3 Comparative Sequence Analysis

Comparative sequence analysis has been a powerful tool in bioinformatics for address-
ing a variety of issues. Applications range from grouping of sequences (i.e. protein
sequences into families) to de novo pattern discovery of functional signatures. Se-
quence comparison aims at detecting similarities between sequences. Consequently,
one has to think about ways to compare sequences, rank the results by some score
function and statistically assess the significance of an alignment result. Most of the
fundamentals presented here are adapted from excellent introductory text books like

( ) and ( ).

3.1 Sequence Alignment

The most basic analysis task is to ask if two sequences are related. This is usually done
by aligning the two sequences (pairwise alignment). Alignments will be discussed
in the sense of aligning two sequences unless stated differently. Mutation in DNA is
a natural evolutionary process: DNA replication errors cause substitutions, insertions
and deletions of nucleotides, leading to change in textual information (“editing”).

Most DNA sequence comparison algorithms use a set of three editing operations. The
three common operations are exemplified on a sequence V = abc:

e Substitution. A symbol at a given sequence position is transformed into an-
other one. abc — ade.

e Insertion. A symbol is inserted into a sequence. abc — abdc.

e Deletion. A symbol is deleted from a sequence. abc — ac.

Insertions and deletions are represented by gap characters ’-’ in an alignment. The
presented operations are local changes that affect only one or few bases.

Example 3.1. The alignment (d — ¢,a — a,e — i,r — r,l — l,i — i,n — n,
g — e) is displayed as follows:

u: da-rling
v: -airline
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3 Comparative Sequence Analysis

where ¢ is the empty character and transitions from or to the empty character are
denoted as insertions and deletions, respectively.

Larger changes in genetic sequence (i.e. chromosomal rearrangements) place DNA
chunks of several thousands to millions of nucleotides into a new genomic context.
These large-scale rearrangements are often observed in cancer cells where entire chro-
mosomes are broken up and randomly fused. Figure 3.1 summarizes the most impor-
tant of these changes operating at the chromosome level. Intriguingly, new evidence
suggests that the same rearrangements happen on a smaller scale even in promoter
regions ( : ).

3.1.1 Global vs. Local sequence alighment

The similarity between entire sequences was the first alignment problem that caught
the attention of researchers. ( ) were the first to report
a global alignment approach to biological sequences. A global alignment is mean-
ingful for closely related sequence, i.e., members of the same protein family, such as
globins, that are highly conserved and have almost no variation in sequence length.
However, the score of an alignment between substrings of two sequences may be larger
than the overall score in a global alignment. In this case, detecting local sequence
similarities is more informative. A good example to illustrate this is the homeodomain
(Figure 2.5). The homeodomain is the DNA binding domain of many transcription
factors, which are involved in developmental processes. Although the overall sequence
similarity is very low among homeodomain containing proteins from different species,
the homeodomain itself is highly conserved among all candidates.

( ) proposed an algorithmic solution for the local alignment
problem. Both algorithms return optimal solutions to the respective problems. Both
employ dynamic programming for this purpose. Dynamic programming can be
briefly defined as an algorithmic technique in which an optimization problem is solved
by caching subproblem solutions (memorization) rather than recomputing them.

3.1.2 Models of nucleotide substitution

In pairwise sequence comparisons, sixteen different types of nucleotide pairs may occur
at aligned positions: four identical nucleotide pairs, four transition-type pairs
(P) and eight transversion-type pairs (). Transitions are interchanges between
pyrimidines, or between purines. Transversions are interchanges between purines and
pyrimidines. The number of nucleotide substitutions d = P + () can be estimated
from the observed number of substitutions d. However, d seriously underestimates the
true d, because it does not take into account backward and parallel mutations. To get
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3.1 Sequence Alignment

Types of mutation
Deletion Duplication Inversion
Insertion

,HH':L‘:’ N

Chromasama 20

Chromosame 20

Chrmmasama 4
Chramasome 4
Translocation
Darivativa 20
Chromesome 20 Chromobame

Desivative
Chromosome 4

Ehromosome 4

Figure 3.1: Chromosomal rearrangements. Large-scale edit operations may alter
the structure of a genome (i.e. number of chromosomes) and place large chunks
of DNA into a new genomic context. Image reproduced with permission from
http://www.accessexcellence.org/AB/GG/mutation2.html, The National Health Mu-
seum, USA.
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3 Comparative Sequence Analysis

a more accurate idea of the true amount of sequence change during the evolutionary
history of sequences, many mathematical models have been proposed.

Jukes-Cantor model Kimura model

A C GT A C GT

A - o o « — B8 a B
C a — o« 3 — B «a
G a o — o a B — B
T a o o — B a B —

Table 3.1: Models of nucleotide substitution.

We will now review the two most simple models of nucleotide sequence evolution: the
one of ( ) and the one of ( ), which is utilized in our
promoter sequence comparisons.

Jukes-Cantor Model The basic assumption is equality of substitution frequency for

any nucleotide at any site. Thus, changing a nucleotide to each of the three
remaining nucleotides has probability « per time unit. The rate of nucleotide
substitution per site per time unit is then » = 3. Let ¢ be the proportion of
identical nucleotides between two sequences. In a continuous time model ¢ is
given by the following equation:

qzzl—-%(l——exp_&ﬁs) (3.1)

The expected number of substitutions per site (d) is approximately 2rt. Rear-
ranging the equation above yields:

d:—zmb—§4 (3.2)

where p = 1 — ¢ is the proportion of different nucleotides.

Kimura model In DNA, the rate of transitions is usually higher than that of transver-
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sions. In the model of Kimura, both types of substitution rates are explicitly
modeled with parameters « (the rate of transitions) and [ (the rate of transver-
sions). The total substitution rate per site and time unit is then a + 2. Hence,
the expected number of nucleotide substitutions is given by d = 2rt = 2at + 45t
where t is the time after divergence of two sequences. Using his model, Kimura
showed that the frequencies of Transitions (7) and Transversions (7;,) are given
by



3.1 Sequence Alignment

T,=-(1-2 exp~Hatdt 4 exp ") (3.3)

A~ =

T, == (1 —exp®) (3.4)

N —

The expected number of substitutions per site (d) is then

d= —% In[l — 2T, — Ty In [1 — 27} (3.5)

Both models have an equilibrium frequency of each nucleotide of 0.25. Both models
are reversible meaning that sequences evolve equally over time. In this regard, it is
irrelevant whether some sequence A evolves into B or vice versa.

For this thesis work, we refrain from using time units as measured in years. We are
more interested in expressing the expected degree of similarity between two sequences
expressed in the expected number of substitutions per site (d).

Therefore, we employ the notion of point accepted mutation per site or PAM.

Definition 3.2 (PAM). One point accepted mutation (1 PAM) is defined as an ex-
pected number of substitutions per site of 0.01. A 1 PAM substitution matrix is thus
derived from any evolutionary model by setting the row sum of off-diagonal terms to
0.01 and adjusting the diagonal terms to keep the row sum equal to 1.

A substitution matrix M for any PAM distance n is then obtained by iterative mul-
tiplication of a 1 PAM matrix: M, = (M;)". We are now able to model substitution
processes by selecting an evolutionary model and a PAM distance, which reflects the
expected degree of sequence similarity.

3.1.3 How to score an alignment.

We are still missing a vital part to compute an alignment. As previously mentioned, an
alignment problem is an optimization problem and thus requires an objective function
that could be maximized in terms of an alignment score.

The total score we assign to an alignment will be the sum of scores for each aligned
pair of residues and each gap. If the two sequences under comparison are related, we
expect a match between identical residue pairs to be more likely than we expect by their
single frequencies. Thus matches should contribute positively to the alignment score
whereas non-conservative substitutions (i.e. transversions) and gaps should penalized.
Generally, an additive scoring scheme is used under the assumption that mutations
occur independently. Most alignment algorithms depend on this assumption.
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3 Comparative Sequence Analysis

Definition 3.3 (Substitution score). Assume s and t are two sequence of length
n and m over an alphabet ¥ := {A,C,G,T}. Given a gapless alignment of those
sequences, we want to assign a score to the alignment that gives a measure of the
relative likelihood that the sequences are related as opposed to being unrelated. A
prominent additive scoring system is based on the log-odds ratio of a residue pair
(si,t;) occurring as an aligned pair instead of being unaligned.

Score = Zpairscore(si, t;) (3.6)
where
. Pab
pairscore(a,b) = log(—) (3.7)
daqb

Pap 1s the probability of seeing a residue pair (a,b) in a match model (i.e. a 1 PAM
Kimura model) and ¢, g, are the letter frequencies in a random model assuming that
letters occur independently.

Introducing gaps in alignments raises the question of evaluating them. Since most
alignment algorithms employ affine gap penalties, we will focus on those.

Definition 3.4 (Affine gap penalties). For affine gap penalties, the score for a gap of
length x is —(g + ex), where g > 0 is the penalty for introducing a gap (gap open)
and e > 0 is the penalty for each gap symbol (gap extension).

Despite the fact that affine gap penalties are the most commonly used, various appli-
cations exist where non-linear gap penalties may be advantageous over the presented
ones ( ) ).

3.1.4 Alignment algorithms

Now that we have a scoring system, this section outlines the practical steps to ob-
tain alignments of different types. All presented algorithms make use of dynamic
programming. Dynamic programming algorithms are guaranteed to find the optimal
scoring alignment or set of alignments. On the other hand, fast heuristic methods have
been developed for aligning sequences. However, these are not guaranteed to find the
optimal alignment, but produce high-quality results in the vast majority of trials.

Global alignment with gaps Two sequences are aligned over their entire lengths,
allowing gaps. Thus, the alignment score is the sum of all pair scores. If the lengths
of sequences differ, additional gaps are inserted. ( ) proposed an improved
version of the global alignment algorithm. An optimal alignment is built using previous
optimal solutions of smaller subsequences.
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3.1 Sequence Alignment

Local alignment with gaps A global alignment strategy is not suitable in many
situations. In the age of databases, one would like to scan a new piece of genomic
sequence versus a repository of reference sequences. A better way of doing that would
be to look for similarities among subsequences of the query and database sequences.
Thus, the only difference to global alignment is that the optimal alignment can start
and stop anywhere in the two sequences a, b of length n, m as long as the alignment
coordinates (a;,b;)(ag,b;) obey i < k < nand j <1 < m.

( ) introduced an algorithm for this particular task.

Suboptimal local alignments The best local alignment of two DNA sequences does
not always capture the biological meaning. Recall the situation of Figure 2.7 where
the primary goal was to identify regions of local similarity. These regions could be reg-
ulatory elements (as shown) or exons in a gene finding task. The best local alignment
would be either misleading (e.g. returns only one particular element) or non-specific
(e.g. covers regions of poor conservation) in such a setting. A better way of han-
dling such comparisons is to retrieve more than one alignment from the alignment
space. ( ) proposed an algorithm for finding non-trivial
local similarities, which are called suboptimal local alignments. This algorithm is of
fundamental importance to this thesis and will be discussed in a separate section. It
does not constrain the position of alignments other than prohibiting multiple occur-
rences of the same residue pairings in different alignments.

Heuristic approaches The previously presented algorithms are guaranteed to find
the optimal solution for a given scoring scheme. However, these algorithms are not a
feasible solution to the comparison of long sequences in the order of 100 Kb to several
Mb. Speed (not memory) becomes an issue here. Heuristic approaches mitigate this
problem by trying to reduce the search space, while still maintaining a high sensitivity
level.

The most famous tool is certainly the BLAST package ( , ). The
BLAST algorithm exploits the idea that meaningful alignments contain short identical
subsequences, or very high scoring matches. BLAST compiles a list of all words of
a fixed length (e.g. 11 nucleotides for DNA), that would match the query sequence
with scores higher than some threshold. BLAST assumes collinearity of the local
similarities.

Recent developments Heuristic algorithms for large-scale comparisons of genomic
regions have emerged as a new field in computational biology ( , ).

( ) give a recent survey of the field and list all available “genome
alignment” tools. These software packages are readily applicable to compare regions
of genomes showing conserved synteny. BLASTZ ( , ) is the most
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similar heuristic solution to the Waterman-Eggert approach since it computes sub-
optimal local alignments with gaps. These alignments have no constraints on their
position.

3.1.5 The Waterman-Eggert algorithm

The Waterman-Eggert algorithm repeatedly samples optimal local alignments from an
alignment matrix H that is updated after each sampling step. The procedure can be
summarized as follows:

1. Initialization. C' = {}, where C is the set of alignment clumps.

2. Calculate alignment. Calculate and output the optimal local alignment ¢ in
the alignment matrix H. Same as in ( ).

3. Update alignment matrix Calculate the alignment clump C; of an alignment
1.

4. Add clump to set. C' =C UC;.

5. Goto step 2. Loop until the required number of alignments has been output
or the matrix has been exhausted.

Definition 3.5 (Alignment clump). An alignment clump is the part of an alignment
matrix that is influenced by the current optimal alignment. An alignment clump
contains all residue pairs of the optimal alignments and all “neighboring” matrix cells
that were updated (Step 3 above).

Updating procedure The alignment matrix H must be recalculated after sampling
from it since one is not interested in reporting the same alignment or trivial alternatives
twice. The matrix cell at the start point of the previous alignment is set to zero.
All reported residue pairs of the previous alignment are updated according to a new
Recurrence Relation (below) where d is the gap cost function.

H, =maxq H;, | —d (3.8)
0

Non-overlapping alignments should not share an aligned residue pair. As a conse-
quence, Recurrence relation 3.8 does not allow a repetition of the alignment of these
residue pairs. As soon as a position is reached whose updated entry equals the former
value of the matrix cell, the calculation is stopped for the corresponding row. The
updating ends after processing the final row of the alignment clump.
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3.2 Alignment statistics

The SIM implementation ( ) were mainly concerned about
memory requirements in finding local sequence similarities. They implemented a
linear-space version of the Waterman-Eggert algorithm that preserved its time-efficiency.
A modification of this implementation was employed for most sequence comparisons
of this thesis work. We obtained the source code of the original implementation from
http://globin.cse.psu.edu/html/software.html. We modified the program with
respect to significance assessment of alignments, file handling and scoring options.

3.2 Alignment statistics

Distinguishing between “true” alignments (those resulting from homology) and spu-
rious alignments (resulting from chance similarities) is a notable issue that we will
address in this chapter. Previous biological knowledge on beneficial residue pairs
can be accommodated in the scoring scheme of an alignment. Given a suitable scoring
scheme, the next question is: what alignment scores are likely to have arisen by chance
alone (i.e. by comparing two random sequences). This issue is indeed very pressing in
database searches where a large number of sequences are compared to a single query
sequence. In short, we define the significance of an alignment as follows:

Definition 3.6 (Significance of an alignment). The significance of an alignment
(p-value) is the probability that an equal or better alignment score could be attained
by aligning two unrelated (random) sequences. Generally, the p-value of a random
variable T is the probability P(T" < topserved)-

With the above definition, we could naively start to generate scores from random
sequences and compute p-values for our observed alignments based on those. This
simulation approach has the disadvantages that the sample size directly affects the ac-
curacy of the computed p-values. Hence, we need further insights from mathematical
theory to tackle this problem. ( ) give an introduction on
score statistics, which is highly accessible to readers with a non-mathematical back-
ground.

3.2.1 Ungapped alignhment statistics

The score of a match to a random sequence is the sum of many similar random
variables (see Section 3.1.3, additive scoring scheme). Thus, random scores can be
well approximated by a normal distribution. Since we are interested in the optimal
alignment (highest score), we need to know how the maximum My of a series of N
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independent normal random variables is distributed. The asymptotic distribution is
known as extreme value distribution (EVD) and has the form

P(My > z) ~ 1 — exp KN e (3.9)

for some constants K and .

The right tail of the EVD decreases almost linearly when plotted in a semi-logarithmic
coordinate system. Hence, it can be approximated with a decreasing exponential

P(My > x) ~exp 7M. < (3.10)

In practical applications like database searches, approximation (3.10) is often used for
the computation of E-values (the expected number of random hits in a database of a
given size at some significance level).

Random models for DNA sequences So far, we refrained from defining a random
model for DNA sequences. Traditionally, one would generate a random DNA sequence
by sampling letters from an alphabet 4 with probabilities accrbi = 1. However,
this is a rather simplistic view of randomness in a biological setting. Global sequence
properties like length and nucleotide composition are preserved, but regions of low
complexity and local compositional biases are not represented. Previous work in our
department ( , ) demonstrated that reversing one nucleotide sequence in
a pairwise comparison is the most practical solution. Of course, known repeat re-
gions (i.e. palindromic sequences) are excluded from a pairwise comparison since they
constitute a biological signal.

Local alignment without gaps ( ) showed that the distri-
bution of alignment scores for two sufficiently large sequences tends towards an EVD.
They also presented an analytical solution to determine the parameters of the EVD
(A, and K') based on known variables (size of search space, residue frequencies and
scoring scheme). However, the scoring scheme has to satisfy the condition that the
expected score of a random residue pair is below zero.

Number of scores exceeding a threshold What does the distribution of the number
of random alignment scores higher than some threshold look like? Assuming an EVD
distribution of the maximum scores of random alignments, exceeding a high enough
threshold is a rare event. ( ) provided evidence that the
number of alignment scores exceeding some threshold ¢ can be modeled by a Poisson
distribution under the condition of a negative expected score. In other words, the
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3.2 Alignment statistics

expected number of alignments exceeding some ascending score threshold decreases
exponentially.

3.2.2 Gapped alignment statistics

So far, no similar analytical solution has been found for alignments containing gaps.
However, the same intuition is carried over to gapped alignments.

( ) demonstrated that the number of local gapped alignments exceeding a
threshold ¢ (V;) has a Poisson distribution with mean ymnp® where mn is the length of
the sequence search space and parameters v and p are unknown for the gapped case.
Both parameters can be estimated from [linear regression analysis either by direct
estimation or 'declumping estimation’.

log N, = log(ymn) +t log p (3.11)

where log p is the slope and log(ymn) is the intersection of the regression line.

Phase transition in growth of gapped alignment scores Parameter estimation by
regression analysis is only feasible if alignment scores grow logarithmically. This is
mainly dependent on the choice of gap costs. If the gap costs are set too low, scores
will grow linearly as gap characters become inserted frequently. Long alignments will
now be favored over shorter ones simply because they accommodate more matching
characters. Alignments, which were computed in the linear phase, lack any biological
meaning. The transition between the linear and logarithmic phase is abrupt and is a
function of the gap penalty.

Significance of suboptimal alignments Given two sequences, we are now able to
assess the significance of the optimal local alignment. However, we still have no way of
dealing with suboptimal local alignments. A priori the number of conserved segments
in a pair of sequences is not known. Therefore, we need a statistical handle on how
many local alignments should be accepted.

This problem can be pragmatically approached by choosing a fixed p-value cutoff for
all observed alignments. The statistical significance of suboptimal alignments can then
be computed in two ways:

Order statistics The idea behind order statistics is to evaluate the r-best alignment
score based on the distribution of the r-best random scores.
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Vingron ( ) showed that this is most conveniently done by Poisson approxi-
mation.
A = ymnp' (3.12)
r—1 ;
A)d
P(Score, <t) = exp(\) Z Q (3.13)
— !
j_
P(Score, >t) =1 —P(Score, <t) (3.14)
Suboptimal alignments are accepted if the p-value derived from Equation 3.14
is below some preset threshold. ( ) recommends a p-value cutoff of
0.001.

Sum statistics An alternative way is to look at the distribution of the sum of scores
of suboptimal alignments Hq, .., H,. Each score H; is normalized such that

H! = 10{;(;) — log(ymn). Let

T.=) H (3.15)
i=1
( ) showed that

exp(—t)t"1

P(Tr > 1) ~ ri(r —1)!

(3.16)

An advantage of the sum statistics over the order statistics is that the former
weighs the alignments according to their individual scores.

3.3 Multiple alignments

Dynamic programming based alignment algorithms can be extended towards aligning
more than two sequences. This is a very costly step since computation time increases
exponentially with the number of sequences. Several approaches have been proposed
to cut down on memory requirements and computation time. In the program MSA by

( ), which was further improved by ( ), bounds are
defined within which an optimal alignment can be found. This restricted hyper-volume
of the multidimensional space is then employed to compute the optimal solution ef-
ficiently. ( ) expanded on this issue by applying partial order graphs
(POG) to the multiple alignment problem.

Definition 3.7 (Partial order graph). Partial order graphs belong to the class of
directed acyclic graphs (DAGs). A DAG is a graph consisting of a set of nodes N and
edges F/, which are one-way edges and form no cycles. This means that if there is a
route from node a to node b then there is no way back. The term partial order refers
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3.3 Multiple alignments

to the following properties: Reflexivity (a < a for all @ € N), Antisymmetry (a < b
and b < a implies a = b) and Transitivity (¢ < b and b < ¢ then a =< ¢).

[ ( ] reduced the problem to subsequent alignment steps of individual
sequences to a growing multiple alignment graph (Partial Order Alignment). If the
sequences to be aligned share substantial sequence similarity, the number of bifurca-
tion points within the POG stays low and allows rapid computation of the multiple
alignment. However, alignment results are sensitive to the input order of sequences.

We will not discuss any heuristic solutions to the multiple alignment problem since
we did not employ them in the context of this thesis. A good general summary on
multiple alignment algorithms and scoring methods can be found in

(2002).

Multiple alignment scores There is a long standing debate on the issue of scor-
ing multiple alignments and we refrain from giving an overview here. Luckily, scoring
alignments of single sequences to growing POGs is analogous to scoring pairwise align-
ments. Scores are calculated for each cell in order, starting from the origin (0,0) and
filling in the complete partial order matrix, to the end point (N, M), where N is the
number of nodes in the POG, and M is the length of a new linear sequence being
aligned.

35



3 Comparative Sequence Analysis

36



	Comparative Sequence Analysis
	Sequence Alignment
	Alignment statistics
	Multiple alignments

	Back to main file



