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ABSTRACT

The proliferation of GPS-equipped mobile devices, as well as online social networks,
has led to the creation of increasingly large volumes of spatio-textual data, i.e.,
data containing spatial and textual information, such as geotagged messages on
Twitter and reviews for restaurants on Foursquare. Similarly, a growing amount of
Internet searches now carry a spatial intent. From looking up nearby grocery stores
to searching for local news, we increasingly use the Internet to find local information.
Due to these factors, queries combining spatial and textual predicates, termed spatial
keyword queries, have been studied extensively over the past few years.

Different types of spatial keyword queries have been studied in the literature,
ranging from the simplest that retrieve the top-k relevant objects to more complex
variants that identify groups of objects jointly satisfying the query. Still, the majority of
existing research focuses mainly on static settings, such as searching for information
about places. In contrast, social networks are a dynamic source of crowdsourced
spatio-textual data in the form of geotagged posts (e.g., tweets, check-ins) made by
users, which is being produced in large amounts and is evolving continuously. These
characteristics of geotagged posts create several new opportunities and challenges,
and call for the enhancement of existing techniques to handle this type of data.

Thus, in this thesis, we present novel techniques for the retrieval and analysis of
geotagged posts. Initially, since posts consist of not only spatial and textual attributes,
but also temporal information, we extend spatio-textual access methods to support
spatial-temporal-textual filtering of trajectories generated via social networks. Fol-
lowing this, considering that the number of results found by this plain filtering can
be quite high, and thus overwhelming for users, we propose a new method for identi-
fying a small set of representative posts for a given spatial-temporal-textual filter, to
allow spatio-temporal exploration of the large number of relevant posts. Nevertheless,
these results can quickly become outdated with time as fresh posts are made. Thus,
in our subsequent analysis, we propose methods for continuously maintaining a
concise summary of a stream of posts within a sliding window, and updating the
summary dynamically as the window slides. Finally, given their crowdsourced nature,
geotagged posts are a rich source of people’s local knowledge and opinions, which we
exploit by inferring two types of patterns. First, we develop a system for the discovery
and exploration of local hotspots of certain keywords, termed locally trending topics.
In the second, we use the digital trails generated by mobile users posting on social
networks for mining thematic associations among groups of locations.

keywords: spatial keyword search, spatio-temporal queries, social networks, geographic

information retrieval, query processing, indexing, algorithms
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Five-star hotels near Berlin Central station

Movie theaters near me screening La La Land

Restaurants in Berlin city center serving Schnitzel and Apple Strudel

At a first glance, these phrases do not seem to have anything in common. However,
a closer look might reveal that they are all examples of searches for local information.
Also known as spatial keyword queries or spatio-textual queries, these searches are
frequently performed using mobile devices and are in contrast to other queries, such
as "Books on leadership", that do not have a local intent. In recent years, spatial
keyword queries have assumed an increasingly important role in people’s everyday
lives. This can be partly attributed to the rapid surge in the use of mobile devices,
such as smartphones and tablets. According to the market research firm Gartner,
the sale of smartphones alone worldwide was expected to reach 1.5 billion units in
20161. Using increasingly pervasive and precise positioning techniques based on
GPS, WiFi, and other outdoor and indoor positioning technologies, mobile devices
are now able to provide the location of the user at most times. Searching for local
information has thus become very convenient and is now one of the most common
activities on mobile devices2. As a result, more and more online search requests
are acquiring a spatial intent. This has facilitated the rise of several location-based
search providers, such as Foursquare and Yelp, that allow people to look for Points

1http://www.gartner.com/newsroom/id/3339019
2https://goo.gl/7AxJ5Q

http://www.gartner.com/newsroom/id/3339019
https://goo.gl/7AxJ5Q


2 | Introduction

of Interest (POIs) and view ratings provided by other users. Moreover, existing
search engines, such as Google and Microsoft Bing, now also support local search
with a large portion of requests being generated via mobile devices3. Already in
2015, in 10 countries including the US and Japan, the volume of mobile search
requests had exceeded that of desktop requests on Google3, with location-related
mobile searches growing 50% faster than all mobile searches4. Not surprisingly,
major Internet companies, including Google and Facebook, have already adopted a
mobile-first strategy offering users information about businesses, events, news, and
friends in their area in return for personalized location-based advertisements.

Along with the proliferation of mobile devices, another major trend in the recent
years has been the rapid growth of online social networks, such as Facebook and
Twitter. In fact, a large portion of users with mobile devices use these to access online
social networks. For example, out of Facebook’s nearly 1.79 billion monthly active
users, more than 1 billion access the service solely through their mobile devices5. By
posting actively about their activities, surroundings, and opinions on social networks,
ordinary users have transformed from being sole consumers into both generators and
consumers of data. As a result, due to the widespread use of GPS-equipped mobile
devices and social networks, there has been an explosion in the amount of data
with spatial and textual attributes on the Web.

In light of these developments, to support efficient location-based search, there
has been a significant amount of research done recently in the area of spatial
keyword queries. Spatial keyword queries enable the retrieval of objects based on
the spatial and textual predicates provided by the user in the search. For example,
in a search for a local restaurant, usually the spatial part consists of a location (e.g.,
the current location reported by the user’s mobile device) or a region of interest,
(e.g., “Berlin city center”), whereas the textual component contains some keywords
describing the user’s information needs, e.g., the type of restaurant or food. The query
response shows a list of spatio-textual objects, e.g., web pages of restaurants, that can
be viewed in the order of their distance from the query location, their relevance to
query keywords, their ratings, etc., or a combination of these. Each spatio-textual
object is associated with a location and a set of keywords. Web pages of POIs, such as
restaurants, coffee shops, and monuments, geotagged photos with descriptive tags,
reviews posted about places on travel websites (e.g., TripAdvisor), and geotagged
tweets are classic examples of spatio-textual objects. For example, Figure 1.1 shows

3https://goo.gl/a0tmab
4https://goo.gl/jJUfcA
5http://mashable.com/2016/11/02/facebook-mobile-only-users
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(a) Google (b) Foursquare (c) TripAdvisor

Fig. 1.1 Examples of POI searches in location-based search applications.

the user interface for POI search on mobile applications of three major location-based
search providers, namely Google, Foursquare, and TripAdvisor. Users can enter a
set of search terms, and optionally a location; the results are a list of places whose
category, description, and reviews are relevant to the search keywords and which
are located close to the query location. Each entry in the results consists of some
information about the place, such as the name, description, ratings, and reviews.

The main focus of research on spatial keyword queries has been on combining
spatial queries with keyword search, and finding data by specifying a spatial and a
textual filter. In its simplest form, a query typically comprises a region or a location
and a set of keywords, and seeks all or top-k locations that contain one or more query
keywords and lie within the query region or close to the query location, respectively
[32]. These are termed standard spatial keyword queries in literature [22, 39, 42].
Characteristic examples of standard queries are searches for POIs, such as restaurants
and coffee shops, that specify a location or a region of interest and some keywords to
describe the desired place. To efficiently evaluate these queries, there has already
been a lot of work on combining indexes for spatial search and text retrieval [32]. In
addition to this, several other query variants have been studied in the literature. For
example, Collective Spatial Keyword (CSK) queries [174, 21, 77, 24, 70] return groups
of objects that together contain all the query keywords and are also close to each
other, instead of the individual objects themselves. For instance, consider a tourist
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in a city who would like to go shopping, running, and dining. Her requirements
might be better met by a group of locations, rather than a single location [21].
Similarly, other types, such as the Prestige-Aware query [20] and the Preference-Aware
query [154], give higher importance to objects located close to several other relevant
objects. These are motivated by the observation that people often prefer to visit a
location with many relevant locations (e.g., restaurants or shops) nearby, over those
with fewer relevant locations in proximity [20]. Another line of related work deals
with retrieving entire streets [146] or regions [23, 61, 62] containing many relevant
POIs to facilitate user exploration. A typical example here would be a search for an
area with many restaurants in Berlin [23]. Various other forms of queries have been
studied; for a detailed survey of existing work, see Chapter 2. Nevertheless, based
on this brief discussion, it is evident that although several different types of queries
have been examined, the main focus of existing research has been on the retrieval of
POIs or, more generally, static documents associated to locations. On the other hand,
in addition to the growing quantity, diverse types of dynamic spatio-textual data
are being generated by users on social networks, making new kinds of searches
and analyses possible. For example, on websites, such as Twitter and Flickr, people
tend to post messages and photos about their activities, whereas on Foursquare and
Yelp, users are allowed to ‘check-in’ into venues and post comments and ratings.

Therefore, in this thesis, we advance the state-of-the-art in spatial keyword
query processing by studying methods for the retrieval and analysis of geotagged
posts, such as geotagged tweets, geotagged photos, and check-ins, made by users
on social networks. In contrast to the typically static data, such as POIs, used in
existing research, time is an important attribute in this type of information, which
is ignored in classic spatio-textual query processing. Here, the textual content of
a post is a short text or a set of tags, the spatial content is its geolocation, and
the temporal content refers to the time of the post. Moreover, geotagged posts are
being generated in large amounts continuously on social networks. This creates
additional challenges and opportunities not only for analyzing and retrieving this
information, but also for effectively presenting it to users. These have not been
adequately addressed in existing research. Furthermore, although individual posts
themselves might carry limited information, collectively they serve as a rich source of
crowdsourced intelligence in the form of local opinions and knowledge about places,
which can be examined to reveal insights for improving location-based services. Thus,
the availability of massive volumes of geotagged posts calls for the enhancement of
existing techniques to meet these challenges.
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1.2 Goal

The main goal of this thesis is to present novel search techniques and solutions for
supporting spatial, temporal, and textual retrieval and analysis of geotagged posts.
To achieve this, we study the following problems. First, to take advantage of the
additional available temporal information in posts, we address the problem of extend-
ing existing spatio-textual access methods to support temporal data. Specifically, we
begin by focusing on the spatial-temporal-textual filtering of trajectories of moving
objects generated by mobile users posting on social networks and by movement track-
ing applications. However, given the large number of posts made on social networks,
the number of results produced by this plain boolean range filtering can be very high,
and thus overwhelming for users. As a result, in our subsequent analysis, instead of
returning all results lying within the range, we focus on finding a small diverse set of k
representative posts for a given spatio-temporal range and keyword filter. The results
returned can serve as seeds for spatio-temporal exploration of the large amount of
relevant posts, making this technique suitable for the analysis of events and topics
with large spatio-temporal footprints. Nevertheless, given that new messages are
being posted constantly on social networks, the current result set can quickly become
outdated with the passage of time. Hence, an important enhancement of this method
is to update the results as fresh posts arrive. This is precisely the goal of our next
step, where we devise techniques for generating a concise and up-to-date summary
of posts lying within a sliding window over a stream, and updating it dynamically
as the window slides. Finally, motivated by the observation that posts made at a
certain location may indicate something about the location, we study the use of posts
as sources of local knowledge for enriching locations and inferring patterns. We
achieve this in two different ways. The first is by developing a system for detecting
and exploring hotspots for a certain set of keywords, i.e., areas where posts with
those keywords occur more frequently, termed locally trending topics in literature.
The other is by leveraging users’ mobility patterns and their semantic characterization
of locations from social networks as evidence to identify places that are thematically
associated. In the following, we outline the goal of each of these tasks.

1.2.1 Spatial-Temporal-Textual Filtering of Trajectories

The vast amount of data in the form of geotagged tweets, photos, or check-ins posted
constantly on online social networks using GPS-enabled mobile devices consists of
not only spatial and textual attributes, but also of temporal information. Hence, the
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goal of this part of our work is to extend spatio-textual retrieval methods to handle
temporal data. Concretely, we address the problem of efficient evaluation of queries
that perform spatial, temporal, and keyword-based filtering on historical movement
data of objects that is additionally associated with textual information in the form of
keywords, potentially changing at each timestamp and location. This data is available
in the form of trails of mobile users posting geotagged photos or tweets and as
tracking data of vehicles, ships, and animals consisting of GPS locations with textual
status updates. Thus, each point in the trajectory is characterized by a location, a
timestamp, and a set of tags or keywords. Consequently, we aim to evaluate queries,
such as “retrieve all users who have been in the city center of Berlin in the past hour and
have uploaded photos or tweeted about a specific event” and “retrieve all cargo trains that
passed yesterday from the surrounding area of Berlin and were transporting agricultural
products or were heading to Poland”. Such queries are important for a large number of
applications in many domains, including location-based services, fleet management,
emergency response, and others, and have remained largely unexplored in existing
research.

The results of this work on filtering of trajectories have been published in [120].

1.2.2 Spatial-Temporal-Textual Retrieval of Posts

Analyzing posts made by users on social networks is valuable for a wide range of
applications, such as event detection [138, 96], topic detection [35], and opinion
mining [156]. Users often want to browse and navigate across content in microblogs
to track and monitor the evolution of events and stories as they unfold in the
dimensions of space and time. However, this is not trivial for events and topics with a
large span in space and time due to the potentially very large number of relevant posts.
Thus, our goal in this part is to introduce a novel type of spatial-temporal-textual query
that returns a selected set of k results based on the spatio-temporal distribution of the
posts in order to facilitate exploratory search, and to devise algorithms for efficiently
evaluating the query. To this end, we propose the concepts of spatio-temporal coverage,
which favors posts from dense regions, and spatio-temporal diversity, which ensures
that results are well-dispersed over the query region. The unison of these two criteria
allows us to identify a small diverse set of representative posts for the query, which
makes this method suitable for exploratory analysis of a large number of relevant
posts.

Our method for top-k retrieval of posts has appeared in [122].
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1.2.3 Continuous Summarization of Streams of Posts

As discussed earlier, examining user posts on social networks is invaluable for sev-
eral tasks, such as monitoring local events and topics, and understanding public
opinions and sentiments. However, the continuous generation of large volumes of
geotagged posts makes it difficult and even, impractical to keep track of the entire
data stream over time as new messages are posted. Due to the overwhelming amount
of information and the inherent repetition and redundancy in this user-generated
data, it is often sufficient or desirable to present a concise summary of the evolving
stream, which is kept up-to-date as fresh posts arrive. Therefore, our goal in this
part of our work is continuous spatio-textual summarization, i.e., maintaining a
diverse collection of relatively few, representative posts over the stream. To restrict
the summarization to the recent posts only, a time-based sliding window is used, and
the results are updated dynamically with each window slide. Moreover, to construct
the summary and to estimate its quality, we define the criteria of spatio-textual cov-
erage and spatio-textual diversity. Here, coverage measures the extent to which the
summary captures the original information, whereas diversity ensures novelty among
the results. We present and evaluate several alternative strategies with the objective
of achieving low execution times without sacrificing the quality of the summary.

This work on continuous spatio-textual summarization of streams has been sub-
mitted for publication [141].

1.2.4 Discovery and Exploration of Locally Trending Topics

People use social networks to post information about their surroundings, activities,
and opinions. As a result, analysis of geotagged posts can provide important real-time
insights into local views and trends. Thus, in this part of our work, we investigate
the use of social networks for discovering and exploring currently trending topics.
Since the subjects being discussed on social networks tend to vary from region to
region, we partition space into smaller regions and identify local topics by aggregating
geotagged posts lying within a region. To find topics that are currently popular, a
sliding temporal window is used to limit messages and identify topics in a streaming
fashion. Moreover, it is often important not only to find popular topics and events, but
also to find a small subset of messages that can be used to provide an overview of the
topic and to facilitate further exploration. This is necessary because each topic might
have thousands of messages associated with it, and thus it is not straightforward for
a user to get a quick grasp of the topic’s context. Therefore, in this part, our goal is to
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develop a system for the detection and summarization of locally trending topics in
microblog posts.

Our system for topic discovery and exploration has appeared in [124].

1.2.5 Mining Associated Location Sets

By uploading photos, posting tweets, or checking in at various locations, users moving
around a city tend to generate digital trails of their activities. These trails enable the
analysis and extraction of groups of associated locations based on the activities of
city-dwellers or visitors. In turn, the discovered associations between locations can
be used to build smarter location-based services and better understand how people
experience their urban environment. In this part of our work, given a set of keywords,
our goal is to find groups of locations that are associated with each other and with
the given keywords via user trails. The intuition is that locations that tend to lie
together on user trails (i.e., are popular together) and be associated with a similar set
of keywords (i.e., are collectively relevant to the query) are likelier to hold a latent
thematic connection.

This work on mining associated location sets has appeared in [121] and [125].

1.3 Thesis Outline

Having outlined the motivations and objectives of the problems we investigate, we
now proceed to briefly explain the structure of the remainder of this thesis. The next
chapter systematically surveys related work on spatial keyword queries by presenting
a list of criteria and grouping existing works into categories based on these. The first
section of the chapter is devoted to the classic and potentially most prevalent type of
spatial keyword queries, called standard queries, due to the extensive prior research
on them. Following this, we move on to other categories of related work by going
through the criteria progressively. The subsequent five chapters explain the problems
dealt with in this thesis. Chapter 3 examines the problem of retrieving movement
trajectories matching a spatial-temporal-textual filter and proposes two hybrid indexes
for query processing. The kCD-STK query for finding the top-k posts for a spatial-
temporal-textual filter is presented in Chapter 4, along with baseline and index-aware
algorithms for evaluating it. In the following chapter (Chapter 5), algorithms for
computing diversified spatio-textual summaries of streams of posts are presented.
The different methods are also extended to take advantage of spatio-textual grouping
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of posts and are compared on grounds of quality of the summary and performance of
the computation. Chapter 6 describes the architecture and demonstration of µTOP,
a system for detection and exploration of locally trending topics in microblogging
platforms. The task of finding associated sets of locations based on user mobility
and behavior is analyzed in Chapter 7, where baseline and optimized approaches
based on the Apriori algorithm [2] are explained for the problem. Lastly, Chapter 8
concludes this thesis by presenting a summary of our contributions and identifying
potential avenues for future research.





CHAPTER 2

LITERATURE SURVEY

There has been extensive research on spatial keyword queries in the recent years
and a variety of query types and query processing techniques have been proposed
so far. Due to the large body of work on this subject, in this chapter, we attempt to
group together related approaches according to several criteria in order to review
them more systematically. Specifically, we devote the first section (Section 2.1) to
the fundamental type of spatial keyword queries, termed standard queries [22, 39,
42], and categorize the proposed techniques in this area following the approach in
[32] based on the types of indexes used and the way these indexes are combined.
Subsequently, we review other approaches by going through our proposed list of
criteria for classifying the existing literature, namely the granularity of results, the
significance of co-location in relevance estimation, the strategy for query evaluation, the
relevance of additional object attributes, the type of object geometry, and the underlying
space, and discuss the relevant works for each. An overview of our categorization
scheme is presented in Table 2.2. Finally, Section 2.9 summarizes the conclusions of
this chapter.

2.1 Standard Queries

Standard spatial keyword queries involve ad hoc searches for POIs over typically static
objects that return either all or top-k relevant objects. The query contains a spatial
component and a textual component. The textual part comprises a set of keywords,
which can be used either for ranked retrieval, e.g., ranking documents or web pages
based on term frequencies, or as boolean filters, e.g., when searching through short
text messages or metadata matching one or more keywords. Similarly, the spatial
part may specify a location, in which case the results can be ranked by proximity
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Table 2.1 Indexes for standard spatial keyword queries (extended from [32]).

Index Spatial part Textual part Coupling BRQ BkQ TkQ

ST [155] Grid Inverted File Spatial-first ✓
TS [155] Grid Inverted File Text-first ✓

IF-R*-Tree [183] R*-Tree Inverted File Text-first ✓ △
R*-Tree-IF [183] R*-Tree Inverted File Spatial-first ✓ △

SF2I [36] SFC Inverted File Spatial-first ✓
KR*-Tree [83] R*-Tree Inverted File Tightly coupled ✓ △
IR2-Tree [46] R-Tree Bitmaps Tightly coupled △ ✓

IR-Tree [40, 163] R-Tree Inverted File Tightly coupled △ △ ✓
IR-Tree [107] R-Tree Inverted File Tightly coupled ✓

SKIF [97] Grid Inverted File Tightly coupled ✓
SKI [26] R-Tree Bitmaps Spatial-first ✓
S2I [140] R-Tree Inverted File Text-First △ △ ✓

WIBR-Tree [164] R-Tree Inverted Bitmaps Tightly Coupled △ ✓
SFC-QUAD [38] SFC Inverted File Tightly Coupled ✓

IL-Quadtree [173] Quadtree Inverted File Tightly Coupled △ ✓ △
I3 [175] Quadtree Inverted File Tightly Coupled △ △ ✓

RCA [176] SFC Inverted File Text-First △ △ ✓

to it, or a spatial region, which can act as a boolean filter to retrieve all objects
contained inside it. The indexed data usually consists of geotagged descriptions
of POIs from different sources, such as Wikipedia, OpenStreetMap, online business
directories (e.g., Google My Business1), and location-based social networks (e.g.,
Foursquare). For evaluating the query, most approaches focus on combining textual
indexes with spatial indexes to produce hybrid spatio-textual indexes that can prune
the search space on both spatial and textual dimensions. A survey and comparison of
twelve indexes for standard queries was conducted by Chen et al. [32]. The authors
categorize the existing works based on the types of indexes used for the spatial and
textual components, and the technique for combining the indexes into a hybrid index.
This is shown in Table 2.1, where the classification presented in [32] is used and
extended by us to include more recent works. Each of the three columns at the end
represent a type of standard query (see Section 2.1.1). The ✓mark under a column
for a query type signifies that the index is originally developed for this query, whereas
the △ symbol means that the index can be easily employed to evaluate this query
with zero or minor modifications. Below we explain these queries in more detail.

1https://www.google.com/business/

https://www.google.com/business/
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2.1.1 Types of Standard Queries

Based on whether the spatial and the textual parts of the query are used for boolean
matching or for ranked retrieval, the following major types of standard queries have
been studied in existing literature [32]:

• The Boolean Range Query (BRQ) applies a set of keywords and a spatial
region as boolean filters, returning all documents contained inside the region
and matching the keywords.

• The Boolean kNN Query (BkQ) comprises a set of keywords and a point
geolocation. It uses the keywords as a boolean filter and ranks the results based
on their proximity to the query location, returning the k nearest neighbors.

• The Top-k kNN Query (TkQ) retrieves the top-k documents based on an ag-
gregate score combining both textual relevance to the query terms and spatial
proximity to the query location. Here, both the spatial and textual components
of the query are used jointly for ranked retrieval. Typically, the spatio-textual
score ϕ(o, q) of an object o with respect to a query q is defined as a weighted
linear combination of its spatial proximity and textual relevance to the query,
i.e.,

ϕ(o, q) = (1− α) · (1− ϕd(o.l, q.l)) + α · ϕt(o.Ψ, q.Ψ), (2.1)

where o.l, q.l and o.Ψ, q.Ψ are the locations and the keywords of the object and
the query, respectively, and α ∈ [0, 1] is the weighting factor. ϕd(·, ·) denotes the
spatial distance, e.g., Euclidean distance, whereas ϕt(·, ·) signifies the textual
relevance, e.g., cosine similarity or tf–idf weighting.

To illustrate, searches, such as “Find all five-star hotels in Berlin city center” and
“Find restaurants near me that serve Schnitzel and Apple Strudel”, are examples of
standard queries. Here, since the former requests all the hotels matching the term
“five-star” and located within “Berlin city center”, it highlights a BRQ. On the other
hand, the latter can represent either a BkQ or a TkQ based on whether the terms
“Schnitzel” and “Apple Strudel” are used for retrieving the restaurants matching these
or for ranking the results in combination with spatial proximity to the user’s current
location, respectively.

In addition to the above classification, queries can be either conjunctive (i.e.,
following AND semantics) or disjunctive (i.e., following OR semantics) depending
on whether objects matching all or at least one of the query keywords are requested,
respectively.
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2.1.2 Types of Indexes

Essentially, the indexes proposed by the different approaches for processing standard
queries are hybrid structures comprising a spatial indexing part and a textual indexing
part. Thus, the choice of indexes used to form these hybrid structures is an important
differentiating factor. In existing work, there are mainly three types of spatial indexes
that have been used: (1) tree structures, such as R-trees [79], quadtrees [64], or kd
trees [13], (2) space filling curves, e.g., the Z-order curve [128] and the Hilbert curve
[85], and (3) grids [133].

Among the tree structures, R-trees index the data itself, while quadtrees index
the data space. R-trees and kd trees are suitable for fine-grained indexing through
minimum bounding boxes, but since these boxes tend to overlap, multiple sub-trees
have to be traversed. For point data, it might be more efficient to use a coarse-grained
index, e.g., a quadtree. However, quadtrees become less suitable for storing polygons
because in case an entry overlaps multiple leaf nodes, it has to be duplicated across
all those nodes [68]. On the other hand, space filling curves provide a linear ordering
of documents based on their locations, where documents close to each other in
space tend to lie close to each other on the curve. This property can be used to
store the documents as a sorted list and to retrieve those lying close to the query
location through sequential access from the query’s position on the list. However, this
technique also produces false positives that need to be filtered out.

The textual index can be either an inverted file or a signature file. A simple inverted
file consists of a list of terms in the corpus, called a vocabulary, and for each term, an
inverted list, i.e., a list of identifiers of documents containing the keyword. On the
other hand, a signature file uses bits to mark the presence of terms through hashing
[184]. A bitmap is a kind of signature where each term is allocated a separate bit
in the signature. Thus, several indexes have been proposed employing different
combinations of these structures.

2.1.3 Index Combination Technique

Another important difference between the different approaches is how loosely or
tightly the spatial and textual structures are combined. In case of loosely coupled
structures, the indexed objects are filtered sequentially by the spatial and textual parts.
Thus, depending on which dimension is used first while partitioning the dataset, the
combination follows either a text-first or a spatial-first approach [38]. In the first
case, for example, the top-level index can be an inverted file, in which the postings in
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each inverted list are indexed by an R-tree. While processing the query, the objects
are first filtered by the inverted file, and then the resulting candidates are checked
against the R-tree. Instead, in the second case, the top-level index can be an R-tree,
with inverted files attached to each leaf node. Characteristic examples of the two
combination schemes are the IF-R*-tree and the R*-tree-IF [183]. Evidently, these
loosely coupled approaches are not very efficient as the number of false positives
produced after the first filtering step can be quite high.

Tightly coupled hybrid indexes overcome the limitation of their loosely coupled
counterparts by integrating textual information into spatial indexes and vice versa.
Thus, during query processing, the search space can be pruned using both spatial
and textual criteria. For example, another index structure that is based on the R-tree
and inverted files, but combines them more tightly, is the IR-tree [40, 163]. The
IR-tree improves upon the R*-Tree-IF structure and can be used for both boolean
and top-k retrieval of geotagged documents. In order to prune the tree search, it
augments the nodes of the R-tree with a pseudo document that contains the distinct
keywords inside the documents in the sub-tree rooted at the node. Moreover, for each
term in the pseudo document, it also stores the highest textual score in the node’s
sub-tree. The pseudo document can therefore be used to compute the highest textual
relevance of any object in the node’s sub-tree. Combining this with the mindist value
of the node’s Minimum Bounding Rectangle (MBR) generates an upper bound for
the spatio-textual score of objects under the given node, based on the weighted sum
definition of score (Equation 2.1). As a result, during query processing, the tree nodes
can be ranked by their upper bound scores. This allows a best-first traversal [86] of
the tree and early termination by pruning non-promising regions while finding the
top-k objects.

Among the works evaluated in [32], for the boolean range query, the SFC-QUAD
index [38] outperforms others in terms of disk space usage and runtime performance
[32], and thus has also been used in our work. The structure of SFC-QUAD is depicted
in Figure 2.1. It consists of an inverted index over the keywords in the entire dataset,
where the inverted lists are compressed using a block compression algorithm [167]
before being stored on disk. For spatial indexing, a quadtree whose nodes are ordered
using the Z-curve is used. To integrate spatial information into the inverted file,
each document is assigned an identifier based on its position on the curve and the
documents in the inverted lists are arranged in the order of the identifier. Thus, it
utilizes the nature of the Z-curve to ensure that documents in the query region also
lie close to each other on the list in order to reduce the number of disk I/Os. During
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Fig. 2.1 Components of the SFC-QUAD index.

query evaluation, the quadtree is used to find a small number of ranges of document
identifiers that are subsequently read from the inverted index to find documents
containing all query keywords. The final refinement step eliminates the false positives,
i.e., documents outside the query region.

Similarly, for the Top-k kNN query, two state-of-the-art approaches (proposed after
the survey in [32]), which are also used in our work, are the I3 hybrid index [175]
and the RCA algorithm [176]. The I3 index maintains a quadtree for each keyword,
indexing the documents containing it. Each keyword is used as a key in a lookup
table and is associated with a pointer. If the documents containing this keyword can
fit in a single disk page, the pointer links directly to that page; otherwise, it points to
the root of a quadtree which spatially indexes the relevant documents. The leaf nodes
of the quadtree point to the disk pages where the documents are stored. Given this
index, a spatio-textual query is processed as follows. First, the relevant keywords are
identified, depending on whether OR or AND semantics are used. Then, the relevant
documents are searched accordingly, depending on whether the keyword is dense or
not, i.e., if the number of objects containing the keyword exceed the capacity of a
disk page or not. For keywords that are not dense, the relevant documents can be
retrieved by a single page access. For dense keywords, the nodes of the quadtree are
traversed, checking whether the spatial extent of a node intersects with the spatial
bounding box of the query.

The RCA approach uses only an inverted index and is depicted in Figure 2.2. In
particular, it maintains two inverted lists for each keyword. The first is a standard
inverted list (shown as Lψ in the figure) that stores the documents containing the
keyword in decreasing order of relevance. The second one (Ls in the figure) contains
documents according to the Z-order encoding of their coordinates. Query processing
exploits the following property of the Z-order encoding. Assume a spatial bounding
box R, with zmin and zmax being the Z-order encodings of its top-left and bottom-right
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Fig. 2.2 Components of the RCA approach.

corners, respectively. Then, the Z-order encoding of any point that lies within R
has a value z ∈ [zmin, zmax]. This allows to efficiently process top-k queries using an
adaptation of the CA algorithm [59] for rank aggregation. This has the advantage
that the method can more easily be implemented and deployed in existing search
engines, since they already rely on inverted indexes for document search.

This section presented an overview of relevant works on standard queries. Here-
after, we discuss other types of spatial keyword queries by going through a set
of classification criteria, beginning with approaches that identify areas or groups
containing multiple objects that collectively satisfy a given query.

2.2 Granularity of Results

The approaches described so far focus on the retrieval of single objects that users might
be interested in. However, very often the nature of the query calls for decreasing the
result granularity and presenting sets of POIs, instead of individual POIs, where the
objects in each set collectively match user requirements. Below we discuss different
lines of work in this direction, focusing on retrieving different types of result sets,
such as areas of interest or collections of spatio-textual objects.

2.2.1 Areas of Interest

Due to the large quantity of available spatio-textual data, on many occasions, it is
desirable to return entire areas that contain several relevant POIs for user exploration,
instead of the POIs themselves. Skoutas et al. [146] focus on streets as the desirable



18 | Literature Survey

Table 2.2 Categorization of existing work on spatial keyword queries.

Query Object Result Co-location Execution Underlying Additional
Geometry Granularity Aware Strategy Space Attributes

Type Works Level Cardinality Continuous Parallel

Standard

Table 2.1 Point Object Single Euclidean
[36, 60] Region Object Single Euclidean

[139, 172] Point Object Single Road Network
[115] Point Object Single ✓ Road Network

Areas of Interest
[146, 23] Point Region Single ✓ Road Network
[61, 62] Point Region Single ✓ Euclidean

Collective
[174, 21, 77, 24] Point Object Collection ✓ Euclidean

[70] Point Object Collection ✓ Road Network

Preference-Aware
[154] Point Object Single ✓ Euclidean
[49] Point Object Single ✓ ✓ Euclidean

Prestige-Based [20] Point Object Single ✓ Euclidean

Moving
[89, 165, 76] Point Object Single ✓ Euclidean Time

[75] Point Object Single ✓ Road Network Time

Publish/Subscribe
[31, 34, 88, 161, 33] Point Object Single ✓ Euclidean Time

[104] Region Object Single ✓ Euclidean Time
[37, 160] Point Object Single ✓ ✓ Euclidean Time

Big Data Systems
[117] Point Object Single ✓ ✓ Euclidean Time
[114] Point Object Single ✓ Euclidean

Posts [130, 87] Point Object Single Euclidean Time

Trajectories [41] Point Sequence Object Single Euclidean Time

Geo-Social
[4] Point Object Single Euclidean Connectivity

[94] Point Collection Object Single ✓ Euclidean Connectivity

Join

[16] Point Object Single Euclidean
[109, 110] Region Object Single Euclidean
[9, 136] Point Object Single ✓ Euclidean

[54] Point Collection Object Single Euclidean

Reverse
[112] Point Object Single Euclidean
[69] Point Object Single Road Network

Direction-Aware [103] Point Object Single Euclidean

unit of user interest and investigate the problem of finding Streets of Interest (SOIs)
for a given set of terms. They define an SOI as a collection of road network segments
containing one or more POIs within a distance threshold from it whose description
matches the query keywords. Given this definition, the candidate streets are ranked
based on the density of POIs within the distance threshold and the top results are
returned. For query processing, a combination of a spatial grid index and an inverted
index is used. Moreover, the work also deals with visually describing SOIs using
geotagged photos. For this, a set of k geotagged photos (e.g., from Flickr) is identified
for a given SOI whose descriptions are not only spatio-textually relevant, but also
spatio-textually diverse, in order to provide a quick visual overview of the street.

Another line of related work deals with finding Regions of Interest (ROIs) [23, 61,
62]. Given a size constraint, the goal here is to find regions where the POIs inside
are relevant to the query keywords and collectively maximize an objective score,
such as textual relevance, popularity, or diversity, while satisfying the size constraint.
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For this, Cao et al. propose the Length Constrained Maximum-Sum Region (LCMSR)
query, where the size constraint is specified in terms of road network length and the
objective score is the sum of the scores of the objects inside the region [23]. Thus,
the regions found can be of any shape, depending on the road network topology. [61]
targets a similar problem, called Best Region Search (BRS), of finding rectangular
regions of specific dimensions for the general case where the objective is a monotone
submodular function. Due to this, the query can be used to find regions with the most
diverse set of POIs or with the highest influence among users by using monotone
submodular functions to represent diversity or influence, respectively. Based on the
work in [61], a system for region search and exploration is presented in [62].

2.2.2 Object Collections

Collective Spatial Keyword (CSK) queries [174, 21, 77, 24, 70] extend standard queries
with the goal of satisfying complex information needs. For example, a tourist arriving
in a city might want to have coffee, see the river, and visit a museum, and thus might
look for places using the terms ‘coffee, river, museum’. Evidently, such a search could
be better satisfied collectively by a group of objects, rather than individually by single
objects. The m Closest Keywords (mCK) query introduced in [174] was the first work
to address this challenge. Given a database of spatio-textual objects and m keywords,
this query retrieves a set of objects that (1) together contain all the m keywords in
their keyword sets, and (2) are located as close to each other as possible. For query
processing, an augmented R*-tree [12] structure, called bR*-tree, is proposed, which
stores a bitmap at each node summarizing the keywords in the sub-tree. Additionally,
for each keyword in the sub-tree, an MBR is maintained, which represents the spatial
extent of the objects containing the keyword. Further in this direction, Cao et al.
show that the mCK query is NP-hard and devise approximation algorithms for faster
computation [24].

A similar variant, called the Spatial Group Keyword query, is defined in [21],
where, in addition to a keyword set, a query location is also supplied. Here, the
retrieved objects need to be as close to the query location as possible, and optionally
in proximity to each other. Both instances of the problem are proven to be NP-
complete; thus, both exact and approximate solutions are presented [21]. Similarly,
[70] addresses the problem of efficient evaluation of CSK queries for objects located
on a road network, instead of the Euclidean space.

We revisit the problem of finding collections of locations for a given set of keywords
in Chapter 7. However, in contrast to the aforementioned works, there our goal is



20 | Literature Survey

to find collections of locations that are associated based on user trails derived from
geotagged posts. Thus, while the existing works mainly focus on optimizing for
spatial proximity and ignore user behavior, we focus on retrieving sets of associated
locations leveraging user mobility and behavior as the evidence and measure of
strength of the association. Consequently, our work is able to capture latent thematic
associations between locations that might be overlooked by similar works.

2.3 Co-location Awareness

A significant limitation of the majority of the approaches for spatial keyword query
processing is that they define the relevance of an object to a query as a sole function
of the attributes of the object itself, thus assuming that it is independent of other
objects in the dataset. However, this is seldom the case in real-world scenarios, where
very often the appeal of a location is also influenced by other POIs in its vicinity.
Below we present the approaches that consider the significance of co-location of
objects while ranking the results.

2.3.1 Preference

The Top-k Spatio-Textual Preference Query [154] retrieves objects based on the quality
of other facilities in their vicinity. Here, the objects being retrieved are called data
objects (e.g., hotels) and the facilities in the neighborhood are called feature objects
(e.g., restaurants). Each data object has a location, whereas each feature object
additionally contains a non-spatial score, such as a rating, and a textual description.
Thus, an example of this query would be “Find hotels that have a highly rated Italian
restaurant in the vicinity serving espresso”. In [154], first, a baseline approach is
proposed, which computes the score of all data objects, and then reports the k data
objects with the highest score. Next, an improved approach, which scans promising
feature objects first and then finds data objects in their vicinity, is presented. To
identify relevant and highly ranked feature objects, the authors propose to modify
a spatial index, such as an R-tree, to build a four-dimensional index, called the
SRT-index, on the spatial coordinates, the non-spatial score, and a value for the
keywords based on the Hilbert curve. A variant of this problem is discussed in [49],
where the data is distributed on multiple processing nodes and query processing is
carried out in parallel using the MapReduce [47] based Hadoop framework2.

2http://hadoop.apache.org/
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2.3.2 Prestige

[20] defines the concept of prestige-based relevance to rank those results higher that
are not only close to the query, but also have other objects nearby that are relevant.
For evaluating the query, the authors build a graph on the objects by connecting those
that are sufficiently close in space and similar in textual descriptions. Then, they
use a technique similar to PageRank [74] to assign prestige values to the nodes. A
distinguishing feature of this approach is that despite the fact that a place does not
match any query keyword, it might still be returned as a result due to the effect of
neighboring places that are relevant.

Co-location of POIs is also important for the retrieval of areas of interest and
object collections (Section 2.2), where regions and groups comprising multiple POIs
are returned, respectively, based on the attractiveness and proximity of POIs within
them.

Similarly, in our work, we propose the concepts of spatio-temporal coverage
(Chapter 4) and spatio-textual coverage (Chapter 5), which allow us to define the
relevance of a post indirectly in terms of its similarity with the other objects in the
dataset. By combining coverage with diversity of the result set, we are able to derive
a measure of its representativeness, and thus its suitability for exploratory analysis
and summarization.

2.4 Query Execution

Until now, we have discussed several different classes of spatial keyword queries
targeting different use cases. Nonetheless, these efforts mainly focus on scenarios
where both the query and the objects are static, and where queries are evaluated
only once in an ad hoc fashion. On the other hand, the main focus of this thesis
is on the analysis of geotagged posts, which are dynamic objects being produced
continuously in large volumes and at high rates. This calls for continuous query
execution and monitoring of results over time, which we discuss in this section.
Furthermore, another important area of research for analyzing data at a large scale
are techniques based on parallel and distributed architectures. Although this thesis
does not focus on the development of parallel and distributed solutions for query
processing, this is potentially a very promising area for future research, and hence is
also discussed here.



22 | Literature Survey

2.4.1 Continuous Evaluation

In contrast to ad hoc or snapshot variants, continuous queries generally specify a
filter over an incoming stream of data, where results are updated as new objects in
the stream arrive and expire. Here, there are two major bodies of relevant research,
namely the moving spatial keyword query and spatio-textual publish/subscribe sys-
tems.

Moving Query

The moving top-k spatial keyword query maintains the top-k relevant spatio-textual
objects for a moving user in real-time [89, 165, 75]. The usual approach is to define
the concept of a safe region within which a result set is valid [89, 165]. If and when
the query object exits the safe region, the result set needs to be updated. This method,
however, is only suitable for objects moving in the Euclidean space. In [75], both
the user and the objects are confined to a road network, and techniques for query
processing through incremental expansion of the network from the query position as
well as the relevant objects are presented.

[76] proposes a publish/subscribe system that continuously monitors moving
users subscribing to dynamic location-aware events (e.g., social network messages).
The subscriptions are modeled as boolean expressions along with a notification
radius. To reduce communication overhead, the authors exploit the idea of safe
regions and propose the concept of impact regions for subscribers to determine
whether their safe regions can be affected by newly arriving messages. Furthermore,
to support matching past published events to subscribers, the authors propose a
Boolean Expression Quad-Tree (BEQ-Tree) structure for indexing events to reduce
response time.

Publish/Subscribe

The problem of continuously maintaining the most relevant results over a stream of
spatio-textual documents from different sources, such as social networks, has been in-
vestigated in recent works on spatio-textual publish/subscribe systems. [31] proposes
the Inverted File Quad-tree (IQ-tree) for indexing a large number of subscriptions in
order to efficiently identify queries for which an incoming object might be a candidate.
The IQ-Tree is essentially a quadtree augmented with inverted indexes at its nodes.
The subscription is used as a boolean filter to continuously return all objects lying
inside the query region and time window, and matching query keywords. The work in
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[104] also focuses on the problem of delivering textually matching (i.e., containing
all query keywords) and spatially relevant (i.e., overlapping query MBR) messages
to subscriptions. To index the large number of subscriptions, the authors propose to
use an R-tree augmented with textual descriptions of subscriptions at its nodes to
store the spatial and textual attributes of the subscriptions. In the same spirit, the
parameterized technique in [88] weighs textual relevance and spatial proximity in
a combined spatio-textual similarity measure and proposes a filter-and-verification
framework to deliver all messages for a subscription with similarity higher than
a given threshold. In particular, the authors introduce three alternative filtering
schemes: a spatial-oriented prefix based on inverted indexes that capitalizes on max-
imum spatial similarity, a region-aware prefix based on hierarchical spatial indexes
(e.g., R-trees) so that subscriptions can be grouped by locality, and a spatio-textual
prefix utilizing multiple keywords for pruning. A cost model is suggested so that the
best filtering strategy can be selected.

On the other hand, [34] combines the criteria of textual relevance, spatial prox-
imity, and a temporal decay-based recency function to find the top-k results for a
query over a stream of spatio-textual objects. A prototype based on this approach
and the approach proposed in [31] for continuously processing boolean and top-k
queries is presented in [33]. Similarly, Wang et al. [161] concentrate on the same
problem as in [34], but using a sliding window instead of a recency function, to
find the k most relevant messages. As in [31], they also use a subscription index
that is a combination of a quadtree with inverted files at the leaf nodes. Moreover,
for maintaining the top-k results over the sliding window, they employ a cost-based
k-skyband, which is an extension of the k-skyband proposed in [129].

Despite the fact that continuous queries for spatio-textual data have received
significant attention recently, none of these works investigate the problem of summa-
rization of spatio-textual streams via diversification, which is the focus of Chapter 5.
The closest to our approach is [30], where the authors analyze the problem of
diversity-aware top-k subscription queries over textual streams. Qualifying documents
are ranked by textual relevance, temporal recency, and result diversity according to
respective score functions. However, in contrast to our work, to process incoming
documents efficiently, the proposed method employs a rather restrictive process. Each
new document is compared only to the oldest one in the current result set, and if it
improves the objective score, the replacement is made, otherwise the document is
discarded. Moreover, the considered documents do not have a spatial attribute.
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2.4.2 Parallel Processing

The growing amount of spatio-textual data also poses the challenge of scaling query
processing to clusters of computers [116]. The idea behind these approaches is to
divide the original task into subtasks for execution on different machines. Each cluster
node has its own memory, and communication between nodes mainly takes place
through message passing. The works on this subject can be grouped into two broad
classes: (1) systems for processing large-scale spatio-textual data, and (2) adaptations
of existing spatial keyword queries and algorithms for distributed settings.

Big Data Systems

MapReduce-based frameworks, such as Hadoop2 and Spark3, allow the development
of distributed solutions using elementary programming operations. However, as these
are general purpose frameworks, they lack optimizations and support for spatial
or spatio-textual data. [162] addresses this challenge by detailing an approach for
indexing spatial data stored in the Hadoop Distributed File System (HDFS). The
authors propose a two-tier index comprising a single global index and multiple local
indexes. The global index is used to distribute the data across the nodes, whereas
the local index is constructed on the data at each processing node. SpatialHadoop,
an extension of Hadoop with native support for spatial data is described in [55] and
[56], and a comparison of different spatial partitioning techniques supported by it is
presented in [57]. Similarly, GeoSpark [170, 171] extends Spark for spatial query
processing and analytics. A survey of approaches in the area of processing large-scale
spatial data can be found in [58] and [81]. LocationSpark [151] goes a step further
in this direction by also supporting spatio-textual analytics, in addition to spatial
queries and analytics, over Spark. Support for spatial data has also been integrated
into distributed databases. A prominent example is GeoMesa [65], which integrates
spatio-temporal indexing into non-relational databases, such as Accumulo4. Recently,
a distributed system extending the Storm5 stream processing framework, called
Tornado, for executing continuous spatial keyword queries over data streams has
been introduced in [117]. It uses a distributed spatio-textual index to ensure that the
data necessary for a specific query resides on the same node. Furthermore, the index
also adapts to changes in data distribution and query workload by re-distributing the
processing across nodes. Another example in this domain is sksOpen, which allows

3http://spark.apache.org/
4http://accumulo.apache.org/
5http://storm.apache.org/
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visualization and querying of large-scale spatio-textual data [114, 177]. The system
supports the boolean kNN query by employing a variant of the indexing mechanism
proposed in [26], which uses a combination of an R-tree and inverted files containing
bitmaps for each term.

Specific Algorithm Implementations

In addition to these new systems, several existing methods have been extended
to work in a distributed context [9, 115, 49, 37, 160]. [115] develops distributed
techniques to handle the boolean range query and other query variants on road
networks that use a set of keywords, a distance threshold, and a location as query
inputs. To evaluate the queries, a distributed index is created that allows each node to
carry out its computation independently, and thus minimize communication overhead.
Similarly, [37] presents a distributed solution for dealing with a large volume of
subscriptions arriving frequently in publish/subscribe systems. The authors describe
a technique for partitioning the workload of insertions and deletions of queries, and
the matching operations between queries and objects over a cluster of servers based
on both the spatial and textual distributions of the data. Moreover, approaches for
adjusting computation load dynamically are also presented and evaluated. [160]
extends the work in [161] to build a distributed publish/subscribe system on top of
Storm for supporting higher throughput and scalability. Different mechanisms for
distributing the subscriptions and messages are examined and compared to find one
that minimizes the communication cost and achieves the best performance.

2.5 Relevance of Additional Attributes

In addition to spatial and textual information, most sources of spatio-textual data
offer other kinds of information in the form of attributes and metadata that can be
exploited to enable a rich variety of analyses and features. We discuss some of the
works in this direction below.

2.5.1 Temporal Data

Spatial keyword queries are typically oblivious of the temporal information associated
with objects. However, driven by the growing amount of Web data containing
timestamps and spatial footprints, the need for combining keyword search with
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spatial and temporal filtering has been recognized. In the following, we outline
research in the area of spatial-temporal-textual query processing.

For querying spatio-temporal posts, such as geotagged tweets, in [130], the
authors propose an index that is based on a shallow R-tree, combined with an
inverted index at each leaf node to index the terms of the contained documents. In
addition, to deal with the temporal dimension, the original document identifiers
are replaced with new ones that are assigned to documents chronologically, thus
facilitating the retrieval of documents within a given temporal range. Similarly, [87]
proposes a disk-based variant of the kd tree for supporting range and top-k queries
combining the spatial, temporal, and textual dimensions. Keywords are transformed
to numerical values to allow access via the index.

In a related direction, keyword search on trajectories has been studied in [41].
Each trajectory consists of a sequence of geolocations associated with textual descrip-
tions. In [41], given a location and a set of keywords, the goal is to find the top-k
trajectories whose textual descriptions cover the given keywords and which have the
minimum distance to the given location. The proposed method is based on a hybrid
index, called cell-keyword conscious B+-tree, which enables simultaneous application
of both spatial proximity and keyword matching.

Other types of queries with spatial, temporal, and textual filtering include the
moving spatial keyword query and the publish/subscribe variants. These have already
been covered in Section 2.4.

In summary, the amount of work dealing with temporal information available with
spatio-textual data has been limited so far. Moreover, the relevant works in this area
focus largely on the retrieval of individual posts by either applying spatio-temporal
criteria as boolean filters or by using them to rank posts based on spatial proximity
and/or recency. These are very different from the related problems studied in this
thesis, including spatial-temporal-textual filtering of trajectories (Chapter 3) and the
retrieval of top-k posts for a spatio-temporal range and set of keywords based on
spatio-temporal coverage and diversity (Chapter 4).

2.5.2 Social Connectivity

The relationship of an object with others in the dataset is a potential measure of its
importance or popularity and can be used for ranking the results relevant to a query.
Jiang et al. [94] formulate the problem of top-k local user search in geotagged Twitter
data. Given a location, a distance threshold, and a set of terms, the query finds the
top-k users who have posted messages on Twitter relevant to the query keywords
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within the distance threshold from the query location. They propose the notion of a
tweet thread to estimate the popularity of tweets and users based on the number of
responses (i.e., replies and forwards) a message receives. Based on this, a user score
combining spatial proximity, textual relevance, and tweet popularity is computed
for ranking local relevant users. A distributed index comprising a quadtree and an
inverted index is proposed, and the Hadoop framework is used for implementing
index construction and query processing on a cluster of computers.

A framework supporting queries capturing spatial, social, and textual criteria for
finding top-k users, POIs, or keywords is proposed in [4]. Three different variants
of geo-social keyword search are proposed: (1) given a location and a set of terms,
identify the top-k users based on spatial proximity, network popularity, and textual
relevance, (2) given a user and a set of terms, find the top-k POIs based on spatial
proximity, the number of check-ins by the user’s friends, and their textual relevance,
and (3) given a spatial range, return the top-k keywords based on their frequency
in pairs of friends located within the area. A hybrid structure indexing users and
POIs based on all the three attributes, and a ranking function combining their partial
scores on each dimension are used for query evaluation.

In our analysis, we do not utilize social information available with the posts (e.g.,
message replies and forwards, or friendship information), except the identifier of the
user who created the post in order to group posts made by the same user together.

2.6 Type of Object Geometry

In this thesis, we deal with geotagged posts and represent the spatial attributes of
the posts by point locations. However, it is noteworthy that not all the existing
approaches for spatial keyword query processing assume that objects’ geolocations
are points. In fact, several works dealing with larger object footprints have been
proposed [36, 60, 109, 110] as this more closely fits many practical use cases, such as
modeling regions of user activity for user profiling in social networks and representing
territories of animals for wildlife monitoring [60]. For example, in [36], the authors
geocode the documents to extract their spatial footprints in the form of one or more
non-contiguous regions, each having a non-negative value associated with it. The
query comprises a set of terms and a region, and only considers objects that contain
all query terms and a non-empty intersection with the query area. The objects in the
result set are ranked according to their textual relevance to the query and the extent
of overlap between the objects’ and the query footprints. The authors evaluate both
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spatial-first and text-first methods for query processing, considering them as baselines,
and conclude that the spatial-first strategy performs better. An optimized approach
is also presented that uses Hilbert Curve ordering of the footprints to organize the
documents in an inverted file on disk.

A slightly different problem is analyzed in [60], where the goal is to find all
objects that have a spatial and textual similarity to the query higher than specified
threshold values. The spatial similarity is measured through the extent of intersection
between the query and the object region, and is used to define a spatial Jaccard
similarity measure, while the textual relevance is computed using the weighted
Jaccard similarity between the query terms and the object’s keywords. A grid is used
to construct the spatial signature of an object, whereas the keywords are used as its
textual signature. These signatures are then used to build a filter-and-verification
framework for finding the objects that exceed the similarity thresholds.

2.7 Underlying Space

Although most of the prior works, as well as the problems investigated in this thesis,
assume that objects are restricted to Euclidean space, it is important to mention that
several works dealing with spatial keyword search on road networks have also been
proposed [139, 172, 75, 115, 146, 23, 69, 70]. In this case, the spatial proximity
between objects reduces to a function of their network distance, instead of Euclidean
distance. Rocha-Junior et al. [139] present techniques for processing the top-k kNN
query on road networks. They first propose a basic approach combining a spatio-
textual index with the framework proposed in [134], and improve it to produce two
new approaches. Zhang et al. study the same problem with the goal of returning
relevant as well as spatially diverse results [172]. The diversity of the result set is
defined using max-sum objective function [73], where the network distance to the
query location is used as a measure of relevance and the pairwise network distance
between objects is used to estimate the diversity. Thus, the task is to retrieve a set
of k objects lying within a distance threshold from the query and containing the
query keywords that maximize the objective score. To achieve this, a signature-based
inverted index structure is used to organize objects for pruning the search space
based on the spatial and textual constraints, and an incremental technique for finding
the top-k relevant and diverse objects is presented.



2.8 Other Types of Queries | 29

2.8 Other Types of Queries

Various other types of problems have been studied in the recent years, including
spatio-textual variants of popular spatial queries, such as spatial join and reverse kNN
query. We discuss some of these below.

2.8.1 Reverse Query

The Reverse k Nearest Neighbor query finds objects whose k nearest neighbors include
the query point [99], and has received significant attention in recent years due to
its application in finding the influence sets of objects in a database. Although this
problem is well-investigated in the spatial databases literature, generally spatial
proximity is used as the sole measure of influence, while textual similarity is not
accounted for. To that end, the Reverse Spatial Textual k Nearest Neighbor (RSTkNN)
query, which uses both spatial and textual similarity, is proposed in [112]. A hybrid
index structure, called the IUR-tree, which is formed by augmenting the internal
nodes of an R-tree, is presented. The IUR-tree stores the union as well as the
intersection of the keyword sets of the objects lying inside the nodes in order to
generate lower and upper bounds on spatio-textual similarity between objects for
pruning the search space during query processing. Furthermore, [69] presents a
variant of this problem, where road network distance replaces Euclidean distance as
a measure of spatial proximity and keywords are used for boolean filtering, instead
of ranking by relevance.

2.8.2 Join

The Spatio-Textual Similarity Join finds pairs of objects in a database that are both
spatially close and textually similar. This problem has applications in various fields
ranging from social networks to duplicate elimination [16]. [16] defines the problem
as finding all pairs of objects with a spatio-textual similarity higher than a specified
threshold. The authors use a combination of a dynamic grid created during query
execution and a set similarity join algorithm to speed up query processing. Parallel
techniques for spatio-textual join over a MapReduce-based system are presented in
[9]. The work deals with a slightly different problem definition, where for each object
p1, only the most similar object p2 is returned. Moreover, a custom similarity func-
tion of the form sim(p1, p2) = simt(p1.Ψ, p2.Ψ)/1 + ds(p1.loc, p2.loc) is employed,
where simt(Ψ1, Ψ2) is the textual similarity and ds(loc1, loc2) is the Euclidean dis-
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tance between objects. Rao et al. [136] compare different possible approaches for
partitioning data while computing the join. These include (1) a local strategy, where
data is indexed using a spatial index and a string similarity join is applied locally
inside the spatial partitions, and (2) a global approach that uses a global inverted
index to organize the objects and orders the inverted lists spatially using an SFC. In
addition, implementations obtained by changing the spatial index (grid vs. quadtree),
the set similarity join algorithm (All-Pairs [10] vs. PPJ [166]), and the computation
technique (single- vs. multi-threaded) are also compared. [109] and [110] also deal
with spatio-textual join, but for regions, by representing objects’ spatial footprints via
their MBRs. The spatial similarity between objects is thus defined using the extent of
overlap between their MBRs. Finally, [54] extends the problem presented in [16] to
matching collections of spatio-textual point objects, instead of single objects, based
on similarity.

2.8.3 Direction-Aware Query

The standard queries return the results based on distance and textual similarity,
without taking the orientation of the query into consideration. The Direction-Aware
Spatial Keyword Search (DESKS) [103], on the other hand, returns k objects closest
to the query location that contain all the query keywords and additionally lie within
a direction range from the query location. The direction awareness feature can
be especially useful for location-based services for moving objects, where generally
results retrieved based on the orientation or direction of movement of the query
object could be more relevant than other objects. To efficiently process the query, the
authors propose to prune the search space by partitioning objects into sub-regions
based not only on their location, but also on their direction relative to the query.
For each sub-region, the textual content of the objects inside it is organized using
inverted lists to achieve keyword-based pruning.

2.9 Summary

In this chapter, we have surveyed published literature on spatial keyword queries
and established a broader context for this thesis. We first discussed the typical class
of spatial keyword queries, termed standard queries, in Section 2.1. Subsequently,
we reviewed related works by providing a range of criteria that can be used to
distinguish them and by grouping them based on these. These included result
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granularity, co-location awareness, query execution strategy, additional attributes
used, object geometry, and underlying space. The results of our categorization are
summarized in Table 2.2.

Based on our survey, it is evident that the problems investigated in this thesis
present a significant advancement over the state-of-the-art in spatial keyword query
processing. Whereas most of the existing works deal with static settings, such as POI
search, we focus on dynamic spatio-textual objects in the form of geotagged posts.
Thus, where prior approaches largely ignore temporal information that might be
available with the objects, our methods in Chapter 3 and Chapter 4 take advantage
of the temporal data for filtering the results and for ranking the top results based on
spatio-temporal criteria, respectively. Similarly, the techniques in Chapters 5 and 6
use the post timestamps to always present the current results using a sliding window.

The use of geotagged posts also poses the challenge of handling large quantities of
data being produced at a rapid pace and keeping the results up-to-date as new posts
arrive. Here, although there has been research conducted in the area of continuous
queries on streaming spatio-textual data, none of these address the challenge of
continuous summarization of spatio-textual streams, which we present in Chapter 5.
Similarly, the techniques proposed in Chapter 3 and Chapter 6 also facilitate the
exploration of large numbers of posts, by presenting users with a smaller set of
representative posts and trending topics, respectively.

Finally, another aspect in which our work contributes to research is by aggregating
posts and utilizing them for enriching locations with patterns and insights inferred
from user behavior. In this regard, we present two different analyses. The first is a
system for the discovery and exploration of locally trending topics in social networks,
whereas the second is the identification of associated sets of locations based on
geotagged posts. As in our work on mining associated location sets in Chapter 7,
CSK queries also retrieve a group of locations for a given set of keywords. However,
our approach for addressing the problem is fundamentally different. This is because,
instead of optimizing for spatial proximity, we seek to maximize the co-occurrence
of the locations in user trails derived from geotagged posts. Thus, our approach is
able to capture latent thematic connections between groups of locations evidenced
by users’ behavior, that might be overlooked by related works.





CHAPTER 3

SPATIAL-TEMPORAL-TEXTUAL FILTERING OF TRAJECTORIES

Having presented an overview of existing work, we now present the first problem
examined in this thesis, namely the retrieval of trajectories of moving objects using a
spatial-temporal-textual filter.

3.1 Overview

As a result of the growing use of GPS and mobile devices, it has become possible
to track the movement of various types of objects, ranging from ships, airplanes,
and vehicles to animals and people. Consequently, storing, querying, and analyzing
such movement data is becoming increasingly interesting and important for many
applications [178, 179]. To that end, several problems have been studied in this area,
including range and nearest neighbor queries for moving objects (e.g., [67, 78, 145])
or finding movement patterns and groups of objects that move together in space and
time (e.g., [106]). Moreover, these studies have been concerned both with querying
and monitoring current and future positions of objects (e.g., [152, 91, 84]), as well
as with storing and querying historical trajectories (e.g., [71]). The trajectories are
usually a polyline approximation of the original trajectory of the object. Typical
examples of such queries are “find all vehicles that are currently within 1 km of the
Brandenburg Gate” or “find all users who crossed Alexanderplatz yesterday evening”.
Such queries are important for a large number of applications in many domains,
including location-based services, fleet management, emergency response, and others.
To support the efficient evaluation of such types of queries on moving objects, several
spatio-temporal indexes have been proposed [131].

However, these approaches focus on the spatial and temporal dimension when
indexing and querying objects, thus ignoring other important characteristics, in the
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form of textual attributes, that can be used for keyword-based search and filtering of
the objects. For example, in fleet management applications, a moving object, e.g., a
ship, an airplane, a truck, or a train, may transmit messages during its movement
that contain certain information, such as its type, its next destination, the type of
cargo it is transporting, or any other status information. This can be used for instance
to answer queries, such as “retrieve all cargo trains that passed yesterday from the
surrounding area of Berlin and were transporting agricultural products or were heading
to Poland”.

Moreover, users in social networks generate large amounts of content that encom-
passes spatial, temporal, and textual information. Consider, for example, a traveler
who uploads geotagged photos on Flickr or posts geotagged tweets while moving
around in a city. The result is a digital trail of photos or tweets, each post being
characterized by a location, a timestamp, and a set of tags or keywords. One may
then want to evaluate queries, such as “retrieve all users who have been in the city
center of Berlin in the past hour and have uploaded photos or tweeted about a specific
event”.

Combining spatial queries with keyword search has been the focus of spatial
keyword query processing. However, as discussed earlier, spatial keyword queries are
focused on spatial objects that are typically static, i.e., POIs, places, or, more generally,
documents associated to locations, where the query point is either static or moving.
The problem of efficiently evaluating queries on moving objects that encompass
all three dimensions, spatial, temporal, and textual, remains largely unexplored
[130, 82, 41].

In this chapter, we focus on spatio-temporal keyword queries on moving objects.
In particular, we address the problem of efficient evaluation of queries that perform
spatial, temporal, and keyword-based filtering on historical movement data of objects
that is additionally associated with textual information in the form of keywords,
potentially changing at each timestamp and location. Our methods combine and
build upon concepts and techniques for spatio-textual and spatio-temporal queries,
proposing algorithms for efficient evaluation of queries that include filtering criteria
on all the three dimensions. More specifically, our main contributions here are
summarized below:

• We address the problem of spatio-temporal keyword (STK) queries on trajec-
tories of moving objects; this allows to: (a) extend spatio-temporal queries to
moving objects that are associated with textual information, and (b) extend
spatio-textual queries to objects that are moving instead of static.
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• We propose the GKR index, a hybrid index structure that extends a trajectory in-
dex to incorporate the textual information associated with trajectory segments.

• We propose the IFST index, a hybrid index structure that extends a spatio-
textual index to incorporate the temporal dimension, allowing to deal with
moving objects.

• We evaluate the performance of the two approaches by conducting a detailed
experimental evaluation using three real-world datasets from two diverse types
of sources, including yacht movement tracking data and geotagged images from
Flickr.

The rest of this chapter is structured as follows. Section 3.2 provides a background
of related work on spatio-temporal queries. Section 3.3 formally defines the STK query
considered in this chapter. Then, Section 3.4 presents the indexes and algorithms
proposed for STK query evaluation. Our experimental evaluation is presented in
Section 3.5. Finally, Section 3.6 concludes the chapter.

3.2 Additional Relevant Background

Due to the extensive amount of research on spatio-temporal queries and due to its
relevance to our problem, in the following, we present an overview of the approaches
that have been proposed in this area.

Several works focusing on efficient indexing and querying of moving objects have
been published so far. A comprehensive survey of spatio-temporal access methods
can be found in [127, 131]. Existing indexes are categorized according to whether
they index past, current, or future positions of moving objects (or combine all three).

In this chapter, we focus on the first category, namely indexing the past positions
of moving objects. One of the main approaches in this category is SETI [28]. SETI
employs a two-level index structure to handle the spatial and the temporal dimensions.
The spatial dimension is partitioned into static, non-overlapping partitions. Then, for
each partition, a sparse index is built on the temporal dimension. Thus, one main
advantage of SETI is that it can be built on top of an existing spatial index, such
as an R-tree. Furthermore, an in-memory structure is used to speed up insertions.
Queries are evaluated by first performing spatial filtering, and then temporal filtering.
That is, first, the candidate cells, i.e., those overlapping with the spatial range in the
query, are selected. Then, for each cell, the temporal index is used to retrieve those
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disk pages whose timespans overlap with the temporal range in the query. Query
execution concludes with a refinement step to filter out candidates and, if trajectories
are desired as the output, a duplicate elimination step to filter out segments that
belong to the same trajectory. A similar approach is followed also by the MTSB-tree
[182] and the CSE-tree [159], which, as in SETI, partition the space into disjoint
cells, but differ in the type of temporal index maintained for each cell.

An alternative approach is followed by the PA-tree [132], which instead divides
first the temporal dimension into disjoint time intervals. Then, the trajectory of
each object is split into a series of segments, according to these time intervals. Each
segment is approximated with a single continuous Chebyshev polynomial and a
two-level index is used to index these approximated trajectory segments within each
time interval.

In a different direction, spatio-temporal indexes have also been proposed for
indexing objects moving in a fixed network [66][44][101] or in symbolic indoor
spaces [93].

3.3 Model and Definitions

LetO be a set of moving objects associated with a set T of trajectories. Each trajectory
T ∈ T is approximated by a series of line segments; thus, it is defined as a tuple
T = (o, ⟨ℓ1, ℓ2, . . . , ℓn⟩), where o ∈ O is the object the trajectory belongs to and
⟨ℓ1, ℓ2, . . . , ℓn⟩ is a sequence of line segments. Each line segment is defined by a tuple
ℓ = (ps, pe, ψ), where ps = (xs, ys, ts) and pe = (xe, ye, te) are its start and end points,
respectively, specified by a location and a timestamp, and ψ = {k1, k2, . . . , km} is a
set containing zero or more keywords associated with this part of the trajectory. We
use the notation ℓ.loc, ℓ.τ, and ℓ.ψ to refer, respectively, to the location, the timespan,
and the set of keywords of the trajectory segment ℓ.

We define the Spatio-Temporal Keyword (STK) query as a boolean range query
that comprises a spatial, a temporal, and a keyword filter, i.e., Q = (R, T, Ψ), where
R = [(xs, ys), (xe, ye)] specifies a spatial range, T = [ts, te] a time interval, and
Ψ = {k1, k2, . . . , kn} a set of keywords. An object o ∈ O is an answer to the STK query
Q, if it has a set of (not necessarily consecutive) trajectory segments such that (a)
each segment satisfies the spatial and temporal predicate of the query, and (b) the
union of the keywords appearing in these segments contains all the keywords in the
query. We define this more formally below.
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Definition 3.1 (STK query). Given a set of objects O and their trajectories T , an STK
query Q = (R, T, Ψ) returns the set of objects O ⊆ O such that each o ∈ O contains a
set of trajectory segments To,q ⊆ To that satisfy all of the following conditions:

(a) ∀ℓ ∈ To,q : ℓ.loc ∩ R ̸= ∅

(b) ∀ℓ ∈ To,q : ℓ.τ ∩ T ̸= ∅

(c)
⋃

ℓ∈To,q

ℓ.ψ ⊇ Ψ.

Note that in many applications, e.g., a mobile user uploading photos or posting
tweets, the location updates sent by the object may be sparse. In those cases, it
is not feasible to approximate the object’s movement by a series of line segments
and to associate relevant information, such as status or keywords, to parts of the
trajectory. Instead, the information regarding location, time, and relevant keywords
can only be associated to the point of each update. Nevertheless, these cases can also
be addressed by the data model and query definition described above, by trivially
representing each point update as a trajectory segment with zero length and duration.

3.4 Methodology

In this section, we propose two indexes for the efficient evaluation of STK queries.
The first, denoted as GKR (Grid and KR*-tree), is based on a spatio-temporal index
(in particular, SETI [28]) for indexing trajectories of moving objects, and extends it
to incorporate the keyword information associated with the trajectory segments. The
second, denoted as IFST (Inverted File with Spatio-Temporal order), is based on a
spatio-textual index (in particular, SFC-QUAD [38]), and extends it to incorporate the
temporal dimension.

3.4.1 The GKR Index

Index Description

GKR is a hybrid index that combines concepts from the SETI index [28], which has
been proposed for indexing trajectories of moving objects, and the KR*-tree [83],
which has been proposed for indexing spatio-textual objects.

A brief explanation of the SETI index was already provided in Section 3.2. Here,
we give an overview of the KR*-tree index for spatio-textual query processing. The
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Fig. 3.1 Example for the GKR index.

KR*-tree [83] combines R*-tree with inverted files and can be used for evaluating the
boolean range spatial keyword query. The KR*-tree maintains an inverted index-like
structure, called KR*-tree List, which, for each keyword, keeps a list of nodes in the
R*-tree that have the keyword. This allows it to prune the search space on both
spatial and textual dimensions during query processing. Each leaf node additionally
contains inverted lists that index the keywords appearing in the objects under the
node.

Thus, first, GKR comprises a grid which is used to spatially partition the space into
a number of disjoint cells of equal size. Each cell indexes the trajectory segments that
lie within it. Segments that cross multiple cells are split into parts at the points of
intersection with the cell boundaries, so that each new segment is fully contained
within a single cell. These newly created segments inherit the keywords of the original
segment. These segments are then stored in one or more disk pages, such that each
disk page only contains segments belonging to the same cell. This part is similar
to SETI, which also partitions the space into disjoint cells and stores their contents
in separate disk pages. However, SETI only deals with spatiotemporal data. Hence,
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each created disk page is characterized by its timespan, which is the union of the
timespans of the segments stored in it. Then, the timespans of all pages belonging to
the same cell are organized in a one-dimensional R*-tree.

Instead, in our case, each segment contained in a cell is characterized by both its
timespan and the list of keywords associated with it. To deal with both dimensions,
we organize the corresponding disk pages of a cell using a KR*-tree. Now, each disk
page is associated both with its timespan, which is again the union of the timespans
of each trajectory segment it contains, and with a set of keywords, which, similarly,
is the union of the sets of keywords associated with its segments. The KR*-tree is
an augmented R*-tree that additionally associates nodes with keywords. Thus, the
disk pages are again organized in an R*-tree according to their timespans, but in
addition a structure is maintained associating tree nodes with keywords contained in
the corresponding disk pages.

Example 1. An example illustrating the structure of the GKR index is shown in Figure
3.1. A grid is used to partition the space (Fig. 3.1(a)). Fig. 3.1(b) shows an example
of the segments contained in the grid cell C1. The timespans and keywords associated
with these segments are shown in Fig. 3.1(c) and (d). For simplicity, in the example, we
assume that each disk page stores a single segment. Fig. 3.1(e) and (f) show the KR*-tree
and the KR*-tree list built according to the timespans and the keywords associated with
the pages storing the segments of the cell C1. Furthermore, each of the leaf nodes N1, N2,
N3, and N4 themselves contain an inverted list each, which maps keywords to objects
(in our case, disk pages) under the node containing those keywords.

Index Construction

Since the GKR index combines and adapts parts from SETI and KR*-tree, the insert
and update procedures also follow steps similar to the corresponding ones for those
indexes. Specifically, inserting a new trajectory segment ℓ is performed following the
steps described below.

a. First, the process identifies the grid cells that ℓ crosses. If there are more than
one such cells, ℓ is split into multiple segments as described above, and the
subsequent steps are applied for each resulting segment.

b. Next, the disk page(s) associated with that particular cell have to be checked
in order to insert the new segment. In these pages, the segments are ordered
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chronologically, according to the timestamp of their endpoint. Thus, the KR*-
tree associated with the cell is traversed to find the page in which the new
segment should be inserted.

c. If such a page exists and is not full, the new segment is inserted. Otherwise,
the contents of the subsequent pages have to be shifted or a new page has to be
created.

d. Finally, the timespan and the keyword set of the affected page(s) are updated
accordingly, which is then reflected in the KR*-tree.

We assume that in practice the GKR index is constructed in bulk mode, inserting
trajectory segments in chronological order. Hence, each new segment is appended at
the end of the last disk page of the corresponding cell (or in a new disk page, if the
last one is full).

Query Evaluation

Next, we describe the steps for evaluating an STK query Q = (R, T, Ψ) using the GKR
index. The pseudocode for the process is presented in Algorithm 3.1.

a. First, the spatial predicate R is evaluated, by selecting all the grid cells that
overlap with it. This results in a list of candidate cells. (line 3)

b. Then, for each candidate cell, the corresponding KR*-tree is traversed. The
traversal identifies those nodes that: (a) have a timespan that overlaps with T,
and (b) have a keyword that is contained in Ψ. From the leaf nodes reached, a
set of candidate disk pages is retrieved. These pages provide a set of candidate
trajectory segments that potentially satisfy predicates R and T, and contain one
or more keywords from Ψ. Then, two filtering steps are applied. (lines 4–10)

c. The first filtering step is a refinement step in the spatial and temporal dimen-
sions. It discards segments that are false positives, i.e., are located outside R or
their timespan is outside T. This results in a set of candidate objects, which are
the objects to which the remaining segments belong. (lines 13–17)

d. Finally, the second filtering step is applied to discard those objects whose
trajectory segments from Step 3 do not fully cover the set of query keywords Ψ.
(lines 18–20)
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Algorithm 3.1: GKR Query Evaluation
Input: GKR index I, STK query Q
Output: Set of objects O satisfying Q

1 O← ∅
2 P← ∅ ▷ disk pages to read
3 C ← GridCells(I) ∩Q.R
4 foreach c ∈ C do
5 Ic ← KR*-tree associated with c
6 N ← Traverse(Ic, Q.T, Q.Ψ)
7 foreach n ∈ N do
8 Pc ← LoadDiskPages(N)
9 Pc ← FilterPages(Pc, Q.R, Q.T, Q.Ψ)

10 P← P ∪ Pc

11 L← ∅ ▷ candidate trajectory segments
12 M← ∅ ▷ map objects to keywords
13 foreach p ∈ P do
14 L← L ∪ FilterSegments(p, Q.R, Q.T, Q.Ψ)

15 foreach ℓ ∈ L do
16 o ← object of ℓ
17 M(o)← M(o) ∪ ℓ.Ψ
18 foreach o ∈ M do
19 if Q.Ψ ⊆ M(o) then
20 O← O ∪ o
21 return O

3.4.2 The IFST Index

The rationale of the GKR index presented above is to enhance a spatio-temporal
index with additional structures for indexing the textual dimension. Next, we follow
a different direction, using a spatio-textual index as a basis and enhancing it to
incorporate the temporal dimension. In particular, we describe the IFST index, which
is based on SFC-QUAD [38] (see Section 2.1 for an overview), used for indexing
spatio-textual objects.

Index Description

IFST comprises two main structures. The first is a global inverted file, containing, for
each keyword, an inverted list with the ids of the trajectory segments that contain it.
When a query is evaluated, only segments appearing in the inverted lists associated
with keywords contained in the query need to be examined. Since these lists can
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Fig. 3.2 Example for the IFST index.

still be quite long, the key issue for efficiency is to restrict the portions of each list
that may contain segments satisfying the spatial and temporal predicates of the
query. This is achieved by assigning ids to segments in a spatio-temporal order. For
this purpose, a second, hybrid structure is maintained, which comprises in turn
two parts. The first is a quadtree that indexes trajectory segments according to the
spatial dimension. This allows for ordering cells, and their corresponding trajectory
segments, according to a Z curve [143], so that segments that are spatially close
together will also have similar ids. Furthermore, segments belonging to the same cell
are assigned ids chronologically, according to the end timestamp of each segment.
Then, for each leaf node of the quadtree, an R*-tree is built to index the timespans
of the contained segments. Lastly, the inverted lists are themselves split into blocks
(with size that is typically a multiple of 128 bytes) and are compressed using a block
compression algorithm before being stored on disk.

Example 2. An example illustrating the structure of the IFST index is shown in Fig. 3.2.
A grid is used to partition the space. The cells of the grid are assigned ids according to the
Z-order, as shown in Fig. 3.2(a). The cells are indexed by a quadtree; furthermore, for
each leaf node, i.e., cell, an R*-tree is built on the timespans of the contained segments
(Fig. 3.2(b)). We assume again 8 segments, with locations as shown in Fig. 3.2(a) and
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with timespans and keywords as in Example 1. Fig. 3.2(c) shows the new id assigned to
each segment based on the Z-order of the parent cell and its chronological order within
that cell. Finally, a global inverted file is built on the keywords, where the segments in
each postings list are ordered according to their assigned ids (Fig. 3.2(d)).

Index Construction

We assume that the index is constructed by inserting data in a bulk mode. The steps
are described below.

a. First, a quadtree is constructed to partition the space and assign ids to cells ac-
cording to the Z-order. Each trajectory segment is assigned to the corresponding
cell; if it spans more than one cell, it is split as has been described previously.

b. The segments are assigned ids according to the position of their parent cell in
the Z-ordered quadtree and their position in the chronological order of segments
within the cell.

c. For each cell, an R*-tree is constructed to index the timespans of the contained
segments.

d. Finally, an inverted file is constructed to index segments according to their
keywords, using the ids assigned previously based on the spatial and temporal
ordering.

Query Evaluation

The steps for evaluating an STK query Q = (R, T, Ψ) using the IFST index are
described below. The pseudocode for the process is presented in Algorithm 3.2.

a. The quadtree is traversed to find the leaf nodes that overlap with the spatial
predicate R. (line 3)

b. For each leaf node, the traversal continues using the associated R*-tree to
identify subsets of the contained segments that also have a timespan overlapping
with T. The result is a list of segment ids, which are merged into a smaller set
of k disk sweeps. (lines 5–8)

c. The inverted index is used to identify the posting lists for the keywords con-
tained in Ψ. The compressed blocks corresponding to the segment ids are
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Algorithm 3.2: IFST Query Evaluation
Input: IFST index I, STK query Q
Output: Set of objects O satisfying Q

1 O← ∅
2 Iquad ← the quadtree of I
3 N ← Traverse(Iquad, Q.R)
4 N′ ← ∅
5 foreach n ∈ N do
6 In ← the R*-tree associated with n
7 N′ ← N′ ∪ Traverse(In, Q.T)
8 K ← GetSegmentIdRanges(N′, k)
9 Iinv ← the inverted index of I

10 L← ∅
11 foreach ψ ∈ Q.Ψ do
12 L← L ∪ LoadPostings(Iinv(ψ), K)
13 M← ∅
14 foreach ℓ ∈ L do
15 if ℓ.loc ∩Q.R ̸= ∅ AND ℓ.τ ∩Q.T ̸= ∅ then
16 o ← object of ℓ
17 M(o)← M(o) ∪ ℓ.Ψ
18 foreach o ∈ M do
19 if Q.Ψ ⊆ M(o) then
20 O← O ∪ o
21 return O

read from disk in k disk sweeps and are decompressed. The result is a set
of candidate trajectory segments that potentially overlap with R and T, and
contain at least one of the keywords in Ψ. Then, as with GKR, two filtering steps
are applied to obtain the result. (lines 11–12)

d. In the first filtering step, using document-at-a-time (DAAT) processing on the
set of segment ids from the R*-trees and the set from the inverted index, the
segments that are located outside R or that have their timespan outside T are
discarded. This results in a set of candidate objects. (lines 14–17)

e. In the second filtering step, it is checked for each remaining object whether its
segments from Step 4 fully cover the set of query keywords Ψ. (lines 18–20)
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Dataset Size Objects Points Keywords

Yachts 26 MB 1,496 215,937 51,542
Flickr-EU 195 MB 46,016 1000,000 482,561
Flickr-US 189 MB 36,107 1000,000 309,839

Table 3.1 Datasets used in the experiments.

Dataset N R(km2) T(hrs) |Ψ|
Yachts [216K] [50K, 250K, 500K, 750K, 1M] [6, 9, 12, 18, 24] [1, 2, 3, 4, 5]

Flickr-EU [600K, 700K, 800K, 900K, 1M] [1K, 5K, 10K, 15K, 20K] [2, 4, 6, 9, 12] [1, 2, 3, 4, 5]
Flickr-US [600K, 700K, 800K, 900K, 1M] [1K, 5K, 10K, 15K, 20K] [2, 4, 6, 9, 12] [1, 2, 3, 4, 5]

Table 3.2 Parameters used in the experiments.

3.5 Experimental Evaluation

We have conducted an experimental evaluation to evaluate and compare the perfor-
mance of the proposed indexes, using real-world datasets from two different sources.
We first present the experimental setup, including the datasets used, and then we
report the results of our experiments.

3.5.1 Datasets

In our evaluation, we used three real-world datasets coming from two different
sources. These sources involve diverse types of objects, with different characteristics
regarding the type of movement and keywords involved, thus allowing to test and
compare our methods in diverse scenarios.

Yachts

The first is a yacht movement dataset collected from an online yacht tracking service1.
This service allows yacht owners to register their vessels and submit GPS traces along
with other information and messages. For each yacht, some basic information is
provided, such as the name of the skipper and the crew, the type of the ship, and
the country in which it is registered. Location updates include the coordinates, the
timestamp, and optionally a short message. These short messages can be very diverse,
ranging from information about the weather or the destination to various comments
about the journey or the mood of the crew.

1http://www.yachttrack.org/

http://www.yachttrack.org/
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We have constructed a dataset by monitoring the service for a period of about
four weeks and collecting information about past and current updates. This resulted
in a dataset that contains information and location updates for 1,496 vessels around
the world. It consists of approximately 216,000 points over the time period from
December 2009 till June 2015. Each point is associated with latitude and longitude,
a timestamp, and a set of keywords. These keywords include both metadata from the
basic information about the ship, as mentioned above, and terms extracted from the
message broadcast along with the respective location update.

A basic preprocessing step was applied to remove stopwords and special characters,
which resulted in a set of 51,542 distinct words. Moreover, a preprocessing step has
been applied on the location updates for each vessel to construct the corresponding
trajectories. Specifically, we connect successive location updates of a ship to form
a trajectory, if two consecutive updates are within a time period that does not
exceed 30 mins. Otherwise, we split the trajectory into two different trajectories. In
addition, to avoid unreasonably long segments produced due to outliers, we impose
a maximum velocity restriction (100 meters per second). If the velocity calculated
for the movement between two consecutive points violates this threshold, we again
split the trajectory into two different trajectories. If a point is not connected to any
other points, it is treated as a zero-length and zero-duration segment.

Note that this is an indicative example among many other similar services track-
ing the movement of aircrafts, ships, taxis, or other vehicles (e.g., Flightradar242,
MarineTraffic3).

Flickr-EU/-US

The other two datasets used in the experiments are derived from the Flickr dataset
provided by Yahoo [153]. This dataset contains about 99.3 million images, about
49 million of which are geotagged. For our experiments, we filtered out images
that do not contain coordinates, timestamp, or tags. Then, we derived two datasets,
denoted as Flickr-EU and Flickr-US, by selecting those images that are located within
a bounding box around Europe and US, respectively, and also having a date in the
years from 2000 to 2010. From the resulting datasets we picked 1 million photos
each, belonging to 46,016 and 36,107 users, respectively.

To experiment with different dataset sizes, we also varied the number of images
from 600K to 1M in each of the two datasets, using 800K as default. Again, we applied

2http://www.flightradar24.com/
3http://www.marinetraffic.com/

http://www.flightradar24.com/
http://www.marinetraffic.com/
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a preprocessing step, as described above, to construct user trajectories, treating the
remaining single points as segments of zero length and duration. This data source
provides an indicative case for many similar scenarios involving user generated
spatio-textual data from mobile users (e.g., tweets and check-ins).

Table 3.1 shows for each of the datasets used in the experiments the total size,
the total number of objects and points, and the total number of distinct keywords.

3.5.2 Performance Measures and Parameters

The purpose of the experimental evaluation was to compare the performance of the
two proposed indexes. In particular, we focus on the following aspects: (a) index size,
(b) index construction time, and (c) query evaluation time. Moreover, we examine
the effect of the following parameters: (a) dataset size N (measured as total number
of points), (b) size of query spatial range R, (c) length of query time interval T, and
(d) number of query keywords Ψ. For each experiment, we vary the value of the
selected parameter, while setting the rest parameters to their default values, as shown
in Table 3.2 (default values are shown in bold).

All algorithms were implemented in Java and run on a machine with 2.8GHz
Intel® Quad Core™CPU and 8GB RAM. The disk page size used was 4KB. To ensure
the same spatial resolution in both the indexes, the grid resolution in GKR has been
set to 64*64 and the maximum leaf node size in IFST quadtree is 50,000 segments
for both Flickr-EU and Flickr-US datasets. For the Yachts dataset, these values are
64*64 and 10,000 segments per leaf node, respectively. The results of the evaluation
are presented next.

3.5.3 Index Size and Construction Time

Index Size

We start by comparing the size of the two proposed indexes. Figure 3.3(a) compares
the sizes of GKR and IFST for Yachts, Flickr-EU, and Flickr-US. For the Flickr datasets,
to test the increase in index size w.r.t. the dataset size, we have measured the index
size for both 600K and 1M points. It can be noticed that the IFST index is much
smaller in size than the GKR index. IFST achieves this space efficiency by dividing the
inverted lists for each term into blocks of size 128 bytes and compressing these using
a block compression algorithm. The GKR index, on the other hand, occupies around
four times the size needed by IFST across all datasets. This factor is particularly
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(a) Index size (b) Index creation time

Fig. 3.3 Index size and index creation time for GKR and IFST.

important in domains, such as Geographic Information Retrieval, where the amount
of data and the number of words per object are large, and thus disk space has to be
considered.

Index Construction Time

The time required to construct the indexes is depicted in Figure 3.3(b). Again, for
comparison, we have chosen to show the time measurements for two dataset sizes
for the Flickr datasets. It is clear from the figure that across all the datasets, the
construction time of IFST is higher than that of GKR. This is due to the overhead
caused by the division of the inverted lists into blocks and the compression of the
blocks before being written to disk. However, this extra time spent is compensated
by the savings achieved in disk space, as discussed earlier. Moreover, since we are
dealing with historical trajectories of objects, index construction is often a one-time
process done offline after the collection and preprocessing of data. Thus, it is usually
not critical to the performance of the system.

3.5.4 Query Execution Time

We now move on to a comparison of the performance of the proposed indexes in
terms of their query evaluation time. We vary the query parameters, i.e, the size of
the region R, the length of the time interval T, and the number of keywords Ψ in the
query, and we measure the execution times. Moreover, we also generate datasets of
different sizes by varying the number of points in the Flickr-EU and Flickr-US datasets
by 100K from 600K to 1M. We use these to compare the scalability of the two indexes.
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(a) Yachts (b) Flickr-EU (c) Flickr-US

Fig. 3.4 Execution time vs. query region size.

(a) Yachts (b) Flickr-EU (c) Flickr-US

Fig. 3.5 Execution time vs. query time interval.

Size of query region

The results of our experiments w.r.t. the size of the query area are shown in Figure 3.4.
As can be seen, the GKR index shows superior results with Flickr-EU and Flickr-US,
whereas IFST demonstrates lower query evaluation time for the Yachts dataset. The
reason for this varying behavior can be attributed to the dataset size, and is discussed
later. The results also show that the query execution time of both indexes tends to
increase as the query area increases. This trend is due to the fact that as the query
area grows, the number of objects in the dataset that intersect the query also becomes
higher. The increase in times is however more marked between certain points, for
example, when the query area increases from 1000 sq km to 5000 sq km in the
Flickr-EU and Flickr-US datasets. The reason for this is a sudden increase in the
number of grid cells in GKR and the number of leaf nodes in IFST intersecting the
query as the query region grows. More number of cells and leaf nodes causes a jump
in the range of segments that have to be considered and also increases the number of
temporal KR*- and temporal R*-trees that have to be loaded from disk and searched.
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(a) Yachts (b) Flickr-EU (c) Flickr-US

Fig. 3.6 Execution time vs. number of query keywords.

Query Time Interval

As shown in Figure 3.5, an increase in the duration of the query time interval also
leads to a general increase in the query execution time for both the indexes. However,
this increase is less pronounced than that produced by increasing the query area,
because both indexes use spatial indexes to first filter out data which lies completely
outside the query range. Again, in these experiments, GKR outperforms IFST on
the Flickr datasets, while the latter performs better with the Yachts dataset. It is
also noteworthy that in comparison to GKR, the query execution time for IFST varies
very little with variation in the time interval duration. This is because during the
refinement step, IFST uses DAAT processing to find the intersection of the list of
segments obtained by querying the temporal R*-trees and those containing at least
one query keyword read from the inverted index. On the other hand, in GKR a longer
time interval can produce more number of disk pages whose timespans intersect the
query time interval. These disk pages then have to be loaded into memory and have
their segments scanned iteratively.

Number of Query Keywords

The last query parameter under consideration in our experiments is the number
of query keywords. Figure 3.6 shows the query execution time as the number of
keywords varies from 1 to 5. As can be noted again, the execution time generally
demonstrates an upward trend with an increase in the number of keywords and the
performance of GKR is better than that of IFST with the Flickr datasets, while being
worse with the Yachts dataset. Also, varying the number of keywords in the query
tends to impact IFST less than GKR. This is again due to DAAT processing in IFST,
which always chooses the shorter list to iterate over during refinement and performs
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(a) Flickr-EU (b) Flickr-US

Fig. 3.7 Execution time vs. dataset size.

lookups on the longer list. In case of GKR, while querying the cell KR*-trees, more
number of keywords in the query can produce more disk pages that have to be read
from disk as all pages containing at least one query keyword and with timespans
intersecting the query time interval have to be considered for refinement.

Dataset Size

Finally, we compare the scalability of the two indexes by experimenting with different
dataset sizes. Figure 3.7 shows the results. The GKR index predominantly performs
better than the IFST index and is also less sensitive to changes in the dataset size. In
contrast, the query evaluation time of IFST increases significantly as the size of the
dataset is increased. In fact, for smaller dataset size, its performance is close to or
even better than that of GKR, as shown in Figures 3.7 and 3.4(a), 3.5(a), and 3.6(a).
The reason for this behavior is that with increase in the quantity of data, the depth of
the IFST quadtree also increases as nodes split further to accommodate more objects.
As a consequence, the number of leaf nodes that intersect the query region becomes
higher, thereby generating the overhead of loading and querying more number of
R*-trees. This also makes the performance of IFST sensitive to the distribution of
data, as a skewed distribution can affect its performance.
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3.6 Summary

In this chapter, we have addressed the problem of efficient evaluation of spatio-
temporal keyword queries on historical trajectories of moving objects. We have
presented two hybrid indexes, GKR and IFST, for this purpose. The first is based on
a spatio-temporal index, extended to incorporate the keywords associated with the
trajectory segments. The second uses a spatio-textual index as a basis, extending it to
incorporate the temporal dimension.

We have evaluated the two approaches by conducting a set of experiments using
two diverse types of data, including yacht movement tracking data and geotagged
images from Flickr. The results of our evaluation have shown that in terms of query
evaluation time the GKR index performs better in the majority of our experiments
with different query region sizes, time interval durations, number of keywords, and
dataset sizes. However, the IFST index demonstrates more stable performance for
varying query time intervals and keyword set sizes. It also requires less disk space
and offers faster query processing times than GKR on smaller datasets.



CHAPTER 4

SPATIAL-TEMPORAL-TEXTUAL RETRIEVAL OF POSTS

The previous chapter presented the problem of spatial-temporal-textual filtering of
trajectories. Now, we go a step further in this direction and study a related problem
of finding a set of top-k posts for a given spatio-temporal range and keyword filter.

4.1 Overview

In this chapter, we address the problem of spatial-temporal-textual querying of
geotagged microblog posts consisting of spatial, temporal, and textual attributes,
with the goal of supporting exploratory search over topics and events with large
spatio-temporal footprints. Consider a user searching microblogs for information
about a topic or event. For example, the blue dots/lines in Figures 4.1(a) and
4.1(b) depict, respectively, the spatial and temporal distribution of tweets in the U.S.
for a search with keywords “obama, election”, for a period of 40 days starting on
01/08/2012. This search returns thousands of results. Ranking results by textual
relevance is often not suitable when it involves short texts or tags – essentially, every
post that contains the query keyword(s) is relevant. Instead, selection and ranking of
relevant posts based on their spatial and temporal attributes is much more interesting.
However, both in spatio-textual and temporal information retrieval, ranking on these
dimensions typically assumes that a single point in time and space is specified, so
that the posts can be ranked according to their proximity to it. Nevertheless, this
is challenging for topics or events that have a long span in space and time, such as
those in the example, where there is not a single “central” point to use for spatio-
temporal ranking. Thus, there is a need for a query type that allows for specifying a
desired spatial range and time window, while still being able to retrieve top-k results
according to spatio-temporal criteria.
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(a) Spatial distribution.

(b) Temporal distribution.

Fig. 4.1 Example of results returned by a boolean query (blue) and the corresponding
kCD-STK query (red).

To that end, we introduce a novel type of query, the top-k Coverage and Diversity
aware Spatio-Temporal Keyword (kCD-STK) query. Intuitively, the goal is to return
top-k results, where the ranking is driven by the spatio-temporal distribution of the
posts. Thus, we consider as more relevant, posts that lie within dense areas in the
three-dimensional spatio-temporal space. Specifically, we introduce the criterion of
spatio-temporal coverage, which assigns a score to each post based on the number of
other posts that lie within a specified distance threshold to it in the spatio-temporal
dimensions. Furthermore, to avoid over-representing these areas while missing other
interesting results, we also try to maximize the spatio-temporal diversity among
the selected posts. Returning to the example presented in Figure 4.1, the red stars
correspond to a subset of 100 results selected by the kCD-STK query. Notice that the
selected results are more spread out in space and time, instead of focusing around a
single area, thus better representing the whole set of relevant posts.

The kCD-STK query is particularly useful for data exploration, such as analysis
and summarization of events and topics based on user-generated content in social
media. For example, consider a large scale event for which thousands of geolocated
and timestamped tweets or photos exist. The kCD-STK query allows to obtain a few



4.1 Overview | 55

representative documents that reveal the spatio-temporal distribution of the relevant
content. In contrast, the spatial keyword queries studied in the literature, besides
ignoring the temporal dimension, would either return a huge result set (boolean
range query) or require the user to choose a specific point in space (and, accordingly,
time) according to which the results would be ranked (boolean or top-k kNN query).

Thus, the kCD-STK query extends the standard spatial keyword queries in two main
aspects: (a) it includes a temporal filter, in addition to the spatial filter, thus allowing
the retrieval of documents that are associated with both a location and a timestamp;
(b) instead of ranking the results by spatial proximity or spatio-textual relevance,
it computes a diversified subset of k documents based on the introduced measures
of spatio-temporal coverage and diversity. The former assigns higher weights to
documents that are located in more dense parts of the spatio-temporal space. Thus,
the selected results are more representative, i.e., better reflect the distribution of
the whole result set. The second condition considers the pairwise spatio-temporal
distance of the selected results, thus avoiding very similar results to be returned.

The kCD-STK query is founded on the basic concepts commonly used for search
results diversification. In particular, it introduces the concept of coverage [52] in
the search results diversification framework presented in [73] (see Section 4.2.1 for
more details). By determining the relevance of each result to the query indirectly, i.e.,
based on the number of other results it covers, it allows the spatio-temporal filters in
the query to be defined more flexibly, indicating a whole spatial region and a time
window rather than requiring the user to restrict his search around a specific location
and point in time. This makes the kCD-STK query more suitable for exploratory search.
As the returned top-k results more closely reflect the spatio-temporal distribution of
the whole result set, they can serve as anchor points for further exploration of the
available posts.

Since typical diversification problems are known to be NP-hard, the challenge
that arises in practice is how to efficiently evaluate a kCD-STK query, so that the
results can still be retrieved in real time. The aforementioned approaches are general
frameworks for results diversification, thus none of them deals particularly with the
spatio-temporal coverage or diversity of posts. To the best of our knowledge, our work
is the first to introduce these criteria and to consider their efficient evaluation in the
context of spatial-temporal-keyword queries. More specifically, the main contributions
of this chapter can be summarized as follows:

• We formally introduce a novel type of spatial-temporal-keyword query, the
kCD-STK query. This query allows a keyword search to be issued with spatial
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and temporal range filters, and then ranks the matching results according to
the criteria of spatio-temporal coverage and diversity.

• We propose an efficient strategy for evaluating a kCD-STK query. Then, we show
how state-of-the-art hybrid spatio-textual indexes can be adapted and extended
to be used with this strategy for efficiently selecting the top-k results from the
whole set of relevant posts.

• We experimentally evaluate our approach, using two large, real world datasets
containing geotagged tweets and photos. The experiments demonstrate that
our approach can effectively exploit the underlying index structure, thus signifi-
cantly reducing the time for computing the top-k coverage and diversity aware
results.

The rest of the chapter is structured as follows. Section 4.2 provides additional
background required for our problem, focusing on search results diversification and
temporal keyword queries. Then, the kCD-STK query is formally introduced in Sec-
tion 4.3, defining the criteria for spatio-temporal coverage and diversity. Section 4.4
presents our approach and describes how it can be applied with state-of-the-art hybrid
indexes for spatial keyword queries, after extending them to include the temporal
dimension. Finally, Section 4.5 presents our experimental evaluation, and Section 4.6
concludes the chapter.

4.2 Additional Relevant Background

Next, we present an overview of relevant work on search results diversification and
temporal keyword queries.

4.2.1 Search Results Diversification

Typically, Web search engines only retrieve top-k results, since in most cases there
are thousands or millions of documents relevant to the query. However, ranking
search results purely by relevance often leads to including many similar documents
in the top results, hence causing repetition and redundancy in the result set. To
avoid repetition and increase the novelty of information, search results diversification
has been proposed as a more advanced technique for selecting a subset of results
to present to the user [73, 50, 25, 158, 3, 48, 52]. The goal is to improve the
utility of the results by increasing their novelty, thus improving the user experience,
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especially during exploratory search. More specifically, content-based diversification
aims at selecting a subset of documents that maximizes an objective function with
two components: relevance and diversity. The former measures how relevant a result
is for the query, while the latter measures the dissimilarity or novelty of that result
w.r.t. others already selected.

Many different formulations have been proposed for search results diversification
(refer to [73, 50] for classification). The most well-known approach is the framework
proposed in [73]. According to it, the problem is defined as selecting a subset R∗

of the whole result set R, with |R∗| = k, that maximizes an objective function ϕ,
which combines the criteria of relevance and diversity. There exist different ways to
define ϕ, leading to different variants of the problem. For example, in the max-sum
variant, ϕ is defined as the weighted sum of two components: the total relevance of
documents and the sum of pairwise distances among the documents.

As shown in [73], the max-sum problem, as well as other similar variants, is
NP-hard by reduction to the MaxSumDispersion problem. Thus, greedy heuristics are
used in practice to efficiently compute a diversified subset of the results. The main
approach is to incrementally construct the diversified result set by choosing at each
step the object that maximizes a certain scoring function. A well-known function for
this purpose is the maximal marginal relevance (mmr) [25]. An evaluation of various
object scoring functions and different heuristics can be found in [158].

Other types of diversification problems have also been studied, such as taxonomy
or classification-based diversification [3, 157] and multi-criteria diversification [48].
Closer to our work is the coverage problem [52]. Here, the goal is to select the
minimum subset of documents, such that the selected documents are diverse, i.e.,
have distance to each other at least ϵ, and cover the whole dataset, i.e., each remaining
object lies within distance ϵ from a selected one. This formulation is suitable for data
exploration and summarization; however, in this case the size of the selected subset
is not fixed, but depends instead on the distance threshold ϵ.

In our approach, we combine the criterion of coverage from [52] with the general
diversification framework of [73]. Thus, the relevance of each result is determined
indirectly based on the number of other results it covers from the original set, while
the number of results to return is still explicitly specified in the query. Moreover, all
aforementioned works focus on formulating the diversification problem in a generic
manner, using abstract definitions for document relevance and distance. Subsequently,
the efficiency of computation is addressed by introducing heuristic algorithms that
compute an approximation of the optimal solution. On the other hand, we focus
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on the specific problem of selecting spatio-temporally diverse subsets of results. We
define concrete criteria for spatio-temporal coverage and diversity, and we show how
an underlying index can be exploited to further speed up the computation.

4.2.2 Temporal Keyword Queries

From our previous discussion in Chapters 1 and 2, it is evident that spatial keyword
queries have been studied extensively in the past few years. However, all these
approaches consider only the spatial dimension of documents, thus ignoring any
explicit or implicit temporal information present. Integrating temporal information
into traditional web search has been the focus of research in temporal information
retrieval (TIR), where a large body of work already exists (see [19, 6] for recent
surveys). A main challenge in this area involves the interpretation of temporal
expressions, which can vary significantly, including explicit (e.g., “January 2016”),
implicit (e.g., “New Year’s Eve”), and relevant ones (e.g., “last week”). With respect
to indexing, a basic approach is to include the temporal attribute in the posting list
[14, 7], while other works have proposed the use of a hybrid index [95] or two
separate indexes [8]. However, only few works have considered both dimensions of
space and time in keyword queries. Some of these, including [130], have already
been discussed (see Section 2.5.1).

In a different direction, spatio-textual publish/subscribe (see Section 2.4.1) com-
bines the criteria of textual relevance, spatial proximity, and recency to continuously
maintain all or top-k relevant results over a stream of geo-textual documents [34].
Finally, other works in TIR have dealt with timelines and summaries of event-related
information in microblogs [5, 92].

However, these approaches either apply the spatio-temporal criteria as boolean
filters or use them to rank documents based on spatial proximity and/or recency.
To the best of our knowledge, our work is the first to introduce the criteria of
spatio-temporal coverage and diversity in keyword queries.

4.3 Model and Definitions

We now provide the basic definitions necessary to formulate the problem at hand.

Definition 4.1 (Post). A spatio-temporal post D is represented by a tuple D =

⟨loc, t, Ψ⟩, where loc = (x, y) are the coordinates of the location where the post was
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made, t is the timestamp of the post, and Ψ is a keyword vector containing zero or more
terms, keywords, or tags contained in the post.

Definition 4.2 (STK Filter). A spatial-temporal-keyword filter F is a tuple F =

⟨R, T, Ψ⟩, where the spatial filter R = [(xmin, ymin), (xmax, ymax)] specifies a spatial
bounding box, the temporal filter T = [tmin, tmax] specifies a time window, and the
keyword filter Ψ = {ψ1, ψ2, . . . , ψn} specifies a set of keywords.

For the remainder of this chapter, we use the dot notation to refer to a tuple’s attribute
values. The next definition determines when a post is considered relevant for a given
STK filter.

Definition 4.3 (Relevant Posts). Given a collection D of posts and an STK filter F,
the set of relevant posts DF contains all posts D ∈ D such that (i) D.loc ∈ F.R, (ii)
D.t ∈ F.T, and either (iii-a) D.Ψ∩ F.Ψ ̸= ∅ under OR semantics, or (iii-b) D.Ψ ⊇ F.Ψ
under AND semantics.

Notice that the difference between OR and AND semantics is whether a relevant post
must contain at least one or all of the keywords that appear in the filter.

As discussed in Section 4.1, for the type of posts and STK filters that motivate
our work, i.e., exploratory search for topics or events that are distributed across
potentially large intervals in space and time, the number of relevant posts is typically
very high. Therefore, our objective is to select a small subset of k relevant posts that
have high coverage and diversity. To elaborate on these two notions, we first need
to introduce measures of spatial and temporal distance between two relevant posts
(w.r.t. an STK filter F) Di, Dj ∈ DF.

The spatial distance is defined as:

ds(Di, Dj) =
d(Di.loc, Dj.loc)

σmax
,

where d((x, y), (x′, y′)) is the Euclidean distance between two points and σmax is a
normalization factor corresponding to the length of the diagonal of F.R, i.e., the
maximum possible spatial distance between any pair of posts lying in F.R. Note that
it is possible to use other functions (e.g., Lp norms) to measure spatial distance; the
changes to our methodology are straightforward.

Similarly, the temporal distance is defined as:

dt(Di, Dj) =
|Di.t− Dj.t|

τmax
,
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where τmax = F.tmax− F.tmin is a normalization factor corresponding to the maximum
possible temporal distance. As before, one could also employ other functions for the
temporal distance, e.g., to assign greater importance to more recent posts.

We are now ready to introduce our two key notions, coverage and diversity. We
first define them for individual posts, and then extend the definitions to sets of posts.

Definition 4.4 (Coverage). Given a collection D of posts and an STK filter F, the
coverage of a post D ∈ DF is:

cov(D) =
1
|DF|
|{D′ ∈ DF : ds(D, D′) ≤ ρs & dt(D, D′) ≤ ρt}|, (4.1)

where ρs, ρt ∈ [0, 1] are unit-less spatial and temporal distance thresholds, respectively.
Moreover, the coverage of a set of posts R ⊆ DF of size k is:

cov(R) = 1
k ∑

D∈R
cov(D). (4.2)

Since each post in the set R can potentially cover all |DF| relevant posts, the de-
nominators in the above equations ensure that coverage takes values in the [0, 1]
range.

Definition 4.5 (Diversity). Given a collection D of posts and an STK filter F, the
diversity of a pair of posts Di, Dj ∈ DF is:

div(Di, Dj) = w · ds(Di, Dj) + (1− w) · dt(Di, Dj), (4.3)

where w ∈ [0, 1] is an application-specific weight parameter between the spatial and the
temporal distances. Moreover, the diversity of a set of posts R ⊆ DF of size k is:

div(R) = 1
k · (k− 1) ∑

Di,Dj∈R,i ̸=j
div(Di, Dj). (4.4)

As there are k · (k− 1) ordered pairs of posts in set R, the denominator normalizes
diversity in the [0, 1] range.

We can now define the Coverage & Diversity aware top-k STK query.

Definition 4.6 (kCD-STK Query). Given a collectionD of posts, a Coverage and Diversity
aware top-k STK query specifies an STK filter F and seeks for a result setR∗ of k relevant
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posts such that:

R∗ = arg max
R⊆DF,|R|=k

{(1− λ) · cov(R) + λ · div(R)}, (4.5)

where λ ∈ [0, 1] is a parameter determining the trade-off between coverage (λ = 0) and
diversity (λ = 1).

4.4 Methodology

We now present our methodology for evaluating the kCD-STK query. It is split into two
phases; we first determine the set of relevant posts, and then construct the result set
by identifying k posts with high coverage and diversity. For each phase, we state the
objective, outline the proposed approach, and then elaborate on the implementation
using state-of-the-art index structures from the literature.

4.4.1 Finding Relevant Posts

For a given STK filter F, the objective of the first phase is to obtain the posts that
satisfy F, assuming OR or AND semantics. Our approach is to employ existing
techniques used to retrieve documents based on spatial and textual criteria, and
extend them to act as filters and, more importantly, to be able to handle the temporal
information. Therefore, we discuss next two distinct implementations, one based on
the RCA approach [176], and another using the I3 index [175]. For a background of
the I3 index and the RCA algorithm, refer to Section 2.1.

RCA-based Implementation

We follow the rationale of the RCA method for ranking documents based on a spatio-
textual score. Recall that in this method each keyword is associated with two postings
lists, one which sorts documents in descending order of textual relevance, and another
which sorts documents according to their Z-order encoding of their locations. For
our purposes, the first postings list can be ignored. To facilitate filtering using spatial
and temporal predicates, we compute the Z-order over the 3D spatio-temporal space.
As described earlier, the filtering property of the Z-order encoding states that for a
spatial bounding box R, with zmin and zmax being the Z-order encodings of its top-left
and bottom-right corners, respectively, the Z-order encoding of any point that lies
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within R has a value z ∈ [zmin, zmax]. This characteristic is used to eliminate posts
that lie outside the given spatio-temporal filters.

In particular, the retrieval of relevant posts proceeds as follows.

• Determine the Z-order range [z−, z+] that minimally covers the spatial F.R and
temporal F.T ranges specified by the filter F.

• For each keyword ψ in the filter F.Ψ, retrieve from the corresponding postings
list only those posts with Z-order encoding in the [z−, z+] range.

• For each keyword, eliminate false positives, i.e., posts within the [z−, z+] range
that do not satisfy the spatial F.R and temporal F.T ranges. This is a necessary
step given the inherent limitation of Z-order encoding [176].

• Merge the lists with the surviving posts per keyword. For OR semantics, return
the union, while for AND semantics, return the intersection of the lists.

I3-based Implementation

We employ the I3 index and the associated methodology presented in [175] for
retrieving documents based on a spatio-textual score. As with the case of the RCA-
based implementation, we need to extend the underlying index structure to support
retrieval using both spatial and temporal criteria. Therefore, instead of having a
quadtree associated with each keyword, we construct an octree indexing documents
in the 3D spatio-temporal space. Then, the retrieval of relevant documents proceeds
largely similar to [175].

The algorithm is best understood by conceptualizing a single virtual (i.e., non-
materialized) octree. We say that a keyword is dense for a particular cell, if the
number of posts that lie within the cell and contain this keyword exceeds the disk
page capacity. With each cell, we associate the set of posts that have a non-dense
keyword, and for each dense keyword a signature summarizing the posts with that
keyword. A cell has children cells if it has at least one dense keyword.

To find the relevant posts for F, we perform a depth-first traversal of the octree.
A cell is only visited if it overlaps with the spatial F.R and temporal F.T ranges. In
addition, a cell is pruned if it can be guaranteed that the sub-tree rooted at this
cell contains no relevant posts. This check differs depending on the keyword filter
semantics. For OR semantics, the cell is pruned if the associated set of posts is empty
and the union of the signatures for the non-dense keywords among F.Ψ is empty. For
AND semantics, the cell is pruned if no associated post is contained in the intersection
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of the signatures for the non-dense keywords among F.Ψ. At the end of this traversal,
the set of posts associated with all non-pruned leaf cells constitute the set of relevant
posts.

4.4.2 kCD-STK Query Processing

Processing a kCD-STK query is a computationally hard optimization problem. Indeed,
if we set parameters λ = 1 and w = 1 for instance, we seek for a set R of k posts
that maximize the objective function ∑

i ̸=j∈R
d(Di.loc, Dj.loc). This is precisely the

2D-MaxSumDispersion problem for which no exact, polynomial time algorithm is
known (although it remains open whether 2D-MaxSumDispersion is NP-hard, similar
MaxSumDispersion problems are [137]). Therefore, we turn to heuristic algorithms
for constructing the result set of a kCD-STK query.

In particular, we adopt the standard greedy method for constructing the set
incrementally, where at each step the document that has the highest marginal gain
on the objective function is added. It is known that such an approach gives a 2-
approximation for the general MaxSumDispersion problem [15]. In our context, the
objective function for a set of posts R is:

ϕ(R) = (1− λ) · cov(R) + λ · div(R),

and the marginal gain g(D) ≡ ϕ(R∪ {D})− ϕ(R) for including D ∈ DF ∖R is:

g(D) =
1− λ

k
· cov(D) +

λ

k · (k− 1) ∑
Di∈R

div(D, Di). (4.6)

In other words, the marginal gain on the objective function of post D is the
weighted sum of its coverage and its diversity to the existing posts in the set R. In
what follows, we first describe the straightforward approach of implementing the
greedy algorithm, which will serve as our baseline. Then, we introduce a generic
index-aware methodology that takes advantage of the underlying index structure in
order to speed up the greedy algorithm.

Baseline Greedy Algorithm

Once all relevant posts have been identified, the Baseline Greedy Algorithm, denoted
as BSL, directly implements the greedy heuristic for the MaxSumDispersion problem.
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Algorithm 4.1: Algorithm BSL
Input: document collection D, STK filter F, result set size k
Output: coverage and diversity aware result set R∗

1 DF ← FindRelevantDocs(D, F) ▷ Section 4.4.1
2 R∗ ← ∅
3 while |R∗| < k do
4 foreach D ∈ DF do
5 compute g(D) ▷ Equation 4.6
6 find document D∗ that maximizes g(D∗)
7 R∗ ← R∗ ∪ {D∗}

Algorithm 4.1 shows the pseudocode for BSL. Initially, the set of relevant posts is
retrieved (line 1), following the methodology discussed in Section 4.4.1. Then the
result set is built incrementally. At each iteration (lines 3–7), the marginal gain of
each post is computed by applying Equation 4.6 (line 5). The post with the highest
marginal gain is selected for insertion in the result set (lines 6–7). The algorithm
terminates as soon as k posts have been selected (line 3).

When computing the marginal gains, one thing to notice is that the coverage
term remains fixed across all iterations for a particular post D. The reason is that
cov(D) depends on the fixed set DF of relevant posts, rather than the partial result
set. Therefore, we only need to compute this first term once for all posts.

Index-Aware Greedy Algorithm

The main drawback of the BSL algorithm is that it computes (or updates) the marginal
gain for every relevant post up to k times. When the number of relevant posts |DF|
is large, this constitutes a performance bottleneck. It would be desirable to avoid
computing the marginal gain for posts that are most likely to not be included in
the result set. To achieve this goal, we propose the Index-Aware Greedy Algorithm,
termed IDX, that takes advantage of the existing index structure to speed up kCD-STK
query processing. We first overview IDX without specific assumptions on the index,
and later delve into implementation details assuming explicitly an RCA or an I3

approach. We emphasize that our methodology is generic and can be readily applied
over other spatio-textual indexes (provided they can be extended to handle temporal
information).

The basic idea of IDX is to form groups by clustering relevant posts that have
similar spatial and temporal information. Thanks to the inherent spatio-temporal
clustering of the underlying index, the groups are constructed with negligible over-
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head. Then, at each iteration and for each group, we compute an upper bound on
its marginal gain. Groups that are promising, i.e., have a high upper bound, are
examined more closely by looking at their members. On the other hand, at each
iteration, unpromising groups can be dismissed, thus avoiding to compute the exact
marginal gain of their members.

With each group G, we associate the following information.

• Its cardinality |G|.

• Its spatial extent G.R, which is a rectangle that minimally bounds the locations
of the group’s posts.

• Its temporal extent G.T, which is a time interval that minimally bounds the
timestamps of the group’s posts.

• A lower bound G.cov− on the coverage of any post in the group.

• A set G.par that contains groups that are partially covered by G. We say that a
post covers another if their spatial and temporal distances are within the spatial
and temporal distance thresholds respectively. We say that a group G partially
covers another G′, if there can exist a post D in the former and two posts in the
latter such that one is covered by D, while the other is not.

• A value G.div+, which is an upper bound on the diversity of any post in the
group to all posts in R.

Based on this information, we can compute an upper bound g(G)+ on the
marginal gain of any member D in group G as follows:

g(G)+ =
1− λ

k
·
(

G.cov− +
1
|DF| ∑

G′∈G.par
|G′|

)
+

λ

k · (k− 1)
G.div+. (4.7)

We next discuss how to derive the group information. To compute G.cov− and
construct G.par, we iterate across the groups, and for each such group G′, we compute
spatial and temporal bounds:

d−s (G, G′) =
mindist(G.R, G′.R)

σmax
and d+s (G, G′) =

maxdist(G.R, G′.R)
σmax

,

d−t (G, G′) =
mindist(G.T, G′.T)

τmax
and d+t (G, G′) =

maxdist(G.T, G′.T)
τmax

,
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where the mindist and maxdist are the standard functions that return the minimum
and maximum possible distances respectively between ranges (Euclidean distance
for spatial ranges and absolute value for temporal ranges). Intuitively, these values
bound the spatial and temporal distances between any pair of posts from groups G
and G′. We thus distinguish the following cases:

a. d+s (G, G′) ≤ ρs and d+t (G, G′) ≤ ρt: we increment G.cov− by |G
′|

|DF|
.

b. d−s (G, G′) ≤ ρs and d−t (G, G′) ≤ ρt < d+t (G, G′): we insert G′ into G.par.

c. d−s (G, G′) ≤ ρs < d+s (G, G′) and d−t (G, G′) ≤ ρt: we insert G′ into G.par.

Regarding G.div+, notice that its value only increases across iterations of the
greedy algorithm, as new posts are inserted in the result set R. Therefore, at the end
of an iteration, assuming D∗ is inserted in R, we update G.div+ as:

G.div+ ← G.div+ + w · maxdist(G.R, D∗.loc)
σmax

+ (1− w) · maxdist(G.T, D∗.t)
σmax

.

(4.8)
We are now ready to present the IDX algorithm, whose pseudocode is shown in

Algorithm 4.2. As in BSL, the first step is to retrieve the relevant posts using the
methodology from Section 4.4.1 (line 1). Then, these are clustered into the set of
groups G (line 2). The exact partitioning depends on the underlying index structure;
we briefly discuss this later. The next step is to compute the coverage information
associated with each group (lines 3–7). In particular, for each group G, the spatial
and temporal bounds are computed (line 6), and the value G.cov− and the set G.par
are updated according to the three cases described earlier.

Subsequently, the main loop of the algorithm begins (lines 10–36), where at the
end of each iteration a new post is added to the result setR∗ until k posts are selected.
Note that there are three primary data structures in IDX; the set of groups G, the
set of seen posts Dseen, and the heap H which directs the examination of groups in
a best-first manner. Initially, G contains all groups and Dseen is empty. In the heap,
an entry ⟨g(G)+, G⟩ for each group G is inserted, where the upper bound on the
marginal gain g(G)+ is the key, and is computed from Equation 4.7 (lines 12–14).
Also, in the heap, an entry ⟨g(D), D⟩ is inserted for each post D having key its current
marginal gain g(D).

The inner loop (lines 17–29) examines entries from the heap H until the top entry
with the highest key (corresponding to marginal gain or an upper bound thereof)
belongs to a post (line 17). At that point, this entry ⟨g(D∗), D∗⟩ is deheaped (line
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Algorithm 4.2: Algorithm IDX
Input: document collection D, STK filter F, result set size k
Output: coverage and diversity aware result set R∗

1 DF ← FindRelevantDocs(D, F) ▷ Section 4.4.1
2 cluster DF into a set of groups G ▷ index dependent
3 foreach group G ∈ G do
4 G.cov− ← 0; G.par ← ∅
5 foreach group G′ ∈ G such that G′ ̸= G do
6 compute bounds d−s (G, G′), d+s (G, G′), d−t (G, G′), d+t (G, G′)
7 update G.cov− and G.par according to the three cases
8 Dseen ← ∅ ▷ set of seen posts
9 R∗ ← ∅

10 while |R∗| < k do
11 H ← ∅ ▷ initialize heap
12 foreach group G ∈ G do
13 compute g(G)+ ▷ Equation 4.7
14 enheap in H entry ⟨g(G)+, G⟩
15 foreach document D ∈ Dseen do
16 enheap in H entry ⟨g(D), D⟩
17 while H.top is a group entry do
18 deheap from H top entry ⟨g(G)+, G⟩
19 G ← G ∖ {G}
20 foreach document D ∈ G do
21 Dseen ← Dseen ∪ {D}

▷ compute the coverage of D
22 cov(D)← G.cov−

23 foreach document D′ ∈ G′ ∈ G.par do
24 if ds(D, D′) ≤ ρs and dt(D, D′) ≤ ρt then
25 cov(D)← cov(D) + 1

|DF |

▷ compute the diversity of D
26 div(D)← 0
27 foreach document D′ ∈ R∗ do
28 div(D)← div(D) + div(D, D′)

▷ compute the marginal gain of D
29 g(D) = 1−λ

k · cov(D) + λ
k·(k−1)div(D)

30 enheap in H entry ⟨g(D), D⟩
31 deheap from H top entry ⟨g(D∗), D∗⟩
32 R∗ ← R∗ ∪ {D∗}
33 foreach G ∈ G do
34 update G.div+ ▷ Equation 4.8
35 Dseen ← Dseen ∖ D∗

36 foreach D ∈ Dseen do
37 g(D)← g(D) + λ

k·(k−1)div(D, D∗) ▷ update g(D)
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Table 4.1 Datasets used in the experiments.

Dataset
Number of Number of Average Temporal Spatial Disk Index Index
geotagged distinct number of coverage coverage storage size size

posts keywords keywords (I3-based) (RCA-based)

Twitter 20M 1,836,679 5.7 Apr.-Dec. 2012 Worldwide 1.5GB 29GB 11GB
Flickr 20M 1,306,785 8.4 2010-2014 Worldwide 2.3GB 79GB 16GB

31) and the corresponding post is inserted in the result set (line 32). Because a new
result has just been found, the information regarding the diversity of all groups (lines
33–34) and all seen posts, except D∗, (lines 35–37) is updated.

In an iteration of the inner loop (lines 17–30), where entry ⟨g(G)+, G⟩ is de-
heaped, the following takes place. The group is removed from the set G of groups
(line 19) and all its posts are inserted in set Dseen (line 21). Moreover, for each post
D ∈ G, its exact coverage cov(D) (lines 22–25), its diversity div(D) (lines 26–28),
and ultimately its marginal gain g(D) (line 29) are computed. When computing the
coverage of D, its group coverage information, G.cov− and G.par, is used to speed
up the process. Then an entry ⟨g(D), D⟩ for this post is enheaped (line 30).

RCA-based Implementation The underlying index structure determines how rele-
vant posts are grouped together. In the inverted index-based RCA approach, posts are
spatio-temporally clustered based on their Z-order value. Therefore, a group contains
relevant posts that have the same Z-order value.

I3-based Implementation In the I3 index, posts are grouped together in octree
spatio-temporal cells. Therefore, a group contains relevant posts that reside in the
same octree cell.

4.5 Experimental Evaluation

In this section, we present an experimental evaluation of our approach, using two
large-scale, real-world datasets of geotagged tweets and photos. We first discuss
the experimental setup, outlining the datasets, queries, and parameters used in the
experiments, and then we present the results.

4.5.1 Datasets

Next, we describe the two datasets used in the experiments. The first dataset is a
collection of geotagged tweets that has also been used in [34] and is provided by the
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Table 4.2 Queries used in the experiments.

Query Term 1 Term 2 Term 3

Q1 obama election president
Q2 olympic games london
Q3 iphone apple ipod
Q4 nascar race car
Q5 kindle amazon ebook
Q6 nba basketball sports
Q7 economy market trading
Q8 war weapons violence
Q9 concert festival show
Q10 vacation summer trip

authors1. It comprises 20M tweets between April and December 2012. The second
dataset comprises photos from Flickr and is provided by Yahoo! [153]. From the
original data, we collected a subset of 20M geotagged photos with dates between
2010 and 2014. In both datasets, the posts have a worldwide coverage. The number
of distinct keywords is approximately 1.8M for Twitter and 1.3M for Flickr, whereas
the average number of keywords per post is 5.7 and 8.4, respectively. The detailed
characteristics of the datasets are shown in Table 4.1. The table also shows the disk
space required to store the raw files, as well as the constructed indexes, both for the
I3-based and the RCA-based implementations. Note that these values refer to the
extended versions of those indexes that include also the time dimension. Moreover,
to evaluate the scalability of our approach, we additionally sampled five subsets from
each dataset, with sizes ranging from 4M to 20M.

4.5.2 Queries and Parameters

To create a set of realistic and meaningful queries for the above datasets, we combined
search terms found in trending Twitter topics in 20122, as well as popular tags used
in Flickr3. The goal was to construct queries that reflect exploratory search, having a
few hundreds or thousands of results distributed across space and time. Thus, we
selected 10 queries, each one having in turn 3 variants, comprising, respectively, 1,
2, or 3 keywords. The queries used are listed in Table 4.2. In the experiments, we
assume OR semantics when using more than one keywords in the query, in order to

1http://www.ntu.edu.sg/home/gaocong/datacode.htm
2https://2012.twitter.com/en/trends.html
3https://www.flickr.com/photos/tags/

 http://www.ntu.edu.sg/home/gaocong/datacode.htm
https://2012.twitter.com/en/trends.html
https://www.flickr.com/photos/tags/
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Table 4.3 Average number of relevant posts.

Dataset |Ψ| = 1 |Ψ| = 2 |Ψ| = 3

Twitter 2,891 6,461 13,395
Flickr 486 1,021 1,699

Table 4.4 Parameters used in the experiments.

Parameter Values

Number of geotagged posts (N) (106) 4, 8, 12, 16, 20
Number of query keywords (|Ψ|) 1, 2, 3
Spatial filter size (R) (106km2) (approx.) 4, 6, 8, 10, 12
Temporal filter size (T) (days) 15, 30, 45, 60, 75
Size of diversified result subset (Rk) 20, 40, 60, 80, 100
Spatial coverage threshold (ρs) (%) 2, 4, 6, 8, 10
Temporal coverage threshold (ρt) (%) 2, 4, 6, 8, 10

increase the number of relevant posts. Table 4.3 lists the average number of relevant
posts for these queries in the Twitter and Flickr datasets (for default values of the
spatial and temporal filters R and T).

In addition to query keywords, we also vary the size of the spatial and temporal
filters. For the former, we use 5 bounding boxes of increasing sizes over the U.S.,
covering an area ranging, approximately, from 4 million km2 up to 12 million km2.
For the latter, we use 5 time intervals starting on 01/08/2012 and having duration
from 15 up to 75 days. Moreover, we vary the parameter k, i.e., the size of the
diversified result subset, from 20 up to 100. Finally, we experimented with different
values for the thresholds ρs and ρt. These settings are summarized in Table 4.4
(default values are shown in bold).

4.5.3 Dataset Size

Next, we present the results of our experimental evaluation. Specifically, we compare
the following four methods: (a) the baseline approach over the I3-based index
(BSL-I3) and the RCA-based index (BSL-RCA), and (b) our proposed index-aware
approach over the I3-based index (IDX-I3) and the RCA-based index (IDX-RCA). All
algorithms were implemented in Java. In particular, for the I3 and RCA indexes, we
extended the source code that was kindly provided by the authors of [175, 176]. The
experiments were conducted on a server with 48GB main memory and Intel® Xeon®
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(a) Twitter (b) Flickr

Fig. 4.2 Execution time vs. dataset size.

E5-2420 v2 processor, running Ubuntu 14.04. In each experiment, we vary one of the
parameters listed in Table 4.4, setting the rest to their default values. The execution
time is then measured by executing each of the 10 queries listed in Table 4.2 5 times
and reporting the average.

First, we evaluate the scalability of our approach by gradually increasing the
dataset size. For this purpose, we have sampled both datasets, Twitter and Flickr,
creating five subsets for each, with sizes varying from 4M to 20M posts. The results
for the average query execution time are shown in Figure 4.2.

For all methods, execution time increases with the size of the dataset. However,
the index-aware approach shows much better scalability compared to the baseline.
This observation is particularly evident for the Twitter dataset, while less so for the
Flickr dataset. The reason for this has to do with the different selectivity of the
queries in the two datasets (see also the discussion in Section 4.5.4). Focusing, for
example, on the I3-based implementation for Twitter, we can observe the following.
Although the average query latency for BSL-I3 starts at below 0.5 seconds, it quickly
increases reaching up to more than 3 seconds, whereas at the same time IDX-I3 still
remains below 0.5 seconds. This better scalability of the index-aware method results
from the fact that it exploits the underlying index structure to effectively prune large
portions of the posts that do not contribute to the final result.

Another interesting observation from the Twitter dataset comes from examining
the relative performance of the two different implementations. First, comparing
the two baselines, we can see that BSL-RCA performs better than BSL-I3. Since the
baseline method does not exploit the underlying index, this can be attributed to
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(a) Twitter (b) Flickr

Fig. 4.3 Execution time vs. number of keywords.

the fact that the STK filter is evaluated faster with the RCA-based index. However,
for the index-aware method, we can see that although both IDX-I3 and IDX-RCA
clearly outperform their respective baselines, the difference is even higher for IDX-I3,
which appears eventually to be slightly faster than IDX-RCA. This indicates that the
index-aware method is able to effectively exploit the underlying index in both cases,
but the gain is even higher for the I3-based index. This can be attributed to the fact
that the I3-based index is more effective during spatio-temporal filtering, whereas the
RCA-based index, relying on the Z-order encoding, has the additional overhead of
filtering out the false positives. This behavior appears to be consistent also for the
rest of the experiments described below.

4.5.4 Selectivity of the Conditions in the Query

Next, we examine the effect of changing the selectivity of the query filters. This
involves three subsets of experiments, corresponding to each of the dimensions
addressed: (a) increasing the number of keywords, (b) increasing the size of the
spatial region, and (c) increasing the size of the time window. Each of these conditions
is examined separately, and the results are shown in Figures 4.3, 4.4, and 4.5,
respectively. Note that increasing the number of keywords (under OR semantics),
as well as the size of the spatial or the temporal filter, essentially have the same
main effect: the number of relevant posts that match with the STK filter of the query
increases. In other words, this increases the size of the original result set, from which
the top-k results have to be selected.
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(a) Twitter (b) Flickr

Fig. 4.4 Execution time vs. spatial region size.

(a) Twitter (b) Flickr

Fig. 4.5 Execution time vs. time window size.

In all experiments, the index-aware methods clearly outperform their respective
baselines. More specifically, when the selectivity of the filters is high, the differences
are smaller, since the baseline method achieves comparable performance, having to
deal with relatively few relevant posts. However, this drastically changes as soon
as the filters start to become less selective, allowing for more posts to match. For
example, consider the case of the Twitter dataset. Although the average query latency
for BSL-I3 is initially below 1 second, it quickly increases up to 10 seconds or more
as the selectivity of the filters decreases. In contrast, IDX-I3 is significantly less
affected, with the average query latency in this case remaining within 1 or 2 seconds,
even when the filters reach up to 3 keywords, 12 million km2, or 75 days. Similar
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observations can be made also for the Flickr dataset. In that case, although the
absolute values of query latency are overall lower, the same differences and trends
can be clearly observed. This behavior demonstrates the effectiveness of the pruning
strategies and, in particular, the benefit of using the underlying index structure to
prune a large number of comparisons when the size of the original set of relevant
posts becomes higher.

4.5.5 Number of Results

For the next experiment, we evaluate the effect of the parameter k. The results are
shown in Figure 4.6. For all cases, the index-aware methods achieve significant gains
over their respective baselines. For instance, for the Twitter dataset, the average
query latency for IDX-I3 and IDX-RCA remains below 1 second, while reaching up to
4 seconds for BSL-I3. The differences are similar for the Flickr dataset as well, with
the baseline methods exhibiting even worse scalability in this case. Interestingly, the
performance of the index-aware method appears to not be significantly affected by
the increase of k. This can be attributed to the fact that, as mentioned in Section 4.4.2,
during the iterations that select the next result to be included in the top-k set, some
computed values can be cached and reused in subsequent iterations. Thus, although
increasing k means that more iterations have to be performed, the additional cost
that is incurred gradually decreases.

Regarding the comparison between the I3-based and RCA-based implementations,
here we can clearly observe a similar behavior as discussed in Section 4.5.3. For the
baseline method, the RCA-based index again performs better, requiring less time to
apply the STK filter. However, this difference is eventually overcome as the index-
aware method is again able to more effectively exploit the I3-based index. Thus, the
final result is reversed, with IDX-I3 achieving the best performance.

4.5.6 Coverage Thresholds

Finally, we examine the effect of the spatial and temporal thresholds, ρs and ρt, which
determine the radius for coverage for each document. The results are shown in
Figure 4.7. Again, query latency is significantly lower for the index-aware methods
compared to the baselines. In addition, we can see that the baseline methods do not
seem to be affected by this parameter, since the number of comparisons that need to
be performed is not affected by these values. Interestingly, this can also be observed
for the index-aware methods. Notice that these thresholds can be set at query time,
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(a) Twitter (b) Flickr

Fig. 4.6 Execution time vs. number of results.

(a) Twitter (b) Flickr

Fig. 4.7 Execution time vs. coverage thresholds.

thus the underlying index structure is constructed independently of them. Hence,
this observation shows that the proposed approach is robust, in the sense that it does
not require to fine tune the underlying index according to these thresholds in order
to achieve a benefit through the pruning.

Moreover, comparing the performance of the I3-based and RCA-based implementa-
tions, the results are consistent with the findings of the previous experiments. Again,
BSL-RCA shows an advantage over BSL-I3, but IDX-I3 achieves the best performance,
having a higher gain that overcomes also this initial difference.
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4.6 Summary

In this chapter, we have introduced a novel type of spatial-temporal-keyword query,
the kCD-STK query. This query is based on two key notions, spatio-temporal coverage
and diversity, which are formally defined. In particular, the query is formulated
similarly to other search results diversification problems, which allows us to derive a
baseline approach for its evaluation. Then, we focus on developing a more efficient
strategy for processing kCD-STK qeuries, which allows to exploit an underlying hybrid
(spatial-temporal-keyword) index not only for the first part, i.e., the filtering of
relevant posts, but also for the second part, i.e., the selection of the top-k results
based on coverage and diversity. To that end, we have considered two state-of-the-art
spatio-textual indexes, which we extended to include also the time dimension, and
we have shown how our proposed index-aware approach can be applied on top of
those structures.

To validate and evaluate our approach, we have conducted an experimental
evaluation on large real-world datasets containing geotagged tweets and photos. The
results have shown that our optimized approach manages to successfully exploit the
available index to significantly reduce the query execution time compared to the
baseline algorithm. This holds for both indexes that have been considered, namely
the I3-based and the RCA-based implementations.



CHAPTER 5

CONTINUOUS SUMMARIZATION OF STREAMS OF POSTS

We have already explained our method for finding a set of representative results for
the spatio-temporal exploration of a large number of posts in the preceding chapter.
However, there the result set was computed in an ad hoc manner and did not change
with time. Here, we address this limitation and examine the problem of continuous
spatio-textual summarization of streams.

5.1 Overview

As discussed previously, the spatio-textual data available in geotagged posts and
other online sources provides a valuable source for analysis and mining, e.g., for
identifying and monitoring events at various locations, mining trending topics in
different areas, studying the spatial distribution of opinions and sentiments associated
with various entities, etc. However, given the high rate at which this content is
constantly produced, it easily becomes difficult and overwhelming for the user to
keep track of the whole stream of information. Moreover, this stream is typically
characterized by a high degree of repetition and redundancy, e.g., same or similar
news articles and stories being published by several sources, same information being
re-tweeted by multiple users, similar opinions and comments being expressed, etc.
Thus, for many applications and needs, it is often impractical or even uninteresting to
actually keep track of the whole stream of posts. Instead, it is sufficient or desirable
to compute and maintain a more concise, aggregate summary of relatively few,
representative posts. Consequently, it has become an important task for many search
engines, recommendation engines, and publish/subscribe systems to maintain a
small, diversified set of posts over this streaming content, in order to provide to the
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users a summarized overview of the underlying content and anchor points for further
exploration.

Diversifying search results or, more generally, a subset of documents selected from
a larger collection, is already an established and well-studied problem in the fields of
information retrieval and web search, and it has been shown to improve the quality of
produced results and user satisfaction in several practical applications [73, 50, 158].
The diversity of a selected set of documents is a measure of the dissimilarity of these
documents to each other. Increasing diversity essentially increases the variety of
contents. Thus, given a document collection that is characterized by a high degree
of overlap and repetition, or a query that is inherently ambiguous or opinionated,
favoring the selection of a document summary that is more diverse can increase the
coverage of different topics, aspects, opinions, or sentiments, thus reducing bias.

To that end, the document selection algorithm takes into consideration the crite-
rion of diversity of the selected documents to each other, in addition to the standard
criterion of coverage of each individual document to the query (or, more generally, any
other measure of individual importance of each document). Several diversification
models and formalisms have been proposed in the literature. Since the problem of
finding the optimal diversified subset of documents under various formulations is
NP-hard, various heuristics are employed to compute approximate solutions more
efficiently [73].

However, most of the existing approaches only address static settings (i.e., com-
puting a diversified subset of a given document collection or of the result set of
a given query), whereas very few ones have considered a dynamic or streaming
context [51, 126]. Moreover, those that do, typically employ various restrictions
and assumptions that simplify the problem, making it easier to tackle, but at the
expense of restricting flexibility and generality. Furthermore, in both static and dy-
namic/streaming contexts, the exact type of contents of the handled documents, and
respectively the exact type of coverage/relevance scores and dissimilarity measures
defined on them, is considered as an orthogonal issue. Thus, any proposed opti-
mizations consider only the generic diversification algorithm itself, without further
optimizing the process based on the kind of documents handled.

In this chapter, we attempt to fill these gaps, focusing on computing and maintain-
ing spatially and textually diversified summaries over a stream of spatio-textual posts.
Specifically, we adopt the sliding window model by examining successive chunks of
the incoming stream and incrementally updating the resulting summary to reflect
recently trending posts. First, we present different diversification strategies that
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provide different trade-offs between maximizing the quality (i.e., combined coverage
and diversity) of the resulting subset and minimizing computational cost. Then, we
turn our focus to the specific case of spatio-textual posts, proposing optimizations
that can be applied to enhance the efficiency of those diversification strategies in this
class of content. To the best of our knowledge, our work is the first one to address the
problem of maintaining a diversified summary of posts over a stream of spatio-textual
documents.

Our main contributions in this chapter can be summarized as follows:

• We formally define the problem of summarizing a stream of spatio-textual posts
over a sliding window, defining specific spatio-textual criteria of coverage and
diversity.

• We propose different stream summarization strategies that provide a trade-off
between result quality and computational cost.

• We optimize our proposed strategies through the use of lightweight spatio-
textual structures maintained over the sliding window which are used to update
the result set efficiently at every step.

• We present an experimental evaluation to study and compare the performance
trade-offs of our proposed methods and the resulting performance gains of our
algorithms.

The remainder of this chapter is organized as follows. Section 5.2 reviews related
work on summarization and diversification methods. Section 5.3 formally defines the
problem and the criteria for spatio-textual coverage and diversity. Then Section 5.4
presents our solution to the continuous summarization problem, while Section 5.5
discusses optimizations based on spatio-textual partitioning. Section 5.6 presents an
experimental evaluation of our methods, and Section 5.7 concludes the chapter.

5.2 Additional Relevant Background

As we discuss later, our problem formulation in the non-dynamic case is an instance
of the max-sum diversification problem [73]. Therefore, we first present an overview
of document summarization focusing on diversification-based techniques, and then
discuss the case of diversification over streaming data.
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5.2.1 Summarization via Diversification

The seminal work of [25] studied the problem of document summarization and
formulated it as an instance of the diversification problem, which was later studied
in various incarnations. Diversification in general aims at reducing repetition and
redundancy in the result set returned to the user by selecting the final set of results
based not only on each document’s relevance to the query, but also on the dissimilarity
of the selected results to each other. This increases the variety and novelty of the
information included in the diversified result set, which is particularly important for
queries that are inherently ambiguous or for which there exist different subtopics,
perspectives, opinions, and sentiments. In such cases, diversification allows to better
cover and represent these different aspects in the result set.

Many different formulations can be used to formally define the objective of search
results diversification (see [73, 50, 158] for an overview and classification of existing
approaches). Perhaps the most well-known approach is the framework proposed in
[73], which was also discussed in Chapter 4. We give a brief overview again here for
convenience. According to [73], given a query Q and an initial result set R containing
all documents relevant to Q, the goal is to select a relatively small subset R∗ of R,
with |R∗| = k, that maximizes an objective function ϕ. The latter combines: (a) a
relevance score, assessing how relevant each document in R∗ is to the given query, and
(b) a diversity score, measuring how diverse the documents in R∗ are to each other.
Function ϕ can take different forms, such as max-sum, max-min, and mono-objective
diversification. For instance, in the max-sum variant, ϕ is defined as the weighted sum
of (a) the total relevance of the documents in R∗ to Q, and (b) the sum of pairwise
distances among the documents in R∗.

Typically, finding the exact result set that maximizes the diversification objective
is NP-hard. Thus, approximate solutions are proposed by each method. These usually
rely either on greedy heuristics, which build the diversified set incrementally, or on
interchange heuristics, which gradually improve upon a randomly selected initial set
by swapping its elements with other ones that improve its diversity. In a recent work
[27], the notion of approximate, composable core-sets has been used to address the
k-diversity maximization problem in general metric spaces. A core-set is a small set
of items that approximates some property of a larger set [90]. Based on these, the
authors develop efficient algorithms for diversity maximization in the streaming and
MapReduce models.

Moreover, summarization has also been studied in the context of coverage alone,
without a notion of diversity [150, 108]. Such a related coverage problem is presented
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in [52]. In this case, the goal is to select the minimum subset of documents that
are diverse to each other, i.e., have distance to each other at least ϵ, and cover the
whole dataset, i.e., each non-selected document lies within distance at most ϵ from a
selected one. However, the size of the summary is not fixed, but rather depends on
the distance threshold ϵ.

5.2.2 Diversification over Streaming Data

Few works so far have considered the problem of continuously maintaining a diversi-
fied result set over streaming data. In [51], the problem of continuous diversification
over dynamic data is considered. The proposed approach adopts the max-min ob-
jective function for diversification, which entails maximizing the minimum distance
between any pair of documents in the result set. The proposed method relies on the
use of cover trees and provides solutions with varying accuracy and complexity for
selecting items that are both relevant and diverse. Moreover, it introduces a sliding
window model for coping with the continuous variant of the problem against stream-
ing items. However, a cover tree needs to be incrementally updated by keeping all
raw items within the current window, which can have a prohibitive cost in space and
time when dealing with massive, frequently updated streaming data. In our case, we
rely on much more lightweight aggregate information to speed up the computation
of the new result set every time the window slides.

The work presented in [126] assumes a landmark window model, i.e., a window
over the stream that spans from a fixed point in the past until the present. Based on
this, an online algorithm is proposed, which checks every new incoming document
against those in the current result set and performs a substitution if it increases the
objective score of the set. Thus, this method addresses the diversification problem
on an ever increasing stream of objects. However, it is restricted by the fact that it
always considers exactly one incoming document and does not handle document
expiration. Section 5.4.2 revisits this approach and describes an adaptation of their
algorithm to our problem involving sliding windows, i.e., where both the start and
the end points of the window slide.

5.3 Model and Definitions

Spatio-Textual Stream. We consider geotagged messages posted by users of social
networks or microblogs (e.g., Facebook, Twitter, Flickr, Foursquare) in a streaming
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fashion. We assume that each post p comprises textual information and a geolocation,
as defined next.

Definition 5.1 (Post). A spatio-textual post p = ⟨Ψ, ℓ, t⟩ consists of a collection of
keywords Ψ from a vocabulary V and was generated at location ℓ (specified as a pair of
coordinates (x, y)) at timestamp t.

We assume that all posts are available as a stream of tuples. We adopt a time-based
sliding window model [105] over the stream, as defined below.

Definition 5.2 (Sliding Window). A time-based sliding window W is specified with
two parameters: (a) a range spanning over the most recent ω timestamps backwards
from current time tc, and (b) a slide step of β timestamps. Upon each slide, windowW
moves forward and provides all messages posted during time interval (tc −ω, tc]. These
messages comprise the current state of the window, i.e.,

W = {p : p.t ∈ (tc −ω, tc]}. (5.1)

Posts with timestamps earlier than tc −ω are called expired.

Spatio-Textual Summary. Our goal is to select an appropriate subset of the posts in
the window to form an informative summary. A summary S of windowW is a subset
of the posts inW .

In accordance with work on document summarization [72, 108], given a con-
straint on the maximum summary size, our objective is to construct a summary that
covers as much as possible the entire set of posts in the current window while at the
same time containing diverse information as much as possible. Formally, we capture
these two requirements using the two measures defined next.

Definition 5.3 (Coverage). The coverage cov(S) of a summary S captures the degree
to which the posts in the summary approximate the spatial and textual information in
the window. We use a weight α to capture the relative importance of the two information
facets:

cov(S) = α · covT(S) + (1− α) · covS(S). (5.2)

Similar to [108], we define the textual coverage of a summary as

covT(S) = ∑
pi∈W

∑
pj∈S

simT(pi, pj), (5.3)

where simT(·, ·) is a textual similarity metric between posts.
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For our purposes, we consider the vector space model, and define sim(·, ·) as the
cosine similarity of the vector representations of the posts. Specifically, each space
coordinate corresponds to a keyword, and the vector’s coordinate contains a weight
representing the importance of the corresponding keyword relative to the window.
While any tf-idf weighing scheme [142, 119] is possible, here we simply use term
frequency and normalize the vectors to unit norm. Therefore, the textual coverage
is computed as the sum over each pair of posts (one from the window and another
from the summary) of the inner product of their vector representations:

covT(S) = ∑
pi∈W

∑
pj∈S

∑
ψ

pi[ψ] · pj[ψ], (5.4)

where keyword ψ is used to index the vector, and thus p[ψ] denotes the normalized
weight of keyword ψ of post p.

For the spatial coverage, we follow a similar formulation and define it as cosine
similarity in a (different) vector space. Instead of keywords from a vocabulary, we
have a set of regions from a predetermined spatial partitioning ρ (e.g., regions could
represent cells of a uniform grid). Intuitively, such a coarse partitioning allows for
a macroscopic view of the posts in the window, where exact post locations are not
important, and thus coalesced into broader regions. As each post is always associated
with a single region, the spatial content of a post is simply represented as a vector
having a single weight 1 at the vector coordinate representing the region containing
the post’s geotag. Thus, the spatial coverage is computed as:

covS(S) = ∑
pi∈W

∑
pj∈S

∣∣ρ(pi.ℓ) = ρ(pj.ℓ)
∣∣ , (5.5)

where ρ(ℓ) is the region associated with location ℓ, and |ρ(pi.ℓ) = ρ(pj.ℓ)| returns 1
if locations pi.ℓ, pj.ℓ reside in the same region.

Next, we define the diversity of a summary.

Definition 5.4 (Diversity). The diversity div(S) of a summary S captures the degree to
which the posts in S carry dissimilar information. As before, diversity is defined as the
weighted sum of a textual and spatial term:

div(S) = α · divT(S) + (1− α) · divS(S). (5.6)

Textual diversity is defined with respect to the vector space model. Specifically,
textual diversity is the sum of cosine distance between all pairs of posts in the
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summary:

divT(S) = ∑
{p,p′}:p ̸=p′∈S

(
1−∑

ψ

pi[ψ] · pj[ψ]

)
. (5.7)

On the other hand, spatial diversity is defined based on a spatial distance (e.g.,
Euclidean, haversine) between summary posts’ exact locations:

divS(S) = ∑
{p,p′}:p ̸=p′∈S

dist(p.ℓ, p′.ℓ). (5.8)

Based on the definitions of these two quality measures of a summary, we are now
ready to state our problem.

Definition 5.5 (Stream Summarization). For each sliding windowW over a stream of
posts, determine the summary S∗ of size k that maximizes the objective function:

S∗ = arg max
S⊆W ,|S|=k

f (S),

f (S) = λ · cov(S) + (1− λ) · div(S),

where λ determines the trade-off between coverage and diversity.

5.4 Algorithmic Approach

If we consider any individual instantiation of the sliding window, our problem
formulation is identical to the max-sum diversification problem. Thus, one can apply
the adaptation of the greedy algorithm in [15] to summarize the contents of each
window. There, the authors observed that the simple greedy heuristic from [137]
can give a linear time 2-approximation. We call this algorithm GA — introduced
as 1-Greedy Augment in [15]. GA starts with a random object in the result set and
iteratively appends to the result the object maximizing the marginal gain. However,
such an approach is impractical simply because the sliding window can be arbitrarily
large and storing its entire contents is not an option. Therefore, we need to devise an
efficient solution that operates on limited memory.

To achieve this we need to address two tasks. The first is how to compute the
coverage of posts without having the window’s contents. Recall that the coverage
of a single post is computed as the sum of its cosine similarity with each post in
the window. The second task is how to construct the summary without having the
window’s contents. While this problem has been studied for landmark windows with
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limited memory [126] and sliding windows without memory restrictions [51], to the
best of our knowledge it has not been addressed for sliding windows under limited
memory. Section 5.4.1 addresses the first task, while Section 5.4.2 discusses the
second.

5.4.1 Computing Coverage

To compute the coverage without keeping the entire window contents, we exploit the
linearity of the inner product — the cosine similarity of two normalized vectors is
their inner product. Note that in the following discussion, we use the term coverage
to refer to both textual and spatial coverage, as they are both defined as a sum of
inner products.

Our approach is based on the notion of window pane (or sub-window) [105].
For ease of presentation, we assume that the size of the window ω is a factor of its
slide step β, e.g., a window of 24 hours sliding every one hour. The window is thus
naturally divided into m = ω/β panes. Each time the window slides, all tuples within
the oldest pane expire, while new tuples arrive in the newest pane, termed current.

In what follows, we denote as W the current and as W ′ the previous window
instantiation. We also denote asW− the expired pane of the previous window and
refer to the current pane asW+, i.e.,W− =W ′∖W andW+ =W ∖W ′. When we
want to enumerate the panes of the window we simply use the notationW1 through
Wm.

For each paneWi, we define its information content Wi as the vector:

Wi = ∑
p∈Wi

p. (5.9)

It is then easy to see that the coverage of a post p can be efficiently computed using
the information contents of the m panes:

cov(p) =
m

∑
i=1

∑
τ

Wi[τ] · p[τ], (5.10)

where τ represents either a keyword or a region. This implies a simple solution to
compute the coverage. Instead of requiring the set of all posts within a window, it
suffices to store only a few vectors that are the information content of each pane.
When the window slides, we just throw away the information content of the expired
pane and begin aggregating posts in the current pane to form its information content.
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5.4.2 Building the Summary

In this section, we describe several strategies for building a summary over the sliding
window of posts. All approaches (except the baseline) operate without storing the
entire contents of the window. They differ in what (limited) information they store
across the window panes and in the way they construct the summary or update the
previous one. In all strategies, we describe the operation necessary in a single window.
We assume that the information content for the current pane has been constructed as
per the previous section, and thus the coverage of any post can be computed using
Equation 5.10.

Baseline Strategy

The baseline strategy (BL) requires storing the entire contents of the window and
is thus impractical, serving only as a benchmark for the quality of the summary. It
builds the summary incrementally, starting with an empty set. Then, at each step it
inserts the post that maximizes the marginal gain of the objective function. Given a
summary S, the marginal gain of a post p is:

ϕ(p) = λ · cov(p) + (1− λ) · div(p, S). (5.11)

Note that GA initializes the summary with a random object because it cannot
differentiate among objects when the summary is empty. On the other hand, BL can
differentiate among posts, and thus it selects as the first post the one that has the
largest coverage.

If we assume m panes in the window, each with an equal number n of posts, we see
that the memory footprint of BL is O(k + m · n). BL performs k passes over all posts,
computing for each post its diversity with respect to at most k summary posts. Thus,
BL requires time O(k2 · m · n) to construct the summary of a window. Its running
time can be improved in practice using the techniques described in Section 5.5.

Online Interchange Strategy

The work in [126] describes an online algorithm for solving the max-sum diversifi-
cation problem on an ever increasing stream of objects. This approach essentially
solves the problem for a landmark window, which spans from a fixed point in the past
until the present. For our purposes, we adapt this algorithm to our problem involving
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Algorithm 5.1: Online Interchange
Input:
Output:

1 S← S′ ∖W−
2 foreach p ∈ W+ do ▷ examine new posts in chronological order
3 if |S| < k then
4 insert p into S
5 else
6 p− ← arg maxp′∈S f (S ∖ {p′} ∪ {p})
7 if f (S ∖ {p−} ∪ {p}) > f (S) then
8 S← S ∖ {p−} ∪ {p} ▷ replace p− with p

9 return S

sliding windows, where both the start and the end point of the window slide. We
refer to this algorithm as OI.

Algorithm 5.1 presents the pseudocode for constructing the summary S of the
current window by making incremental changes to the summary S′ constructed for
the previous window. Initially, the summary is constructed as the previous summary
excluding any expired posts contained in that summary (line 1). Then, each newly
arrived post p is examined in sequence (lines 2–8). If the summary is not yet full, the
post is simply inserted (lines 3–4). Otherwise, the algorithm identifies the best post
p− to evict from the summary in favor of the current examined post p (line 6). If the
eviction of p− and the insertion of p results in an increase of the objective function,
the algorithm proceeds with the replacement (lines 7–8).

The OI algorithm operates on limited memory, requiring space of O(k + n). For
each post in the current pane, OI computes the objective score of k possible sets (one
for each possible substitution of the post in the summary). Because these examined
sets have significant overlap with each other, the computation of the objective score
for each set can be efficiently implemented in O(k) time by some clever bookkeeping
[126]. Thus, the running time of OI is O(k2 · n). Unfortunately, OI cannot take
advantage of the optimization discussed in Section 5.5.

Oblivious Summarization

The oblivious summarization (OS) strategy, in contrast to OI, does not try to improve
on the existing summary. Rather, it rebuilds the summary from scratch selecting
among the posts in the current pane and those (not expired) in the previous summary.
Therefore, it applies the GA algorithm on the set (S ∖W−) ∪W+. Naturally, the
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difference with BL is in the posts considered for inclusion in the summary; BL
considers all window posts, whereas OS has fewer options.

The OS strategy requires space O(k + n) and makes k passes over all n posts in
the current pane. For each post, it computes its diversity with respect to at most k
summary posts. Thus, the running time of OS is O(k2 · n). The OS strategy can also
benefit from the optimization of Section 5.5.

Intra-Pane Summarization

The key idea of intra-pane (IP) summarization is to store a brief summary over
each pane, and then use these summaries to derive a summary for current window.
Therefore, at each window slide, IP constructs a local summary of size k′ of the
current pane using the GA algorithm. This summary is then stored along the pane
unaltered until its expiration. To compute the window summary, IP once again
employs the GA algorithm, but this time over the summary posts of each pane.

IP requires k′ space for each pane, in addition to storing the contents of the current
pane. Therefore, it requires space O(k′ ·m). For a given window, IP invokes GA two
times, once to construct the current pane’s local summary with a running time of
O(k′2 · n), and another to construct the window summary over the pane summaries
(a total of k′ ·m posts) with a cost of O(k2 · k′ ·m).

5.5 Spatio-Textual Optimizations

The main bottleneck in all methods described above is that each post has to be
evaluated individually regarding its suitability for being included in the summary.
However, in practice, many posts may be similar to each other. In that case, it is
possible to group such similar posts together and then make a decision collectively
for the group, i.e., whether any post among those should be included in the summary.
In the following, we elaborate on this idea and present a process for achieving this
purpose.

The process comprises two stages. The first involves partitioning the available
posts into groups. Then, given a group of posts and a summary, the second is to
establish upper and lower bounds for the coverage and the diversity of each post
in the group with respect to the given summary. Next, we describe our method for
partitioning the posts, and then we present how the bounds are computed.
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5.5.1 Spatio-Textual Partitioning

Partitioning the posts in each pane is based on both their spatial and textual informa-
tion. Given that each post belongs to exactly one region ρ, we adopt a spatial-first
partitioning, e.g., a uniform grid partitioning into cells or a planar tessellation into
non-overlapping tiles [111]. Let P denote a set of posts contained within the same
spatial partition. Then, the next step is to further partition P textually, so that
the resulting subsets of posts are as homogeneous as possible with respect to the
keywords they contain. The latter condition is helpful for deriving tighter bounds.
Based on this, we formulate next the criterion for the textual partitioning.

Let ΨP denote the union of the keyword sets of the posts in P . Assume also a
partitioning Γ of P into the subsets P1, P2, . . . , P|Γ|. We define the gain g(P ,Pi) of
each subset Pi w.r.t. P as the reduction rate of the size of the corresponding keyword
set, i.e.,

g(P ,Pi) =
|ΨP | − |ΨPi |
|ΨP |

. (5.12)

This implies that the gain is higher for partitions that have a lower number of distinct
keywords. Then, the overall gain resulting from partitioning Γ is defined as:

g(P , Γ) =
∑
Pi∈Γ

g(P ,Pi)

|Γ| . (5.13)

Using this gain function, we can partition the initial set of posts recursively,
applying a greedy algorithm. At each iteration, the algorithm selects one keyword
for splitting and partitions the initial set into two subsets, according to whether each
post contains that keyword or not. Selecting the keyword on which to split is based
on finding the keyword which results in the partitioning with the maximum gain.
Then, each of the resulting subsets is partitioned recursively, until the desired number
of partitions is reached or until there is no significant gain by further partitioning.

Nevertheless, performing the above check over all the candidate keywords during
each iteration is time consuming. A compromise is to perform this computation offline,
at a lower rate, or using a subset of the stream, to identify a set of keywords that are
good candidates for partitioning, and then apply these ones, updated periodically, to
partition the posts in each pane. An even simpler alternative is to rely on the most
frequent keywords for partitioning, since the keyword frequencies are already known
for each previous pane in the window, thus requiring no additional overhead. Note



90 | Continuous Summarization of Streams of Posts

that regardless of the way the partitioning is done, the correctness of the bounds
presented in the next section is not affected.

5.5.2 Coverage and Diversity Bounds

In what follows, we focus on a particular partition P of our spatio-textual partitioning
and describe the necessary aggregate information we need to store and how to derive
upper bounds on coverage and diversity. We abuse notation and also denote by P
the set of posts indexed in any sub-partition below the examined.

We associate with P the following information:

• a vector P .p+, which stores at each coordinate the highest weight seen among
all posts in P ;

• a vector P .p−, which stores at each coordinate the lowest weight seen among
all posts in P ;

• the set P .Ψ of all keywords appearing in a post in P .

Using this information, we next discuss how we derive the bounds.

Coverage

We firstly compute an upper bound to the possible textual coverage of a post in P
with respect to the information content W of the window or the current pane. In
other words, we seek an upper bound to

max
p∈P ∑

ψ

W[ψ] · p[ψ]. (5.14)

We construct two bounds and select the tighter one. The first trivially uses the
P .p+ vector to upper bound a post from P :

covT(p ∈ P)+I = ∑
ψ

W[ψ] · P .p+[ψ]. (5.15)

The second is based on the property that the cosine of two vectors is maximized
when the vectors are parallel to each other. In our case, this translates to constructing
a unit vector x parallel to W (unit because vectors in P are normalized). However,
the inner product of W with this x would overestimate the coverage of posts in P . As
a matter of fact, vector x is constructed independently of the posts within partition P ,
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and thus such an upper bound trivially applies to all partitions. A tighter bound can
be derived if we first project W to the dimensions corresponding to keywords in P ,
and then take the unit vector parallel to W. Therefore, the second upper bound is:

covT(p ∈ P)+I I =
1
∥W ′∥ ·∑ψ

W[ψ] ·W ′[ψ] = ∥W ′∥, (5.16)

where W ′ is the aforementioned projection of W, i.e.,

W ′[ψ] =

W[ψ] if ψ ∈ P .Ψ

0 otherwise.
(5.17)

We can now prove the following.

Lemma 5.1. The previously defined covT(p ∈ P)+I and covT(p ∈ P)+I I are upper
bounds to the coverage of any post p in partition P .

Proof. The lemma holds for the first upper bound because for every keyword ψ we
have that p[ψ] ≤ P .p+[ψ].

For the second upper bound, it is easier to work with a vector notation. The
maximum coverage of any post p is the maximum inner product of any p with the
information content W, i.e., maxp∈P W · p. Because p has zero coordinates at any
ψ ̸∈ P .Ψ, the previous is equal to the maximum inner product of any p with W ′, i.e.,
maxp∈P W ′ · p. Since p is a unit vector, its maximum inner product with W ′ cannot
be greater than the norm of W ′.

Regarding the spatial coverage, observe that all posts in the partition have the
same coverage (they fall in the same region), which is computed exactly as covS(p ∈
P) = ∑p′∈W |ρ(p′.ℓ) = ρ(P .ℓ)|.

Diversity

Next, our goal is to compute an upper bound to the possible textual diversity of a
post in P with respect to summary S, i.e., we seek an upper bound to

max
p∈P ∑

p′∈S

(
1−∑

ψ

p′[ψ] · p[ψ]
)

= |S| −min
p∈P ∑

p′∈S
∑
ψ

p′[ψ] · p[ψ].

Similar to the case of coverage, we can derive a diversity upper bound in two
ways and employ the tighter. The first is by using the P .p− vector to lower bound
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the inner products:

divT(p ∈ P , S)+I = |S| − ∑
p′∈S

∑
ψ

p′[ψ] · P .p−[ψ]. (5.18)

The second is again based on a geometric property of the inner product. In
general, the inner product between two vectors is minimized when the vectors are
parallel but in opposite directions. In the case of non-negative vectors, given a vector
p′, the non-negative unit vector x that maximizes their inner product must be parallel
to one of the axes (intuitively, in a direction as far away from p′ as possible), and
in particular the axis where p′ has its smallest coordinate. To construct a tighter
bound in our setting, we need to consider only the axes (dimensions) corresponding
to keywords present in posts of P . Therefore, the second upper bound is:

divT(p ∈ P , S)+I I = |S| − ∑
p′∈S

min
ψ∈P .Ψ

p′[ψ]. (5.19)

Lemma 5.2. The previously defined divT(p ∈ P , S)+I and divT(p ∈ P , S)+I I are upper
bounds to the diversity of any post p in partition P to summary S.

Proof. The proof for the first upper bound follows from p[ψ] ≥ P .p−[ψ].
For the second bound, we use the following inequality:

min
p ∑

i
x[i] · p[i] ≥ min

i:p[i] ̸=0
x[i],

which holds for any unit vector p with positive coordinates.
Applying the inequality for vector x = ∑p′∈S p′[ψ] we get that ∑p′∈S p′[ψ] ≥

minψ∈P .Ψ p′[ψ], where condition ψ ∈ P .Ψ is equivalent to ψ : p[ψ] ̸= 0. The lemma
follows after multiplying the resulting inequality with -1 and adding |S|.

Regarding spatial diversity, we can upper bound it using the maximum possible
distance between summary posts and the minimum bounding rectangle (MBR) of all
posts in P .

divS(p ∈ P , S)+ = ∑
p′∈S

maxdist(p′,P), (5.20)

where maxdist(p′,P) returns the maximum distance of the P ’s MBR to point p′.
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5.6 Experimental Evaluation

In this section, we describe our experimental setting and present the results of
our experiments. We start by describing the datasets used in the experiments, the
parameters involved, and the performance criteria used to evaluate the various
methods.

5.6.1 Datasets

For our experimental evaluation, we have used two real-world datasets from Flickr
and Twitter. The first comprises 20 million geotagged images extracted from the
publicly available dataset of Flickr photos released by Yahoo! for research [153]. The
contained images have worldwide coverage and span a time period of 4 years, from
01/01/2010 to 31/12/2013. Each image is associated with about 6 keywords on
average. The second dataset comprises 20 million geotagged tweets. It is the one
used in [34], and is also available online1. Similar to the Flickr dataset, it also has
worldwide coverage. It spans a period of 9 months, from 01/04/2012 to 28/12/2012.
The average number of keywords per post is 5.7.

5.6.2 Performance Measures and Parameters

In our experiments, we compare all methods presented in Section 5.4.2, namely
Baseline (BL), Online Interchange (OI), Oblivious Summarization (OS), and Intra-
Pane Summarization (IP). In addition, for BL, OS, and IP, we also consider their
optimized versions as described in Section 5.5. These are denoted in the results by a
plus sign (e.g., BL+).

To compare the performance of these methods, we examine two criteria. Firstly, we
investigate their efficiency, which is measured as the average execution time required
to update the summary every time the window slides. Secondly, we investigate
the quality of the summaries they produce, by measuring their objective score (see
Definition 5.5). More specifically, we compute this objective score for each summary
a given method produces at every slide of the window and we take their average over
the entire stream. As discussed earlier, computing the optimal summary (i.e., the one
that maximizes the objective function) is practically unfeasible. Thus, to compare
the methods to each other, we use the objective score achieved by BL as a reference
value and we measure the scores of the rest of the methods as a ratio to that.

1http://www.ntu.edu.sg/home/gaocong/datacode.htm

 http://www.ntu.edu.sg/home/gaocong/datacode.htm
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(a) Time vs. window size (m)
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(b) Time vs. pane size (β)
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(c) Time vs. summary size (k)

Fig. 5.1 Execution time – Flickr.

All the algorithms have been implemented in Java and the experiments were
conducted on a server with 64 GB memory and an Intel® Xeon® CPU E5-2640 v4 @
2.40GHz processor, running Debian GNU/Linux 9.0.

To compare the performance of our methods, we process both aforementioned
datasets in a streaming fashion, using the sliding window model, as explained in
Section 5.3. In our experiments, we set the default pane size to β = 4 hours. We have
chosen a rather large value so that the number of posts contained in the resulting
panes is in the order of a few thousands, thus essentially compensating for the fact
that these datasets are small samples of the actual stream of posts in these sources.
Specifically, the average number of objects per pane is about 2,000 for Flickr and
12,000 for Twitter. Moreover, we set the default window size to m = 12 panes and
the default summary size to k = 15 objects.

In addition, we set both weight parameters α (Equation 5.2) and λ (Definition
5.5) to 0.5, thus weighting equally the spatial and textual dimensions, as well as
the two criteria of coverage and diversity. For the IP method, we set the size of
each intra-pane summary to k′ = 15 objects. Finally, for the spatial partitioning used
both in computing the spatial coverage (Equation 5.5), as well as in spatio-textual
partitioning (Section 5.5.1), we use a uniform grid with resolution 64 × 64 cells.

5.6.3 Execution Time

We first examine the execution time of the investigated methods. During these
experiments, we vary: (a) the size of the window, in terms of the number m of panes
it contains; (b) the size of each pane, in terms of its duration β; and (c) the size
of each summary, in terms of the number k of objects it comprises. The respective
results are shown in Figure 5.1 for Flickr and in Figure 5.2 for Twitter. Notice that, in
these plots, logarithmic scale is used on the y axis.
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(b) Time vs. pane size (β)
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(c) Time vs. summary size (k)

Fig. 5.2 Execution time – Twitter.

������

������

������

��

������

������

������

������

������

������

������

�� ��� ��� ��� ���

�
�
��
�
���
�

�
�
�
�
��

�
��
���

�������������������

�� �� �� ��

(a) Quality vs. window size (m)
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(b) Quality vs. pane size (β)
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(c) Quality vs. summary size (k)

Fig. 5.3 Summary quality – Flickr.
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(a) Quality vs. window size (m)
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(b) Quality vs. pane size (β)
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(c) Quality vs. summary size (k)

Fig. 5.4 Summary quality – Twitter.

With respect to the different strategies, BL appears to have the worst performance
in most cases. This is expected, since in this strategy, the previous summary is
discarded and the new one is computed from scratch, taking into account all posts in
the window. The OI and OS methods outperform BL, having a similar performance to
each other. This is because OI constructs the new summary incrementally, discarding
only the expired posts from the previous one, and considering only the newly arrived
posts as candidates. Similarly, in OS, the benefit results from the fact that although
the summary is built from scratch, this is done by only considering the contents of
the new pane and the non-expired posts in the previous summary. Yet, IP achieves an
even better performance, outperforming all other methods in all experiments. In the
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case of IP, although all panes are considered, the candidates from the new summary
are only drawn from the individual summaries of each pane, i.e., from a significantly
smaller pool of posts. Due to this fact, the execution time of IP reduces significantly.

Another important observation concerns the comparison of the performance of
the aforementioned methods with their respective optimized versions, employing
the spatio-textual partitioning and pruning presented in Section 5.5. The differences
here become more apparent in the case of the Twitter dataset, where the amount
of posts per pane is about 5 times larger. In this case, the partitioning and pruning
technique offers a clear benefit to all methods in which it is applicable, achieving a
speedup of about 2 to 5 times.

5.6.4 Objective Score

Next, we investigate the objective score achieved by the different summaries com-
puted by each method. In this set of experiments, we only consider the four different
strategies without distinguishing between the optimized and non-optimized versions
of each one, since the optimization applied in a strategy only affects its execution
time and not the contents of the summary it produces. Moreover, as explained earlier,
in each experiment we use the objective score of BL as reference, and we measure
the objective scores of the rest of the methods as ratios to that. The results are shown
in Figure 5.3 for Flickr and Figure 5.4 for Twitter. As previously, we examine how the
results vary for different values of the window size m, pane duration β, and summary
size k.

In the Flickr dataset, IP achieves the highest score, followed by OI, and both of
them surpass the score of BL. However, all observed differences are rather marginal,
not exceeding 1%. In fact, in Twitter, the situation changes, with IP having the lowest
score in this case, whereas OI still being slightly better than BL. This noted difference
for IP is attributed to the fact that the panes in the case of the Twitter dataset contain a
much larger number of objects, thus relying on the intra-pane summaries to select the
candidates for the new summary incurs some loss. Nevertheless, again the differences
are marginal, implying that in terms of the objective score neither of these strategies
appears to have a clear and significant benefit over the others. Subsequently, this
leads to the conclusion that one can use the methods offering the lowest execution
time without sacrificing the quality of the maintained summary over the stream.
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5.7 Summary

In this chapter, we have addressed the problem of continuously maintaining a spa-
tially and textually diversified summary over a stream of spatio-textual documents.
We adopt the sliding window model by examining successive chunks of the incoming
stream and continuously updating the resulting summary to maximize both the cover-
age and diversity of its contents. We have formally defined the problem, formulating
the criteria for spatio-textual coverage and diversity over the stream of posts, and
investigated different strategies that aim at minimizing the computational cost while
not sacrificing quality. Moreover, we have proposed specific optimizations that can be
applied to further enhance the efficiency of those methods based on spatio-textual
partitioning and pruning of posts. Finally, we have experimentally compared the
performance of our proposed methods using two real-world datasets from Flickr and
Twitter, showing that the proposed optimizations, especially the Intra-Pane Summa-
rization method, can achieve important performance benefits without decreasing the
quality of the summary.





CHAPTER 6

DISCOVERY & EXPLORATION OF LOCALLY TRENDING TOPICS

Until now, we have studied problems dealing with the ad hoc and continuous retrieval
of objects in the spatial, temporal, and textual dimensions. In this and the subsequent
chapter, we exploit the crowdsourced nature of posts to extract patterns, such as
hotspots and associations. We start here by discussing the task of finding and
exploring local hotspots in the form of trending topics.

6.1 Overview

The sheer volume of content posted on social networks, and its inherent redundancy
and noise, makes identifying relevant information or browsing and obtaining an
overview of what is happening, challenging and overwhelming. One solution is to
restrict the amount of incoming posts and focus on more relevant information. This
has been achieved in existing works through research in publish/subscribe systems
[31, 30, 161]. Here, user subscriptions in the form of textual, spatial, and/or temporal
filters are used to continuously filter out posts according to specified criteria, and
either all or a small ranked subset of relevant posts are returned. However, given that
social media content often involves new and emerging topics and events, the user
may not know in advance what is interesting or relevant, and thus may not be able
to specify a suitable geographic area, time period, or keywords for search.

To make it easier for users to get a quick grasp of the most important or interesting
information, a common practice is to detect and present to the users a set of popular
or trending topics (e.g., sets of hashtags in Twitter) that have high frequency (overall,
or currently with respect to the past). However, the popularity of a topic is often
not uniformly distributed across space and time; instead, a given topic may only
be popular within specific geographic regions and over certain periods of time. In



100 | Discovery & Exploration of Locally Trending Topics

fact, recently there has been a lot of interest in finding local topics and events
in Twitter (e.g., [1, 17, 63]). Nevertheless, even if a topic is detected as popular
or trending, the posts belonging to it may still be in the order of hundreds or
thousands. Hence, besides topic detection, generating topic summaries is also of
high importance to let users gain a quick insight into their topics of interest. Similar
to topic detection, topic summarization has also received considerable attention in
recent years [144, 29, 168].

In this chapter, we present µTOP, a system for discovering and exploring locally
trending topics in streams of microblog posts. Each topic is represented by a set of
one or more keywords (e.g., hashtags in the case of Twitter), and is associated with
a spatio-temporal footprint, i.e., a set of geographic regions and time periods over
which this topic is identified to be popular. Thus, the spatio-temporal evolution of
each detected topic is explicitly captured, and can be further explored. In fact, for
each of these spatial regions and time intervals for which a topic is popular, µTOP can
generate a summary of relevant tweets to describe the topic in more detail.

The remainder of this chapter is structured as follows. The next section outlines
our approach and the system architecture, following which Section 6.3 describes in
more detail the sub-systems of µTOP. Some usage examples of our application are
explained in Section 6.5. Finally, Section 6.6 concludes the chapter.

6.2 Approach and System Architecture

The discovery of locally trending topics is based on the approach presented in [135].
This method segments the space into a uniform grid and detects a set of trending
topics in each cell by processing the incoming stream of posts using a sliding window
model. Thus, the topics are generated and monitored across space and time as new
posts arrive and old ones expire, resulting in an evolving spatio-temporal footprint
for each identified topic. To estimate the popularity of a topic, the original approach
in [135] counts the number of tweets associated with the topic. However, as we
explain later in Section 6.2, our approach, on the other hand, employs the number of
distinct users, as opposed to posts, as a measure of a topic’s popularity. This has the
advantage that it filters out false positive topics made popular via repetitive posts by
a single active user or bot.

Moreover, given a topic and its footprint, the system can generate a summary
of relevant tweets. For this purpose, the relevant tweets are first retrieved using
a spatial-temporal-textual filter, and then the top-k ones are selected according to
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Fig. 6.1 Architecture of µTOP.

the criteria of coverage and diversity, following the approach presented in [122]. To
allow for further exploration, each post can be used to discover other posts based
on similarity, by extending the approach presented in [176] to incorporate spatial,
textual, and temporal proximity.

Figure 6.1 presents an overview of the architecture of µTOP, which comprises
the following main components. The storage system, detailed in Section 6.3, is
responsible for ingesting the microblog posts (e.g., from Twitter’s streaming API),
doing some preprocessing (e.g., stemming and stop word filtering), and storing
them in main memory and later on disk. This part also maintains all topics and
their spatio-temporal footprints. In addition to this, µTOP comprises three core data
processing modules: Topic Detection, Topic Summarization, and Post Similarity, which
are also discussed in Section 6.3. Moreover, the Web App, presented in Section 6.4,
consists of the web-based user interface that allows users to issue queries via invoking
the appropriate modules and to visualize their results.
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6.3 System Modules

We now discuss each of the components of µTOP in more detail, starting with some
preliminary definitions that are necessary for our discussion.

6.3.1 Preliminary Definitions

A post is represented as a spatial-temporal-textual object D = ⟨u, loc, t, Ψ⟩, where u
is the identifier of the user making the post, loc = (x, y) is the post’s geolocation, t
is the post’s timestamp, and Ψ is a set of keywords representing the post’s textual
content.

We also need to define textual, spatial, and temporal distance functions between
posts. Given two posts Di and Dj, their textual distance δψ is measured by the Jaccard
similarity between their keyword sets:

δψ(Di, Dj) = 1−
|Di.Ψ ∩ Dj.Ψ|
|Di.Ψ ∪ Dj.Ψ|

.

The spatial and temporal distances are measured, respectively, by the Euclidean
distance d between the posts’ locations and the time difference between the posts’
timestamps. To be able to aggregate distance scores across dimensions, we normalize
spatial and temporal distances to values in the range [0, 1] (notice that δψ ∈ [0, 1]).
For that purpose, we assume that the posts under consideration are enclosed by a
bounding box with diameter length γ and a time interval of length τ. Then, we
define the (normalized) spatial distance δs and temporal distance δt as follows:

δs(Di, Dj) =
d(Di.loc , Dj.loc)

γ
, δt(Di, Dj) =

|Di.t− Dj.t|
τ

.

6.3.2 Storage System

We now explain the indexing strategy adopted by µTOP. To allow for efficient real-time
detection of locally trending topics and the exploration (retrieval, summarization)
of past topics and posts, we adopt a hybrid data indexing structure, involving both
the main memory and the disk. This structure, depicted in Figure 6.2, indexes
along all four attributes, latitude, longitude, time, and text. A 3-dimensional grid
provides access along the first three attributes, while within each cell an inverted
index provides efficient retrieval by keyword.
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Each grid cell has size g× g× β, where g is a fixed arc range (for latitude and
longitude) partitioning the world (or the spatial area of interest) and β is a fixed time
interval. The inverted index of each cell associates each keyword with a list of posts
in that cell that contain it. A slice of the grid in the temporal dimension containing
posts that were published in an interval of β time units (e.g., one hour) is called a
pane. The pane collecting the most recent posts is called the head pane.

The main memory index only stores the latest ω/β panes, and thus indexes posts
that were published within a sliding window of ω time units (e.g., one day) in the
past. This part of the grid is used by the topic detection module (Section 6.3.3). On
the other hand, the disk-based index stores all panes except the head. This index is
used by the topic summarization and the post similarity modules (Sections 6.3.4 and
6.3.5).

Besides this hybrid index structure, the storage system of µTOP includes a reposi-
tory archiving all trending topics, along with their spatio-temporal footprints. The
repository receives the continuous output of the topic detection module and provides
input to the topic summarization module when requested.

6.3.3 Topic Detection

In µTOP, topic detection is based on the work presented in [135]. We briefly describe
the main aspects of the process below.
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To process the incoming stream of posts, a lightweight, in-memory spatial index
comprising a uniform spatial grid is used, as explained in Section 6.3.2. Upon arrival,
each incoming post D is assigned to the corresponding grid cell c according to its
geolocation D.loc. In each cell, the local stream of posts is processed to generate and
maintain locally popular topics with respect to a sliding window W of range ω and
sliding step β.

A topic C is characterized by a set of keywords (e.g., hashtags) C.Ψ and is
associated with the grid cell c and the time window W in which it is detected. The
popularity C.pop of a topic C within the cell c and time window W is determined by
the number of users having posts in c and W that textually match this topic. We say
that a post D matches a topic C if their textual similarity δψ(D.Ψ, C.Ψ) is above a
specified threshold θψ ∈ [0, 1]. The popularity score of a topic is normalized by the
total number of users having posts within the cell c and window W. If an incoming
post does not match any of the existing topics in the current cell and time window,
a new topic is created having as keywords those appearing in this post. Eventually,
those topics with popularity higher than a specified threshold θu ∈ [0, 1] are marked
as locally trending, and are returned.

If the same topic is detected in multiple cells and/or time windows, these are
merged to construct the topic’s spatio-temporal footprint C.F = {(ci, Wi)}. Hence,
this process not only detects locally popular topics, but also explicitly associates each
one with the exact geographic region(s) and time period(s) within which it is popular.

6.3.4 Topic Summarization

Once topics are detected, the next step is to get a summarized overview of each topic.
A summary of a topic is already provided by the set of keywords defining it and its
spatio-temporal footprint. However, a list of representative posts may also be needed
in order to describe the topic in more detail.

For this purpose, µTOP can generate a summary, comprising k posts, for any part
of the topic’s spatio-temporal footprint. In other words, it can compute a set of k
representative posts for any region and time window in which the given topic has
been popular. The size of each summary, i.e., the value of the parameter k, can be
specified by the user, and can be different for each summary.

The selection of the k representative posts to be included in the summary is based
on the criteria of coverage and diversity. In particular, each summary is constructed
by executing a Coverage & Diversity Aware Top-k Spatial-Temporal-Keyword (kCD-STK)
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query, following the approach presented in [122]. We outline the main aspects of
this process next.

Formally, a kCD-STK query is defined by a tuple of the form Q = ⟨R, T, Ψ, k⟩,
where R is a spatial region, T is a time interval, Ψ is a set of keywords, and k is the
number of results to return. In our case, the filters R, T, and Ψ are derived from
the topic’s keyword set and spatio-temporal footprint, while k is determined by the
desired summary size. The distinguishing aspect of the kCD-STK query is that instead
of selecting the top-k posts ranked by relevance, it selects a more representative set
of k posts using the criteria of coverage and diversity, which are defined below.

Let DF denote the set of all posts satisfying the spatial, temporal, and textual
filters R, T, and Ψ in the query Q. The coverage of a post D ∈ DF is defined as the
ratio of relevant posts that are within spatial distance θs and temporal distance θt

from D, i.e.,

cov(D,DF) =
|{D′ ∈ DF : ds(D, D′) ≤ θs ∧ dt(D, D′) ≤ θt}|

|DF|
.

This is a measure of how representative this particular post is with respect to other
relevant posts. Moreover, this is extended to measure the coverage of a set of selected
posts R ⊆ DF of size k:

cov(R,DF) =
1
k ∑

D∈R
cov(D,DF).

Essentially, the criterion of coverage favors the selection of posts from locations that
contain a large number of relevant posts.

On the other hand, to avoid a high degree of redundancy, the criterion of diversity
is used to increase the dissimilarity among the selected posts. Specifically, the diversity
of a pair of posts Di, Dj ∈ DF is defined as:

div(Di, Dj) = α · ds(Di, Dj) + (1− α) · dt(Di, Dj),

where α ∈ [0, 1] is an adjustable weight parameter between the spatial and the
temporal distances. Furthermore, the diversity of a set of posts R ⊆ DF of size k is
calculated as:

div(R) = 1
k · (k− 1) ∑

Di,Dj∈R,i ̸=j
div(Di, Dj).
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Based on the above, the kCD-STK query returns a set of k postsR∗ that maximizes
a combined measure of coverage and diversity:

R∗ = arg max
R⊆DF,|R|=k

{(1− λ) · cov(R,DF) + λ · div(R)},

where λ ∈ [0, 1] is a parameter determining the trade-off between maximum coverage
(λ = 0) and maximum diversity (λ = 1).

6.3.5 Retrieving Similar Posts

The above process provides a flexible and adjustable way to get a summary of
representative and diverse posts for a topic across the whole extent of its spatio-
temporal footprint. Then, the user can further drill down into the topic by selecting
any of the posts in the presented summary that seems interesting and requesting
other similar posts to it. That is, the posts contained in each summary can serve as
seeds for further exploration of the topic’s contents.

This is performed by executing a top-k spatial-temporal-keyword query Q =

⟨loc, t, Ψ, k⟩, where loc, t, and Ψ are, respectively, the location, the timestamp, and
the keyword set of the selected post D, and k is the number of similar posts to be
retrieved. Here, Q can be regarded as an extension of the standard top-k spatial
keyword query to incorporate temporal information. Thus, in this case, the query
returns the top-k results ranked by relevance determined by an aggregate distance
score δ combining the partial distance scores in the spatial, temporal, and textual
dimensions. The distance score used in µTOP is shown below:

δ(D, D′) = ws · δs(D, D′) + wt · δt(D, D′) + wψ · δψ(D, D′)

where ws ∈ [0, 1], wt ∈ [0, 1], and wψ = 1− ws − wt are weights determining the
relative importance of each distance score.

6.4 User Interface

The user interface of our prototype is shown in Figure 6.3. The map continuously
depicts locally trending topics as discovered by the topic detection module. Topics
are shown as stars, with brightness indicating popularity. Hovering over a star reveals
the topic’s spatial footprint, whereas clicking on it shows its keywords together with
two options (Figure 6.6 left). The first option is to invoke the post similarity module
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Fig. 6.3 The user interface showing the results of a summarization request.

to retrieve a ranked list of similar posts (in terms of spatial proximity, time closeness,
and textual relevance). The resulting posts are displayed in a pop-up window on the
right, and also as orange dots on the map and on the timeline located at the bottom.

The second option for a locally trending topic is to explore its spatio-temporal
footprint by invoking the topic summarization module. The sidebar on the left displays
a form detailing the spatial and temporal ranges for the summary, as well as the
keywords and the number of returned results. The default number of results returned
is ten. Naturally, the user can specify her own summarization request by changing
the values in the form. The summarization results are listed in a pop-up window
on the right, where the user can filter them by the top keywords shown at the top
(Figure 6.4(b)). The spatial and temporal distributions of the results are shown on the
map and on a timeline at the bottom using orange bullets, respectively, as depicted

(a) Timeline (selected range in orange). (b) Top keywords (selected keywords in orange).

Fig. 6.4 Filtering summarization results by top keywords and temporal range.
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in Figure 6.5. The height of the purple bars in the timeline indicates the average
coverage in the corresponding temporal range. Similarly, the purple rectangles on
the map illustrate the average coverage in the corresponding regions. The darker the
color, the higher the coverage in the area.

(a) Spatial distribution.

(b) Temporal distribution.

Fig. 6.5 Spatial and temporal distributions of summarization results.

Further exploration of the topic summarization results is provided by two means.
First, the timeline allows the user to filter the results by selecting a temporal sub-range
(Figure 6.4(a)). This issues a new topic summarization request using the sub-range
and updates the results. Second, by clicking on a result on the map, besides showing
its content and a link to the post, µTOP displays two additional links (Figure 6.6 right).
The one issues a retrieve similar posts request using the result’s attributes, while the
other allows the user to further explore the highlighted spatio-temporal region issuing
a new topic summarization request. Again, the results are shown on the map and on a
timeline. In the case of a post similarity request, the timeline additionally shows the
query timestamp as a gray vertical line. Finally, we can browse through the executed
queries using the history at the bottom of the sidebar (Figure 6.3).
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Fig. 6.6 A locally trending topic and a post summarizing it.

6.5 Demonstrating Example

To demonstrate the efficiency and effectiveness of µTOP, tweets are continuously
being collected from the public Twitter Streaming API1; the current dataset contains
over 80 million geotagged tweets with worldwide coverage. The topics are monitored
on a stream arriving at an average rate of approximately 500,000 tweets per day.
A live demo2 of µTOP is available online, accompanied by a video3 explaining and
demonstrating its functionality.

Next, we outline a typical usage scenario for demonstration. Initially, the user
interface shows locally trending topics on a map, depicted by star icons. Clicking on
a star icon reveals the topic’s hashtags, for example “#trump #president”, as shown
in Figure 6.6. The Explore region link is then used to summarize the topic. It issues a
topic summarization request that displays the resulting tweets in a list, on the map,
and on the timeline. Alternatively, the user may enter query parameters manually
using the form in the sidebar on the left, for example, to increase the spatial area
and time interval. The same form can also be used to directly issue a post similarity
request by unchecking the Range Query option and specifying only a single location
and point in time.

At the top of the result list a set of keywords is shown that are popular in the
result set. This reveals new keywords that are frequently used together with the
query keywords Trump and President. For example, Clinton is used in 20% of the
results. We can click on it to view only those posts that contain this word.

When a topic is summarized, the average coverage is shown as purple blocks
and bars in addition to the results. This allows to easily identify spatial regions and
time intervals where the topic is popular. For example, Figure 6.3 shows that the

1https://dev.twitter.com/streaming/public
2http://mtop.imp.fu-berlin.de
3https://youtu.be/OmXJUGndaQA

https://dev.twitter.com/streaming/public
http://mtop.imp.fu-berlin.de
https://youtu.be/OmXJUGndaQA
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topic is popular around New York City and between the 18th and 22nd of August.
This spatial region and time interval can be further explored by issuing another topic
summarization request, for example, by moving the blue markers on the map or by
selecting a temporal range on the timeline. We can return to the previous result set
by clicking the back-arrow button in the Query History, shown in the sidebar.

Instead of summarizing a particular topic, we can also explore a topic by invoking
a post similarity search without limiting the spatial and temporal range. By clicking
the Find similar link, a list of posts similar in spatial, temporal, and textual content is
compiled.

6.6 Summary

In this chapter, we have presented µTOP, a system for detecting and exploring locally
trending topics in microblog posts based on spatial, temporal, and textual criteria.
Using a sliding window over an incoming stream of posts, µTOP detects locally
trending topics, and associates each one with a spatio-temporal footprint. Then,
for each spatial region and time period in which a certain topic is trending, the
system generates a summary of the relevant posts, by selecting top-k posts based
on the criteria of coverage and diversity. µTOP includes a Web-based user interface,
providing a comprehensive way to visualize and explore the detected topics and their
spatio-temporal summaries via a map and a timeline. The functionality of the system
has been demonstrated using a continuously updated dataset containing more than
80 million geotagged tweets and by going through a typical usage scenario.



CHAPTER 7

MINING ASSOCIATED LOCATION SETS

In the previous chapter, we presented a system for the detection and exploration
of trending topics in social networks. Here, we utilize posts for a different type of
analysis, namely the discovery of associations between places.

7.1 Overview

In this chapter, we seek to find Socio-Textual Associations (STAs) among locations that
are strongly supported by a corpus of geotagged posts. Given a set of keywords, we
say that a group of locations are socio-textually associated if a user has posts near
each of these locations and the combined keyword set of these posts contains all
query keywords. The more people make an association, i.e., the stronger its support
in the corpus is, the likelier it is that there exists a latent thematic connection among
the locations.

Compared to previous works that search for connections among a group of
locations, our work has the distinguishing and novel aspect that it considers social
and textual criteria in unison to define associations. The social condition ensures
that the locations co-occur in user trails, while the textual requirement ensures that
users have made posts that are collectively relevant to the query keywords at these
locations. In location-based services, given a complex information need (typically
expressed by a query comprising multiple keywords) it is often possible that no single
object or location satisfies all query keywords. To address this, Collective Spatial
Keyword (CSK) queries have been proposed and studied in the literature (refer to
Section 2.2.2 for an overview). These queries return sets of locations that collectively
cover all query keywords and are spatially close to each other. Thus, the locations are
grouped according to textual criteria (keyword coverage) as well as spatial criteria
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(spatial proximity). In other words, for a given a set of keywords, the optimization
objective is an aggregate spatial distance, instead of some evidence-based frequency
metric, and the strength of the association among a valid group of locations (i.e., one
that covers all keywords) is defined by spatial proximity alone. The intuition behind
this grouping is that users are more likely to visit locations that are close to each other.
Although this assumption is true in many cases, especially when users have a limited
time budget, it fails to establish a thematic connection evidenced by users’ behavior.
For example, the fact that there is a restaurant next to an art exhibition venue, does
not necessarily imply that art-loving people would find this particular restaurant
attractive, unless such a connection is indeed supported by a large number of posts,
from the same users, containing, for example, both keywords “art” and “restaurant”
around these locations. As a matter of fact, if a strong thematic association among
nearby locations exists, our problem formulation will certainly capture it.

In another line of work (e.g., [102, 98, 147, 18, 169, 181]), which we term
Location Patterns (LP), the objective is to determine groups, patterns, or sequences of
locations (or regions) that are frequent in terms of purely social criteria, i.e., how
many people support them. Since the process ignores the textual aspect, the identified
locations are not semantically characterized or distinguished, and thus there is no
mechanism to explore or exploit the resulting groups under a thematic context. For
instance, this limits queries to finding the overall most frequent sequence of locations
in a given area or the most frequent POI to visit next. Even though one could easily
enrich locations with textual information after the mining process, say to support
recommending the most frequent restaurant to visit next, the locations remain only
socially associated, and not thematically, because the computed frequencies still
ignore the textual aspect.

A rather straightforward way to associate locations with keywords according to
users’ behavior is based on rank aggregation [53]. For each keyword, consider a
ranking of locations according to the keyword popularity, i.e., the number of posts
that contain it. Then, to derive a group of locations that is most associated with a set
of keywords, one can simply collect the most popular location for each keyword. This
approach, which we call Aggregate Popularity (AP), has the advantage that individual
locations are strongly associated with their respective keywords, but the location
set as a whole may lack a strong socio-textual association. Indeed, each location
may be popular for a different type of users, hence there may be no significantly
sized population for which all these locations are popular. Exactly as in the case
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Table 7.1 Categorization of existing work and ours (STA).

Line of Work Information Exploited Optimization
Spatial Textual Social Objective

Location Patterns (LP) [18, 98, 102, 147, 169, 181] × × frequency
Collective Spatial Keyword (CSK) [21, 174] × × proximity
Aggregate Popularity (AP) × × × popularity
Socio-Textual Associations (STA) × × × frequency

of proximity-based associations, if a strong thematic association among popular
locations exists, our socio-textual approach will discover it.

Another differentiating trait of our work is that we consider the textual information
that is included in the posts themselves and do not rely on an external categorization
of locations or POIs. The reason is that we seek to exploit the wisdom of the crowd to
also determine textual relevance, in addition to quantifying the strength of derived
associations. Nonetheless, our methods can be readily adapted to take into account
external textual descriptions as well.

To better frame our contribution with respect to previous works, Table 7.1 sum-
marizes all approaches according to the type of information they exploit, i.e., spatial,
textual, or social (user id), as well as the objective they optimize for. Mining location
patterns does not exploit textual information, and seeks for groups of locations that
maximize the frequency with which they co-appear among users’ trails. On the other
hand, collective spatial keyword queries ignore the social aspect, and look for location
sets that maximize their proximity (to each other and/or to a target location) subject
to the constraint that they cover given keywords. An approach based on aggregating
popularity considers all types of information available, and strives to include locations
that are individually popular for some keyword and collectively cover given keywords.
Our work also considers all types of information, but optimizes for a frequency metric
that counts co-appearances of locations under a certain theme/topic/context, which
is defined by the given keywords.

As an example, consider a search for locations in Berlin using the keywords “wall”,
“art”, and “restaurant”. Figure 7.1 depicts the results returned by different alternative
approaches for combining locations to satisfy these keywords. Our socio-textual based
approach returns the following location set as the top result (star-shaped markers): ⟨
“East Side Gallery”, “Hackescher Markt” ⟩. The former is a portion of the Berlin wall
covered with paintings, hence hosting many posts with the keywords “wall” and “art”.
The latter is a popular square in the city center, hosting also a series of restaurants
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Fig. 7.1 Example of location sets retrieved for keywords “wall”, “art”, and “restaurant”
in Berlin.

frequently visited by tourists and travelers. As it turns out, these locations are neither
the most popular ones for each individual keyword (see locations with circle-shaped
markers, returned by the AP approach) nor close to each other. Yet, they reveal an
interesting association, hinting to the fact that many travelers that have visited or
plan to visit the Wall, being interested in art, tend to also prefer restaurants located
at Hackescher Markt.

Furthermore, a search based on CSK query identified around 350 singleton
locations, for which there exists at least one user with posts containing all query
keywords. One of these results is illustrated in Figure 7.1 (square-shaped marker).
It is not straightforward how to select the best among these results; in fact, several
of them may even be due to outliers or noise, which are inherent to crowdsourced
content. Since a CSK query does not take frequency into account, it is better suited
for cases where the query terms refer to (curated) POI categories, while being error
prone and sensitive to outliers when searching on raw tags. On the other hand, the
top result based on AP consists of Brandenburg Gate (for “wall”), a famous monument
close to where the Berlin wall used to pass; the intersection of Gneisenaustr. and
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Mehringdamm streets (for “restaurant”), a place with many popular restaurants; and
Stattbad Wedding (for “art”), a former well-known art venue. Each of these locations
is popular for the respective query keyword, but they do not represent any strong
shared interest between the people visiting them.

Existing algorithms for related problems cannot be used to extract socio-textual as-
sociations. Although our problem seems similar to mining frequent location patterns,
the requirement for the locations to collectively cover certain keywords significantly
complicates the problem, as we discuss in Section 7.4. Specifically, our notion of
support (frequency) for a location set does not exhibit the anti-monotonicity property
necessary to apply an Apriori-like algorithm [2]. Briefly, such a property would allow
for early pruning of location sets that cannot be extended to produce valid results.
Practically, the implication is that a naïve algorithm for even a relatively small-sized
city-level dataset, with around 20,000 distinct locations, would need to investigate
more than 1012 sets of three locations.

Nevertheless, by studying the problem characteristics, we are able to introduce
a weaker notion of support that (1) exhibits anti-monotonicity, and (2) is an upper
bound on the actual support of location sets. Armed with these two properties,
we then introduce a methodology to efficiently identify location sets with strong
socio-textual associations. Moreover, we study three different implementations of
this methodology, each having its own merits. In the simplest, we assume that no
pre-processing is allowed and that no index structure is available. We then present a
method based on a simple off-the-shelf inverted index, and demonstrate how it can
significantly speed up processing. The only caveat is that the association of locations
with nearby posts is assumed to be known beforehand. Finally, leveraging the recent
advances in spatio-textual indexes, we devise an algorithm that exploits their general
functionality. In particular, we consider the state-of-the-art I3 index [175], which
we also extend further to derive an even faster approach. Compared to the inverted
index approach, the spatio-textual index methods allow to define the association of
locations with nearby posts dynamically, which causes an overhead in execution time
but provides higher flexibility.

In addition, we consider the problem of ranking socio-textually associated location
sets instead of relying on a user-specified minimum support threshold. Thus, we
directly address the problem of identifying the k most strongly associated location
sets. We describe a general methodology, and then propose algorithms that build
upon their threshold-based counterparts.

The main contributions of this chapter are summarized below:
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• We introduce and formally define the problem of finding socio-textually associ-
ated location sets.

• We study the problem characteristics and introduce a general framework based
on a weaker support measure, which satisfies the desirable anti-monotonicity
property.

• We present a basic algorithm, and two efficient algorithms that exploit an
inverted index and a spatio-textual index, respectively, to significantly speed up
computation.

• We consider the ranking variant of the problem and discuss the necessary
adaptations to all proposed algorithms.

• We present results from an experimental evaluation using real-world data from
geolocated Flickr photo trails in three major cities.

The remainder of this chapter is organized as follows. In the next section, we
present related work on mining mining frequent locations from geotagged posts.
Then, we formally define the problems in Section 7.3 and study their characteristics
in Section 7.4. Following this analysis, we present our algorithms in Section 7.5 and
extend them to the top-k variant in Section 7.6. Finally, Section 7.7 presents our
experimental evaluation and Section 7.8 concludes the chapter.

7.2 Additional Relevant Background

Having provided an overview of our problem, we now discuss some of the relevant
works in the area of mining frequent locations from geotagged posts. There are
several approaches that analyze trails of geotagged posts, mainly photos, to extract
interesting Location Patterns (LP), such as scenic routes or frequently traveled paths.
A typical methodology is to use a clustering algorithm to extract landmark locations
from the original posts, and then apply sequence pattern mining.

In [102], clustering is first used to identify POIs; then, association rule mining
is applied to extract associative patterns among them. In [98], each photo is first
assigned to a nearby POI, whereas, for the remaining ones, a density-based clustering
algorithm is applied to generate additional locations. Then, a travel sequence is con-
structed for each user and sequence patterns are mined from these individual travel
sequences. In [147], kernel vector quantization is used to find clusters of photos;
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then, routes are defined as sequences of photos from the same user and patterns are
revealed by applying hierarchical clustering on routes using the Levenshtein distance.
In [18], a trajectory pattern mining algorithm is applied on geotagged Flickr photos
to identify frequent travel patterns and regions of interest. In [148], a clustering
method is applied on geotagged photos to identify and rank popular travel landmarks.

Geotagged photos have been used to measure the attractiveness of road segments
in route recommendation. A tree-based hierarchical graph is used in [180] to
infer users’ travel experiences and interest of a location from individual sequences.
Considering the transition probability between locations, frequent travel sequences
are identified. Ranking trajectory patterns mined from sequences of geotagged photos
is investigated in [169]. The mean-shift algorithm extracts locations from the original
GPS coordinates of the photos; then, the PrefixSpan algorithm identifies the frequent
sequential patterns, which are ranked based on user and location importance. In
[181], density-based clustering is used to identify regions of attractions from trails
of geotagged photos; then, the Markov chain model is applied to mine transition
patterns among them.

Other efforts have focused on automatic trip planning or personalized scenic
route recommendations based on geotagged photo trails, taking into account user
preferences, current or previous locations, and/or time budget (e.g., [113, 149]).
In [45], individual photo streams are integrated into a POI graph and itineraries
are constructed based on POI popularity, available time, and destination. In [118],
users’ traveling preferences are learned from their travel histories in one city, and
then used to recommend travel destinations and routes in a different city. In [100],
a set of location sequences that match the user’s preferences, present location, and
time budget are computed from individual itineraries. From a different perspective, a
Bayesian approach is applied in [11] to test different hypotheses about how photo
trails are produced. Various assumptions are assessed, e.g., that users tend to take
photos close to the city center, near POIs, close to their previous location, or a mixture
of these. Finally, in a different direction, a classification method for predicting the
location of photos based on visual, textual, and temporal features is presented in
[43]. Then, these photos are used to automatically identify places that people find
interesting. Furthermore, the proposed method selects representative photos to
describe places.

Similar to the works presented above, we also select locations that appear fre-
quently in users’ posts. However, in our case these locations should be strongly
associated with a given set of keywords, a requirement which complicates the search.
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7.3 Model and Definitions

Assume a database of posts P made by users U . Each post p ∈ P is a tuple
p = ⟨u, ℓ, Ψ⟩, where p.u ∈ U is the user that made the post, p.ℓ = (lon, lat) is the
geotag (location) of the post, and p.Ψ is a set of keywords that characterize it. We
use Pu to denote all posts of user u, i.e., Pu = {p ∈ P : p.u = u}. Furthermore,
assume a database of locations L. These may correspond to the posts’ locations or,
for generality, may also be defined independently of P . For instance, one may use
a POI database to populate L, or apply a clustering algorithm on the posts’ geotags
and then construct L from the cluster centroids. Thus, we reserve the term location
for a member of L and refer to a post’s location as its geotag. Table 7.2 summarizes
the most important notation.

Locations are the principle objects in our problem. We seek to identify sets of
locations that are strongly associated with a set of keywords. To define this association,
we first introduce the concepts of locality and (textual) relevance for a post.

Definition 7.1 (Local Post). A post p is local to location ℓ if the post’s geotag is within
distance ϵ to ℓ, i.e., if d(p.ℓ, ℓ) ≤ ϵ, where d is a distance metric (e.g., Euclidean).

Definition 7.2 (Relevant Post). A post p is relevant to keyword ψ if the post’s keyword
set contains ψ, i.e., if ψ ∈ p.Ψ.

Posts associate locations with keywords. These associations are bestowed by
users themselves, as opposed, for example, to a specific POI categorization made
by a particular source; thus, they capture the wisdom of the crowd. To model the
relationships between users’ posts, locations, and keywords, we introduce a bipartite
graph, where the two types of vertices correspond to keywords and locations, while
edges correspond to users’ posts.

Definition 7.3 (Association Graph). The Association Graph is a bipartite graph G =

(V , E), where V = Ψ ∪ L and E ⊆ Ψ×L, such that an edge e = (ψ, ℓ) exists iff there
exists at least one post p which is local to ℓ and relevant to ψ; moreover, e is labeled with
the set of users that have made such posts.

Figure 7.2 shows a running example with the posts of five users u1, . . . , u5 around
three locations ℓ1, ℓ2, ℓ3, containing two keywords ψ1, ψ2. Post pij denotes the j-th
post of the i-th user. For instance, post p12 = ⟨u1, ℓ2, {ψ1, ψ2}⟩ of user u1 is local to
location ℓ2 and relevant to keywords ψ1 and ψ2. The resulting Association Graph is
depicted in Figure 7.3.
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Table 7.2 Summary of notation for STA.

Symbol Definition

p, P post, database of posts
u, Pu user, posts of user
ℓ, L, L location, set of locations, database of locations
ψ, Ψ keyword, set of keywords
ULΨ set of users supporting (L, Ψ)
ULΨ̃ set of users weakly supporting (L, Ψ)
UΨ set of users relevant to Ψ

sup(L, Ψ) support of (L, Ψ)
w_sup(L, Ψ) weak support of (L, Ψ)
rw_sup(L, Ψ) relevant and weak support of (L, Ψ)

σ support threshold

The association between a keyword and a location is explicit and its strength
can be quantified by the number of users making it. For example, three users have
associated keyword ψ1 with location ℓ3 in the running example. On the other hand,
the association between sets of keywords and sets of locations is not immediately
apparent, e.g., what the textual description of the location set {ℓ1, ℓ2} should be. If it
is simply the set of keywords that have an edge towards the location set, then how
do we quantify its strength if different users have made different associations? The
location set should be strongly associated with a set of keywords not because there
exist edges with multiple users in the Association Graph, but because there exists a
large number of users that agree on this association. Therefore, the key question to
answer is when a user supports an association between a location set and a keyword
set.

Definition 7.4 (Supporting User). A user u supports the association between a location
set L and keyword set Ψ, denoted as u ∈ ULΨ, if:

• for each keyword ψ ∈ Ψ, the user has made a post relevant to ψ and local to a
location ℓ′ ∈ L, i.e., every ψ ∈ Ψ is connected via a u-labeled edge to some ℓ′ ∈ L;
and

• for each location ℓ ∈ L, the user has made a post local to ℓ and relevant to a
keyword ψ′ ∈ Ψ, i.e., every ℓ ∈ L is connected via a u-labeled edge to some ψ′ ∈ Ψ.

Hence, a user supports association (L, Ψ) if her posts connect each keyword in Ψ
to some location in L and, vice versa, each location in L to some keyword in Ψ. This
implies a tight coupling between all keywords and all locations, according to the user.



120 | Mining Associated Location Sets

Locations
Users ℓ1 ℓ2 ℓ3

u1 p11 : {ψ1} p12 : {ψ1, ψ2} p13 : {ψ1}
u2 p21 : {ψ1} p22 : {ψ1}
u3 p31 : {ψ2} p32 : {ψ1} p33 : {ψ1}
u4 p42 : {ψ2} p43 : {ψ1}
u5 p51 : {ψ1, ψ2}

L = {ℓ1, ℓ2}, Ψ = {ψ1, ψ2}
ULΨ = {u1, u3}, ULΨ̃ = {u1, u2, u3}

UΨ = {u1, u3, u4, u5}, UL̃Ψ = {u1, u3, u5}
sup(L, Ψ) = 2, w_sup(L, Ψ) = 3, rw_sup(L, Ψ) = 2

Fig. 7.2 Running example.

ψ1

l1

{u1,u2,u5} l2

{u1,u2,u3}

l3{u1,u3,u4}

ψ2 {u3,u5}

{u1,u4}

Fig. 7.3 Association Graph for the running example.

An association extracted from a user’s posts between a keyword set and a location
set could be arbitrary. After all, the content of a post is not always related to the
location where it was made, and crowdsourced content is known to be characterized
by errors and noise. Hence, an association acquires credence by the number of
users supporting it. Accordingly, we use this to measure the strength of a keywords-
locations association.

Definition 7.5 (Support). The support of an association between a location set L and
keyword set Ψ is the number of users supporting (L, Ψ), i.e., sup(L, Ψ) = |ULΨ|.
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Returning to our example, user u1 supports the location set L = {ℓ1, ℓ2} and
keyword set Ψ = {ψ1, ψ2}. For instance, post p11 (resp. p12) is relevant to ψ1 (resp.
ψ2) and local to some location among L; hence the first condition is satisfied; similarly,
the second condition is also satisfied. It is not hard to see that the conditions are also
satisfied for user u3. Therefore, sup(L, Ψ) = 2.

We can now formally state the objective of this work. Given a set of keywords, we
formulate two variants, one that retrieves all associations above a support threshold,
and one that retrieves the k most strongly supported associations.

Problem 7.1 (Frequent Socio-Textual Associations). Given a keyword set Ψ and a
support threshold σ, identify all the location sets, up to cardinality m, that have support
above σ.

Problem 7.2 (Top-k Socio-Textual Associations). Given a keyword set Ψ, identify k
location sets, up to cardinality m, that have the highest support.

The restriction on the cardinality of the location set is because, as explained in
Section 7.4, adding more locations can increase the support of the set.

7.4 Observations and Approach

Our approach is based on some key observations regarding the intrinsic characteristics
of the studied problems. In fact, the stated problems reminisce the frequent itemset
problem; however, the key difference here is that the introduced support function
does not have the necessary anti-monotonicity property which allows for applying
the Apriori principle. Given two sets X, Y, this property states that if X ⊆ Y, then
sup(X) ≥ sup(Y). In other words, adding more items to a set cannot increase its
support. However, the support introduced in Definition 7.5 does not exhibit this
property.

Theorem 7.1. The support of a location set L and a keyword set Ψ is not anti-monotonic
with respect to the location set, i.e., there exist two location sets L ⊆ L′ and a keyword
set Ψ, such that sup(L, Ψ) < sup(L′, Ψ).

Proof. We prove via an example. Assume three keywords, four locations, and two
users who have made posts in exactly those locations, as shown below:

ℓ1 ℓ2 ℓ3 ℓ4

u1 ψ1 ψ2 ψ3 ψ1

u2 ψ3 ψ1 ψ1 ψ2
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Consider the keyword set Ψ = {ψ1, ψ2, ψ3}. Notice that only user u1 supports
location set L = {ℓ1, ℓ2, ℓ3}, i.e., sup(L, Ψ) = 1. On the other hand, both users
support location set L′ = {ℓ1, ℓ2, ℓ3, ℓ4}, i.e., sup(L′, Ψ) = 2. In fact, any 3-location
set in this example has support at most 1.

As a matter of fact, the support of a location set and a keyword set can increase
or decrease with respect to the location set. Despite this negative result, we devise an
efficient filter-and-refine approach, where the filtering step exploits a weaker support
measure.

Definition 7.6 (Weakly Supporting User). A user u weakly supports a given location
set L and keyword set Ψ, denoted as u ∈ ULΨ̃, if for each location ℓ ∈ L, the user has
made a post local to ℓ and relevant to a keyword in Ψ.

The difference with respect to Definition 7.4 is that only the second condition
applies. In other words, in the Association Graph, there must exist edges associating
each one of the locations in L with keywords from Ψ, but without necessarily involving
all keywords in Ψ. Accordingly, we define the notion of weak support.

Definition 7.7 (Weak Support). The weak support of a given location set L and
keyword set Ψ is the number of users weakly supporting (L, Ψ), i.e., w_sup(L, Ψ) =

|ULΨ̃|.

In our example, user u2 weakly supports (L, Ψ), where L = {ℓ1, ℓ2} and Ψ =

{ψ1, ψ2}. For both locations, u2 has local posts (p21 and p22) that are relevant to
at least one keyword (ψ1). In addition, users u1, u3 also weakly support the same
location set and keyword set. On the other hand, u4 and u5 do not, as they do not
have posts local to both locations. Therefore, w_sup(L, Ψ) = 3.

Our filter-and-refine approach hinges on two properties of the weak support. The
first is its anti-monotonicity, while the second is that it provides an upper bound for
the support of an association.

Lemma 7.1. The weak support of a location set and a keyword set is anti-monotonic
with respect to the location set, i.e., for any two location sets L′ ⊆ L and keyword set Ψ,
it holds that w_sup(L′, Ψ) ≥ w_sup(L, Ψ).

Proof. We show that any user u that does not weakly support (L′, Ψ) cannot weakly
support (L, Ψ). Assume otherwise, meaning that for each location in L there exists a
post of u that is local to that location and relevant to the set Ψ. Trivially, this property
also holds for any location in L′ ⊆ L. Therefore, u must also support (L′, Ψ) — a
contradiction.
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Lemma 7.2. The support of location set L and keyword set Ψ is not greater than their
weak support, i.e., sup(L, Ψ) ≤ w_sup(L, Ψ).

Proof. We show that any user u that supports (L, Ψ) also weakly supports (L, Ψ). As
per Definition 7.4, u has made a post local to each location in L and relevant to a
keyword in Ψ (second condition). Therefore, the condition of Definition 7.6 applies
and u must also weakly support (L, Ψ).

Returning to the example, users u1, u2, u3, u5 weakly support (L′, Ψ), where L′ =
{ℓ1}. Hence, as per Lemma 7.1, w_sup(L′, Ψ) ≥ w_sup(L, Ψ). Moreover, as per
Lemma 7.2, we have seen that the weak support of (L, Ψ) is one more than its
support. Based on these lemmas, we can derive the following important property.

Theorem 7.2. If the weak support of a location set L and a keyword set Ψ is less than
σ, then the support of any location set L′ ⊇ L and Ψ cannot be more than σ.

Proof. The premise suggests that σ > w_sup(L, Ψ). From Lemma 7.1 we have
that w_sup(L, Ψ) ≥ w_sup(L′, Ψ), while from Lemma 7.2 we get w_sup(L′, Ψ) ≥
sup(L′, Ψ). Putting all three inequalities together we get σ > sup(L′, Ψ), i.e., the
antecedent.

This result leads us to the following filter-and-refine strategy. Similar to the candi-
date generation step of the Apriori algorithm, location sets of increasing cardinality
are constructed. Then, the weak support of the set is counted, and if this is below the
threshold, the set is filtered out. At the end of entire process (when set cardinality
reaches m), the refinement step is performed by explicitly counting the support of all
surviving location sets.

Still, this approach could be inefficient, producing many false positives. It is
possible that the support of a location set is below the threshold even though its
weak support is above the threshold. Its support may even be zero if there exists no
user that has posts covering all keywords. Such a location set cannot be pruned by
Theorem 7.2. Following our example, consider location set L = {ℓ1, ℓ2}, keyword
set Ψ = {ψ1, ψ2}, and assume that only user u2 exists. In this case, w_sup(L, Ψ) = 1,
but sup(L, Ψ) = 0, since there exists no post from u2 relevant to ψ2. Motivated by
this, we seek additional ways to identify location sets that cannot have high support.
We first define the notion of a relevant user.

Definition 7.8 (Relevant User). We say that a user u is relevant to a given keyword set
Ψ, and denote as u ∈ UΨ, if for each keyword ψ ∈ Ψ, the user has made a post relevant
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Fig. 7.4 Set relationships between supporting, weakly supporting, and relevant users
for the association between location set L and keyword set Ψ.

to ψ, i.e., the Association Graph contains an edge that is adjacent to ψ and includes u in
its label.

Notice that user u2 is not relevant to Ψ = {ψ1, ψ2}. The next result shows that if
we restrict the set of weakly supporting users to include only relevant users, we can
still define a pruning rule.

Theorem 7.3. If the number of relevant users that weakly support a location set L and
a keyword set Ψ is less than σ, then the support of any location set L′ ⊇ L and Ψ cannot
be more than σ.

Proof. Recall that UΨ, ULΨ̃ denote the set of relevant users and weakly supporting
users, respectively. Then, the theorem assumes that |UΨ ∩ ULΨ̃| < σ. From (the proof
of) Lemma 7.1, we have that ULΨ̃ ⊇ UL′Ψ̃. Therefore, UΨ ∩ ULΨ̃ ⊇ UΨ ∩ UL′Ψ̃, and
thus |UΨ ∩ ULΨ̃| ≥ |UΨ ∩ UL′Ψ̃|. From (the proof of) Lemma 7.2, any user u that
supports (L′, Ψ) must also weakly support (L′, Ψ). In addition, u must be relevant
to Ψ due to the first condition of Definition 7.4. Hence, |UΨ ∩ UL′Ψ̃| ≥ sup(L′, Ψ).
Combining the two derived inequalities and the theorem assumption, we derive that
sup(L′, Ψ) < σ.

This result improves upon our filter-and-refine strategy, by allowing us to early
prune a location set that cannot have support above σ, even though its weak support
might be above σ.

A better way to understand the relation between the sets of supporting ULΨ,
weakly supporting ULΨ̃, and relevant UΨ users of a location set and keyword set
(L, Ψ) is to draw a Venn diagram. Figure 7.4 depicts these sets and also includes for
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completeness their dual sets drawn with dashed lines (discussed in Section 7.5.2). We
have shown that while the cardinality of set ULΨ is not anti-monotone with respect
to L, the cardinalities of sets ULΨ̃ and UΨ ∩ ULΨ̃ are. Figure 7.4 emphasizes that
the intersection of relevant and weakly supporting users is a tighter superset of the
desired supporting users set, while still allowing anti-monotonicity-based pruning. In
the following, we write rw_sup(L, Ψ) to denote the number of relevant and weakly
supporting users, i.e., |UΨ ∩ ULΨ̃|.

Returning to the example of Figure 7.2, the relevant to Ψ users are all except u2.
Therefore, we derive sup(L, Ψ) = |{u1, u3}| = 2, w_sup(L, Ψ) = |{u1, u2, u3}| = 3,
and rw_sup(L, Ψ) = |{u1, u3}| = 2, showing that the relevant and weak support is
closer to the actual support than weak support is.

7.5 Finding Frequent Associations

We first present a baseline method for Problem 7.1, which serves as the foundation
for more elaborate solutions based on indexes.

7.5.1 Basic Algorithm

This algorithm implements the filter-and-refine approach discussed in Section 7.4.
Recall that Theorems 7.2 and 7.3 allow to prune location sets with support less than
σ based on the concepts of relevant and weakly supporting users (filter step). While
this guarantees no false negatives, there can still be false positives, i.e., location
sets with support less than σ, which need to be identified (refine step). Note that
instead of performing this at the end, it can be done more efficiently during candidate
generation, as explained later.

Algorithm 7.1 outlines the basic method, denoted as STA. It operates on the set P
of posts organized by user, i.e., the list Pu containing the posts of each user u. The
input includes the keyword set Ψ, the maximum cardinality m of a location set, and
the support threshold σ. STA exploits the Apriori principle (lines 4–12) to identify the
location sets with support above σ, filtering out each location set with fewer than σ

relevant and weakly supporting users.
Initially, the result set is empty and the potential 1-location sets are set to all

locations (lines 1–2). Also, the set of users relevant to Ψ is identified (line 3).
Procedure IdentifyRelevantUsers, depicted in Algorithm 7.2, iterates across every
list Pu and checks if user u has made posts that cover all keywords that appear in Ψ.
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Algorithm 7.1: Algorithm STA

Input: keyword set Ψ, maximum cardinality m, support threshold σ
Output: result set Rσ of all location sets with support at least σ

1 Rσ ← ∅
2 C1 ← L ▷ candidate 1-location sets
3 UΨ ← IdentifyRelevantUsers(Ψ)
4 for 1 ≤ i ≤ m do
5 Fi ← ∅ ▷ i-location sets with more than σ relevant and weakly supporting

users
6 foreach L ∈ Ci do
7 ComputeSupports(L, Ψ)
8 if rw_sup(L, Ψ) ≥ σ then
9 Fi ← Fi ∪ {L}

10 if sup(L, Ψ) ≥ σ then
11 Rσ ← Rσ ∪ {L}
12 Ci+1 ← CandidateGeneration(Fi) ▷ candidate (i + 1)-location sets

Then, STA proceeds in m iterations, following the Apriori principle. At the i-th
iteration, all i-location sets with rw_sup not less than σ are stored in set Fi. Among
them, those with support not less than σ are added to the result set Rσ. After
initializing Fi (line 5), each candidate i-location set L is examined (lines 6–11). The
set Ci of candidate i-location sets was generated at the end of the previous iteration
(line 12) by the CandidateGeneration procedure that applies the Apriori principle.
In particular, Candidate Generation creates candidate location sets of cardinality
one more than what was just examined. It takes as input the i-location sets Fi with
relevant weak support above σ and inserts into Ci+1 an (i + 1)-location set only if all
its i-location subsets are in Fi, due to the Apriori principle implied by Theorem 7.3.

For candidate i-location set L, procedure ComputeSupports (described later) is
invoked to determine the number rw_sup(L, Ψ) of relevant weakly supporting users,
and the number sup(L, Ψ) of supporting users (line 7). If the former support is above
σ, L is added to Fi (lines 8–9). If, additionally, the latter support is greater than σ,
then L is added to the result set Rσ (lines 10–11). This essentially corresponds to
refining the surviving candidates.

Algorithm 7.3 depicts the pseudocode for ComputeSupports. The procedure
iterates over all relevant users. Let u be the currently examined user. The objective
is to determine if u (weakly) supports (L, Ψ). For this purpose, the sets covL and
covΨ are constructed to indicate what locations among L and keywords among Ψ,
respectively, are covered by u. Each post of u is examined (lines 4–9). If the post’s
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Algorithm 7.2: STA.IdentifyRelevantUsers
Input: keyword set Ψ
Output: set UΨ of relevant users

1 UΨ ← ∅
2 foreach u ∈ U do
3 covΨ← ∅
4 foreach p ∈ Pu do
5 if p.ψ ∈ Ψ then
6 covΨ← covΨ ∪ {ψ}
7 if |covΨ| = |Ψ| then
8 UΨ ← UΨ ∪ {u}

location is within distance ϵ to some location in ℓ ∈ L, and there exists a keyword
ψ ∈ Ψ common with the post’s keywords, then ℓ and ψ are inserted to covL and
covΨ (lines 6–9). If all keywords in L have been found in u’s relevant posts, then
the counter of relevant and weakly supporting users is incremented (lines 10–11).
Additionally, if all keywords appear in these posts, the counter for the support is
incremented (lines 12–13).

Table 7.3 shows the relevant and weak support, and support for all location sets
for keyword set Ψ = {ψ1, ψ2}, as computed by STA for the example of Figure 7.2
with support threshold σ = 2. Recall that all users except u2 are relevant. As all
1-location sets have relevant and weak support above σ (although none is actually a
result), all possible 2-location sets are constructed and their supports are counted.
Among them, {ℓ1, ℓ2} and {ℓ2, ℓ3} (marked bold) have support 2 and are thus results.
Observe the anti-monotonicity in relevant and weak support, and the lack thereof in
support. Finally, as all 2-location sets have wr_sup above σ, the set {ℓ1, ℓ2, ℓ3} is also
considered but found to have low relevant and weak support.

7.5.2 Inverted Index-Based Algorithm

In STA, counting the weak support of a location set is particularly time consuming,
since it scans the entire list of posts to find the weakly supporting users for each
location. Even worse, if a location is part of multiple location sets, this is repeated
multiple times.

To address this performance bottleneck, we present next an approach, termed
STA-I, that is based on a preconstructed inverted index, which facilitates the identifi-
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Algorithm 7.3: STA.ComputeSupports
Input: location set L, keyword set Ψ
Output: weak support and support of (L, Ψ)

1 r_sup(L, Ψ)← 0; sup(L, Ψ)← 0
2 foreach u ∈ UΨ do ▷ relevant user
3 covL← ∅; covΨ← ∅
4 foreach p ∈ Pu do
5 foreach ℓ ∈ L do
6 if d(p.ℓ, ℓ) ≤ ϵ then
7 foreach ψ ∈ p.Ψ ∩Ψ do
8 covL← covL ∪ {ℓ}
9 covΨ← covΨ ∪ {ψ}

10 if |covL| = |L| then ▷ weakly supporting user
11 rw_sup(L, Ψ)← rw_sup(L, Ψ) + 1
12 if |covΨ| = |Ψ| then ▷ supporting user
13 sup(L, Ψ)← sup(L, Ψ) + 1

Algorithm 7.4: STA-I.IdentifyRelevantUsers
Input: keyword set Ψ
Output: set UΨ of relevant users

1 UΨ ← ∅
2 foreach ψ ∈ Ψ do
3 C ← ∅
4 foreach ℓ ∈ L do
5 C ← C ∪ U (ℓ, ψ)

6 UΨ ← UΨ ∩ C

cation of weakly supporting users for any location. The assumption here is that the
distance parameter ϵ is known beforehand, i.e., it does not change with the queries.

To construct the index, we identify the posts that are within distance ϵ to each loca-
tion ℓ. Then, for each location, we compile an inverted list U (ℓ), containing all users
with posts local to ℓ. To further speed up processing, we partition each list according
to keyword, such that each sublist U (ℓ, ψ) contains users with posts local to ℓ and
relevant to ψ. Table 7.4 shows the lists for our example. STA-I operates identically
to STA, but uses the inverted index during the procedures IdentifyRelevantUsers
and ComputeSupports.

The IdentifyRelevantUsers procedure is depicted in Algorithm 7.4. Recall that
the goal is to identify users who have made posts relevant to all keywords in Ψ,
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Table 7.3 Support of associations between listed location sets and keyword set Ψ =
{ψ1, ψ2} based on the posts in Figure 7.2.

Location set wr_sup sup

{ℓ1} 3 1
{ℓ2} 3 1
{ℓ3} 3 0

{ℓ1, ℓ2} 2 2
{ℓ1, ℓ3} 2 1
{ℓ2, ℓ3} 3 2

{ℓ1, ℓ2, ℓ3} 1 1

Table 7.4 Inverted index for the posts in Figure 7.2.

Location Inverted list

ℓ1 ψ1 : u1, u5, ψ2 : u3, u5
ℓ2 ψ1 : u1, u3, ψ2 : u1, u4
ℓ3 ψ1 : u1, u3, u4

irrespective of the posts’ geotags. Hence, for each keyword ψ ∈ Ψ and each possible
location ℓ, it retrieves the list U (ℓ, ψ) of users with relevant and local posts, and
it compiles the set of users with posts relevant to ψ and local to some location in
L. Finally, it computes the intersection of these sets. This procedure essentially
constructs the set of relevant users as UΨ =

⋂
ψ∈Ψ (

⋃
ℓ∈L U (ℓ, ψ)).

Algorithm 7.5 illustrates the ComputeSupports procedure, which computes the
weak support (lines 1–6) and the support (lines 8–14) of location set and keyword
set (L, Ψ). Regarding the former, recall that a user weakly supports (L, Ψ) if for each
location ℓ ∈ L there exists a local post that is relevant to some keyword in Ψ. The set⋃

ψ∈Ψ U (ℓ, ψ) represents users that have relevant posts to some keyword in Ψ and
are local to the specific location ℓ. Thus, the intersection over all locations in L of
these sets represents the weakly supporting users, i.e., ULΨ̃ =

⋂
ℓ∈L

(⋃
ψ∈Ψ U (ℓ, ψ)

)
.

Specifically, the procedure computes the union in the inner loop (lines 3–4) and the
intersection of the unions in the outer loop (lines 2–5). The weak support of (L, Ψ) is
computed after the non-relevant users are discarded (line 6).

Only when the weak support of (L, Ψ) exceeds threshold σ (line 7), its support
is computed (lines 8–14), but in a manner significantly different from that in STA.
Recall from the discussion in Section 7.4 and Figure 7.4 that the set ULΨ̃ of weakly
supporting users has a dual set UL̃Ψ, termed local-weakly supporting users. This
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Algorithm 7.5: STA-I.ComputeSupports
Input: location set L, keyword set Ψ
Output: weak support and support of (L, Ψ)
▷ construct set ULΨ̃ of (relevant-)weakly supporting users

1 ULΨ̃ ← ∅
2 foreach ℓ ∈ L do
3 A ← ∅ foreach ψ ∈ Ψ do
4 A ← A∪ U (ℓ, ψ)

5 ULΨ̃ ← ULΨ̃ ∩A
6 rw_sup(L, Ψ)← |ULΨ̃ ∩ UΨ|
7 if rw_sup(L, Ψ) < σ then return
▷ construct set UL̃Ψ of local-weakly supporting users

8 UL̃Ψ ← ∅
9 foreach ψ ∈ Ψ do

10 B ← ∅
11 foreach ℓ ∈ L do
12 B ← B ∪ U (ℓ, ψ)

13 UL̃Ψ ← UL̃Ψ ∩ B
14 sup(L, Ψ)← |ULΨ̃ ∩ UL̃Ψ|

latter set contains users that for each keyword among Ψ have a post local to some
location among L. It is not hard to see that the users that are both (relevant-)weakly
supporting and local-weakly supporting (L, Ψ) are exactly those that support (L, Ψ),
i.e., it holds that ULΨ = ULΨ̃ ∩ UL̃Ψ. Intuitively, the latter set satisfies the first
requirement of Definition 7.4, whereas the former the second.

Based on this observation, the ComputeSupports procedure first computes the
local-weakly supporting users UL̃Ψ (lines 8–13). With similar reasoning as before, the
procedure builds the set as UL̃Ψ =

⋂
ψ∈Ψ (

⋃
ℓ∈L U (ℓ, ψ)), where the union is compiled

in the inner loop (lines 11–12) and the intersection of the unions in the outer loop
(lines 9–13). Then, it intersects it with the previously constructed ULΨ̃ set to compute
the support of (L, Ψ) (line 14).

7.5.3 Spatio-Textual Index-Based Algorithm

Although precomputing the inverted index reduces dramatically the cost of calculating
the weak support of a location set, it cannot handle different values of the distance
parameter ϵ. Next, we present an alternative approach to accelerating weak support
calculations based on spatio-textual indexes. Instead of relying on precomputed static
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lists, we dynamically compile the information needed from the index. We first present
a generic approach that works with the majority of existing spatio-textual indexes,
and then we consider a particular index and propose further optimizations.

Generic Algorithm

We adapt the basic Apriori-like algorithm assuming the availability of a spatio-textual
index which can process spatio-textual range queries with OR semantics. The latter
specify a spatial range R and a set of keywords Ψ, and seek all spatio-textual objects
whose location is inside R and contain at least one of the keywords in Ψ.

We next describe the STA-ST algorithm which operates on top of such a general-
purpose spatio-textual index. It operates similarly to STA, with the difference that
procedure ComputeSupports is implemented in an index-aware manner, as outlined
in Algorithm 7.6. It first constructs the set ULΨ̃ of weakly supporting users, and
then determines the support of (L, Ψ). To build ULΨ̃, it issues a spatio-textual range
query with parameters the disc (ℓ, ϵ) of radius ϵ around each location ℓ ∈ L and
keyword set Ψ (lines 2–9). For a specific location ℓ, the results (set of posts) are
stored in Pℓ (line 4). Then, it scans the results and inserts into a temporary variable
A each encountered user p.u (line 8). In addition, it associates with each user a
bitmap p.u.covΨ indicating which query keywords appear in her posts (lines 6–7);
this information is later used to determine if the user supports (L, Ψ). Once all users
with posts local to ℓ and relevant to Ψ have been identified in A, they are merged
with the ones for previously examined locations (line 9). Eventually, ULΨ̃ contains
users with posts local to every location in L and relevant to at least one keyword in Ψ,
i.e., the users weakly supporting (L, Ψ).

To compute the weak support among relevant users, the procedure takes the
intersection of ULΨ̃ with the known set UΨ of relevant users (line 10). If the weak
support is lower than the threshold, the algorithm returns (line 11). Otherwise
it computes the support by examining whether each user has covered all query
keywords (lines 13–15); this is determined directly from bitmaps p.u.covΨ.

Optimized Algorithm

Next, we focus on a specific spatio-textual index, I3 [175], which we adapt to devise
an even more efficient algorithm.

For our purposes, the I3 index can be seen as a quadtree that hierarchically
partitions the spatial domain. Each node corresponds to a specific rectangular region
and points to its four children corresponding to the quadrants of the region. Leaf



132 | Mining Associated Location Sets

Algorithm 7.6: STA-ST.ComputeSupports
Input: location set L, keyword set Ψ
Output: weak support and support of (L, Ψ)

1 ULΨ̃ ← ∅
2 foreach ℓ ∈ L do
3 A ← ∅
4 Pℓ ← ST-RANGE((ℓ, ϵ), Ψ)
5 foreach p ∈ Pℓ do
6 foreach ψ ∈ p.Ψ ∩Ψ do
7 p.u.covΨ← p.u.covΨ ∪ {ψ}
8 A ← A∪ p.u
9 ULΨ̃ ← ULΨ̃ ∩A

10 rw_sup(L, Ψ)← |ULΨ̃ ∩ Uψ|
11 if rw_sup(L, Ψ) < σ then return
12 sup(L, Ψ)← 0
13 foreach u ∈ ULΨ̃ do
14 if |u.covΨ| = |Ψ| then
15 sup(L, Ψ)← sup(L, Ψ) + 1

nodes point to disk pages containing the actual posts grouped by keyword. We
associate with each node some additional aggregate information. Specifically, for
each keyword ψ, we store the number of users with relevant posts that are contained
within the sub-tree rooted at this node N. We denote this by N.count(ψ).

STA-STO differs from STA-ST in the first iteration of the main Apriori loop (lines
4–12 of Algorithm 7.1 for i = 1). Instead of computing the weak support (and
support) of every location, it uses the index to identify locations with potentially high
weak support, eliminating groups of locations with weak support less than σ. To
achieve this, it executes a best-first search (bfs) traversal [86], performing a simple
test at each node to decide whether to continue in its sub-tree. Intuitively, we wish to
terminate bfs when no location in the sub-tree can have weak support greater than σ.

Let Q be the priority queue implementing bfs. For each node N entering Q, the
algorithm computes a(N) = ∑ψ∈Ψ N.count(ψ), and uses it as the queue’s priority
key. At each iteration, the node N in Q with the largest a(N) value is removed. If
a(N) is greater than or equal to σ, there may exist some location in the sub-tree of
N with weak support greater than σ. Otherwise, a safe conclusion cannot be drawn.
Hence, the algorithm calculates an additional value b(N) for this node, which is an
upper bound on the weak support of any location within N. Clearly, if b(N) < σ, the
node contains no useful locations and can be pruned. Such pruned nodes, along with
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their a() values, are maintained in a deleted list D, which serves in the calculation
of b() values as explained next. For node N, its b(N) value is the sum of a() values
for all nodes that are in Q or in D and that are within distance ϵ to N. An important
observation here is that, due to the bfs traversal and the index structure, nodes in
Q ∪ D do not spatially overlap and hence b(N) does not double count posts. To
summarize, STA-STO first makes the quick a(N) ≥ σ test, and only if this fails does it
compute b(N) and makes the more expensive b(N) ≥ σ test. If the latter fails too,
the node definitely cannot contain a location set with weak support greater than σ.

For each location dequeued in the bfs traversal, STA-STO invokes the procedure
STA-ST.ComputeSupport as described in the previous section, to determine its exact
weak support and its support. Compared to it, the benefit is that STA-STO executes
the procedure only for promising locations instead of every possible location.

7.6 Finding Top-k Associations

Next, we present algorithms for Problem 7.2. We start with a basic approach, and
then discuss more efficient index-based techniques.

7.6.1 Basic Algorithm

In Problem 7.2, we seek the top-k location sets with the highest support, instead
of setting a specific support threshold. However, a support threshold is needed in
order to apply an Apriori-like method; thus, we explain how such a threshold can be
computed. If we pick any set of k distinct location sets and compute their supports,
then the minimum value among those can serve as the support threshold σ; clearly,
any other set with support lower than this cannot be in the result. The challenge is
to construct initial location sets with high support so that the starting value of σ is
effectively high.

Algorithm 7.7 outlines the generic method k-STA implementing this simple idea.
First, procedure DetermineSupportThreshold is invoked to obtain an appropriate
lower bound σ on the support of the top-k set. Given σ, it invokes the STA algorithm
to derive all location sets with support above σ. Finally, among the returned location
sets, it returns the k with the highest support.

Regarding the DetermineSupportThreshold procedure, the main idea is to con-
struct at least k distinct location sets that cover all keywords Ψ. Suppose that for
each keyword ψ ∈ Ψ we have determined k(ψ) distinct locations with local posts
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Algorithm 7.7: Algorithm k-STA

Input: keyword set Ψ, maximum cardinality m, number of results k
Output: result set Rk containing top-k location sets with highest support

1 σ← DetermineSupportThreshold(Ψ, k)
2 Rσ ← STA (Ψ, m, σ)
3 Rk ← k location sets from Rσ with highest support

relevant to ψ. Combining these k(ψ) distinct locations for each keyword, we can
construct distinct location sets. Note that a necessary condition to obtain k location
sets is ∏ψ∈Ψ k(ψ) ≥ k.

Following this process, a heuristic for obtaining combinations with high support is
to start with locations that are popular, i.e., have high weak support. In the absence
of any index, procedure DetermineSupportThreshold iterates over the set of posts
lists Pu, skipping users that do not have relevant posts to each ψ. For the rest, the
locations of the relevant posts to each ψ are noted. In addition, a counter for the
weak support of each location is maintained. After a sufficient number of locations
for each keyword are seen, the procedure terminates. For each keyword, the locations
with the highest weak support are chosen and combined. The support of each set is
computed by ComputeSupports, and the k-th highest among these values is set as the
support threshold σ.

7.6.2 Index-Based Algorithms

Inverted Index

When an inverted index from locations to users with local posts is available, the
routine DetermineSupportThreshold collects locations with local posts relevant to
each keyword in Ψ in a different manner. It first computes the weak support of every
location by invoking ComputeSupports. Note that this has to be executed anyway
when we later invoke the STA-I algorithm irrespective of the support threshold σ.
Then, it examines locations in descending order of their weak support. For each
location ℓ, the procedure checks the inverted list and associates the location with
each keyword in Ψ for which a local and relevant post exists. Similar to the basic
algorithm, once a sufficient number of locations per keyword are seen, location sets
are generated and their support is computed.



7.7 Experimental Evaluation | 135

Table 7.5 Datasets used in the experiments.

Dataset
Number of Number of Number of Avg. num. of Avg. num. of Number of

photos users distinct tags tags per photo tags per user locations

London 1,129,927 16,171 266,495 8.1 61.2 48,547
Berlin 275,285 7,044 88,783 8.1 39.4 21,427
Paris 549,484 11,776 122,998 7.8 38.8 38,358

Table 7.6 Most popular keywords (10 of 30) used to generate queries.

London Berlin Paris

thames (2752) reichstag (876) louvre (2287)
park (1738) fernsehturm (774) eiffel+tower (1742)
london+eye (1730) architecture (716) seine (1488)
big+ben (1698) alexanderplatz (713) notre+dame (1244)
westminster (1543) wall (684) street (1194)
architecture (1519) graffiti (575) montmartre (1184)
museum (1386) street (562) architecture (1136)
art (1319) art (543) museum (1022)
tower+bridge (1276) museum (526) church (980)
statue (1178) spree (492) art (970)

Spatio-Textual Index

In a generic spatio-textual index, DetermineSupportThreshold operates identically
to the basic algorithm with the exception that the ComputeSupports procedure is
index-aware. When the augmented I3 index is used, a different process is followed.
Procedure DetermineSupportThreshold first performs a best-first search traversal
similar to that described in Section 15. The difference is that initially there is no
support threshold, and thus the b() values need not be computed. Moreover, the
traversal is progressive, meaning that at each step the next location with potentially
high weak support is identified. For each such location, its local posts are retrieved
(using the index) and it is marked for the keywords that appear in these posts. As
before, once a sufficient number of locations per keyword are seen, the support
threshold is computed.

7.7 Experimental Evaluation

In this section, we present an experimental evaluation of our approach using real-
world datasets comprising geolocated Flickr photos. We first describe our experimen-
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Table 7.7 Most popular keyword sets (5 of 20) used as queries.

|Ψ| London

2
london+eye, thames (922); big+ben, london+eye (908); thames,
westminster (898); park, thames (880); big+ben, thames (846)

3
big+ben, london+eye, thames (557); big+ben, thames, westminster (497);
big+ben, london+eye, westminster (472); london+eye, thames, westminster
(464); park, thames, westminster (440)

4
big+ben, london+eye, thames, westminster (358); big+ben, london+eye,
thames, tower+bridge (293); art, green, park, thames (258); green, park,
thames, trees (257); park, statue, thames, westminster (257)

Berlin

2
alexanderplatz, fernsehturm (404); fernsehturm, reichstag (320);
alexanderplatz, reichstag (253); reichstag, wall (249); fernsehturm, spree
(248)

3
alexanderplatz, fernsehturm, reichstag (192); alexanderplatz, fernsehturm,
spree (166); alexanderplatz, fernsehturm, wall (145); brandenburger+tor,
fernsehturm, reichstag (144); fernsehturm, reichstag, spree (142)

4
alexanderplatz, fernsehturm, reichstag, spree (106); alexanderplatz,
brandenburger+tor, fernsehturm, reichstag (96); alexanderplatz, fernsehturm,
reichstag, wall (95); alexanderplatz, fernsehturm, potsdamer+platz, reichstag
(90); alexanderplatz, fernsehturm, museum, reichstag (82)

Paris

2
eiffel+tower, louvre (777); louvre, seine (745); louvre, museum (706);
louvre, notre+dame (691); eiffel+tower, notre+dame (606)

3
eiffel+tower, louvre, notre+dame (415); eiffel+tower, louvre, seine (343);
louvre, notre+dame, seine (339); louvre, river, seine (327);
arc+de+triomphe, eiffel+tower, louvre (324)

4
eiffel+tower, louvre, notre+dame, seine (215); bridge, louvre, river, seine
(209); arc+de+triomphe, eiffel+tower, louvre, notre+dame (208); louvre,
museum, river, seine (189); bridge, river, seine, street (187)

tal setup, outlining the datasets and the queries used in the experiments, and then
we report and discuss the results.

7.7.1 Datasets

In our experiments, we have used geolocated photos from Flickr, extracted from the
large-scale dataset that is provided publicly by Yahoo! for research purposes [153].
Specifically, we compiled datasets for the cities of London, Berlin, and Paris. For each
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Table 7.8 Index construction time and size.

Inverted Index I3 Index
Time (sec) Size (MB) Time (sec) Size (GB)

London 76 215 226 31
Berlin 18 48 38 9
Paris 43 116 90 23

dataset, Table 7.5 lists the number of photos, users, and distinct keywords contained
in it, as well as the average number of keywords per photo and distinct keywords per
user. As a database of locations, we used POIs collected from the Foursquare API1.
The number of distinct locations per city is also shown in Table 7.5.

To construct a keyword set that is used to search for socio-textual associations, we
followed the process described next. First, for each dataset, we retrieved the 100 most
frequent keywords, where the frequency of a keyword was measured by the number
of users having photos with it. From those, we manually picked a set of 30 keywords,
removing more generic ones, such as “london”, “england”, “uk”, “iphone”, “canon”, etc.
The top 10 selected keywords for each city are listed in Table 7.6, showing also the
number of users with relevant posts to each one. Then, we combined these popular
keywords to create keyword sets of cardinality up to 4. For each case, we selected
the top 20 combinations according to the number of users having photos with those
tags. Table 7.7 lists the first 5 among these 20 combinations for each case.

All algorithms were implemented in Java and the experiments were conducted
on a machine with Intel® Core™i7-5600U CPU @ 2.60GHz Processor and 16 GB
RAM. In all reported experiments, we set the value of the spatial distance threshold
parameter ϵ, used to associate photos to locations, to 100 meters.

For the two indexes used by our algorithms, i.e., the inverted index and the
(augmented) I3 index, Table 7.8 shows the index construction time and size for each
dataset.

1https://developer.foursquare.com/

https://developer.foursquare.com/
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(a) Ψ = {“london eye”, “thames”}

(b) Ψ = {“museum”, “thames”, “westmin-
ster”}

(c) Ψ = {“big ben”, “london eye”, “thames”,
“tower bridge”}

Fig. 7.5 Sample results for London.

7.7.2 Result Characteristics

We first inspect the top results for a sample
of queries in order to assess the results from
a qualitative perspective. Specifically, for
each of the three datasets, we have selected
a sample of three queries with different car-
dinalities, and we present the top result for
each query. The results are presented in
Figures 7.5, 7.6, and 7.7. Specifically, the re-
sults displayed in each figure are as follows.
First, for each keyword in the corresponding
query, we retrieve the list of users having
photos with that keyword and we intersect
these lists to obtain a list of users having
photos with all the query keywords. Then,
we display the locations of those photos on
the map, using different colors for each key-
word. Finally, the location(s) contained in
the top location set returned by our method
are displayed with a star.

For example, Figure 7.5(a) illustrates the
results for the query with keyword set Ψ =
{“london eye”, “thames”}. In this case, the
green (resp., purple) points denote the loca-
tions of photos that contain the tag “thames”
(resp., “london eye”) and belong to a user
that has also posted photos containing the
tag “london eye” (resp., “thames”). We can
see that photos about “thames” are spread
across the whole length of the river Thames.
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(a) Ψ = {“alexanderplatz”, “fernsehturm”}

(b) Ψ = {“fernsehturm”, “reichstag”,
“spree”}

(c) Ψ = {“alexanderplatz”, “fernsehturm”,
“museum”, “tower”}

Fig. 7.6 Sample results for Berlin.

On the other hand, London Eye is a land-
mark having a specific location; neverthe-
less, due to its high visibility, relevant photos
can be found at various other locations, espe-
cially in and around St. James Park, for ex-
ample. Moreover, as it happens, in this case
where London Eye is located at the banks of
river Thames, the regions covered by the re-
spective sets of relevant photos have a high
overlap. In fact, the location set found to
have the highest support for this query com-
prises a single location, which, as depicted
in the figure, is situated in an area where a
large number of photos containing both tags
exist. Interestingly, this type of result can
also be observed in other examples, where
a similar spatial relationship occurs among
the relevant entities. For instance, for the
query {“alexanderplatz”, “fernsehturm”} in
Berlin, where the Berlin TV Tower is located
close to the Alexanderplatz square, the top
result comprises a single location.

On the other hand, for the query
{“museum”, “thames”, “westminster”} illus-
trated in Figure 7.5(b), two nearby but dis-
tinct locations are included in the top result
corresponding to the river Thames and the
Westminster Abbey. With respect to the key-
word “museum”, we can observe in the fig-
ure that there exist (at least) two prominent
regions with high density of relevant photos,
namely one around the British Museum and

one around the Natural History Museum and the Victoria and Albert museum. The
former has been selected in the top result, indicating that this combination occurs
more frequently.
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(a) Ψ = {“eiffel tower”, “louvre”}

(b) Ψ = {“louvre”, “notre dame”, “seine”}

(c) Ψ = {“arc de triomphe”, “eiffel tower”,
“louvre”, “notre dame”}

Fig. 7.7 Sample results for Paris.

Similarly intuitive results can be ob-
served for the rest of the queries, such as the
two locations selected to cover the keyword
set {“fernsehturm”, “reichstag”, “spree”} in
Berlin (Figure 7.6(b)) or those for {“eiffel
tower”, “louvre”} in Paris (Figure 7.7(a)).

7.7.3 Comparison with Other As-

sociation Types

As already explained (see Sections 7.1
and 7.2), there exist various approaches that
discover different associations between lo-
cations and a given set of keywords. Hence,
the purpose of our next experiment was
to investigate whether the location sets re-
turned by our approach (STA) are signif-
icantly different from those returned by
other works, namely collective spatial key-
word queries (CSK) and aggregate popular-
ity (AP). We note that we cannot compare
with approaches that discover location pat-
terns (LP) as they ignore textual informa-
tion.

To that end, we computed the top 10
results for STA, AP, and CSK, with respect
to the keyword sets we compiled for the
three datasets of London, Berlin, and Paris.
Then, we computed the Jaccard similarity of
the result sets of CSK and AP to ours. This
measures the overlap in the query results,
i.e., how many location sets STA and either

CSK or AP return in common.
The results of this experiment are presented in Table 7.9. The results are averaged

across queries with the same keyword set cardinality. As can be observed, the Jaccard
similarity scores are very low in all cases, with values not exceeding 0.3. The highest
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Table 7.9 Degree of overlap between the associations discovered by STA and those by
existing approaches.

London Berlin Paris
|Ψ| AP CSK AP CSK AP CSK

2 0.22 0.24 0.28 0.30 0.20 0.14
3 0.17 0.04 0.09 0.07 0.08 0.03
4 0.14 0.03 0.01 0.04 0.00 0.00

(a) London (b) Berlin (c) Paris

Fig. 7.8 Scatter plots where data points correspond to experiments with distinct
keyword sets; the x axis indicates the number of associations above the
support threshold and the y axis indicates the highest support among the
associations.

scores are observed for queries with 2 keywords, where fewer possible location
combinations exist. In those queries, on average, around 2 or 3 of the top 10 location
sets discovered by STA are common with those appearing in the results of AP or
CSK. The degree of overlap drops even lower when the cardinality of the keyword
set increases, allowing for a significantly larger number of candidate location sets.
In those cases, often there is only one or zero results in common. This outcome is
consistent across the three datasets.

These results show that STA constitutes a novel and distinct criterion for discover-
ing interesting socio-textual associations among locations, which cannot be replicated
by existing approaches.

7.7.4 Number of Discovered Associations and Maximum Support

Another aspect to investigate is the distribution of the number of results (associations
found) and the support scores for different keyword set cardinalities. To that end,
we computed the results for all keyword sets described in Section 7.7.1, i.e., 60 sets
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(a) London (b) Berlin (c) Paris

Fig. 7.9 Execution time vs. support threshold; |Ψ| = 2.

for each dataset, with cardinality |Ψ| ∈ [2, 4]. For each keyword set of the respective
dataset, we measured the number of results and the support of the top result. The
results of this experiment are shown in Figure 7.8. Note that the value of the support
threshold affects both the execution time and the number of results to be found. On
the one hand, if the threshold is set too low, an excessive number of results may be
returned, and the execution time may also be too high, since only few combinations
can be pruned; on the other hand, setting the support threshold too high may return
no results.

We notice the following trend in the results for all the three cities. Having only
two keywords tends to produce results with high support (e.g., up to around 3%
of the total number of users). As the number of keywords increases to 3 or 4, the
maximum support among the returned results reduces significantly, dropping close to
the support threshold; however, the number of returned results becomes much higher.
This is an effect of the fact that, as explained in Section 7.4, the anti-monotonicity
property does not hold in our problem.

7.7.5 Evaluation Time

Finally, we evaluate the efficiency of our proposed algorithms. In this experiment, we
used the same keyword sets as above.

First, we compare the execution time of the three algorithms, STA-I, STA-ST, and
STA-STO, while varying the support threshold parameter σ, which is a percentage of
the number of users in each dataset. Note that the basic STA method was at least
an order of magnitude slower than all other methods and is thus omitted from all
plots. Moreover, we include STA-ST in the comparison, in order to assess the benefits
resulting by the STA-STO optimizations. The results are presented in Figures 7.9, 7.10,
and 7.11, for 2, 3, and 4 keywords, respectively.
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(a) London (b) Berlin (c) Paris

Fig. 7.10 Execution time vs. support threshold; |Ψ| = 3.

(a) London (b) Berlin (c) Paris

Fig. 7.11 Execution time vs. support threshold; |Ψ| = 4.

As the support threshold increases, the performance of all methods improves
because fewer location sets survive the pruning. This is apparent in Paris, but not so
much in London and Berlin for the specific range of support values depicted. Clearly,
STA-I achieves the best performance. This is not surprising, since exploiting the
preconstructed inverted index saves a substantial amount of the execution time during
evaluation. It is worth noticing however that STA-STO is also very efficient, achieving
competitive execution times compared to STA-I. In fact, this is not a merit of the
spatio-textual index per se, but rather a result of the proposed optimizations; indeed,
the execution times of the generic STA-ST are higher by an order of magnitude. The
results appear to be consistent across the different datasets and for different number
of keywords.

Table 7.10 quantifies the number of location sets (or associations) discovered that
have weak support above but actual support below the threshold, which was set to
σ = 0.2%. For example, in London for Ψ = 2, we have that 13.29% of the location
sets considered are actual results. As the keyword cardinality increases, the ratio
decreases dramatically, because it becomes harder for location sets with weak support
above the threshold to also cover all keywords.
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Table 7.10 Ratio of number of location sets with support above σ over number of
location sets with weak support above σ; σ = 0.2%.

|Ψ| London Berlin Paris

2 13.29% 23.80% 25.98%
3 1.35% 1.09% 3.85%
4 0.01% 0.00% 0.36%

(a) London (b) Berlin (c) Paris

Fig. 7.12 Execution time vs. number of results; |Ψ| = 3.

Finally, we evaluate the performance of the algorithms for the top-k version of the
problem. The results are presented in Figure 7.12 for |Ψ| = 3. A similar outcome is
observed, with k-STA-I outperforming k-STA-STO in all cases. For both algorithms,
the execution time tends to increase with k as more results are requested.

7.8 Summary

In this chapter, we have addressed the problem of finding socially and textually
associated location sets from user trails derived from geotagged posts. We have
formally defined the problem and studied its characteristics. Based on this, we have
proposed a general approach for addressing the problem, which we have elaborated
to derive three algorithms based on different indexes. Furthermore, we have extended
our approach to address also the top-k variant of the problem. The proposed methods
have been evaluated experimentally using geotagged Flickr photos in three different
cities.



CHAPTER 8

SUMMARY AND CONCLUSION

Whether it is searching for a restaurant for dinner or finding sights to visit in a
new city, location-based search has assumed an important role in our daily lives.
Spatial keyword queries provide this ability to search for local information, such as
information about POIs, events, news, messages, and photos, by combining spatial
and textual predicates into one query. The spatial part of the query is generally a
point or a region, whereas the textual part is a set of keywords. Several different
types of spatial keyword queries have already been studied in the literature, e.g., the
standard queries, collective spatial keyword queries, retrieval of areas of interest,
spatio-textual join, etc. Nevertheless, a common feature of these approaches is that
their main focus lies in static retrieval, typically of geotagged POI descriptions from
different sources, such as Wikipedia, OpenStreetMap, online business directories
(e.g., Google My Business), and location-based social networks (e.g., Foursquare).

Recently, online social networks, such as Twitter and Flickr, have emerged as
a major source of user-generated spatio-textual data. Instead of the usual static
information contained in place descriptions, social networks offer dynamic content
in the form of geotagged posts, such as geotagged tweets, geotagged photos, and
check-ins, that additionally contains temporal information and is evolving with time.
Moreover, due to the massive volume of posts being produced constantly at a rapid
pace, challenges and opportunities for efficiently processing and exploring this data
arise. Being user-generated, geotagged posts are also a valuable source of information
about people’s knowledge and opinions regarding places. These characteristics of
geotagged posts offer a unique potential for analysis and retrieval.

Thus, in this thesis, we investigated novel techniques for querying and analyzing
geotagged posts in social networks. Chapter 1 laid the foundations of our work by
outlining our motivation and our goal. Subsequently, we conducted an in-depth
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survey of related work by suggesting a list of aspects for grouping and reviewing
the vast amount of published research on spatial keyword query processing, and
discussing how the challenges and techniques studied in this thesis fill the gaps in
existing work. After this, Chapters 3–7 presented the problems studied in this thesis
and our solutions. For each of these parts, we started by discussing the problem along
with any additional background needed, and then presented our approaches and
implementation. Finally, through usage examples and experimental evaluation, we
demonstrated the merits and limitations of the proposed approaches.

8.1 Summary of Contributions

The contributions of this thesis are fivefold. Driven by the availability of temporal
information in posts that is ignored by existing approaches, our first problem (Chap-
ter 3) studied the extension of existing spatio-textual and spatio-temporal indexes
to support spatial-temporal-textual filtering of trajectories. However, given the large
quantity of available geotagged posts, this plain boolean range filtering can produce a
very high number of results that may overwhelm the user. Hence, instead of returning
all the matching results, our next approach in Chapter 4 focused on retrieving a
selected set of k representative posts for a given spatio-temporal range and keyword
filter. Nonetheless, a limitation of this approach is that the results can become quickly
obsolete with time as fresh messages are posted. Therefore, in the following part
(Chapter 5), we examined the task of continuously maintaining a set of k results for
summarizing a stream of posts. Finally, in the last two chapters, we took advantage
of the crowdsourced nature of posts for enriching locations with local knowledge
and for inferring patterns. First, Chapter 6 presented a system for the discovery and
exploration of locally trending topics, i.e., hotspots of keywords occurring frequently
in an area. Subsequently, in Chapter 7, we leveraged posts made by mobile users
to find sets of places that are thematically associated based on user movement and
behavior. Each of these contributions is discussed below in more detail.

8.1.1 Spatial-Temporal-Textual Filtering of Trajectories

An important limitation of existing research in spatial keyword queries is that they
ignore temporal information and assume that the objects are static. On the other hand,
there has been extensive research in the spatio-temporal database community on
retrieving trajectories of moving objects. Spatio-temporal retrieval however typically
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overlooks any textual information that may be associated with each location update of
the moving object. Nevertheless, this information is valuable for various applications
that deal with analyzing tracking data of vehicles, ships, and airplanes, where each
GPS point might additionally carry some textual information about the current status
and destination of the object. This is also true for digital trails generated via user
activity on social networks, where each point represents a geotagged post. As a result,
in Chapter 3, we focused on the problem of retrieving trajectories of moving objects
that are associated with keywords potentially changing with each location update
using a spatial-temporal-keyword filter. In particular, we extended two state-of-the-art
indexes, one a hybrid index for spatial keyword queries for dealing with temporal
information and the other a hybrid index for spatio-temporal queries on trajectories
for handling textual data, and compared their performance for the task at hand. Our
evaluation of the two methods using two diverse types of datasets, namely yacht
movement tracking data and geotagged photos from Flickr, showed that the latter
performs better in the majority of our experiments, whereas the former demonstrates
a more stable performance, requires less disk space, and performs better on smaller
datasets.

8.1.2 Spatial-Temporal-Textual Retrieval of Posts

The focus of the next part of our work also lay on integrating support for temporal
information into spatial keyword queries. This is motivated by the observation that the
temporal aspect is essential for a variety of applications, including analyzing opinions,
topics, and events, and monitoring their evolution over time. Thus, Chapter 4
presented the kCD-STK query for finding a set of top-k results for a given spatio-
temporal region and set of keywords. This is achieved by first identifying the objects
that lie within the spatio-temporal region and contain the query keywords, and then
ranking them based on the combination of two criteria: spatio-temporal coverage and
spatio-temporal diversity. The former promotes results that come from dense regions,
whereas the latter ensures that the results are not confined to dense regions only,
but are spread over the entire query region. Thus, the fusion of these two measures
returns a representative and diverse set of results based on the spatio-temporal
distribution of the data. This in turn makes this query suitable for exploratory
analysis, particularly for topics and events spanning a large region in space and
time. For evaluating the kCD-STK query, we started by deriving a baseline approach,
which, however, can be prohibitively expensive as it goes over each post. Thus,
we then proposed to extend existing spatio-textual indexes to support temporal
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information and to exploit these to develop a more efficient index-aware technique
for query processing. An experimental evaluation using large real-world datasets of
geotagged tweets and photos established the efficiency and superior performance of
our proposed optimized method against the baseline algorithm.

8.1.3 Continuous Summarization of Streams of Posts

The problems studied in Chapters 3 and 4 assumed that the results were computed
only once in an ad hoc manner and remained valid forever. This assumption is
however not always an optimal one for several applications dealing with social net-
work data, where new posts are being generated continuously at a high pace, e.g.,
monitoring spatial distribution of public opinions and sentiments over time. Thus,
in Chapter 5, we studied the problem of continuous spatio-textual summarization
of streams of posts. Summarization is an important task in information retrieval
and publish/subscribe systems as it provides a quick and succinct overview of a
large amount of information through a relatively few documents, which also serve
as starting points for exploring the data further. Diversification is a common tech-
nique used for generating short yet non-redundant summaries in a large corpus of
documents and has been studied extensively in the past. However, since generating
an optimal diversified set is an NP-hard task and since the majority of the existing
works focus on static collections of documents, diversification in a streaming setting
is still an open problem. Therefore, in our approach, we first defined the concepts
of spatio-textual coverage and spatio-textual diversity for generating representative
summaries of streams of posts. To ensure that the summaries are current and up-to-
date, we used the sliding window model to limit posts to the most recent ones, and
devised techniques for updating the summaries dynamically as the window slides. We
proposed and evaluated different strategies, with the goal of maximizing the quality
of the summary, while minimizing the computation time. To further speed up the
computation, we used lightweight structures to group posts based on their spatial
and textual attributes. By devising upper bounds on the scores of posts within the
groups, we were able to inspect them in a best-first manner and prune non-promising
posts early. Through an experimental evaluation of our proposed methods using
real-world datasets from Twitter and Flickr, we demonstrated that our methods and
optimizations can be used efficiently to continuously maintain concise summaries of
streams of posts.
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8.1.4 Discovery and Exploration of Locally Trending Topics

Geotagged posts are a valuable source of information about people’s knowledge
and opinions about places. Moreover, given the huge volume of available content
and the inherent noise in crowdsourced data, identifying potentially interesting
information posted daily on social networks is an important as well as challenging
task. Consequently, there has been a significant amount of work on finding popular
topics among posts and presenting these to users. Location is an important aspect
here since topics, opinions, and events tend to vary across different regions. Thus,
in this part of our work, we developed a prototype to extract locally trending topics
worldwide continuously over a stream of posts using a sliding window. Moreover, to
allow users to quickly grasp the context or background of a topic, the system allows
users to retrieve a small set of representative messages related to it. In addition
to visualizing this information on spatial, textual, and temporal dimensions, the
application provides other mechanisms to explore and dig deeper into the dataset,
such as spatial-temporal-textual similarity-based retrieval and filtering, and iterative
drill down. Chapter 6 presented the architecture of the system and described each
of its main components in detail, including the Storage System, the Topic Detection
module, the Topic Summarization module, the Post Similarity module, and the web-
based user interface. Finally, the functionality of system was demonstrated using a
continuously updated dataset of more than 80 million geotagged Twitter messages
and by going through a typical usage scenario.

8.1.5 Mining Associated Location Sets

Our motivation for this part of our work was along the lines of that of the previous
one (Chapter 6), namely that a post at a certain location generally says something
about that location. Thus, collectively, a corpus of geotagged posts adds a dimension
of crowdsourced intelligence to places that can be examined to reveal insights and
patterns regarding people’s knowledge and interactions with places. In particular,
there has been a significant amount of research in the area of mining mobility patterns
to discover sets of locations appearing together frequently in user trails. Here, the
objective is to utilize user-generated content to understand how people move in
a region and consequently, to provide them with better local infrastructure and
services. Similarly, in spatial keyword query processing, collective spatial keyword
queries find groups of objects that together satisfy user requirements specified by
a given set of keywords and that are close to each other. The motivation here is
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that user requirements can often be complex, and thus a single location might not
suffice. In mobility pattern mining, the locations are only socially associated as textual
information is ignored, whereas in collective spatial keyword queries, the locations
are textually, but not socially associated. Thus, the work in Chapter 7 filled the
gaps in these two areas of research by investigating the problem of finding location
sets for a given set of keywords that are associated both socially and textually. The
social condition makes certain that the locations co-occur in user trails derived from
social networks, whereas the textual criterion ensures that the posts made by users
at the locations are collectively relevant to the query keywords. This allows us to
leverage users’ mobility patterns and their semantic characterization of locations
as evidence to identify places that are thematically associated. In our analysis, we
started out by formally defining the problem and studying its characteristics. This
led us to the observation that although our problem appears similar to the task of
mining frequent itemsets, one cannot utilize an Apriori-like algorithm directly in our
scenario. Thus, we proposed the concepts of weak support and relevant user that
allowed us to use a frequent itemset mining algorithm for our problem. Based on this,
we proposed three different approaches: a baseline approach without an underlying
index, an index-aware approach that operates over a simple inverted index, and a
spatio-textual index-based approach. Moreover, we proposed algorithms for both the
threshold-based and the top-k variants of the problem. Our experimental evaluation
using geotagged photos from three different cities showed that our index-aware
methods outperform the baseline approach by a large margin.

8.2 Outlook

There are several directions in which the work presented in this thesis can be extended.
Below we outline the ones that we consider as most promising and challenging.

8.2.1 Distributed Processing

Most of the existing works on spatial keyword queries use sequential processing of
data and assume that it can fit in the main memory of a single machine during index
construction and query processing. This is also reflected in the sizes of datasets used
for experimental evaluation, making it uncertain how these techniques would cope
with larger amounts of data or with data partitioned across multiple machines. On the
other hand, due to the availability of spatio-textual data at an unprecedented scale,
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research into distributed and parallel processing methods is gaining momentum
[116]. Distributed computing frameworks, such as Hadoop and Spark based on
the MapReduce programming model, offer potential solutions for handling this
data deluge. However, developing systems [117, 177, 80] and extending existing
techniques [9, 115, 136, 49, 123] for handling spatio-textual and spatio-temporal
data based on these paradigms are still open challenges that have received limited
attention so far. Thus, there is a significant scope for future work in this area,
including the adaptation and extension of problems presented in this thesis to these
settings.

8.2.2 Standardized Benchmarks and Surveys

The earliest survey of spatial keyword query processing methods evaluated and
compared twelve spatio-textual indexes for standard queries [32]. Since then, as is
evident from our survey of existing research in Chapter 2, research in this area has
expanded far beyond the standard queries and several different query formulations
and query processing methods have been proposed. Moreover, each of these methods
evaluates its contributions in a different setting against different chosen baseline
methods. As a result, due to the overwhelming number of published works and due
to their evaluation in separate environments, it is becoming increasingly difficult
to identify the merits and shortcomings of a specific technique, and to compare
them against others. Thus, standardized benchmarks and surveys for methodically
evaluating and comparing these techniques is a very important direction of future
research that has received very little attention so far.

8.2.3 Integration into Mainstream Databases and GIS Tools

The bulk of the different query types and evaluation techniques proposed in existing
literature use tailor-made hybrid indexes and data structures for improving query
processing times. Since these methods are custom-built and target specific problems
only, it is uncertain how they might perform in other contexts, and consequently
their adoption in mainstream databases and GIS tools has been limited so far. Al-
though open-source text retrieval systems, such as Lucene1 and ElasticSearch2, now
come with integrated support for spatial search, the range of spatio-textual queries
supported by them is very limited. Furthermore, with the exception of these sys-

1https://lucene.apache.org/
2http://www.elastic.co/products/elasticsearch
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tems, open-source implementations of spatial keyword query processing methods
are scarce. Thus, an important direction of future work lies in developing a unified
general-purpose framework comprising multiple access methods and techniques,
such as those presented in this thesis, and integrating it into existing open-source
databases and GIS tools.
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ZUSAMMENFASSUNG

Die allgegenwärtige Nutzung von GPS-fähigen mobilen Endgeräten und sozialen
Netzwerken führt zu einem immer größer werdenden Volumen an sogenannten
räumlich-textlichen Daten (z.B. georeferenzierte Beiträge auf Twitter oder Restaurant-
bewertungen auf Foursquare). Einhergehend mit diesem Anstieg nimmt zugleich
die Nachfrage nach Daten mit räumlichen Bezug (z.B. Internet-Suchen nach lokal
relevante Informationen) zu. In der wissenschaftlichen Literatur werden Anfra-
gen, wo das Suchkriterium aus textlichen und räumlichen Prädikaten besteht, als
Schlüsselwort-Anfragen mit räumlichen Bezug (spatial keyword queries) bezeichnet.

Die Literatur beschäftigt sich mit verschiedenen Typen von spatial keyword queries.
Diese reichen von einfachen top-k Suchen bis zu komplexeren Anfragevarianten. Die
überwiegende Mehrheit der Forschungsarbeiten fokussiert sich allerdings auf die
Anfragebearbeitung in rein statischen Szenarien, d.h. die zugrunde liegenden Daten
sind eher statischer Natur. In starkem Kontrast dazu steht die Dynamik der sozialen
Netzwerke, die kontinuierlich eine große Menge von sich ständig verändernden,
nutzer-generierten räumlich-textlichen Daten anbieten. Gerade die Einbeziehung
dieser Eigenschaften in die Anfragebearbeitung ist weniger gut erforscht und bietet
Raum zur Verbesserung existierender Ansätze.

In der vorliegenden Arbeit beschäftige ich mich daher mit neuen Ansätzen zur
Informationsgewinnung und Analyse von georeferenzierten Kommentaren. Zur Ein-
beziehung der Dynamik erweitere ich zunächst Zugriffsmethoden für spatial keyword
queries um eine zeitliche Komponente. Ich betrachte hierbei zuerst Techniken zur
Indizierung und Filterung von Trajektorien aus Kommentaren in sozialen Netzwerken.
Aufbauend darauf betrachte ich, durch Auffindung einer selektiven Untermenge
möglichst repräsentativer Ergebnisse, Ansätze zur explorativen Analyse von großen
Datenmengen, die durch eine räumlich-zeitliche Bereichsabfrage mit Schlüsselwort-
filter gewonnen werden. Jedoch werden die oben beschriebenen Anfragearten der
Dynamik in sozialen Medien noch nicht vollumfänglich gerecht, da die Ergebnis-
mengen durch den kontinuierlichen Strom an neuen Daten schnell veralten. Ich
betrachte daher wie vorgenannte Ansätze zu einer Datenstromanalyse erweitert wer-
den können, indem ich Methoden für die kontinuierliche Zusammenfassung von
Kommentaren untersuche. Abschließend analysiere ich mit Hilfe von zwei Data-
Mining Verfahren den nutzergenerierten Charakter von Kommentaren in sozialen
Netzwerken. Hier beschreibe ich zunächst ein System zur Auffindung und Exploration
von lokalen Anziehungspunkten an denen bestimmte Schlüsselwörter signifikant häu-
figer auftreten (locally trending topics). Ferner untersuche ich einen Ansatz, der auf
der Grundlage von digitalen Spuren von mobilen Nutzern in sozialen Netzwerken
thematische Zusammenhänge zwischen verschiedenen Orten auffinden kann.
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