can consider
superconducting pairing of BCS type, and view the BdG Hamiltonian [29, 30] as a free-
fermion Hamiltonian by introducing the Nambu-spinor representation [31]. Similar to
topological insulators, there are gapped superconducting systems which are different from
conventional BCS superconductors in terms of topological invariants. These are known
as topological superconductors [28].

Quite generally, the nontrivial topological invariants defined from the bulk band struc-
ture of topological insulators or superconductors faithfully reflect the existence of gapless
excitations located at the boundary of the systems. This is known as the bulk-boundary
correspondence [32, 33, 34]. In topological insulators these gapless boundary modes are
fermionic, while in topological superconductors, the gapless modes are known as Majorana
modes [35], as will be addressed in more detail later.

The existence of topological insulators and superconductors depends not only on
the dimension that the system lives in, but also on the symmetry class of the free-
fermion Hamiltonian. Here, symmetry refers to non-spatial symmetries of the Hamil-
tonian, namely time-reversal, paticle-hole and chiral symmetries. We require that the
Hamiltonian be irreducible in the sense that it cannot be further block-diagonalized ac-
cording to other symmetries [36]. With these requirements, there are in total ten sym-
metry classes [37]. One can associate topological invariants with each symmetry class
and dimension, and obtain a table that classifies all possible topological insulators and
superconductors, see Table 1.1 [38, 36, 34].

1.1 Symmetries

A second-quantized free-fermion Hamiltonians (including BdG Hamiltonian after intro-
ducing the Nambu representation) defined on a d-dimensional lattice can generally be
written as

H =
∑
I ,J

Ψ†I HI JΨJ (1.1)

where I , J label the lattice coordinates in each direction, i.e. I = (i1, . . . , id). ΨJ (Ψ†I )
is the fermionic annihilation (creation) operator at site J (I) of the lattice, which is in
general a column (row) vector with m components, denoted as ΨJ = (ΨT

J ,1, . . . ,Ψ
T
J ,m)T

(Ψ†I = (Ψ
†
I ,1, . . . ,Ψ

†
I ,m)). Thus, the first quantized Hamiltonian HI J is a m ×m matrix.

8



Class T̂ Ĉ Ŝ 0 1 2 3 4 5 6 7
A 0 0 0 Z 0 Z 0 Z 0 Z 0

AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

AI + 0 0 Z 0 0 0 2Z 0 Z2 Z2

BDI + + 1 Z2 Z 0 0 0 2Z 0 Z2

D 0 + 0 Z2 Z2 Z 0 0 0 2Z 0
DIII - + 1 0 Z2 Z2 Z 0 0 0 2Z
AII - 0 0 2Z 0 Z2 Z2 Z 0 0 0
CII - - 1 0 2Z 0 Z2 Z2 Z 0 0
C 0 - 0 0 0 2Z 0 Z2 Z2 Z 0
CI + - 1 0 0 0 2Z 0 Z2 Z2 Z

Table 1.1: Periodic table of topological insulators and superconductors in d = 0, . . . , 7
dimensions. The first column denotes the ten symmetry classes of fermionic Hamiltonians,
characterized by the absence or presence of time-reversal (T̂ ), particle-hole (Ĉ), and chiral

symmetries (Ŝ) of different types denoted by 0, ± or 1. Classes which support only trivial
phases are denoted by “0”, while classes with nontrivial topological classifications are
indicated by the type of their topological invariant (Z, 2Z,Z2).

In the following, we first introduce the non-spatial symmetries that define the ten
symmetry classes.

1.1.1 Time-Reversal Symmetry

Time-reversal symmetry requires the existence of an antiunitary operator T̂ = UT K̂ such
that

[T̂ ,HI J ] = 0, ∀I , J , (1.2)

where the square brackets denote the commutator, UT is an m ×m unitary matrix and K̂
is the complex conjugation operator such that K̂i = −iK̂. If we apply time-reversal twice,
we obtain

[UTU∗T ,HI J ] = 0, ∀I , J , (1.3)

and we have thatUTU∗T = exp(iα)Im is a multiple of the identity matrix by Schur’s lemma.
Moreover, because of the unitarity of UT , we find exp(iα) = ±1 which leads to two types
of time-reversal symmetry

UTU∗T = ±Im . (1.4)

or T̂ 2 = ±1.

1.1.2 Particle-Hole Symmetry

Particle-hole symmetry requires the existence of an antiunitary operator Ĉ = UCK̂ such
that

{Ĉ,HI J } = 0, ∀I , J , (1.5)

where the braces denote the anticommutator and UC is a m ×m unitary matrix. As for
time-reversal symmetry, we find that there are two types of particle-hole symmetries given
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by

UCU∗C = ±Im . (1.6)

or Ĉ2 = ±1.

1.1.3 Chiral Symmetry

Chiral symmetry requires the existence of a unitary operator Ŝ = US represented by an
m ×m unitary matrix US , such that

{Ŝ,HI J } = 0, ∀I , J . (1.7)

Applying chiral symmetry twice we find thatU2
S = exp(iα)IM . RedefiningUS →US exp(−iα/2),

we have

U2
S = Im, (1.8)

namely US = U†S . Note that Hamiltonians which are both time-reversal and particle-hole
symmetric, automatically obey chiral symmetry with US = UTU∗C . If either time-reversal
or particle-hole symmetry is absent, chiral symmetry is absent. However, chiral symmetry
can exist when both time-reversal and particle-hole symmetry are absent.

The absence or presence of time-reversal (T̂ ), particle-hole (Ĉ) and chiral symmetries

(Ŝ) of different types according to Eq. (1.4), (1.6) and (1.8), lead to the ten symmetry
classes which are summarized in the first two columns of Table 1.1.

1.2 Periodic Table

In a given spatial dimension and symmetry class, topological insulators and superconduc-
tors are characterized by a topological invariant which takes values in Z, Z2, or 2Z. As
one varies parameters of the Hamiltonian, the topological invariant remains constant as
long as the bulk gap does not close and the symmetry of the system does not change. Since
both symmetry and topology play a significant role in characterizing phases, topological
insulators and superconductors are generally known as symmetry-protected topological
phases [39].

One key property of Table 1.1 is that the topological invariants exhibit a periodicity
of 2 or 8 as a function of spatial dimension [38, 36, 34], which is closely related to Bott
periodicity in K-theory in mathematics [40, 41]. We follow the approach described in
Ref. [34] to briefly sketch the derivation of this periodic table by making use of homotopy
groups of classifying spaces of symmetry allowed Dirac mass terms and Clifford algebras.

Since topological invariants only change if the system crosses a topological phase
transition, i.e., when the bulk gap vanishes and reopens, the topological nature of the
system is fully contained in the low-energy effective Hamiltonian near the topological
phase transition. The latter is a Dirac Hamiltonian in d dimensions vanishing at k0 in
momentum space right at the transition plus a small mass term mΓ0,

H(k) = k · Γ +mΓ0, (1.9)
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where k = (k1, . . . ,kd) is the momentum measured from k0, and Γ = (Γ1, . . . , Γd) together
with Γ0 are Dirac matrices, which satisfy the Clifford algebra

{
Γµ , Γν

}
= 2δµ,ν with µ,ν =

0, . . . ,d. Because Γ0 anticommutes with all Dirac matrices contained in the kinetic energy,
it gives rise to an energy gap.

If some of the symmetries defined in the previous section are present, Γ0 must trans-
form in the same way as defined in Eq. (1.2), (1.5) and (1.7). The different topological
phases correspond to different types of masses. Let us make this statement more precise
by considering Hamiltonians in class A as an example. Since no other symmetry exists
in class A, the massless Dirac Hamiltonian has a complex Clifford algebra Cld consisting
of d generators, which all come from the Dirac matrices appearing in the kinetic part of
the Hamiltonian. Here “complex” means that the generators are represented by complex
matrices. When a mass term is introduced, the Clifford algebra is extended by one more
generator to Cld+1, since the mass term anticommutes with the kinetic part. Topologically
different phases correspond to different extensions of the Clifford algebra Cld → Cld+1. Let
us define the classifying space, denoted by Cd , as the set of all allowed Γ0. The types of
extentions are given by the path-connected components of this classifying space, referred
to as the zeroth homotopy group π0(Cd).

In one dimension, a low-energy Hamiltonian in class A can be written as

H(k) = kxσ3 ⊗ IN +M, (1.10)

where the mass term fulfills {σ3⊗ IN ,M} = 0. Note that in order to discuss general phases,
we are allowed to enlarge the matrix dimension of the Hamiltonian by a tensor product
with the N × N identity matrix IN for large enough N . The general solution for M is

M =

(
0 U †

U 0

)
, U ∈ U (N ). (1.11)

In this case, the extension problem is Cl1 → Cl2 with classifying space

C1 = lim
N→∞

U (N ). (1.12)

Since the unitary group is path-connected and π0(U (N )) = 0 for fixed N , we have π0(C1) =
0. This implies that all masses can be continuously deformed into each other [34].

In two dimension, the low-energy Hamiltonian in class A can be written as

H(k) = kxσ1 ⊗ IN + kyσ2 ⊗ IN +M . (1.13)

As for the case in one dimension, the mass M needs to anticommute with the kinetic terms.
Thus, M should have the form M = σ3 ⊗A where A is a N × N hermitian matrix. Since A
can be diagonalized via a unitary transformation, the Hamiltonian can be regarded as N
decoupled copies of Dirac insulators with the different masses given by the eigenvalues.
The magnitude of the masses does not matter for the classification, so that the matrix A
can be written as

A = U diag (In,−IN−n)U †, U ∈ U (N ). (1.14)

Then, with n positive and N −n negative eigenvalues we find that A ∈ U (N )/[U (n)×U (N −
n)] for fixed n. To derive the classifying space, we need to include all possible values of n.
Hence, we find that the extension problem C2 → C3 has the classifying space

C2 = lim
N→∞

N⋃
n=0

U (N )
U (n) ×U (N − n) = BU × Z, (1.15)
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Classifying space Extension π0(·) Symmetry classes
C0 BU × Z Cl0 → Cl1 Z A
C1 U (N ) Cl1 → Cl2 0 AIII

R0 BO × Z Clp,p → Clp,p+1 Z AI
R1 O(N ) Clp,p+1 → Clp,p+2 Z2 BDI
R2 O(2N )/U (N ) Clp,p+2 → Clp,p+3 Z2 D
R3 U (N )/Sp(N ) Clp,p+3 → Clp,p+4 0 DIII
R4 BSp × Z Clp,p+4 → Clp,p+5 Z AII
R5 Sp(N ) Clp,p+5 → Clp,p+6 0 CII
R6 Sp(N )/U (N ) Clp,p+6 → Clp,p+7 0 C
R7 U (N )/O(N ) Clp,p+7 → Clp,p+8 0 CI

Table 1.2: Classifying space for complex and real symmetry classes in 0 dimension [34].

where BU is the classifying space for the unitary group. Since π0(C2) = Z, we have that
the gapped phases in class A in two dimensions are classfied by Z, as shown in Table 1.1.

In fact, we can continue our analysis to arbitrary dimensions for class A Hamiltonians,
by considering the extension Cld → Cld+1 with classifying space Cd . Because of Cln+2 '
Cln ⊗ C(2), where C(2) is the algebra of 2 × 2 complex matrices which does not affect the
extension problem, the classifying spaces appear with a period of two,

Cn+2 ' Cn, (1.16)

which is known as complex Bott periodicity. The name originates from the fact that class
A together with class AIII are complex symmetry classes without antiunitary symmetry.

Now let us perform the analysis of the Hamiltonians in class AIII. Because of chiral
symmetry, there exists a unitary matrix Us with {H ,Us} = 0. We can think of Us

as another Clifford generator in addition to the gamma matrices in the kinetic term.
Hence, for d-dimensional Hamiltonians in class AIII, we need to consider the extension
problem Cld+1 → Cld+2, with classifying space Cd+1 ' Cd−1. We have that the topological
classification in class AIII is the same as that in class A, up to a shift by one dimension,
as can be seen in Table 1.1.

Apart from classes A and AIII, the remaining eight classes are real symmetry classes,
where there exists at least one antiunitary symmetry. In this case, we need to consider
the extension of real Clifford algebras Clp,q → Clp,q+1 instead of complex ones, and denote
the classifying space as Rq−p. Deriving expressions for Rq−p is beyond the scope of this
thesis. We only list the classifying spaces for real as well as complex symmetry classes in
zero dimension in Table 1.2. Using the property Clp+8,q ' Clp,q+8 ' Clp,q ⊗ R(16) of real
Clifford algebras, where R(16) denotes the algebra of 16 × 16 real matrices, we have the
real Bott periodicity

Rq+8 ' Rq . (1.17)
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1.3 Topological Superconductors and Majorana Modes

After this brief introduction to noninteracting symmetry-protected topological phases,
we now turn our attention to a specific class of systems, known as topological supercon-
ductors. Topological superconductors host gapless excitations at the edge, protected by
the nontrival topology of their bulk band structures. Specifically in one dimension, the
excitations located at the ends of the wire have zero energy and are quite remarkable as
they turn out to be Majorana zero modes or in short Majoranas. These Majoranas are
neither fermions nor bosons but obey nonabelian quantum statistics when braided around
one another [42, 43]. This nonabelian statistics is not only interesting physically, but may
also be useful for quantum computation. Due to their zero-energy nature, Majoranas give
rise to degenerate ground states, which can be used as qubits and to store quantum infor-
mation in a nonlocal fashion. For a system of Majorana qubits, gate operations can then
be effected via braiding. Hence, decoherence by local perturbations is highly suppressed.
This leads to the amazing concept of topological quantum computation [44, 45].

In the following, we first explain why Majoranas appear naturally as excitations in
superconductors.

1.3.1 Majorana Bound States

At the mean field level (BCS theory), superconductors can be described by a second-
quantized BCS Hamiltonian. When doubling the degrees of freedom, the Hamiltonian
defined in d dimensions can be written as

H =

∫
ddxΨ†HΨ. (1.18)

Here Ψ is a Nambu spinor composed of field operators with the x dependence left implicit,
and H is the first-quantized Bogoliubov–de Gennes (BdG) Hamiltonian. Because of
the doubling of degrees of freedom, the Nambu spinor is constrained by an antiunitary
operator Ĉ with Ψ = ĈΨ. Due to this constraint, the BdG Hamiltonian acquires a
particle-hole symmetry {Ĉ,H} = 0 [11].

Let Φn(x) be a vector-valued wave function, which is an eigenstate of H with energy
En,

HΦn(x) = EnΦ(x). (1.19)

Then Φ−n(x) = ĈΦn(x) is another eigenstate of H with energy E−n = −En. Hence, all
finite-energy eigenvalues of H appear in pairs of ±En. However, an isolated zero-energy
state Φ0(x) can exist if the state transforms into itself under particle-hole symmetry, i.e.,
Φ0(x) = ĈΦ0(x). This state is known as a Majorana zero mode, where the name originates
from Majorana fermions in high energy physics which are their own antiparticle. Since for
a superconductor, the bulk is gapped by superconducting pairing, Majoranas only appear
at the boundary of the system, and their wave function decays into the bulk.

In the language of second quantization, the BCS Hamiltonian can be diagonalized as

H =
∑
n

Enγ
†
nγn (1.20)
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by introducing Bogoliubov quasiparticle operator

γn =

∫
ddxΦ†n(x)Ψ(x) (1.21)

associated with the eigenstates Φn(x) of energy En. By particle-hole symmetry, we have
the relation

γ †−n =

∫
ddxΨ†(x)Φ−n(x) =

∫
ddx

[
ĈΨ(x)

]† [
ĈΦn(x)

]
=

∫
ddxΨ†(x)Φn(x) = γn . (1.22)

For an isolated state with E0 = 0, we conclude that the Bogoliubov operator fulfills γ0 = γ
†
0 ,

i.e., that it is a Majorana operator and indeed its own antiparticle.

We will now provide a few simple models which host Majoranas.

1.3.2 Kitaev Chain

The simplest system hosting Majorana bound states is the Kitaev chain [43], a lattice
realization of a spinless p-wave superconductor in one dimension. Consider a chain of N
sites with the Hamiltonian

H = −t
N−1∑
j=1

(
c†j+1cj + c

†
j cj+1

)
+ ∆

N−1∑
j=1

(
cj+1cj + c

†
j c
†
j+1

)
− µ

N∑
j=1

c†j cj , (1.23)

where cj (c†j ) is the electron annihilation (creation) operator of site j, t is the hopping

amplitude from site to site, ∆ is the pairing potential between neighboring sites (p-wave
type) which is taken to be real for simplicity, and µ is the chemical potential.

First consider the situation when ∆ = t and µ = 0. Let us write the fermionic operators
cj as

cj =
1

2

(
γAj + iγBj

)
, (1.24)

in terms of two hermitian Majorana operators γAj and γBj . The Hamiltonian can then be
rewritten as

H = −it
N−1∑
j=1

γAjγB,j+1. (1.25)

Introducing new fermionic operators through

dj =
1

2

(
γAj − iγB,j+1

)
(1.26)

with j = 1, . . . ,N − 1, the original Hamiltonian becomes diagonal,

H = 2t
N−1∑
j=1

(
d†j dj −

1

2

)
. (1.27)

We see that the dj correspond to the Bogoliubov quasiparticles. There is still one fermionic
operator missing. We can define it by using the two remaining Majorana operators local-
ized at the two ends of the chain,

d0 =
1

2
(γAN − iγB1) . (1.28)
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This fermionic operator does not appear in the Hamiltonian and thus corresponds to
zero-energy states, implying a twofold degeneracy of the many-body spectrum. If |n〉 is
an arbitrary many-body eigenstate of the system of fixed fermion number parity, then
either d†0 |n〉 or d0 |n〉 will vanish and the other state constitutes a second eigenstate of
the system with the same energy. In particular, the ground state is degenerate which is
essential for performing quantum computation.

Up to now, we only showed for specific points in parameter space (t = ∆ and µ = 0)
that we have a topological superconductor with Majorana zero modes. To obtain the
full phase diagram, we compute the bulk properties of the model with periodic boundary
conditions, c1 = cN+1. Expanding cj as

cj =
1
√
N

N∑
j=1

eikjak , (1.29)

H can be written as

H =
∑
k

ξka
†
k
ak + ∆

∑
k

[
eikaka−k + e

−ika†−ka
†
k

]
(1.30)

with ξk = −2t cosk − µ. If we introduce the Nambu spinor Ψ†
k
= (a†

k
,a−k), the Hamiltonian

can be written as (up to an additional constant)

H =
∑
k>0

Ψ†
k
hkΨk , (1.31)

with
hk = ξkτz − 2∆ sinkτy, (1.32)

where τx ,y,z are Pauli matrices in Nambu space. The summation is restricted to positive k
to avoid double counting when introducing the Nambu spinor. We thus obtain the bulk
dispersion

Ek = ±
√
ξ 2
k
+ 4∆2 sin2 k . (1.33)

From the dipersion, we see that the bulk gap vanishes only at k = 0 with µ = −2t or k = π
with µ = 2t . Hence, the phase boundary is given by µ = ±2t . When ∆ = 0, the system is
gapped for |µ | > 2 |t |, which corresponds to the trivial phase. This trivial phase extends to
arbitrary ∆. The topological phase containing the special points discussed above extends
for |µ | < 2 |t |.

The Kitaev chain falls into symmetry class BDI, since there exists a unitary operator
τx which commutes with the Hamiltonian in Eq. (1.32). This chiral symmetry allows us
to rewrite the Hamiltonian in a basis in which it becomes block off-diagonalized

hk = ξkτx − 2∆ sinkτy =

(
0 ξk + 2i∆ sink

ξk − 2i∆ sink 0

)
. (1.34)

In 1D, the topological invariant for class BDI is given by an integer winding number
w ∈ Z, which can be computed as

w =

∫ 2π

0
dk

d

dk
ln(−2t cosk − µ + 2i∆ sink). (1.35)
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Figure 1.1: Phase diagram of the Kitaev chain as function of p-wave pairing strength ∆
and chemical potential µ (assuming positive hopping amplitude t). There are topological
superconducting phases when the chemical potential is within the band of the normal-
state Hamiltonian, while the system is topologically trivial when the chemical potential
is outside the band.

We observe that for |µ | > 2t , the phase of (−2t cosk − µ + 2i∆ sink) does not wind, and
we have a trivial phase with w = 0. For |µ | < 2t , the phase winds once, with opposite
winding numbers for ∆ > 0 and ∆ < 0, corresponding to two topological phases. The
boundary between these two phases is located at ∆ = 0. The phase diagram of the Kitaev
chain is shown in Figure 1.1.

It is worth mentioning that for a homogeneous system, the Hamiltonians with ±∆ are
related to each other via a unitary transformation. Nevertheless, a domain wall between
∆ and −∆ segments is associated with a gap closing. In this sense, systems with ±∆
correspond to distinct phases.

1.3.3 Spinless p-wave Superconductor in 1D

A continum model of a spinless p-wave superconductor in 1D, is given by the BdG Hamil-
tonian [11, 46]

H =
∑
p>0

Ψ†pHpΨp

Hp = ξpτz + ∆pτx , ξp =
p2

2m
− µ, ∆ ∈ R, (1.36)

where p,m, µ, and ∆ are the momentum, mass, chemical potential, and pairing potential
of the electrons, and Ψ†p is the Nambu spinor. As in the analysis of the Kitaev chain, we
have topological phases when µ > 0, and a trivial phase when µ < 0 [11]. This model
also belongs to class BDI, because {τy,Hp} = 0 . Nevertheless, generically this chiral
symmetry would be absent. For example, when the pairing potential becomes complex
(and spatially dependent), ∆ = |∆| e−iθ , the Hamiltonian falls into class D. The topological
invariant reduces from integer winding numbers to a Z2 index.
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1.3.4 Spinless p + ip Superconductors in 2D

If we extend the previous one-dimensional model to two dimensions, we obtain a spinless
p + ip superconductor in symmetry class D, with Hamiltonian

H =

∫
d2rΨ†(r)H(r)Ψ(r)

H(r) =
(

p̂2

2m − µ(r)
1
2 {∆(r ), ∂x + i∂y}

−1
2 {∆∗(r ), ∂x − i∂y} µ(r) − p̂2

2m

)
, (1.37)

where Ψ(r)† = (ψ (r)†,ψ (r)) is the Nambu spinor consisting of electron operators. Similar
to the previous 1D case, we have a topological phase for µ > 0 and a trivial phase for
µ < 0.

Let us first consider such a system on an infinite plane with constant pairing potential
∆(r) = ∆ ∈ R and chemical potential µ(r) = µ(x). Consider a domain wall in µ(x), with
µ < 0 for x < 0 and µ > 0 for x > 0, parallel to the y-direction. Since the momentum
along the y-direction is a good quantum number, in the limit m → ∞ we can write the
Hamiltonian parametrized by x and py as

H(x ,py) =
(
−µ(x) ∆(∂x − py)

−∆(∂x + py) µ(x)

)
. (1.38)

We see that at each py, the Hamiltonian is a 1D Dirac Hamiltonian with a domain wall
at x = 0. From the work of Jackiw and Rebbi [47], we know that there will be a bound
state localized at the domain wall in such 1D models.

In our situation, we actually have a gapless mode localized at the domain wall prop-
agating along the y-direction, whose dispersion and wave function are

E(py) = −∆py, (1.39)

and

Φpy (x ,y) = eipyy exp

(
− 1

∆

∫ x

µ(x′)dx′
)
|ϕ0〉 (1.40)

with ϕ0 = (1, 1)T /
√

2. The existence of the gapless mode, known as a chiral Majorana
mode, located at the boundary is a general property of a topological superconductor in
two dimensions.

Now we change to a different geometry: Consider a disk of radius R, which has µ < 0
surrounded by a region with µ > 0 for r > R. Moreover, consider a vortex with vanishing
∆ at r = 0 whose size is assumed to be very small. Outside the vortex, ∆ is taken to be
constant. We expect a zero mode localized at the domain wall r = R, which is shown in
the following.

In polar coordinates,

∂x + i∂y = eiθ (∂r +
i

r
∂θ ), (1.41)

so that the BdG Hamiltonian in the large-mass limit becomes

H(r ) =
(

−µ ∆eiθ (∂r + i
r ∂θ )

−∆e−iθ (∂r − i
r ∂θ ) µ

)
. (1.42)
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Solving for H(r ,θ )Φ(r ,θ ) = 0, we find a zero-energy Majorana wave function

Φ(r ,θ ) = i

N
√
r

exp

(
−

∫ r

dr ′
µ(r ′)
∆

) (
−eiθ/2
e−iθ/2,

)
= i f (r )

(
−eiθ/2
e−iθ/2

)
, (1.43)

where N ∈ R is a normalization factor. This state indeed corresponds to a Majorana
since its operator

γ (r) =
∫

rdri f (r )
[
−eiθ/2ψ (r) + e−iθ/2ψ (r)†

]
, (1.44)

fulfills γ = γ †. Note that the Bogoliubov quasiparticle operators obey anti-periodic bound-
ary conditions,

γ (r ,θ + 2π ) = −γ (r ,θ ), (1.45)

corresponding to π -flux insertion at the vortex.

1.4 Braiding Majoranas

Majorana operators differ from normal (Dirac) fermionic operators due to their hermitian
constraint. In fact, two Majoranas γ1,γ2 can represent a Dirac fermion f via

f =
γ1 + iγ2

2
. (1.46)

If the two zero-energy Majoranas are infinitely far apart, the system has two degenerate
states given by |0〉 with f |0〉 = 0 and f † |0〉. When they come close to each other, their
interaction is proportional to iγ1γ2 = 2f † f − 1, which splits the degeneracy. The system
can go into either of the two states which differ by fermion number parity. Hence, to
characterize a quantum state of two Majoranas, another quantum number – the fusion
channel of the two Majoranas – needs to be introduced. In the following, we will first
derive the anyonic properties of Majoranas in the framework of category theory, based
on simple fusion rules, without referring to explicit Majorana operators or Hamiltonians.
At the end of this section (in Sec. 1.4.4), in order to gain some physical intuition, we
will further show that the Majorana operators indeed realize all properties derived from
category theory.

1.4.1 Fusion Rules

To investigate the properties of Majoranas, we introduce the language of topological
quantum field theory, in particular category theory [45, 46]. Within this framework, the
possibility of having two fusion channels for two Majoranas can be reformulated as

σ × σ = 1 +ψ , (1.47)

where σ denotes the Majorana, 1 denotes the vacuum without fermions, and ψ denotes
the state with one extra fermion. Here the × and + have the meaning of direct product
and direct sum of Hilbert spaces, as used when adding angular momenta. For example,
from

1

2
× 1

2
= 0 + 1, (1.48)
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we know that two spin-1/2 particles can form singlet (0) and triplet (1) subspaces. More-
over, it is worthwhile to mention that it is the nonuniqueness of the fusion product that
produces the non-abelian anyonic nature of the Majoranas. In addition to Eq. (1.47), we
have

1 × σ = σ , 1 ×ψ = ψ , σ ×ψ = σ , ψ ×ψ = 1. (1.49)

These fusion rules define a fusion category.

A general fusion rule can be written in the following form

a × b = b × a =
∑
c

N c
abc, (1.50)

where the N c
ab
∈ Z+ (positive integers) can be regarded as the dimension of the Hilbert

space V c
ab

with particles a, b, and c at the punctures of a 3-punctured sphere. Note that
if one of the particles is the trivial particle 1, then that puncture can be removed.

As mentioned previously, fusion or × can be understood as a direct-product operation,
which should be symmetric with respect to the two inputs. Since the order of fusion does
not matter in defining fusion rules, we can fuse multiple particles by sequentially fusing two
particles in any order. From another point of view, this corresponds to the fact that any
n-punctured sphere is homeomorphic to surfaces constructed from glueing 3-punctured
spheres at the punctures.

Now let us consider fusing n Majoranas. We have the Hilbert space V 1
σ ...σ of an n-

punctured sphere with one Majorana at each puncture. This Hilbert space is constructed
as

V 1
σ ...σ =

⊕
ci

V c1
σσV

c2
σc1 . . .V

σ
σcn−3, (1.51)

where we have used the fact that the last fusion must produce σ in order to fuse with σ
to produce 1.

The ground-state degeneracy, which is the dimension of this Hilbert space is given by

dim
(
V 1
σ ...σ

)
=

∑
ci

N c1
σσN

c2
σc1 . . .N

σ
σcn−3 =

∑
ci

(Nσ )σc1 (Nσ )c1c2 . . . (Nσ )cn−3σ . (1.52)

In the second equality, we regard N
c j
σci as a matrix element (Nσ )cic j of a matrix Nσ . Denote

the largest eigenvalue of Nσ as dσ . For large n, we have the dimension dim
(
V 1
σ ...σ

)
∼ dn−2

σ .
We call dσ the quantum dimension of the Majorana, which is the asymptotic degeneracy
per particle of a collection of Majoranas.

In the basis (1,σ ,ψ ), we have

Nσ =
©­«

0 1 0
1 0 1
0 1 0

ª®¬ (1.53)

and the quantum dimension dσ =
√

2. Hence, for a system of 2M Majoranas with M large,
the ground state degeneracy of the system is 2M−1.

In general, the quantum dimension of different particles fulfills

dadb =
∑
c

N c
abdc , (1.54)
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which is consistent with the fusion rule in Eq. (1.50). It is also convenient to introduce
the total quantum dimension

D =
∑
c

√
d2
c , (1.55)

where c runs over all particle types of a given model. For systems of Majoranas, we have
D = 2.

1.4.2 Exchange properties

To explore the exchange properties of anyons, we introduce the phase factor Rabc to char-
acterize the effect of exchanging a and b in the fusion process. Diagrammatically, Rabc can
be defined via

c

ba

= Rabc

c

ba

, (1.56)

where the exchange of a and b is realized in a clockwise manner.

To write down an equation obeyed by Rc
ab

, we first need to use that fusion of n particles

can be implemented sequentially by fusing pairs in any order. Define
(
Fabc
d

)i
j

as the factor

between fusing three particles in different orders via

d

ca b

i =
∑
j

(
Fabcd

)i
j

d

a cb

j . (1.57)

The quantities (Fabc
d
)ij fulfill a consistency relation known as the pentagon identity(

Fa34
5

)b
c

(
F 12c

5

)a
d
=

∑
e

(
F 123
b

)a
e

(
F 1e4

5

)b
d

(
F 234
d

)e
c
. (1.58)

Diagrammatically, this identity comes from the equivalence between fusing along the
upper and the lower paths of the pentagon

5

41 2 3

b
a 5

41 2 3

a c

5

1 432

d
c

5

41 2 3

b
e

5

1 432

d
e

(Fa345 )
b
c

33 (F12c5 )
a
d

++

(F123b )
a
e

''
(F1e45 )

b
d //

(F234d )
e
c

77
. (1.59)
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By the same spirit, we require the operation implemented along the upper and lower
paths of the following hexagon to be the same,

4

2 13

a

4

2 13

a

4

2 13

c

4

2 13

c

4

2 13

b

4

2 13

b

R21a
55

(F2314 )ac //

R31c
))

(F1234 )ab
)) Rb14 //

(F2314 )bc 55
. (1.60)

This gives rise to the hexagon identity

R21
a

(
F 231

4

)a
c
R31
c =

∑
b

(
F 123

4

)a
b
Rb1

4

(
F 231

4

)b
c

(1.61)

satisfied by Rabc .

1.4.3 F and R for Majoranas

With the above general definitions, we can now compute F and R for a system of Majo-
ranas. From the fusion rules and Eq. (1.53) we know that

N 1
σσ = N

ψ
σσ = N σ

σ1 = N σ
σψ = 1. (1.62)

Moreover, we have that F 123
4 is a one dimensional matrix except when 1, 2, 3, 4 are all σ .

In that case, we have i, j = 1,ψ , and Fσσσσ is a 2 × 2 matrix. All one dimensional matrices
can take arbitrary complex phases, corresponding to gauge degrees of freedom. We fix
these phases to be 1.

To solve the pentagon identity, we first set 1, 2, 3, 4 to be σ and 5 to be 1 in Eq. (1.58)
and the corresponding diagram. Then b = d = σ , and a, c can be 1 or ψ . For a = c = 1,
the pentagon identity becomes(

F 1σσ
1

)σ
1

(
Fσσ1

1

)1

σ
=

∑
e=1,ψ

(
Fσσσσ

)1
e

(
Fσeσ1

)σ
σ

(
Fσσσσ

)e
1 . (1.63)

Setting (Fσσ1
1 )1σ = (F 1σσ

1 )σ1 = (F
σ1σ )σσ = (Fσψσ )σσ = 1, we have

1 =
[
(Fσσσσ )11

]2
+ (Fσσσσ )1ψ (F

σσσ
σ )ψ1 . (1.64)

Now consider a = 1, c = ψ . We have(
F 1σσ

1

)σ
ψ

(
F
σσψ
1

)1

σ
=

∑
e

(
Fσσσσ

)1
e

(
Fσeσ1

)σ
σ

(
Fσσσσ

)e
ψ . (1.65)
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The left hand side of the obove equation is zero because
(
F
σσψ
1

)1

σ
= 0. We thus have(

Fσσσσ

)1
1 = −

(
Fσσσσ

)ψ
ψ
. (1.66)

Finally, when a = c = ψ we have

1 =
[
(Fσσσσ )ψ

ψ

]2
+ (Fσσσσ )ψ1 (F

σσσ
σ )1ψ . (1.67)

Now we take 1 to be ψ while 2, 3, 4 and 5 to be σ . We require a = d = σ , and b, c take
values 1,ψ . For b = c = 1, the pentagon identity becomes(

Fσσσσ

)1
1

(
F
ψσ1
σ

)σ
σ
=

∑
e=1,ψ

(
F
ψσσ
1

)σ
e

(
F
ψeσ
σ

)1

σ

(
Fσσσσ

)e
1 =

(
F
ψσσ
1

)σ
ψ

(
F
ψψσ
σ

)1

σ

(
Fσσσσ

)ψ
1 (1.68)

where in the second equality we used
(
F
ψσσ
1

)σ
1
= 0. Fixing the gauge, we have(

Fσσσσ

)1
1 =

(
Fσσσσ

)ψ
1 . (1.69)

For b = 1 and c = ψ , we have(
Fσσσσ

)1
ψ

(
F
ψσψ
σ

)σ
σ
=

∑
e

(
F
ψσσ
1

)σ
e

(
F
ψeσ
σ

)1

σ

(
Fσσσσ

)e
ψ =

(
F
ψσσ
1

)σ
ψ

(
F
ψψσ
σ

)1

σ

(
Fσσσσ

)ψ
ψ
. (1.70)

We need to choose
(
F
ψσψ
σ

)σ
σ
= −1 such that the matrix Fσσσσ is unitary. We thus get(

Fσσσσ

)1
ψ = −

(
Fσσσσ

)ψ
ψ
. (1.71)

With all relations derived, we obtain

Fσσσσ = ± 1
√

2

(
1 1
1 −1

)
(1.72)

in the basis (1,ψ ). The choice of ± is called Frobenius-Schur indicator χσ , which is ±1 for
particles which are their own antiparticles. The Frobenius-Schur indicator for systems of
Majoranas is +1 [48].

After solving the pentagon equation, we now turn to the hexagon equation to deter-
mine R. We take 1, 2, 3, 4 to be all σ , and a, c have to take values 1,ψ . First consider
a = c = 1. Eq. (1.61) becomes

Rσσ1

(
Fσσσσ

)1
1 R

σσ
1 =

∑
b=1,ψ

(
Fσσσσ

)1
b R

bσ
σ

(
Fσσσσ

)b
1 , (1.73)

which reduces to (
Rσσ1

)2
=

1
√

2

(
R1σ
σ + R

ψσ
σ

)
. (1.74)

22



For a = 1, c = ψ we get

Rσσ1

(
Fσσσσ

)1
ψ R

σσ
ψ =

∑
b=1,ψ

(
Fσσσσ

)1
b R

bσ
σ

(
Fσσσσ

)b
ψ , (1.75)

which reduces to

Rσσ1 Rσσψ =
1
√

2

(
R1σ
σ − R

ψσ
σ

)
. (1.76)

This can also be obtained from taking a = ψ , c = 1.

Finally, for a = c = ψ , we have

Rσσψ
(
Fσσσσ

)ψ
ψ
Rσσψ =

∑
b=1,ψ

(
Fσσσσ

)ψ
b
Rbσσ

(
Fσσσσ

)b
ψ , (1.77)

which reduces to (
Rσσψ

)2
= − 1
√

2

(
R1σ
σ + R

ψσ
σ

)
. (1.78)

From Eq. (1.74) and (1.78), we have

Rσσ1 = ±iR
σσ
ψ . (1.79)

The ± corresponds to a gauge degree of freedom, and we will choose the lower sign in the
following. Using Eq. (1.76), and R1σ

σ = 1, we have

Rσσψ = exp

(
i
3π

8

)
, Rσσ1 = exp

(
−i π

8

)
, R

ψσ
σ = R

σψ
σ = −i . (1.80)

With F and R for Majoranas, we can finally look at the effect of braiding Majoranas.
Consider a system of four Majoranas, which form a two-dimensional Hilbert space (a
qubit). For simplicity, we initialize our system in a state |σ ,σ → 1〉 ⊗ |σ ,σ → 1〉 (for fixed
fermion number parity), or diagrammatically as

σσ σ σ

11 1
= σ σ

σ σ

1
(1.81)

Let us braid the middle two Majoranas around one another. We have

σ σ

σσ

1
=

∑
c=1,ψ

(
Fσσσσ

)1
c

σ σ

σσ

c

=
∑
c=1,ψ

(
Fσσσσ

)1
c

(
Rσσc

)2

σ σc

σ σ

=
∑
d=1,ψ

B1dσ σ
σ σ

d
, (1.82)
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where we introduced the braiding matrix

Bij =
∑
k=1,ψ

(
Fσσσσ

)i
k

(
Rσσk

)2
[ (
Fσσσσ

)−1
]k
j
, i, j = 1,ψ , (1.83)

or in matrix form
B = Fσσσσ (Rσσ )2

(
Fσσσσ

)−1
, (1.84)

with the matrix

Rσσ = diag
(
Rσσ1 ,R

σσ
ψ

)
= e−iπ/8

(
1 0
0 i

)
. (1.85)

and Fσσσσ derived in Eq. (1.72) (with + sign). From straightforward calculation, we find

B = e−iπ/4
(

0 1
1 0

)
. (1.86)

Hence, braiding transforms the two states |0〉 = |σ ,σ → 1〉 ⊗ |σ ,σ → 1〉 and |1〉 =
|σ ,σ → ψ 〉 ⊗ |σ ,σ → ψ 〉 into each other up to a phase. Furthermore, using a similar ap-
proach it can be shown that the states |σ ,σ → ψ 〉⊗ |σ ,σ → 1〉 and |σ ,σ → 1〉⊗ |σ ,σ → ψ 〉,
which also form a two-dimensional Hilbert space, transform into each other under braid-
ing.

1.4.4 Realization by Majorana Operators

At the end of this section, we will show that the Majorana operators {γi}, i = 1, 2, . . . ,
with {γi ,γj} = 2δij and γi = γ

†
i , give rise to a concrete realization of the anyonic properties

derived above.

For simplicity, let us consider four Majoranas γ1,γ2,γ3, and γ4 localized at four differ-
ent spatial points. Since two Majoranas can form a Dirac fermion, we can introduce two
Dirac fermions as

z1 = (γ1 + iγ2)/2, z2 = (γ3 + iγ4)/2, (1.87)

or as
w1 = (γ1 + iγ3)/2, w2 = (γ2 + iγ4)/2. (1.88)

Since fermion number parity (the evenness/oddness of the total number of fermions) is
always conserved, the system is restricted to a sector with fixed fermion number parity.
In general for 2M Majoranas, the actual Hilbert space with a fixed fermion parity has
dimension 2M−1, indicating that the quantum dimension of Majoranas is

√
2.

Let us denote the physical state as |ij〉z = |i〉z1 ⊗ |j〉z2 , where i, j denote the occupation
number of fermion modes z1, z2 respectively. Moreover, we restrict ourselves to the even-
parity sector whose basis vectors can be chosen as |00〉z/w and |11〉z/w .

Since w†1w1 = (1 + iγ1γ3)/2, we have(
2w†1w1 − 1

)
|00〉z = iγ1γ3 |00〉z = i(z†1 + z1)(z†2 + z2) |00〉z = iz†1z

†
2 |00〉z = |11〉z , (1.89)

where the last equality is regarded as a definition for |11〉z with a particular gauge choice.
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Notice that w†1w1 is a projector onto state |11〉w . Then we have

1
√

2
(|00〉z + |11〉z) =

√
2w†1w1 |00〉z = |11〉w . (1.90)

Moreover, w1w
†
1 is a projector onto state |00〉w , so that

|00〉w =
√

2w1w
†
1 |00〉z =

√
2(1 −w†1w1) |00〉z =

1
√

2
(|00〉z − |11〉z) . (1.91)

It is more enlightening to write this as a matrix(
|00〉z
|11〉z

)
= Fσσσσ

(
|11〉w
|00〉w

)
, Fσσσσ =

1
√

2

(
1 1
1 −1

)
, (1.92)

in which the transformation is exactly the one that we derived from the pentagon equations
in Eq. (1.72). This is not a surprise because grouping Majoranas into different Dirac
fermions actually implements the fusion process as

1

2

3

4

j

j : 1 = |00〉z ,ψ = |11〉z

=
(
Fσσσσ

)i
k

1 3

2 4

k k : 1 = |11〉w ,ψ = |00〉w . (1.93)

Now let’s turn to the exchange properties. If we exchange two Majoranas in a coun-
terclockwise manner, the unitary operator U representing this process should fulfill

UγiU† ∝ γj , UγjU† ∝ γi . (1.94)

Since U acts on Majoranas i and j, generally it can be written as

U = a + bγi + cγj + dγiγj , a,b, c,d ∈ C. (1.95)

From unitarity UU† = 1, we have

aa∗ + bb∗ + cc∗ + dd∗ = 1, ab∗ + ba∗ + cd∗ + dc∗ = 0,

ac∗ − bd∗ + ca∗ − db∗ = 0, −ad∗ + bc∗ − cb∗ + da∗ = 0. (1.96)

From UγiU† ∝ γj , we have

aa∗ + bb∗ − cc∗ − dd∗ = 0, ab∗ + ba∗ − cd∗ − dc∗ = 0,

−ac∗ + bd∗ + ca∗ − db∗ = 0, ad∗ − bc∗ − cb∗ + da∗ = phase. (1.97)

From UγjU† ∝ γi , we have

aa∗ − bb∗ + cc∗ − dd∗ = 0, −ab∗ + ba∗ − cd∗ + dc∗ = 0,

ac∗ + bd∗ + ca∗ + db∗ = 0, ad∗ + bc∗ + cb∗ + da∗ = phase. (1.98)

These relations can be reduced into

|a |2 + |b |2 = |c |2 + |d |2 = |a |2 + |c |2 = |b |2 + |d |2 = 1

2
,

ab∗ + ba∗ = cd∗ + dc∗ = ba∗ + dc∗ = ab∗ + cd∗ = 0,

ac∗ + ca∗ = bd∗ + ca∗ = ac∗ + db∗ = bd∗ + db∗ = 0,

|b |2 = |c |2 , |a |2 = |d |2 , ab∗ = dc∗, ac∗ = bd∗,

iab∗, icd∗, iac∗, ibd∗ ∈ R ⇒ b = c,a = d . (1.99)

25



From Eq. (1.97) we have

2(|a |2 − |b |2) = phase. (1.100)

We thus require either a = d = 0, b = c = eiϕ/
√

2 or b = c = 0, a = d = eiθ/
√

2, which gives
rise to two unitary operators

U′ = e−iθ
√

2

(
γi + γj

)
, U = e−iϕ

√
2

(
1 + γiγj

)
. (1.101)

U′ only produces abelian braiding since U′2 = e−2iϕ , whereas braiding with U is non-
abelian since U2 = e−2iθγiγj .

One can actually show that U indeed describes the exchange of two Majoranas based
on the concrete real-space Majorana operators in Eq. (1.44). We see that if the phase
of the superconducting order parameter is increased by 2π , the Hamiltonian is invariant
(see Eq. (1.42)), while γ (r) → −γ (r). Following the arguement by Ivanov [42], one can
introduce branch cuts in real space from the Majoranas to the left boundary of the system.
Away from these cuts, the phase is single valued whereas it jumps by 2π when crossing
a cut. Exchanging one Majorana with another makes one of the Majoranas (γi) cross
the cut of the other (γj) but not vice versa. We thus have γi → −γj , γj → γi under the
exchange operation. This is the same as the effect of U up to a phase.

We illustrate the action of U on a system of four Majoranas. Exchanging γ1 and γ3

twice corresponds to a unitary operation

U2 = e−2iθγ1γ3 = e−2iθ
(
z†1z
†
2 + z

†
1z2 + z1z

†
2 + z1z2

)
, (1.102)

which exchanges the states |00〉z and |11〉z up to a phase. (We assume the system is in the
even-parity sector.) This operation looks very similar to the braiding operator derived
from category theory in Eq. (1.86). We will show that they are essentially the same by
determining the phase angle θ .

If we exchange any two Majoranas (as a Dirac fermion) around another Dirac fermion,
we get a −1 factor because of fermion statistics. Hence, if we braid (exchange twice) a
single Majorana around one Dirac fermion, we get a −1 factor. Let γ1 first braid around
γ2,γ3, corresponding to the operation e−4iθγ1γ3γ1γ2 = e−4iθγ2γ3. Then let us fuse γ2,γ3,
whose outcome can be vacuum or a Dirac fermion. Finally, braid γ1 around this outcome
in the opposite direction. If we introduce fermionic operator α = (γ2 + iγ3)/2, then this
operation can be written as 1−2α†α = iγ3γ2, which gives 1 if the fermionic mode is empty
and −1 if the fermionic mode is occupided. Since the phase factor should be equal the
identity after these three steps, we have the equation

e−4iθγ2γ3iγ3γ2 = 1, (1.103)

which leads to θ = π/8. Thus, the operator U2 is essentially the same as B in Eq. (1.86).
The phase angle θ is known as the topological spin of Majoranas [48, 46].

1.4.5 Topological Quantum Computation

From the discussion above, we saw that a qubit can be obtained from four Majoranas,
and a σx operation on the qubit is implemented via braiding one Majorana around the
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other. The advantage of building qubits from Majoranas is that quantum information can
be stored nonlocally, and is thus insensitive to local perturbations. Moreover, braiding
Majoranas does not depend on the geometry of the paths spanned by the Majoranas, but
only on their topology. This gives rise to the concept of topological quantum computation
[44, 45], which greatly motivates the endeavour to investigate topological superconductors
and Majoranas.

Practically, at least 4M Majoranas are required to construct M logical qubits. Adi-
abatically braiding Majoranas can produce some gate operations. However, braiding
Majoranas in terms of F , R matrices cannot span the whole SU(2) group, required for uni-
versal quantum computation. In spite of this, quantum computation with Majoranas is
still worth pursuing since at least some of the gate operations are topologically protected.
Moreover, it has been shown that the addition of a phase gate implemented by dynamical
operations is able to realize universal quantum computation [49, 50].

1.5 Experimental Realization

In order to realize topological quantum computation, realizing topological superconduc-
tors and Majoranas is the first step. Although Sec. 1.3 introduced several theoretical
models which host Majoranas, these models are difficult to realize in the laboratory. This
is mainly because in reality electrons do have spin, and most superconductors have s-
wave rather than p-wave pairing. Moreover, for 1D superconductor, the order parameter
strongly fluctuates which invalidates the applicability of BCS mean field theory.

After the breakthrough made by Fu and Kane [51, 52], it became clear that topo-
logical superconductor can be realized experimentally if we combine the following three
ingredients [11]:

• proximity coupling to an s-wave superconductor

• spin-polarization

• spin-orbit coupling.

Rather than searching for a topological superconductor directly, we can employ a lower
dimensional (1D or 2D) normal system and couple it to a conventional s-wave supercon-
ductor. Since the s-wave superconductor used for proximity-induced superconductivity is
always two or three dimensional, the resulting p-wave order parameter does not strongly
fluctuate and BCS mean field theory can be safely applied. For strong spin-polarization,
the spin-up and spin-down electrons are essentially decoupled. If the Fermi surface of the
system crosses only one of the spin-split bands, the system behaves similar to a spinless
system. Finally, with spin-orbit coupling, electron spin is not a good quantum number,
and the proximity induced pairing is not fully between electrons of opposite spin. Thus,
a p-wave pairing potential is generated and we obtain a p-wave superconductor.

In fact, the way of putting these three pieces together is quite flexible. For example,
the spin polarization can come either from an external magnetic field or from intrinsic
magnetic order. Another ingredient, spin-orbit coupling, can either come from the bulk
superconductor or the lower dimensional normal system.
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In the following, we will briefly review three platforms for hosting Majoranas, which
have been or are likely to be realized experimentally.

1.5.1 Quantum Spin Hall Insulator Edge

The first proposed physical platform for a 1D topological superconductor is based on the
edge of a quantum spin Hall insulator, proximity coupled to an s-wave superconductor as
proposed by Fu and Kane [52]. Let us assume that the Fermi energy lies within the gap
of the quantum spin Hall insulator, so that only the helical edge states are electronically
active. If we focus on a single edge, which is well separated from other edges, the spin
is fully and oppositely polarized for the two propagation directions. To gap out these
modes, one can either introduce superconducting pairing from an s-wave superconductor
or an external magnetic field perpendicular to the direction of the spin polarization. We
will show that Majorana zero modes appear at domain walls between these two gapped
regions.

The first-quantized BdG Hamiltonian for the proximity-coupled quantum spin Hall
insulator edge at zero chemical potential (for simplicity) can be written as

H = vFpσxτz − Bσz + ∆τx , B,∆ ∈ R, (1.104)

with σi ,τj denoting Pauli matrices in spin and Nambu space, respectively. The Nambu

basis is (ψ↑,ψ↓,ψ †↓ ,−ψ
†
↑ ).

If we apply a unitary transformation H → UHU †, with U = exp(−iπτy/4), we have

H = vFpσxτx − Bσz − ∆τz, (1.105)

which decouples into two 2 × 2 Hamiltonian as H = H1 ⊕ H2 with

H1 = −(B + ∆)ρ1,z +vFpρ1,x (1.106)

H2 = (B − ∆)ρ2,z +vFpρ2,x . (1.107)

Here ρa,j (a = 1, 2, j = x ,y, z) are the Pauli matrices in the effective two dimensional space
for H1 and H2.

We notice that H1 and H2 are essentially the same as the Hamiltonian in Eq. (1.36)
for a spinless p-wave superconductor with a very large electron mass m → ∞, chemical
potential (∆ ± B), and pairing amplitude vF . If we consider a domain wall between two
regions with |B | > |∆| and |B | < |∆|, then either (∆ + B) or (∆ − B) changes sign at the
domain wall. From our knowledge of spinless p-wave superconductor, we conclude that a
Majorana zero mode is created at this domain wall.

Before ending this part of the discussion, it is worth mentioning two points. First, a
2D topological superconductor can also be constructed along these lines. Instead of using
the edge of a quantum spin Hall insulator, a 2D topological insulator, one can use the
surface of a 3D topological insulator with a single protected Dirac cone, proximity coupled
to an s-wave superconductor. At the interface, we obtain a 2D topological superconductor.
Second, in engineering 1D topological superconductors using quantum spin Hall insulator
edges, we only used the helical property of the edge, rather than any other topological
property of the insulator. This is indeed true and one can use a semiconductor quantum
wire with intrinsic Rashba spin-orbit coupling to achieve the same goal, as will be shown
in the following.
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Figure 1.2: Normal-state dispersions of the quantum wire in (a) the Kitaev limit, (b) the
topological insulator limit without Zeeman field, and (c) the topological insulator limit
with Zeeman field.

1.5.2 Quantum Wires

Instead of using edges of quantum spin Hall insulators, one can build topological super-
conductors out of semiconductor quantum wires with strong spin-orbit coupling [53, 54],
e.g., InAs or InSb wires. Strong spin-orbit coupling and an applied magnetic field es-
sentially turn the wire into a helical liquid when appropriately tuning the Fermi energy.
Proximity coupling to an s-wave superconductor realizes a 1D topological superconductor
with Majorana zero modes at its ends.

Let us consider a single-channel quantum wire with Rashba spin-orbit coupling of
strength u, an external magnetic field B, proxmity coupling to an s-wave superconductor
which induces a pairing potential ∆. The first quantized Hamiltonian of this system can
be written as

H =
(
p2

2m
+ upσx − µ

)
τz − Bσz + ∆τx (1.108)

where σi ,τj denote Pauli matrices in spin and Nambu space and m is the electron mass.
Instead of presenting results for generic parameters, we will focus on two limiting cases:
the Kitaev limit when magnetic field is much larger than spin-orbit coupling (B �mu2),
and the topological insulator limit when spin-orbit coupling is much larger than magnetic
field (mu2 � B). For the normal state, the dispersions for the Hamiltonian in the two
limits are shown in Figure 1.2. We assume weak pairing ∆ �mu2,B.

Kitaev Limit

Let us first look at the situation where B � mu2. In this case, we can first neglect spin-
orbit coupling and superconducting pairing, and obtain two spin-polarized bands with
dispersions

ϵ±(p) =
p2

2m
± B, (1.109)

as shown in Figure 1.2(a). The chemical potential µ can be tuned such that it crosses one
of the spin-polarized bands, say the spin-up band. The eigenvectors for spin up electrons
and holes can be written as

|e〉 = (1, 0, 0, 0)T , |h〉 = (0, 0, 0, 1)T (1.110)
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in the Nambu basis (ψ↑,ψ↓,ψ †↓ ,−ψ
†
↑ ). We can see that there is no superconducting corre-

lation between these two states since 〈e | ∆τx |h〉 = 0.

Now we include spin-orbit coupling as a perturbation. Using first-order perturbation
theory, the spin is slightly tilted and the eigenvectors become

|e〉 = 1√
1 + u2p2/4B2

(1,−up/2B, 0, 0)T , |h〉 = 1√
1 + u2p2/4B2

(0, 0,−up/2B, 1)T . (1.111)

This generates a p-wave pairing potential through the matrix elements

〈e | ∆τx |h〉 = 〈h | ∆τx |e〉 = −
up

B
∆. (1.112)

Projecting onto the two-dimensional subspace spanned by |e〉 and |h〉, we find the effective
Hamiltonian

Heffective =

(
p2

2m
− (µ − B)

)
ρz −

up

B
∆τx . (1.113)

Hence, we recover the Hamiltonian for a 1D spinless p-wave superconductor with pairing
strength ∆u/B.

Topological Insulator Limit

Now let us look at the other limit where mu2 � B. Moreover, we choose µ = 0 for simplic-
ity. Without magnetic field and superconductivity, the dispersion consists of horizontally
split parabolas as shown in Figure 1.2(b). We see that the bands cross the Fermi surface
for the three momenta p ' 0,±pF with pF =mu.

Since spin-orbit coupling is large, the low-energy physics near p = 0 is decoupled
from the low-energy physics near p = ±pF , and thus we can look at these two regions in
momentum space separately.

If we linearize the spectra around p = 0, include superconductivity, and apply a
magnetic field perpendicular to the direction of the spin-orbit coupling, we obtain the
Hamiltonian

Hp=0 = upσxτz − Bσz + ∆τx , (1.114)

which has the same form as the one for the 2D topological insulator edge. Depending on
the strength of ∆ and B, two different types of gaps can open around p = 0.

Moreover, a superconducting gap opens at p = ±pF which essentially gives rise to a
separate 1D p-wave superconductor. Because of the Z2 nature of Majoranas (for class D
in 1D), the total Hamiltonian is a topological superconductor only when Hp=0 is trivial.
Hence, we need the gap around p = 0 to be due to the magnetic field B to realize the
topological phase.

We conclude that in the topological insulator limit, the phase diagram for the quantum
wire is the reverse of the phase diagram for a 2D topological insulator.
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1.5.3 Magnetic Adatom Chains

Another platform for realizing Majoranas is based on magnetic adatoms on s-wave super-
conductors [55, 56]. This platform has the advantage that one can use scanning tunneling
microscopy (STM) to manipulate the adatoms and to detect the Majoranas [57, 7].

For a single magnetic impurity in an s-wave superconductor, a subgap bound state
with full spin-polarization, known as a Shiba state [58, 59], is formed. If we have a chain
of magnetic adatoms on top of an s-wave superconductor, the low-energy physics can be
described by a chain of Shiba states, which form a 1D subgap band. Each Shiba state
overlaps with its neighbors just like ordinary atomic states. If the chain is ferromag-
netically ordered (which is possible since the interaction is long-range and there is an
underlying substrate to stablize the order), we obtain a spin-polarized band just as in the
other two platforms.

If the superconductor has strong spin-orbit coupling, as it does for Pb [57, 7], then
we have all ingredients for creating a topological superconductor and Majoranas should
appear at the ends of the chain.

We will look at this platform in great detail in Chapter 2.

1.6 Open Problems and Outline of the Thesis

Over the last few years, the field of topological superconductors and Majoranas was
advancing very rapidly, both theoretically and experimentally. Several experiments have
claimed to observe Majoranas in quantum wires [60, 61, 62, 63] and in magnetic adatom
chains [57, 7, 64, 65].

Despite these promising results, there remained and remains doubt in interpreting
the experimental data as signatures of Majoranas. For example, the localization length
of the end states observed in Ref. [57] was far too small compared to a simple theoretical
estimation based on Majoranas. To solve this puzzle, the proximity effect needs to be
treated more carefully, beyond just introducing the pairing potential into the Hamiltonian
by hand as we did in the last section. This problem will be properly treated in Chapter 2
of this thesis.

To detect Majoranas, most experiments took the approach of quantum transport, by
measuring conductance at a given voltage bias. It was shown theoretically that tunneling
from a normal metal lead into a Majorana mode gives rise to a prominent zero-bias
conductance peak, with a quantized value 2e2/h [66, 67]. However, this result is valid only
at zero temperature. At finite temperature, two issues appear [11]. First, temperature
broadening of the distribution function limits the energy resolution. Second, the zero-bias
Majorana peak is also broadened by inelastic quasiparticle excitations. Presumably for
these reasons, Majorana experiments consistently show non-quantized peaks. To solve
this issue, we propose to use a superconducting lead to probe the Majorana zero mode.
One advantage of this setup is that the gap exponentially suppresses finite-temperature
broadening. The signatures of probing Majoranas with superconducting leads will be
worked out in Chapter 3.
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It is worth mentioning that in parallel to the above two projects, there are several
related works done in collaboration with the experimentalists in the group of K. Franke,
which are also part of the PhD research. In Ref. [5], we studied the tunneling processes
from a superconducting STM tip into subgap states in superconductors. In Ref. [7], we
investigated the end states in a magnetic adatom chain made of Fe on a Pb supercon-
ductor. In Ref. [10], we looked at the subgap states created by a magnetic adatom on a
superconductor and analyzed its spatial pattern.

Another celebrated signature of topological superconductivity is the 4π -periodic frac-
tional Josephson effect [43]. However, experimental observation of the fractional Joseph-
son effect requires the local fermion parity to be conserved. In practice, this condition
is difficult to fulfill, since various quasiparticle poisoning processes lead to changes of the
fermion parity. Hence, experiments need to be done in a sufficiently short time to avoid
fermion parity switching. On the other hand, the phase difference across the two super-
conductors needs to be changed slowly enough to avoid nonadiabatic transitions. It is this
conflict that makes this simple effect difficult to observe in the laboratory. In Chapter 4,
I will propose a way of detecting the topological Josephson effect without the restriction
of fermion parity conservation.

More recently, there are experiments [68, 69] on quantum spin Hall Josephson junc-
tions without external magnetic field, where evidence for a 4π -periodic Josephson effect
is found. However, this 4π -periodic Josephson is only expected by basic theory when
a magnetic field is introduced between the two superconducting regions, as discussed in
Sec. 1.5.1. This puzzle motivates the research reported in Chapter 5. We provide a way
to generate a yet more exotic 8π -periodic Josephson effect in a time-reversal invariant
quantum spin Hall Josephson junction, which can be interpreted as a result of coupling
Z4 parafermions, and which may appear in experiment as a 4π -periodic Josephson effect.

Finally, conclusions will be presented in Chapter 6.
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2 Strong Localization of Majorana End States
in Chains of Magnetic Adatoms

Recently, Yazdani’s lab in Princeton realized an intriguing Majorana platform by placing
a ferromagnetically aligned Fe adatom chain on top of a superconducting Pb substrate
[57]. The STM measurements, providing both energetic and spatial resolution, showed
zero-energy bound states at the ends of the chain which were identified as Majoranas.
It was initially a major puzzle why the localization length of these bound states was
shorter than the coherence length of Pb by two orders of magnitude, although the latter
was expected to be a rough estimate of the Majorana localization length. To unravel
this puzzle, I looked at the superconducting proximity effect more closely, and showed
that one can indeed have strongly localized Majoranas in proximity coupled systems. My
key insight was that for strong coupling between normal and superconducting system,
the coherence length of proximity-induced superconductivity can differ dramatically from
the coherence length of the proximity-providing superconductor, which is the result of a
strong velocity renormalization. The strong localization of the Majoranas may be useful
in future quantum computation as braiding requires the distance between Majoranas to
be larger than their localization lengths.
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A recent experiment [Nadj-Perge et al, Science 346, 602 (2014)] gives possible evidence for Majorana
bound states in chains of magnetic adatoms placed on a superconductor. While many features of the
observed end states are naturally interpreted in terms of Majorana states, their strong localization remained
puzzling. We consider a linear chain of Anderson impurities on a superconductor as a minimal model and
treat it largely analytically within mean-field theory. We explore the phase diagram, the subgap excitation
spectrum, and theMajoranawave functions. Owing to a strong velocity renormalization, the latter are localized
on a scale which is parametrically small compared to the coherence length of the host superconductor.
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Introduction.—There is currently great interest in
Majorana bound states in condensed-matter systems which
realize non-Abelian quantum statistics [1,2] and which
may have applications in topological quantum information
processing [3]. Several platforms allow one to engineer
topological superconducting phases supporting Majorana
bound states, based on proximity coupling to s-wave super-
conductors (SCs). These include topological insulators [4,5],
semiconductor quantum wires [6–8], and chains of magnetic
adatoms [9–14] (see also Refs. [15–17]). All of these pro-
posals are being actively pursued in the laboratory [18–26].
A recent experiment [26] exhibits signatures of Majorana

bound states in chains of Fe atoms placed on a Pb surface.
The experiment suggests that the Fe chain orders ferromag-
netically. The subgap spectrum is probed by scanning
tunneling spectroscopy with both spatial and spectral reso-
lution, which shows zero-energy states near the ends of the
chains. It is tempting to interpret these as Majorana bound
states [26,27], as the system combines the three essential
ingredients: (i) Proximity-induced superconductivity, (ii) a
finite Zeeman splitting due to the exchange field of the
ferromagnetic Fe chains, and (iii) Rashba spin-orbit (SO)
coupling (presumably from the surface of the Pb substrate).
However, the observed localization of the end states on

the scale of a few adatom sites is puzzling [28,29]. The
Majorana localization length is typically estimated as
ξM ¼ ℏvF=Δtop, while the coherence length ξ0 of the
proximity-providing SC is given by ξ0 ¼ ℏvF=Δ. Here,
we assume comparable Fermi velocities vF in the one-
dimensional electron system (“wire”) and the host SC. At
the same time, the induced topological gap Δtop is smaller
than the host gap Δ. Thus, one may expect ξM ≳ ξ0. This
contrasts with the observation that the localization length of
the end states is orders of magnitude smaller than the
coherence length of Pb. Here we address this puzzle by
modeling the adatoms as a chain of Anderson impurities
hybridized with a SC and show that it predicts Majorana

localization lengths which are parametrically smaller than
ξ0 over wide regions of parameter space.
The physics underlying the topological phase in chains of

magnetic adatoms has been discussed using two approaches.
One approach [9,10,30–33] starts with the subgap Shiba
states [34–37] induced by the individual magnetic adatoms.
The adatom is described as a classical magnetic moment
which is exchange coupled to the electrons in the substrate,
but otherwise electronically inert. Such Shiba chains exhibit
topological superconducting phases and hence Majorana
end states. An alternative approach [26,27] starts with
exchange-split adatom states. While they are far from the
Fermi energy for individual adatoms, hopping between the
adatoms of the chain broadens these states into bands. For
sufficiently strong hopping, these bands cross the Fermi
energy and effectively realize a one-dimensional spin-
polarized electron system. In this band limit, topological
superconductivity is induced by proximity, in combination
with SO coupling for ferromagnetic chains or helical
magnetic order along the chain. As an additional benefit,
our model unifies both of these approaches.
Heuristic considerations.—We start by discussing

conventional proximity coupling of a free-electron wire
to a bulk s-wave SC. The wire electrons are described by
their Green function Gðk; EÞ ¼ ½E − vFkτz − Σðk; EÞ�−1,
where τi denote Pauli matrices in particle-hole space. The
self-energy Σ accounts for the coupling to the SC and takes
the familiar form [38,39]

Σðk; EÞ ¼ −Γ
Eþ Δτxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − E2

p : ð1Þ

Here, Γ measures the strength of hybridization between
wire and SC. Far above the gap, E ≫ Δ, the SC behaves as
a normal metal and the escape of electrons into the bulk SC
is described by Σ≃ iΓ. For subgap energies, electrons enter
the SC only virtually and Σ becomes real.
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For definiteness, consider energies far below the bulk
gap, E ≪ Δ. Then, we can approximate Σ≃ −ðΓ=ΔÞE−
Γτx, and Gðk;EÞ≃Z½E−ZvFkτz−ZΓτx�−1 with a renor-
malized quasiparticle weight Z ¼ ½1þ Γ=Δ�−1, which des-
cribes the shift of the electrons’ spectral weight from the
wire into the SC. The quasiparticle weight ensures [1] that
the induced s-wave gap (described by the pairing term ∝ τx)
interpolates between the hybridization strength Γ at weak
hybridization, Γ ≪ Δ, and the host gap Δ at strong
hybridization, Γ ≫ Δ. It also renormalizes the Fermi veloc-
ity vF → ~vF ¼ ZvF which controls the coherence length of
the induced superconductivity in the wire. Physically, the
fraction of time an excitation spends in thewire is suppressed
by Z, which reduces the effective velocity to ZvF.
In adatom chains, the SO coupling in the SC allows for

an induced p-wave pairing while the strong on-site
repulsion and resulting spin polarization suppress s-wave
correlations. Thus, the induced gap Δtop ¼ αΔ is now p
wave and controlled by the (dimensionless) SO strength α.
At the same time, it is natural to assume that the
hybridization Γ modifies single-particle properties as
before and the renormalization of vF remains operative.
This predicts a Majorana localization length

ξM ¼ ℏ ~vF=Δtop ¼ ZℏvF=Δtop: ð2Þ
For Fe adatoms in Pb, the hybridization is controlled by
atomic scales so that Γ ∼ 1 eV [26]. When compared to the
host gap Δ ∼ 10 K, we find Z ∼ 10−3. This can dramati-
cally suppress ξM relative to the host coherence length ξ0 ∼
ℏvF=Δ (≃100 nm for Pb). In fact, ξM ∼ ξ0ðΔ=ΓÞðΔ=ΔtopÞ,
so that for α ¼ Δtop=Δ ∼ 0.1, the Majorana localization
length ξM becomes of the order of the spacing between
adatoms, as observed in Ref. [26].
Model.—We now show that these heuristic arguments are

borne out in a microsopic model. We model the system as a
linear chain of Anderson impurities placed in an s-wave
SC. Each adatom hosts a spin-degenerate level of energy ϵd
with on-site Hubbard repulsion U, representing the Fe d
levels. We include nearest-neighbor hopping of strength w
between these d levels as well as hybridization of strength t
between the d levels and the SC. The model Hamiltonian

H ¼ Hd þHs þHT ð3Þ
contains the BCS HamiltonianHs of the SC [40], the chain
of d levels

Hd ¼
X
j;σ

ðϵd − μÞd†j;σdj;σ þU
X
j

n†j↑nj↓

− w
X
j;σ

½d†jþ1;σdj;σ þ d†j;σdjþ1;σ�; ð4Þ

and their hybridization with the SC,

HT ¼ −t
X
j;σ

½ψ†
σðRjÞdj;σ þ d†j;σψσðRjÞ�: ð5Þ

Here, dj;σ annihilates a spin-σ electron in the d level at site
Rj ¼ jax̂ of the chain, nj;σ ¼ d†j;σdj;σ , and ψσðrÞ annihi-
lates electrons at position r (taken as continuous) in the SC.
The model in Eq. (3) generalizes the Shiba chain model

considered in Refs. [9,10]. It reduces to the Shiba chain in
the limit of negligible spin fluctuations and weak intersite
hopping w. Here, we include the hopping and the ensuing
electronic dynamics of the magnetic adatoms within a
mean-field treatment of the Hubbard term [41,42],

Un†j↑nj↓ →
U
2

X
σ

½hnjinj;σ þ hmjiσnj;σ�; ð6Þ

where we defined the occupation nj ¼
P

σnj;σ and the site
polarization mj ¼ nj;↑ − nj;↓. The first term merely
renormalizes ϵd and will be absorbed in the following.
The second term introduces a local exchange coupling in
the adatom orbitals.
As we are predominantly interested in the localization of

the Majorana modes, we do not aim at a self-consistent
solution of the mean-field theory. Instead, we accept the
formation of a spontaneous moment as experimental fact
and explore its consequences. In the experiment, the
moments order ferromagnetically along the chain. In this
case, topological superconductivity requires Rashba SO
coupling in the substrate SC [26,27,43,44]. For analytical
tractability, we assume instead that the moments develop
helical order Sj ¼ ðsin θ cosϕj; sin θ sinϕj; cos θÞ with
ϕj ¼ 2khja and θ ¼ π=2. We emphasize that the model
with helical order can be mapped to a ferromagnetic model
with SO coupling in both the adatom d band and the
substrate SC. Strictly speaking, the substrate SO coupling
generated by the mapping differs from conventional
Rashba coupling, but it does include the specific term that
allows for proximity-induced p-wave pairing. The mapping
is effected by the unitary transformation dj → e−ikhjaσzdj
and ψðrÞ → e−ikhxσzψðrÞ, which rotates the spin basis along
the direction of the local impurity moments [45,46].
Excitation spectrum and phase diagram.—In mean-

field theory, we can describe the system equivalently by
the corresponding Bogoliubov–de Gennes Hamiltonian
H ¼ Hd þHs þHT (after the above-mentioned unitary
transformation) and consider the Green function G ¼
ðE −HÞ−1. In view of the local nature of the hybridization
HT , we can write a closed set of equations for the restricted
Green function gij ¼ GðRi;RjÞ defined at the sites of the
adatoms,

� ðgss0 Þ−1 tτz
tτz E −Hd

�
g ¼ 1: ð7Þ

We use the Pauli matrices τi (σi) in particle-hole (spin)
space. The bare Green function of the SC restricted to the
adatom sites and subgap energies is readily obtained within
BCS theory (see Ref. [46] for more details),
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gss0;ijðEÞ ¼ −πν0 expð−ikhxijσzÞ

×

�
Eþ Δτxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − E2

p ImfðrijÞ þ τzRefðrijÞ
�
; ð8Þ

where ν0 is the normal density of state at the Fermi
level, fðrÞ ¼ eikFr−r=ξE=kFr, and ξE ¼ ℏvF=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − E2

p
.

Equation (8) is valid for i ≠ j, but also applies to i ¼ j
when dropping the Ref term. Here, the factor
expð−ikhxijσzÞ is induced by the unitary transformation.
The subgap excitation spectrum may then be obtained

from the poles of gss ¼ gss0 ½1 − Σgss0 �−1 where we define the
self-energy Σ ¼ tgdd0 t ¼ tðE −HdÞ−1t. As gss0 has no
poles at subgap energies, this yields the condition
det½1 − Σgss0 � ¼ 0. In (lattice) momentum representation,
the determinant involves a 4 × 4 matrix with [46]

gss0 ðk; EÞ ¼ πν0

�
Eþ Δτxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − E2

p Lσz
i ðk; EÞ þ τzL

σz
r ðk; EÞ

�
:

ð9Þ

Here, Lσz
r and Lσz

i are real and imaginary parts of the
function Lσz ¼ Fðkþ khσzÞ − i, respectively, with
FðkÞ ¼ ð1=kFaÞ lnf1 − eiðkFþkÞa−a=ξEg þ ðk↔ − kÞ [48].
Computing the dispersions and identifying phase bounda-
ries by the closing of the gap, we first obtain representative
phase diagrams of the adatom chain, as shown in Fig. 1.
These phase diagrams plot the topological (BDI [49])

index and make the interpolation between the band and
Shiba limits explicit. The Shiba limit corresponds to weak
hopping w between d levels. Here, topological super-
conductivity requires deep Shiba states so that the Shiba
bands cross the chemical potential at the center of the
host gap [10]. The band limit corresponds to weak
hybridization Γ ¼ πν0t2 and thus Shiba states with energies
Es near Δ [42,46]. Then, topological superconductivity
requires that one spin-polarized d band crosses the Fermi
energy. The range over which this happens depends on
the asymmetry of the bare exchange-split adatom states
Ed;σ ¼ ϵd − σUhmi=2 around the chemical potential
(set to μ ¼ 0). Figure 1(a) shows the symmetric case
Ed;↑ ¼ −Ed;↓. There is only a narrow topological interval
in w for small Γ (Es ≃ Δ) because despite the large
exchange splitting of the d levels, the spin-split d bands
cross μ at the same hopping strength w. As the asymmetry
between Ed;↑ and Ed;↓ around μ increases, the d bands
cross μ at different values of w, and the adatom states are
perfectly spin polarized at the chemical potential over a
substantial region in w; cf. Fig. 1(b).
For fully analytical results, we consider the limit of strong

asymmetry with Ed;↑ → −∞ at a fixed Ed;↓. In this limit,
only the spin-down band Ed¼Ed;↓−w

P
�cosðk�khÞa

of the d levels is relevant. A detailed but straight-
forward calculation [46] now shows that the condition
detð1 − Σgss0 Þ ¼ 0 can be reduced to the determinant of a
2 × 2 matrix and written in the form

ðΔ2 − E2Þ½Ed þ ΓLr�2

− E2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − E2

p
− ΓLi�2 þ Γ2Δ2ðδLiÞ2 ¼ 0: ð10Þ

Here, we introduced the shorthand notations Lr=i ¼
ðLþ

r=i þ L−
r;iÞ=2 and δLi ¼ ðLþ

i − L−
i Þ=2. Equation (10)

is an implicit equation for the subgap excitation spectrum
Ek of the adatom chain in the strongly asymmetric limit.
[Note that we have suppressed all k labels in Eq. (10).]
In the limits Γ ≪ Δ and Γ ≫ Δ, Eq. (10) gives explicit

analytical expressions for the excitation spectrum throughout
the entire Brillouin zone. These are obtained by keeping only
the respective dominant term in the second square brackets on
the left-hand side, in excellent agreement with the full Green-
function solution in Figs. 2(a)–2(c). We note that there is a
single subgap state for every latticemomentum k; i.e., there is
one subgap state per adatom, as in the Shiba limit (small w).
Majorana wave function.—Equation (10) also encapsu-

lates the localization of the Majorana wave functions. In the
Shiba limit of small w, the Majorana localization was
addressed previously [50]. Here, we focus on the band limit
of large wwhere the spin-down d band Ed crosses the Fermi
energy of the SC, as is presumably the case in the experiment
[26,27]. Ed crosses μ ¼ 0 at momenta k0, so that Ed≃
vFðk − k0Þ, wherevF is the Fermivelocity of thed band at the
chemical potential of the SC. Similarly, Ed þ ΓLr≃
vFðk − k0Þ, wherewe simply absorb the parametrically small
shifts in vF and k0 due to ΓLr into their definitions.
The decay of the Majorana wave function is controlled

by the behavior of the dispersion near the minimal gap
at k0. Assuming that the pitch of the spin helix
(or, equivalently, the strength of SO coupling) is not too
large, this topological gap will be small compared to the
gap Δ of the superconducting host. Then, E is small
compared toΔ in the relevant region and Eq. (10) simplifies
significantly. Consider first the limit of weak hybridization
Γ ≪ Δ. In this limit, Eq. (10) reduces to

(a) (b)

FIG. 1 (color online). Representative phase diagrams for the
adatom chain as a function of the Shiba state energy Es of an
individual impurity and the hopping amplitude w between d
levels. The colors indicate the topological index (grey: topologi-
cally trivial; red or green: topological phase with index �1). We
chose Ed;↓ ¼ 100Δ, kFa ¼ 4.3π, kha ¼ 0.26π, and ξ0=a ¼ ∞.
The panels correspond to (a) symmetric adatom d bands
(Ed;↑ ¼ −100Δ) and (b) asymmetric adatom d bands
(Ed;↑ ¼ −300Δ). Here, Ed;σ ¼ ϵd − σUhmi=2.
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Ek ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½vFðk − k0Þ�2 þ Γ2ðδLiÞ2

q
; ð11Þ

where δLi should be evaluated at k0. We identify the
topological gap Δtop ¼ ΓðδLiÞk¼k0 , which is small com-
pared to Δ. The Majorana wave function is expected
to decay on the characteristic length scale of this
dispersion; i.e., we find the Majorana localization length
ξM ¼ ℏvF=Δtop, consistent with the heuristic argument
above for Γ ≪ Δ. For the numerical parameters of
Fig. 2(c), ξM is larger than the length of the chain, making
a direct comparison impossible.
The experiment is in the limit of the large hybridization

Γ ≫ Δ, where Eq. (10) predicts a low-energy dispersion

Ek ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðΔ=ΓLiÞvFðk − k0Þ�2 þ ½ΔðδLi=LiÞ�2

q
: ð12Þ

In this limit, the induced gap Δtop ¼ ΔðδLi=LiÞk¼k0 is
independent of Γ and saturates to a value which is smaller
than Δ by a factor measuring the effective strength of the
SO coupling. The strong hybridization with the SC also
induces a dramatic downward renormalization of the Fermi
velocity of the excitations, vF → ~vF ¼ ðΔ=ΓLiÞvF. These

features are in excellent agreement with the numerical
subgap spectra shown in Figs. 2(a) and 2(b) and vindicate
our introductory heuristic arguments. Indeed, Eq. (12)
predicts a Majorana localization length ξM¼ℏvF=ðΓδLiÞ,
which coincides with Eq. (2) from heuristic consideration.
We see that ξM is independent of the host gap Δ and
controlled instead by the hybridization Γ. This result is
in excellent agreement with numerical Majorana wave
functions for Γ ≫ Δ; see Figs. 2(d) and 2(e).
The topological gaps in Eqs. (11) and (12) are both

enabled explicitly by the SO coupling in the substrate
which enters via the L factors in gss0 . In contrast, the SO
coupling in the d band is fully ineffective due to the strong
spin polarization. Parametrically, one finds δLi ≃ δLi=Li≃
kh=kF in the limit kFa ≫ 1.
Notice that Eqs. (12) and (2) require the condition

Γ ≪ vF=a. This condition ensures that the in-band propa-
gation between adjacent sites, taking time τ ∼ a= ~vF, is
faster than hopping via the host SC, taking time ðΔLrÞ−1
[10]. Then, the k ¼ k0 minimum described by Eq. (12)
dominates over the additional features of the quasiparticle
spectrum associated with logarithmic divergencies in Lr.
They induce power-law tails in the Majorana wave func-
tions [cf. Fig. 2(d)] which become correspondingly more
pronounced as Γ increases.
Local density of states.—We have also numerically

computed [46] the local density of states of the adatom
chain; see Fig. 3. The zero-bias peak grows more pro-
nounced with increasing Γ, reflecting the stronger locali-
zation of the Majorana wave function. In addition to the
zero-energyMajorana peak, one discerns additional peaks at
finite energieswhich arise from vanHove singularities in the
subgap Shiba band andwhich approach the center of the gap
as the hybridization Γ increases. The zero-energy features
and their strong localization as well as the van Hove peaks
are consistent with the experimental observations [26].
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(d)

FIG. 2 (color online). Excitation spectra Ek for ka=π ∈ ½0; 1�
and (a) Γ ¼ 64Δ, (b) Γ ¼ 16Δ, and (c) Γ ¼ 0.16Δ. We choose
kFa ¼ 4.3π, kha ¼ 0.26π, Ed;↓ ¼ 100Δ, Ed;↑ ¼ −19900Δ,
w ¼ 90Δ, and ξ0=a ¼ ∞. The dashed lines are subgap disper-
sions of the impurity chain without coupling to the SC. The blue
curves are exact dispersions. The red curves are calculated using
Eq. (12) for Γ ≫ Δ and Eq. (11) for Γ ≪ Δ. Notice that the
horizontal axis in (c) is restricted to a very narrow range and that
the deviation between the red and blue curves is indeed small.
Panels (d), (e), and (f) show Majorana wave functions jψMðiÞj2
(blue lines) obtained for a finite chain of length L ¼ 1500a. Only
the first 120 sites i are shown. (d) and (e) are plotted on a
logarithmic scale and the red dashed lines are fits using Eq. (2) for
the Majorana localization length. (f) is plotted on a linear scale.
(Inset) Decay over the first 600 sites.

(a) (b)

FIG. 3 (color online). Local density of states of particle
excitations, computed in the center (blue lines) and at the end
(red lines), for a chain of length L ¼ 300a and hybridizations
(a) Γ ¼ 64Δ and (b) Γ ¼ 16Δ. Other parameters are as in Fig. 2.
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I. UNITARY TRANSFORMATION OF HAMILTONIAN WITH HELICAL ORDER

The mean-field Hamiltonian for a chain of Anderson impurities coupled to an s-wave superconductor can be written
as

H = Hs +Hd +HT , (1)

with

Hd =
∑

j,σ

(εd − µ)d̃†j,σd̃j,σ − w
∑

j,σ

(
d̃†j,σd̃j+1,σ + d̃†j+1,σd̃j,σ

)
−K

∑

j,σ,σ′

Sj d̃
†
j,σσσ,σ′ d̃j,σ′ , (2)

where the exchange term K |Sj | = U/2 arises from a mean-field treatment of the local Hubbard interaction as described

in the main text. Using the Nambu spinor notation d̃j = (d̃j↑, d̃j↓, d̃
†
j↓,−d̃

†
j↑)

T , we can write down its Bogoliubov-de
Gennes Hamiltonian

Hd =
1

2

∑

ij

d̃†i H̃
ij
d d̃j (3)

H̃ij
d = [(εd − µ)τz −KSj · σ] δij − wτz(δi,j−1 + δi,j+1), (4)

where the τi with i = x, y, z are Pauli matrices in particle-hole space. The s-wave superconductor is modeled by the
BCS Hamiltonian

Hs =
1

2

ˆ

d3r ψ̃†(r)H̃sψ̃(r) (5)

H̃s = ξpτz + ∆τx (6)

ξp =
p2

2m
− µ, (7)

where ψ̃(r) = (ψ̃↑(r), ψ̃↓(r), ψ̃†↓(r),−ψ̃†↑(r))T , and ∆ is the superconducting order parameter. The hybridization
between the magnetic adatoms and the superconductor in particle-hole space is given by

HT = − t
2

∑

j

(
ψ̃†(Rj)τz d̃j + h.c.

)
, (8)

where Rj = jax̂ denotes the position of the jth magnetic adatom, t the hybridization strength, and a the lattice
spacing along the chain (i.e., the x) direction.

We assume a spin helix configuration

Sj = (sin θj cosφj , sin θj sinφj , cos θj) (9)

with θj = θ and φj = 2khja, i.e., the spin rotates about the z-axis with wavevector 2kh and opening angle θ. This is
equivalent to a ferromagnetic configuration with a particular type of spin-orbit coupling via a unitary transformation.
Explicitly, we transform ψ(r) = eikhxσz ψ̃(r) and dj = eikhjaσz d̃j , which rotates the local spin quantization axis along
the local direction of the magnetic moment, or equivalently, maps the system on a ferromagnetic configuration. For
the superconductor, this yields

Hs =
1

2

ˆ

d3rψ†(r)Hsψ(r) (10)

Hs =

[
(p + khσzx̂)2

2m

]
τz + ∆τx. (11)
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The Hamiltonian for the chain of magnetic adatoms transforms into

Hd =
1

2

∑

ij

d†iH
ij
d dj (12)

Hij
d = [(εd − µ)δij −Wij ] τz −KS · σδij (13)

with Wij = −we−ikhaσz if i = j + 1, Wij = −weikhaσz if i = j − 1, and zero otherwise. Finally we have the
hybridization term

Ht = − t
2

∑

j

(
ψ†(Rj)τzdj + h.c.

)
, (14)

which is invariant under this transformation.
We observe that in the transformed Hamiltonian, the helix wavevector plays the role of the strength of (a particular

type of) spin-orbit coupling. There is spin-orbit coupling in both the wire and the superconductor. It can be seen from
the results of the main text that it is predominantly the spin-orbit coupling in the superconductor that is operative
in inducing a p-wave gap in the excitation spectrum. This is true as long as the exchange splitting of the d-bands is
large compared to the effective spin-orbit strength.

The angle between the exchange splitting and the spin-orbit field depends on the opening angle θ of the spin helix.
The optimal situation for topological superconductivity is when exchange splitting and spin-orbit field are orthogonal
to one another. This happens for a planar spin helix θ = π/2 which is what we consider in the main text and in the
following. Explicitly, for this choice the exchange field is along the x-direction, KS · σ = KSσx, with S = |S|, while
the spin-orbit field is along the z-direction.

Note that the spin-orbit coupling contains only the momentum along the chain. This is different from a conventional
Rashba coupling where momenta along both directions of the surface would appear. Presumably, this has mostly
quantitative consequences as it is the momentum along the chain which is essential for allowing induced p-wave pairing
in the adatom band.

We finally note that one may also want to include pairing correlations 〈di↑dj↓〉 in the mean field approximation for
the Hubbard interaction on the adatom sites. We have neglected them as we assume a large exchange splitting of the
d-bands which should strongly suppress any influence of these additional pairing correlations.

II. SHIBA STATE ENERGY Es FOR AN INDIVIDUAL IMPURITY

A single Anderson impurity hybridized with a BCS superconductor induces a subgap state called Shiba state. At
mean-field level (as treated in this paper) and large spin splitting, the Shiba state energy is given by [1]

Es =
Ed,↑Ed,↓ − Γ2

√
(Ed,↑Ed,↓ − Γ2)2 − Γ2(Ed,↑ − Ed,↓)2

. (15)

III. DERIVATION OF THE LATTICE GREEN FUNCTION

We write the Hamiltonian of the total system as

H =

(
Hs Ht

H†t Hd

)
= H0 +HT , (16)

where Hs and Hd were defined in Eqs. (11) and (13), H0 = diag(Hs, Hd) contains the diagonal terms, and HT

describes the hybridization on the off-diagonal

Hr,j
t = −tδ(r−Rj)τz. (17)

Define the wavefunction of the composite system to be Ψ = (ψ,d)T , where the two components will be referred as s
and d components (which are still vectors) in the following. Then the Schrödinger equation can be written as

∑

J

HIJΨJ = EΨI . (18)
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Here the indices I, J can be continuous coordinates r ∈ R3 labeling the s components or be discrete j ∈ Z labeling
the d components, and the summation over J combines the integration over continuous position and the summation
over the discrete site index. Plugging Eq. (11), (13), (17) into the Schrödinger equation, we have

{[
(−i∂r + khσzx̂)2

2m

]
τz + ∆τx

}
ψ(r)− t

∑

j

δ(r−Rj)τzdj = Eψ(r) (19)

−t
ˆ

dr3 δ(r−Ri)τzψ(r) +
∑

j

{[(εd − µ)δij −Wij ] τz −KS · σδij} dj = Edi. (20)

The normalization condition is given by
ˆ

d3r ψ(r)†ψ(r) +
∑

j

d†jdj = 1. (21)

Notice that the s components ψ(r) have units of [volume]−1/2 while the d components are dimensionless.
Now we turn to the Green function of the system, which reads

G(E) = (E −H)
−1

= (E −H0 −HT )
−1

= G0(E) +G0(E)HTG0(E) +G0(E)HTG0(E)HTG0(E) + · · · , (22)

where G0(E) = (E−H0)−1. Let us now define a reduced Green function g in which we restrict the position arguments
of the superconductor to the discrete impurity sites. For instance, in the ss block, this reduced lattice Green function
is defined as gssij = Gss(Ri,Rj) with i, j ∈ Z (as opposed to Gss(Ri,Rj) with Ri,Rj ∈ R3). Let’s compute the
separate blocks of g in (s,d) space (space formed by superconductor and d levels of Anderson impurities),

gddij = gdd0,ij +
∑

k1k2

gdd0,ik1(−tτz)gss0,k1k2(−tτz)gdd0,k2j + · · · (23)

gssij = gss0,ij +
∑

k1k2

gss0,ik1(−tτz)gdd0,k1k2(−tτz)gss0,k2j + · · · (24)

gdsij =
∑

k1

gdd0,ik1(−tτz)gss0,k1j + · · · . (25)

with the notation

gss0,ij = Gss0 (Ri,Rj), gds0,ij = Gds0 (i,Rj). (26)

We obtain the inverse of the lattice Green function, in matrix notation,

g−1 =

(
(gss0 )−1 tτz
tτz E −Hd

)
, (27)

leading to Eq. (5) of the main text. Here, g−1 is a matrix in (s,d) space, in site space, and in spin and particle-hole
space. (The spin and particle-hole indices are implicitly included in the site labels.)

We first compute the Green function of the superconductor. For i 6= j,

gss0,ij(E) = 〈Ri| (E −Hs)
−1 |Rj〉

= 〈Ri|
[
E −

(
(p + khaσzx̂)2

2m
− µ

)
τz −∆τx

]−1
|Rj〉

= 〈Ri| e−ikhxσz
[
E −

(
(p + khaσzx̂)2

2m
− µ

)
τz −∆τx

]−1
eikhxσz |Rj〉

= e−ikh(i−j)aσz
1

V

∑

k

eik·(Ri−Rj)

E − ξkτz −∆τx

= e−ikh(i−j)aσz [(E + ∆τx)P0(|i− j| a) + τzP1(|i− j| a)]
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where [2]

P0(r) =
ν0
2

ˆ

dξk

ˆ 1

−1
dx

eikrx

E2 − ξ2k −∆2
= − πν0√

∆2 − E2

sin kF r

kF r
e−r/ξE (28)

P1(r) =
ν0
2

lim
ωD→∞

ˆ

dξk

ˆ 1

−1
dx

ξke
ikrx

E2 − ξ2k −∆2

ω2
D

ξ2k + ω2
D

= −πν0
cos kF r

kF r
e−r/ξE (29)

with ν0 the normal density of states at the Fermi energy and ξE = vF /
√

∆2 − E2. Then we obtain

gss0,ij(E) = −πν0e−ikhxijσz
{
E + ∆τx√
∆2 − E2

sin kF rij
kF rij

e−rij/ξE + τz
cos kF rij
kF rij

e−rij/ξE
}

(30)

where xij = xi − xj = (i− j)a, rij = |xij |. We can also rewrite it as

gss0,ij(E) = −πν0e−ikhxijσz
{
E + ∆τx√
∆2 − E2

Imf(rij) + τzRef(rij)

}
(31)

with

f(r) =
eikF r−r/ξE

kF r
. (32)

For i = j, we find (see Ref. [2] for details)

gss0,ii(E) = −πν0
E + ∆τx√
∆2 − E2

. (33)

IV. GREEN FUNCTION IN LATTICE MOMENTUM SPACE

We proceed by computing the Green function in lattice momentum space

gss0 (k) =
∑

j

e−ikxijgss0,ij = gss0,ii + 2

∞∑

j=1

cos((k + khσz)ja)g̃ss0j , (34)

where

g̃ssij = −πν0
E + ∆τx√
∆2 − E2

Imf(rij)− πν0τzRef(rij). (35)

For convenience, we define

F (k) = −2
∞∑

j=1

cos(kF ja)f(ja) (36)

=
1

kFa

[
ln(1− e−a/ξE+i(kF+k)a) + ln(1− e−a/ξE+i(kF−k)a)

]
, (37)

which has the property F (k) = F (−k), and define Lσz (k) = F (k + khσz)− i. We then obtain the Green function in
lattice momentum space

gss0 (k) =
πν0(E + ∆τx)√

∆2 − E2
Lσzi (k,E) + πν0τzL

σz
r (k,E) (38)

where Lσzi and Lσzr are the imaginary and real parts of Lσz , cf. Eq. (7) of the main text.
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±
r (k) for kF a = 4.3π, kha = 0.26π and ξ0/a = ∞.

V. NUMERICAL CALCULATION OF PHYSICAL QUANTITIES

A. Excitation spectrum

The inverse Green function g−1 is diagonal in momentum space and we have

g−1(k,E) =

(
(gss0 )−1(k,E) tτz

tτz (gdd0 )−1(k,E)

)
, (39)

with

(gdd0 )−1(k,E) = E − [εd − 2w cos(k + khσz)a] τz +KSσx. (40)

This is an 8 × 8 matrix as a function of k ∈ [−πa , πa ]. Then the subgap band can be calculated by imposing the
condition

det(g−1(k,E)) = 0. (41)

B. Majorana wavefunction

Consider a finite chain of N sites. Since the Majorana state |ψM 〉 ∈ ker g−1(E = 0), its real space representation
in terms of a column vector ψM (i) = 〈i|ψM 〉, with i = 1, . . . N , is in the kernel of the 8N × 8N matrix g−1ij evaluated
at E = 0. The occupation probability at site i is given by

∣∣ψM (i)
∣∣2 = 〈ψM (i), ψM (i)〉, (42)

where 〈·, ·〉 denotes the inner product in spin and particle-hole space. We then take either the components of the
superconducting host when Γ > ∆ or take the d components when Γ < ∆. Note that the s and d entries have different
units and cannot be added. However, the localization length of the end state is the same for both components.

C. Local density of states

The local density of states is related to the diagonal elements of

Aµν(r, E) = − 1

π
lim
η→0+

Im Trσ G
µσ,νσ(E + iη, r, r), (43)
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where µ, ν ∈ {s, d} × {e, h} are composite indices for (s,d) and (e,h) (particle-hole) components, and σ is the index
of the spin space, within which the trace is taken. To obtain a true tunneling density of states, we would also need
to use a Green function G which includes information about the spatial structure of the adatom d-states. This
structure is not explicit in the Green function defined in Eq. (22). The latter treats the adatoms in tight-binding
approximation and retains only the amplitudes of the atomic d-orbitals rather than the spatial structure of the
corresponding wavefunctions.

In the case of Γ� ∆, there is a strong transfer of the spectral weight of the subgap excitations to the superconductor.
Therefore, apart from a narrow vicinity of the adatoms, the main contribution to the local density of states comes
from the states of the host. In this limit, we neglect the contribution of the adatoms (i.e. the d-levels) to the local
density of states. Focusing on the electron contribution, we compute Aµν(r, E) for µ = ν = (s, e) and r = Rj at site
j. Explicitly, we are able to find the local density of states at each site j,

Aj(E) = Aµµ(Rj , E) = − 1

π
lim
η→0+

Im Trσ g
µσ,µσ
jj (E + iη), µ = (s, e), (44)

from the lattice Green function g defined in Eq. (27). It should also be mentioned that we include a finite imaginary
part in the energy E → E + iη, with η = 0.015∆. This small η put in by hand introduces a finite broadening of the
δ-peaks which we obtain from a finite size calculation. This results in a smooth local density of states.

VI. DERIVATION OF EQUATION (10) IN THE MAIN TEXT

The dressed Green function of the superconductor including the self-energy from hybridization with the magnetic
adatoms can be written as

gss = gss0 (1− Σgss0 ). (45)

The self-energy takes the form

Σ = t2gdd0 =




E − ε+d KS 0 0
KS E − ε−d 0 0
0 0 E + ε+d KS
0 0 KS E + ε−d




−1

=
t2

(E − ε+d )(E − ε−d )− (KS)2




E − ε−d −KS 0 0
−KS E − ε+d 0 0

0 0 0 0
0 0 0 0


+

t2

(E + ε+d )(E + ε−d )− (KS)2




0 0 0 0
0 0 0 0
0 0 E + ε−d −KS
0 0 −KS E + ε+d




(46)

where ε±d (k) = εd − 2w cos(k ± kh)a. We now assume that the spin-splitting KS is the largest energy scale in the
problem and is taken to ∞. In this limit, the spin direction is frozen along the Zeeman axis. Moreover, we take the
limit such that the energy of the spin-up band goes to −∞ while the energy Ed of the spin-down band remains finite.
To take the limit, we temporarily introduce E±d = ε±d +KS, and replace ε±d = E±d −KS in the self-energy. Now, E
and E±d remain finite in the limit KS →∞, i.e., KS � E,Ed, and we can approximate

(E − ε+d )(E − ε−d )− (KS)2 ' −KS(E+
d + E−d − 2E) (47a)

(E + ε+d )(E + ε−d )− (KS)2 ' −KS(E+
d + E−d + 2E) (47b)

in the denominators and

E ± ε+,−d ' ∓KS (48)

in the matrix elements. Thus, for KS →∞, we find

Σ ' α−
2πν0

(1 + τz)(σx − τz) +
α+

2πν0
(1− τz)(σx − τz), (49)

where

α± =
πν0t

2

2Ed ± 2E
, Ed =

E+
d + E−d

2
. (50)

44



7

Note that we can also write

Σ = e−i
π
4 σy

{
α−

2πν0
(1 + τz)(σz − τz) +

α+

2πν0
(1− τz)(σz − τz)

}
e−i

π
4 σy = ei

π
4 σy




0 0 0 0

0 − 2α−
πν0

0 0

0 0 2α+

πν0
0

0 0 0 0


 e−i

π
4 σy . (51)

Then

det(1− Σgss0 ) = det





1−




0 0 0 0

0 − 2α−
πν0

0 0

0 0 2α+

πν0
0

0 0 0 0







A+ B E + F C D
E + F A+ B D C
C D A− B −E + F
D C −E + F A− B








= det

{
1− 2

(
−α−(A+ B) −α−D

α+D α+(A− B)

)}

= [1 + 2α−(A+ B)] [1− 2α+(A− B)] + 4α+α−D2

= 1 + 2A(α− − α+) + 2B(α− + α+) + 4α+α−(D2 + B2 −A2) (52)

where

A =
E√

∆2 − E2
Li B = Lr C =

∆√
∆2 − E2

Li (53)

D = − ∆√
∆2 − E2

(δLi) E = −(δLr) F = − E√
∆2 − E2

(δLi) (54)

and

Li,r =
L+
i,r + L−i,r

2
(δLi,r) =

L+
i,r − L−i,r

2
. (55)

The excitation spectrum can be obtained by requiring the above determinant to be zero,

0 = 1 +
2E√

∆2 − E2
Li(α− − α+) + 2Lr(α− + α+) + 4α+α−

{
∆2

∆2 − E2
(δLi)

2 − E2

∆2 − E2
L2
i + L2

r

}

= 1 +
2ΓEd

E2
d − E2

Lr +
Γ2

E2
d − E2

L2
r

+
2E2

√
∆2 − E2

Γ

E2
d − E2

Li +
Γ2

E2
d − E2

{
∆2

∆2 − E2
(δLi)

2 − E2

∆2 − E2
L2
i

}
(56)

with Γ = πν0t
2. Multiplying by (∆2 − E2)(E2

d − E2) gives Eq. (9) of the main text,

(∆2 − E2)[Ed + ΓLr]
2 − E2[

√
∆2 − E2 − ΓLi]

2 + Γ2∆2(δLi)
2 = 0. (57)

VII. COMPARISON WITH EXPERIMENT

Here, we briefly discuss the Majorana localization length as given in Eq. (2) of the main text in more detail. For
lead, the literature value of the coherence length ξ0 is ξ0 ' 80nm [4].

Given that the Fe adatoms are directly embedded into the host superconductor, the hybridization Γ is governed by
physics on the atomic scale. Thus, Γ should also be of the order of atomic energies, Γ ∼ 1eV (for a similar estimate
of the hybridization, see Ref. [3]). According to this estimate, the adatom chains are deeply in the regime of strong
hybridization, Γ� ∆, with quasiparticle weight Z ' ∆/Γ ∼ 10−3.

The value of Γ assumed in this estimate is comparable to ~vF /a, and thus at the border of applicability of our
theory.

The ratio of gaps α = ∆top/∆ is controlled by the strength of spin-orbit coupling in the substrate superconductor.
This is difficult to estimate from first principles. Extracting ∆top from the experiment [5] is hindered by the substantial
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broadening of the peaks in the STM spectra. Interpreting these maxima as van-Hove singularities of the Shiba bands,
one finds a topological gap of order 0.1∆.

Inserting these numbers into Eq. (2) for the Majorana localization length ξM , we find that ξM is two orders of
magnitude smaller than the coherence length ξ0 of the substrate superconductor, i.e., of order 1nm or a few adatom
spacings a (a ' 0.4nm according to Ref. [5]).
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[4] A. Fetter and D. Walecka, Quantum Theory of Many Particle Systems (MacGraw-Hill, New Yorck, 1971).
[5] S. Nadj-Perge, I.K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A.H. MacDonald, B.A. Bernevig, A. Yazdani, Science 346,

602 (2014).
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3 Robust Majorana conductance peaks for a
superconducting lead

It is a prominent prediction that tunneling into a Majorana from a metallic lead pro-
duces a quantized zero-bias conductance peak at zero temperature. However, Majorana
experiments consistently show non-quantized peaks. Presumably, the failure to observe
quantization is a result of temperature broadening as well as inelastic poisoning processes.
I showed that using superconducting instead of normal-metal leads has two advantages.
First, the conductance is not only universal but also protected against temperature ef-
fects by the superconducting gap. Second, I predicted that Majoranas are signalled by
symmetric conductance peaks at bias voltages eV = ±∆ (∆ is the gap of the supercon-
ducting lead). The latter prediction was already checked experimentally by the groups of
K. Franke [7] and A. Yazdani [64].
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Experimental evidence for Majorana bound states largely relies on measurements of the tunneling
conductance. While the conductance into a Majorana state is in principle quantized to 2e2=h, observation of
this quantization has been elusive, presumably due to temperature broadening in the normal-metal lead.
Here, we propose to use a superconducting lead instead, whose gap strongly suppresses thermal
excitations. For a wide range of tunneling strengths and temperatures, a Majorana state is then signaled
by symmetric conductance peaks at eV ¼ �Δ of a universal height G ¼ ð4 − πÞ2e2=h. For a super-
conducting scanning tunneling microscope tip, Majorana states appear as spatial conductance plateaus
while the conductance varies with the local wave function for trivial Andreev bound states. We discuss
effects of nonresonant (bulk) Andreev reflections and quasiparticle poisoning.

DOI: 10.1103/PhysRevLett.115.266804 PACS numbers: 73.63.Nm, 74.20.-z, 75.70.Tj, 75.75.-c

Introduction.—Motivated by possible applications in
quantum information processing [1,2], topological super-
conductors hosting Majorana bound states are currently
under intense investigation [3–5]. Based on the super-
conducting proximity effect, various realistic platforms
have been proposed to support Majorana states including
topological insulators [6,7], semiconductor nanowires
[8,9], and atomic chains [10–16]. Although these systems
are available in the laboratory, the experimental observation
of unique Majorana signatures remains challenging.
A widely employed diagnostic tool is the tunneling

conductance of normal metal-superconductor junctions,
in which Majorana bound states manifest themselves as
characteristic zero-bias peaks [17,18]. Experimental sig-
natures consistent with theoretical predictions have been
observed in quantum wires [19–21] and atomic chains
[22,23]. However, it is a major challenge in these experi-
ments to uniquely distinguish Majorana bound states from
conventional fermionic subgap states. Spin-polarized
subgap states such as Shiba states bound to magnetic
impurities [24–27] or Andreev bound states in a magnetic
field can exhibit a zero-energy crossing as a function of
exchange interaction or Zeeman energy [28–30]. Thus,
such fermionic states may accidentally occur at zero energy
and give rise to similar conductance features. As magnetic
impurities or external magnetic fields are also required for
the most relevant realizations of topological superconduc-
tors, such trivial conductance peaks can generally not be
disregarded.
In contrast to fermionic subgap states, Majorana states

exhibit a celebrated quantized zero-bias conductance of
2e2=h [17,18,31]. Unfortunately, this has, so far, proved
difficult to observe in experiment. The Fermi distribution in
the metal lead is smooth on the scale of the temperature T,
which strongly limits the experimental energy resolution.
When temperature is larger than the tunnel coupling, the

Majorana peak is broadened and the zero-bias conductance
is reduced. Even at low temperatures (e.g., T ¼ 60 mK in
Ref. [19]), it may be difficult to observe the quantized peak
height, as multichannel effects limit the relevant tunneling
strength [32]. Quasiparticle (qp) poisoning may also lead to
deviations from quantization. A fermion-parity breaking
rate exceeding the tunnel coupling broadens the peak and
reduces its height. This requires one to work at temper-
atures below the lowest fermionic excitations in the
topological superconductor.
In this Letter, we show how a robust conductance signature

of Majorana bound states can be obtained by employing
superconducting leads. In striking contrast to normal-state
contacts, effects of thermal broadening are strongly sup-
pressed for a superconducting lead because quasiparticle
excitations are exponentially suppressed∼ expð−Δ=TÞ by its
superconducting gap Δ. Majorana bound states no longer
appear as zero-bias anomalies but rather as two symmetric
peaks in the differential conductance G ¼ dI=dV which
occur when the BCS singularity of the superconducting
gap lines up with the Majorana bound state, i.e., at the
thresholds eV ¼ �Δ. These peaks have a universal height

GM ¼ ð4 − πÞ 2e
2

h
; ð1Þ

which persists over a wide range of tunnel couplings.
This yields particularly striking evidence when employ-

ing a scanning tunneling microscope (STM) with a super-
conducting tip which allows for spatially resolved
measurements. This has previously been used to map
out bound state wave functions in conventional and
unconventional superconductors [22,23,33–36]. Here, we
propose that such maps can clearly distinguish between
Majorana bound states and trivial zero-energy bound states.
Indeed, the peak conductance is uniform in the vicinity of
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Majorana states and a conductance map exhibits a char-
acteristic mesa or plateau structure. In contrast, the con-
ductance of trivial subgap states exhibits a spatial pattern
which is governed by the bound-state wave function.
In addition, STM measurements allow for systematic

studies as a function of tunneling strength by varying the tip
height. It was recently demonstrated [37] that this can be
exploited to probe quasiparticle relaxation processes. In the
present context, varying the tunneling strength may help to
identify Majorana signatures despite competing effects
such as nonresonant Andreev reflections or quasiparticle
poisoning.
Subgap conductance for Majorana bound state.—At

subgap voltages eV < Δþ Δs and zero temperature, the
tunneling current between superconducting tip or lead and
substrate (with gap Δs) flows by multiple Andreev reflec-
tions. Near the threshold ejVj ¼ Δ, the differential con-
ductance dI=dV is dominated by single Andreev reflections
from the sample. For tip locations far from the zero-energy
bound state in the sample, this yields the familiar peak in
dI=dV due to the singular densities of states of incoming
electrons and outgoing holes. In the vicinity of the bound
state, tunneling is further enhanced by the zero-energy
resonance [37–39].
Formally, the subgap current due to single Andreev

reflections from the sample can be expressed as [40–42]

IðVÞ ¼ 4eπ2t4
Z

dω
2πℏ

Tr½Gehðr;ωÞG†
ehðr;ωÞ�

× ρðω−ÞρðωþÞ½nFðω−Þ − nFðωþÞ�; ð2Þ
where t is the amplitude for tip-substrate tunneling,
ω� ¼ ω� eV, nFðωÞ denotes the Fermi function, and
the superconducting tip enters through its BCS density
of states ρðωÞ ¼ ν0θðjωj − ΔÞjωj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − Δ2

p
with ν0 the

normal density of states at the Fermi energy. Spin or
subband degrees of freedom are accounted for by a possible
matrix structure of the anomalous retarded Green function
Gehðr;ωÞ of the substrate at the tip position r. In terms of its
Lehmann representation, Gehðr;ωÞ has contributions from
both the bound state and the above-gap continuum. In the
following, we first consider the resonantly enhanced
Andreev current from a Majorana bound state and sub-
sequently discuss the contribution of the quasiparticle
continuum.
For ejVj≃ Δ, we can approximate nFðω−Þ − nFðωþÞ≃

sgnV in Eq. (2), up to corrections of order expð−Δ=TÞ. This
insensitivity to temperature is a key advantage of super-
conducting leads. The bound-state contribution to the
substrate Green function is

Gðr;ωÞ ¼ hrjψihψ jri
ωþ iΓ=2

: ð3Þ

Here, hrjψi¼½ζðrÞ;�ΘζðrÞ�T denotes the local
Bogoliubov–de Gennes wave function of the Majorana

bound state with Θ the time-reversal operator. The broad-
ening Γ ¼ 2ihψ jΣjψi of the bound state is induced by the
tunnel coupling to the lead. The corresponding self energy
Σ ¼ −iπt2diag½ρðω−Þ; ρðωþÞ� is diagonal as Andreev
reflections in the lead can be neglected near ejVj ¼ Δ.
Inserting Eq. (3) into (2) yields (for V > 0) [37,43]

I ¼ e
h

Z
dω

ΓeðωÞΓhðωÞ
ω2 þ ½ΓeðωÞ þ ΓhðωÞ�2=4

; ð4Þ

in terms of the electron and hole tunneling rates
Γe=hðωÞ ¼ 2πt2jζj2ρðω∓Þ. While the integrand in Eq. (4)
has a resonance denominator, its behavior is peculiar due to
the strong energy dependence of the tunneling rates.
Specifically, the square-root singularity of the BCS density
of states implies that the integrand involves a characteristic
energy scale ωt ¼ ½πt2ν0jζðrÞj2

ffiffiffiffiffiffiffiffiffi
Δ=2

p �2=3 which depends
on a fractional power of the tunneling rate from a normal tip
γn ¼ 2πt2ν0jζðrÞj2. In the weak-tunneling regime ωt ≪ Δ,
we can write

I ¼ 4e
h

Z
η

−η

dωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − ω2

p ω3
t

ω2 þ ω3
t ð 1ffiffiffiffiffiffiffi

η−ωp þ 1ffiffiffiffiffiffiffi
ηþω

p Þ2 ; ð5Þ

for 0 < η ≪ Δ, where η ¼ eV − Δ measures the voltage
from the threshold Δ. In the vicinity of the threshold,
η ≪ ωt, the resonance denominator is dominated by
the second term, and we obtain IðVÞ ¼ ð4 − πÞð2e=hÞ×
ðeV − ΔÞθðeV − ΔÞ and, thus, Eq. (1). The entire peak line
shape

dI
dV

¼ ð4 − πÞ 2e
h
Λ

�
eV − Δ

ωt

�
; ð6Þ

involves the function ΛðxÞwhich vanishes for x < 0, jumps
to Λð0þÞ ¼ 1, and falls off with a small negative differ-
ential conductance tail at large x, cf. Fig. 1.
Thus, the differential conductance between a conven-

tional superconductor and a Majorana state exhibits a peak
which is independent of tunneling strength and Majorana
wave function. While the peak height is close to the
quantized Majorana peak height 2e2=h for a normal-metal
lead, there are several differences: (a) There are two
symmetric, finite-bias Majorana peaks at eV ¼ �Δ rather
than a single zero-bias peak. (b) The conductance peak is
strongly asymmetric with a discontinuous step at the
threshold. (c) The width of the peak is set by ωt with its
sublinear dependence on junction transparency.
The threshold discontinuity in the conductance persists

even when including the contributions of the quasiparticle
continuum in the substrate Green function. To see this,
we model the substrate superconductor by a 2 × 2 Nambu
Green function gðω; rÞ. For a topological substrate, this is
appropriate for perfect spin polarization (spinless p-wave
superconductor). Including the tunnel coupling to the tip
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through the self energyΣ as given above, the substrateGreen
function becomes G ¼ g½1 − Σg�−1. We first focus on the
vicinity of the bound state where the conductance is
dominated by Andreev reflections from the bound state.
By straightforward calculation and expansion of g inω [40],
we find

Gðr;ωÞ ¼ hrjψihψ jri
ω − λðωÞ þ iΓ=2

: ð7Þ

This differs from the pure bound-state contribution by the
additional term λðωÞ ¼ π2t4ω det gðω; rÞρðω−ÞρðωþÞ in the
denominator which involves the determinant (in particle-
hole space) of the bare substrate Green function. While the
determinant of the bound-state contribution to the Green
function vanishes, this is no longer the case when including
the quasiparticle continuum. At subgap energies away from
bound states, theGreen function gðω; rÞ is a Hermitian 2 × 2
matrix, so that det gðω; rÞ and, hence, λðωÞ are real. Thus,we
find

IMðVÞ ¼
4e
h

Z
η

−η

dωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − ω2

p ω3
t

ðω − λÞ2 þ
�

ω3=2
tffiffiffiffiffiffiffi
η−ωp þ ω3=2

tffiffiffiffiffiffiffi
ηþω

p
�
2
:

ð8Þ

For a Majorana state, the real part of the resonance
denominator must vanish exactly at ω ¼ 0. Indeed, par-
ticle-hole symmetry further constrains det gðω; rÞ to be an
even function ofωwhich can be approximated as a constant
at small ω (see [40], where this conclusion is confirmed by
model calculations). Then, we find λðωÞ ∝ t4ω=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − ω2

p
near the threshold. Even with this term, the denominator in
Eq. (8) remains dominated by the divergent tunnel broad-
enings ∼ω3=2

t =
ffiffiffiffiffiffiffiffiffiffiffiffi
η� ω

p
and the discontinuous conductance

step as well as the universal value of the threshold conduct-
ance in Eq. (1) persist.
In experiment, the square-root singularity of the BCS

density of states of the tip may be broadened intrinsically
due to higher-order processes or effectively due to exper-
imental resolution. The universal threshold conductance
persists as long as ωt exceeds this broadening. This
condition also determines the spatial extent of the con-
ductance plateau, r≲ 4ξ ln½ωtð0Þ=δΔ�=3, where ξ is the
Majorana localization length, ωtð0Þ denotes the value of ωt
at the center of the Majorana bound state, and δΔ is the
broadening of the tip density of state, cf. Fig. 1(b). Of
course, a well-resolved Majorana peak also requires
ωt ≪ Δs; i.e., the tunnel broadening needs to be small
compared to the induced gap. If the peak is not fully
resolved, it is suppressed below the universal value and its
height may vary as a function of space.
For tip locations far from the bound state, the tunneling

conductance is dominated by conventional (“nonresonant”)
Andreev reflections. These still yield a threshold peak due
to the singular tip density of states in Γe and Γh but are
not enhanced by a bound-state resonance. For a one-
dimensionalp-wave superconductor, this conductance peak
has height ≃1.3GM and width ∼ΔT 2 quadratic in the
junction transparency T ∝ t2 [40]. Observing the conven-
tional Andreev peak, thus, requires that the broadening of
the tip density of states is small compared to∼ΔT 2. This is a
much more stringent condition than for the resonant
Andreev peak as the width of the bound-state peak ωt ∝
t4=3 involves a lower power of t. We note that, in a typical
STM experiment [37], conventional Andreev peaks can be
resolved only for small tip-sample distances, while bound-
state signatures persist to much weaker tunnel couplings.
Subgap conductance for Andreev bound state.—These

results should be contrasted with those for trivial zero-
energy Andreev bound states. For concreteness, consider an
s-wave superconductor with conserved spin [44], whose
Bogoliubov–de Gennes description decomposes into two
independent spin sectors that interchange under particle-
hole transformations. A zero-energy Andreev state corre-
sponds to two Bogoliubov–de Gennes wave functions,
hrjψþi ¼ ½uðrÞ; vðrÞ�T and hrjψ−i ¼ ½ΘvðrÞ;−ΘuðrÞ�T,
one in each sector. An analogous calculation [40] yields
the threshold current

IAðVÞ ¼ 2IMðVÞf½juðrÞj2=jvðrÞj2�: ð9Þ
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FIG. 1 (color online). (a) Differential conductance vs bias
voltage near the threshold eV ¼ Δ for Majorana states (solid
line) and Andreev states with juj ¼ jvj (dashed line). For a
Majorana state, the conductance exhibits a step of height
ð4 − πÞ2e2=h at the threshold. For an Andreev state, the conduct-
ance has a smooth onset, cf. Eq. (10). Both peaks have a negative-
differential conductance dip at high voltages. Inset: Graph of fðxÞ
as defined in the main text. (b) Spatial conductance maps for
Majorana states (left) and Andreev (right) states forωtð0Þ=δΔ ¼ 5.
The Majorana state gives rise to a conductance plateau, whereas
the Andreev state exhibits a pattern reflecting the spatial depend-
ence of the ratio ðu=vÞ2. TheMajorana conductance drops far from
the bound state when the broadening exceeds ωt.
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Reflecting the two zero-energy wave functions, the
maximal threshold conductance is twice that in the
Majorana case, GA ¼ 2GM, and realized for the particle-
hole symmetric case juj ¼ jvj. In general, the peak
conductance depends on the ratio of electron and
hole wave function at the tip position. This dependence
is captured by the dimensionless function fðxÞ¼
½2x=ð4−πÞ�R 1

−1dz
ffiffiffiffiffiffiffiffiffiffiffi
1−z2

p
=ðx ffiffiffiffiffiffiffiffiffi

1−z
p þ ffiffiffiffiffiffiffiffiffi

1þz
p Þ2 which takes

on values between 0 and 1 and is plotted in Fig. 1(a). The
function satisfies fðxÞ ¼ fð1=xÞ as the two spin sectors
contribute equally. In the limit of large particle-hole
asymmetry, GA ∼GM minðju=vj2; jv=uj2Þ ≪ GM. The line
shape of the conductance peak is similar to the Majorana
peak, with a width of order ωt upon replacing ζðrÞ
by maxfuðrÞ; vðrÞg.
Our results imply that the height of the conductance peak

allows for a clear distinction between a conventional
Andreev bound state and a Majorana state. Even when
fðu2=v2Þ ∼ 1=2 for one location of the STM tip, moving
the tip to another location modifies the conductance peak
height for a conventional bound state, tracking the ratio of
electron and hole wave functions. In contrast, the conduct-
ance map exhibits a characteristic mesa structure for a
Majorana state, see Fig. 1(b). In non-STM tunneling
experiments, changes of parameters (e.g., gate voltages)
which affect the Majorana wave function should leave the
peak height unchanged for a Majorana bound state but not
for a conventional Andreev bound state.
As there is no locking of the bound state to zero energy,

the continuum contribution is also distinctly different for
conventional Andreev states. The two spin sectors are
described by separate 2 × 2 Nambu Green functions which
map into one another under particle-hole transformations.
This is quite unlike the Majorana Green function which
maps onto itself. For each sector, det gðω; rÞ is, therefore,
no longer an even function of ω and will generally have a
singular contribution ∝ 1=ω at the threshold so that
λðωÞ ∼ T 2ΔsΔ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − ω2

p
. These general arguments can

be confirmed explicitly for Shiba states in s-wave super-
conductors [40]. Near the threshold, the resonance
denominator in the expression for the current is now
dominated by λðωÞ. As illustrated in Fig. 1 by a numerical
evaluation of the current, this suppresses the conductance
step. Analytically, we find that just above the threshold, the
conductance increases linearly,

GAðVÞ ∼
2e2

h
1

T 2

eV − Δ
Δ

θðeV − ΔÞ; ð10Þ

and matches with the conductance obtained from Eq. (9)
for eV − Δ ≫ T 2Δ. We note that this suppression of the
conductance step depends on T and can, thus, be probed by
varying the tip-sample distance in an STM experiment.
This may serve as an additional signature for distinguishing

between Majorana bound states and conventional Andreev
bound states.
Effects of quasiparticle poisoning.—So far, we only

included bound-state broadening by the tunneling contact.
At finite temperatures, the bound-state occupation also
changes by inelastic transitions to other subgap states or the
quasiparticle continuum in the sample [45]. We account for
these processes by an additional contribution iΓqp=2 to the
self energy of the bound-state Green function Eq. (7). This
does not affect the Andreev current at the threshold, where
the denominator is dominated by the diverging tunnel
coupling. However, the overall weight of the peak is
reduced by a narrowing of the linewidth by a factor
ðωt=ΓqpÞ2 once Γqp > ωt, see Fig. 2 (inset).
In addition, quasiparticle poisoning generates a single-

electron current Is which involves tunneling of single
particles followed by inelastic transitions from the zero-
energy bound state to other bound states or the quasiparticle
continuum [37]. For a Majorana state, we find near the
threshold eV ¼ Δ (with analogous results applying for
Andreev bound states) [40]

IsM ¼ e
4h

Z
dω

Γqp½ΓeðωÞ þ ΓhðωÞ�
ω2 þ ½Γqp þ ΓeðωÞ þ ΓhðωÞ�2=4

: ð11Þ

For weak and strong tunneling, this yields [40]

Gs
M ∼

2e2

h

(
ðωt=ΓqpÞ3=2 ωt ≪ Γqp;

Γqp=ωt ωt ≫ Γqp:
ð12Þ

Figure 2 shows that this single-particle contribution
assumes a maximum of ∼0.2GM when ωt ∼ Γqp.
However, it can be easily made negligible by tuning the
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FIG. 2 (color online). Total threshold conductance for aMajorana
state (tot) along with the single-particle contribution (sp) as a
function ofωt. The single-particle contribution affects the conduct-
ance only in a window of transmission values, where ωt ∼ Γqp.
While themaximum isoforder0.2GM, the positionof themaximum
in tunneling strength depends sensitively on temperature (through
Γqp). Inset: Line shape of the total conductance as a function of
voltage away from the threshold, for different ratios of ωt=Γqp.
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system away from this maximum through varying temper-
ature or tunneling strength.
Conclusions.—We show that conductance measurements

with superconducting leads constitute a promising tech-
nique for identifying Majorana states. The presence of
Majorana states is signaled by conductance peaks of
universal height which are largely unaffected by thermal
broadening, a key obstacle in previous experiments with
normal-metal contacts. We discuss strategies to systemati-
cally rule out parasitic effects such as quasiparticle poison-
ing or trivial subgap states. The proposed setup is readily
available in the laboratory and, in fact, has already been
realized in previous experiments [22,23,46,47]. (Notice,
however, that temperature was comparable to the induced
gap in the STM experiments performed to date, precluding
observation of the universal conductance, and that the
nanowire experiments focused on zero-bias peaks.) Our
results also imply that quasiparticle poisoning rates can be
extracted from systematic measurements as a function of tip
height and temperature.
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Supplementary Material for “Robust Majorana conductance peaks for a
superconducting lead”

I. GENERAL FORMULA FOR ANDREEV CURRENT INTO SUBGAP STATES

In this section, we outline the derivation of the tunneling current in Eq. (2) of the main text. This standard
calculation is included to make the presentation self contained and closely follows the derivation for 2 × 2 Green
functions presented in Ref. [1]. We describe the tunneling contact by the Hamiltonian Ĥ = ĤL + ĤR + ĤT , where
the three terms refer to the lead (tip), the sample, and the tunnel coupling. The superconducting tip with chemical
potential µ and gap ∆ is described by the BCS Hamiltonian

ĤL =

∫
dk

(2π)3

[∑

σ

ξk ĉ
†
L,kσ ĉL,kσ + (∆ĉ†L,k↑ĉ

†
L,−k↓ + h.c.)

]
, (1)

where ξk = k2/2m − µ and cL,kσ (c†L,kσ) annihilates (creates) an electron in the tip with momentum k and spin σ.
The sample Hamiltonian generally takes the form

ĤR =

∫
dx
∑

σ,σ′

ĉ†R,σ(x)HR,σσ′(x)ĉR,σ′(x), (2)

where HR,σσ′(x) is the Hamiltonian in first quantization and ĉR,σ(x) annihilates an electron with spin σ at position
x in the sample. We choose the superconducting order parameters in tip and sample to be real such that the
superconducting phase difference φ(τ) enters the tunneling Hamiltonian

ĤT (τ) =
∑

σ

[
teiφ(τ)/2ĉ†L,σ(0, τ)ĉR,σ(x, τ) + te−iφ(τ)/2ĉ†R,σ(x, τ)ĉL,σ(0, τ)

]
, (3)

where τ the time argument, t is the hopping strength, and ĉL,σ(0, τ) =
∫
dkĉL,kσ(τ)/(2π)3 annihilates an electron in

the tip at the tunneling contact, which is located at the origin. The sample is contacted at position x and we suppress
the position arguments in the following for simplicity. The time-dependent phase difference between the tip and the
sample, φ(τ) = φ0 + 2eV τ , depends on the voltage V applied to the junction.

We evaluate the current from the Heisenberg equation of motion Î = −e ˙̂
NL = ie[N̂L, ĤT ], where N̂L is the

electron-number operator of the tip. Taking the expectation value, we obtain

I(τ) =
e

2
Tr
{
τz
[
t̂(τ)G<RL(τ, τ)−G<LR(τ, τ)t̂∗(τ)

]}
, (4)

where τz is a Pauli matrix acting in Nambu space, t̂(τ) = teiτzφ(τ)/2τz, and we have introduced the lesser Green

function in Nambu and spin space with matrix elements given by (G<αβ)ij = i〈Ψ†βjΨαi〉. Here the Ψαj are components

of the Nambu spinor Ψα =
(
cα,↑, cα,↓, c

†
α,↓,−c

†
α,↑

)T
with α, β = L,R.

We are interested in tunneling processes to lowest order in the tunneling amplitude and therefore neglect Andreev
reflections in the tip, which give rise to multiple Andreev reflections. As these processes involve several single-particle
tunneling events they enter only at higher orders in the tunneling amplitude. This approximation is exact when the
sample is spin polarized (e.g., a proximity-coupled semiconductor nanowire in a strong magnetic field) and one of
the two spin components is fully normal reflected. In this case, spin-flipping Andreev reflections in the tip do not
contribute to transport.

We follow the nonequilibrium Green function approach described in Ref. [1, 2] setting the offdiagonal elements of
the tip Green function in Nambu space to zero and denoting the diagonal elements by gL(ω). We obtain the dc current

I =
et2

2h

∫
dω Tr

{
G>,eeR (ω)g<L (ω − eV )−G<,eeR (ω)g>L (ω − eV )− g>L (ω + eV )G<,hhR (ω) + g<L (ω + eV )G>,hhR (ω)

}
,

(5)
where GR(ω) =

∫
dτ1dτ2 exp[iω(τ1 − τ2)]GR(τ1, τ2) is the sample Green function in presence of the tip, (e, h) are

indices in Nambu space denoting particle and hole components, and the trace is taken in spin space. This expression
has been derived in Ref. [1] for the case when tip and sample are both spin-conserving s-wave superconductors.
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According to the Langreth rule, the lesser Green function of the sample can be written as

G<R = g<R + grRΣrRG
<
R + grRΣ<RG

a
R + g<RΣaRG

a
R

= (1− grRΣrR)
−1
g<R(1 + ΣaRG

a
R) +GrRΣ<RG

a
R. (6)

Similar expressions also exist for the greater Green function. The first term involving g<R gives rise to a single-particle
current which at subgap energies requires inelastic processes in the sample. The second term leads to the current
carried by Andreev reflections. The sample self energy due to the presence of the tip can be written as

Σ(ω) = t2 diag(gL(ω−), gL(ω−), gL(ω+), gL(ω+)), ω± = ω ± eV. (7)

We now focus on the Andreev current and defer the discussion of the single-particle current to Sec. V. Thus
neglecting the first term in Eq. (6) we find Eq. (2) of the main text,

I(V ) =
et4

2h

∫
dω Tr

{
Gr,ehR (ω)g>L (ω + eV )Ga,heR (ω)g<L (ω − eV )−Gr,ehR (ω)g<L (ω + eV )Ga,heR (ω)g>L (ω − eV )

}

+
et4

2h

∫
dω Tr

{
g>L (ω + eV )Gr,heR (ω)g<L (ω − eV )Ga,ehR (ω)− g<L (ω + eV )Gr,heR (ω)g>L (ω − eV )Ga,ehR (ω)

}

=
4π2et4

h

∫
dω ‖GehR (ω)‖2ρ(ω + eV )ρ(ω − eV ) [nF (ω − eV )− nF (ω + eV )] (8)

where Gr,ehR is the electron-hole block of the (retarded) Green function of the sample and ‖G‖ =
√

Tr (GG†) denotes
the Frobenius norm of matrix G. Here we have used the relations g<L (ω) = 2πinF (ω)ρ(ω) and g>L (ω) = −2πi(1 −
nF (ω))ρ(ω), where nF (ω) is the Fermi distribution function, ρ(ω) = ν0 |ω| θ(ω2−∆2)/

√
ω2 −∆2 and ν0 is the normal

density of state at the Fermi energy in the tip. Due to the step functions in ρ(ω ± eV ) the integration interval is
restricted to ω ∈ (−(eV −∆), eV −∆). Note that in this interval the self energy is purely imaginary.

II. CONDUCTANCE FOR ZERO-ENERGY BOUND STATES

In this section, we calculate the conductance for isolated Majorana or Andreev states at zero energy, cf. Eqs. (6)
and (9) of the main text, neglecting the contributions of all other states in the sample. While the main text focuses
on Andreev states in s-wave superconductors, we also consider more general spin structures here.

A. Topological superconductor with Majorana bound states

We first consider a topological superconductor substrate with a single zero-energy Majorana state to the tip. The
Majorana wavefunction has the form Φ0(x) = (u↑(x), u↓(x)∗, u↓(x),−u↑(x)∗)T which maps onto itself under a particle-
hole transformation. Neglecting contributions from other states, we can approximate the sample Green function by
gM (ω, x, x) = Φ0(x)Φ†0(x)/ω. Note that we suppress position arguments throughout this section. Including the
coupling to the tip the full Green function can be written as

G =
1

ω − Σ̃M
Φ0Φ†0, (9)

where Σ̃M = Φ†0ΣΦ0 is the self energy projected onto the Majorana bound state. We obtain

Greh(ω) =
1

ω + iπt2 |ζ|2 [ρ(ω+) + ρ(ω−)]

(
u↑u∗↓ −u2

↑
u∗2↓ −u∗↓u↑.

)
(10)

where we introduced |ζ|2 = |u↑|2 + |u↓|2. Thus we find

‖Geh(ω)‖2 =
|ζ|4

ω2 + π2t4 |ζ|4 [ρ(ω+) + ρ(ω−)]
2 (11)
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and using Eq. (8) we obtain the current

IM (V ) =
e

h

∫
dω

ΓMe (ω)ΓMh (ω)

ω2 +
(
ΓMe (ω) + ΓMh (ω)

)2
/4

[nF (ω − eV )− nF (ω + eV )] , (12)

with ΓMe/h(ω) = 2πt2 |ζ|2 ρ(ω∓).
We now evaluate the current near the threshold eV = ∆ + η, η � ∆. The current at the opposite threshold

eV = −∆ follows from I(−V ) = −I(V ). At low temperatures, T � ∆, we can set nF (ω− eV )−nF (ω+ eV ) ∼ 1 and
the Majorana current reads

IM (V ) ' 2e

h

∫ η

0

dω
ΓMe (ω)ΓMh (ω)

ω2 + (ΓMe (ω) + ΓMh (ω))2/4
. (13)

To lowest order in η, one can approximate

ρ(ω ± eV ) ' ν0

√
∆

2

θ(η ± ω)√
η ± ω . (14)

This yields

IM (V ) ' 2e

h
η(4− π)Λ(η/ωt) (15)

as given in Eq. (6) of the main text, where we have defined

Λ(x) =
4

4− π

∫ 1

0

dz
1√

1− z2

1

z2x3 +
(

1√
1+z

+ 1√
1−z

)2 . (16)

At the threshold we find

Λ(0) =
1

4− π

∫ 1

0

dz
2
√

1− z2

1 +
√

1− z2
= 1 (17)

which yields Eq. (1) of the main text. At large voltages, η � ωt, we instead find a negative differential conductance
dI/dV ∝ −1/η3 in agreement with the lineshape shown in Fig. (1) of the main text.

B. Non-topological Andreev states at zero-energy

A non-topological zero-energy Andreev bound state is characterized by two Nambu spinors

Φ+ =

(
u
v

)
, Φ− =

(
Θv
−Θu

)
(18)

where u = (u↑, u↓)T, v = (v↓, v↑)T are functions of space and Θ = −iσyK is the time-reversal operator with K the
complex conjugation. The Lehmann representation of the real space Green function is thus a 4× 4 Matrix in Nambu
and spin space

g(ω) =
Φ+Φ†+ + Φ−Φ†−

ω
=

1

ω
( Φ+,Φ− )

(
Φ†+
Φ†−

)
. (19)

When spin is a good quantum number the Green function may be reduced to a 2 × 2 Matrix in particle-hole space
only. In the case of pure s-wave pairing, where Cooper pairs are formed from electrons with opposite spin, we can
set u↓ = v↑ = 0. The spinors Φ+ and Φ− then belong to the orthogonal subspaces spanned by (c↑, 0, c

†
↓, 0) and

(0, c↓, 0,−c†↑). The Green function decomposes into two 2×2 blocks, which are related by particle-hole symmetry and
have equal contributions to the current. In the opposite case of a spin polarized p-wave superconductor we can set
u↓(x) = v↓(x) = 0. Now Φ+ and Φ− belong to the same subspace spanned by (c↑, 0, 0,−c†↑) and the Green function
is a single 2× 2 matrix.
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It is therefore useful to first discuss a general 2× 2 Nambu Green function

g =

(
gee geh
ghe ghh

)
. (20)

We will return to the 4×4 case in Sec. II B 3 when discussing superconductors with spin-orbit coupling. The coupling
to the tip can be included through the self-energy Σr(ω) = −iπt2 diag(ρ(ω−), ρ(ω+)). The Green function of the
coupled system is obtained from the Dyson equation G = g(1− Σg)−1. We find

Greh(ω) =
geh(ω)ω

ω − λ(ω) + iπωt2(gee(ω)ρ(ω−) + ghh(ω)ρ(ω+))
(21)

where λ(ω) = ωπ2t4ρ(ω+)ρ(ω−) det g(ω). Using Eq. (8), we obtain the current

I(V ) =
4π2et4

h

∫ eV−∆

∆−eV
dω

ω2 |geh(ω)|2 ρ(ω−)ρ(ω+)

[ω − λ(ω)]2 + π2ω2t4 [(gee(ω)ρ(ω−) + ghh(ω)ρ(ω+)]
2 . (22)

We now calculate the conductance for a zero-energy Andreev state in the limiting cases of pure s-wave and spinless
p-wave pairing and for a general spin-structure of the order parameter in the presence of spin-orbit coupling. The
result for the three cases are compared in Fig. 1.

1. s-wave pairing

When u↓ = v↑ = 0 the Green function in Eq. (24) is block diagonal. The 2× 2 block in the basis (c↑, c
†
↓) reads

g =
1

ω

(
|u↑|2 u↑v∗↓
u∗↓v↑ |v↓|

2

)
. (23)

We find det g(ω) = 0 and thus λ(ω) vanishes. Using Eq. (27), we arrive at the current as given in Eq. (9) of the main
text,

IA(V ) =
2e

h

∫ eV−∆

∆−eV
dω

ΓAe (ω)ΓAh (ω)

ω2 +
(
ΓAe (ω) + ΓAh (ω)

)2
/4

(24)

where ΓAe (ω) = 2πt2 |u↑|2 ρ(ω−), ΓAh (ω) = 2πt2 |v↓|2 ρ(ω+). We have included an extra factor of two to account for
the second 2 × 2 block of the Green function which yields an equal contribution as a consequence of particle-hole
symmetry. Near the threshold when eV = ∆ + η, η � ∆ we find

IA(V ) = 2IM (V )f(|u(r)|2/|v(r)|2), (25)

which can be obtained by a similar analysis as for the Majorana bound state in the previous section. The dimensionless
function

f(x) =
2x

4− π

∫ 1

−1

dz
√

1− z2/(x
√

1− z +
√

1 + z)2 (26)

takes on values between 0 and 1. Thus, the threshold differential conductance is

dIA
dV

∣∣∣∣
eV=∆

=
4e2

h
f(|u(r)|2/|v(r)|2)(4− π). (27)

2. p-wave pairing

In a spin-polarized p-wave superconductor Cooper pairs we can set u↓ = v↓ = 0. The Green function of an Andreev
state reduces to a single 2× 2 matrix

g =
1

ω

(
|u↑|2 + |v↑|2 2u↑v∗↑

2u∗↑v↑ |u↑|2 + |v↑|2
)
. (28)
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We have introduced λ(ω) = π2t4ρ(ω+)ρ(ω−)(|u↑|2 − |v↑|2)2/ω and using Eq. (27) we obtain

IA(V ) =
16π2et4

h

∫ η

−η
dω

|u↑v↑|2 ρ(ω−)ρ(ω+)
[
ω − ρ(ω−)ρ(ω+)π2|t4|

ω

(
|u↑|2 − |v↑|2

)2
]2

+ π2t4(|u↑|2 + |v↑|2)2[ρ(ω+) + ρ(ω−)]2

(29)

with eV = ∆ +η. Close to the threshold η → 0 the denominator is dominated by λ(ω) ∝ 1/η2 and we generically find
I ∝ η4θ(η). Hence the conductance G ∝ η3θ(η) is continuous in contrast to the case of s-wave pairing. At certain
points in space it may be possible that |u↑| = |v↑| in which case the conductance still jumps at the threshold. Slightly
moving away from such points should restore the smooth onset of the conductance at the threshold. The conductance
exhibits a peak at the characteristic scale η ∼ ωt with ωt = (max{|u↑|2, |v↑|2}ν0t

2
√

∆)2/3 as shown in Fig. 1.

3. Generic case with spin-orbit coupling

Realistic proposals of topological superconductors typically involve a mixture of s-wave and p-wave pairing. In
particular, such pairing arises in any superconductor with spin-orbit coupling. In this case all components of u and
v are generically nonzero. The full sample Green function including the coupling to the tip due to the self-energy in
Eq. (7) can be written in terms of Dyson series

G =
1

ω

(
Φ+ Φ−

) [
1 +

1

ω

(
Φ†+
Φ†−

)
Σ
(

Φ+ Φ−
)

+ . . .

](
Φ†+
Φ†−

)
. (30)

A straightforward calculation reveals

Greh =

[
(ω − Σ̃r−−)u + Σ̃r−+(Cv)

]
v† −

[
(ω − Σ̃r++)Cv + Σ̃r+−u

]
(Cu)†

ω2 − ω(Σ̃r++ + Σ̃r−−) + Σ̃r++Σ̃r−− − Σ̃r+−Σ̃r−+

(31)

where the projected self-energies are

Σ̃r++(ω) = −iπt2
[
‖u‖2ρ(ω−) + ‖v‖2ρ(ω+)

]
(32a)

Σ̃r−−(ω) = −iπt2
[
‖v‖2ρ(ω−) + ‖u‖2ρ(ω+)

]
(32b)

Σ̃r+−(ω) = −iπt2〈u,Θv〉 [ρ(ω−) + ρ(ω+)] (32c)

Σ̃r−+(ω) = −iπt2〈Θv,u〉 [ρ(ω−) + ρ(ω+)] = −Σ̃r+−(ω)∗, (32d)

and 〈·, ·〉 is the inner product. In the above derivations, we have used the anti-unitarity of the time-reversal operator
and that Θ2 = −1, namely 〈u,Θv〉 = 〈v,Θ†u〉 = −〈v,Θu〉. Then the norm can be written as

‖Geh‖2 = W
2ω2 +Wπ2t4Y

{
[ρ(ω+)2 + ρ(ω−)2]Z + 4ρ(ω+)ρ(ω−)Y

}

{ω2 −Wπ2t4 [(ρ(ω+)2 + ρ(ω−)2)Y + Zρ(ω+)ρ(ω−)]}2 +Wω2π2t4(Z + 2)[ρ(ω−) + ρ(ω+)]2
(33)

where

W = ‖u‖2‖v‖2 + |〈u,Θv〉|2 (34a)

Y =
(
‖u‖2‖v‖2 − |〈u,Θv〉|2

)
/W (34b)

Z =
(
‖u‖4 + ‖v‖4 − 2 |〈u,Θv〉|2

)
/W. (34c)

The differential conductance is then a function of Y , Z and η/ω̃t, where ω̃3
t = ∆ν2

0π
2t4W . The parameter Y

interpolates between s-wave pairing (Y = 1, Sec. II B 1), where the threshold conductance is maximal, p-wave pairing
(Y = 0, Sec. II B 2), where the threshold conductance is zero. In Fig. 1 we show the conductance for different values
of this parameter.
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FIG. 1. Conductance near the threshold. The parameters for the s-wave pairing case are Y = 1, Z = 4.25. For the p-wave
pairing case, Y = 0, Z = 1.13. And in the case with spin-orbit coupling, Y = 0.05, Z = 0.74.

III. CONTINUUM CONTRIBUTION TO THE CONDUCTANCE

In this section, we provide details on evaluating the contribution of the quasiparticle continuum to the conductance
near the threshold. We identify two different effects of the continuum states, namely, (a) a possible smoothening of
the step in the bound-state conductance [see Fig. 1(a) and Eq. (10) of the main text] due to interference between
resonant and nonresonant Andreev reflections and (b) additonal contributions to the conductance from nonresonant
Andreev reflections. The latter effect becomes important when probing the conductance away from the bound state,
where resonant and nonresonant Andreev reflections compete as discussed in the main text.

A. Continuum effect on resonant Andreev reflections

1. General considerations

As follows from Sec. II, the lineshape of a zero-energy Andreev state in an s-wave superconductor closely resembles
that of a Majorana state. In particular, the conductance exhibits a step at the threshold eV = ∆ in both cases. We
now revisit these two cases and discuss whether this step is robust when the quasiparticle continuum is taken into
account. As discussed in the main text, we find a suppression of the conductance for the Andreev state close to the
threshold, while the step remains robust for the Majorana. This behavior is reminiscent of tunneling from a normal
metal tip, where Majorana states appear as a robust zero-bias conductance peaks while zero-energy Andreev states
generically exhibit zero conductivity.

For simplicity, we focus our analysis on samples in which spin is a good quantum number and that can be described
in 2 × 2 Nambu space. An example of a more general model is discussed in Sec. IV. In particular, we consider an
s-wave superconductor with a zero-energy Andreev state and a spinless p-wave superconductor with a Majorana state.
In these cases the Lehmann representation of the Green function reads

g(ω) =
Φ0(x)Φ†0(x)

ω
+
∑

n

∫

|E|≥∆s

dE
ΦE,n(x)Φ†E,n(x)

ω − E , (35)

where the spinor Φ0 describes a single zero-energy bound state and ΦE,n are continuum states above the gap ∆s with
energy E and index n labeling the degeneracy. Using this expression in the Green function in the presence of a tunnel
coupling in Eq. (26) and expanding to lowest order in energy, we obtain

Greh(ω) =
Φ0(r)Φ†0(r)

ω − λ(ω) + i(Γe + Γh)/2
. (36)
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To determine the effect of the extra term λ(ω) ∝ det g(ω) we analyze the energy dependence of det g(ω) in more
detail. The function g(ω) has a simple pole at ω = 0 and branch cuts on the real axis for |ω| > ∆s but is analytic

elsewhere. The residue of g(ω) at ω = 0 is Φ0(x)Φ†0(x) which has zero determinant and we can thus write

lim
ω→0

ω2 det g(ω) = 0 (37)

and expand det g(ω) as a Laurent series around ω = 0

det g(ω) =
∞∑

n=−1

cnω
n. (38)

Furthermore g(ω) is hermitian at nonzero subgap energies and thus its determinant is real. We now determine the
lowest-order cotribution to det g for Majorana and Andreev states.

2. Majorana states

The Green function of a topological superconductor satisfies particle-hole symmetry UCg(ω)U†C = −g∗(−ω) with a
unitary operator UC . This yields det g(ω) = − det g∗(−ω) and reality further requires det g(ω) to be an even function
of ω. Hence, we obtain c−1 = 0 and λ(ω) ∼ ωt4ρ(ω+)ρ(ω−), which approaches a constant in the limit η = eV −∆→ 0+

with |ω| < η. The Majorana contribution to the current reads

IM (V ) ' 2e

h

∫ η

0

dω
ΓMe (ω)ΓMh (ω)

(ω − λ)2 + (ΓMe (ω) + ΓMh (ω))2/4
. (39)

The rates ΓMe/h diverge at the threshold and the continuum term λ(ω) becomes negligible. The threshold conductance
of Majorana states thus remains unaffected by the continuum states.

3. Zero-energy Shiba state

In contrast to Majoranas, the 2 × 2 Green function describing zero-energy Andreev states generically does not
satisfy particle-hole symmetry and thus c−1 6= 0. As an example of a system with trivial zero-energy Andreev state,
we consider a magnetic impurity in an s-wave superconductor, which induces a bound state localized at the impurity,
known as a Shiba state. The Hamiltonian describing a Shiba state localized at the origin due to a magnetic impurity
can be written in first quantization as

HS(x) = HBCS(x) + (V τz − JSσz)δ(x), (40)

where τi and σi are Pauli matrices in Nambu and spin space, where V and JS are the potential scattering and
exchange coupling strength. Since HS is block diagonal in spin space, we only need to deal with one of the blocks, say
σz = 1. The other block related to the first by particle-hole symmetry contributes a second (equivalent) zero-energy
state as mentioned above. The sample Green function gS at the impurity position has the form [1]

gS(ω) =
πνs

2ωα− (1− α2 + β2)
√

∆2
s − ω2

(
ω + (α+ β)

√
∆2
s − ω2 ∆s

∆s ω + (α− β)
√

∆2
s − ω2

)
, (41)

where νs and ∆s are the normal density of states and gap of the sample and we introduced the dimensionless
parameters α = πν0JS and β = πν0V . The Shiba bound state energy is given by

ε0 = ∆s
1− α2 + β2

√
(1− α2 + β2)2 + 4α2

. (42)

Thus, since we focus on zero-energy bound states we set α2 = 1 + β2. After a straightforward calculation, we obtain

ω det g(ω) ' π2ν2
s∆s

2α
(43)
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for small ω. From the Green function we also obtain (for V > 0)

|u|2 = πνs∆s(α+
√
α2 − 1), (44)

|v|2 = πνs∆s(α−
√
α2 − 1). (45)

Near the threshold, for small η = eV −∆, the term ∝ λ(ω) in the denominator of Eq. (27) dominates and we find

IA(V ) =
2e

h

16η2α2

ν2
0ν

2
sπ

3t4∆
. (46)

Thus the conductance dIA/dη is zero at eV = ∆ and then rises linearly as described by Eq. (10) of the main text.
This originates from the interference between resonant and nonresonant Andreev reflection, which suppresses the
differential conductance at eV = ∆. In order to estimate the width of this suppression we determine the value of η
when the term λ in the denominator of Eq. (27) becomes of the same order of magnitude as the tunneling broadening
∼ ωt2[geeρ(ω−) + ghhρ(ω+)], i.e.,

ν2
0∆t4ω det g(ω)

η
∼ ν0|t|2

(
|u|2 + |v|2

)√∆

η
, (47)

which yields

η ∼ ν2
0ν

2
s t

4∆

α4
∼ T

2∆

α4
. (48)

B. Nonresonant Andreev reflection

We now determine the conductance due to nonresonant Andreev reflections from the quasiparticle continuum in
the substrate. To evaluate the conductance contributions from the continuum, we focus on a specific model of a Dirac
Hamiltonian with a domain wall, where the mass changes sign. We first calculate the real space Green function and
then evaluate the conductance as a function of separation from the impurity.

1. Topological superconductor Green function

As an example of a topological superconductor hosting a Majorana state we calculate the Green function of a Dirac
Hamiltonian with a domain wall

HDirac = −ivF∂xτx −m[θ(x)− θ(−x)]τz (49)

in the spinless Nambu basis (ψ,ψ†). Here vF is the velocity of the Dirac fermion and m is the effective mass. The
system satisfies particle-hole symmetry {C, HDirac} = 0 with the charge conjugation operator C = τxK, where K is
the complex conjugation. This is a generic model for the low-energy behavior of a topological superconductor close to
the phase transition. Specifically, a spinless p-wave superconductor with a chemical potential close to the bottom of
the band can be approximated by Eq. (54). To compute the eigenstates of this Hamiltonian it is convenient to solve
for the rotated Hamiltonian eiπτy/4HDirace

−iπτy/4. Notice that the charge conjugation operator is now given by τzK.
One readily shows that the domain wall supports a single Majorana state at zero energy with the wavefunction

ψ0(x) =

√
m

2vF
e−m|x|/vF

(
i
1

)
. (50)

All other states in the system are extended with energies above the gap m. The wavefunctions of the continuum
states can be determined using the ansatz

ψ±ε(x) =

(
msgn{x}
−(vF p∓ ε)

)
eipx [Aθ(−x) +Bθ(x)] +

(
msgn{x}
(vF p± ε)

)
e−ipx [Cθ(−x) +Dθ(x)] , (51)

61



9

where vF p =
√
ε2 −m2 and ε is the positive eigenvalue. The matching condition at x = 0 leads to

A+B + C +D = 0, vF p(A−B − C +D)∓ ε(A−B + C −D) = 0. (52)

For positive-energy solutions, we get

A+D

A+ C
=

ε

vF p
=

√
1 +

(
m

vF p

)2

. (53)

For incoming waves from x = −∞ we require D = 0 and obtain

Cin =
vF p− ε

ε
Ain, Bin = −vF p

ε
Ain. (54)

Similarly, for outgoing waves to x = −∞ we have A = 0 and thus

Cout =
vF p

ε
Dout, Bout = −ε+ vF p

ε
Dout. (55)

This yields the scattering states

ψinε (x) = A

{(
−mθ(−x)−m vF p

ε θ(x)
(ε− vF p)θ(−x)− vF p

ε (ε− vF p)θ(x)

)
eipx +

vF p− ε
ε

(
−m

vF p+ ε

)
θ(−x)e−ipx

}
,

ψoutε (x) = D

{
ε+ vF p

ε

(
−m

vF p− ε

)
θ(x)eipx +

(
mθ(x)−mvF p

ε θ(−x)
(vF p+ ε)θ(x) + vF p

vF p+ε
ε θ(−x)

)
e−ipx

}
. (56)

One can easily check that incoming and outgoing states are orthogonal 〈ψoutε |ψinε 〉 = 0. From the normalization
conditions ‖ψinε ‖ = ‖ψoutε ‖ = 1 we obtain the coefficients A = [2Lε(ε − vF p)]−1/2 and D = [2Lε(ε + vF p)]

−1/2 for a
system of size L. The Green function can now be obtained from its spectral decomposition

g̃(x, x′;ω) =
ψ0(x)ψ0(x′)†

ω
+

∑

ε>0,
α=in,out

[
ψαε (x)ψαε (x′)†

ω − ε +
(Cψαε (x)) (Cψαε (x′))†

ω + ε

]
(57)

where we have used the charge conjugation operator C to relate the negative solution to the positive ones. Focusing
on x = x′ = 0 for simplicity we find the wavefunctions of the continuum states

ψinε (0) = − 1√
2Lε(ε− vF p)

vF p

ε

(
m

ε− vF p

)
, ψoutε (0) =

1√
2Lε(ε+ vF p)

vF p

ε

(
−m

ε+ vF p

)
. (58)

Using Eq. (62), we obtain the Green function

g̃(0, 0;ω) =
m

2vFω

(
1 i
−i 1

)
+

1

L

∑

ε>0

ε2 −m2

ε2
2ω

ω2 − ε2
(

1 0
0 1

)
=

1

2vF

m

ω

( √
1− (ω/m)2 i

−i
√

1− (ω/m)2

)
. (59)

Here we have used

1

L

∑

ε>0

=

∫
dp

2π
=

1

2πvF

∫ ∞

m

dε
ε√

ε2 −m2
. (60)

Notice that the matrix commutes with τy, and thus commutes with the rotation operation introduced at the beginning.
We find the Green function for the original Hamiltonian HDirac

g(0, 0;ω) = πνs
m

ω

( √
1− (ω/m)2 i

−i
√

1− (ω/m)2

)
, (61)

where νs = (2πvF )−1 is the normal density of states.
Away from the mass domain wall, the sample Green function at x ≥ 0 can be computed similarly from Eq. (61)

and (62), which yields

gee(x) = ghh(x) =
πνs√

1− (ω/m)2

(m
ω
e−2x/ξ − ω

m

)

geh(x) = ghe(x)∗ = πνs

(
i
m

ω
e−2x/ξ − 1− e−2x/ξ

√
1− (ω/m)2

)
. (62)

where ξ = [2πνsm
√

1− (ω/m)2]−1 = vF /m
√

1− (ω/m)2 is the coherence length that characterizes the exponential
decay of the Majorana wavefunction.
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FIG. 2. Differential conductance of the topological superconductor with a mass domain wall. The three curves correspond
different tip locations measured from the domain wall. For all curves we have set ∆T 2/m = 0.016.

2. Differential conductance away from the Majorana state

The Green function has a pole at zero energy whose amplitude decays exponentially away from the domain wall
reflecting the probability density of the Majorana bound state. This singular part fully determines the threshold
conductance and yields the quantized value GM . Notice that limω→0 ω det g = 0 guarantees the robustness of this
quantization consistent with the general argument based on particle-hole symmetry given in Sec. III A 2. The con-
ductance at voltages above the threshold depends on the competition between the singular part and a nonsingular
contribution which originates from the quasiparticle continuum. The continuum contribution can be readily evaluated
for x→∞, where the Green function describes a homogeneous p-wave superconductor,

g(ω) = − πνs√
m2 − ω2

(
ω m
m ω

)
. (63)

Using this expression in the current formula in Eq. (27) we find

I =
4π2e |t|4

h

∫ η

η

dω
ρ+ρ−π2ν2

sm
2

(m2 − ω2) (1 + π4ν2
s t

4ρ+ρ−)2 + π4ν2
s t

4ω2(ρ+ + ρ−)2

' 8e

h
∆T 2

∫ 1

−1

dz

√
1− z2

(
2
√

1− z2 + ∆T 2/η
)2 , (64)

where we introduced the transmission probability of the junction T = π2νsν0t
2 and assumed ∆T 2 � m. This yields

the conductance

G(V ) =
8GM
4− π

∫ 1

0

dz
(2η/∆T 2)

√
1− z2

(1 + (2η/∆T 2)
√

1− z2)3
. (65)

The conductance has a maximum at η ∼ ∆T 2 with a magnitude ∼ 1.3GM and a peak width ∼ ∆T 2. In Fig. 2
we show the differential conductance vs voltage for different separations between tip and domain wall. As the tip
is moved away from the domain wall, nonresonant Andreev reflections become more important and the conductance
peak becomes narrower and slightly higher.

IV. DOMAIN WALL AT THE QSHI EDGE

While the quantized conductance step for the Majorana state derived in the main text is model independent, its
robustness to continuum effects was only shown for spinless models described by a 2× 2 Hamiltonian. As an example
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of a more realistic model, we consider the edge of a quantum spin Hall insulator (QSHI). We calculate the threshold
conductance including the continuum contribution for the case when the sample is contacted at the domain wall. We
find the universal step at the threshold to be robust in line with the results for the spinless case. This suggests that
the conductance step at the threshold may be robust even for more general models of topological superconductors.

The edge of a QSHI, with a domain wall at the origin, can be described by the first quantized Hamiltonian

H(x) = −ivF∂xσzτz + ∆(x)τx +B(x)σx,

∆(x) = M − m(x)

2
,

B(x) = M +
m(x)

2
,

where

m(x) = m [θ(x)− θ(−x)] . (66)

Applying the unitary transformation U = e
iπ
4 σyei

π
4 τy , we have

H → H̃ = UHU† =




M 0 0 −ivF∂x
0 −m(x) −ivF∂x 0
0 −ivF∂x m(x) 0

−ivF∂x 0 0 −M


 .

Let M � m, and focus on the inner block, which decribes a Dirac field with a domain wall created by a mass jump,
as discussed in Sec. III B 1. According to Eq. (66), the Green function at the domain wall is

g̃(0, ω) = πνs
m

ω




0 0 0 0

0
√

1− ω2

m2 i 0

0 −i
√

1− ω2

m2 0

0 0 0 0



. (67)

We rotate it back to the original basis g(0, ω) = Ug̃(0, ω)U† and obtain the full Green function

G(0, ω) = g(0, ω)(1− Σ(ω)g(0, ω))−1, (68)

where the self energy is given by

Σ(ω) = t2 diag(g(ω−), g(ω−), g(ω+), g(ω+)). (69)

Calculation reveals

Gr,eh(0, ω) =
πνsm

ω [1 + t4π4ν2
s (ρ(ω−) + ρ(ω+))2] + 2iπ2νsmt2

√
1− ω2

m2 [ρ(ω−) + ρ(ω+)]

×


 i

√
1− ω2

m2 − iπ
(
πνsω
m

)
t2(ρ(ω−) + ρ(ω+))√

1− ω2

m2 − iπ
(
πνsω
m

)
t2(ρ(ω−) + ρ(ω+)) −i


 .

Denoting Γe/h = 4π2νsmt
2ρ(ω∓) we find

‖Geh(0, ω)‖2 =
2(πνs)

2
[
2m2 − ω2(1− (Γe + Γh)2/16m2)

]

ω2 [1− (Γe + Γh)2/16m2]
2

+ (Γe + Γh)2/4
. (70)

We readily verify that the denominator is dominated by the second term at the threshold. In particular, we see
the continuum contribution in the denominator appears proportional to ω2 as for the spinless case. Hence, the
conductance quantization at eV = ∆ is unaffected by the continuum contribution in this model.
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V. SINGLE-PARTICLE CURRENT CONTRIBUTION TO THE CONDUCTANCE

In this section we analyze the single-particle tunneling current that can flow in addition to the Andreev current
discussed above. A single-particle current is possible if the quasiparticle occupying the bound state can relax to
the quasiparticle continuum. Such relaxation can occur, e.g., due to inelastic transitions assisted by phonons or
photons. We concentrate on the Majorana state, although a similar analysis is possible for a trivial Andreev state.
We neglect the quasiparticle continuum and include relaxation as a phenomenological parameter, without specifying
its microscopic origin. We first derive the single-particle current [given in Eq. (11) of the main text], from which we
then calculate the threshold conductance from single-particle tunneling [Eq. (12)].

A. Self energy due to relaxation processes

Let us assume that the local environment of the Majorana state introduces relaxation processes, induced by phonons
or photons, via the self-energy Σph. The substrate Green function can be determined from the Dyson series

gR = g + gΣphg + gΣphgΣphg + . . . , (71)

where g is the Green function without relaxation processes. We approximate the bare substrate Green function g by
the Majorana contribution,

g(ω) = |ψM 〉
1

ω
〈ψM |, (72)

and project the self-energy onto the Majorana subspace introducing

Γqp = 2Im〈ψM |Σph(0)|ψM 〉, (73)

where we approximate the self-energy by its value at zero energy. The invariance of the Majorana state under particle-
hole transformation guarantees that the expectation value 〈ψM |Σph(0)|ψM 〉 is purely imaginary. Thus, the retarded
and advanced Green functions of the Majorana state read

gr,aR (ω) =
|ψM 〉〈ψM |
ω ± iΓqp/2

. (74)

In quasi-equilibrium, we can express the greater and lesser Green function in terms of the retarded and advanced
Green functions,

g<R(ω) = f(ω)(gaR(ω)− grR(ω)) =
Σ<ph(0)

ω2 + Γ2
qp/4

|ψM 〉〈ψM |, (75)

g>R(ω) = −(1− f(ω))(gaR(ω)− grR(ω)) =
Σ>ph(0)

ω2 + Γ2
qp/4

|ψM 〉〈ψM |, (76)

where f(ω) is the quasi-equilibrium distribution function and we used the relations

− iΣ<ph(0) = Γqpf , iΣ>ph(0) = Γqp(1− f). (77)

These terms are the rates for emptying and filling of the delocalized fermion formed by the Majorana at the contact
and a second one far away. Note that local transitions can change the occupation of this state. Since this fermion has
zero energy the two rates are equal iΣ>ph(0) = −iΣ<ph(0) = Γqp/2 according to detailed balance.

B. Expressions for the single-particle current

We can now evaluate the current in Eq. (5). Besides the Andreev current in Eq. (8), we find the single-particle
current from the first term in Eq. (6)

IsM (V ) =
e

4h

∫
dω

Γqp[Γe(ω)nF (ω−)− Γh(ω)nF (ω+)]− Γqp[Γe(ω)(1− nF (ω−))− Γh(ω)(1− nF (ω+))]

ω2 + (Γe(ω) + Γh(ω) + Γqp)
2
/4

, (78)

which gives Eq. (11) in the main text if we take nF (ω−) ' 1 and nF (ω+) ' 0 assuming T � ∆.
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C. Analysis of current

We compute the single-particle current near the threshold at eV = ∆ + η with η � ∆

IsM (V ) ' e

2h

∫ ∆+η

−∆−η
dω

ω
3/2
t Γqp

(
θ(η−ω)√
η−ω + θ(η+ω)√

η+ω

)

ω2 +

(
ω

3/2
t θ(η+ω)√

η+ω
+

ω
3/2
t θ(η−ω)√

η−ω +
Γqp

2

)2

=
eω

3/2
t Γqp

h

∫ ∆

0

dω√
ω

1

(ω − η)2 +

(
ω

3/2
t√
ω

+ Γ
2

)2 , (79)

to lowest order in η. We thus obtain the differential conductance

GsM (x) ' 2e2Γqp

hωt

∫ ∞

0

dω√
ω

ω − x
[
(ω − x)2 +

(
ω−1/2 + Γqp/(2ωt)

)2]2 , x =
eV −∆

ωt
. (80)

Now we focus on the conductance at the threshold, namely x = 0. For weak tip-substrate tunneling, ωt � Γqp, we
find

GsM '
2e2Γqp

hωt

∫ ∞

0

dω

√
ω

[
ω2 + (Γqp/(2ωt))

2
]2

=
2πe2

h

ω
3/2
t

Γ
3/2
qp

, (81)

where the x-integration is elementary. In the opposite limit of strong tip-substrate tunneling, ωt � Γqp, we can
neglect the contribution of Γqp in the denominator. In this limit, we find the peak conductance

GsM (∆) ' 2e2Γqp

hωt

∫ ∞

0

dω

√
ω

[ω2 + 1/ω]
2

=
2πe2

9h

Γqp

ωt
. (82)

The parametric dependence of GsM is summarized in Eq. (12) of the main text.
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4 Signatures of topological Josephson junc-
tions

A fractional 4π Josephson effect is predicted to be one of the strongest indications of
topological superconductivity. However, this effect is presumably difficult to observe due
to quasiparticle poisoning processes and diabatic transitions. Rather than measuring the
current-phase relation directly, I proposed to perform a much simpler switching probability
measurement, which provides robust signatures of topological Josephson junctions even in
the presence of quasiparticle poisoning. Given that this type of measurements has already
been performed for conventional Josephson junctions (e.g., by the Quantronics group in
Paris), measurements on topological Josephson junctions are likely to be performed in the
near future.
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Quasiparticle poisoning and diabatic transitions may significantly narrow the window for the experimental
observation of the 4π -periodic dc Josephson effect predicted for topological Josephson junctions. Here, we show
that switching-current measurements provide accessible and robust signatures for topological superconductivity
which persist in the presence of quasiparticle poisoning processes. Such measurements provide access to the
phase-dependent subgap spectrum and Josephson currents of the topological junction when incorporating it into
an asymmetric SQUID together with a conventional Josephson junction with large critical current. We also argue
that pump-probe experiments with multiple current pulses can be used to measure the quasiparticle poisoning
rates of the topological junction. The proposed signatures are particularly robust, even in the presence of Zeeman
fields and spin-orbit coupling, when focusing on short Josephson junctions. Finally, we also consider microwave
excitations of short topological Josephson junctions which may complement switching-current measurements.

DOI: 10.1103/PhysRevB.94.085409

I. INTRODUCTION

Topological superconductors with p-wave pairing and
Majorana bound states [1] are currently attracting much
interest, motivated in part by possible applications to topolog-
ical quantum information processing [2]. Several solid-state
platforms have been proposed [3–12] and are vigorously
pursued experimentally [13–24]. A key question of current
research is to develop appropriate detection schemes which
allow one to identify topological superconducting phases and
Majorana bound states.

A particularly striking signature of topological supercon-
ductivity is provided by Josephson junctions formed by a
weak link between two topological superconductors hosting
unpaired Majorana bound states at their ends [1,4]. While for
conventional superconductors, the Josephson current is 2π

periodic in the applied phase difference, the Josephson current
across a junction made from topological superconductors is
predicted to be 4π periodic [1]. This period doubling of
the Josephson current in a topological Josephson junction
[3,4,25–33] is protected by fermion number parity and as such
quite sensitive to quasiparticle poisoning which changes the
occupation of subgap states by inelastic processes involving
the quasiparticle continuum. If the temporal variation of the
superconducting phase difference across the junction is too
slow, quasiparticle poisoning restores the 2π periodicity [4]. If
the phase difference is varied too fast, the periodicity is restored
by diabatic transitions into the quasiparticle continuum [25].

Here, we explore an alternative approach to probe the
phase-dependent subgap spectrum of a topological Josephson
junction, which is inspired by a recent series of remarkable
experiments on conventional Josephson junctions [34–37].
These experiments consider Josephson junctions based on
atomic weak links which host localized subgap Andreev
states. The experiments explore the phase-dependent subgap
spectrum by switching-current measurements as well as
microwave spectroscopy. Here, we establish that analogous
experiments provide a promising technique to distinguish
between conventional and topological Josephson junctions.

We find that this is particularly true in the short-junction limit,
i.e., for junctions which are short compared to the coherence
length of the adjacent (topological) superconductors. An
important advantage of such measurements is that they can
be performed in the presence of quasiparticle poisoning
and in fact explicitly exploit processes that break fermion
parity.

Ideally, Josephson junctions carry a dissipationless super-
current (or Josephson current) as long as the applied current
remains below the critical current and switch to a resistive state
once the current exceeds the critical current [38]. In practice,
the switching current fluctuates about the critical current due
to thermal fluctuations. This has characteristic consequences
in switching- current measurements based on applying short
current pulses. Indeed, the switching probability as a function
of the height of the applied current pulse does not increase
abruptly from zero to one at the critical current, but rather
exhibits a smooth step when accounting for fluctuations arising
from the electromagnetic environment. When the junction
hosts subgap states, their occupations also fluctuate due to
quasiparticle poisoning processes. The current-phase relation
and hence the critical current depend on the occupation of the
subgap states, so that poisoning processes lead to fluctuations
in the switching current.

The effect of poisoning processes is particularly simple
when the current pulses are short compared to typical poison-
ing processes. In this case, the poisoning dynamics determines
the occupation probability of the various subgap states prior
to applying the current pulse but does not modify the state
during the pulse duration. The switching probability becomes
a superposition of step functions corresponding to the various
subgap occupations. When the broadening of the steps is
small compared to the shifts in the switching current between
different occupation states, the measured switching probability
exhibits a sequence of steps, one for each occupation of the
subgap states, with intermediate plateaus. The heights of the
plateaus reflect the occupation probabilities of the various
junction states at the beginning of the current pulse. As a
consequence, the switching probability encodes information
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γ
φ

δ

Vb

Rb I0

I

FIG. 1. Basic setup of the asymmetric SQUID, involving a weak
conventional/topological Josephson junction (blue triangles) and a
strong auxiliary Josephson junction (red checked box) with critical
current I0. The phase δ across the weak junction is linked to the phase
γ across the auxiliary junction and the phase drop φ = 2eϕ/� induced
by the magnetic flux ϕ threading the SQUID loop, δ = φ + γ . The
applied voltage Vb drives a current I through the resistance Rb and
the SQUID.

on the current-phase relations for the various occupation states
of the Josephson junction.

Switching-current measurements on a single Josephson
junction do not provide access to the phase dependence of
the Josephson current, but merely to the maximal Josephson
current and its dependence on the junction occupation. Phase-
dependent information can be obtained by incorporating the
junction of interest into an asymmetric SQUID where the
second auxiliary junction in the SQUID loop has a much
larger critical current and no subgap states [34]. This setup
is illustrated in Fig. 1. The switching current of the SQUID is
shifted away from the switching current of the large junction
by the phase-dependent Josephson current of the weak one,
so that switching current measurements as a function of flux
can provide access to the entire current-phase relation of the
various states of the weak junction of interest.

This makes switching-current measurements suitable to
probe a unique distinction between topological and con-
ventional Josephson junctions. As a function of the phase
difference δ across the junction, the difference in Josephson
currents between different junction states must vanish an even
number of times within a 2π period in a trivial junction, and
an odd number of times in a topological junction.

In this scheme, the initial occupation probability of the
various junction states is assumed thermal. When driving the
system out of equilibrium, switching-current measurements
also provide access to the poisoning dynamics [35]. Imagine
that the system is taken out of equilibrium at some initial
time t = 0 so that the occupation probability of the various
subgap states is no longer thermal. Poisoning processes
will subsequently induce relaxation to equilibrium, and the
rate of this relaxation can be probed by switching-current
measurements after a time delay t . This pump-probe scheme
can either be implemented by a sequence of two current pulses
with time delay t , or by applying an appropriate microwave
pulse at time t = 0 prior to the switching current measurements
at time t .

Microwave irradiation also provides an alternative spec-
troscopic way of measuring the subgap spectrum as it

induces transitions between different occupation states of the
Josephson junction by microwave radiation [37,39–42]. Thus,
evidence for topological superconductivity can be further
strengthened by performing switching-current measurements
in conjunction with microwave spectroscopy. This motivates
us to calculate the admittance of a topological Josephson
junction in the short-junction limit, complementing the results
of Ref. [42] for the long-junction limit.

Such measurements provide various opportunities to distin-
guish topological from nontopological Josephson junctions.
We find that the signatures are particularly distinctive for
short junctions as their subgap spectrum contains only few
Andreev states. Such short topological junctions support only
a single subgap state at energy EM (and its particle-hole
conjugate at −EM ), originating from the hybridization of the
two Majorana bound states. In contrast, a short conventional
junction frequently (but not necessarily) supports additional
Andreev states associated with the spin degree of freedom.
In this case, topological and nontopological junctions can
be distinguished by the number of plateaus in the switching
probability as a function of applied current. Only junctions
with a single plateau are suspects for being topological [see
Fig. 4(a)]. Among these suspects, the subgap spectrum exhibits
a fermion-parity protected level crossing at a phase difference
of δ = π for topological junctions, and an anticrossing for
nontopological junctions. Thus, the Josephson current at a
phase difference of π is maximal for topological junctions
and vanishes for conventional ones. This leads to charac-
teristic differences in the flux dependence of the plateau
width [see Fig. 4(b)]. Finally, even if the anticrossing of
a nontopological junction happens to be too weak to be
resolved, its poisoning dynamics should be characteristically
different. Poisoning dynamics necessarily involves the quasi-
particle continuum for topological junctions while poisoning
processes involving only subgap states can exist for conven-
tional junctions. These signatures based on switching current
measurements can be further corroborated by microwave
spectroscopy.

The paper is organized as follows. In Sec. II, we review
basic considerations on the differences between the topo-
logical and conventional Josephson junctions. Section III
contains the central results of this paper. After introducing
the asymmetric SQUID setup, we discuss the characteristic
distinctions between topological and conventional Josephson
junctions in switching-current measurements, including the
effects of thermal fluctuations in the context of the resistively
and capacitively shunted junction (RCSJ) model. We end this
section with a discussion of pump-probe experiments with
multiple current pulses which provide access to the quasi-
particle poisoning rates. Microwave absorption is discussed
for short topological junctions based on two-dimensional
(2D) topological insulators in Sec. IV. While we discuss
nontopological junctions in the absence of Zeeman fields or
spin-orbit coupling in the earlier sections, these couplings
are typically present in experiments searching for possible
topological superconductivity. We show in Sec. V that the
signatures distinguishing topological from nontopological
junctions remain robust in the presence of these effects when
focusing on the short-junction limit. Finally, we conclude in
Sec. VI.
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II. BASIC CONSIDERATIONS

A. Conventional Josephson junction

To set the stage, we first review the case of a conventional
Josephson junction. As realized in experiment [34–36], we
consider a short junction (i.e., shorter than the supercon-
ducting coherence length) in the single-channel limit. If this
channel has transmission D, the junction binds a single,
spin-degenerate Andreev bound state at subgap energy [43]

EA(δ) = �

√
1 − D sin2

δ

2
. (1)

Here, δ denotes the phase difference across the junction and �

the superconducting gap. Figure 2(a) shows this particle-hole
symmetric pair E = ±EA(δ) of Bogoliubov–de Gennes states
as a function of the phase difference δ.

In the absence of above-gap excitations, these single-
particle subgap states give rise to four many-body states
associated with the Josephson junction. In the ground state,
denoted by |0〉, the positive-energy Andreev bound state is
empty. In addition, there are two degenerate excited states
in which either the spin-up or the spin-down Andreev level
is occupied. We denote these states by |1↑〉 = γ

†
↑ |0〉 and

|1↓〉 = γ
†
↓ |0〉, where γ↑ and γ↓ are the Bogoliubov operators

associated with the Andreev state. Finally, the Andreev state
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FIG. 2. Upper panels: single-particle energies of the subgap state
as a function of the phase difference across the junction for (a)
conventional and (a′) topological Josephson junctions. Lower panels:
supercurrent as a function of phase difference for the various possible
states of (b) conventional and (b′) topological Josephson junctions
(G = e2D/π , D = 0.95). The blue, black, and red curves in (b)
display the currents for the states |0〉, |1,σ 〉, and |2〉, respectively.
The blue and red curves in (b′) display the currents for the states |0〉
and |1〉.

can be doubly occupied, |2〉 = γ
†
↑γ

†
↓ |0〉. Note that the states

|0〉 and |2〉 are even states in terms of fermion parity, while
|1↑〉 and |1↓〉 are odd.

In equilibrium, the Josephson current is governed by the
many-body energy E(δ) of the junction. In the ground state
|0〉, the (phase-dependent) junction energy is given by −EA(δ).
Correspondingly, the two odd states |1↑〉 and |1↓〉 have zero
energy, while the doubly occupied state |2〉 has energy +EA(δ).
This is summarized as

En(δ) = (n − 1)EA(δ), (2)

where n = 0,1,2 denotes the occupancy of the Andreev bound
state. The Josephson current in state |n〉 can be obtained from
the energy as

In(δ) = 2e
∂En(δ)

∂δ
= 2(n − 1)e

∂EA(δ)

∂δ
. (3)

Thus, the Josephson currents of the two states |0〉 and |2〉 have
the same magnitude, but flow in opposite directions, while the
Josephson current vanishes in the odd states |1↑〉 and |1↓〉.
The 2π -periodic supercurrents for these states are shown in
Fig. 2(b).

B. Topological Josephson junction

The corresponding results for topological Josephson junc-
tions differ in several essential ways. Here, we focus attention
on junctions made of topological superconductors which
break time-reversal symmetry and are hence characterized by
unpaired Majorana bound states at their ends. The simplest
realization of such a topological superconducting phase
occurs in spinless p-wave superconductors [1,44,45]. These
phases can for instance be realized experimentally based on
two-dimensional topological insulators proximity coupled to
conventional s-wave superconductors [4] or semiconductor
quantum wires [5,6]. When tuned to the right parameter
regime, these systems realize phases which are adiabatically
connected to the topological phase of spinless p-wave su-
perconductors and are thus promising venues for realizing
the topological Josephson junction setup which we propose.
Indeed, several experiments have already investigated such
Josephson junctions with the goal of identifying signatures of
topological superconductivity [16,19,20,23].

In the following, we assume that any ungapped normal
part of the junction region is short compared to the coherence
length ξ of the adjacent topological superconducting phase.
Then, the subgap spectrum emerges from two overlapping
Majorana bound states localized at the ends of the two
topological superconductors [4–7]. This yields one nondegen-
erate Andreev level EM (δ). While EM (δ) is 4π periodic, the
overall particle-hole-symmetric subgap spectrum ±EM (δ) is
2π periodic. Moreover, the level crossings between EM (δ)
and −EM (δ) at δ equal to odd multiples of π are protected by
conservation of fermion parity. This single-particle spectrum
is shown in Fig. 2(a′).

As the topological Josephson junction has a single nonde-
generate Andreev state, there are only two rather than four
many-body states in the absence of above-gap quasiparticle
excitations. We denote the state in which the Andreev level
EM (δ) is empty (occupied) as |0〉 (|1〉). The two states satisfy
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|1〉 = γ † |0〉, where γ is the Bogoliubov operator associated
with the subgap state EM (δ). We will also refer to |0〉 as having
even fermion parity or the even state and to |1〉 as the odd state.
(In the presence of above-gap quasiparticles, both occupations
are however accessible for any parity of the electron number.
Such processes are known as quasiparticle poisoning.)

The phase-dependent many-body energy of the junction is
equal to −EM (δ)/2 for the even state |0〉 and +EM (δ)/2 for
the odd state |1〉, or

En(δ) = (2n − 1)
EM (δ)

2
(4)

for state |n〉 with n = 0,1 denoting the occupation of the
Andreev state. Just as the Bogoliubov–de Gennes states, the
two many-body states |n〉 become degenerate for δ equal to
odd multiples of π . Notice that the odd state can have lower
energy than the even state as EM (δ) becomes negative, which
cannot happen in a conventional Josephson junction.

The Josephson current follows from the many-body energy
in the usual way, so that

In(δ) = 2e
∂En(δ)

∂δ
= e(2n − 1)

∂EM (δ)

∂δ
. (5)

For fixed fermion parity n, the Josephson current is 4π

periodic, as illustrated in Fig. 2(b′). The two states carry
supercurrents of the same magnitude but of opposite sign.

This implies that there are distinct differences in the
supercurrent carried by conventional and topological Joseph-
son junctions. Unlike a conventional Josephson junction, a
topological Josephson junction does not have states with
zero Josephson current. Moreover, conventional Josephson
junctions can assume three different current states, while
topological junctions are limited to two states. We will explore
experimental consequences of these differences in Sec. III.

C. Excitation spectra

The differences in subgap structures are also reflected
in the excitation spectrum of the junction under microwave
irradiation. Continuing to focus on short junctions, the many-
body energy of a conventional junction can assume three
different values. Correspondingly, the subgap states lead to
three resonances in the differential absorption of microwave
irradiation, as shown in Fig. 3(a) [39]. In the absence of subgap
states, the only excitation process that breaks up a Cooper pair
excites both electrons into the quasiparticle continuum [see
process (1) in Fig. 3], which has a threshold energy of 2�. The
existence of subgap states allows for the following additional
processes. In process (2), a Cooper pair in the condensate is
split, with one of the quasiparticles excited into the bound state
at energy EA and the second into the quasiparticle continuum
above the gap �. This process has threshold energy EA + �.
Process (3) corresponds to a quasiparticle in the bound state
being excited into the continuum. This process has threshold
energy � − EA. Finally, process (4) splits a Cooper pair, with
both quasiparticles getting excited into the bound state. This
process requires a threshold energy of 2EA. The thresholds
of processes (2)–(4) are sketched in Fig. 3(b) as a function of
the phase δ across the junction. We note in passing that these
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FIG. 3. Upper panels: possible quasiparticle processes numbered
by (1)–(4) in (a) conventional and (a′) topological Josephson
junctions. The black dashed lines indicate the many-body ground
state and the upper blue boxes the quasiparticle continuum above the
energy gap �. The red lines indicate the bound state at energies EA or
EM for conventional and topological junctions, respectively. Lower
panels: excitation energies (or energy thresholds) involving the bound
state corresponding to the various processes in panels (a) and (a′).

considerations are valid for zero magnetic field. The more
general case will be considered in Sec. V.

A topological Josephson junction allows fewer microwave-
induced transitions involving subgap states as it can only
assume two possible junction energies [42]. When the junction
is in the even-parity state, a Cooper pair can be split, with one
electron occupying the subgap level and the second getting
excited into the quasiparticle continuum. This process requires
a threshold photon energy of � + EM and is labeled as process
(2) in Fig. 3(a′). When the junction is in the odd-parity state,
the quasiparticle occupying the Andreev state EM (δ) can be
excited to the quasiparticle continuum. This process, labeled as
(3) in Fig. 3(a′), requires a threshold energy of � − EM . While
these two processes are similar to corresponding processes in
conventional Josephson junctions, there is no analog of process
(4). Indeed, there is only a single, nondegenerate Andreev level
in topological Josephson junctions and it is impossible to split a
Cooper pair exciting both electrons into a subgap state. A more
complete theory of the microwave absorption is presented in
Sec. IV.

III. SWITCHING PROBABILITY OF TOPOLOGICAL
JOSEPHSON JUNCTIONS

In this section, we explore the consequences of the
qualitative differences between the subgap spectra of conven-
tional and topological superconductors for switching-current
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FIG. 4. (a) Probability Psw of switching to the resistive state as
a function of current for conventional (left) and topological (right)
Josephson junctions for δ = 0.9π and D = 0.95. The dashed lines
are the switching probabilities for the junction assuming a fixed
occupation state [cf. Eq. (12)]. The black solid curves display the
switching probability Psw in the presence of quasiparticle poisoning,
and can be obtained from a weighted average over the switching
probabilities of the various occupation states [cf. Eq. (13)]. For
the conventional Josephson junction, we choose the weight factors
c0 = 0.5, c1,↑ = c1,↓ = 0.23, and c2 = 0.04. For the topological
Josephson junction, we choose the weight factors c0 = 0.6 and
c1 = 0.4. (b) Width of the plateau �I/I0 as a function of δ = γ + φ

for the case of conventional (red dashed) and topological Josephson
junctions (blue solid) (for Eaux

J /� = 5.7, where Eaux
J = �I0/2e is the

Josephson energy of the auxiliary junction and � the gap of the weak
junction).

measurements of asymmetric SQUIDs. We first present a
heuristic approach in Sec. III A. As illustrated in Fig. 4, we
find that there are characteristic differences between short
topological and conventional junctions both in the number
and the width of the plateaus in the switching probability.
These schematic results are further corroborated by detailed
numerical results in Sec. III C, based on the RCSJ theory
developed in Sec. III B, with the central results shown in Fig. 6.
Finally, in Sec. III D, we propose pump-probe approaches to
the switching probability to explore the poisoning dynamics
and show that this encodes further characteristic differences
between topological and nontopological Josephson junctions.

A. Plateaus in the switching probability

Consider the SQUID device shown in Fig. 1, consisting
of a large auxiliary Josephson junction and the weak junction
of interest which can be either conventional or topological.
The auxiliary Josephson junction is assumed to have a large
critical current I0 and no internal dynamics. The weak junction
of interest has a much smaller critical current and internal
dynamics associated with the bound-state occupation, as
discussed in the previous section. The phase differences across
the large junction (denoted by γ ) and the weak junction

(denoted by δ) are related through

δ = φ + γ, (6)

where φ = 2eϕ/� is the phase drop induced by the magnetic
flux ϕ threading the SQUID loop. (This relation assumes that
the geometric inductance of the SQUID loop can be neglected
as in recent experiments [35].)

The total applied current I flowing through the SQUID
splits between the auxiliary junction with current

Iaux(γ ) = I0 sin γ, (7)

and the weak junction of interest with current In(δ),

I = Iaux(γ ) + In(φ + γ ). (8)

Here, we have used the relation (6) between the phase
differences. For zero applied current I = 0, the current
circulates around the SQUID loop and both junctions carry
the same current, albeit with opposite signs. As the auxiliary
junction has a much larger critical current, its phase difference
γ is small and the phase drop φ due to the flux is applied
almost entirely to the weak junction, i.e., δ � φ.

When a current bias I is applied to the junction, the
auxiliary junction carries most of this current and we can first
focus on its behavior. Then, the phase difference across this
junction is approximately

γ � arcsin
I
I0

, (9)

and the junction becomes resistive when the current exceeds
the critical current Iaux

sw = I0 of the junction. Ideally, this
occurs when γ reaches γsw = π/2.

In the presence of the weak junction, switching occurs for
the value of γ = γsw for which the right-hand side of Eq. (8)
has its maximum. Expanding to linear order in the small current
In, we have

γsw � π

2
+ 1

I0

dIn(φ + γ )

dγ

∣∣∣∣
γ=π/2

(10)

and

Isw � I0 + In(φ + π/2) (11)

for the switching current. This relation implies that the
switching current of the SQUID reflects the current-phase
relation of the weak junction. A measurement of the switching
current of the asymmetric SQUID as a function of flux φ can
therefore be used to measure this current-phase relation.

As shown in Ref. [35] for a nontopological Josephson
junction based on an atomic contact, this can be used to resolve
the current-phase relation of the various many-body states of
the junction. Indeed, if the switching-current measurement is
performed sufficiently fast compared to quasiparticle poison-
ing processes in the weak junction, the switching current of
the SQUID depends on the occupancy n of the Andreev state.
In practice [34–37], this measurement can be performed by
applying short current pulses and measuring the probability
that the SQUID switches into the resistive state as a function
of applied current I. In the simple approximation given here,
this probability has the steplike form

P n
sw(I,φ) = θ [I − I0 − In(φ + π/2)] (12)
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when the weak junction is in state n. The switching proba-
bilities, for fixed n and φ, are illustrated by the dashed lines
in Fig. 4(a), which includes plots for both conventional and
topological Josephson junctions. (The steps in the switching
probability as a function of current are smoothed in this figure,
anticipating the more elaborate model discussed in Sec. III B.)
The critical current Iaux

sw = I0 of the auxiliary junction by itself
is marked on the x axis. According to Eq. (12), the shifts
of the steps away from this value can be interpreted as the
supercurrent flowing through the weak junction of interest.

The dashed lines in Fig. 4(a) assume that the junction
of interest is in a specific state n in the beginning of the
current pulse (and that this charge state does not get modified
during the pulse duration). In practice, the state of the junction
changes statistically due to quasiparticle poisoning processes
and is in general uncontrolled in experiment. Thus, the junction
has probability cn to be in state n at the beginning of the
current pulse. If we keep assuming that the junction does not
switch between states over the duration of the current pulse,
the experimentally measured switching probability

Psw(I,φ) =
∑

n

cnP
n
sw(I,φ) (13)

is a weighted average over the states n of the junction. Such
weighted averages are illustrated by black full lines in Fig. 4(a).

In the simplest approximation, the probabilities cn can be
assumed as thermal. More generally, they can be obtained from
rate equations which describe the relevant poisoning processes
[46,47]. Remarkably, one does not need detailed information
about this poisoning kinetics for establishing robust signatures
of topological superconductivity. Indeed, as illustrated in
Fig. 4(a), the weighted average exhibits plateaus as a function
of current. The number of plateaus increases with the number
of current states of the junction. A conventional Josephson
junction can have three different current states, and will then
exhibit two plateaus in a plot of the switching probability
versus current. In contrast, a short topological junction has only
two current states and thus merely a single plateau. Thus, if all
junction states are occupied with an appreciable probability
cn, topological and nontopological junctions frequently differ
in the number of plateaus.

However, the number of plateaus may also be the same
for topological and nontopological junctions. This happens
when one of the cn is so small (presumably for the |2〉
state) for a conventional junction that only a single plateau
can be resolved, or because the nontopological junction also
has only a single subgap state, as can be the case in the
presence of Zeeman splitting (see Sec. V below for explicit
model calculations). Even in this case, however, there remains
a clear-cut difference between topological and conventional
junctions when considering the width of the plateau as a
function of the flux applied to the SQUID. The width of the
plateau measures the difference in the supercurrents between
the two contributing junction states.

At the flux φ such that the phase across the weak junction
δ is equal to π , the difference in supercurrent is maximal for a
topological junction, but vanishes for conventional junctions.
Correspondingly, the width of the plateau should be maximal
near δ = π for a topological junction, but vanishes for a
conventional junction. This central result of this paper is

illustrated in Fig. 4(b). Note that the experimental control
parameter is φ rather than δ. However, these are simply related
by δ = φ + γsw � φ + π/2 at the position of the steps. It is
useful to mention that the plateau width in the topological case
is linear in the transmission amplitude

√
D. Thus, the lower

the transmission, the narrower the plateau, making it more
difficult to detect and characterize it experimentally.

In the more detailed considerations presented in Sec. III C,
we show that the height and the location of the plateau
provide additional criteria for distinguishing topological and
conventional junctions.

B. RCSJ model

A more accurate description of the asymmetric SQUID is
provided by the RCSJ model [38,48–52], which takes into
account its shunting resistance RS and capacitance C. Starting
from this model and assuming that the weak junction remains
in a particular state n, current conservation and the Josephson
relation imply that the dynamics of the phase γ across the
auxiliary junction is described by

�C

2e
γ̈ = I − I0 sin γ − In(φ + γ ) − �

2eRS

γ̇ + ζ̃ (t). (14)

The term ζ̃ (t) accounts for the thermal fluctuations as-
sociated with the resistance RS and satisfies 〈ζ̃ (t)ζ̃ (t ′)〉 =
(2T /RS)δ(t − t ′) at temperature T . Note that Eq. (14) reduces
to Eq. (8), when neglecting the thermal fluctuations and
searching for a solution with time-independent γ . It is
convenient to introduce new parameters through

m =
(

�
2e

)2

C, η = 1

RSC
, ζ (t) = �

2e
ζ̃ (t)

as well as the effective potential

U (γ ) = −Eaux
J cos γ + En(φ + γ ) − �Iγ

2e
, (15)

where Eaux
J = �I0/2e. Then, the equation for the phase γ takes

the form of a Langevin equation

mγ̈ = −U ′(γ ) − mηγ̇ + ζ (t) (16)

for a “particle” moving in the “tilted washboard” potential
U (γ ) with friction coefficient η and the correlator

〈ζ (t)ζ (t ′)〉 = 2T mηδ(t − t ′) (17)

of the Langevin force.
At zero bias current I = 0, U (γ ) � −Eaux

J cos γ and the
“particle” will most likely remain near the potential minimum
γ � 0 (modulo 2π ). With increasing bias current, the potential
U (γ ) is tilted and the particle eventually escapes from the
minimum (see Fig. 5), with the SQUID developing a voltage
according to the Josephson relation V = �γ̇ /2e.

The probability Psw that a current pulse of duration tp
switches the junction to a finite-voltage state can be expressed
in terms of the escape rate � from the minimum [34–36]

Psw = 1 − exp(−�tp). (18)

To determine �, we consider the overdamped limit of the
Langevin equation

γ̇ = −(mη)−1U ′(γ ) + (mη)−1ζ (t). (19)
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γγb

U (γ)

γa

Eb

Γ

FIG. 5. Sketch of the “tilted washboard” potential governing the
dynamics of the Josephson junction near one minimum.

In this limit, the probability density P(γ,t) of the auxiliary
junction’s phase difference γ is governed by the Smolu-
chowski equation [53]

∂P(γ,t)

∂t
= 1

mη

∂

∂γ

[
U ′(γ )P(γ,t) + T

∂P(γ,t)

∂γ

]
(20)

and the escape rate can be computed by Kramers rate theory
[53,54].

Consider the minimum of U (γ ) at γa and the neighboring
maximum at γb (see Fig. 5). The rate � can be obtained by
solving the stationary Smoluchowski equation at a constant
probability current

j = 1

mη

[
U ′(γ )P(γ,t) + T

∂P(γ,t)

∂γ

]
(21)

with absorbing boundary condition at γ = γ+, P(γ+) = 0.
The position γ+ has to be sufficiently far to the right of γb,
i.e., γ+ > γb, but is otherwise arbitrary. Then, the probability
current j , normalized to the occupation na of the minimum at
γa , describes the rate � at which transitions occur out of the
minimum γa .

Note that the Smoluchowski equation implies that j is
independent of γ for stationary solutions, so that we find

P(γ ) = mηj

T
exp [−U (γ )/T ]

∫ γ+

γ

dy exp [U (y)/T ] (22)

by solving Eq. (21). For γ near γa , we can perform the integral
by saddle-point integration and obtain

P(γ ) � mηj

ωbT

√
2πT

m
exp

(
U (γb)

T

)
exp [−U (γ )/T ]. (23)

Here, we approximate U (γ ) � U (γb) − 1
2mω2

b(γ − γb)2

around γb. The population na in the potential well around
γa is

na �
∫ ∞

−∞
dγ ′ P(γ ′) = 2πηj

ωaωb

exp (Eb/T ), (24)

where the integral should be evaluated with the expres-
sion in Eq. (23). We used the expansion U (γ ) � U (γa) +
1
2mω2

a(γ − γa)2 for γ near γa and introduced the barrier height
Eb = U (γb) − U (γa). Finally, one obtains the Arrhenius-type

expression

� = j

na

= ωaωb

2πη
exp (−Eb/T ) (25)

for the escape rate �.
The two points γa and γb satisfy the condition ∂U (γ )/∂γ =

0, which yields

I0 sin γ + In(γ + φ) = I. (26)

First neglecting the contribution of the weak junction, one has

γa � arcsin
I
I0

; γb � π − arcsin
I
I0

(27)

as well as

ωaωb � Eaux
J

m
| cos γa cos γb|1/2 (28)

and

Eb � Eaux
J (cos γa − cos γb) − �I

2e
(γb − γa). (29)

Then, Eq. (25) yields the phase escape rate

�aux(I) = eI0RS

π�
√

1 − (I/I0)2

× e− �
2eT

{I[2 arcsin(I/I0)−π]+2I0

√
1−(I/I0)2} (30)

by Eq. (18), the switching probability of the auxiliary junction
is

P aux
sw (I) = 1 − e−�aux(I)tp . (31)

P aux
sw has a steplike shape as shown in Fig. 4, with the steps

occurring near Iaux
sw which is generally smaller than I0 due to

the thermal fluctuations.
Now, the weak junction can be readily included to first

order. We first need to solve Eq. (26) for γa and γb. In doing so,
we can replace γ in the argument ofIn by the results in Eq. (27)
for γa and γb to zeroth order. At sufficiently low temperatures,
the junction switches only once the barrier becomes small and
hence when γa and γb are close together (and thus close to
π/2). In computing the switching probability to first order in
In, it is sufficient to set γ � π/2 in the argument of In in
Eq. (26). Then, we can account for the weak junction simply
by shiftingI → I − In(φ + π/2) in the above considerations.
This yields

P n
sw(I) � P aux

sw

[
I − In

(
φ + π

2

)]
(32)

for the switching probability of the asymmetric SQUID.

C. Signatures of topological Josephson junctions

The differences between topological and trivial junctions
are most pronounced in the switching probability Psw as a
function of the flux and the height of the current pulse. We
can use the RCSJ approach developed in the previous section
to calculate Psw in Eq. (13) numerically [see Eq. (32)]. This
leads to Fig. 6 which contains a central result of this paper and
highlights the qualitative difference between topological and
trivial junctions. Figure 6(a) shows a color plot of the switching
probability for a nontopological junction as a function of the
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FIG. 6. Color plot of the switching probability Psw of asymmetric
SQUIDs as a function of flux φ and height I of the current pulse for
(a) a conventional and (b) a topological Josephson junction. The
occupation probabilities of the various junction states prior to the
current pulse are taken to be thermal, with effective temperature
Teff . In (a), parameters are such that the occupation probability of
the doubly occupied Andreev state is negligible. The dashed lines
indicate the switching currents based on the Josephson currents
associated with the various junction states as indicated in the
figure, with the phase difference across the weak junction taken
as δ = φ + π/2. In (a), the purple line corresponds to the ground
state, the black line to the singly occupied Andreev state, and the
orange one to the doubly occupied state. In (b), the purple and
orange lines correspond to the two states of the topological junction.
The parameters were chosen as Rs = 550 �, I0 = 553.7 nA, T =
100 mK, Eaux

J /� = 5.7, tp = 1 μs, and D = 0.95, according to the
parameters used in Ref. [35]. The effective temperature Teff is chosen
as such that Eaux

J /Teff = 10. The gray arrows with labels (i), (ii)
indicate values of φ for which line cuts are shown in Fig. 7.

height I of the current pulse and the flux threading the SQUID.
The dashed lines indicate the switching currents for the various
junction states as obtained on the basis of the current-phase
relation of the weak junction and discussed in Sec. III A. The
purple line corresponds to the ground state of the junction, the
black line to the odd states, and the orange line to the doubly
occupied Andreev level.

For the parameters chosen, double occupation of the An-
dreev level can be neglected so that the switching probability
effectively exhibits only a single plateau as a function of
current. In Fig. 6, this plateau is well resolved for 0 � φ � π ,
corresponding to a phase difference of π/2 � δ � 3π/2 across
the weak junction. Outside this region, the energy of the odd
states becomes too high, and their thermal occupation too low,
so that the corresponding step in the switching probability
is no longer resolved. Obviously, the range over which the
plateau can be resolved depends on the junction parameters
and temperature.

P
sw

I/I0

Conventional Topological

(i)

0.0

0.5

1.0

|0〉

|1, σ〉

(ii)

0.0

0.5

1.0

0.8 0.9 1.0

|0〉

|1, σ〉

(i′)|0〉

|1〉

(ii′)

0.7 0.8 0.9 1.0

|0〉

|1〉

FIG. 7. Switching probability of a conventional (topological)
junction as a function of the applied current for fixed φ. The black
symbols represent Psw along the fixed-φ cuts indicated by gray arrows
in Fig. 6 for conventional junctions: (i) switching probability for
φ = 0.4π ; (ii) for φ = 0.6π . (i′) and (ii′) show the corresponding
plots along the same φ cuts for the topological junction. The dashed
curves denote the switching probability when the weak junction is in
the fixed occupation state as specified in the figure, similar to those
in Fig. 4. Note that for conventional junction, the state with the lower
switching current inverts between (i) and (ii). It is this inversion which
explains the sudden change in the plateau height for (i) φ < π/2 and
(ii) φ > π/2, as discussed in the text. In contrast, there are no such
inversions in the topological case.

The height of the intermediate plateau changes quite
abruptly at φ � π/2, corresponding to a phase difference of
δ = π across the weak junction. This is seen in Fig. 6 and
further illustrated in the line cuts presented in Fig. 7. At δ = π ,
there is a change in sign of the Josephson current flowing
through the weak junction. Consequently, the low-current step
in the switching probability is due to the odd states (ground
state) to the left (right) of φ = π/2, and the step heights
therefore controlled by the low (high) thermal occupations of
these states. Note that this change in the plateau height occurs
at a flux where the width of the plateau goes through zero.

Corresponding results for a topological junction are shown
in Fig. 6(b). The two dashed lines correspond to the expected
switching currents based on the even and odd states of the
topological junction. The plateau in the switching probability
occurs between these two lines. Unlike for the conventional
junction, the width of the plateau is now maximal for
φ = π/2, corresponding to a phase difference of δ = π

across the topological junction. This qualitative difference
between topological and conventional junctions was already
highlighted in Fig. 4. Note also that there is now a rather abrupt
change in the height of the plateau at this point of maximal
plateau width, rather than the point of minimal plateau width
as for conventional junctions.

Finally, there are characteristic differences between conven-
tional and topological junctions based on the flux dependence
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|0〉
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1

Γout
2

Γout = Γout
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2

FIG. 8. Center: parity switching between states |1〉 and |0〉, with
rates �in and �out. Left: quasiparticle processes that contribute to �out.
The top panel shows the breaking of a Cooper pair, with one electron
excited into the subgap state (red line) and the second electron excited
to the continuum (blue box). The bottom panel shows the transition
of a quasiparticle from the continuum into the subgap state. Right:
quasiparticle processes that contribute to �in. The top panel shows
the recombination of quasiparticle excitations from the continuum
and the subgap state into a Cooper pair. The bottom panel shows the
excitation of an excitation from the subgap state into the quasiparticle
continuum.

of the Josephson current. In a conventional junction, one of
the steps of the switching probability as a function of current
is due to the odd state which carries zero Josephson current
for all phase differences. Thus, the position of one of the
steps should be rather insensitive to the flux φ. Conversely,
both occupation states of a topological junction generally
carry Josephson currents, with their currents being equal in
magnitude but opposite in sign. Thus, both steps should depend
on flux in a symmetric manner. This difference is clearly seen
in Fig. 6.

D. Poisoning dynamics

According to Eq. (13), the measured switching probability
is sensitive to the probabilities cn for the various occupation
states n of the junction. As shown experimentally in Ref. [35],
this can be used to extract the poisoning dynamics of the
weak Josephson junction by a “pump-probe” technique. This
technique can be readily extended to topological Josephson
junctions.

The basic idea of the technique [35] is to drive the
occupation probabilities cn out of equilibrium, e.g., by a short
initial current pulse, and to probe the switching current by a
second current pulse at a later time t . With increasing time
delay �t between the current pulses, the junction occupations
relax back towards equilibrium, and this is reflected in the
switching probability Psw, due to its dependence on the cn.

This can be used to extract the dependence of the cn’s on the
time delay �t and hence the poisoning rates by comparison
with a simple rate equation. The dominant poisoning processes
in a short topological junction are shown in Fig. 8. Note that
in short junctions, the presence of above-gap quasiparticles

leaves the Josephson current unchanged. Denoting the occu-
pations of the states |0〉 and |1〉 by p and 1 − p, respectively,
the rate equation takes the form

dp

dt
= −�outp + �in(1 − p). (33)

In equilibrium, this is solved by p = p∞ = �in/(�in + �out),
and this equilibrium is approached with rate � = �in + �out.
Both � and p∞ can be measured, yielding the poisoning rates
�in and �out.

While quasiparticle poisoning frequently suppresses Ma-
jorana signatures such as the 4π -periodic Josephson effect
or the 2e2/h conductance quantization of a Majorana tunnel
junction, measurements of the poisoning dynamics may
actually be helpful in distinguishing between topological and
nontopological junctions. This is related to the fact that a
nontopological junction typically has additional channels of
poisoning dynamics which are absent in a short topological
junction. Specifically, a nontopological junction can have
two pairs of subgap states while a topological junction has
only one. As a result, we can have poisoning processes in
a nontopological junction in which a Cooper pair is split
up between (or recombined from) the two positive-energy
subgap states. No such process exists in a short topological
junction where all poisoning processes necessarily involve the
quasiparticle continuum, as shown in Fig. 8.

This difference becomes particularly dramatic and helpful
at δ = π when the nontopological junction has only weakly
anticrossing Andreev levels. Such a situation is shown in
Fig. 13 in Sec. V. Then, it may be challenging to resolve the
weak splitting in switching-current measurements. However,
the poisoning dynamics of the two settings remains distinctly
different. The fastest rate for the topological junction has an
activated temperature dependence with an activation energy of
the order of the topological superconducting gap. In contrast,
the fastest rate of a nontopological junction should involve a
considerably smaller activation energy which equals the sum
of the energies of the spin-up and -down Andreev levels.

IV. MICROWAVE ABSORPTION

In addition to the switching current, topological and
nontopological Josephson junctions also differ in their mi-
crowave absorption. Microwave absorption was studied for
nontopological junctions by Kos et al. [39] and for long
topological junctions by Väyrynen et al. [42]. Here, we
present corresponding results for short topological Josephson
junctions. (Related results were also obtained very recently in
Ref. [55].) For definiteness, we consider a model Hamiltonian
of a short topological Josephson junction which is appropriate
for a topological Josephson junction based on a proximity-
coupled topological-insulator edge [4]. This model allows us
to explicitly compute the Josephson current and the transi-
tion rates for the various microwave-induced quasiparticle
processes. Related calculations of admittance of topological
wires have been done in Refs. [56,57].

A. Bound states and Josephson current

Consider the Fu-Kane model of a topological Josephson
junction [4]. The banks, consisting of a topological insulator
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edge proximity coupled to a conventional superconductor, are
separated by a section in which the edge state is gapped out
by a Zeeman field or proximity coupling to a ferromagnetic
insulator. The banks are considered to be long enough that
the Majorana bound states at the junction are decoupled from
other Majoranas far from the junction. We also require the
edge state to be well separated so that we can focus on an
individual edge mode.

To model a short junction for which the length L of the
junction is small compared to the superconducting coherence
length, we take the limit L → 0 while keeping R = ML/vF

fixed, where M is the strength of the magnetic gap in the
junction, i.e., we treat the Zeeman field as a δ-function
perturbation. In the Nambu basis � = (ψ↑,ψ↓,ψ

†
↓, − ψ

†
↑)T ,

the Hamiltonian takes the form H = 1
2�†H� with

H = vF pσzτz + �(x)τx + M(x)σx, (34)

where x (p) denotes the coordinate (momentum) along the
topological-insulator edge, vF is the edge-mode velocity, and
σj and τj are Pauli matrices in spin and Nambu (particle-hole)
space, respectively. The proximity-induced superconducting
gap

�(x) = �[θ (−x − L/2) + eiφτzθ (x − L/2)]

→ �eiφ(x)τz (35)

has strength � and a phase difference of φ across the junction
located at x = 0, so that φ(x) = φθ (x). (In this section, we
use φ instead of δ to avoid confusion with the δ function.)
Similarly, the magnetic gap takes the form

M(x) = Mθ (x + L/2)θ (−x + L/2) → vF Rδ(x) (36)

in the short-junction limit.
Thus, we can also write the Hamiltonian as

H = vF pσzτz + �eiφ(x)τzτx + vF Rδ(x)σx. (37)

The spatial dependence of the superconducting phase can be
eliminated by a local gauge transformation U = eiφ(x)τz/2. This
transforms the Hamiltonian into

U †HU = vF pσzτz + �τx + vF

[
φ

2
σz + Rσx

]
δ(x), (38)

which we will denote as H in the following.
The connection formula across the δ function can be readily

derived by rearranging the Bogoliubov–de Gennes equation
Hψ = Eψ as

i
∂ψ

∂x
= − 1

vF

σzτz

[
E − �τx − vF

(
φ

2
σz + Rσx

)
δ(x)

]
ψ.

(39)

By writing the solution as ψ(x) = U (x,x0)ψ(x0) in terms of
the state at some reference point x0, we find

U (x,x0) = P exp

{
i

vF

σzτz

∫ x

x0

dx ′
[
E − �τx

− vF

(
φ

2
σz + Rσx

)
δ(x ′)

]}
, (40)

where P is an ordering operator which moves larger x to the
left. Specifically, we can now compute

U (0+,0−) = e−iφτz/2[cosh R + σyτz sinh R], (41)

which connects the states on the two sides of the δ function
ψ(0+) = U (0+,0−)ψ(0−).

We can use this connection formula to obtain the bound
states localized at the junction. To do so, we match the properly
decaying solutions of the Bogoliubov–de Gennes equation
on the left and right sides of the δ function by means of
the connection formula (41) and obtain one pair of localized
Andreev bound states ±EM (φ) with

EM (φ) = �

cosh R
cos

φ

2
=

√
D� cos

φ

2
. (42)

Here, we have defined the junction transmission D =
1/ cosh2 R. This pair of Andreev bound states emerges from
the pair of coupled Majorana bound states adjacent to the
topological Josephson junction. For completeness, we include
details of this calculation in Appendix A 1.

Combining Eqs. (5) and (42), we can obtain the Josephson
current as

In = e�

2 cosh R
sin

φ

2
(1 − 2n) = πG

2

�2 sin φ

2eEM (φ)
(1 − 2n),

(43)

where n = 0,1 denotes the occupancy of the bound state and
we defined G = e2D/π . For a given junction occupation n,
the Josephson current is 4π periodic in φ and the two states of
the junction carry exactly opposite supercurrents, as shown in
Fig. 2(b′).

B. Linear response to microwave radiation

We model the microwave radiation as an applied time-
dependent bias V (t) which modifies the phase difference
across the junction according to φ → φ − 2φ1(t), where
φ̇1(t) = eV (t). We assume that the microwave radiation of
frequency ω is weak, φ1 ∼ |eV/ω| � 1, so that we can treat
the perturbation

H ′(t ′) = vF [ψ†
+(0)ψ+(0) − ψ

†
−(0)ψ−(0)]φ1(t ′)

= 1

e
I (t ′)φ1(t ′), (44)

in linear response. We note in passing that we neglect the
shift in chemical potential by eV (t). This term yields a purely
real response function and is thus irrelevant for microwave
absorption [39].

Using the Kubo formula, the current response to the
microwave radiation can be expressed as

δ 〈I (t)〉 = −i

∫ t

−∞
〈[I (t),H ′(t ′)]〉 dt ′

= − i

e

∫ t

−∞
〈[I (t),I (t ′)]〉 φ1(t ′)dt ′, (45)

and described by the response function

χ (t) = − i

e
θ (t)〈[I (t),I (0)]〉. (46)
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The admittance Y (ω) of the junction can be written as Y (ω) =
ie
ω
χ (ω), where χ (ω) denotes the Fourier transform of χ (t). The

linear absorption rate W of the microwave radiation becomes
[39]

W = φ2
1

2e2
ω ReY (ω), ω > 0. (47)

This quantity is a measure of the microwave-induced rate of
change of the weight factors cn in Psw as given in Eq. (13).

The admittance can be computed by using the current
operator

I = evF [ψ†
+(0)ψ+(0) − ψ

†
−(0)ψ−(0)], (48)

where ψ±(0) is the annihilation operator for the left/right
moving electron at position x = 0 of the junction. We need
to choose either x = 0+ or 0− for the wave functions to be
well defined. The electron operators can be expressed in terms
of the Bogoliubov quasiparticle operators γν [25]:

ψ+(0) =
∑

ν

u+ν(0)γν − v∗
−ν(0)γ †

ν ,

ψ−(0) =
∑

ν

u−ν(0)γν + v∗
+ν(0)γ †

ν . (49)

Here, we introduced the spinor wave functions �ν =
(u+ν,u−ν,v+ν,v−ν). The Andreev bound state is labeled by
ν = 0 and the continuum states by ν = (E,η,χ ), with η = e,h

and χ = l,r corresponding to the state generated by incoming
electron/hole states from the left/right. The ± label refers to
the two spin components which are locked to the propagation
directions of the edge channel.

By using the explicit expressions for the wave functions of
both bound and continuum states, as calculated in Appendix A,
we can first recover the Josephson current given in Eq. (43).
The corresponding derivation is given in Appendix B. Extend-
ing the calculation to the current-current correlation function
(46), we can then obtain microscopic results for the admittance
of short Josephson junctions, as shown in Appendix C. We
neglect above-gap excitations, as they are suppressed by the
superconducting gap. Then, the real part of the admittance can
be written as a sum of three terms

ReY = ReY1 + (1 − n)ReY2 + n ReY3. (50)

The three terms correspond to three different quasiparticle
processes shown in Fig. 3(a′). Explicitly, ReY1(ω) ∝ θ (ω −
2�) corresponds to the process (1) in which a Cooper
pair is excited into the continuum as two quasiparticles.
This process requires a threshold energy of 2�. ReY2(ω) ∝
θ (ω − � − EM ) describes the process (2), in which a Cooper
pair is split between the Andreev level and the quasiparticle
continuum. This process requires a threshold energy � + EM

and an initially empty Andreev level. Finally, ReY3(ω) ∝
θ (ω − � + EM ) corresponds to the process (3), in which
a quasiparticle is excited from the Andreev level into the
continuum. This requires a threshold energy of � − EM and
an occupied Andreev level. Unlike for conventional Josephson
junctions as discussed in Ref. [39], there is no process with
absorption energy 2EM as the Andreev level is nondegenerate
for a topological Josephson junction.
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FIG. 9. Various contributions to the real part of the admittance
for the Fu-Kane model, based on Eq. (C39), for D = 0.95 and phase
differences φ = π as well as φ = π/2. For φ = π , EA = 0, so that
ReY2 and ReY3 coincide. At phase differences φ away from π , the
two curves differ.

Detailed expressions for these functions are included in
Eq. (C39) in Appendix C. The explicit expressions show
that the thresholds at � + EM and � − EM are sharp in the
sense that their derivatives with respect to ω have square-root
singularities at the threshold. This is shown in Fig. 9, which
plots ReY2 and ReY3 for various phase differences φ across
the junction. These results also allow one to compute the ab-
sorption rate dW/dω according to Eq. (47). A corresponding
color plot as a function of both φ and ω which emphasizes the
threshold energies is shown in Fig. 10. Here, we assume that
both parity states are equally populated, independently of the
applied flux.

V. TOPOLOGICAL VS NONTOPOLOGICAL JUNCTIONS:
EFFECTS OF ZEEMAN FIELD AND

SPIN-ORBIT COUPLING

Potential realizations of topological Josephson junctions
require systems which involve spin-orbit coupling and/or
Zeeman fields. When searching for topological superconduc-
tivity, one is thus dealing with Josephson junctions which are
subject to both of these. Strictly speaking, our considerations
for nontopological junctions in the previous sections did not
include these effects. One may thus worry that their inclu-
sion makes the proposed experimental distinctions between
topological and nontopological junctions less clear cut. This
question is addressed in the present section. Our principal
conclusion is that the signatures remain essentially robust as
long as one considers short Josephson junctions.

Important realizations of topological Josephson junctions
rely on 2D topological insulators [4] or semiconductor
quantum wires [5,6]. In Sec. IV A, we presented microscopic
results for short junctions made of 2D topological insulator
edges, subject to a Zeeman field in the junction region.
These junctions are topological, and their subgap spectrum
agrees with the generic subgap spectrum of short topological
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FIG. 10. Derivative of the linear absorption rate with respect
to the microwave frequency dW/dω [see Eq. (47)]. For optimal
visibility of the thresholds, we assume an occupation of n = 1

2 in
Eq. (50) independently of flux. While the figure displays the sum of
contributions from Y2 and Y3, the bright curves result predominantly
from Y2 and Y3 as labeled in the figure.

junctions which underlies the considerations of this paper. At
the same time, there is experimental evidence that there can
be edge-state transport even in the trivial regime [58]. For this
reason, in Sec. V A, we study short nontopological junctions
which are one dimensional and subject to a strong Zeeman field
inside the junction region. In Sec. V B, we explore Josephson
junctions based on proximity-coupled semiconductor quantum
wires with Zeeman and spin-orbit coupling. This model
can be explicitly tuned between the topological and the
nontopological phase.

A. Nontopological Josephson junctions with strong
Zeeman field in the junction region

Consider a Josephson junction made from a nontopo-
logical (i.e., nonhelical) one-dimensional channel. In the
short-junction limit, the splitting of Andreev levels due to
spin-orbit coupling is of order �2τdw/� [59–61]. Here, τdw

denotes the dwell time in the junction which approaches zero
in the short-junction regime. Hence, we can neglect spin-orbit
coupling and focus on the Zeeman field. The subgap states
and Josephson current of such junction can quite generally
be obtained by scattering theory [43] (see Appendix D for
a detailed calculation). Figure 11 shows two typical subgap
spectra as a function of the phase difference across the junction
in the case of a short nontopological junction with Zeeman field
inside the junction region.

We observe that in short junctions, the main consequence of
Zeeman and spin-orbit coupling in the junction region is that
the odd-parity state spin splits. This implies that the odd-parity

-1.0

-0.5

0.0

0.5

1.0

0 1 2

E
σ ±
/Δ

φ/π
0 1 2

φ/π

(a) (b)

FIG. 11. Subgap energies of a short conventional Josephson
junction as a function of the phase difference, in the presence of
Zeeman field applied in the junction region. The orange solid curves
are the spectra for spin up with Nambu spinor (ψ↑,ψ

†
↓)T . The blue

dashed lines are the corresponding spectra for spin down following
from particle-hole symmetry. The panels illustrate the two types of
typical behaviors, with parameters chosen as (a) η̃ = 0.5 and (b)
η̃ = 2.8, with D = 0.6 and R cos γ̃ = 0.2 in both panels.

states carry nonzero supercurrent, leading to an additional
plateau in the switching probability. This actually enhances
the contrast with the short topological junctions which exhibit
a single plateau. Even if this additional plateau is not resolved,
however, we find that the supercurrent still vanishes when φ is
an odd multiple of π . Thus, the behavior of the plateau width
with phase difference remains as discussed in Sec. III.

The spin splitting of the odd-parity states also modifies
the behavior in microwave absorption. Let us denote the
two positive-energy Andreev levels as E±. Then, transitions
appear when the microwave frequency equals (i) E+ + E−,
generalizing the line at 2EA in the absence of the Zeeman
field, (ii) � ± E+ or � ± E−, generalizing the lines at
� ± EA to the spin-split case, and (iii) E+ − E−. The latter
is visible only due to spin-orbit coupling and should therefore
be weak. Thus, the magnetic field and spin-orbit coupling
introduce additional absorption lines in microwave absorption,
while short topological Josephson junctions have only two
absorption lines.

B. Josephson junctions based on proximitized
Rashba nanowires

Nontopological junctions based on proximity-coupled
Rashba nanowires include both Zeeman and spin-orbit cou-
pling also in the superconducting leads. Here, we explore
the corresponding modifications for short junctions and show
that both switching-current and ac-absorption measurements
continue to provide clear-cut distinctions between topological
and nontopological junctions.

The explicit Hamiltonian and the bulk dispersions for this
system are given by Eq. (E1). We compute the spectrum of
the Hamiltonian (E1) numerically by discretizing the model
into a finite-difference representation. The results are shown
in Figs. 12 and 13. In Fig. 12, we fix the chemical potential
to μ = 0. Results for a short junction are shown in panels
(a)–(c), with the Zeeman field increasing from (a) to (c).
Far on the nontopological side of the topological phase
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FIG. 12. Low-energy spectra of Hamiltonian (E1) as a function
of phase difference ϕ, for various Zeeman fields and junction lengths.
The results are obtained numerically for finite-length samples,
showing all levels which become subgap states at least for some range
of phase differences. Energies corresponding to the quasiparticle
continuum of infinite wires are shown in gray. We choose a chemical
potential μ = 0, spin-orbit interaction mα2 = �, and a total length
60ξ of the system, with ξ = 2α/� the bulk coherence length of
the superconductor when B = 0. Results for a short junction with
L = 0.05ξ are shown in (a)–(c) for increasing Zeeman field: (a)
nontopological junction, B = 0.2�; (b) nontopological junction,
B = 0.8�; (c) topological junction, B = 2.0�. The subgap spectrum
behaves in a qualitatively similar manner in intermediate length
junctions with L = 0.5ξ . Results for junctions of this length are
shown in (d)–(f), with the other parameters equal to those of panels
(a)–(c). Additional subgap states emerge only in long junctions, as
shown in panels (g) and (h) for L = 2ξ , and other parameters again
as in (a)–(c). The numerical results are obtained by discretizing
the Hamiltonian (E1) with a minimal spacing of 0.025ξ and an
eighth-order approximation to the Laplacian.

transition [Fig. 12(a)], the results differ from those for the
simplified model of a nontopological junction in that the
subgap states are spin split, leading to four subgap states.
As argued in Sec. V A, this leads to additional plateaus in
the switching probability and additional lines in microwave
absorption, which enhances the central distinctions between
short topological and nontopological junctions.

When approaching the topological phase transition by
increasing the Zeeman field, the bulk gap � − B becomes
smaller and two of the subgap states merge with the continuum.
This is shown in Fig. 12(b). Thus, the switching probability is
expected to exhibit only a single plateau, as in the topological
phase. However, the plateau width remains distinctly different
as the Josephson current vanishes at φ = π where it becomes
maximal in a topological junction. The latter can be seen from

E
/Δ

φ/π

(a)

-0.6

-0.3

0.0
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FIG. 13. Low-energy spectra of Hamiltonian (E1) as a function
of phase difference ϕ, for fixed Zeeman fields B = 2.0� and
junction length L = 0.5ξ . The results are obtained numerically for
finite-length samples, showing all levels which become subgap states
at least for some range of phase differences. Energies corresponding
to the quasiparticle continuum of infinite wires are shown in gray.
We choose a spin-orbit interaction of mα2 = � and a total length
of 60ξ of the system, with ξ = 2α/� the bulk coherence length of
the superconductor when B = 0. (a) Nontopological junction with
μ = 3.0�. (b) Topological junction with μ = 1.0�. Panels (c) and
(d) are for parameters as in (a) and (b), respectively, but with an
additional potential barrier of height 3� in the junction region, which
reduces the junction transmission. The numerical results are obtained
by discretizing the Hamiltonian (E1) with a minimal spacing of
0.025ξ and an eighth-order approximation to the Laplacian.

Fig. 12(c) which shows the subgap spectrum in the topological
phase.

The results in Figs. 12(a)–12(c) were obtained for a very
short junction with a length of L = 0.05ξ , where ξ is the
superconducting coherence length for B = 0 and μ = 0.
Qualitatively the same results are found for intermediate
length junctions with L = 0.5ξ , as shown in Figs. 12(d)–12(f).
Additional subgap states appear only for even longer junctions
of length L = 2ξ , as shown in Figs. 12(g)–12(i).

We can also tune the junction across the topological phase
transition by varying the chemical potentials μ. Corresponding
results are shown in Fig. 13 for a junction of moderate length,
L = 0.5ξ . Figure 13(a) corresponds to a nontopological junc-
tion with spin-split subgap states and vanishing supercurrent
for φ = π . Figure 13(b) corresponds to a topological junction
with maximal supercurrent at φ = π . Potential scattering in the
junction region reduces the junction transmission which opens
a gap between subgap states and quasiparticle continuum in
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the topological case while leaving the behavior near φ = π

qualitatively unchanged. Corresponding numerical subgap
spectra are shown in Figs. 13(c) and 13(d).

VI. CONCLUSION

The most immediate detection of a topological Josephson
junction relies on the 4π -periodic Josephson effect. Its ob-
servation is, however, complicated by quasiparticle poisoning
and diabatic effects. In this paper, we showed that topological
Josepshon junctions can be identified even in the presence
of quasiparticle poisoning. The proposed technique relies on
switching-current measurements. While such measurements
may be interesting even for the Josephson junction by itself,
they provide much more information when including the
junction into an asymmetric SQUID, together with an auxiliary
junction with much larger critical current. Most importantly,
incorporation into an asymmetric SQUID allows for phase-
resolved measurements of the Josephson junction of interest.

Rather than measuring the 4π periodicity of individual
subgap levels, the proposed switching-current measurements
probe the existence of a protected level crossing at a certain
phase difference δ. While in a topological junction, this
level crossing is protected by fermion parity, there is no
corresponding protection in nontopological junctions. For
a particular junction state, the Josephson current is corre-
spondingly maximal in magnitude at the protected crossing
of a topological junction, but vanishes in a nontopological
junction. We showed that this has striking manifestations in
the switching probability of the junction as a function of the
height of the applied current pulse, as illustrated in Figs. 4
and 6.

Specifically, our considerations focused on short Josephson
junctions for which the number of subgap states is limited
and the differences between topological and nontopological
junctions are most pronounced. Especially, near degeneracies
of subgap levels are quite unlikely in short nontopological
junctions, as we show by explicitly calculating the subgap
spectra for specific models based on topological-insulator edge
modes or semiconductor quantum wires.

The proposed measurements are not only tolerant of (and in
fact exploit) quasiparticle poisoning, but also provide access to
the poisoning dynamics. The poisoning rates can be extracted
by means of a pump-probe technique with multiple current
pulses offset in time. As we showed, this is particularly useful
to identify nontopological junctions with anomalously weak
anticrossings of the Andreev levels. Microwave irradiation
may be another useful technique in probing the poisoning
dynamics as it also drives the system out of equilibrium.
Moreover, microwave absorption provides access to the
subgap spectrum of Josephson junctions, providing additional
signatures which differentiate topological from nontopological
junctions.

Throughout our discussion, we focused on the Majoranas
which are localized at the junction and did not consider
additional Majoranas located far from the junction. This is
justified when the overlap between these additional outer
Majoranas and the junction Majoranas can be neglected.
Then, the subgap states resulting from the outer Majoranas
are independent of the phase difference across the junction

and the Josephson currents remain unaffected. Similarly, the
transition matrix elements vanish for microwave processes
involving both these and the junction Majoranas.

It is interesting to consider how our results become modified
when there is substantial overlap between the junction and
outer Majoranas. A topological junction would now have a
“counterpart” of process (4) in Fig. 3, yielding an absorption
line at the energy EM plus the small splitting of the outer
Majoranas (as opposed to 2EA for a nontopological junction).
In addition, there should also be an absorption feature with
a threshold near �, which distinguishes this case from
conventional Andreev states. Both additional features should
be much dimmer than other features as they require overlap
of the outer and junction Majoranas. In switching current
measurements, the signature in Fig. 4(b) weakens a bit: In
an exponentially narrow window around φ = π , the plateau
width would go to zero even in the topological phase. The
signature in Figs. 6(a) and 6(b) would only be weakly affected.
In particular, the fact that in Fig. 6(b) the plateau in Psw is
centered around the same current should be quite robust.

Thus, we conclude that the proposed signatures remain
quite useful in the presence of weak coupling to the outer
Majoranas. An exception is the discussion at the end of
Sec. III D concerning poisoning processes. With coupling to
outer Majoranas, the activation energy of the poisoning rates
of topological junctions would no longer be necessarily larger
than the gap, and a measurement without this overlap has clear
benefits.

Combined switching-current and microwave absorption
measurements on the same Josephson junction should thus
be a powerful combination to identify topological Josephson
junctions. In view of the fact that corresponding measurements
have already been carried out successfully on nontopological
junctions based on atomic point contacts [34–37], we hope
that the proposed measurements can be readily implemented
for topological junctions.

ACKNOWLEDGMENTS

We acknowledge discussions with L. Glazman and T.
Karzig, and thank H. Pothier, D. van Woerkom, and R. Egger
for comments on the manuscript. This work was supported in
part by Priority Programs No. 1666 and No. 1285 as well as
CRC 183 of the Deutsche Forschungsgemeinschaft (DFG), by
the STC Center for Integrated Quantum Materials under NSF
Grant No. DMR-1231319, by the Israeli Science Foundation
(ISF), Minerva grants, a Career Integration Grant (CIG), a
Minerva ARCHES prize, and an ERC Grant No. 340210
(FP7/2007-2013).

APPENDIX A: CALCULATION OF WAVE FUNCTIONS

In this appendix, we derive the wave functions for the bound
states (Appendix A 1) and continuum states (Appendix A 2)
of the Fu-Kane model in the short-junction limit. The Hamil-
tonian is given in Eq. (38).

1. Andreev bound state with |E| < �

For E < �, we write the left (x < 0) and right (x > 0) wave
functions which are solutions to the Hamiltonian H without
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the δ-function term,

�L(x) = eκx(aA0,B0,A0,aB0)T , x < 0
(A1)

�R(x) = e−κx(C0,aD0,aC0,D0)T , x > 0

where κ(E) = √
�2 − E2/vF and a(E) = E/� −

i
√

1 − E2/�2. The connection condition in Eq. (41)
leads to

eiφ/2C0 = aA0 cosh R − i sinh RB0,

e−iφ/2C0 = a−1A0 cosh R + i sinh RB0,
(A2)

eiφ/2D0 = i sinh RA0 + a−1 cosh RB0,

e−iφ/2D0 = −i sinh RA0 + a cosh RB0,

which can be further simplified to become

C0 = E

�
A0

cosh R

cos φ/2
= A0,

D0 = E

�
B0

cosh R

cos φ/2
= B0, (A3)

C0 = −
√

D sinh RB0√
1 − D cos2 φ

2 + √
D sin φ

2

.

These equations are a set of homogeneous linear equations
for the coefficients A0, B0, C0, and D0. The condition to have

nonzero solutions leads to the Andreev bound-state energy

EM (φ) = � cos

(
φ

2

)/
cosh R =

√
D� cos

(
φ

2

)
(A4)

given in Eq. (42).
To obtain the bound-state wave function, we note that the

coefficients fulfill A0 = C0 and

B0 = D0 =
⎛
⎝

√
1 − D cos2 φ

2 + √
D sin φ

2√
1 − D cos2 φ

2 − √
D sin φ

2

⎞
⎠

1/2

A0. (A5)

Imposing the normalization condition∫
dx �†(x)�(x) = 2

κ

(∣∣A0

∣∣2 + ∣∣B2
0

∣∣) = 1, (A6)

and using

|A0|2 + |B0|2 =
2
√

1 − D cos2 φ

2√
1 − D cos2 φ

2 − √
D sin φ

2

|A0|2 (A7)

as well as

κ(EM ) = �

vF

√
1 − D cos2

φ

2
, (A8)

we obtain

|A0|2 = �

4vF

(√
1 − D cos2

φ

2
−

√
D sin

φ

2

)
,

|B0|2 = �

4vF

(√
1 − D cos2

φ

2
+

√
D sin

φ

2

)
. (A9)

2. Continuum state with |E| � �

For E � �, we have four kinds of wave functions �
(η,χ )
E :

�
(e,l)
E = J (E)[eipx(1,0,a,0) + e−ipx(aA(e,l),0,A(e,l),0)T + e−ipx(0,B(e,l),0,aB(e,l))T ]θ (−x)

+ J (E)[eipx(C(e,l),0,aC(e,l),0) + eipx(0,aD(e,l),0,D(e,l))]θ (x), (A10a)

�
(h,l)
E = J (E)[eipx(0,a,0,1) + e−ipx(aA(h,l),0,A(h,l),0)T + e−ipx(0,B(h,l),0,aB(h,l))T ]θ (−x)

+ J (E)[eipx(C(h,l),0,aC(h,l),0) + eipx(0,aD(h,l),0,D(h,l))]θ (x), (A10b)

�
(e,r)
E = J (E)[e−ipx(aA(e,r),0,A(e,r),0)T + e−ipx(0,B(e,r),0,aB(e,r))T ]θ (−x)

+ J (E)[e−ipx(0,1,0,a)T + eipx(C(e,r),0,aC(e,r),0) + eipx(0,aD(e,r),0,D(e,r))]θ (x), (A10c)

�
(h,r)
E = J (E)[e−ipx(aA(h,r),0,A(h,r),0)T + e−ipx(0,B(h,r),0,aB(h,r))T ]θ (−x)

+ J (E)[e−ipx(a,0,1,0)T + eipx(C(h,r),0,aC(h,r),0) + eipx(0,aD(h,r),0,D(h,r))]θ (x), (A10d)

where η = e,h denote electron or hole source, χ = l,r denote the source field coming from left or right,

p(E) =
√

E2 − �2

vF

, a(E) = E

�
−

√
E2

�2
− 1, (A11)

and J (E) = [2πvF (1 − |a|2)]
−1/2

is the normalization constant. These coefficients for the continuum wave functions can be
obtained by using the connection condition in Eq. (41), which will be shown in the following.
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a. Electron source from left

For electron source from left, the wave function fulfills⎛
⎜⎜⎝

C(e,l)

aD(e,l)

aC(e,l)

D(e,l)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

e−iφ/2 cosh R −e−iφ/2i sinh R 0 0
e−iφ/2i sinh R e−iφ/2 cosh R 0 0

0 0 eiφ/2 cosh R eiφ/2i sinh R

0 0 −eiφ/2i sinh R eiφ/2 cosh R

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 + aA(e,l)

B(e,l)

a + A(e,l)

aB(e,l)

⎞
⎟⎟⎠, (A12)

A(e,l) = A = E
(
E2

M − �2
) − iEM

√
E2 − �2�

√
D sin φ

2

�(E2 − E2
M )

,

B(e,l) = B = −iE
√

E2 − �2 tanh R

E2 − E2
M

. (A13)

b. Hole source from left

For hole source from left, the wave function fulfills⎛
⎜⎜⎝

C(h,l)

aD(h,l)

aC(h,l)

D(h,l)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

e−iφ/2 cosh R −e−iφ/2i sinh R 0 0
e−iφ/2i sinh R e−iφ/2 cosh R 0 0

0 0 eiφ/2 cosh R eiφ/2i sinh R

0 0 −eiφ/2i sinh R eiφ/2 cosh R

⎞
⎟⎟⎠

⎛
⎜⎜⎝

aA(h,l)

a + B(h,l)

A(h,l)

1 + aB(h,l)

⎞
⎟⎟⎠, (A14)

A(h,l) = B, B(h,l) = A∗. (A15)

c. Electron source from right

For electron source from right, the wave function fulfills⎛
⎜⎜⎝

C(e,r)

1 + aD(e,r)

aC(e,r)

a + D(e,r)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

e−iφ/2 cosh R −e−iφ/2i sinh R 0 0
e−iφ/2i sinh R e−iφ/2 cosh R 0 0

0 0 eiφ/2 cosh R eiφ/2i sinh R

0 0 −eiφ/2i sinh R eiφ/2 cosh R

⎞
⎟⎟⎠

⎛
⎜⎜⎝

aA(e,r)

B(e,r)

A(e,r)

aB(e,r)

⎞
⎟⎟⎠, (A16)

A(e,r) = C = − iEM

√
E2 − �2 tanh R

E2 − E2
M

,

B(e,r) = D∗ = (E2 − �2)EM + iE
√

E2 − �2�
√

D sin φ

2

�(E2 − E2
M )

. (A17)

d. Hole source from right

For hole source from right, the wave function fulfills⎛
⎜⎜⎝

a + C(h,r)

aD(h,r)

1 + aC(h,r)

D(h,r)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

e−iφ/2 cosh R −e−iφ/2i sinh R 0 0
e−iφ/2i sinh R e−iφ/2 cosh R 0 0

0 0 eiφ/2 cosh R eiφ/2i sinh R

0 0 −eiφ/2i sinh R eiφ/2 cosh R

⎞
⎟⎟⎠

⎛
⎜⎜⎝

aA(h,r)

B(h,r)

A(h,r)

aB(h,r)

⎞
⎟⎟⎠, (A18)

A(h,r) = D, B(h,r) = C. (A19)

APPENDIX B: DERIVATION OF JOSEPHSON CURRENT

In this appendix, we derive the Josephson current formula in Eq. (43) in Sec. IV A. By using Eq. (49), we can write the field
operators for left/right moving electrons in terms Bogoliubov quasiparticle operators, in terms of coefficients of wave functions
derived in the previous section:

ψ+(0−) =
∫

dE J (E)[(1 + aA)γ(E,e,l) + aBγ(E,h,l) + aCγ(E,e,r) + aDγ(E,h,r)

− aB∗γ †
(E,e,l) − (1 + aA)γ †

(E,h,l) − aDγ
†
(E,e,r) − aC∗γ †

(E,h,r)] + a(EM )A0γ0 − a(EM )∗B∗
0 γ

†
0 , (B1)

ψ−(0−) =
∫

dE J (E)[Bγ(E,e,l) + (a + A∗)γ(E,h,l) + D∗γ(E,e,r) + Cγ(E,h,r)

+ (a + A∗)γ †
(E,e,l) + B∗γ †

(E,h,l) + C∗γ †
(E,e,r) + D∗γ †

(E,h,r)] + B0γ0 + A∗
0γ

†
0 . (B2)
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At zero temperature, all continuum states with negative eigenvalues of the Bogoliubov–de Gennes Hamiltonian are occupied,
and all continuum states with positive eigenvalues are empty. The occupation of the Andreev bound state is n = 0,1, depending
on the fermion parity of the system. This leads to the Josephson current, by using Eq. (48),

〈I 〉 = evF

[|A0|2 − ∣∣B2
0

∣∣](2n − 1)

= e�

2

√
D sin

φ

2
(1 − 2n)

= πG

2

�2 sin φ

2eEM (φ)
(1 − 2n), G = e2D/π. (B3)

To obtain the above equation, we have used the identity

|A|2 + |B|2 + |C|2 + |D|2 = 1. (B4)

APPENDIX C: DERIVATION OF ReY (ω)

In this appendix, we apply linear response theory to derive the real part of the admittance via the response function given in
Eq. (46) of Sec. IV B. The response function χ (t) can be written as

χ (t) = −iθ (t)ev2
F {〈[ψ†

+(t)ψ+(t),ψ†
+ψ+]〉0 + 〈[ψ†

−(t)ψ−(t),ψ†
−ψ−]〉0}

+ iθ (t)ev2
F {〈[ψ†

+(t)ψ+(t),ψ†
−ψ−]〉0 + 〈[ψ†

−(t)ψ−(t),ψ†
+ψ+]〉0}. (C1)

As a function of Matsubara frequency, it can be written as

χ (i�n) = ev2
F [G1(i�n) + G2(i�n) − G3(i�n) − G4(i�n)] (C2)

and the frequency-dependent response function follows from it by analytical continuation.

1. G1(i�n)

For τ � 0,

G1(τ ) = −〈T ψ
†
+(τ )ψ+(τ )ψ†

+ψ+〉0 = −〈ψ†
+(τ )ψ+〉0〈ψ+(τ )ψ†

+〉0 + 〈ψ†
+(τ )ψ†

+〉0〈ψ+(τ )ψ+〉0. (C3)

By using the relation between electron operators and Bogoliubov quasiparticle operators in Eq. (49), at T = 0, we have

〈ψ†
+(τ )ψ+〉0 =

∫
dE P (E)e−Eτ + |B0|2e−EMτ (1 − n) + |A0|2eEMτn, (C4)

〈ψ+(τ )ψ†
+〉0 =

∫
dE P (E)e−Eτ + |A0|2e−EMτ (1 − n) + |B0|2eEMτn, (C5)

〈ψ†
+(τ )ψ†

+〉0 = −B0A
∗
0[e−EMτ (1 − n) + eEMτn], (C6)

〈ψ+(τ )ψ+〉0 = −A0B
∗
0 [e−EMτ (1 − n) + eEMτn], (C7)

with

P (E) = 1

2πvF

E
√

E2 − �2

E2 − E2
M

. (C8)

Hence,

G1(τ ) = −〈T ψ
†
+(τ )ψ+(τ )ψ†

+ψ+〉0

= −
∫

dE1dE2 P (E1)P (E2)e−(E1+E2)τ − (|A0|2 + |B0|2)

[∫
dE (1 − n)P (E)e−(E+EM )τ +

∫
dE nP (E)e−(E−EM )τ

]
.

(C9)

Finally, we obtain

G1(i�n) =
∫

dE1dE2
P (E1)P (E2)

i�n − E1 − E2
+ (|A0|2 + |B0|2)

∫
dE P (E)

[
(1 − n)

i�n − E − EM

+ n

i�n − E + EM

]
. (C10)

2. G2(i�n)

For τ � 0,

G2(τ ) = −〈T ψ
†
−(τ )ψ−(τ )ψ†

−ψ−〉0 = −〈ψ†
−(τ )ψ−〉0〈ψ−(τ )ψ†

−〉0 + 〈ψ†
−(τ )ψ†

−〉0〈ψ−(τ )ψ−〉0. (C11)
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Consider T = 0,

〈ψ†
−(τ )ψ−〉0 =

∫
dE P (E)e−Eτ + |A0|2e−EMτ (1 − n) + |B0|2eEMτn, (C12)

〈ψ−(τ )ψ†
−〉0 =

∫
dE P (E)e−Eτ + |B0|2e−EMτ (1 − n) + |A0|2eEMτn, (C13)

〈ψ†
−(τ )ψ†

−〉0 = A0B
∗
0 [e−EMτ (1 − n) + eEMτn], (C14)

〈ψ−(τ )ψ−〉0 = A∗
0B0[e−EMτ (1 − n) + eEMτn]. (C15)

Thus, we have

G2(i�n) = G1(i�n) =
∫

dE1dE2
P (E1)P (E2)

i�n − E1 − E2
+ (|A0|2 + |B0|2)

∫
dE P (E)

[
(1 − n)

i�n − E − EM

+ n

i�n − E + EM

]
.

(C16)

3. G3(i�n)

For τ � 0,

G3(τ ) = −〈T ψ
†
+(τ )ψ+(τ )ψ†

−ψ−〉0 = −〈ψ†
+(τ )ψ−〉0〈ψ+(τ )ψ†

−〉0 + 〈ψ†
+(τ )ψ†

−〉0〈ψ+(τ )ψ−〉0. (C17)

Consider T = 0, we have

〈ψ†
+(τ )ψ−〉0 = −

∫
dE M(E)e−Eτ − a(EM )A∗

0B0e
−EMτ (1 − n) + a(EM )∗A∗

0B0e
EMτn, (C18)

〈ψ+(τ )ψ†
−〉0 =

∫
dE M(E)e−Eτ + a(EM )A0B

∗
0 e−EMτ (1 − n) − a(EM )∗B∗

0 A0e
EMτn, (C19)

〈ψ†
+(τ )ψ†

−〉0 = −
∫

dE Q(E)∗e−Eτ − a(EM )|B0|2e−EMτ (1 − n) + a(EM )∗|A0|2eEMτn, (C20)

〈ψ+(τ )ψ−〉0 =
∫

dE Q(E)e−Eτ + a(EM )|A0|2e−EMτ (1 − n) − a(EM )∗|B0|2eEMτn, (C21)

where

M(E) = 1

2πvF

iE
√

E2 − �2 tanh R

E2 − E2
M

,

Q(E) = 1

2πvF

EM

√
E2 − �2

E2 − E2
M

. (C22)

Hence,

G3(τ ) =
∫

dE1dE2 e−(E1+E2)τ [M(E1)M(E2) − Q∗(E1)Q(E2)]

+ (1 − n)a(EM )
∫

dE e−(E+EM )τ [M(E)(A∗
0B0 + A0B

∗
0 ) − Q(E)|B0|2 − Q(E)∗|A0|2]

+ na(EM )∗
∫

dE e−(E−EM )τ [Q(E)|A0|2 + Q(E)∗|B0|2 − M(E)(A∗
0B0 + A0B

∗
0 )], (C23)

G3(i�n) =
∫

dE1dE2
Q∗(E1)Q(E2) − M(E1)M(E2)

i�n − E1 − E2

+ (1 − n)a(EM )
∫

dE
Q(E)|B0|2 + Q(E)∗|A0|2 − M(E)(A∗

0B0 + A0B
∗
0 )

i�n − E − EM

+ na(EM )∗
∫

dE
M(E)(A∗

0B0 + A0B
∗
0 ) − Q(E)|A0|2 − Q(E)∗|B0|2

i�n − E + EM

. (C24)

4. G4(i�n)

For τ � 0,

G4(τ ) = −〈T ψ
†
−(τ )ψ−(τ )ψ†

+ψ+〉0 = −〈ψ†
−(τ )ψ+〉0〈ψ−(τ )ψ†

+〉0 + 〈ψ†
−(τ )ψ†

+〉0〈ψ−(τ )ψ+〉0. (C25)

085409-18

85



SIGNATURES OF TOPOLOGICAL JOSEPHSON JUNCTIONS PHYSICAL REVIEW B 94, 085409 (2016)

By using the zero-temperature averages of electron operators

〈ψ†
−(τ )ψ+〉0 =

∫
dE M(E)e−Eτ − a∗(EM )A0B

∗
0 e−EMτ (1 − n) + a(EM )A0B

∗
0 eEMτn, (C26)

〈ψ−(τ )ψ†
+〉0 = −

∫
dE M(E)e−Eτ + a∗(EM )A∗

0B0e
−EMτ (1 − n) − a(EM )A∗

0B0e
EMτn, (C27)

〈ψ†
−(τ )ψ†

+〉0 =
∫

dE Q(E)∗e−Eτ + a∗(EM )|A0|2e−EMτ (1 − n) − a(EM )|B0|2eEMτn, (C28)

〈ψ−(τ )ψ+〉0 = −
∫

dE Q(E)e−Eτ − a∗(EM )|B0|2e−EMτ (1 − n) + a(EM )|A0|2eEMτn, (C29)

we obtain

G4(τ ) =
∫

dE1dE2 e−(E1+E2)τ [M(E1)M(E2) − Q∗(E1)Q(E2)]

− (1 − n)a(EM )∗
∫

dE e−(E+EM )τ [M(E)(A∗
0B0 + A0B

∗
0 ) + Q(E)|A0|2 + Q(E)∗|B0|2]

+ na(EM )
∫

dE e−(E−EM )τ [Q(E)∗|A0|2 + Q(E)|B0|2 + M(E)(A∗
0B0 + A0B

∗
0 )], (C30)

G4(i�n) =
∫

dE1dE2
Q∗(E1)Q(E2) − M(E1)M(E2)

i�n − E1 − E2

+ (1 − n)a(EM )∗
∫

dE
M(E)(A∗

0B0 + A0B
∗
0 ) + Q(E)|A0|2 + Q(E)∗|B0|2

i�n − E − EM

− na(EM )
∫

dE
Q(E)∗|A0|2 + Q(E)|B0|2 + M(E)(A∗

0B0 + A0B
∗
0 )

i�n − E + EM

. (C31)

5. ReY (ω)

Plug the expressions for G1, G2, G3, and G4 into Eq. (C2), and make analytical continuation i�n → ω + iη, where η → 0+,
we obtain the retarded response function

χ (ω + iη) = χ1(ω + iη) + (1 − n)χ2(ω + iη) + nχ3(ω + iη) (C32)

with

χ1(ω + iη) = 2ev2
F

∫
dE1dE2

P (E1)P (E2) + M(E1)M(E2) − Q∗(E1)Q(E2)

ω + iη − E1 − E2

= eD

2π2

∫ ∞

�

dE1dE2

(E1E2 − EM )
√

E2
1 − �2

√
E2

2 − �2

(ω + iη − E1 − E2)(E2
1 − E2

M )(E2
2 − E2

M )
, (C33)

χ2(ω + iη) = 2ev2
F

∫
dE

(|A0|2 + |B0|2)P (E) + Re{a(EM )[M(E)(A∗
0B0 + A0B

∗
0 ) − Q(E)|B0|2 − Q(E)∗|A0|2]}

ω + iη − E − EM

= eD

π

∫ ∞

�

dE

√
E2 − �2

√
�2 − E2

M

(ω + iη − E − EM )(E + EM )
, (C34)

χ3(ω + iη) = 2ev2
F

∫
dE

(|A0|2 + |B0|2)P (E) + Re{a(EM )[Q(E)|B0|2 + Q(E)∗|A0|2 + M(E)(A∗
0B0 + A0B

∗
0 )]}

ω + iη − E + EM

= eD

π

∫ ∞

�

dE

√
E2 − �2

√
�2 − E2

M

(ω + iη − E + EM )(E − EM )
. (C35)

085409-19

86



PENG, PIENTKA, BERG, OREG, AND VON OPPEN PHYSICAL REVIEW B 94, 085409 (2016)

To obtain the above expressions, we have used

2 Re[M(E)(A∗
0B0 + A0B

∗
0 )] =

−E
√

E2 − �2
√

�2 − E2
M (1 − D)

2πv2
F �

(
E2 − E2

M

) , (C36)

2 Re[Q(E)|B0|2 + Q(E)∗|A0|2] = Q(E)|B0|2 + Q(E)∗|A0|2 =
EM

√
E2 − �2

√
�2 − E2

MD

2πv2
F �

(
E2 − E2

M

) , (C37)

2P (E)(|A0|2 + |B0|2) =
E

√
E2 − �2

√
�2 − E2

M

2πv2
F �

(
E2 − E2

M

) . (C38)

By using the relation ReY = −(e/ω)Imχ , we obtain the real part of the admittance:

ReY1 = e2D

2πω
θ (ω − 2�)

∫ ω−�

�

dE

[
E(ω − E) − E2

M

]√
E2 − �2

√
(ω − E)2 − �2

(E2 − E2
M )

[
(ω − E)2 − E2

M

] , (C39a)

ReY2 = e2Dθ (ω − EM − �)

√
(ω − EM )2 − �2

√
�2 − E2

M

ω2
, (C39b)

ReY3 = e2Dθ (ω + EM − �)

√
(ω + EM )2 − �2

√
�2 − E2

M

ω2
. (C39c)

APPENDIX D: ZEEMAN FIELD INSIDE A
NONTOPOLOGICAL JUNCTION

In this appendix, we provide some technical details underly-
ing the results presented in Sec. V A. As long as we can neglect
spin-orbit and Zeeman coupling in the superconducting leads
(but not in the junction region), the subgap spectrum of a non-
topological junction can be obtained from the condition [43]

det
(
1 − α2

Ar∗
ASerASh

) = 0. (D1)

Here, Andreev reflection from the superconductors is
described by

αA = E

�
− i

√
�2 − E2

�
, rA = eiφρz/2, (D2)

with φ the phase difference between the two superconductors
and ρj Pauli matrices in left/right space. The normal section
of the junction is characterized by the electron and hole
scattering matrices Se and Sh. In the presence of Zeeman
and spin-orbit coupling, the electron and hole scattering
matrices Se and Sh are 4 × 4 matrices describing the normal
section coupled to normal-metal leads and relating outgoing
to ingoing channels, with the four components corresponding
to left and right channels of either spin. The hole scattering
matrix Sh is related to the electron scattering matrix through

Sh = σy(Se)∗σy, (D3)

which follows by particle-hole symmetry. (This uses the same
Nambu basis as in Sec. IV A.)

In the short-junction limit, Se and Sh can be evaluated
at zero energy. In this limit, spin-orbit coupling leaves the
spin degeneracy of the Andreev levels unchanged [59–61].
Choosing the spin quantization axis along B, the scattering
matrices Se and Sh are diagonal in the spin indices, with the
diagonal entries labeled by Sσ

e and Sσ
h (with σ = ↑,↓). Then,

Eq. (D1) breaks up into two separate determinant equations
for the spin components.

For a single spin channel with transmission Dσ = 1 − Rσ ,
the scattering matrices can be parametrized as

Sσ
e = eiησ (

√
Rσρze

iρzγσ +
√

Dσρx). (D4)

Exploiting unitarity and Eq. (D3), we obtain

det
(
Sσ̄

e − α2r∗
ASσ

e rA

) = 0 (D5)

with σ̄ = −σ . Focusing on σ =↑ and the Nambu spinor
(ψ↑,ψ

†
↓)T , the determinant condition becomes

cos(2α̃ + η̃) = R cos γ̃ + D cos φ, (D6)

where η̃ = η↑ − η↓, γ̃ = γ↑ − γ↓, D = √
D↑D↓, R =√

R↑R↓, and α = exp (iα̃). This equation was derived in
Ref. [59]. The corresponding results for σ =↓ with Nambu
spinor (ψ↓, − ψ

†
↑)T follow by particle-hole symmetry. If we

denote the subgap eigenstates for spin σ by Eσ
n (φ), we have

E
↓
n (φ) = −E

↑
n (φ).

For spin-independent scattering matrices, one has η̃ = 0
and R + D = 1, and recovers the Andreev bound state given
in Eq. (1). When the two spin channels are subject to different
scattering potentials, we have R + D < 1 and the energies of
the Andreev bound states can be written as

E±(φ) = � Sgn

[
sin

(
η̃

2
± χ

)]
cos

(
η̃

2
± χ

)
, (D7)

where

χ = 1
2 arccos (R cos γ̃ + D cos φ). (D8)

APPENDIX E: JUNCTION BASED ON PROXIMITIZED
RASHBA NANOWIRES

In this appendix, we provide some technical details under-
lying Sec. V B. Consider a Josephson junction formed by two
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semiconductor nanowires with Rashba spin-orbit coupling,
proximity coupled to s-wave superconductors and subject to a
Zeeman field B. For a phase difference of φ, the corresponding
Hamiltonian takes the form [5]

H =
(

− ∂2
x

2m
+ iασy∂x − μ

)
τz + Bσx + �θ

(
x − L

2

)
τx

+�θ

(
−x − L

2

)
(cos φτx + sin φτy), (E1)

where α denotes the strength of the Rashba spin-orbit coupling,
μ the chemical potential, m the effective mass, L the length
of the junction, and � the induced pairing strength. We also
introduced the Pauli matrices σj and τj in spin and Nambu
space, respectively.

The bulk dispersion of the model is

E±(p)2 = B2 + �2 + ξ 2
p + (αp)2

± 2
√

B2�2 + B2ξ 2
p + (αp)2ξ 2

p, (E2)

where ξp = p2

2m
− μ. For finite B and �, gaps open at p = 0

and p = ±kF , where

kF =
√

2m(mα2 +
√

m2α4 + B2). (E3)

The gap

Egap(p = 0) = |B −
√

�2 + μ2| (E4)

at p = 0 closes for B =
√

�2 + μ2 indicating the topological
phase transition, with the topological (nontopological) phase
corresponding to B >

√
�2 + μ2 (B <

√
�2 + μ2). The gap

Egap(p = ±kF ) =
√

�2 + 2ξ 2
kF

− 2
√

B2�2 + ξ 4
kF

(E5)

at ±kF remains finite throughout.
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5 Parity Anomaly and Spin Transmutation in
Quantum Spin Hall Josephson Junctions

Superconductor/quantum spin Hall/superconductor junctions in the presence of a Zee-
man field are a prototypical setup for creating topological Josephson junctions. When
the Zeeman field is absent and electron-electron interactions are neglected, the junction is
expected to exhibit a 2π -periodic dissipative Josephson effect. It thus came as a surprise
when Molenkamp’s group probed Shapiro steps and Josephson radiation in such junctions
and found evidence for 4π -periodic currents [68, 69]. Motivated by this puzzle, I consid-
ered realistic junctions in which there are charge puddles which act as magnetic impurities
coupled to the helical edge. I showed that as long as the coupling is time-reversal symmet-
ric, the Josephson effect generically becomes 8π -periodic, which can be thought as boiling
down to coupling of Z4 parafermions. This 8π Josephson effect is a result of the fermion
parity anomaly and a remarkable spin transmutation. To connect to the experimental
observations, I provided scenarios how this effect may appear as having period 4π . It
will be interesting to see whether future experiments can distinguish this explanation as
a parafermion effect from a more elementary explanation in terms of inelastic relaxation
of two quasiparticles into a Cooper pair which applies even to pristine junctions.
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We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity.
As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall
edge alternates between half-integer and integer values when the superconducting phase difference across
the junction advances by 2π. This leads to characteristic differences in the splittings of the spin multiplets
by exchange coupling and single-ion anisotropy at phase differences, for which time-reversal symmetry is
preserved. We discuss the resulting 8π-periodic (or Z4) fractional Josephson effect in the context of recent
experiments.
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Introduction.—The fractional Josephson effect [1–3]
constitutes one of the most striking effects heralding
topological superconductivity [4,5]. In Josephson junctions
of conventional superconductors, the Josephson current is
carried by Cooper pairs and is 2π periodic in the phase
difference applied to the junction. When the junction
connects topological superconductors [6–9], the coupling
of Majorana bound states across the junction allows a
Josephson current to flow by coherent transfer of single
electrons, resulting in 4π periodicity in the phase differ-
ence. Robust 4π periodicity requires that time-reversal
symmetry be broken through proximity coupling to a
magnetic insulator or an applied magnetic field [6]. A
fractional Josephson effect can occur in time-reversal-
symmetric junctions as a consequence of electron-electron
interactions [10,11]. In the limit of strong interactions, this
8π-periodic effect can be understood in terms of domain
walls carrying Z4 parafermions, enabling tunneling of e=2
quasiparticles between the superconductors.
Recent experiments on superconductor—quantum spin

Hall—superconductor junctions show intriguing evidence
for 4π-periodic Josephson currents. One experiment probes
Shapiro steps and shows that the first Shapiro step is absent
[12]. A second experiment reports that the Josephson
radiation emitted by a biased junction is also consistent
with 4π periodicity [13]. These results are surprising as
both experiments were performed without explicitly break-
ing time-reversal symmetry so that basic theory would
predict a dissipative 2π-periodic behavior when neglecting
electron-electron interactions, or an 8π-periodic behavior
when taking interactions into account.
These expectations are based on considering pristine

quantum spin Hall Josephson junctions with a fully gapped
bulk and a single helical channel propagating along its
edges. Density modulations in actual quantum spin Hall
samples are widely believed to induce puddles of electrons
in addition to the helical edge channels [14]. When these

puddles host an odd number of electrons, charging effects
turn them into magnetic impurities that are exchange
coupled to the helical edge channels. In this Letter, we
discuss the fractional Josephson effect in realistic quantum
spin Hall Josephson junctions that include such magnetic
impurities.
The effects of magnetic impurities on quantum spin Hall

edge channels have been intensively studied in the absence
of superconductivity [15–18]. In the high-temperature
limit, a magnetic impurity induces backscattering between
the Kramers pair of helical edge channels and thus
deviations from a quantized conductance in a two-terminal
measurement. As the temperature is lowered, the impurity
spin is increasingly Kondo screened by the helical edge
channel and perfect conductance quantization is recovered
when the temperature is low compared to the Kondo
temperature TK . In the presence of superconductivity,
the Kondo effect is quenched by the superconducting
gap Δ so that one may expect that magnetic impurities
field more prominent consequences [19]. Here, we assume
that TK ≪ Δ so that we can safely neglect the effects of
Kondo screening.
We find that magnetic impurities alter the behavior of

quantum spin Hall Josephson junctions qualitatively. The
Josephson current becomes 8π periodic, replacing the
dissipative 2π-periodic effect in pristine junctions. This
can be viewed as a variant of the Z4 Josephson effect.
Indeed, unlike its classical counterpart, coupling to a
quantum spin preserves time-reversal symmetry and inter-
actions are effectively included through the local-moment
formation. This is quite reminiscent of the ingredients of
the Z4 fractional Josephson effect. Thus, our results show
that this remarkable effect is considerably more generic
than one might have previously thought.
Moreover, the present setting emphasizes a remarkable

mechanism for producing an 8π-periodic fractional
Josephson effect. As a result of the fermion parity anomaly
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[3], the spin of the helical edge effectively changes by ℏ=2
when the superconducting phase difference is advanced by
2π. This adiabatically transmutes the combined spin of
helical edge and magnetic impurity between half-integer
and integer values, with their characteristically different
behavior in the presence of time-reversal symmetry as
described by the Kramers theorem.
Quantum spin Hall Josephson junctions.—We first

review the Andreev spectrum of pristine quantum spin
Hall Josephson junctions [3]. Consider a quantum spin Hall
edge with edge modes counterpropagating at velocity v,
placed in between two superconductors at a distance L
whose phases differ by ϕ. This junction is described by the
Bogoliubov–de Gennes Hamiltonian

H ¼ vpσzτz þ ΔðxÞτþ þ Δ�ðxÞτ−; ð1Þ

where σj and τj are Pauli matrices in spin and Nambu
(particle-hole) space, respectively. The subgap spectrum as
a function of ϕ is shown in Fig. 1.
For short junctions (L → 0), the subgap spectrum con-

tains a particle-hole symmetric pair of Andreev states [see
Fig. 1(a)]. Both Andreev levels emanate from and merge
into the quasiparticle continuum. An applied bias voltage V
advances the phase difference at a rate _ϕ ¼ 2eV=ℏ and
leads to the generation of continuum quasiparticles above
the superconducting gap. These can diffuse away from
the junction, which causes dissipation. Thus, the junction
exhibits an ac Josephson effect with conventional frequency
and energy dissipation rate ð2ΔÞð _ϕ=2πÞ.
The dissipative nature of the Josephson effect is closely

related to the absence of backscattering. When introducing
backscattering into the junction by breaking time-reversal
symmetry through an applied magnetic field or proximity
coupling to amagnetic insulator, theAndreev levels no longer
merge with the quasiparticle continuum [see Fig. 1(b)]. Now,
the quasiparticles generated by the advancing phase differ-
ence remain at subgap energies and localized at the junction,
which quenches dissipation in the small-voltage limit [6].

Moreover, the ac Josephson effect occurs at half the conven-
tional frequency, i.e., at eV=ℏ, as fermion number parity is
conserved. Indeed, the level crossing atϕ ¼ π is protected by
fermion number parity so that the individual Andreev levels
are 4π periodic in the phase difference ϕ. This can be viewed
as a consequence of the fermion parity anomaly (seeRef. [20]
for more details): as a result of the quantum spin Hall effect,
the parity of the fermion number of the edge changes when
the superconducting phase difference is advanced by 2π,
requiring a phase change of 4π for a full period.
Additional subgap levels appear for longer junctions, see

Figs. 1(c) and 1(d). The level crossings in these spectra are
not only controlled by fermion number parity, but also by
time-reversal symmetry. While time reversal is broken by
the phase difference across the junction (causing a nonzero
Josephson current to flow), it remains unbroken when ϕ is
an integer multiple of π.
Coupling to magnetic impurity.—We now consider the

coupling of the edge channel to a magnetic impurity with
spin S. Generically, disorder in conjunction with the strong
spin-orbit coupling will remove any symmetry other than
time reversal, which we assume to be broken only by the
applied superconducting phase difference. Thus, we focus
on the general Hamiltonian

HS ¼
X
α;β

JαβŜ
ασ̂βð0Þ þ

X
α

DαðŜαÞ2 ð2Þ

for the impurity spin Ŝ. The first term describes the
exchange coupling between the impurity spin and the
helical edge, with σ̂αð0Þ ¼ P

i;jψ
†
i ð0ÞðσαÞijψ jð0Þ denoting

the local spin density of the edge at the position x ¼ 0 of
the impurity. The operator ψ iðxÞ annihilates an electron
with spin projection i at position x. The second term
describes a single-ion anisotropy of the impurity spin with
strengths Dα. Time reversal implies that the exchange
couplings are real, but otherwise arbitrary.
Josephson effect.—Analyzing the Josephson effect of the

quantum spin Hall edge channel coupled to the magnetic
impurity is greatly simplified by the discrete nature of the
subgap spectrum. For definiteness, consider an intermediate-
length junction whose subgap spectrum has exactly two
positive-energy subgap states ϵnðϕÞ (n ¼ 1, 2) at all values of
the phase difference as inFig. 1(d). (This convenient choice is
used in our numerical illustrations but is not essential for our
results.) Then, we can analyze the low-energy (many-body)
spectrum of the junction in the finite-dimensional space of
low-energy states spanned by the product of occupation
states of the two subgap Bogoliubov quasiparticles (yielding
four basis states) and the 2Sþ 1 spin states of the spin-S
impurity. The low-energy many-body spectrum effectively
decouples from the quasiparticle continuumwhen theKondo
temperature is small compared to the superconducting gap
[21]. The corresponding Hamiltonian is readily derived by
retaining only the contributions of the two positive-energy
subgap Bogoliubov operators γn to the edge-state electron

(a) (b) (c) (d) (e)

FIG. 1. Andreev spectrum of quantum spin Hall Josephson
junctions of different lengths. (a) L ¼ 0. (b) L ¼ 0 in the
presence of backscattering due to a Zeeman field.
(c) L ¼ 0.8ℏv=Δ. (d) L ¼ ðπ=2Þℏv=Δ. (e) L ¼ 2ℏv=Δ. The
green curves correspond to Andreev states consisting of a
superposition of an up-spin electron and an Andreev-reflected
hole. The orange curves are for the particle-hole conjugated
states.
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operators (see Ref. [20] for details). In this limit, the total
Hamiltonian can be approximated as H ¼ He þHS with

He ¼
X
n

ϵnðϕÞ
�
γ†nγn −

1

2

�
ð3Þ

the Hamiltonian of the bare edge.
Consider coupling the quantum spin Hall edge states to a

spin-1=2 impurity. Figure 2(a) shows the many-body
spectrum of He in Eq. (3), i.e., of the bare edge (left panel),
and of H ¼ He þHS for a generic choice of exchange
couplings Jαβ (right panel). The spectrum of the coupled
edge is best understood by analyzing the nature of the
degeneracies at phase differences equal to integer multiples
of π. The degeneracies at and near ϕ ¼ π are protected by
fermion number parity. Here, level crossings occur between
states with even and odd occupations of the Bogoliubov
quasiparticles of the edge. In contrast, the level crossings at
ϕ ¼ 0 andϕ ¼ 2π occur between states of the same fermion
number parity and areKramers degeneracies reflecting time-
reversal symmetry.
In the present system, a Kramers degeneracy appears

when the Bogoliubov quasiparticles γn of the edge are
either both empty or both occupied, leading to a half-
integer spin of the combined system of edge and impurity.
Specifically, the lower (higher) energy crossing in Fig. 2(a)
corresponds to states in which the quasiparticle states are
both empty (occupied). Away from ϕ ¼ 0 and 2π, time

reversal is broken and the Kramers degeneracies are lifted.
This interpretation is corroborated by further restricting the
Hamiltonian H for small ϕ to the low-energy subspace of
empty quasiparticle states. In this limit, the spin density
σ̂αð0Þ of the edge only has a nonzero z component σ̂zð0Þ ¼
−ϵϕ=½2ℏvð1þ κLÞ2� and the Hamiltonian simplifies to

H ≃ −
X
α

BαSα þ const ð4Þ

with the effective Zeeman field B ¼ ½ϵϕ=2ℏvð1þ κLÞ2�P
αJαzêα. Here, we use the subgap energy ϵ ¼

Δ cos½ϵL=ðℏvÞ� and κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − ϵ2

p
=ðℏvÞ.

The four nondegenerate states at intermediate energies for
ϕ ¼ 0 [see Fig. 2(a)] have overall single occupation of the
quasiparticle states, leading to a combined edge-impurity
systemwith integer spin. Unlike in the odd-integer spin case,
time reversal does not enforce a degeneracy of the many-
body spectrum in this case. Writing the Hamiltonian for
small ϕ in this subspace using the basis j↑i ¼ γ†1jgsi and
j↓i ¼ γ†2jgsi (with the junction ground state jgsi such that
γ1jgsi ¼ γ2jgsi ¼ 0) for the states of the edge (with corre-
sponding Pauli matrices ρα), we find the effective
Hamiltonian

H ≃ κ

2ð1þ κLÞ
�X

α

Jα þ Sαρþ þ H:c:

�
: ð5Þ

Generically, this Hamiltonian has no degeneracies.
With this understanding, the many-body spectrum in

Fig. 2(a) reveals a remarkable fact: adiabatically advancing
the superconducting phase difference by 2π connects the
low-energy Kramers doublet at ϕ ¼ 0 to states of the totally
lifted spin quartet at ϕ ¼ 2π. Thus, adiabatic quantum
dynamics changes the total spin of the edge-impurity
system between half-integer and integer values. This spin
transmutation is a direct consequence of the fermion parity
anomaly (see also Ref. [20]): as the phase difference
changes by 2π, the fermion number parity of the edge
changes by virtue of the quantum spin Hall effect.
Consequently, also the spin of the edge changes by ℏ=2.
This change in spin has important consequences for the
periodicity of the Josephson effect. Indeed, adiabatically
following the energy levels in Fig. 2(a), we find that they
are 8π periodic, corresponding to an ac Josephson fre-
quency of eV=2ℏ. Because of the spin transmutation, the
system passes through successive Kramers degeneracies
only after advancing the superconducting phase difference
by 4π, requiring a phase change of 8π for completing a full
period. Note that starting with the ground state at ϕ ¼ 0, the
many-body state remains well below the quasiparticle
continuum for all ϕ, so that the ac Josephson effect is
nondissipative at a sufficiently small bias.
The polarization of the impurity spin varies with the

superconducting phase difference in an 8π-periodic

(a) (b)

FIG. 2. (a) Generic many-body spectrum for the quantum spin
Hall Josephson junction [L ¼ ðπ=2Þℏv=Δ] without (left) and
with coupling to the impurity spin (right) (for parameters see
Ref. [20]). The red solid and blue dashed curves indicate even and
odd fermion number parity, respectively. The discontinuity in
fermion number parity at ϕ ¼ π originates from the merging of
Andreev levels with the continuum, see Fig. 1(d). The crossings
at and near ϕ ¼ π (black circles) are between states of opposite
fermion number parity. The crossings between states with even
fermion number parity at ϕ ¼ 0 and 2π (red dashed circles) are
protected by time reversal. The arrows indicate the impurity-spin
polarization along the z axis. (b) Fourier transforms of the many-
body ground state energy (equivalently, Josephson current)
(upper panel) and of the expectation value of the impurity spin
hSzi (lower panel) as a function of the phase difference ϕ. The 8π-
periodic harmonics are indicated by the vertical dashed lines.
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manner. When adiabatically varying ϕ, the spin orientation
remains unchanged at the Kramers crossings and flips in
the vicinity of the avoided crossings where the edge-
impurity system is in an integer-spin state. This variation
of the spin with ϕ is illustrated in Fig. 2(a).
These results for S ¼ 1=2 impurities persist for higher-

spin impurities. Results for an S ¼ 1 impurity are shown in
Fig. 3. Figure 3(d) shows results for generic values of Jαβ
and Dα. Unlike in the S ¼ 1=2 case, the low-energy states
now have integer spin and are nondegenerate, while the
intermediate-energy states have half-integer spin and are
Kramers degenerate at ϕ ¼ 0 and 2π. Nevertheless, the 8π
periodicity remains intact.
Different periodicities occur for nongeneric Dα. Without

single-ion anisotropy [see Fig. 3(a)], the spectrum does not
decouple from the quasiparticle continuum and the
Josephson effect becomes dissipative and 2π periodic.
The same results occur for easy-plane anisotropy, with
one of the single-ion anisotropies being positive and the
others equal to zero, see Fig. 3(b). Finally, easy-axis
anisotropy makes the junction nondissipative and 4π
periodic as shown in Fig. 3(c).
Discussion.—We find that, generically, coupling to a

magnetic impurity makes the Josephson effect in quantum
spin Hall systems 8π periodic, corresponding to a fre-
quency eV=2ℏ of the ac Josephson effect. The 8π perio-
dicity relies only on time-reversal symmetry, the parity

anomaly, and the absence of fine tuning such as the
absence of interactions or the presence of spin conserva-
tion. It can be thought of as resulting from the coupling of
Z4 parafermions across the junction.
This general conclusion requires two comments. First,

the 8π-periodic Josephson current may not be the dominant
Fourier component in experiment. Indeed, as is evident
from Fig. 2, the 8π-periodic cycle consists of two rather
similar 4π sections. The splitting between the two sections
is controlled by the exchange coupling. When the exchange
splitting is small compared to the superconducting gap, the
dominant Fourier component of the Josephson current is 4π
periodic. This is shown in Fig. 2(b), together with the
Fourier components of the impurity spin polarization that
has a dominant 8π-periodic harmonic. It is interesting to
note that this result for the Josephson current is different
from the realization of theZ4 Josephson effect discussed by
Zhang and Kane [10], which has a dominant 8π-periodic
Fourier component.
Second, our results so far consider only the electronic

system. Coupling to other degrees of freedom such as
phonons or the electromagnetic environment introduces
inelastic relaxation processes that may crucially affect the
experimentally observed periodicity. While relaxation
between states of opposite fermion number parity may
be slow, parity-conserving relaxation processes should be
considerably more efficient. Observation of the 8π perio-
dicity requires that the latter relaxation processes be slow
compared to the time in which the 8π cycle is traversed.
Indeed, the two 4π sections of the 8π cycle involve states of
the same fermion number parity. Thus, the system always
remains in the lower-energy state if the cycle is traversed
slowly on the time scale of parity-conserving relaxation
processes. This makes the observed Josephson effect 4π
rather than 8π periodic.
It is interesting to compare these results to the recent

experiments on quantum spin Hall junctions, which
observe Shapiro steps and Josephson radiation consistent
with 4π periodicity [12,13]. Our results provide an in-
triguing scenario that is consistent with these observations.
However, this is not the only explanation of a 4π-periodic
Josephson effect in this system. An alternative scenario
considers relaxation processes in a pristine quantum spin
Hall junction. Consider an intermediate-length junction
with at least two positive-energy Andreev states for any
phase difference. When both of these Andreev states are
occupied, the two quasiparticles can relax inelastically by
recombining into a Cooper pair. Two positive-energy
quasiparticles are created every time the phase difference
advances by 4π. Thus, if recombination into a Cooper pair
is an efficient process, one would also observe a 4π-
periodic Josephson effect. It is an interesting problem to
devise experiments that distinguish between these alter-
native scenarios. Such efforts may benefit from the con-
siderable recent progress in directly probing the subgap

(a) (b)

(c) (d)

FIG. 3. Many-body spectrum for a quantum spin Hall edge
coupled to an S ¼ 1 impurity (for explicit parameters, see
Ref. [20]). The red solid and blue dashed curves correspond
to many-body states with even and odd fermion number parity,
respectively. Spectra correspond to (a) vanishing single-ion
anisotropy, (b) easy-plane anisotropy Dz > 0, (c) easy-axis
anisotropy Dz < 0, and (d) generic single-ion anisotropy with
Dx, Dy, Dz ≠ 0. The degeneracies at ϕ ¼ 2π (blue dashed
circles) and their partners at ϕ ¼ 0 are Kramers degeneracies.
Red circles highlight degeneracies that are lifted by generic
single-ion anisotropy. The number of arrows indicates subsequent
2π periods when adiabatically advancing ϕ.
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spectrum of Josephson junctions by microwave spectros-
copy and switching current measurements [22–27].
Finally, our results suggest probing the Josephson effect

of a quantum spin Hall edge that is intentionally coupled to
a quantum dot. Such a setup would allow one to tune the
quantum dot in and out of the local moment regime and to
control the exchange coupling between dot and edge. In
addition to the Josephson periodicity, such a setup might
provide access to the 8π periodicity of the impurity spin
(see Table I) and would be a promising setup for detecting
Z4 parafermions.
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FERMION NUMBER PARITY

For the benefit of general readers, we include a brief review of the concept of fermion number parity and its
application to topological Josephson junctions. Pairing Hamiltonians (i.e., Hamiltonians describing superconductors
within mean-field theory) include terms which change the number of particles of the system by two. This can be
thought of as describing the addition or removal of Cooper pairs from the system. As a result, these Hamiltonians
break particle number conservation but preserve particle number modulo two. Consequently, systems with even and
odd numbers of electrons decouple and fermion number parity is a good quantum number. One refers to systems with
even (odd) electron number as having even (odd) fermion number parity.

The Hamiltonian of a Josephson junction based on a quantum spin Hall edge also conserves fermion number parity.
We can label the many body eigenstates of the system by fermion number parity and states with different fermion
number parity cannot anticross, but must exhibit a true level crossing. This explains the level crossings in the
many-body spectra near a phase difference of π, see Fig. 2(a) of the main text.

While the spectrum behaves as if fermion number parity is a good quantum number, it is not conserved in the
quantum dynamics. This is referred to as an anomaly (or more specifically the fermion parity anomaly): While the
fermion number parity is conserved classically, it is not in the quantum dynamics. In the absence of an anomaly,
the fermion number parity has to remain unchanged when changing any parameter in the (fermion-parity-conserving)
Hamiltonian. As a corollary, this also implies that the spin has to remain integer or half-integer at all times, and
transmutation between integer and half-integer spin is forbidden.

Nevertheless, in the present case, the system transmutes between integer and half-integer spin (and even and odd
fermion parity) when the superconducting phase difference is advanced by 2π. When the phase difference advances
adiabatically, the system follows a specific eigenstate. Due to the crossings near φ = π protected by fermion parity, the
system passes, say, from a half-integer Kramers doublet at zero phase difference to a state which is part of a completely
lifted integer-spin quartet at φ = 2π, see Fig. 2(b) of the main text. Thus, the adiabatic quantum dynamics does
indeed violate fermion parity conservation.

Physically, the fermion parity anomaly can be understood as follows. In a Corbino geometry, changes in the
superconducting phase difference can be effected by changing the magnetic flux piercing the hole of the Corbino disk.
Changes in flux induce an azimuthal electric field circulating around the Corbino disk. By virtue of the quantum spin
Hall effect, this azimuthal electric field drives a radial spin Hall current. It is a simple exercise to compute the total
spin change of the inner and outer edges of the Corbino disk when the superconducting phase is advanced by 2π and
one finds that it is exactly ~/2. It is by this mechanism that the spin of the edge states transmutes between integer
and half integer spins.

ANDREEV BOUND STATES

The Hamiltonian for the quantum spin Hall Josephson junction takes the form H = 1
2Ψ†HΨ with Nambu spinor

Ψ = (ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑)
T in terms of electron operators and the Bogoliubov-de Gennes Hamiltonian

H = vpσzτz + ∆(x)τx, (S1)

where x (p) denotes the coordinate (momentum) along the quantum spin Hall insulator edge, v is the edge-mode
velocity, and σj and τj are Pauli matrices in spin and Nambu (particle-hole) space, respectively. The proximity-
induced superconducting gap

∆(x) =∆
[
θ(−x− L/2) + eiφτzθ(x− L/2)

]

= ∆θ(|x| − L

2
)eiϕ(x)τz (S2)
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has strength ∆ > 0 and a phase difference φ across the junction region of length L. We have introduced a spatially
dependent phase

ϕ(x) =
φ

L
(x+

L

2
)θ(

L

2
− |x|) + θ(x− L

2
)φ. (S3)

for convenience. We set ~ = 1 in this supplemental material.
We introduce a local gauge transformation U = eiϕ(x)τz/2 to eliminate the spatial dependence of the superconducting

phase, and obtain the transformed Hamiltonian

U†HU = −iv∂xσzτz +
vϕ′(x)σz

2
+ ∆θ(|x| − L

2
)τx, (S4)

where the prime denotes a derivative with respect to x. We will denote U†HU as H in the following.
To solve for the Andreev bound states, we follow the approach detailed in Ref. [1] to rearrange the Bogoliubov-de

Gennes equation Hψ = εψ as

i
∂ψ

∂x
= −1

v
σzτz

[
ε−∆θ(|x| − L

2
)τx −

vϕ′(x)

2
σz

]
ψ. (S5)

The solution can be written as ψ(x) = U(x, x0)ψ(x0) in terms of the state at some reference point x0. In particular,
we have

U(
L

2
,−L

2
) = exp

{
i

v
σzτz

∫ L
2

−L2
dx′

[
ε− vϕ′(x′)

2
σz

]
= exp

(
iEL

v
σzτz −

φ

2
τz

)}
(S6)

which connects the states ψ(L/2) = U(L/2,−L/2)ψ(−L/2). We match the properly decaying solutions of the Bo-
goliubov de-Gennes equation on the left and right of the junction, and obtain the bound state wave functions in the
two spin sectors:

Ψ↑(x) =




a↑A↑
0
A↑
0


 eκ↑(x+L

2 )θ(−x−L
2

)+




a↑A↑e−i(
φ
2− ε

vL)

0

A↑ei(
φ
2− ε

vL)

0


 e−κ↑(x−

L
2 )θ(x−L

2
)+




a↑A↑e−i(
φ
2L− ε

v )(x+L
2 )

0

A↑ei(
φ
2L− ε

v )(x+L
2 )

0


 θ(

L

2
−|x|)

(S7)
and

Ψ↓(x) =




0
A↓
0

a↓A↓


 eκ↓(x+L

2 )θ(−x− L
2

)+




0

A↓e−i(
φ
2 + ε

vL)

0

a↓A↓ei(
φ
2 + ε

vL)


 e−κ↓(x−

L
2 )θ(x− L

2
)+




0

A↓e−i(
φ
2L+ ε

v )(x+L
2 )

0

a↓A↓ei(
φ
2L+ ε

v )(x+L
2 )


 θ(

L

2
−|x|)

(S8)
where

aσ =
ε

∆
− i
√

∆2 − ε2σ
∆

, |Aσ|2 =
κσ

2(1 + Lκσ)
, κσ =

√
∆2 − ε2σ
v

(S9)

with σ =↑, ↓, and εσ is the positive eigenvalue in each spin sector given by the relation

ε↑/∆ =

{
cos(φ2 −

ε↑
v L) sin(φ2 −

ε↑
v L) < 0

− cos(φ2 −
ε↑
v L) sin(φ2 −

ε↑
v L) > 0

(S10)

and

ε↓/∆ =

{
cos(φ2 +

ε↓
v L) sin(φ2 +

ε↓
v L) > 0

− cos(φ2 +
ε↓
v L) sin(φ2 +

ε↓
v L) < 0

. (S11)

For φ around 2nπ, n ∈ Z, solutions in both spin sectors can exist simultaneously for L > 0. We will consider the
situation when at most one solution in each spin sector exists, and write the subgap effective Hamiltonian as

He =
∑

σ

εσ(φ)(γ†σγσ −
1

2
), (S12)
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where γσ is the Bogoliubov quasiparticle annihilation operator for the Andreev bound state with spin σ. When
projected onto the subspace spanned by the subgap Andreev bound states, the electron annihilation operators for
both spins can be written approximately as

ψ↑ = a↑A↑e
−ik↑L/2γ↑ − a∗↓A∗↓e−ik↓L/2γ†↓

ψ↓ = A↓e
−ik↓L/2γ↓ +A∗↑e

−ik↑L/2γ†↑

k↑,↓ =
ϕ

2L
∓ εσ

v
. (S13)

COUPLING OF AN EDGE CHANNEL TO A MAGNETIC IMURITY

Quantum Spin Hall InsulatorSu
pe

rc
on

du
ct

or

Su
pe

rc
on

du
ct

or

Charge 
Puddle

Helical Edge

Figure S1. Setup for the quantum spin Hall Josephson junction in which the helical edge state is coupled to a charge puddle
formed by a potential variation in the bulk. Due to charging effects, the charge puddle may effectively act as a magnetic
impurity as indicated by the black arrow in the figure. The left/right moving electrons of the helical edges with opposite spins
are depicted in different colors.

Consider the Hamiltonian describing the coupling of the edge channel to a magnetic impurity with spin S (see setup
in Fig. S1)

HS =
∑

α,β

JαβŜ
ασ̂β(0) +

∑

α

Dα(Ŝα)2, (S14)

in which the spin density of the helical edge can be written in term of the Bogoliubov operators

σ̂+ = ψ†↑ψ↓ =
(
a∗↑e

i∆kL/2 + a↓e
−i∆kL/2

)
A∗↑A↓γ

†
↑γ↓

σ̂− = ψ†↓ψ↑ =
(
a↑e
−i∆kL/2 + a∗↓e

i∆kL/2
)
A↑A

∗
↓γ
†
↓γ↑

σ̂x =
(
σ̂+ + σ̂−

)
/2, σ̂y =

(
σ̂+ + σ̂−

)
/2i

σ̂z = ψ†↑ψ↑ − ψ
†
↓ψ↓ =

(
|A↑|2 (2γ†↑γ↑ − 1)− |A↓|2 (2γ†↓γ↓ − 1)

)
+ (a∗↑a

∗
↓e
i∆kL/2 − e−i∆kL/2)A∗↑A

∗
↓γ
†
↓γ
†
↑

+(a↑a↓e
−i∆kL/2 − ei∆kL/2)A↑A↓γ↑γ↓, (S15)

where

∆k = k↑ − k↓ = −ε↑ + ε↓
v

. (S16)

Note that we can also write

a↑ = Sgn sin(
ε↑L
v
− φ

2
)e−i

ε↑L
v eiφ/2, a↓ = Sgn sin(

ε↓L
v

+
φ

2
)e−i

ε↓L
v e−iφ/2, (S17)

then we have
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σ̂+ =

(
Sgn sin(

ε↑L
v
− φ

2
) + Sgn sin(

ε↓L
v

+
φ

2
)

)
ei

(ε↑−ε↓)L
2v e−iφ/2A∗↑A↓γ

†
↑γ↓ (S18)

σ̂− =

(
Sgn sin(

ε↑L
v
− φ

2
) + Sgn sin(

ε↓L
v

+
φ

2
)

)
e−i

(ε↑−ε↓)L
2v eiφ/2A↑A

∗
↓γ
†
↓γ↑ (S19)

σ̂z =
(
|A↑|2 (2γ†↑γ↑ − 1)− |A↓|2 (2γ†↓γ↓ − 1)

)

+

[
Sgn sin(

ε↑L
v
− φ

2
) Sgn sin(

ε↓L
v

+
φ

2
)− 1

](
ei

(ε↑+ε↓)L
2v A∗↑A

∗
↓γ
†
↓γ
†
↑ + e−i

(ε↑+ε↓)L
2v A↑A↓γ

†
↓γ
†
↑

)
. (S20)
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Figure S2. Generic many body spectrum for the quantum spin Hall Josephson junction coupled to a spin-1/2 impurity with
∆L/v = 0.8. The red solid and blue dashed curves indicate that the corresponding many-body states have even and odd
fermion parity, respectively. The coupling between the impurity and the edge and the single-ion anisotropy are chosen to be
the same as in Fig. 2 of the main text, see Eq. (S21).

PARAMETERS FOR THE COUPLING MATRIX USED IN FIGS. 2 AND 3 OF THE MAIN TEXT

In Fig. 2 of the main text, the coupling matrix between edge and spin-1/2 impurity was chosen as

JS=1/2

2πv
=




0.2041 0.124268 0.33448
0.197511 −0.185256 0.0733386
0.394004 0.0849569 0.288134


 (S21)

The single-ion anisotropy was set to zero since it is only a constant shift in energy for spin-1/2 impurities. A similar
figure for a shorter junction with the same parameters is shown in Fig. S2.

In Fig. 3 of the main text, the coupling matrix between edge and spin-1 impurity was chosen as JS=1 = JS=1/2/2.
In Fig. 3(b), Dz = 0.1∆. In Fig. 3(c), Dz = −0.1∆. In Fig. 3(d), Dx = 0.3, Dy = 0.2, Dz = 0.1.

ANALYSIS AROUND φ = 0

In the case ∆L/v ∈ [0, π/2], and for φ close to 0 we have

Sgn sin(
ε↓L
v
− φ

2
) = Sgn sin(

ε↑L
v

+
φ

2
) = 1. (S22)

Let us first focus on the case when φ = 0, we have

ε↑ = ε↓ = ∆ cos

(
ε↑,↓L
v

)
. (S23)
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Let us denote the common solution as ε.
Now we consider φ� 1 and denote δε = ε↑ − ε↓. By Eq. (S10) and (S11) and condition (S22), we have

δε = ∆

[
cos(

ε↑
v
L− φ

2
)− cos(

ε↓L
v

+
φ

2
)

]

= ∆ cos
φ

2

(
cos

ε↑L
v
− cos

ε↓L
v

)
+ ∆ sin

φ

2

(
sin

ε↑L
v

+ sin
ε↓L
v

)

' ∆ sin(
εL

v
)φ = κvφ, (S24)

where

κ =

√
∆2 − ε2
v

. (S25)

This is valid up to first order in φ.
In this situation, the operators σ̂+, σ̂− and σ̂z get simplified as

σ̂+ = 2 exp

[
i (κL− 1)

φ

2

]
A∗↑A↓γ

†
↑γ↓ (S26)

σ̂− = 2 exp

[
−i (κL− 1)

φ

2

]
A↑A

∗
↓γ
†
↑γ↓ (S27)

σ̂z = |A↑|2 (2γ†↑γ↑ − 1)− |A↓|2 (2γ†↓γ↓ − 1). (S28)

Because of this, the total occupation number N = γ†↑γ↑+γ
†
↓γ↓ becomes a good quantum number, namely [N,H] = 0

where H = He+HS . The many body Hilbert space is spanned by the states |Nα〉 = |N〉⊗|α〉 with N = 0, 1, 2 labeling
the occupation number of the Andreev bound state and α = +,− labeling the eigenstates of Sz of the impurity spin.

The subspace for N = 0 is spanned by |0+〉, and |0−〉. The Hamiltonian H in this subspace is represented by a 2
by 2 matrix

HN=0 = −ε− |A↑|
2 − |A↓|2

2

(
Jzzτz + J+zτ+ + J∗+zτ−

)
(S29)

where τ± = (τx ± iτy)/2 with τx,y,z are Pauli matrices in this two dimensional subspaces.
By using Eq. (S9), we have

|A↑|2 −
∣∣A2
↓
∣∣ ' − ε

2v(1 + Lκ)2
φ. (S30)

The subspace with N = 1 is spanned by |↑ +〉, |↓ +〉, |↑ −〉, |↓ −〉. The Hamiltonian in this case can be written as

HN=1 = 2 exp

[
i (κL− 1)

φ

2

]
A∗↑A↓(Jz+τz + J++τ+ + J−+τ−)ρ+ + h.c. (S31)

where ρ± = (ρx ± iρy)/2 and ρx,y,z are Pauli matrices in |↑〉 , |↓〉 space, and we have neglected terms linear in φ ' 0.
An unitary transformation U = e−iηρz/2 for some η ∈ [0, π/2] can always be chosen such that

UHN=1U† =
κ

2(1 + κL)
[(Jz+τz + J++τ+ + J−+τ−)ρz + h.c.] (S32)

which has the same spectrum as HN=1. The four eigenvalues are generically nondegenerate.

[1] Y. Peng, F. Pientka, E. Berg, Y. Oreg, and F. von Oppen, Phys. Rev. B 94, 085409 (2016).
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6 Conclusions

Given their highly interesting physical properties and potential application to quantum
computation, engineering topological superconductors hosting Majoranas in the labora-
tory is an important research objective. Although more and more experiments based on
theoretical proposals have claimed to find evidence for Majoranas, these results consis-
tently raised puzzles and consequently doubts regarding the interpretation of the experi-
ments.

This thesis contributes to this field in two aspects. On the one hand (Chapter 2 and
5), it unravels puzzles originating from discrepancies between simplified theoretical models
and the physics of realistic materials, and hence improves our understanding of Majorana
physics under experimental conditions. On the other hand (Chapter 3 and 4), it proposes
various signatures of topological superconductivity, which can be observed using current
experimental techniques. Moreover, some predictions have been already tested in several
laboratories. In the following, we summarize the four projects that are pursued in this
thesis.

In Chapter 2, we solved the puzzle posed by the recent STM experiment from Yaz-
dani’s group [57], providing evidence for Majoranas in chains of magnetic adatoms on
superconductors. We looked into the proximity effect more carefully, which was largely
treated phenomenologically in previous theoretical works on topological superconductors.
We found that for strong coupling between normal and superconducting system, the co-
herence length of the proximity-induced superconductivity can differ dramatically from
the coherence length of the proximity-providing superconductor, as reflected in a strong
velocity renormalization [1]. The physics of strong localization of the Majoranas may
actually be significant for realizing quantum computation, since braiding should be per-
formed when Majoranas are well separated. Thus, it is very desirable to have an interface
which makes the most of the superconducting proximity effect and strongly localizes the
Majoranas.

In Chapter 3, we suggested to use superconducting rather than normal-metal leads
to probe Majoranas. This has two important advantages: (i) The conductance is not
only universal but also protected against temperature effects by the superconducting gap.
This may make observation of the predicted universal conductance more accessible. (ii)
Majoranas are signaled by symmetric conductance peaks at bias voltages eV = ±∆. (∆
is the gap of the superconducting lead.) [2] The latter prediction has already motivated
experimental checks by the groups of K. Franke [7] and A. Yazdani [64]. Nevertheless,
while there are encouraging signatures, the experimental situation is still unclear and
further work is needed.

In parallel to the above two projects, there are several related works done in collab-
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oration with the experimentalists in the group of K. Franke, which are also part of the
PhD research. In Ref. [5], we studied the tunneling processes from a superconducting
STM tip into subgap states in superconductors. In Ref. [7], we investigated the end states
in a magnetic adatom chain made of Fe on a Pb superconductor. In Ref. [10], we looked
at the subgap states created by a magnetic adatom on a superconductor and analyzed its
spatial pattern.

In Chapter 4, we explored topological Josephson junctions. The prominent 4π -
periodic fractional Josephson effect, predicted for topological Josephson junctions, is
presumably difficult to observe due to quasiparticle poisoning processes. We propose
to perform a simple switching probability measurement, which provides robust signatures
of topological Josephson junctions even in the presence of quasiparticle poisoning [3].

In Chapter 5, we looked at the recent experiments [68, 69] on superconductor/
quantum spin Hall/superconductor junctions in Molenkamp’s group, which showed ev-
idence for a 4π -periodic rather than the expected 2π -dissipative Josephson effect. These
experiments motivated us to consider realistic junctions in which the helical edge states
are coupled to charge puddles which act as magnetic impurities. We showed that this
makes the Josephson effect generically 8π -periodic. This 8π Josephson effect is the result
of the fermion parity anomaly and a remarkable spin transmutation, and can be thought
of as emerging from coupling Z4 parafermions which enable the transfer of e/2 charges.
To connect to the experimental observations, we provided scenarios how this effect may
appear in experiment as having period 4π . It will be interesting to see whether future
experiments can distinguish this explanation as a parafermion effect from a more elemen-
tary explanation in terms of inelastic relaxation of quasiparticles into Cooper pairs which
applies even to pristine junctions [4].

Finally, although in this thesis we only discuss Majorana zero modes that appear
as excitations in topological superconductors, it is worth mentioning that Majoranas
together with their exotic nonabelian statistics were first introduced as quasiparticles in
the fractional quantum Hall state known as the Moore-Read Pfaffian state [70], at Landau
level filling factor 5/2. It was shown later [35] that there is an intimate connection between
the the Moore-Read Pfaffian states and the topological spinless 2D p + ip superconductor
(See Sec. 1.3.4 in Chapter 1), which implies that some universal properties of the former
(such as non-abelian statistics) must also be shared by the latter [71].

Since fractional quantum Hall quasiparticles are anyons, one may make use of this
to construct platforms which host nonabelian anyons beyond Majoranas. One possibility
is based on fractional quantum Hall/superconductor hybrid systems. Indeed, there are
already theoretical proposals for realizing parafermions [72, 73] and even Fibonacci anyons
[74], which are able to provide universal quantum computation via braiding, in this type of
system. To realize this, it turns out that graphene is an attractive platform, since it allows
for high tunability by gate voltages and can be interfaced with a variety of superconductors
with strong spin-orbit coupling such as Pb. Recently, fractional quantum Hall states with
helical edge states have been realized [75] and superconducting correlations have been
observed in graphene-based quantum Hall/superconductor hybrid systems [76]. Because
of the rapid experimental progress, this direction seems to be very promising for future
research.
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