5 Applications for CORG

This chapter focuses on the analysis and interpretation of microarray data in conjunc-
tion with CORG. Microarray data constitute a read out of the transcriptional program.
A major challenge in the area of functional genomics is to correlate gene expression
with promoter level events in higher organisms. Ideally, one would like to link ex-
pression changes to underlying signaling pathways that activate specific transcription
factors. Binding sites of the corresponding transcription factors should be present in
co-expressed genes. Binding sites can be predicted by searching for recurring motifs in
upstream regions of co-expressed genes. This approach has been successfully applied
in yeast where the intergenic regions are small enough to inspect them for binding

sites (e.g. | ( )i ( )-

However, this approach cannot be directly translated to mammalian genomes where
the position of the promoter region is often unknown and intergenic regions tend to
be large. This results in a prohibitively high number of false positives in binding site
prediction. We address this problem by focusing binding site prediction on genomic
segments that are conserved between man and mouse as in the CORG database.

Two applications will be presented in this chapter:

1.Detection of putative cell cycle regulators. Genes were grouped into clusters of
co-expressed genes. These clusters correspond to cell cycle phases. The resulting
distributions of conserved predicted binding sites were statistically assessed.

2.Investigation of SRF-mediated gene expression. We studied SRF-induced genes
from different experimental contexts. Detailed promoter and comparative ana-
lyses of the induced gene sets were carried out.

5.1 Binding site distributions across cell cycle phases

We exploit the distribution of evolutionarily conserved, predicted binding sites over
different groups of co-expressed genes as an indicator for functionality of the predicted
binding sites. The rationale is that when a factor plays a role in the co-expression
of a group of genes, we ought to observe these functional binding sites sticking out
from the random occurrences of predicted binding sites. A deviation from the random
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distribution for a particular factor should thus indicate a functional role for these
binding sites.

We will exemplify this for human cell cycle data, with the genes that peak in a partic-
ular phase of the cell cycle taking the role of the co-expressed group. Gene expression
data are taken from ( ) who studied expression levels of genes in
cycling HeLa cells. Based on the expression levels, they identified genes that are peri-
odically upregulated and assigned each of them to one out of five expression clusters
corresponding to the cell cycle phases G1/S, S, G2, G2/M and M/G1.

Figure 5.1 condenses our knowledge on the cell cycle into a single graphic (see legend
text). The duration of each cell cycle phase is depicted as its perimeter proportion of
the whole cycle. The duration of the whole cell cycle varies greatly from one cell type
to another. Fly embryos have the shortest known cell cycles, each lasting as little as
8 minutes, while the cell cycle of a mammalian liver cell can last longer than a year.

( ) monitored the cell cycle of HeLa S3 cells that divide on average
every 12 hours.

Evolutionarily conserved, predicted TFBSs and the cell cycle phase assignment of
genes according to ( ) can be combined to search transcription
factor candidates that may play a role in cell cycle regulation. Both kinds of data can
be represented in matrix form. Thus, we denote the matrix representing predicted
TFBSs for m motifs in upstream regions of n genes as B with dimensions m,n and
the matrix assigning k periodically expressed genes to [ cell cycle phases as C' with
dimensions k, . Since B holds all genes in CORG (&~ 12,000) and C' contains only a
partially overlapping subset (i.e. n # k), both matrices need to be adjusted. All gene
entries G € BN C are pulled out of both matrices to yield B and C’. The product A
of B and " is defined by a;;, = Zj bi;ciy with i as TFBS index, j as gene index and
k as phase index. Thus, rows of matrix A contain count distributions of PWM hits
over all cell cycle phase. Given this approach, we now discuss all settings to obtain B

and C.

5.1.1 Binding site prediction

The 120 employed PWMs were retrieved from the TRANSFAC database release 7.1
( , ). Only PWMs with both sensitivity and specificity quality value
above 0.9 according to an ROC curve as define by ( ) were se-
lected. The corresponding PWM identifiers are listed at http://corg.molgen.mpg.
de/cellcycle/matrix ids.txt. The proportion of false negative and false positive
observations was computed with respect to a signal and a background model. We set
the false negative level to 10% in our initial searches. The number of false positive
hits was cut by an upper bound on the accepted p-value (p < 0.0005). In case of alter-
native translational start sites, all unique binding sites for a given gene were pooled.
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Figure 5.1: Mitotic cell cycle. The cell cycle is a sequence of recurring events from one
cell division to the next. The following cell cycle phases can be distinguished: The G1
phase is the first growth phase. Cells might exit the cell cycle at this stage and remain
in GO phase. During GO, cells maintain a quiescent state. G1 is followed by the S phase,
during which the DNA is replicated. G2 phase is the second growth phase. Cells prepare
now for the M phase or mitosis and cytokinesis, the actual division of the cell into two
daughter cells. The cell cycle stops at several checkpoints and can only proceed if certain
conditions are met, for example, if the cell has reached a certain diameter. Some cells,
such as neurons, never divide again once they become locked in GO phase. Image source:
http://www.med.unibs.it/~marchesi/dna.html

For this data set, we could unambiguously identify an overlap of 592 genes with the
CORG database.

5.1.2 Association mining

Bias in PWM counts across cell cycle phases PWM count distributions that de-
viate significantly from the null distribution might indicate a preferential association
of particular binding sites in certain cell cycle phases. A reasonable choice for the
null distribution @ = (¢;) is given by dividing the summed length of the conserved
sequence in upstream regions of genes associated to phase i by the total length of con-
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Cell cycle phases
Sequence length in bp | G1/S S G2 G2.M | M.G1
5 UTR 25132 | 17875 | 27160 | 34982 | 18671
Non-exonic sequence | 104614 | 67871 | 129803 | 162927 | 75845
Total sequence 129746 | 85746 | 156963 | 197909 | 94516

Table 5.1: Length of conserved sequence per expression cluster. The length of
conserved sequence (in bp) across the three upstream sequence categories and cell cycle
phases. The null probability distributions are based on these data.

served sequence. The respective sequence lengths are shown in Table 5.1 for exonic
and non-exonic segments in the corresponding upstream regions. The overall length
of conserved sequence per expression cluster constitutes the search space of binding
site predictions. Random occurrences of binding sites would be uniformly distributed
across the search space, whereas functional sites should show some cluster preference
in their distribution pattern.

Next, an exact test is applied to determine which of the observed PWM-phase distri-
butions obey the assumed background distribution ). Additionally, a correction for
multiple testing is crucial since one p-value is computed for each PWM. By employing
the concept of False Discovery Rates ( , ), we adjust the
size of our result set such that we expect at most one false discovery. This analysis is
carried out for the non-exonic upstream regions and for 5’-UTRs separately. As a final
result we obtain a number of transcription factors that we predict to play a functional
role in the progression of the cell cycle and compare these results in the light of the
experimental literature.

Test for deviation from background distribution An exact p-value for observed
counts (n;) is calculated with an exact likelihood ratio test as follows. We use the
generalized likelihood ratio statistic

k

L:=2-) n; -log(ni/(ng)), (5.1)

i=1

where n; is the observed number of samples in category i, n = Y n; is the sample
size and ¢; is the null probability of category i. The null hypothesis Hj is that the
counts (n;) arise from sampling n times a random category (cell cycle phase) from
the null distribution, i.e., that (n;) has a multinomial distribution with sample size
n and category distribution ). The p-value of an observed value ¢ of £ is defined
as the probability p(¢) = Py, (L > ¢) that the value of the test statistic £ exceeds
the observed value ¢ when the counts are in fact generated by sampling from the null
distribution. The test statistic £ is a relative entropy-like measure.
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5.1 Binding site distributions across cell cycle phases

Recently ( ) and ( ) have shown that it is possible to effi-
ciently compute exact p-values in this situation; for this study, we used the MATLAB
implementation provided by

Alternatively, we can obtain approximate p-values using an asymptotic x? approxima-
tion. Here, the test statistic

k
X = (ni = ngi)*/(ng,) (5.2)

i=1

has an approximate y? distribution with k — 1 = 4 degrees of freedom given k = 5
cell cycle phases. Again, the hypothesis of whether the sample was drawn from (@ is
tested. The asymptotic approximation alternative should be preferred in case of large
sample sizes. The computation time for approximate p-values is only a tiny fraction
of the running time of the exact method. Additionally, accuracy of the approximated
p-values increases with sample size.

Correcting for multiple testing ( ) proposed a more lib-
eral criterion to correct for multiple testing than traditional methods like the Bonfer-
roni correction. The principal idea is to use the concept of the False Discovery Rate

(FDR, (1995)).

Definition 5.1. The False discovery rate is the expected proportion of false rejections
given a rejection rule R, e.g. “Reject null hypothesis H; if the corresponding p-value
P; meets some condition ¢.” More formally,

FDR(R) = E{proportion of rejected H; that are actually true}.

( ) also provide a useful algorithm to keep the FDR under
a preset level a. Let
ie = argmax; {R < ﬂ} (5.3)
nPo
with py being the proportion of true H;. Then the FDR is always lower than «;, if all
P, < P, are rejected.

However, pg is usually not known. The most conservative choice would be to set py to
1, which is the well-known Bonferroni correction. ( ) offer
a way to estimate pg from the observed P;. Exploiting the fact that null P; values are
uniformly distributed, a reasonable estimate can be formed.

# [P > )\

(5.4)
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A tuning parameter A\ was introduced to yield estimates of py for different p-value
thresholds. ( ) try to approximate po (A = 1) by fitting
a natural cubic spline to data points for a range of A € [0,0.95]. Alternatively, a
bootstrapping approach (sampling with replacement) is employed to find the optimal
A (see ( ) for details).

Once an estimate (pp) is found, the FDR for some significance threshold ¢ is estimated
by
p}]nt

FDR() = 75 <7

(5.5)

Our observed uncorrected p-values from both tests were submitted to the R routines
available at http://genomine.org/qvalue. Since we have a small number of p-values,
we employed the recommended “bootstrap” method to estimate my. The FDR level
was tuned such that we would expect one false prediction on average.
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Figure 5.2: p-values for conserved predicted binding site distributions.

Left (Non-exonic binding site distributions): All 112 p-values are plotted in ascending
order. Exact p-values are plotted in dark grey and the y? approximated p-values in
light grey dots. The black line depicts the random case where all p-values are uniformly
distributed. The vertical line marks the highest accepted p-value. All in all 22 p-values
were accepted.

Right (Ezonic binding site distributions): All 104 p-values are plotted in ascending order.
Exact p-values are plotted in dark grey. The black line depicts the random case where all
p-values are uniformly distributed. The vertical line marks the highest accepted p-value.
All in all 11 p-values were accepted.
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5.1 Binding site distributions across cell cycle phases

5.1.3 Significant deviant binding site distributions

A cell-cycle relevant subset of CNBs from CORG ( , ) has been
scanned for matches to 120 selected matrix representations (PWMs) of known TFBSs
as contained in the TRANSFAC database ( : ). We predicted 24,375

binding sites being part of a man-mouse conserved sequence segment. 3,838 of our
predicted binding sites fall into exonic regions. Intriguingly, significantly fewer motif
hits were predicted per nucleotide in 5-UTR sequences (Binomial test, p-value <
10716).

No hits were reported for 8 matrices as none of the few hits were conserved. Figure 5.2a
shows the sorted p-values of the exact test and the approximate test of all TFBS
phase distributions in non-exonic conserved sequence. Random p-values are uniformly
distributed and would ascend along the diagonal (black line).

We were interested whether the ranking between both sets of p-values (exact and
approximate) is preserved. Using Kendall’s rank correlation test with Kendall’s coef-
ficient 7 = 0.939, we obtained a p-value of < 107! for the null hypothesis that both
lists are not correlated (7 = 0).

Figure 5.2b depicts the results for conserved predicted TFBSs in 5’UTR regions. 104
exact p-values are plotted in ascending order. No p-value approximation was done due
to the small counts of TFBSs.

Correcting for multiple testing As shown in Section 5.1.2, an assessment of the
proportion of true null p-values (pg) is crucial to the concept of the false discovery
rate.

Our estimates for py are 0.584 and 0.5 for non-exonic and 5'UTR TFBSs, respec-
tivly. The lowest attainable FDR is 0.04 for non-exonic and 0.07 for 5’'UTR TFBS
distributions.

We chose to adjust the number of accepted significant observations to the level of one
expected false discovery. This means to set a FDR threshold of 0.045 for the non-
exonic PWM phase distributions and 0.096 for the 5’-UTR PWM phase distributions.
By applying these thresholds, we accept 22 and 11 PWMs for the two data sets,
respectively. The accepted PWMs are presented in Table 5.2 and 5.3.

Figure 5.3a summarizes all PWM phase distributions for non-exonic binding sites that
appear in Table 5.2. Similarly, the content of Table 5.3 is visualized in Figure 5.3b.
TFBS counts were normalized by subtracting the distribution mean and subsequent
division by the standard deviation. The normalized values (Z-scores) were then trans-
lated into grey scale colors (see Figure legend).
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Transfac motif Cell cycle phases p-value
G1.S S G2 G2.M M.G1
V.NERF.Q2 168 67 99 199 90 9.210769¢-08
V.PAX9.B 152 49 101 148 65 1.071894e-06
V.OLF1.01 120 44 66 134 63 2.0846165e-06
V.COUP.01 107 67 97 228 78 5.1196418e-06
V.STAF.02 148 53 101 148 79 1.5220174e-05
V.TEL2.Q6 245 154 216 370 197 4.9835619¢-05
V.ARP1.01 138 57 104 200 91 0.00010639304
V.T3R.01 30 11 15 45 33 0.00010802171
V.PTF1BETA.Q6 165 100 125 240 110 0.00014531276
V.IK3.01 94 40 75 160 64 0.00037316641
V.RREB1.01 26 6 13 13 3 0.00073057134
V.COUP.DR1.Q6 107 57 76 154 74 0.0010877052
V.PPARG.03 84 32 70 138 57 0.0016508134
V.HOX13.01 14 6 3 25 10 0.0027401688
V.MAF.Q6 114 59 85 153 81 0.0030366968
V.AP4.01 197 85 215 247 146 0.0038111711
V.APOLYA.B 4 4 6 25 3 0.0043054911
V.FXR.Q3 88 46 78 159 66 0.0050114715
V.EVI1.06 44 45 67 123 47 0.0063601175
V.FOX03.01 22 17 14 48 19 0.009670219
V.EVI1.02 49 35 53 115 40 0.010321056
V.MEF3.B 137 55 121 186 83 0.01089912
Null distribution | 0.19335 | 0.12544 | 0.23991 | 0.30113 | 0.14018

Table 5.2: Top 22 non-random distributions of TRANSFAC motifs for non-exonic
sequence. 1 out of the 22 listed motifs is expected to be a false discovery (FDR level of
0.045).

Transfac motif Cell cycle phases p-value
G1.S S G2 G2.M M.G1
V.NERF.Q2 14 19 77 60 15 2.4700964e-11
V.OLF1.01 5 10 35 44 11 1.4235621e-06
V.HEN1.01 0 1 11 2 0 5.9439633e-05
V.AR.Q2 9 0 15 22 3 0.00017224456
V.TAL1BETAEA47.01 0 3 10 10 0 0.00033778459
V.RREB1.01 0 1 0 2 6 0.0018728352
V.IK3.01 8 18 13 18 2 0.0019495133
V.MAF.Q6 10 15 27 47 15 0.0032300874
V.PAX9.B 21 13 38 58 17 0.0056357379
V.FREAC3.01 2 6 2 9 0 0.016426396
V.NFKAPPABG65.01 16 10 30 35 7 0.018244817
Null distribution | 0.20297 | 0.14436 | 0.21935 | 0.28252 | 0.15079

Table 5.3: Top 11 non-random distributions of TRANSFAC motifs for exonic
sequence. 1 false discovery is expected on average in the set of the 11 listed motifs (FDR
level of 0.096).
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Figure 5.3: Normalized association matrices. Left: All TFBS distributions that were
selected as truly significant are shown for non-exonic upstream regions. Matrix entries
are divided by their column sum and subsequently normalized with the following formula:
(Observed — i) /o where p is the row mean value and o the standard deviation of the row
distribution. Right: The same for 5> UTR upstream regions.

5.1.4 Biological implications

Many conserved predicted binding sites are not uniformly distributed across cell cycle
phases. We will now discuss potential links of our findings to cell cycle regulation for
PWDMs shown in Figure 5.3.

Starting with TFBS distributions that peak in G1/S, we initially consider a set of 6
PWMs (VENERF_Q2, VSMEF3_B, VSOLF1.01, VSRREB1_01, VSPAX9 B, VSSTAF _02).
Not all of the corresponding transcription factors have already been studied in the con-
text of cell proliferation or cell cycle. NERF is an antagonist of ELF-1. Both are Ets
transcription factors that play an important role in blood vessel development (Gaspar

et al,, 2002). Zhang et al. (2003) demonstrated the repressive action of transiently
expressed RREB (ras-responsive element binding protein 1) on the promoter of pl16
alias CdknZ2a, which is a CDK inhibitory protein. Other factors (PAX9, OLF1 and its
alternative splice variant EBF') have been linked to developmental processes.

Moving on to the S phase, we recognize a generally lower relative number of predicted
TFEFBS. VSEVI1_Q6 and VSFOXO03_01 have an almost equal relative amount of binding
sites in the S and G2/M phase.
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( ) established a causal relationship of FOXO1, FOXO3 and cell
cycle regulation. They showed that a constitutively activated PI3K/Akt axis triggers
phosphorylation of FOXO1 and FOXO3. Thus, FOXO1 and FOXO3 were mainly
found in the cytoplasm and did not induce gene expression of p27-KIP1 (Cdknl1b)
causing cell cycle arrest.

Several examples of enriched G2/M motifs were discovered (e.g. VSPPARG_03 and
V_FXR_Q3). V$PPARG_03 denotes elements which are bound by the peroxisome
proliferator-activated receptor ~. ( ) could inhibit S-phase entry and
expression of the cyclin D1-dependent serine-threonine kinase (Cdk) by natural and
synthetic ligands of PPAR~.

Another member of the thyroid hormone/retinoid receptor subfamily of nuclear hor-
mone receptors is the thyroid hormone receptor (T3Ra/f3). It has its highest number
of relative binding sites in M/G1 phase. T3R also affects cell cycle regulation and
alters expression levels of the Mdm2 oncogene ( , ).

Differences in TFBS distribution for non-exonic and 5’UTR regions. The ranking
and the members of the two result sets for non-exonic and 5’UTR TFBS motifs differ.
Three motifs (VSFREAC3.01, VINFKAPPABG65.01, VSAR_Q2) emerge as interest-
ing new candidates in the set of 5’'UTR regions. Most notably, the androgen receptor
has been reported to regulate the expression of the cyclin-dependent kinase inhibitor
1A (CDKNI1A, p21, Cipl) as we would expect from our predictions ( , ).
Predicted sites for VSFREAC3_01 peak in S phase. The corresponding transcription
factor FOXC1 has been shown to affect a number of developmental processes. Mu-
tations in the Foxcl gene have been attributed to ocular, meningeal, cardiac, skeletal
and renal anomalies ( : ).

All in all, functional TFBS are known to occur in 5’'UTR regions of genes and exert
their control on transcription there. However, it is difficult to assess their function
and contrast it to non-exonic regions.

5.2 Promoter analysis of SRF responsive genes

Serum Response Factor (SRF), a MADS-box transcription factor, regulates the expres-
sion of immediate-early genes (IEGs'), genes encoding several components of the actin
cytoskeleton, and cell-type specific genes, e.g. smooth, cardiac and skeletal muscle or
neuronal-specific genes ( , ; , ). Mouse embryos lacking SRF
die before gastrulation and do not form any detectable mesoderm ( ,

IThe term “immediate-early” denotes rapidly induced genes whose mRNA levels rise sharply within
30 minutes after serum induction.
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; , ). SRF mediates transcriptional activation by binding to
CArG box sequences (Consensus pattern: CC(AT)¢GG) in target gene promoters and
by recruiting different co-factors. SRF regulates transcription downstream of MAPK
signaling in association with ternary complex factors (TCFs) (for a review see

( )). TCF's bind to ets binding sites present adjacent to CArG boxes
in many SRF target gene promoters.

This section summarizes the results of a long-standing collaboration on SRF targets
with the group of Alfred Nordheim at the university of Tiibingen. We are especially
grateful for all the experimental work that was mainly done by Ulrike Phillipar and
Gerhart Schratt.

In this study, a whole-genome micro array approach helps to identify new SRF target
genes using overexpression of SRF-VP16 in SRF-deficient embryonic stem (ES) cells.
We hypothesized that SRF overexpression in ES cells would activate genes that are
important for several cellular differentiation pathways, including muscle differentia-
tion. Among others, we identified the gene encoding the LIM-only protein FHL2 as
a novel SRF target gene. FHL2 is upregulated in an SRF-dependent manner during
differentiation of ES cells and in response to RhoA activation. In addition, our col-
laborators demonstrated that SRF and FHL2 interact in vitro and in vivo after RhoA
activation and form a complex at the promoters of a subset of SRF target genes. We
also show that FHL2 acts as a repressor of SRF-induced transcription and specifi-
cally represses the MAL-induced activation of smooth muscle gene promoters. We
propose that RhoA, SRF, and FHL2 are part of a novel feedback-loop to regulate the
expression of SRF target genes during early cardiac muscle differentiation.

5.2.1 Identification of SRF target genes

Expression profiling to identify SRF-regulated genes in ES cells Despite increas-
ing evidence for a role of SRF in various biological processes, further insight into
SRF function is hampered by the lack of a comprehensive list of SRF target genes.
We decided to use microarray analysis to monitor gene expression as a function of
SRF activity at the whole-genome level. We first used transient overexpression of a
constitutive active SRF fusion protein, SRF-VP16, in SRF-deficient ES cells. This
approach has been shown to lead to a sensitized, robust induction of known SRF
target genes, such as Egr-1 ( , ). Using SRF-VP16, we expected to
identify the majority of SRF target genes independent of activating extracellular cues.
SRF-AM-VP16, a mutant defective in DNA binding, was used as control. To monitor
gene expression profiles of cells transfected with SRF-VP16 or SRF-AM-VP16, mRNA
from two independent transfections was hybridized to Affymetrix microarrays. Two
independent Srf(-/-) ES cell lines (81-/-, 100-/-) ( : ) were used
to control for cell-based variations. We considered those genes as regulated by SRF
whose expression was at least threefold higher in each of the samples derived from
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SRF-VP16 transfected cells compared to the SRF-AM-VP16 control transfected. We
obtained a set of 86 genes whose expression was reproducibly induced by SRF-VP16
(Table 5.4). 55 of these genes could be unambiguously mapped to LocusLink identifiers
and were further analyzed. A substantial subset of SRF-regulated genes is reported
to function in different muscle lineages. Other identified SRF-regulated genes play a
role in cell cycle/apoptosis and cytoskeletal organization, wound healing and cellular
metabolism. Our analysis recovered 17 previously known SRF target genes, including
Egr-1, Sma (smooth muscle actin) and Vinculin. However, regulation by SRF had
not been demonstrated previously for several other genes, e.g. the muscle-specific Lim
protein FHL2 or the actin-binding protein Tuftelin-1. Interestingly, our analysis also
identified a subset of SRF-regulated genes with a known function in wound healing
and angiogenesis, for example CTGF (chondrocyte tissue growth factor), Keratin 17
and FEndothelin-1. This suggests a role for SRF in these biological processes. Taken
together, our microarray approach using the Srf(-/-) ES cell system confirmed SRF-
regulation for 17 known SRF targets and identified a putative role for SRF in the
transcriptional regulation of 69 additional genes.
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Table 5.4: SRF induced genes from microarray experiment. Fold activation for two cell lines

and two measurements are shown.

Acc.No ‘ Gene name Fold activation

Musclespecific (11) ES81 (1) | ES81(2) | ES100(1) | ES100(2)
768618 SM22a 235.1 151.2 251.4 151.4
X13297 aActin (smooth) 98.6 11.8 104.3 137.8
M12347 ACTAL1 (skeletal) 80.1 73.6 201.9 88.3
D16497 NPPB 31.8 63.0 71.5 54.0
D88793 CRP1 75.6 32.3 31.2 28.4
M15501 ACTC (cardiac) 9.0 26.3 8.5 14.5
M29793 c¢TnC 3.4 20.1 14.6 9.8
X14961 HFABP 24.6 4.5 7.6 3.7
AF055889 | FHL2 14.7 10.6 3.9 10.6
U28932 CNN1 5.4 4.8 12.8 7.4
AI842649 | MLCC 3.6 7.5 20.5 5.4
Cell cycle/apoptosis (10)

X81584 IGFBP6 144.1 169.9 271.8 185.4
X71922 IGF2 90.8 151.5 112.7 73.1
M28845 EGR1 23.9 56.6 173.4 56.6
AF058798 | 14330 17.0 36.4 7.6 12.5
U09268 PAC1 4.0 26.6 11.5 28.9
M35523 CRABP2 15.6 204 14.5 11.7
M24377 EGR2 6.8 16.6 10.5 24.2
U20735 JunB 16.9 22.1 1.9 2.3
X67644 IER3 3.2 18.8 44 5.2
738110 PMP22 15.7 4.1 6.1 3.0
Wound healing/angiogenesis (7)

M26071 Tissue factor 28.5 104.4 26.5 33.9
M70642 CTGF 38.7 13.5 58.6 5.2
U35233 Endothelinl 15.8 22.6 36.9 18.6
X69619 InhibinbetaA 20.5 15.8 11.3 19.8
M32490 Cyr61 17.0 16.6 19.6 10.3
AF100777 | WISP1 7.3 6.2 11.0 3.9
X62700 MuPAR1 7.5 5.4 3.3 3.1
Cytoskeleton (25)

M69260 Lipocortin 1 101.0 66.8 55.8 81.3
M13805 Keratin 17 17.8 7 104.2 68.4
M14044 Annexin A2 179.0 34.8 19.9 15.6
M36120 Keratin 19 13.5 254 121.0 20.3
M22832 Keratin 18 22.5 36.0 54.2 18.6
AT604345 NICE1 11.3 46.1 13.0 58.8
AJ001633 | Annexin III 26.0 69.3 13.2 17.0
AT462105 | Vinculin 70.4 8.5 10.9 7.3
M77174 Perlecan 3.6 47.3 7.8 4.6
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J04953 Gelsolin 15.4 12.9 24.0 7.5
U82624 APP 25.4 10.9 14.3 8.1
AAT755126 | Keratin 7 4.9 9.7 25.8 14.1
AA600542 | Desmoplakin 23.9 7.6 15.2 4.4
X15662 Keratin 8 14.1 16.2 12.0 8.1
AF087824 | Claudin6 12.0 20.0 10.6 7.0
AI835858 | Tropomyosin 4 23.6 5.3 11.1 5.7
AWO060401 | TC10 5.8 25.6 10.9 3.1
M15832 Procollagen, type IV 16.3 7.9 3.5 3.7
AB000713 | CPE receptor 7.7 6.5 6.1 3.8
AF047704 | Tuftelin 4.4 5.6 6.4 4.4
AW046449 | Fyn 4.8 4.7 4.6 4.5
M21495 ~vActin (smooth) 4.8 3.1 3.1 44
X15986 Betagalactoside-specific lectin 7.2 7.2 5.8 4.6
Metabolism (9)

M31775 Cytochrome b558 5.6 11.2 7.3 4.8
J02652 Malic enzyme 6.8 6.4 7.0 4.5
U25739 YSPL1 3.5 7.0 9.4 10.4
X7380 Secretin 4.0 7.4 8.0 5.8
AB025408 | Sid478p 7.3 4.3 5.2 5.0
AAT26364 | Lipoprotein lipase 6.2 16.4 7.6 4.0
X66449 Calcyclin 8.4 14.0 3.8 6.7
M65270 CathepsinB 5.8 4.2 3.7 3.3
Others (15)

X56602 Interferon induced 15 kDa protein | 25.3 11.1 93.6 21.2
M18070 PRNP (prion) 27.6 23.3 10.2 9.6
Y07836 Stral3/Clastb 27.7 27.9 6.0 4.3
X01838 Beta2 microglobulin 32.5 7.5 15.0 3.8
AW125478 | IGFBP5 protease 23.4 17.9 4.0 4.7
M61007 C/EBPg 12.5 8.1 16.9 2.4
AW061260 | Nestin 11.1 7.2 10.0 4.3
AI840413 | PSD95 5.6 9.4 7.9 6.9
AI849587 | Calcium channel 8 6.9 7.5 6.3 3.1
AT842665 | TIP1 3.1 5.7 7.9 5.6
AlI845915 | Poll transcription related factor 7.3 6.0 3.6 3.8
U59807 Cystatin 6.4 5.1 3.9 3.3
AB026569 | MSSP 5.0 5.0 3.8 4.9
AT844520 | IFI30 3.4 6.5 3.5 3.7
J05261 Protective protein for galactoside 4.2 5.3 3.0 3.1
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5.2 Promoter analysis of SRF responsive genes

Identification of conserved SRF binding sites using a comparative genomic ap-
proach Our results so far do not address whether SRF regulates genes within the
set of 86 genes identified by microarray by directly binding to the respective promoter
regions. We employed a mouse/human comparative genomics approach to screen the
regulatory regions of the identified 55 genes for putative SRF consensus binding sites.
10 Kb of DNA sequence upstream of the first partially translated exon in the genomic
sequences of mouse and human was analyzed. To narrow down the search space, we
considered only binding sites that localized within conserved sequence elements of
mouse and human genomic sequences (CNBs). Cross-species sequence conservation
often correlates with functional importance and helps to reduce the false positive rate.
Within the CNBs, we screened for putative SRF binding sites, allowing one base pair
exchange from the canonical SRF consensus sequence (CC(A/T)sGG). Such sites often
constitute functional SRF binding sites. We identified a total of 21 conserved putative
SRF binding sites within the upstream region of the reduced set of 55 genes induced by
SRF-VP16 (Table 5.5). We found SRF binding sites in CNBs of 10 (out of 17) previ-
ously known SRF targets, including SM22«, FEgr-1 and muscle actins. This illustrates
that functional SRF binding sites can be identified with the comparative genomics
approach chosen here. The failure to identify the SRF sites within the remaining
seven known SRF targets may be explained by the fact that these binding sites are
present in enhancer elements further upstream or downstream of the search space (as
is for example true for the CRP-1 gene). In addition, functional SRF binding sites are
not always conserved in terms of sequence and genomic location. Eleven previously
unrecognized, new SRF target genes were identified with our approach. These can be
categorized based on the degree of conservation of the upstream CArG sequence(s)
(Table 5.5). Upstream regions of the Tuftelin, FHL2 and Keratin 17 genes contain a
canonical CArG sequence that is entirely conserved between the mouse and human
genome. CArG sequences in the eight other genes are either conserved but have one
basepair exchange (e.g. Endothelin-1), or are only partially conserved (e.g. CTGF).
Taken together, using comparative sequence analysis, we identified SRF binding sites
in 10 known and 11 previously uncharacterized SRF target genes. Together with our
results from expression profiling, we propose that a significant fraction of genes that
contain evolutionary conserved SRF binding sites within their upstream regulatory
regions may be directly regulated by SRF.

Rating of in silico binding site predictions To get an idea on the performance of
our in silico predictions, we evaluated the overlap of our predictions with an n vivo
large-scale experiment. ( ) monitored the promoter occupancy of 1,200
genes with E2F family members 1 and 4. These 1,200 genes are expressed during cell
cycle entry (Go — G transition) in primary fibroblasts.

Table 5.6 provides an overview on the intersection of this data set with our “standard”
binding site predictions in the CORG database. Further details are given in the

73



5 Applications for CORG

Table 5.5: Conserved putative SRF binding sites. The last column denotes whether the
corresponding binding site has been previously reported as functional in literature.

Acc.No Gene CArG sequence | Pos.Human | Pos.Mouse | functional?
M12347 ACTAT1 (skeletal) CCAAATATGG | 1066 1141 X
M15501 ACTC (cardiac) CCAAATAAGG | 840 881 X
CCTTTTAAGG | 5796 6325 X
U20735 JunB CCTAATATGG | 1814 1729 X
M24377 Egr2 CCTTTTTTGG | 697 790 X
CCATATATGG | 398 414 X
M28845 Egrl CCATATAAGG | 691 679 X
CCTTATTTGG | 653 641 X
CCATATTAGG | 378 377 X
CCATATATGG | 366 364 X
M32490 Cyr61 CCAAATATGG | 2283 2099 X
768618 SM22a CCAAATATGG | 3793 4276 X
CCATAAAAGG | 3920 4399 X
AF047704 Tuftelinl CCTTTTAAGG | 664 642
AF055889 FHIL2 CCTTATATGG | 12584 10751
M13805 KRT17 CCTATAAAGG | 11926 12171
Conserved /CArGlike
U28932 CNN1 CTATAAATGG | 2794 3214 X
X14961 HFABP CCTATTTCGG | 145 121 X
M29793 c¢TnC CCATACAAGG | 538 511 X
CTAATTTTGG | 524 497 X
U35233 Endothelinl CTATATTTGG | 9007 10062
ACATAAAAGG | 700 715
CCTTAAGTGG | 3241 2948
X67644 IER3 CCTAACTTGG | 8415 8055
M77174 Perlecan CCCTATATGG | 13742 12704
738110 PMP22 CCGTTAAAGG | 1847 1664
U09268 PAC1 CCTTGTATGG | 140 134
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table’s annotation. We cannot distinguish E2F-1 from E2F-4 binding as both proteins
have the same DNA binding domain and thus binding site pattern. Consequently,
the number of predicted E2F sites remains constant for both factors. Despite this
shortcoming, both data sets show an impressive intersection. This is far from being
random as expressed in the tiny p-values for both overlaps. From this result, we
conclude that our binding site predictions are meaningful since they are supported by
biological evidence.

TF experiment | this work | Overlap P
E2F-4 79 240 43 6.1 x 1078
E2F-14 38 240 26 6.3 x 1078

Table 5.6: In this table we compare the number of E2F target genes with the biological
binding data of ( ). The first row corresponds to targets of E2F-4 and
the second row are targets of both E2F-1 and E2F-4. The second column denotes the
experimentally observed number of bound promoter regions followed by the number of
conserved promoters which contain a known E2F binding motif. The last two columns
give the overlap with experiment and the corresponding p-value calculated from the hy-
pergeometric distribution. The total overlap of our conserved promoter regions with the
experimental data set is 886.

Enrichment of predicted SRF sites in induced gene set Further support for the
biological significance of our predictions comes from a statistical argument: Do we see
an enrichment of in silico predicted binding sites in our set of SRF induced genes ?

Relaxed CArG box Our default definition of a conserved CArG box was a pair of
aligned sequences that stem from the consensus CC[AT](6)GG allowing one mis-
match in each sequence. For example, the two aligned strings CCATGAATGG
(man) and CCATCAATGG (mouse) comply with this definition. According to
this definition, 21 out of 86 mouse genes have at least one CArG box, which is
a proportion of 24.4%. On a genome-wide level, 1864 out of 13540 mouse genes
that show conservation to man do also have one or more CArG boxes. This
is equivalent to a proportion of 13.8%. The two proportions differ significantly
with a p-value of 0.006 (Exact binomial test, 21 successes and 86 trials, p=0.138)

Stringent CArG box A more stringent definition of a conserved CArG box is a pair
of aligned sequences that stem from the consensus CC[AT](6)GG and are identi-
cal. Here, the two aligned strings CCATTAATGG (man) and CCATTAATGG
(mouse) are an example of this stringent definition. With this stringent defini-
tion, 9 out of 86 mouse genes have at least one CArG box, which is a proportion
of 10.5%. On a genome-wide level, 151 out of 13540 mouse genes that show con-
servation to man do also have one or more CArG boxes. This is equivalent to a
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proportion of 1.1%. Here, the difference of proportion is even more pronounced.
An exact binomial test with 9 successes in 86 trials with an expected frequency
of p=0.011 yields a p-value of 5 x 1077.

5.2.2 Experimental Validation of SRF-regulated genes by
RT-PCR and ChIP
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Figure 5.4: Validation of selected SRF targets by RT-PCR. Validation of selected
microarray targets, Quantitative RT-PCR analysis was performed with mRNA from Srf(-
/-) ES cells (cell line 100) transiently transfected with SRF-VP16 or SRF(M-VP16, using
specific primers for GAPDH (A), Egr-1 (B). SM22«a (C), SMA (D), Tuftelin (E), CTGF
(F), KRT-17(G), ET-1 (H) and FHLZ2 (I). Values represent transcript levels relative to the
endogenous house-keeping gene HPRT and are the mean of three independent experiments.

Having identified potential SRF-regulated genes by combined microarray expression
analysis and genomic bioinformatics, we verified both SRF-dependent expression and
in vivo SRF promoter binding for several gene candidate genes, using quantitative
RT-PCR and chromatin immunoprecipitation assays (ChIP), respectively. For this
analysis, we focused on candidate genes which represented different functional classes
of putative SRF targets: Tuftelin, CTGF, Keratin-17, Endothelin-1 (ET-1) and Fhi2.
For quantitative RT-PCR analysis, undifferentiated 100 Srf(-/-) ES cells were tran-
siently transfected with SRF-VP16 or SRFAM-VP16 expression vectors. In an Srf(-
/-) background, the mRNA levels of the known SRF target genes Egr-1, SM22x and
smooth muscle actin (SMA) were increased about 160-, 5000~ and 15 000-fold, respec-
tively, by SRF-VP16, as compared with control transfected cells. This confirms the
capacity of SRF-VP16 to induce the expression of SRF target genes independently of
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the activity of upstream signaling cascades (Figure 5.4 B-D). In contrast, expression of
the house-keeping gene GAPDH did not change upon expression of SRF-VP16, con-
firming the gene-specificity of the SRF-VP16 protein (Figure 5.4 A). Tuftelin mRNA
levels were induced 38-fold, CTGF mRNA levels 19-fold, Keratin — 17 mRNA levels
30-fold, ET —1 mRNA levels 100-fold and Fhl2 mRNA levels about 380-fold by SRF-
VP16 (Figure 5.4 E-I). Similar results were obtained using an independent Srf(-/-)
ES cell line (data not shown). Thus, we were able to validate by quantitative RT-
PCR that SRF-VP16 induced the expression of five of the candidate genes originally
identified in the above microarray study.

Srf(-/-) Sri(+/+) Srif(-/-) Sri(+/+)
> o9 S S > W
Egr-1 L

Keratin-17

ET1
FHL2
-globi

Figure 5.5: In-vivo SRF target validation by ChIP. SRF binding to the murine promot-
ers of selected microarray targets in vivo. Chromatin of day 8 differentiated 100Srf(-/-)
and WT ES cells was immunoprecipitated using an SRF antiserum (lanes 3 and 6) and
bound DNA fragments were amplified by PCR using primers specific for the CArG con-
taining promoter regions of the indicated genes. Incubation without antibody was used

as control (lanes 2 and 5). 1% of the isolated genomic DNA served as input (lanes 1 and
4).

Endogenous SRF binds the murine promoters of Tuftelin, CTGF, Keratin-17,
Endothelin-1 and Fhl2 in vivo To determine whether SRF is directly bound to the
identified CArG Box sequences in the promoter regions of Tuftelin, CTGF, Keratin-
17, Endothelin-1 and FhI2 in vivo, we performed ChIP assays. Differentiated ES
cells were used for the ChIP assays expecting that some SRF target promoters, e.g.
muscle-specific promoters, might not be occupied by SRF in undifferentiated stem cells
( : ). 100 Srf(-/-) and WT14.1 ES cells were differentiated for
eight days under monolayer conditions in the absence of LIF and the chromatin was
immunoprecipitated using an anti-SRF antiserum (Figure 5.5). SRF bound specif-
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ically to the CArG box sequences of the known SRF target genes Egr-1, Srf and
SMA in differentiated WT ES cells (lane 6). No signal was observed in differenti-
ated 100 Srf(-/-) ES cells (lane 3) and where antibody was absent (Figure 5.5, lanes
2 and 5). SRF also bound specifically to the identified CArG box sequences in the
Tuftelin, CTGF, Keratin — 17, ET — 1 and F'HL2 promoters in differentiated W'T
ES cells (Figure 5.5, lane 6). The promoter region of the 3-globin gene, which contains
no CArG Box sequence, did not show any signal after immunoprecipitation with the
SRF antibody, further demonstrating the specificity of our results. Taken together,
these results demonstrate that the promoter regions of Tuftelin, CTGF, Keratin-17,
Endothelin-1, and Fhl2 are bound by SRF in native chromatin of differentiating ES
cells, thereby identifying these genes as novel direct SRF target genes.

5.3 Comparison to the LPS response of dendritic cells.

Another induction process where SRF is known to participate is the response of human
dendritic cells to LPS treatment. LPS (lipopolysaccharide) is a component of the cell
wall of gram-negative bacteria like E. coli and is detected by the cell via CD14 and
the TLR4 receptor ( , ). Firstly, I studied the gene set and
promoter constitution of the induced genes. Then, I contrasted our previously defined
set of SRF-driven genes with the immediate-early genes of the LPS response. Here,
SRF is thought to function in conjunction with Ets proteins ( , ) as
part of MAPK signalling. However, one has to be aware of the fact that the underlying
data were recorded in two completely different systems: differentiated murine ES cells
and human dendritic cells.

5.3.1 Studying the LPS response of dendritic cells

The temporal classification of expression profiles was taken from the original research
paper ( , ). The immediate-early genes are of particular interest as
they are most likely affected by the initial signal. A subset of these genes is targeted
by SRF (see Figure 5.6, left part).

109 genes of the immediate-early class could be assigned to LocusLink identifiers. We
found conserved exact matches to known binding site patterns taken from TRANSFAC
in the upstream regions of 54 of these genes. The resulting binding site matrix (BS
matrix) was compiled from the predicted binding sites of 42 distinct TF's in 54 genes.

Of course, we were curious whether we could rediscover the principal signaling path-
ways outlined in ( ). They summarize the available exper-
imental knowledge as follows (Figure 5.6): The LPS response is mainly triggered by
the TLR4 receptor. As a downstream event, various pathways target 5 transcription
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factor complexes (Elkl1/SRF, c-Jun/c-Fos, c¢-Jun/ATF-2(CRE-BP1), CREB/ATF-1
and p50/p65), which bind to 4 different types of binding sites (SRE, AP-1, CRE and
NF-£B). In our analysis we attempt to show which groups of genes are targets of these
transcription factors.

We rearranged the 42 x 54 BS matrix to identify dense subgraphs of regulators and
genes. Figure 5.7 summarizes our results. Genes with upstream AP-1 and CRE
elements cluster together, SRE and NF-xB elements are found in two distinct gene
groups. Furthermore, binding sites for SRF and NF-xB do not occur together whereas
single genes belonging to these groups may additionally contain AP-1 elements.

Other co-occuring transcription factors are ETF /Sp1 in 10 genes and HNF-3A, C/EBP,
GATA-1 in 5 genes. Binding of C/EBPS alias NF-IL6 to promoters of cytokines is a
common phenomenon ( : ). C/EBPf has been shown to synergize
with NF-xB on the promoters of IL-8 and ICAM1. The conjunction of the latter three
binding sites has so far only been reported for the IL12 promoter in the context of the
immune response ( : ).

In ( ), we give an account of these findings and stress the distinct
role of SRF in the context of the LPS response, which is supported by two alternative
methods for binding site prediction.

5.3.2 Comparison of target gene sets

For a direct comparison of the human LPS vs. the murine ES data set, we have
to reiterate our pre-conditions. We could unambigously map 55 genes to LocusLink
identifiers for the ES cell set and 109 for the LPS induction. Our in-silico predictions
classify 24 genes (out of 55) as direct SRF targets for the ES cell set and 27 genes (out
of 109) for the LPS induction experiment. Note that these SRF binding site predictions
are based on the conserved CArG box consensus sequence allowing one mismatch as
in Section 5.2.1. That is why, we detect herein 24 target genes as opposed to 8 with
exact matches in ( ).

The two target gene sets (murine ES cells and human dendritic cells) show a marginal
overlap of two orthologs: JUNB and IERS3. IER3 functions in the protection of cells
from Fas- or tumor necrosis factor type alpha-induced apoptosis ( , ) and
is thought to be induced by NF-xB. JUNB is a potent transcriptional activator and
a known target of SRF . Taking a closer look at the binding site positions in both
promoters, we observe Ets and SRF sites in close proximity in each promoter (Figures
5.8 and 5.9). These sites may well be functional but experimental evidence is required
to clarify the situation. ( ) report on the impact of deleting
a downstream CArG box of the JUNB gene, but did not pay much attention to the
upstream region. No similar reports exist for the IER3 gene.
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Table 5.7: Comparison of target gene sets. HUGO symbols for each gene set member
are shown. Two genes (IER3 and JUNB) are shared between both sets and are framed.

LPS response in dendritic cells | ATF4, BIRC3, CCL4, CSF1, CXCL2,
DTR, DUSPI, DUSP2, EBI2, EMD,
H2AFZ, [IER3| IL6, [JUNB] LCP2,
MAP3KS8, MCL1, NDP, NFKBIA, NR4A3,
PIM1, PTP4A1, PTX3, TJP2, TNIP1,
TRAF1, WTAP

SRF induction in ES cells ACTA1, ACTA2, ACTC, CNN1, CTGF,
EDN1, EGR1, EGR2, F3, FHL2,
GADD45B, GM2A, HSPG2, |[IER3],
IGFBP6, INHBA, |JUNBJ| KRTS,
PMP22, RBMS1, SPARC, TAGLN, TES,
TUFT1

We can only speculate on the reason of this result. As this is an active area of research,
we just started getting insights on modes of SRF-dependent gene regulation. One
explanation of different SRF target sets prevails and gains support from experimental
data: The existence of SRF co-factors that convey specificity in gene expression. The
myocardin family is such a prime case. When the founding member, Myocardin, is
expressed ectopically in nonmuscle cells, it can induce smooth muscle differentiation by
its association with serum response factor ( : ). ( ) showed
that Erk-1/2 mediated growth signals repress myogenic gene expression by replacing
myocarding with Elk-1, an Ets-Box transcription factor (see also Figure 5.6).

Thus, SRF alone or in conjunction with various co-factors induces different gene sets
as seen in this section.
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Figure 5.6: Schematic overview of signalling via TLR4 receptor. Bacterial LPS
is recognized by the cell via LBP, a soluble protein, which transfers LPS to CD14 and
ultimately to the principal cell surface receptor TLR4. Various MAP kinase cascades
(Erk 1/2,JNK and p38), the NF-xB pathway and the Akt pathway are triggered by this

signal. This signal traverses into the nucleus and activates a set of 5 transcription factor
complexes.
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Figure 5.7: Target predictions for the 5 principal transcription factor complexes.
This network graph depicts protein-DNA interactions (directed yellow edges) based on
conserved exact matches to TRANSFAC site sequences. The following transcription fac-
tors are represented: SRF, FOS family (AP-1, c-Fos and Fra-1), JUN family (AP-1, c-Jun,
JunB and JunD), CREB and NF-xB
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Figure 5.8: Multiple local alignment of promoter region of human TER3 from -8,090 to -
7,990 relative to translation start with orthologous mouse and rat sequence. The putative
binding sites (SRF, AP-1 and c-Ets) are underlined and are 100% conserved.
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Figure 5.9: Multiple local alignment of promoter region of human JUNB from -6,880 to -
6,790 relative to translation start with orthologous mouse and rat sequence. The putative
binding sites (SRF and c-Ets) are underlined and are 100% conserved.
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