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1 Introduction

Since the pioneering work of Cahn and Hilliard [29] phase field models have become
an increasingly popular tool to model processes involving thin interface layers between
almost homogeneous regions. In the original articles they were used to describe sepa-
ration processes of phases in a physical system [29]. With these first models all phase
field models share two characteristics:

• The separation process of phases is driven by a free energy that incorporates a
double-well potential with distinct minima for each phase.

• The evolution of the interface between phases is driven by an interfacial energy
that penalizes interfaces with high curvature.

This approach has proven to be useful for the simulation of many different processes.
While it was originally proposed for the separation of conserved phases it was later also
used to model transition processes where phases are transformed into each other [2].

In physical applications the term “phase” can denote different things. In one class
of models the phases represent different states of matter [28, 86]. A prototypic exam-
ple for this class is the Allen–Cahn equation [2]. Another class of models describes
separation and solidification processes of binary or multicomponent alloys. For sepa-
ration processes phases can represent concentrations of different metals in alloys [17].
The prototype for this kind of models is given by the Cahn–Hilliard equation [29, 50].
If solidification processes are modeled the phases typically describe different stable
states derived from phase diagrams, while concentrations are described using an ad-
ditional order parameter [103]. This leads to problems that couple Allen–Cahn and
Cahn–Hilliard type equations as considered in [7].

Another important application is the approximation of geometric flows describing
the evolution of surfaces (see, e.g., [41]). A well known example is the mean curvature
flow, which can be approximated by the zero level set of the solution of an Allen–Cahn
equation in the surrounding space [40, 91]. Also, the motion by surface diffusion [31]
is the asymptotic limit of a Cahn–Hilliard equation with a degenerate mobility [32].

For all of these applications the selection of the double-well potential plays a crucial
role. While smooth potentials have been used successfully for the approximation of
geometric flows [13], models describing physical processes often lead to strongly non-
linear or even nonsmooth potentials [17, 103]. Cahn and Hilliard [29] proposed the
temperature dependent logarithmic potential. Although this potential is differentiable
for positive temperatures it has singular derivatives. For the limiting case of zero
temperature the potential degenerates to the obstacle potential, which is no longer
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1 Introduction

differentiable. A common approach is to avoid this situation by replacing the (asymp-
totically) non-differentiable logarithmic potential by a polynomial one. However, this
does not provide a reasonable approximation for small temperatures. Thus, any solu-
tion method that is to be applicable for small temperatures must be able to cope with
non-differentiable or asymptotically non-differentiable potentials.

While the interfacial energy is often assumed to be isotropic, anisotropic energies
are also not uncommon [26, 30, 31, 52, 90]. Non-convex and non-differentiable ener-
gies lead to problems where even the unique existence of solutions is problematic. In
contrast, convex, differentiable interfacial energies are typically good-natured. Surpris-
ingly many solution methods can only handle isotropic interfacial energies.

The purpose of this thesis is the development of methods for the efficient numerical
solution of phase field equations with nonsmooth potentials and anisotropic interfacial
energies using finite elements. While this does explicitly include non-differentiable
and asymptotically non-differentiable potentials, we will not discuss non-convex and
non-differentiable anisotropic interfacial energies. For nonsmooth convex minimization
problems obtained by Allen–Cahn type equations efficient adaptive multigrid methods
have already been introduced in [62, 72, 76]. The central result of this thesis is the
development and analysis of the “Schur Nonsmooth Newton Method” for the solution
of nonsmooth nonlinear saddle point problems obtained by finite element discretization
of Cahn–Hilliard type equations.

While there are many generic optimization methods for nonlinear saddle point prob-
lems, none of them exploits the special structure of the phase field model. We will use
this structure to develop methods for the Cahn–Hilliard equation that are comparable
to multigrid methods for linear elliptic problems in their efficiency. The general philos-
ophy of the new methods is to use convexity instead of differentiability. By following
this idea the methods are inherently robust even for nonsmooth potentials.

The outline of this thesis is as follows. In Chapter 2 we introduce Allen–Cahn and
Cahn–Hilliard equations as gradient flows for Ginzburg–Landau energies and give an
overview of the present solution theory. Since efficient methods for Allen–Cahn type
equations have already been discussed elsewhere [76] we concentrate on the Cahn–
Hilliard equation from then on.

Chapter 3 is dedicated to the discussion of finite element discretizations for the Cahn–
Hilliard equation. For later use with spatial adaptivity we introduce conforming finite
element spaces on nonconforming grids. Afterwards we give a survey of existing finite
element discretizations for the Cahn–Hilliard equation. These do in general use uniform
grids and are restricted to the isotropic case. We generalize these discretizations to
anisotropic equations and time-dependent adaptive grids using Rothe’s method. In
each time step this leads to a sequence of nonlinear stationary saddle point problems
that discretize a continuous saddle point problem. The inherent convex structure
allows to show existence and uniqueness of solutions for the discrete as well as for the
continuous saddle point problem under reasonable assumptions.

Before we discuss the algebraic solution of these saddle point problems we consider
in Chapter 4 the solution of minimization problems for the convex energies associ-
ated with the saddle point problems. We deal with these problems here because their
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solution is a crucial part of the iterative solver that will be developed in Chapter 5
for the saddle point problems. Although efficient multigrid methods for this kind of
problem have already been developed for the isotropic case we introduce the new “Trun-
cated Nonsmooth Newton Multigrid” (TNNMG) method. Unlike existing methods the
TNNMG method also covers the anisotropic case. Furthermore, we will show that the
new approach unifies nonlinear multigrid methods and active set methods.

Chapter 5 is dedicated to the development and analysis of the Schur Nonsmooth New-
ton method. The corner stone for this solver is an equivalent dual convex minimization
problem associated to the nonsmooth nonlinear saddle point problem. The derivative
of the energy for this dual problem turns out to be the non-differentiable nonlinear
Schur complement of the saddle point problem. For the solution of this dual minimiza-
tion problem we present the general framework of gradient-related descent methods
and extend the known convergence results. After deriving generalized linearizations
of the Schur complement we introduce the Schur Nonsmooth Newton method. The
convex structure allows to apply the convergence theory for gradient-related descent
methods to prove the global convergence of the Schur Nonsmooth Newton method.
We will also show that the convergence result is robust with respect to the inexact
solution of the linear Newton systems. Since we need to solve a minimization prob-
lem for the convex energy of the saddle point problem in each iteration step, we can
use the TNNMG method derived in Chapter 4 here. Finally we show that the Schur
Nonsmooth Newton method is essentially a globalization of the primal–dual active set
method for a subclass of problems where the latter is applicable.

The last ingredient is the construction of adaptive grids in each time step. For
this purpose Chapter 6 introduces a hierarchical error estimator for the nonlinear
saddle point problems. Following the standard strategy the local contributions of
this estimator can be used as local refinement indicators. Besides this, we discuss
techniques for the efficient implementation of Rothe’s method with time-dependent
adaptive grids.

Numerical examples for the introduced methods are presented in Chapter 7. We
will especially investigate the mesh independence of the developed Schur Nonsmooth
Newton method and the robustness with respect to the temperature.

There is a collection of some useful auxiliary results in Appendix A, a list of symbols
in Appendix B, and a list of the key assumptions in Appendix C.

Acknowledgment. Many people supported me during the preparation of this thesis.
First of all I would like to thank my supervisor Prof. Dr. Ralf Kornhuber for his
constant support, his patience, and his valuable advise. I would also like to thank
Prof. Dr. Rolf Krause for getting me into scientific computing, Dr. Heiko Berninger
for his clever ideas in functional analysis, Uli Sack for the fruitful collaboration on
the implementation, and Dr. Oliver Sander and Dr. Ralf Forster for many interesting
discussions and proof-reading. Finally, I am deeply grateful to Juliane and Marjetta
for their love and for always reminding me of the beauty of life.
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2 Phase Field Models with Nonsmooth

Potential

This chapter is a brief introduction to phase field models. In Section 2.1 we present
phase field models as gradient flows for Ginzburg–Landau energies. We then give a
survey of existence and uniqueness results in Section 2.2.

2.1 Basic Phase Field Models

We start by giving a short motivation of Ginzburg–Landau energies with double-well
potentials and derive weak formulations for the evolution equations obtained if gradient
flows for these energies are postulated. For a more comprehensive presentation we refer
to the monographs of Brokate and Sprekels [25], Eck et al. [48] and the article of Elliott
[50].

2.1.1 Anisotropic Ginzburg–Landau Energies

We intend to model phase transition and separation processes in a given spatial domain
and a prescribed time interval. To this end let Ω ⊂ Rd with d = 1, 2, 3 be a bounded,
open, and nonempty set with Lipschitz boundary representing the domain and [0, T ]
the time interval. The measure of Ω is denoted by |Ω|. Assume that the domain Ω
is covered by two phases A and B such that at each time t ∈ [0, T ] in each point
x ∈ Ω either exactly one phase or a mixture of both phases is present. Depending
on the modeled physical process the phases can for example represent different states
of matter of a chemical substance, different components of an alloy, or other locally
homogeneous states of a system.

In order to describe the presence of pure phases and mixtures we introduce a so-called
order parameter u given as function

u : Ω× [0, T ] → R.

The presence of phases is encoded by

u(x, t)





= −1 if only phase A is present in (x, t),

= 1 if only phase B is present in (x, t),

∈ (−1, 1) if a mixture of A and B is present in (x, t).

(2.1)

With this approach (1 − u)/2 and (1 + u)/2 describe the fractions of phase A and
B, respectively. Having this interpretation of u the constraint u(x, t) ∈ [−1, 1] arises
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2 Phase Field Models with Nonsmooth Potential

naturally. To simplify notation we will often skip the arguments t or (x, t) if properties
or expressions are obviously meant to be written for all t or for all (x, t).

While we will only consider the case of two phases there are also generalizations for
N ≥ 2 phases Ai. In this case one introduces N order parameters given as a function

ũ : Ω× [0, T ] → RN ,

where the i-th component ũi(x, t) denotes the fraction of phase Ai in the mixture at
(x, t). Then the natural constraints on ũ are that ũi(x, t) ∈ [0, 1] and

∑N
i=1 ũi(x, t) = 1.

In the special case of N = 2 the representation (2.1) is obtained by setting

u = ũ2 − ũ1,

or, for the opposite direction, setting

ũ1 =
1− u

2
, ũ2 =

1 + u

2
.

Assuming that the phase state at each (x, t) is independent of the state at any other
point in space it is natural to postulate a global free energy

ψ(u(t)) =

∫

Ω
Ψ(u(x, t))dx

generated by a local potential Ψ. Since we will introduce evolutions that tend to
minimize energies which incorporate ψ it is also possible to incorporate the constraint
u(x, t) ∈ [−1, 1] by using local potentials of the form

Ψ : R → R ∪ {∞}

that take the value ∞ for u(x, t) /∈ [−1, 1]. In case of transition processes for physical
phases or spinodal decomposition of alloys the potential Ψ can be derived and calibrated
using phase diagrams that depict which phases or mixtures are stable depending on the
temperature θ (see [103]). In general the potential is temperature dependent. Since
mixtures tend to be unstable below a critical temperature θc the potential Ψ should
be some kind of double-well potential that energetically prefers (almost) pure phases
in this case. The prototypic example is the logarithmic potential

Ψθ(u) = Ψ̂θ(u)−
θc
2
u2, u ∈ (−1, 1), (2.2)

where Ψ̂θ is given by

Ψ̂θ(u) =
θ

2
[(1 + u) ln(1 + u) + (1− u) ln(1− u)] , u ∈ (−1, 1). (2.3)

Ψ̂θ and −θc/2u2 are called the convex and concave part of the potential Ψθ.

Proposition 2.1. For θ > 0 the potentials Ψθ : (−1, 1) → R given by (2.2) and
Ψ̂θ : (−1, 1) → R given by (2.3) have the following properties:
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2.1 Basic Phase Field Models

0

θ ln(2)

0

0

Figure 2.1: Convex part of logarithmic potential: Ψ̂θ (left), Ψ̂′
θ (middle), Ψ̂′′

θ (right).

1. Ψ̂θ and Ψθ are symmetric around u = 0.

2. Ψ̂θ and Ψθ are infinitely differentiable on (−1, 1) with

Ψ̂′
θ(u) =

θ

2
ln

(
1 + u

1− u

)
, Ψ̂′′

θ(u) =
θ

1− u2
,

Ψ′
θ(u) = Ψ̂′

θ(u)− θcu, Ψ′′
θ(u) = Ψ̂′

θ(u)− θc.

3. We have Ψ̂θ(0) = Ψθ(0) = 0, and for u→ ±1 we get

Ψ̂θ(u) → θ ln(2), Ψ̂′
θ(u) → ±∞, Ψ̂′′

θ(u) → ∞,

Ψθ(u) → θ ln(2)− θc/2, Ψ′
θ(u) → ±∞, Ψ′′

θ(u) → ∞.

4. The logarithmic part Ψ̂θ(u) is strictly convex for all θ > 0.

5. For θ ≥ θc the potential Ψθ is strictly convex and has a global minimum at u = 0.

6. For θ < θc the potential Ψθ has a local maximum at u = 0 and two global minima
in βθ and −βθ for some βθ ∈ (0, 1). The minima have the property that βθ → 1
for θ → 0.

7. For θ → 0 we have ‖Ψ̂θ‖∞ → 0.

From these properties we instantly get that for all θ > 0 the minimizers of ψ must
be contained in (−1, 1) almost everywhere. Hence we will from now on use the natural
extensions of Ψθ and Ψ̂θ to R given by Ψθ(u) = Ψ̂θ(u)− θc

2 u
2 and

Ψ̂θ(u) =





θ
2 [(1 + u) ln(1 + u) + (1− u) ln(1− u)] if u ∈ (−1, 1),

θ ln(2) if |u| = 1,

∞ else,

respectively. Since the definition remains the same in (−1, 1) we use the same symbols.
In view of the limiting properties in Proposition 2.1 a formal limit Ψ0(u) = Ψ̂0(u)−

θc
2 u

2 of Ψθ for θ → 0 should have minima in −1 and 1 and Ψ̂0(u) should be zero for
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2 Phase Field Models with Nonsmooth Potential

0

0.5

0

0.5

0

0.5

Figure 2.2: Logarithmic potential Ψθ (solid) in comparison with Ψ0 (dashed) for θc = 1
and θ = 0.8 (left), θ = 0.5 (middle), θ = 0.1 (right).

u ∈ (−1, 1). Furthermore, it should also ensure that its minima are contained in the
domain [−1, 1] even if another smooth functional is added. Under these conditions the
only possible extension is the so-called obstacle potential Ψ0 : R → R ∪ {∞} given by

Ψ0(u) = Ψ̂0(u)−
θc
2
u2, Ψ̂0(u) = χ[−1,1](u).

Here we have used the indicator functional χK : V → R ∪ {∞} for a subset K ⊂ V of
a vector space V defined by

χK(x) =

{
0 if x ∈ K,

∞ else.

Although the logarithmic potential Ψθ is smooth on its domain (−1, 1) for θ > 0 it
does rapidly degenerate to the nonsmooth obstacle potential for θ → 0. Due to this
fact the nonlinearity can be regarded as de facto nonsmooth even for values θ ∈ (0, θc)
that are close to θc (see Figure 2.2). Furthermore, the unbounded derivatives near −1
and +1 are numerically challenging even for values of θ very close to θc. Thus many
authors replace the logarithmic potential by a quartic approximation that is only valid
for θ ≈ θc. Since we do not want to impose such a restriction we will always consider
the global logarithmic potential

ψθ(u) =

∫

Ω
Ψθ(u(x))dx = ψ̂θ(u)−

θc
2

∫

Ω
u(x)2dx, ψ̂θ(u) =

∫

Ω
Ψ̂θ(u(x))dx

for all θ ≥ 0 including the special limiting case of the obstacle potential (θ = 0).
In more general situations the assumption of no interaction between neighboring

points does not hold. For example in case of the spinodal decomposition of alloys
larger areas consisting of only one phase are observed and these areas tend to minimize
the curvature of their boundary (see Figure 2.3. In view of this observation it is
reasonable to introduce a nonlocal surface term that penalizes high curvatures. The
simplest form of such a term is γ‖∇u‖2 for a fixed constant γ > 0. However, this term
does only model isotropic behavior.
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2.1 Basic Phase Field Models

Figure 2.3: Minimization of interface curvature during anisotropic coarsening.

In order to also capture anisotropic effects where certain spatial directions are pre-
ferred we will use the term γ(∇u)2 for a function

γ : Rd → R.

The squared function γ2 should, however, behave like a quadratic functional in the
following sense.

(A1) The function γ : Rd → R is positive 1-homogeneous, i.e.,

γ(x) ≥ 0, γ(λx) = λγ(x), ∀x ∈ Rd, λ > 0,

definite, i.e.,

γ(x) = 0 ⇒ x = 0,

and twice continuously differentiable on Rd \ {0}.

Functions satisfying (A1) naturally induce similar scaling properties for their deriva-
tives. From now on ∇2f will always denote the Hessian matrix of a functional f : Rd ⊃
M → R.

Lemma 2.1. Let γ : Rd → R satisfy (A1). Then for all x ∈ Rd \ {0} and λ > 0 we
have

(∇γ)(λx) = ∇γ(x), λ∇2γ(λx) = ∇2γ(x),

〈∇γ(x), x〉 = γ(x) > 0,
〈
∇2γ(x)x, x

〉
= 0.

Proof. Let x ∈ Rd \ {0}. For λ > 0 define gλ(x) := γ(λx) and hλ(x) := (∇γ)(λx).
Then we have gλ(x) = λγ(x) and thus

λ(∇γ(x)) = ∇gλ(x) = (∇γ)(λx)λ.

9



2 Phase Field Models with Nonsmooth Potential

Using this we get hλ(x) = ∇γ(x) and

∇2γ(x) = Dhγ(x) = ∇2γ(λx)λ.

Furthermore,

〈∇γ(x), x〉 = lim
h→0

γ(x+ hx)− γ(x)

h
= lim

h→0

(1 + h)γ(x) − γ(x)

h
= γ(x)

and for f : R → R, f(t) = γ(tx) the chain rule and the scaling property of ∇γ imply

f ′(t) = 〈(∇γ)(tx), x〉 = 〈∇γ(x), x〉 = γ(x), f ′′(t) =
〈
∇2γ(tx)x, x

〉
= 0.

The scaling property of γ also directly implies certain properties of γ2:

Lemma 2.2. Assume that γ : Rd → R satisfies (A1). Then we have:

1. γ2 is continuously differentiable on Rd with

∇(γ2)(x) = 2γ(x)(∇γ)(x) ∀x ∈ Rd \ {0}, ∇(γ2)(0) = 0.

2. γ2 is twice continuously differentiable on Rd \ {0} with

∇2(γ2)(x) = 2
(
∇γ(x)T∇γ(x) + γ(x)∇2γ(x)

)
∀x ∈ R \ {0}.

3. γ2, ∇(γ2), and ∇2(γ2) have the scaling properties

γ2(λx) = λ2γ2(x) ∀x ∈ Rd, λ > 0,

∇(γ2)(λx) = λ∇(γ2)(x) ∀x ∈ Rd, λ > 0,

∇2(γ2)(λx) = ∇2(γ2)(x) ∀x ∈ Rd \ {0}, λ > 0.

4. There is a constant Hγ2 > 0 such that

〈
∇2(γ2)(x)y, y

〉
≤
〈
Hγ2y, y

〉
, ∀x ∈ Rd \ {0}, y ∈ Rd.

5. ∇(γ2) is Lipschitz continuous with Lipschitz constant Hγ2 .

6. γ2 is coercive, i.e., γ(x)2 ≥ γ2min‖x‖2 with γ2min > 0.

7. For x ∈ Rd and y ∈ Rd \ {0} we have

〈
∇(γ2)(x), x

〉
= 2γ2(x),

〈
∇2(γ2)(y)y, y

〉
= 2γ2(y) > 0.
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2.1 Basic Phase Field Models

Proof. Existence, continuity, and the representations of ∇(γ2) and ∇2(γ2) on Rd \ {0}
are provided by the chain rule, while ∇(γ2)(0) = 0 follows from the scaling property
and boundedness of γ on Sd−1 := {z ∈ Rd : ‖z‖ = 1} . By the boundedness of γ and
∇γ on Sd−1 and their scaling properties we have for x ∈ Rd \ {0}

‖∇(γ2)(x)‖ = ‖2γ(x)(∇γ)(x)‖ ≤ C‖x‖,

which implies continuity of ∇(γ2) in 0 and thus on the whole set Rd.
The scaling property of γ2 follows directly from the corresponding property of γ,

and those of ∇(γ2) and ∇2(γ2) from Lemma 2.1.
By continuity the mapping (x, y) 7→

〈
∇2(γ2)(x)y, y

〉
is bounded on Sd−1 × Sd−1.

Hence there is a constant Hγ2 ≥ 0 with

〈
∇2(γ2)(x)y, y

〉
≤ Hγ2 ∀x, y ∈ Sd−1.

Now boundedness of ∇2(γ2) follows from its scaling property.
To show Lipschitz continuity of ∇(γ2) let x, y ∈ Rn. First we consider 0 /∈ co{x, y},

where coM denotes the convex hull of M . Then there is an open convex set U with
x, y ∈ U and 0 /∈ U . Hence ∇(γ2) is continuously differentiable on U and thus the
mean value theorem and the scaling property, symmetry, and the bound of ∇2(γ2)
provide

‖∇(γ2)(y)−∇γ2(x)‖ ≤
∫ 1

0
‖∇2(γ2)(x+ t(y − x))‖ ‖y − x‖dt ≤ Hγ2‖y − x‖.

Now let 0 ∈ co{x, y}. Then for ǫ > 0 the above provides

‖∇(γ2)(y)−∇(γ2)(ǫy) +∇(γ2)(ǫx)−∇(γ2)(x)‖ ≤ Hγ2‖y − ǫy‖+Hγ2‖x− ǫx‖.

Taking the limit ǫ → 0 and using the continuity of ∇(γ2) we get

‖∇(γ2)(y)−∇(γ2)(x)‖ ≤ Hγ2‖x‖+Hγ2‖y‖ = Hγ2‖x− y‖.

Coercivity follows from continuity since γ2min := minz∈Sd−1 γ(z)2 > 0 and thus

γ(x)2 = ‖x‖2γ
(

x

‖x‖

)2

≥ γ2min‖x‖2.

Finally the representations of
〈
∇(γ2)(x), x

〉
and

〈
∇2(γ2)(y)y, y

〉
follow from Lem-

ma 2.1.

Nonconvex anisotropies allowed by Assumption (A1) may still lead to ill-posed equa-
tions that require regularization techniques (see, e.g., [105, 109]). In order to avoid
these problems we introduce a stronger assumption to ensure the strong convexity of
γ2.
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2 Phase Field Models with Nonsmooth Potential

(A2) The function γ : Rd → R satisfies (A1) and

∇2(γ2)(x) = 2
(
∇γ(x)T∇γ(x) + γ(x)∇2γ(x)

)

is symmetric positive definite for all x 6= 0.

Sometimes it might be easier to check the following stronger assumption for γ.

(A2’) The function γ : Rd → R is convex and satisfies (A1) and ker∇2γ(x) = span{x}
for all x 6= 0.

Note that (A1) already implies that γ is linear along rays originating in 0 and hence
span{x} ⊂ ker∇2γ(x). Thus assumption (A2) essentially adds the requirement that γ
is strictly convex in directions tangential to the unit sphere.

Lemma 2.3. (A2’) implies (A2) and for convex γ (A2) implies (A2’).

Proof. Let γ satisfy (A2’) and x, y ∈ Rd \ {0}. If y /∈ ker∇2γ(x) we have

〈
∇2(γ2)(x)y, y

〉
≥ 2

〈
∇2γ(x)y, y

〉
> 0,

whereas for y ∈ ker∇2γ(x) Lemma 2.2 implies

〈
∇2(γ2)(x)y, y

〉
=

‖y‖2
‖x‖2

〈
∇2(γ2)(x)x, x

〉
=

‖y‖2
‖x‖2 2γ

2(x) > 0.

Now let γ be convex, satisfying (A2), and x ∈ Rd \ {0}. Then

d = rank∇2(γ2)(x) ≤ rank
(
∇γ(x)T∇γ(x)

)
+ rank∇2γ(x) = 1 + rank∇2γ(x)

and hence rank∇2γ(x) ≥ 1 − d. Together with span{x} ⊂ ker∇2γ(x) this gives
(A2’).

Lemma 2.4. Assume that γ : Rd → R satisfies (A2). Then γ2 : Rd → R satisfies:

1. The Hessian of γ2 is uniformly bounded from below, i.e., there is Hγ2 > 0 such
that

Hγ2 〈y, y〉 ≤
〈
∇2(γ2)(x)y, y

〉
∀x ∈ Rd \ {0}, y ∈ Rd.

2. ∇(γ2) is strongly monotone, i.e.,
〈
∇(γ2)(x)−∇(γ2)(y), x− y

〉
≥ Hγ2‖x− y‖2 ∀x, y ∈ Rm. (2.4)

3. γ2 is strongly convex, i.e.,

γ2(λx+ (1− λ)y) ≤ λγ2(x) + (1− λ)γ2(y)− λ(1− λ)
Hγ2

2
‖x− y‖2 ∀λ ∈ [0, 1].

12



2.1 Basic Phase Field Models

4. γ2 is coercive with γ(x)2 ≥ H
γ2

2 ‖x‖2, i.e., γ2min ≥ H
γ2

2 > 0.

Proof. Due to the scaling property of ∇2(γ2) (see Lemma 2.2) we only have to show
boundedness for x ∈ Sd−1. Since the continuous mapping (x, y) 7→

〈
∇2(γ2)(x)y, y

〉

does only take positive values on Sd−1 × Sd−1 the infimum Hγ2 of those values on the
compact set Sd−1 × Sd−1 is also positive.

Since ∇2(γ2) is symmetric positive semidefinite and bounded from below on Rd \{0}
we can use Lemma A.3 in the appendix to obtain strong monotonicity of ∇(γ2) and
hence by Lemma A.1 in the appendix strong convexity of γ2.

Using Lemma 2.2 and the strong monotonicity we get

2γ2(x) =
〈
∇(γ2)(x), x

〉
≥ Hγ2‖x‖2.

Obviously any norm that is smooth enough satisfies (A1). However, in contrast to
norms, functions satisfying (A1) need not be symmetric with respect to the origin. This
is for example the case for the following anisotropy function introduced by Kobayashi
[68].

Example 2.1. Let k ∈ N and ā > 0. For ξ ∈ R2 let β(ξ) ∈ [0, 2π] denote the angle
between the positive x-axis and ξ. Then the anisotropy function

γ(x) =
[
1 + ā cos(kβ(x))

]
‖x‖

is positive 1-homogeneous, definite and twice continuously differentiable for x 6= 0.
If additionally ā < 1/(k2 − 1) holds true ∇2(γ2) is positive definite (see [26]) and γ

satisfies (A2). Note that the integer k denotes the number of directions where the “unit
sphere” {x ∈ R2 : γ(x) = 1} of γ is deformed compared to Sd−1. Furthermore, γ is
symmetric with respect to rotations by 2π/k.

If the anisotropy is a non-differentiable norm it may still be possible to approximate
it by a smooth function. Such an approximation for the 1-norm is for example given
by γǫ in the following.

Example 2.2. For ǫ > 0 the functional γǫ : Rd → R given by

γǫ(x) =

d∑

i=1

(x2i + ǫ‖x‖2) 1
2

satisfies (A2). For ǫ→ 0 we have γǫ(x) →
∑d

i=1 |xi|.
For a function γ satisfying (A2) we now define the anisotropic Ginzburg–Landau

free energy with logarithmic potential

E(u) := ψθ(u) +
1

2

∫

Ω
γ(∇u(x))2dx. (2.5)

Note that for γ(·)2 = γ‖·‖2 this is the standard isotropic Ginzburg–Landau free energy

E(u) = ψθ(u) +
1

2

∫

Ω
γ‖∇u(x)‖2dx.
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2 Phase Field Models with Nonsmooth Potential

2.1.2 Gradient Flows for Ginzburg–Landau Energies

Different phase field models with or without mass conservation can be derived from
the Ginzburg–Landau energy by postulating gradient flows with respect to suitable
norms (see, e.g., [30]). In order to define these gradients flows we first introduce the
appropriate function spaces.

Definition 2.1. We introduce the following notation for function spaces, norms, and
products:

1. For vectors in x, y ∈ Rn the Euclidean inner product and norm are denoted by
〈x, y〉 and ‖x‖, respectively. For a matrix M the induced bilinear form is denoted
by 〈x, y〉M = 〈Mx, y〉 . If M is symmetric positive semidefinite the induced
semi-norm is ‖x‖M =

√
〈x, y〉M .

2. Ck(Ω) is the space of all k-times continuously differentiable functions such that
all partial derivatives up to order k are bounded. Its norm is denoted by ‖ · ‖∞,k.

3. Ck
0 (Ω) is the subspace of all functions u ∈ Ck(Ω) such that u|∂Ω = 0.

4. For p > 0 the Lebesgue space Lp(Ω) is the space of all measurable functions
v : Ω → R such that |v(·)|p is integrable. Its norm is given by

‖v‖Lp(Ω) =

(∫

Ω
|v(x)|p dx

) 1
p

.

The norm of L2(Ω) is denoted by ‖·‖0 and induced by the inner product

(v,w) =

∫

Ω
v(x)w(x) dx.

5. The Sobolev space Hk(Ω) ⊂ L2(Ω), k ≥ 0 is the subspace of all functions having
weak partial derivatives up to order k in L2(Ω). Its norm is denoted by ‖ · ‖k.
Furthermore, the H1(Ω)-semi-norm

√
(∇·,∇·) is denoted by | · |1.

6. The Sobolev space Hk
0 (Ω) ⊂ Hk(Ω) is the closure of Ck

0 (Ω) in Hk(Ω) with respect
to the norm ‖ · ‖k.

7. For a normed space V the natural norm is denoted by ‖·‖V .

8. For a pre-Hilbert space H the natural inner product is denoted by (·, ·)H .

9. The dual space of a normed space V is denoted by V ′. The dual paring of x ∈ V
and y ∈ V ′ is denoted by y(x) = 〈y, x〉.
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2.1 Basic Phase Field Models

10. For a Hilbert space H, T > 0, and p > 0 the Bochner space Lp(0, T ;H) is the
space of all weakly measurable functions v : (0, T ) → H such that

∫ T
0 ‖v(t)‖pdt is

finite. Its norm is given by

‖v‖Lp(0,T ;H) =

(∫ T

0
‖v(t)‖pH dt

) 1
p

.

For p = 2 this is induced by the inner product

(v,w)L2(0,T ;H) =

∫ T

0
(v(t), w(t))H dt.

For a precise definition of weakly measurable and Bochner integrable functions
we refer to Wloka [110].

11. For a Hilbert space H and T > 0 the Bochner Sobolev space W (0, T ;H) is the
subspace of all v ∈ L2(0, T ;H) with weak time derivative dv

dt in L2(0, T ;H ′). Its
norm is induced by the scalar product

(v,w)W (0,T ;H) = (v,w)L2(0,T ;H) +

(
dv

dt
,
dw

dt

)

L2(0,T ;H′)

.

For a precise definition of the weak time derivative we refer to Wloka [110] and
Dautray and Lions [38].

Before postulating gradient flows we compute the gradient of the anisotropic Ginz-
burg–Landau free energy E at some u. To this end define the nonlinear operator
Fγ : H1(Ω) → (H1(Ω))′ as

〈Fγ(w), v〉 :=
∫

Ω
γ(∇w(x)) 〈(∇γ)(∇w(x)),∇v(x)〉 dx.

This operators turns out to be the derivative of the smooth part of the Ginzburg–
Landau energy E. For the isotropic functional γ(x)2 = γ‖x‖2 with a fixed constant
γ > 0 the operator Fγ becomes linear and is given by the bilinear form

〈Fγw, v〉 = γ (∇w,∇v) .

Lemma 2.5. Assume that γ : Rd → R satisfies (A2). Then the functional Jγ :
H1(Ω) → R, defined by

Jγ(v) :=

∫

Ω

1

2
γ(∇v(x))2dx,

is convex, Fréchet differentiable with ∇Jγ = Fγ , and continuous on H1(Ω).
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2 Phase Field Models with Nonsmooth Potential

Proof. By Lemma 2.2 and Lemma 2.4 the functional f : Rd → R with f(x) = 1
2γ

2(x)
is strongly convex and differentiable with the Lipschitz continuous derivative ∇f(x) =
γ(x)∇γ(x). Hence

1

h

(
f(x+ hy)− f(x)

)
− 〈∇f(x), y〉 = 1

h

∫ h

0
〈∇f(x+ ty)−∇f(x), y〉 dt

≤ L

h

∫ h

0
t‖y‖2dt = L

2
h‖y‖2.

Now let w, v ∈ H1(Ω). Then
∣∣∣∣
1

h

(
Jγ(w + hv)− Jγ(w)

)
− 〈F(w), v〉

∣∣∣∣ ≤
L

2
h (∇v,∇v) .

Since this goes to zero uniformly with respect to ‖v‖1 we have shown Fréchet differ-
entiability. Convexity and continuity of Jγ follow directly from convexity of γ2 and
differentiability, respectively.

For the introduction of gradient flows we first consider the case θ > 0. Then E
is differentiable and its gradient at some u ∈ H1(Ω) with −1 < u < 1 a.e. (almost
everywhere) is given by the functional

∇E(u) =

∫

Ω
Ψ′

θ(u(x))(·) dx + 〈Fγ(w), ·〉 ,

or, equivalently,

〈∇E(u), v〉 =
∫

Ω
Ψ′

θ(u(x))v(x) dx + 〈Fγ(w), v〉 ∀v ∈ H1(Ω).

In the case θ = 0, where Ψθ is the obstacle potential, E is no longer differentiable in
the classical sense. To overcome the lack of smoothness we recall the notion of the
subdifferential (see, e.g., [49]).

Definition 2.2. Let V be a normed space and φ : V → R ∪ {∞} be convex. Then for
x ∈ V the subdifferential ∂φ(x) ⊂ V ′ is the set of all v ∈ V ′ such that

φ(x) + 〈v, y − x〉 ≤ φ(y) ∀y ∈ V.

From the definition it is obvious that x minimizes φ if and only if 0 ∈ ∂φ(x). Using
this definition we can compute the subdifferential of E at θ = 0 (see [49, Chapter I,
Proposition 5.6])

∂E(u) = ∂ψθ(u)(·) + 〈Fγ(w), ·〉 .

Different phase field models are now obtained as gradient flows for this functional.
First consider the L2 gradient flow

du

dt
∈ −∂E(u).
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2.1 Basic Phase Field Models

If u and E are sufficiently smooth this can be interpreted as du
dt being the L2 projection

of −∇E(u) to L2(Ω), i.e.,

du

dt
= argmin

v∈L2(Ω)

(
1

2
‖v‖2L2(Ω) − 〈−∇E(u), v〉

)
,

and is hence called an L2 gradient flow for E. Complemented by the natural boundary
conditions for the anisotropic differential operator (using the outer unit normal n(x)
of Ω at x ∈ ∂Ω)

γ(∇u(x))
〈
n(x), (∇γ)(∇u(x))

〉
= 0 ∀x ∈ ∂Ω, t > 0,

this leads to the anisotropic Allen–Cahn equation. For given initial data u0 ∈ H1(Ω)
the weak formulation of this partial differential equation is given by the following
variational inequality problem:

Problem 2.1. Find u ∈W (0, T,H1(Ω)) such that u(0) = u0 a.e. in Ω and
〈
du

dt
+ Fγ(u), v − u

〉
+ ψθ(v)− ψθ(u) ≥ 0 ∀v ∈ H1(Ω), a.e. in (0, T ).

Now we want to introduce a conservative flow with the mass conservation property
∫

Ω
u(x, t) dx =

∫

Ω
u(x, 0) dx ∀t > 0. (2.6)

In contrast to the Allen–Cahn equation we use a H−1-like gradient flow. To this end
we introduce the space

H0 =

{
v ∈ H1(Ω) :

∫

Ω
v(x) dx = 0

}
(2.7)

with the natural inner product (∇·,∇·). Then the Riesz isomorphism RH0 : H0 →
(H0)

′ is given by

(∇w,∇v) = 〈RH0w, v〉 ∀v,w ∈ H0.

For smooth u and E we can now postulate the (H0)
′ gradient flow

du

dt
= argmin

v∈(H0)′

(
1

2
‖v‖2(H0)′

− 〈−∇E(u), v〉+ λ(1, v)

)
(2.8)

subject to the mass conservation constraint (2.6). Here λ ∈ R denotes the Lagrangian
multiplier for the constraint. Using the Riesz isomorphism we can rewrite this also for
nonsmooth E as

R−1
H0

du

dt
∈ −∂E(u)− λ,

∫

Ω

du

dt
(x) dx = 0.

Defining the so-called chemical potential w = R−1
H0

du
dt + λ we get the system

w ∈ ∂E(u), RH0(w + λ) = −du
dt
.

A weak formulation for this inclusion is given by the variational inequality problem:
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2 Phase Field Models with Nonsmooth Potential

Problem 2.2. Find u ∈W (0, T ;H1(Ω)) and w ∈ L2(0, T ;H1(Ω)) such that u(0) = u0
a.e. in Ω and

〈Fγ(u), v − u〉 − (w, v − u) + ψθ(v)− ψθ(u) ≥ 0 ∀v ∈ H1(Ω), a.e. in (0, T ),
〈
du

dt
, v

〉
+ (∇w,∇v) = 0 ∀v ∈ H1(Ω), a.e. in (0, T ).

This problem represents an anisotropic version of the Cahn–Hilliard equation. For
isotropic γ it reduces to the well-known Cahn–Hilliard equations with logarithmic
potential for θ > 0 and obstacle potential for θ = 0. Note that mass conservation is
incorporated by testing the second equation with all v ∈ H1(Ω) instead of v ∈ H0.
This equation can be regarded as the sum of (2.6) tested with all constants and (2.8).

Obviously solutions u of Problem 2.1 and Problem 2.2 cannot exceed the interval
[−1, 1] on a set with positive measure, i.e., they must stay in the set

K := {v ∈ H1(Ω) : |v| ≤ 1 a.e. in Ω}, (2.9)

which is just the domain

dom ψ̂θ := {v ∈ H1(Ω) : ψ̂θ(v) <∞}

of ψ̂θ.

2.2 Solution Theory

In this section we consider the existence and uniqueness of solutions to the variational
problems introduced in the previous section. While we will not develop a solution
theory for the general case of Problem 2.1 and Problem 2.2 including anisotropy and
the logarithmic or obstacle potential, we give a short overview of the known results
for certain special cases. The results will be adapted to the presented framework by
changing the notation and rescaling parameters where necessary.

2.2.1 Allen–Cahn Equation

First we consider the Allen–Cahn type equations arising from the L2 gradient flow
for E. In Chen and Elliott [33] the obstacle potential, i.e., θ = 0, with an isotropic
γ : Rd → R of the form

γ(x)2 = γ‖x‖2

with some constant γ > 0 was discussed. For this case Problem 2.1 can be written as
the following parabolic variational inequality.

Problem 2.3. Find u ∈W (0, T ;H1(Ω)) such that u(0) = u0 a.e. in Ω, u(t) ∈ K and
〈
du

dt
, v − u

〉
+ γ (∇u,∇(v − u)) ≥ θc (u, v − u) ∀v ∈ K, a.e. in (0, T ).
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2.2 Solution Theory

For this problem the authors prove the following existence and stability result:

Theorem 2.1. Let u0 ∈ L∞(Ω) and ‖u0‖∞ ≤ 1. Then there is a unique solution
u of Problem 2.3 that satisfies u(t) ∈ K a.e. in (0, T ). Furthermore, u satisfies
u ∈ C(0, T ;L2(Ω)) and

E(u(t)) +

∫ t

t′

∥∥∥∥
du

dt
(s)

∥∥∥∥ ds = E(u(t′))

for all t, t′ ∈ [0, T ] with t′ < t. Hence E is a Lyapunov functional for Problem 2.3.

The anisotropic case was considered by Burman and Rappaz [26]. There a coupled
system where the concentration and the phase field variable do not coincide is studied.

Theorem 2.2. Consider γ : R2 → R as in Example 2.1 with ā < 1/(k2 − 1) and Lips-
chitz continuous functions D1 : R → R and D2, S : R2 → R with 0 < Ds < D1(r) ≤ Dl

∀r ∈ R. Let u0 ∈ L2(Ω) and c0 ∈ L2(Ω). Then there are u, c ∈ W (0, T ;H1(Ω)) that
satisfy

〈
du

dt
, v

〉
+ 〈Fγ(u), v〉 − (S(c, u), v) = 0 ∀v ∈ H1(Ω), a.e. in (0, T ),

〈
dc

dt
, v

〉
+

∫

Ω
〈D1(u)∇c+D2(c, u)∇u,∇v〉 dx = 0 ∀v ∈ H1(Ω), a.e. in (0, T ).

Furthermore, if u0 ∈ H1(Ω) the solution satisfies

u ∈ L∞(0, T ;H1(Ω)) ∩H1(Ω× (0, T )).

If the parameter functions are chosen as D1(u) = 1, D2(c, u) = 0, and S(c, u) =
−Ψ′(u) the equations in Theorem 2.2 decouple and the first equation reduces to the
smooth anisotropic Allen–Cahn equation

〈
du

dt
, v

〉
+ 〈Fγ(u), v〉 +

(
Ψ′(u), v

)
= 0 ∀v ∈ H1(Ω), a.e. in (0, T ).

Hence Theorem 2.2 provides the existence of solutions for strictly convex Kobayashi
anisotropies if Ψ′ is Lipschitz continuous. Unfortunately neither the logarithmic po-
tential nor the obstacle potential satisfy the Lipschitz continuity condition.

A more general result by Elliott and Schätzle [52] considers a so-called fully anisotropic
Allen–Cahn equation with obstacle potential. In contrast to the presented gradi-
ent flows a kinetic factor β(∇u) is added in front of du

dt . As β is assumed to be
1-homogeneous the time derivative vanishes for ∇u = 0. Due to this fact the authors
do not apply the concept of weak solutions but show the existence of solutions in the
viscosity sense (see [37]).
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2.2.2 Cahn–Hilliard Equation

Regarding the Cahn–Hilliard equation we will mainly consider the isotropic case where
γ : Rd → R takes the form

γ(x)2 = γ‖x‖2

with some constant γ > 0.
First we consider the logarithmic potential, i.e., θ > 0. In this case Ψ̂θ is differen-

tiable on (−1, 1) and hence Problem 2.2 can equivalently be written as the following
variational equation.

Problem 2.4. Find u ∈W (0, T ;H1(Ω)) and w ∈ L2(0, T ;H1(Ω)) such that u(0) = u0
a.e. in Ω and

γ (∇u,∇v)− (w, v) +
(
ψ̂′
θ(u), v

)
= θc (u, v) ∀v ∈ H1(Ω), a.e. in (0, T ),

〈
du

dt
, v

〉
+ (∇w,∇v) = 0 ∀v ∈ H1(Ω), a.e. in (0, T ).

Existence of solutions for a vector-valued version of this problem was proved by
Elliott and Luckhaus [51]. The summarized existence result for the binary case [35]
reads as follows:

Theorem 2.3. Let u0 ∈ K and | (u0, 1) | < |Ω|. Then there is a unique solution u,w
of Problem 2.4 that satisfies u(t) ∈ K a.e. in (0, T ). The following regularity results
hold for u,w and du

dt :

u ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) ∩ C(0, T ;L2(Ω)),

du

dt
∈ L2(0, T ; (H1(Ω))′),

(
√
t)
du

dt
∈ L2(0, T ;H1(Ω)),

(
√
t)w ∈ L∞(0, T ;H1(Ω)),

(
√
t)Ψ̂′

θ(u) ∈ L∞(0, T ;L2(Ω)).

Furthermore, Elliott [50] established the following stability result for solutions of
Problem 2.4.

Theorem 2.4. Let u0 ∈ K and | (u0, 1) | < |Ω|. Then for all t ∈ [0, T ] the solution
u,w of Problem 2.4 satisfies

E(u(t)) +

∫ t

0
(∇w(s),∇w(s)) ds = E(u0).

Note that the initial value is allowed to take the values −1 and 1 although Ψ̂′
θ(x) has

infinite limits for x → ±1. From the last regularity result and the limiting properties
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of Ψθ we also get that |u| can only take the value 1 on subsets of Ω× (0, T ) with zero
measure.

Since the potential Ψ̂θ is no longer differentiable for θ = 0 Problem 2.2 cannot be
written as a variational equation is this case. However, the corresponding variational
inequality can be simplified using the definition of K.

Problem 2.5. Find u ∈W (0, T,H1(Ω)) and w ∈ L2(0, T,H1(Ω)) such that u(0) = u0
a.e. in Ω, u(t) ∈ K and

γ (∇u,∇(v − u))− (w, v − u) ≥ θc (u, v − u) ∀v ∈ K, a.e. in (0, T ),
〈
du

dt
, v

〉
+ (∇w,∇v) = 0 ∀v ∈ H1(Ω), a.e. in (0, T ).

This isotropic Cahn–Hilliard equation with obstacle potential was analyzed by Blowey
and Elliot [15]. A key result is the following existence and uniqueness theorem.

Theorem 2.5. Let u0 ∈ K and | (u0, 1) | < |Ω|. Then there is a unique solution u,w
of Problem 2.5 that satisfies u(t) ∈ K a.e. in (0, T ) and

u ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;H1(Ω)′).

Furthermore, u satisfies u ∈ C(δ, T ;H1(Ω)) for all δ > 0 and

E(u(t)) +

∫ t

t′
(∇w(s),∇w(s)) ds ≤ E(u(t′))

for all t, t′ ∈ [0, T ] with t′ < t. Hence E is a Lyapunov functional for Problem 2.5.

While anisotropic versions of the Cahn–Hiliard equation were discussed e.g. in Cahn
and Taylor [30, 31], Rätz et al. [90] there are (to the author’s knowledge) no comparable
existence results for these equation.
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3 Discretization of Cahn-Hilliard

Equations with Logarithmic Potential

In this chapter we consider the discretization of the variational problems obtained from
the gradient flows postulated in Chapter 2. We start by introducing notation for finite
element discretizations and mass lumping for superposition operators. Then we give
an overview of existing fully discrete approaches using the “method of lines”. Finally
we present a discretization using Rothe’s method combined with spatial adaptivity.

3.1 Finite Element Spaces on Nonconforming Grids

Since we do not want to deal with boundary approximations we assume that the domain
Ω ⊂ Rd with d = 1, 2, 3 is a bounded, open, and nonempty polyhedron.

Definition 3.1. A finite set T ⊂ 2Ω is a (simplicial) triangulation of Ω if each τ ∈ T
is a nonempty d-dimensional open simplex and

Ω =
⋃

τ∈T

τ , τ1 6= τ2 ⇒ τ1 ∩ τ2 = ∅ ∀τ1, τ2 ∈ T .

A vertex/edge/2-face of some τ ∈ T is called a node/edge/2-face of T . The sets of all
nodes and edges of T are denoted by N (T ) and E(T ), respectively. The diameter of
τ ∈ T is denoted by h(τ) and the maximal diameter of all elements is h(T ). The term
face will be used for faces of arbitrary dimension and 2-dimensional faces are explicitly
called 2-faces.

Definition 3.2. A triangulation T of Ω is called conforming if for τ1, τ2 ∈ T with
τ1 6= τ2 the intersection τ1 ∩ τ2 is either empty, a vertex, an edge, or a 2-face of τ1 and
τ2.

We are especially interested in nonconforming triangulations obtained by adaptive
refinement. While we do not want to restrict our considerations to conforming triangu-
lations, we would still like to construct conforming piecewise polynomial finite element
spaces.

Definition 3.3. Let T1 and T2 be triangulations of Ω. Then T2 is called a refinement
of T1 if for all τ ∈ T1 the set

{τ ′ ∈ T2 : τ ′ ∩ τ 6= ∅}

is a triangulation of τ .
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3 Discretization of Cahn-Hilliard Equations with Logarithmic Potential

Figure 3.1: Level grids of a grid hierarchy with lower level elements dashed.

Definition 3.4. (T0, . . . ,Tj) is called a grid hierarchy on Ω if T0 is a conforming
triangulation of Ω and if each Ti, i = 1, . . . , j is a conforming refinement of a subset
of Ti−1. Ti is called the i-th level grid of the grid hierarchy (T0, . . . ,Tj).

Strictly speaking we could call this a “conforming” grid hierarchy and drop the re-
quirement of conforming level grids for a more general definition. However, we need
the desired property for the following considerations and thus stick to this definition.

Since we allow refinements of real subsets of Ti−1, the triangulations Ti with i > 0
do in general not cover the whole domain Ω as depicted in Figure 3.1. In case of a
grid hierarchy the natural triangulation covering Ω to be used for computations is the
so-called leaf triangulation or leaf grid.

Definition 3.5. Let (T0, . . . ,Tj) be a grid hierarchy on Ω. Then the leaf grid denoted
by L(T0, . . . ,Tj) is defined by

L(T0, . . . ,Tj) = Tj ∪
j−1⋃

i=0

{τ ∈ Ti : τ ∩ τ ′ = ∅ ∀τ ′ ∈ Ti+1}.

Obviously the leaf grid of a grid hierarchy on Ω is itself a triangulation of Ω. As
opposed to the level grids, it is in general not conforming. However, it is not as arbitrary
as a general triangulation.

Lemma 3.1. Let (T0, . . . ,Tj) be a grid hierarchy. Then for τ1, τ2 ∈ L(T0, . . . ,Tj) with
τ1 6= τ2 the intersection τ1 ∩ τ2 is either empty or a face of τ1 or τ2.

Proof. For τ1, τ2 ∈ L(T0, . . . ,Tj) with τ1 6= τ2 we have τ1 ∈ Ti1 and τ2 ∈ Ti2 . For i1 = i2
the assertion is clear because each level grid is a conforming triangulation. Without
loss of generality we now assume i1 < i2. Then τ2 is contained in one τ ′2 ∈ Ti1 and
τ1 ∩ τ ′2 is empty or a face of τ ′2. Hence τ1 ∩ τ2 = (τ1 ∩ τ ′2)∩ τ2 must be empty or a face
of τ2.

Figure 3.2 depicts the leaf grid of the grid hierarchy in Figure 3.1 on the left and
two other nonconforming grids that do not have property shown in Lemma 3.1. If the
intersection τ1∩τ2 of to distinct elements τ1, τ2 ∈ L(T0, . . . ,Tj) is only a face of τ2 then
there must be one vertex of τ2 that is contained in the intersection but is not a vertex
of τ1.
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3.1 Finite Element Spaces on Nonconforming Grids

Figure 3.2: A leaf grid (left) and a non-leaf grid (right)

Definition 3.6. Let T be a triangulation of Ω. Then a node p ∈ N (T ) of T is called
a hanging node if there is an element τ ∈ T with p ∈ τ but p is not a vertex of τ . The
set of all hanging nodes of T is denoted by H(T ).

For finite element discretizations it is very common to only consider conforming
triangulations of Ω. For such triangulations the k-th order Lagrangian finite element
functions are the continuous functions on Ω such that the restrictions to all elements τ ∈
T are polynomials with degree of at most k. It is well known that these function spaces
are conforming with respect to H1(Ω), i.e., they are subspaces of H1(Ω). However, the
same definition does also lead to conforming spaces if it is used on a nonconforming
triangulation.

For general nonconforming triangulations these spaces can degenerate in the sense
that their dimension is small compared to a space on a conforming grid with a com-
parable number of elements and nodes. This is e.g. the case for the conforming space
of piecewise linear functions on the right triangulation in Figure 3.2. In contrast to
this we will see that conforming spaces on nonconforming leaf grids do in general not
degenerate. We will restrict our considerations to the first-order case only.

Definition 3.7. Let T be a triangulation of Ω. The first-order conforming finite
element space is defined as

S(T ) := {v ∈ C(Ω) : v|τ is affine linear ∀τ ∈ T } ⊂ H1(Ω). (3.1)

In case of a conforming triangulation a basis of S(T ) is given by the well-known
nodal basis functions. In order to deal with conforming finite element spaces on non-
conforming grids we first introduce the nonconforming nodal basis functions.

Definition 3.8. Let T be a triangulation of Ω. Then the nonconforming nodal basis
function λ̂p ∈ L2(Ω) associated with p ∈ N (T ) is defined as follows: For all τ ∈ T
there is an affine linear representative λ̂p|τ = µp,τ ∈ C(τ) with µp,τ (q) = δpq for all
vertices q of τ .

For a conforming triangulation T this reduces to λ̂p ∈ S(T ) and

λ̂p(q) = δpq ∀p, q ∈ N (T ),
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3 Discretization of Cahn-Hilliard Equations with Logarithmic Potential

i.e., the set (λ̂p)p∈N (T ) is the conforming nodal basis of S(T ). For a nonconforming
triangulation S(T ) is in general only a subspace of the nonconforming finite element
space

Ŝ(T ) := span{λ̂p : p ∈ N (T )}.

However, in case of a leaf grid T it is possible to construct a basis of S(T ) from
the nonconforming nodal basis of Ŝ(T ) that resembles the usual nodal basis functions
where T is conforming.

Theorem 3.1. Let (T0, . . . ,Tj) be a grid hierarchy on Ω and T = L(T0, . . . ,Tj) the
leaf grid. Then a basis of S(T ) is given by

B(T ) :=



λp = λ̂p +

∑

q∈H(T )

aqpλ̂q : p ∈ N (T ) \ H(T )



 .

Before proving Theorem 3.1 we show that hanging nodes can always be represented
as linear combination of non-hanging nodes.

Lemma 3.2. Let (T0, . . . ,Tj) be a grid hierarchy on Ω and T = L(T0, . . . ,Tj) the leaf
grid. Then for all q ∈ H(T ) there are coefficients aqp with p ∈ N (T ) \H(T ) such that

v(q) =
∑

p∈N (T )\H(T )

aqpv(p) ∀v ∈ S(T ).

Proof. (Lemma 3.2) The assertion trivially holds true for all q ∈ H(T ) ∩ N (T0) = ∅.
Now assume that it also holds true for all

q′ ∈ Hi := H(T ) ∩


⋃

k≤i

N (Ti)




for some 0 ≤ i < j and let q ∈ H(T ) ∩ N (Ti+1). Then there is a τ ∈ T such that
q ∈ τ but q is not a vertex of τ . Due to the definition of a grid hierarchy we must have
τ ∈ Tk for some k ≤ i. Then q can be written as convex combination of the vertices of
τ , i.e.

q =
∑

p∈N (Tk)

āqpp =
∑

p∈N (T )

āqpp

with āqp = 0 for all p that are not vertices of τ and, in particular, for p /∈ N (Tk). Since
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3.1 Finite Element Spaces on Nonconforming Grids

Figure 3.3: Nonconforming nodal basis functions for a hanging node (left) and a non-
hanging node (middle) and a conforming nodal basis function for a non-
hanging node (right).

all v ∈ S(T ) are affine on τ this implies

v(q) =
∑

p∈N (Tk)\H(T )

āqpv(p) +
∑

q′∈ N (Tk) ∩H(T )︸ ︷︷ ︸
⊂Hk⊂Hi

āqq′v(q
′)

=
∑

p∈N (T )\H(T )

āqpv(p) +
∑

q′∈N (Tk)∩H(T )

āqq′


 ∑

p∈N (T )\H(T )

aq′pv(p)




=
∑

p∈N (T )\H(T )


āqp +

∑

q′∈N (Tk)∩H(T )

āqq′aq′p


 v(p).

We can define aqp as the term in the parentheses.

The coefficients in Lemma 3.2 can now be used to define conforming nodal basis
functions for all non-hanging nodes. These need not be zero in the hanging nodes but
take the proper value needed to ensure continuity. Figure 3.3 illustrates the difference
between nonconforming and conforming nodal basis functions for the same node.

Proof. (Theorem 3.1) From Lemma 3.2 we get for all v ∈ S(T ) ⊂ Ŝ(T )

v =
∑

p∈N (T )

λ̂pv(p) =
∑

p∈N (T )\H(T )

λ̂pv(p) +
∑

q∈H(T )

λ̂p
∑

p∈N (T )\H(T )

aqpv(p)

=
∑

p∈N (T )\H(T )

λp

and hence S(T ) ⊂ spanB(T ).
To see that also spanB(T ) ⊂ S(T ) we have to show that each λp with p ∈ N (T ) \

H(T ) is continuous. Since q ∈ N (T ) \ H(T ) is a vertex of all adjacent elements, all
continuous representatives of restrictions of λp to these elements take the same value
in q. Hence λp is continuous in q.
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3 Discretization of Cahn-Hilliard Equations with Logarithmic Potential

Now assume that λp|Ωi
is continuous with

Ωi =
⋃

τ∈T ∩
⋃

k≤i Tk

τ

for some 0 ≤ i < j and let τ ∈ T ∩ Ti+1 and q ∈ τ a vertex of τ . If q ∈ H(T ) there is
an element τ ′ ∈ T such that q ∈ τ ′ but q is not a vertex of τ ′. Hence we have τ ′ ∈ Tk
for some k ≤ i and thus τ ′ ∈ Ωi.

If τ ′ is chosen as in the proof of Lemma 3.2 the value of λp|τ in q is the interpolation
of the values of λp|τ ′ at the vertices of τ ′. Thus λp|τ ′∪τ and (by continuity on Ωi)
also λp|Ωi∪τ is continuous in q. Since this is true for all vertices of τ we have shown
continuity of λp|Ωi∪τ and hence of λp|Ωi+1 . Noting that λp|Ω0 is continuous we have
shown continuity on Ωj = T by induction.

As we use multigrid solvers in the following chapters we now investigate the natural
hierarchy of finite element spaces induced by a grid hierarchy. As a direct consequence
of the definition of refinements we get nestedness of these spaces.

Lemma 3.3. Let T1 and T2 be triangulations of Ω such that T2 is a refinement of T1.
Then Ŝ(T1) and S(T1) are subspaces of Ŝ(T2) and S(T2), respectively.

�

The following lemma allows to use this property for grid hierarchies.

Lemma 3.4. Let (T0, . . . ,Tj) and (T ′
0 , . . . ,T ′

j′) be grid hierarchies with j ≤ j′, T0 = T ′
0 ,

and Ti ⊂ T ′
i for all 0 < i ≤ j. Then L(T ′

0 , . . . ,T ′
j′) is a refinement of L(T0, . . . ,Tj).

Proof. Let τ ∈ L(T0, . . . ,Tl−1). Then we have τ ∈ T ′
i for some 0 ≤ i ≤ j. Hence

{τ ′ ∈ L(T ′
0 , . . . ,T ′

j′) : τ
′ ∩ τ 6= ∅} = L(T ′

i |τ , . . . ,T ′
j′|τ )

is the leaf grid of the grid hierarchy (T ′
i |τ , . . . ,T ′

j′ |τ ) with

T ′
k |τ = {τ ′ ∈ T ′

k : τ ′ ⊂ τ}

and hence itself a triangulation of τ .

Corollary 3.1. Let (T0, . . . ,Tj) be a grid hierarchy and T̃l = L(T0, . . . ,Tl) for l =
0, . . . , j. Then Ŝ(T̃l−1) and S(T̃l−1) are subspaces of Ŝ(T̃l) and S(T̃l), respectively, for
all l = 1, . . . , j.

3.2 Mass Lumping and Superposition Operators

Although the bilinear forms (·, ·) and (∇·,∇·) can be computed exactly for functions
in S(T ) it will be helpful to introduce an approximation of (·, ·) depending on T .
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3.2 Mass Lumping and Superposition Operators

Definition 3.9. Let T be a triangulation of Ω that is the leaf grid of a grid hierarchy.
Then the interpolation IT : C(Ω) → S(T ) is defined by

IT (v) :=
∑

p∈N (T )\H(T )

v(p)λp

and the lumped L2 inner product (·, ·)T : S(T )× S(T ) → R is defined by

(v,w)T :=

∫

Ω
IT (vw)(x) dx =

∑

p∈N (T )\H(T )

v(p)w(p)

∫

Ω
λp(x) dx (3.2)

≈
∫

Ω
v(x)w(x) dx = (v,w) . (3.3)

The lumped pseudo L2 projection P T : L2(Ω) → S(T ) is defined by

(
P T v,w

)T
= (v,w) ∀w ∈ S(T ).

Since all λp with p ∈ N (T ) \ H(T ) are nonnegative and not identical to zero the
weights in (3.2) are always positive. Hence the bilinear form (·, ·)T is an inner product.
It is based on the approximation of the integral by a quadrature rule with the set of
non-hanging nodes as quadrature points. In contrast to the exact inner product (·, ·)
this bilinear form exhibits the discrete locality

(
suppT (v) ∩ suppT (w) = ∅ ⇒ (v,w)T = 0

)
∀v,w ∈ S(T )

with respect to the discrete support supp(v)T := {p ∈ N (T ) \ H(T ) : v(p) 6= 0}. This
property is a discrete analogue of the continuous locality

(
supp(v) ∩ supp(w) = ∅ ⇒ (v,w) = 0

)
∀v,w ∈ L2(Ω).

This locality is important if superposition operators are considered. Remember
that for a function f : R → R the associated superposition operator Tf on Lp(Ω) is
given by Tfv = f ◦ v. The above locality ensures that discretizations of superposition
operators on L2(Ω) are diagonal operators on S(T ), which are the natural analogue of
superposition operators on discrete spaces.

Remark 3.1. Let f : R → R be continuous such that T with Tv = f ◦ v maps
L2(Ω) → L2(Ω). Then T satisfies

(Tv)|U is independent of (Tv)|Ω\U ∀U ⊂ Ω, U measurable. (3.4)

If we restrict T to S(T ) it will not map S(T ) to S(T ). The latter can be ensured for
a grid dependent T T : S(T ) → S(T ) by using the weak definition

T T v ∈ S(T ) :
(
T T v,w

)
= (Tv,w) ∀w ∈ S(T ).
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3 Discretization of Cahn-Hilliard Equations with Logarithmic Potential

Unfortunately this operator does not satisfy (3.4). If we replace the inner product by
the lumped L2 product and define

T T v ∈ S(T ) :
(
T T v,w

)T
= (Tv,w)T ∀w ∈ S(T )

the resulting operator does at least satisfy

(T T v)|U is independent of (T T v)|ΩT \U ∀U ⊂ ΩT := N (T ) \ H(T ).

This definition is equivalent to T T = IT ◦ (T |S(T )).

3.3 Space–Time Discretizations

Now we summarize the present discretizations and corresponding convergence results
for the Cahn–Hilliard equation. Again the present results only deal with the isotropic
case where γ : Rd → R takes the form

γ(x)2 = γ‖x‖2 (3.5)

with some constant γ > 0. All discretizations in this section use the “method of lines”.
This means that the time discretization is applied to the ordinary differential equation
obtained by a fixed spatial discretization used for all time levels. Throughout this
section we assume that T is a conforming triangulation. Furthermore, we consider
a uniform time grid 0 = t0 < t1 < . . . with tk = k∆t for a constant time step size
∆t > 0. Solutions corresponding to the k-th time level are indicated by a subscript k.

First we consider the logarithmic potential with θ > 0, where the Cahn–Hilliard
equation reduces to Problem 2.4. The discretization of this problem was discussed by
Copetti and Elliott [35]. There, a fully implicit Euler scheme leading to the following
sequence of discrete problems was proposed.

Problem 3.1. Let ∆t > 0 and uT0 ∈ S(T ) ∩ K some approximation of u0. For
k = 1, . . . find uTk , w

T
k ∈ S(T ) such that

γ
(
∇uTk ,∇v

)
− θc

(
uTk , v

)T −
(
wT
k , v

)T
+
(
ψ̂′
θ(u

T
k ), v

)T
= 0 ∀v ∈ S(T ),

(
uTk − uTk−1

∆t
, v

)T

+
(
∇wT

k ,∇v
)
= 0 ∀v ∈ S(T ).

Each discrete problem has the form of a saddle point problem
(
γA+ F −M −M

−M −∆tA

)(
u
w

)
=

(
f
g

)

for coefficient vectors u,w and suitable right hand side vectors f, g. Here F is a mono-
tone operator, M a symmetric positive definite matrix, and A a symmetric positive
semidefinite matrix. Since γA+ F −M is not monotone this problem does in general
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3.3 Space–Time Discretizations

not have a unique solution for all ∆t. However, for small enough ∆t the operator
obtained by eliminating w is still monotone on the subspace where 〈Mu, 1〉 = 0 or
equivalently (u, 1) = 0 for the finite element function u represented by u. This fact
was used by Copetti and Elliott [35] to show the following existence result.

Theorem 3.2. Let ∆t < 4 γ
θ2c

, uT0 ∈ S(T ) ∩ K and |
(
uT0 , 1

)
| < |Ω|. Then there is a

unique solution (uTk , w
T
k ) ∈ S(T )2 of Problem 3.1 that satisfy ‖uTk ‖L∞(Ω) < 1 for all

k > 0.

Convergence was also established in [35] using the piecewise constant extensions
uT , wT of the discrete solution to the whole time interval given by

uT ∈ L2(0, T ;H1(Ω)) : uT (t) = uTk ∀t ∈ (tk−1, tk),

wT ∈ L2(0, T ;H1(Ω)) : wT (t) = wT
k ∀t ∈ (tk−1, tk).

Theorem 3.3. Let u0 ∈ K and | (u0, 1) | < |Ω|. Furthermore, let uT0 = P T u0 and
∆t < 4 γ

θ2c
. Then uT0 ∈ K,|

(
uT0 , 1

)
| < |Ω| and the solution of Problem 3.1 converges to

u in the sense that for all τ > 0 its extension uT satisfies uT → u in L2(τ, T ;L2(Ω))
as ∆t, h(T ) → 0.

Now we consider the obstacle potential (θ = 0). An analogue time discretization for
this case was introduced by Blowey and Elliot [16]. For simplicity the authors restrict
their analysis to θc = 1. As in the continuous case this leads to a variational inequality
due to the non-differentiability.

Problem 3.2. Let ∆t > 0 and uT0 ∈ S(T ) ∩ K some approximation of u0. For
k = 1, . . . find uTk ∈ S(T ) ∩ K and wT

k ∈ S(T ) such that

γ
(
∇uTk ,∇(v − uTk )

)
−
(
uTk , v − uTk

)T −
(
wT
k , v − uTk

)T ≥ 0 ∀v ∈ S(T ) ∩K,
(
uTk − uTk−1

∆t
, v

)T

+
(
∇wT

k ,∇v
)
= 0 ∀v ∈ S(T ).

Again each discrete problem takes the form of a saddle point problem
(
γA+ ∂χK −M −M

−M −∆tA

)(
u
w

)
∋
(
f
g

)

where K is the representation of S(T )∩K with respect to the nodal basis of S(T ). As
noted above the operator γA+∂χK −M is in general not monotone and hence not the
subdifferential of a convex function due to the “wrong” sign in front of the symmetric
positive definite matrix M . This again leads to a time step restriction for the existence
and uniqueness result in [16].

Theorem 3.4. Let uT0 ∈ S(T ) ∩ K and |
(
uT0 , 1

)
| < |Ω|. Then there is a solution

(uTk , w
T
k ) ∈ S(T )2 of Problem 3.2. For ∆t < 4γ the order parameter uTk is unique. If,

additionally, there is a node p ∈ N (T ) with |uTk (p)| < 1 then the chemical potential
wT
k is also unique.
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3 Discretization of Cahn-Hilliard Equations with Logarithmic Potential

In order to overcome the time step restriction the authors also propose a semi-
implicit time discretization where the concave part of the Ginzburg–Landau energy is
discretized explicitly.

Problem 3.3. Let ∆t > 0 and uT0 ∈ S(T ) ∩ K some approximation of u0. For
k = 1, . . . find uTk ∈ S(T ) ∩ K and wT

k ∈ S(T ) such that

γ
(
∇uTk ,∇(v − uTk )

)
−
(
wT
k , v − uTk

)T ≥
(
uTk−1, v − uTk

)T ∀v ∈ S(T ) ∩ K,
(
uTk − uTk−1

∆t
, v

)T

+
(
∇wT

k ,∇v
)
= 0 ∀v ∈ S(T ).

Here the discrete saddle point problems take the form
(
γA+ ∂χK −M

−M −∆tA

)(
u
w

)
∋
(
f +Muold

g

)

where the non-monotone operator −M resulting from the concave part of Ginzburg–
Landau energy is incorporated in the right hand side. The remaining operator γA+∂χK

is globally monotone and hence we get existence and uniqueness without time step
restriction.

Theorem 3.5. Let uT0 ∈ S(T ) ∩ K and |
(
uT0 , 1

)
| < |Ω|. Then there is a solution

(uTk , w
T
k ) ∈ S(T )2 of Problem 3.3 with unique uTk for all ∆t > 0 and unique wT

k if
there is a node p ∈ N (T ) with |uTk (p)| < 1.

The following error estimates by Blowey and Elliot [16] are again given in terms of
piecewise constant extensions uT , wT ∈ L2(0, T ;H1(Ω)) as introduced above.

Theorem 3.6. Let u0 ∈ K and | (u0, 1) | < |Ω|. Furthermore, let uT0 = P T u0 and
∆t < 2γ. Then the piecewise constant extension (uT , wT ) of the solution to Problem 3.2
satisfies the error estimate

‖u− uT ‖2L∞(0,T ;(H1(Ω))′) + ‖u− uT ‖2L2(0,T ;H1(Ω)) ≤ C

(
h(T )4

∆t
+ h(T )2 +∆t

)

with a constant C depending only on the solution (u,w) of Problem 2.5, the domain Ω
and the shape regularity of T .

While the existence result for the semi-implicit discretization in Problem 3.3 does
not require any time step restriction, the following error estimate from [16] was only
proved under a similar time step restriction as for the fully implicit case.

Theorem 3.7. Let u0 ∈ K and | (u0, 1) | < |Ω|. Furthermore, let uT0 = P T u0 and
∆t < 2γ. Then the piecewise constant extension (uT , wT ) of the solution to Problem 3.3
satisfies the error estimate

‖u− uT ‖2L∞(0,T ;(H1(Ω))′) + ‖u− uT ‖2L2(0,T ;H1(Ω)) ≤ C

(
h(T )4

∆t
+ h(T )2 +∆t

)

with a constant C depending only on the solution (u,w) of Problem 2.5, the domain Ω
and the shape regularity of T .
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Beside the above existence and convergence results there are many results for related
equations. The Cahn–Hilliard equation with degenerate mobility incorporates a factor
b(u) with b(−1) = b(1) = 0 in front of ∇w in the second equation of Problem 2.4.
For this equation well-posedness as well as convergence for one space dimension were
established by Barrett et al. [8] for fully implicit and semi-implicit time discretization.
Barrett et al. [9] analyzed a discretization for a similar equation with an additional
potential equation. Error bounds in one and two space dimensions for a coupled Allen–
Cahn/Cahn–Hilliard equation with logarithmic and obstacle potential were established
by Barrett and Blowey [7].

Besides these results there are many results for Cahn–Hilliard equations with smooth
double-well potentials (e.g. quartic polynomials). However, these results do in general
rely heavily on the smoothness and do thus not carry over to the logarithmic potential
and the obstacle potential considered here. Furthermore, many of the mentioned results
have been generalized to vector-valued Cahn–Hilliard equations.

3.4 Rothe’s Method

All discretizations presented so far follow the “method of lines” approach and use a
fixed spatial discretization in each time step. In general, solutions to the presented
phase field models are very smooth or even constant in large regions. These regions
are occupied by a single pure or, in case of the logarithmic potential, almost pure
phase. They are separated by a thin interface with a very sharp transition between
different phases.

Due to this spatial variation of solutions it is reasonable to consider locally refined
grids that allow for a local mesh size being only as small as needed to capture the local
behavior. Since the interface moves through the domain in time, good locally refined
grids will in general differ from one time step to the next. To allow for different grids
in different time steps we will first discretize the evolution equation in time leading
to a sequence of stationary continuous problems in appropriate Sobolev spaces. Each
stationary problem is then discretized independently by finite elements. This approach
is known as “Rothe’s method” or “method of time slices” (see [44]). For the case of a
linear parabolic partial differential equation it was analyzed extensively by Bornemann
[18].

3.4.1 Semi-Implicit Time Discretization

In this subsection we consider a semi-implicit time discretization of the anisotropic
Cahn–Hilliard equation with arbitrary θ ≥ 0 given by Problem 2.2. To this end let

0 = t0 < t1 < . . .

be a time grid with time steps ∆tk = tk − tk−1. Using an implicit Euler discretization
for all terms except the gradient of the concave part of the potential in the Ginzburg–
Landau energy leads to the following sequence of stationary problems:
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3 Discretization of Cahn-Hilliard Equations with Logarithmic Potential

Problem 3.4. For k = 1, . . . find (uk, wk) ∈ H1(Ω)×H1(Ω) such that

〈Fγ(uk), v − uk〉 − (wk, v − uk) + ψ̂θ(v)− ψ̂θ(uk) ≥ θc (uk−1, v − uk) ∀v ∈ H1(Ω),
(
uk − uk−1

∆tk
, v

)
+ (∇wk,∇v) = 0 ∀v ∈ H1(Ω).

In will be shown that this time discretization has the advantage that no time step
restriction needs to be imposed in order to guarantee the existence of solutions.

We will not analyze the convergence of the presented time discretization here but
concentrate on the stationary problems for each time step tk with k > 0 from now on.
Since all these problems have the same structure we drop the index k for the time step
and denote the solution from the previous time step by uold. Then each stationary
problem takes the form:

Problem 3.5. Find (u,w) ∈ H1(Ω)×H1(Ω) such that

〈Fγ(u), v − u〉+ ψ̂θ(v)− ψ̂θ(u)− (w, v − u) ≥ θc (uold, v − u) ∀v ∈ H1(Ω),

− (u, v)−∆t (∇w,∇v) = − (uold, v) ∀v ∈ H1(Ω).

In order to prove existence of solutions we will need continuity of the smooth non-
quadratic functional

Jγ(v) =

∫

Ω

1

2
γ(∇v(x))2dx,

and lower semicontinuity of the nonsmooth nonlinearity ψ̂θ in the Ginzburg–Landau
energy. While continuity of the smooth nonlinearity is shown by elementary means
in Lemma 2.5 we need a continuity result for superposition operators cited in the
appendix to prove the following lemma.

Lemma 3.5. For θ ≥ 0 the functional ψ̂θ : H1(Ω) → R ∪ {∞} is lower semicon-
tinuous. It is continuous on its domain dom ψ̂θ = K which is a closed, convex, and
nonempty set.

Proof. A proof that K is closed and convex can be found in [72]. On [−1, 1] the
extended-valued function Ψ̂θ coincides with the continuous function ω : R → R given
by

ω(z) :=

{
Ψ̂θ(z) if z ∈ (−1, 1),

θ ln(2) else.

By Corollary A.1 the superposition operator induced by ω is continuous from L2(Ω)
to L1(Ω). Hence the functional

v 7→
∫

Ω
ω(v(x))dx
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3.4 Rothe’s Method

is in particular continuous on K equipped with the norm ofH1(Ω). Since this functional
coincides with ψ̂θ on K we find that ψ̂θ is continuous on K.

Now let vν → v in H1(Ω). If there is a ν0 such that vν /∈ K for all ν ≥ ν0 we have

lim inf
ν→∞

ψ̂θ(v
ν) = ∞ ≥ ψ̂θ(v).

If there is no such ν0 there is a subsequence vνi ∈ K with vνi → v ∈ K. For any such
subsequence we have

lim
i→∞

ψ̂θ(v
νi) = ψ̂θ(v),

because ψ̂θ is continuous on the closed set K. Again we have shown

lim inf
ν→∞

ψ̂θ(v
ν) ≥ ψ̂θ(v).

A further ingredient in the proof of existence of solutions of Problem 3.5 is the
coercivity of the convex energy Jγ associated with the nonlinear operator Fγ . Unfor-
tunately Jγ itself is not coercive on the whole space H1(Ω) but only on the subspace
where the variational equations in Problem 3.5 holds true. While this partial result
would be sufficient for the proof of existence we show coercivity for a slightly modified
equivalent problem in order to simplify the proof.

Testing the second equation in Problem 3.5 with v = 1 provides the mass conserva-
tion (u, 1) = (uold, 1). Hence we can add the term ρ (u− uold, 1) (1, v − u) = 0 with
ρ > 0 to the variational inequality without changing its solution. Defining

〈
F̃γ(v), ·

〉
:= 〈Fγ(v), ·〉 + ρ (v, 1) (1, ·) , f̃ := θcuold + ρ (uold, 1) , (3.6)

this leads to the equivalent semi-implicit problem:

Problem 3.6. Find (u,w) ∈ H1(Ω)×H1(Ω) such that
〈
F̃γ(u), v − u

〉
+ ψ̂θ(v)− ψ̂θ(u)− (w, v − u) ≥

(
f̃ , v − u

)
∀v ∈ H1(Ω),

− (u, v)−∆t (∇w,∇v) = − (uold, v) ∀v ∈ H1(Ω).

Compared to Problem 3.5 this formulation has the advantage that the operator F̃γ

is strongly monotone with respect to the norm in H1(Ω).

Lemma 3.6. Assume that γ : Rd → R satisfies (A2). Then the gradients Fγ = ∇Jγ
and F̃γ = ∇J̃γ are strongly monotone with respect to the semi-norm | · |1 and the norm
‖ · ‖1, respectively, i.e.,

〈Fγ(w) −Fγ(v), w − v〉 ≥ Hγ2 |w − v|21,
〈
F̃γ(w) − F̃γ(v), w − v

〉
≥

min{Hγ2 , ρ}
CP

‖w − v‖21.
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3 Discretization of Cahn-Hilliard Equations with Logarithmic Potential

Proof. For strong monotonicity of Fγ we only need to apply the strong monotonicity of
γ2 from Lemma 2.4. The estimate for F̃γ directly follows using the Poincaré inequality
in Theorem A.2.

Lemma 3.7. Assume that γ : Rd → R satisfies (A2) and let Jγ : H1(Ω) → R as
defined in Lemma 2.5. Then the functional J̃γ : H1(Ω) → R given by

J̃γ(v) := Jγ(v) +
ρ

2
(v, 1)2

is strongly convex, continuous, and coercive. More precisely there is C > 0 such that

J̃γ(v) ≥ C‖v‖21.

Proof. By Lemma 2.5 Jγ and thus J̃γ are continuous and convex. Strong convexity
follows directly from strong convexity of γ2 (see Lemma 2.4), strong convexity of the
quadratic integral term, and the Poincaré inequality in Theorem A.2.

Similarly the coercivity of γ2 (see Lemma 2.4) and the Poincaré inequality yield

J̃γ(v) ≥
min{Hγ2 , ρ}

2

(
|v|21 + (v, 1)2

)
≥

min{Hγ2 , ρ}
2CP

‖v‖21.

Theorem 3.8. Assume that γ : Rd → R satisfies (A2) and that | (uold, 1) | < |Ω|.
Then there is a solution (u,w) ∈ K ×H1(Ω) to Problem 3.6.

Proof. We consider the Lagrange functional L : K ×H1(Ω) → R,

L(u,w) = J̃γ(u) + ψ̂θ(u)− (f̃ , u)− (u− uold, w)−
∆t

2
|w|21.

By Lemma 3.7 J̃γ is continuous and coercive. Together with Lemma 3.5 we find that
L(·, w) is strictly convex, coercive, and continuous on the closed, convex, and non-
empty set K for each w ∈ H1(Ω). Furthermore, L(u, ·) is continuous on H1(Ω) for all
u ∈ K.

We can use Theorem A.4 to get existence if we can show

lim
‖w‖1→∞

inf
v∈K

L(v,w) = −∞. (3.7)

To this end consider the decomposition

w = w0 + wc, wc =
(w, 1)

|Ω| ,

of w ∈ H1(Ω). Then we have (w0, 1) = 0 and thus by the Poincaré inequality (see
Theorem A.2)

| (sgnwc − uold, w0) | = | (uold, w0) | ≤ ‖uold‖0‖w0‖0 ≤
√

|Ω|‖w0‖1
≤ C1

√
|w0|21 + (w0, 1)

2 = C1|w|1.
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3.4 Rothe’s Method

For wc the identity (|wc|, 1) = | (w, 1) | = |wc| |Ω| and | (uold, 1) | < |Ω| provide

− (sgnwc − uold, wc) = − (|wc|, 1) + (uold, 1)wc

≤ − (|wc|, 1) + | (uold, 1) | |wc|

= −
(
1− | (uold, 1) |

|Ω|

)

︸ ︷︷ ︸
=:C2>0

| (w, 1) |.

Hence with a = |w|1 and b = | (w, 1) | we get

− (sgnwc − uold, w) −
∆t

2
|w|21 ≤ C1a−

∆t

2
a2 − C2b.

To show that the right hand side tends to −∞ uniformly for ‖w‖1 → ∞ we note that
the concave function h : R+

0 → R with h(a) = (C1 + C2)a − ∆t
2 a

2 takes its maximum
value at a0 =

C1+C2
∆t . This implies that

C1a+
∆t

2
a2 = h(a)− C2a ≤ h(a0)− C2a = (C1 + C2)a0 +

∆t

2
a20

︸ ︷︷ ︸
=:C3>0

−C2a.

Together with the Poincaré inequality in Theorem A.2 we get

− (sgnwc − uold, w) −
∆t

2
|w|21 ≤ C3 − C2(a+ b) ≤ C3 −

C2√
CP

‖w‖1.

Hence we have shown that

L(sgnwc, w) ≤
(

max
v∈{−1,0,1}

J̃γ(v) + ψ̂θ(v)− (f, v) + C3

)

︸ ︷︷ ︸
=const

− C2√
CP

‖w‖1

for all w ∈ H1(Ω). Together with sgnwc ∈ K this provides (3.7). Now we can apply
Theorem A.4 to obtain a saddle point (u,w) ∈ K ×H1(Ω) that satisfies

L(u, µ) ≤ L(u,w) ≤ L(v,w) ∀(v, µ) ∈ K ×H1(Ω).

Standard arguments (see, e.g., [49, Chapter VI, Proposition 1.7]) lead to an optimality
system for this saddle point problem given by a variational inequality for fixed w and
a variational equation for fixed u. This system turns out to be Problem 3.6.

Theorem 3.9. Assume that γ : Rd → R satisfies (A2) and that | (uold, 1) | < |Ω|. Let
u,w ∈ H1(Ω) be a solution to Problem 3.6. Then u and ∇w are unique.

Proof. Let (u1, w1) ∈ K × H1(Ω) and (u2, w2) ∈ K × H1(Ω) be two solutions to
Problem 3.6. Testing the variational inequality for u1 with u2 and vice versa gives

〈
F̃γ(u1)− F̃γ(u2), u1 − u2

〉
− (w1 −w2, u1 − u2) ≤ 0,
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3 Discretization of Cahn-Hilliard Equations with Logarithmic Potential

while testing the variational equation for both solutions with w1 − w2 provides

− (u1 − u2, w1 − w2) = ∆t|w1 − w2|21.

Inserting this in the inequality and using the strong monotonicity of F̃γ yields

C‖u1 − u2‖21 +∆t|w1 − w2|21 ≤
〈
F̃(u1)− F̃(u2), u1 − u2

〉
+∆t|w1 − w2|21 ≤ 0

and thus u1 = u2 and ∇w1 = ∇w2.

Remark 3.2. An alternative to adding the rank one term ρ (u, 1) (1, ·) in (3.6) would be
to apply Theorem A.5 in the appendix to obtain another equivalent saddle point problem
with a strongly monotone operator. While we have chosen the simpler approach with
the rank one term here the other approach will be helpful for the fully implicit time
discretization discussed in the next subsection.

3.4.2 Fully Implicit Time Discretization

We can alternatively discretize the Cahn–Hilliard equation (Problem 2.2) by a fully
implicit Euler scheme. This leads to a sequence of stationary problems which are
similar to Problem 3.4:

Problem 3.7. For k = 1, . . . find (uk, wk) ∈ H1(Ω)×H1(Ω) such that

〈Fγ(uk), v − uk〉 − 〈θcuk, v − uk〉 − (wk, v − uk) + ψ̂θ(v) − ψ̂θ(uk) ≥ 0 ∀v ∈ H1(Ω),
(
uk − uk−1

∆tk
, v

)
+ (∇wk,∇v) = 0 ∀v ∈ H1(Ω).

Again we concentrate on a single spatial problem and drop the index k. Then each
stationary problem for the fully implicit time discretization takes the form:

Problem 3.8. Find (u,w) ∈ H1(Ω)×H1(Ω) such that

〈Fγ(u), v − u〉 − θc (u, v − u) + ψ̂θ(v)− ψ̂θ(u)− (w, v − u) ≥ 0 ∀v ∈ H1(Ω),

− (u, v)−∆t (∇w,∇v) = − (uold, v) ∀v ∈ H1(Ω).

By the same arguments as for the semi-implicit discretization we have mass conser-
vation and adding the term ρ (u− uold, 1) (1, v − u) = 0 to the variational inequality
leads to the equivalent

Problem 3.9. Find (u,w) ∈ H1(Ω)×H1(Ω) such that

〈F̃γ(u), v − u〉 − θc (u, v − u) + ψ̂θ(v)− ψ̂θ(u)− (w, v − u) ≥ (f̃ , v − u) ∀v ∈ H1(Ω),

− (u, v)−∆t (∇w,∇v) = − (uold, v) ∀v ∈ H1(Ω).
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3.4 Rothe’s Method

Here F̃γ is defined as in the previous subsection but the right hand side is now

f̃ = ρ (uold, 1) .

In contrast to the semi-implicit scheme this modification does not guarantee mono-
tonicity of F̃γ − θc (·, ·). The reason for this is the “wrong” sign in front of θc (u, v − u)
resulting from the concave part in the Ginzburg–Landau energy. We noted in the pre-
vious section (see Theorem 3.2) for a fully discrete scheme that the isotropic analogue
of the operator Fγ − θc (·, ·) is in general only monotone on the subspace where the
variational equation holds and if the time step restriction ∆t < 4γ/θ2c is satisfied. A
corresponding result could be shown here. However, having monotonicity only on this
subspace will in general prohibit algorithms where the linear equation only holds in the
limiting case. Hence it is desirable to have a globally monotone operator associated
with a globally convex functional instead.

Having this in mind we consider a different modification of Problem 3.8 using The-
orems A.5 and A.6 in the appendix, which allows to compensate a certain fraction
of a negative semidefinite operator. More precisely we can apply Theorem A.5 with
α = θc+ǫ

2 for any ǫ ≥ 0 to obtain:

Problem 3.10. Find (u, w̃) ∈ H1(Ω)×H1(Ω) such that
〈
F ǫ
γ(u), v − u

〉
+ ψ̂θ(v)− ψ̂θ(u)− bǫ(w̃, v − u) ≥ (f ǫ, v − u) ∀v ∈ H1(Ω),

−bǫ(u, v) −∆t (∇w̃,∇v) = − (uold, v) ∀v ∈ H1(Ω).

Here we use the modified operator, bilinear form, and right hand side

F ǫ
γ(v) := Fγ(v)−∆t

(θc + ǫ)2

4
(∇v,∇·) + ǫ (v, ·) ,

bǫ(v, ·) := (v, ·) −∆t
θc + ǫ

2
(∇v,∇·) ,

f ǫ :=
θc + ǫ

2
uold.

Theorem 3.10. For any ǫ ≥ 0 Problem 3.10 is equivalent to Problem 3.8 in the sense
that (u, w̃) ∈ H1(Ω) × H1(Ω) is a solution to Problem 3.10 if and only if (u,w) ∈
H1(Ω)×H1(Ω) with w = w̃ − θc+ǫ

2 u is a solution of Problem 3.8.

Proof. Apply Theorem A.5 with α = θc+ǫ
2 .

Theorem 3.11. Assume that γ : Rd → R satisfies (A2), and that | (uold, 1) | < |Ω| and
∆t < Hγ2

4
θ2c

hold true. Then there is a solution (u, w̃) ∈ K ×H1(Ω) to Problem 3.10
for all ǫ ≥ 0.

Proof. We show the existence of a solution to Problem 3.8 for a suitable choice of ǫ ≥ 0.
This is sufficient since Problem 3.8 is equivalent to Problem 3.10 for all ǫ ≥ 0. Hence,
for the rest of the proof we select a fixed ǫ > 0 such that the first inequality in

∆t < Hγ2

4

(θc + ǫ)2
< Hγ2

4

θ2c
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holds true. This is possible due to the strict inequality in the time step restriction.
Then, by the same arguments used in the proof of Lemma 3.7, the functional J ǫ

γ :
H1(Ω) → R defined by

J ǫ
γ(v) := Jγ(v)−

∆t(θc + ǫ)2

8
|v|21 +

ǫ

2
‖v‖20

is strongly convex, continuous, and coercive with the constant

1

2
min

{
Hγ2 −∆t

(θc + ǫ)2

4
, ǫ

}
> 0.

Note that the concave part −|v|21 is dominated by the convex part Jγ due to the special
selection of ǫ.

Now we can essentially proceed as in the proof of Theorem 3.8 and show existence
of a saddle point of the Lagrange functional L̃ : K ×H1(Ω) → R,

L̃(u, w̃) := J ǫ
γ(u) + ψ̂θ(u)− (f ǫ, u)− bǫ(u− uold)(w̃)−

∆t

2
|w̃|21.

Again we have to show

lim
‖w̃‖

H1(Ω)→∞
inf
v∈K

L̃(v, w̃) = −∞

in order to apply Theorem A.4. To this end we note that by Lemma A.2 we have

L̃(u, w̃) = L(u,w) := Jγ(u)−
θc
2
‖u‖20 + ψ̂θ(u)− (u− uold, w)−

∆t

2
|w|21

with w = w̃ − θc+ǫ
2 u. By the same arguments as in the proof of Theorem 3.8 we get

L̃(sgnwc, w̃) = L(sgnwc, w) ≤ C −C‖w‖1

for a constant C > 0. Together with ‖ sgnwc‖1 = ‖ sgnwc‖0 ≤
√

|Ω| and the inverse
triangle inequality this implies

L̃(sgnwc, w̃) ≤ C − C

∥∥∥∥w̃ − θc + ǫ

2
sgnwc

∥∥∥∥
1

≤ C − C

(
‖w̃‖1 −

θc + ǫ

2
‖ sgnwc‖1

)

≤ C − C‖w̃‖1 + C
√
Ω
θc + ǫ

2
.

Now Theorem A.4 provides the existence of a saddle point of L̃ that is a solution to
Problem 3.10.

Theorem 3.12. Assume that γ : Rd → R satisfies (A2), and that | (uold, 1) | < |Ω|
and ∆t < Hγ2

4
θ2c

hold true. Let (u, w̃) ∈ H1(Ω)×H1(Ω) be a solution to Problem 3.10
for some ǫ ≥ 0. Then u and ∇w̃ are unique.
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Proof. By the same arguments as in Lemma 3.6 we get

〈
F ǫ
γ(w)−F ǫ

γ(v), w − v
〉
≥ min

{
Hγ2 −∆t

(θc + ǫ)2

4
, ǫ

}
‖w − v‖21.

Using this strong monotonicity of the operator F ǫ
γ we can show uniqueness as in the

proof of Theorem 3.9.

3.4.3 Spatial Discretization

Now we consider the spatial discretization of the stationary problems obtained at each
time step tk with k > 0 by semi- or fully-implicit time discretization. We will again
drop the index k for the time step and denote the discrete solution from the previous
time step as uold.

As noted before we will consider locally refined grids to accommodate the strong spa-
tial variations of solutions. In order to obtain grids that allow for nontrivial conforming
finite element spaces we will construct a grid hierarchy starting with a conforming tri-
angulation T0 of Ω on the 0-th level. Successive local refinement then leads to a grid
hierarchy (T0, ...,Tj). During each refinement cycle computations are carried out on the
current leaf grid T = L(T0, . . . ,Tj). We consider first-order conforming finite elements
only. For the semi-implicit time discretization in Problem 3.6 this leads to discrete
problems of the form:

Problem 3.11. Find (uT , wT ) ∈ S(T )× S(T ) such that
〈
F̃γ(u

T ), v − uT
〉
+
(
Ψ̂θ(v) − Ψ̂θ(u

T ), 1
)A

−
(
wT , v − uT

)B ≥
(
f̃ , v − uT

)C ∀v ∈ S(T ), (3.8)

−
(
uT , v

)D −∆t
(
∇wT ,∇v

)
= − (uold, v)

E ∀v ∈ S(T ). (3.9)

Here (·, ·)A , . . . , (·, ·)E are approximations to the L2 inner product to be selected
carefully. If the solution is represented in terms of the conforming nodal basis selecting
(·, ·)A = (·, ·) would couple coefficients from neighboring nodes within the nonsmooth
nonlinearity, leading to hard to solve algebraic problems. As a remedy we choose the
lumped L2 inner product (·, ·)A = (·, ·)T that (as discussed in Section 3.2) allows to
inherit the locality of the superposition operator. This discrete locality is equivalent
to the fact that the nonsmooth nonlinearity decouples with respect to the coefficients.

In order to preserve the symmetry necessary for the saddle point structure, (·, ·)B and
(·, ·)D should be the same. Since f̃ = θcuold+const it is reasonable to use (·, ·)C = (·, ·)E
in order to approximate both appearances of uold using the same inner product. It
remains to select (·, ·)D and (·, ·)E. Since both inner products result from the time
discretization it is reasonable to select these products the same. The argument for this
is that for ∆t→ 0 the variational equation (3.9) degenerates to

(
uT , v

)D
= (uold, v)

E v ∈ S(T ).
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If the inner products are not the same the induced operator uold 7→ uT is in general
not a projection which will introduce errors for ∆t→ 0.

In order to enforce the mass conservation

(
uT , 1

)D
= (u0, 1) = (uold, 1)

D

the product should guarantee (v, 1)D = (v, 1) for v = uold and for each v ∈ S(T ). In
view of the fact that uold is a finite element function on a different grid the lumped
L2 inner product will in general not satisfy this since it does only integrate piecewise
linear functions on the current grid exactly. The same is true if the lumped L2 inner
product with respect to the grid from the last time step is selected. In principle this
is possible if the lumped L2 inner product with respect to a finite element space that
contains uold and S(T ) is selected. However, such a product does no longer have the
locality property of (·, ·)T on S(T ) and seems to be quite arbitrary. Hence it does not
give any benefit over using (·, ·) and we select the latter instead. Inserting all products
we obtain the following discretization of Problem 3.6:

Problem 3.12. Find (uT , wT ) ∈ S(T )× S(T ) such that
〈
F̃γ(u

T ), v − uT
〉
+ ψ̂T

θ (v)− ψ̂T
θ (u

T )−
(
wT , v − uT

)
≥
(
f̃ , v − uT

)
∀v ∈ S(T ),

−
(
uT , v

)
−∆t

(
∇wT ,∇v

)
= − (uold, v) ∀v ∈ S(T ).

Analogously we get the following discretization of Problem 3.10:

Problem 3.13. Find (uT , w̃T ) ∈ S(T )× S(T ) such that

〈
F ǫ
γ(u

T ), v − uT
〉
+ ψ̂T

θ (v)− ψ̂T
θ (u

T )− bǫ(w̃T , v − uT ) ≥
(
f ǫ, v − uT

)
∀v ∈ S(T ),

−bǫ(uT , v)−∆t
(
∇w̃T ,∇v

)
= − (uold, v) ∀v ∈ S(T ).

In both cases we used the discrete approximation

ψ̂T
θ (v) =

(
Ψ̂θ(v), 1

)T
=

∫

Ω
IT
(
Ψ̂θ(v)

)
(x) dx =

∑

p∈N (T )\H(T )

Ψ̂θ(v(p))

∫

Ω
λp(x) dx

of ψ̂θ(v) for v ∈ S(T ), where IT is the interpolation operator introduced in Defini-
tion 3.9. Since the existence and uniqueness results and their proofs are essentially the
same for both discretizations we will state and prove them in parallel.

Existence of solutions can be shown using the same arguments as for the continuous
problem. We only have to show lower semicontinuity of the discrete nonlinearity. In
contrast to the continuous case this can be done by elementary arguments.

Lemma 3.8. For θ ≥ 0 the functional ψ̂T
θ : S(T ) → R ∪ {∞} is lower semicontinuous.

It is continuous on its domain dom ψ̂T
θ = K ∩ S(T ) which is a closed, convex, and

nonempty set.
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3.4 Rothe’s Method

Proof. The domain of ψ̂T
θ is given by the closed convex set

K ∩ S(T ) =
{
v ∈ S(T ) : |v(p)| ≤ 1∀p ∈ N (T ) \ H(T )

}
.

Hence on K∩S(T ) the functional ψ̂T
θ is the sum of continuous functions and thus itself

continuous on this set. Lower semicontinuity on the whole set S(T ) can now be shown
analogously to Lemma 3.5.

Theorem 3.13. Assume that γ : Rd → R satisfies (A2), and that | (uold, 1) | < |Ω|
holds. Then there is a solution (uT , wT ) ∈ K ∩ S(T )×S(T ) to Problem 3.12, and uT

and ∇wT are unique.

Proof. The proofs for existence and uniqueness are the same as for Theorem 3.8 and
Theorem 3.9 with H1(Ω), K, and ψ̂θ replaced by S(T ), K∩S(T ), and ψ̂T

θ , respectively.

Theorem 3.14. Assume that γ : Rd → R satisfies (A2), and that | (uold, 1) | < |Ω|
and ∆t < Hγ2

4
θ2c

hold true. Then there is a solution (uT , w̃T ) ∈ K ∩ S(T ) × S(T ) to

Problem 3.13 and uT and ∇w̃T are unique.

Proof. The proofs for existence and uniqueness are the same as for Theorem 3.11
and Theorem 3.12 with H1(Ω), K, and ψ̂θ replaced by S(T ), K ∩ S(T ), and ψ̂T

θ ,
respectively.

Lemma 3.9. Let θ > 0. Then the solutions (uT , wT ) of Problem 3.12 and (uT , w̃T )
of Problem 3.13 satisfy ‖u‖∞ < 1.

Proof. From Ψ̂′
θ(t) → ±∞ for t → ±1 we get ∂Ψ̂θ(−1) = ∂Ψ̂θ(1) = ∅. Hence by

Theorem A.1 we have ∂ψ̂T
θ (v) = ∅ for all v ∈ S(T ) with v(x) = 1 for some x ∈ Ω.

Noting that Problem 3.12 and Problem 3.13 are equivalent to operator inclusions
incorporating ∂ψ̂T

θ we find that there cannot be any x ∈ Ω with |uT (x)| = 1. The
assertion then follows from continuity of uT .

Since Ψ̂θ is differentiable on (−1, 1), we can now rewrite Problem 3.12 and Prob-
lem 3.13 as variational equations for θ > 0. This is true because the variational inequal-
ity is equivalent to a minimization problem for fixed wT that is itself equivalent to a
variational equation if we exploit differentiability of the energy (apply Proposition 1.2
in [49, Chapter II] twice with different splittings of the functional).

Problem 3.14. Find (uT , wT ) ∈ S(T )× S(T ) such that

〈
F̃γ(u

T ), v
〉
+
〈
∇ψ̂T

θ (u
T ), v

〉
−
(
wT , v

)
=
(
f̃ , v
)

∀v ∈ S(T ),

−
(
uT , v

)
−∆t

(
∇wT ,∇v

)
= − (uold, v) ∀v ∈ S(T ).
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3 Discretization of Cahn-Hilliard Equations with Logarithmic Potential

Problem 3.15. Find (uT , w̃T ) ∈ S(T )× S(T ) such that
〈
F ǫ
γ(u

T ), v
〉
+
〈
∇ψ̂T

θ (u
T ), v

〉
− bǫ(w̃T , v) = (f ǫ, v) ∀v ∈ S(T ),

−bǫ(uT , v) −∆t
(
∇w̃T ,∇v

)
= − (uold, v) ∀v ∈ S(T ).

The new formulations allow to show uniqueness of the chemical potential wT .

Theorem 3.15. Let γ and uold satisfy the assumptions of Theorem 3.13 and θ > 0.
Then the solution of Problem 3.14 or, equivalently, Problem 3.12 is unique.

Proof. Since uniqueness of uT and ∇wT was already proved we only have to show
uniqueness of

∫
Ωw

T (x)dx. Let wT
1 and wT

2 be two solutions. Inserting them into the
first variational equation in Problem 3.14 and subtracting one from the other yields

(
wT
1 − wT

2 , v
)
= 0 ∀v ∈ S(T ).

Testing with v = 1 provides the assertion.

Theorem 3.16. Let γ, uold and ∆t satisfy the assumptions of Theorem 3.14 and θ > 0.
Then the solution of Problem 3.15 or, equivalently, Problem 3.13 is unique.

Proof. The proof is analogue to the one of Theorem 3.15.

For θ = 0 where ψ̂θ is the obstacle potential we can no longer write the variational
inequalities as equations. However, we can slightly simplify them by imposing the
constraint uT ∈ K ∩ S(T ) manually, leading to classic variational inequalities of the
first kind.

Problem 3.16. Find (uT , wT ) ∈ K ∩ S(T )× S(T ) such that
〈
F̃γ(u

T ), v − uT
〉
−
(
wT , v − uT

)
≥
(
f̃ , v − uT

)
∀v ∈ K ∩ S(T ),

−
(
uT , v

)
−∆t

(
∇wT ,∇v

)
= − (uold, v) ∀v ∈ S(T ).

Problem 3.17. Find (uT , w̃T ) ∈ K ∩ S(T )× S(T ) such that
〈
F ǫ
γ(u

T ), v − uT
〉
− bǫ(w̃T , v − uT ) ≥

(
f ǫ, v − uT

)
∀v ∈ K ∩ S(T ),

−bǫ(uT , v)−∆t
(
∇w̃T ,∇v

)
= − (uold, v) ∀v ∈ S(T ).

Theorem 3.17. Let γ and uold satisfy the assumptions of Theorem 3.13 and θ = 0.
Furthermore, assume that there is a p ∈ N (T ) \H(T ) such that |uT (p)| < 1. Then the
solution of Problem 3.16 or, equivalently, Problem 3.12 is unique.

Proof. Again we only have to show uniqueness of
∫
Ω w

T (x) dx. To this end let wT
1 and

wT
2 be two solutions and let λp be the conforming nodal basis function associated with

the vertex p. Then we have u±δλp ∈ K∩S(T ) for all δ ∈ [0,min{1−uT (p), uT (p)+1}].
Testing the variational inequality with u± δλp gives

〈
F̃γ(u

T ),±δλp
〉
−
(
wT
i ,±δλp

)
≥
(
f̃ ,±δλp

)
.
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3.4 Rothe’s Method

Hence we even have
〈
F̃γ(u

T ), λp

〉
−
(
wT
i , λp

)
=
(
f̃ , λp

)
.

Subtracting this equation for wT
1 from the one for wT

2 and using the fact that wT
1 −wT

2

is constant yields

0 = (wT
1 − wT

2 , λp) =

∫

Ω
wT
1 (x)− wT

2 (x) dx
(1, λp)

|Ω|
and hence wT

1 − wT
2 = 0.

Theorem 3.18. Let γ, uold and ∆t satisfy the assumptions of Theorem 3.14 and θ > 0.
Furthermore, assume that there is a p ∈ N (T ) \H(T ) such that |uT (p)| < 1. Then the
solution of Problem 3.17 or, equivalently, Problem 3.13 is unique.

Proof. The proof is analogue to the one of Theorem 3.17.

3.4.4 Algebraic Formulation

In order to discuss the algebraic solution of the discrete Problems 3.12 and 3.13 we
will now rewrite them in algebraic form as problems in Rn. To this end we represent
finite element functions v ∈ S(T ) in terms of the conforming nodal basis B(T ) which
results in

v =
∑

p∈N (T )\H(T )

v(p)λp.

Using an enumeration B(T ) = {λp1 , . . . , λpn} with n = |N (T ) \ H(T )| we can express
finite element functions v ∈ S(T ) by coefficient vectors v ∈ Rn with vi = v(pi). The
discrete analogues of the linear operators and right hand sides of Problem 3.12 in terms
of coefficients are then given by

B ∈ Rn,n, Bij = −
(
λpj , λpi

)
,

C ∈ Rn,n, Cij = ∆t
(
∇λpj ,∇λpi

)
,

f ∈ Rn, f
i
=
(
f̃ , λpi

)
,

g ∈ Rn, g
i
= − (uold, λpi) .

The nonlinear operator F̃γ is represented by

Fγ : Rn → Rn, Fγ(v)i =
〈
F̃γ(v), λpi

〉
.

Finally the discrete analogue of the nonsmooth nonlinearity is given by

ϕθ : R
n → R ∪ {∞}, ϕθ(v) = ψ̂T

θ (v) =
n∑

i=1

Ψ̂θ(vi)

∫

Ω
λpi(x)dx.

Now Problem 3.12 can be written as the operator inclusion:
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3 Discretization of Cahn-Hilliard Equations with Logarithmic Potential

Problem 3.18. Find (uT , wT ) ∈ Rn × Rn such that
(
Fγ + ∂ϕθ B

B −C

)(
uT

wT

)
∋
(
f

g

)
.

If we additionally define

Bǫ ∈ Rn,n, Bǫ
ij =− bǫ(λpj , λpi),

f ǫ ∈ Rn, f ǫ
i
:=
θc + ǫ

2
(uold, λpi),

F ǫ
γ : Rn → Rn, F ǫ

γ(v)i =〈F̃ ǫ
γ(v), λpi〉,

then Problem 3.13 can be written as the operator inclusion:

Problem 3.19. Find (uT , w̃T ) ∈ Rn × Rn such that
(
F ǫ
γ + ∂ϕθ Bǫ

Bǫ −C

)(
uT

w̃T

)
∋
(
f ǫ

g

)
.

Both problems are strongly nonlinear saddle point problems, and the algebraic so-
lution will in general not be an easy task. Chapter 5 is dedicated to the development
of fast and globally convergent algebraic solvers for nonsmooth nonlinear saddle point
problems of this type. Before considering the whole problem we concentrate on nons-
mooth nonlinear minimization problems without equality constraints in the next chap-
ter. Their efficient solution will be needed in the algorithm for saddle point problems
developed later on.
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4 Truncated Nonsmooth Newton

Multigrid for Nonsmooth Convex

Minimization Problems

In this chapter we consider the fast algebraic solution of finite-dimensional nonlinear
convex minimization problems with a nonlinearity consisting of a smooth part and
a nonsmooth part which is given componentwise. While this problem class includes
component wise inequality constraints, i.e. box-constraint, no linear constraints are
present here. Since the presented algorithms will depend in general on the selection of
a basis in a finite-dimensional space we will introduce them in Rn.

We start by introducing the class of minimization problems. Then we analyze the
classical nonlinear Gauß–Seidel and Jacobi methods for this problem class and intro-
duce associated nonsmooth Newton methods. Finally we propose a multigrid method
for the linear subproblems. Application of a fixed number of multigrid steps to each
subproblem then leads to an overall nonlinear multigrid method that converges globally
for the considered problem class.

4.1 Nonsmooth Convex Minimization Problems

We consider the nonlinear minimization problem

u∗ ∈ V : J(u∗) ≤ J(v) ∀v ∈ V (4.1)

where V is a finite-dimensional vector space and

J = J0 + ϕ : V → R ∪ {∞} (4.2)

is convex and lower semicontinuous, i.e.,

vk → v ⇒ J(v) ≤ lim inf
k→∞

J(vk).

Assuming that a basis of V is fixed we will consider V = Rn in the following. Regarding
the smooth part J0 we need the following assumptions:

(A3) J0 : Rn → R is strictly convex and continuously differentiable. Its derivative
∇J0 is Lipschitz continuous with the Lipschitz constant L∇J0 and there is a
symmetric positive definite matrix HJ0 ∈ Rn,n such that for all u, v ∈ Rn we
have

〈∇J0(u)−∇J0(v), u − v〉 ≥
〈
HJ0(u− v), u− v

〉
. (4.3)
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4 Truncated Nonsmooth Newton Multigrid

On the one hand we do not want to assume smoothness of ∇J0. On the other hand
we want to develop Newton-type methods for this problem class. Hence we need some
concept of a generalized Hessian of J0.

By Rademacher’s theorem (see, e.g., [81]) Lipschitz continuous operators T : Rn →
Rm are differentiable almost everywhere and the set

DT := {u ∈ Rn : T is differentiable in u} (4.4)

is dense in Rn. Thus we can define the following generalized derivatives.

Definition 4.1. For a Lipschitz continuous operator T : Rn → Rm the B-subdifferential
∂BT (cf. [88, 106]) and the generalized Jacobian in the sense of Clarke ∂CT (cf. [34])
are defined by

∂CT (u) := co ∂BT (u), ∂BT (u) :=
{
lim
k→∞

∇T (uk) : uk → u, uk ∈ DT

}
.

While the generalized Jacobian is often denoted by ∂ we denote it by ∂C to distin-
guish it from other generalized linearizations that will be denoted by ∂. For convex
functionals f the symbol ∂f denotes the usual subdifferential. Furthermore, ∂2f will
denote a generalized linearization of the gradient ∇f or the subdifferential ∂f and thus
a generalized Hessian of f .

(A4) J0 : Rn → R satisfies (A3). For each u ∈ Rn there is a symmetric positive def-
inite matrix ∂2J0(u) ∈ Rn,n representing a generalized linearization of ∇J0(u)
that satisfies

〈
HJ0v, v

〉
≤
〈
∂2J0(u)v, v

〉
∀u, v ∈ Rn. (4.5)

If ∇J0 is differentiable everywhere ∂2J0 = ∇2J0 is chosen.

Later on we will also need to assume boundedness of the generalized Hessian:

(A5) J0 : Rn → R satisfies (A3) and (A4). Furthermore, there is a symmetric
positive definite matrix HJ0 ∈ Rn,n such that

〈
∂2J0(u)v, v

〉
≤
〈
HJ0v, v

〉
∀u, v ∈ Rn. (4.6)

If ∇J0 is differentiable we simply have ∂2J0(u) = ∇2J0(u) in (A4). In the general case
the application of Lemma A.3 to T = ∇J0 still guarantees the strong monotonicity
(4.3) of ∇J0 in (A3) if ∂2J0(u) ∈ ∂C(∇J0)(u) and if the Hessian of J0 is bounded from
below, where it exists, i.e., if there is a symmetric positive definite matrix HJ0 ∈ Rn,n

such that
〈
HJ0v, v

〉
≤
〈
∇2J0(u)v, v

〉
∀u ∈ D∇J0 , v ∈ Rn.

The most important example for smooth convex functions J0 are strictly convex quadra-
tic functions, i.e., functions satisfying
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4.1 Nonsmooth Convex Minimization Problems

(A6) J0 : Rn → R is given by

J0(u) =
1

2
〈Au, u〉 − 〈b, u〉

with a symmetric positive definite matrix A ∈ Rn,n and b ∈ Rn.

Assumption (A6) directly implies (A5) with HJ0 = HJ0 = ∂2J0(u) = ∇2J0(u) = A.
Another special case are functions satisfying

(A7) J0 : Rn → R takes the form

J0(v) =
1

2
〈Av, v〉 − 〈b, v〉 +

n∑

i=1

γ2i (Div)

with a symmetric positive semidefinite matrix A ∈ Rn,n, matrices Di ∈ Rd,n,
and continuously differentiable convex functions γ2i : Rd → R with Lipschitz
continuous derivatives. For each i = 1, . . . , n there are symmetric positive
semidefinite matrices Hγ2

i
,Hγ2

i
∈ Rd,d such that for ∂2(γ2i )(x) ∈ ∂C(∇γ2i )(x)

we have
〈
Hγ2

i
v, v
〉
≤
〈
∂2(γ2i )(y)v, v

〉
≤
〈
Hγ2

i
v, v
〉

∀u, v ∈ Rd. (4.7)

To simplify notation we denote by D ∈ (Rd)n,n = (Rd,1)n,n the block matrix
whose entries are the column vectors (Di)j ∈ Rd. Then its transposed matrix
can be regarded to be DT ∈ (R1,d)n,n. Furthermore, we use the block diagonal
matrices ∂2(γ2)(x),Hγ2 ,Hγ2 ∈ (Rd,d)n,n defined by

∂2(γ2)(x) = diag ∂2(γ2i )(xi), Hγ2 = diagHγ2
i
, Hγ2 = diagHγ2

i
.

Using this notation A+DTHγ2D is assumed to be symmetric positive definite.

Functions of this type are especially interesting since the smooth convex part of the
energy functionals associated with the discrete saddle point problems in Section 3.4.4
take this form. There, each Di is the matrix computing the gradient of a finite element
function on the i-th grid element τi, while γ2i is the anisotropy γ2 scaled by the element
integration weight

∫
τi
1. The requirements on the γ2i are then ensured if γ satisfies (A1)

and (A2).

Lemma 4.1. (A7) implies (A5) with

∂2J0(u) = A+DT∂2(γ2)(Du)D, HJ0 = A+DTHγ2D, HJ0 = A+DTHγ2D.

Proof. (4.5) and (4.6) follow directly from (4.7) and the representation

A+DTMD = A+

n∑

i=1

DT
i MiiDi
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4 Truncated Nonsmooth Newton Multigrid

for M = ∂(γ2)(v),Hγ2 ,Hγ2 . Elementary computations provide

∇J0(v) = Av − b+ (∇γ2)(Dv)D = Av − b+
n∑

i=1

∇γ2i (Div)Di.

Application of Lemma A.3 to ∇γ2i together with (4.7) now implies (4.3).

While J0 is assumed to satisfy certain smoothness properties, ϕ represents the non-
smooth part of J at the price that this nonlinearity decouples with respect to the
unknowns.

(A8) ϕ : Rn → R ∪ {∞} takes the form

ϕ(v) =
n∑

i=1

ϕi(vi).

Each ϕi : R → R ∪ {∞} is convex, lower semicontinuous on R, continuous on
its domain domϕi, and twice continuously differentiable on a finite number of
disjoint nonempty open intervals (aki , a

k+1
i ), aki ∈ R ∪ {−∞,+∞} having the

property

domϕi = {x : ϕi(x) <∞} =
⋃mi

k=1
(ak−1

i , aki ) = (a0i , a
mi

i ).

The intervals are maximal in the sense that ϕi is not twice continuously differ-
entiable on (aki , a

k+2
i ). Furthermore, the limits

lim
ξրak+1

i

ϕ′′
i (ξ), lim

ξցaki

ϕ′′
i (ξ)

exist in R ∪ {∞} for k = 0, . . . , (mi − 1).

Under these assumptions existence, uniqueness and stability of solutions follow using
standard arguments:

Proposition 4.1. Assume that (A3) and (A8) hold. Then J is strictly convex, proper,
lower semicontinuous and coercive. The subdifferential ∂J : Rn → 2R

n
has a single-

valued Lipschitz continuous inverse (∂J)−1 : Rn → Rn.

Proof. Lower semicontinuity follows directly from the regularity assumptions on J0
and ϕi. The fundamental theorem of calculus and (4.3) imply the strong convexity

J0(u)− J0(v) ≥
1

2

〈
HJ0(u− v), u − v

〉
+ 〈∇J0(v), u − v〉 . (4.8)

and thus strict convexity of J0.
By definition ϕ is finite and continuously differentiable in at least one point ũ. Hence

ϕ is bounded from below by the affine function ∂ϕ(ũ). This and the above inequality
with v = 0 also implies J(u) → ∞ for ‖u‖ → ∞. Thus J(·) − 〈y, ·〉 has a unique
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4.2 Truncated Nonsmooth Newton Methods

minimizer x = (∂J)−1(y) (see [49, Chapter II, Proposition 1.2]) which is the unique
solution of the variational inequality (see [49, Chapter II, Proposition 2.2])

x ∈ Rn : 〈∇J0(x), v − x〉+ ϕ(v) − ϕ(x) ≥ 〈y, v − x〉 ∀v ∈ Rn. (4.9)

This provides single-valuedness of the inverse operator (∂J)−1. Now let xi = (∂J)−1(yi),
i = 1, 2. Then testing the inequality for i with j 6= i leads to the Lipschitz continuity

‖x1 − x2‖2HJ0
≤ 〈∇J0(x1)−∇J0(x2), x1 − x2〉
≤ 〈y1 − y2, x1 − x2〉 ≤ ‖x1 − x2‖HJ0

‖y1 − y2‖H−1
J0

.

If a minimization problem is constrained to a convex set K this can in general be
incorporated by adding the indicator functional

χK : Rn → R ∪ {∞}, χK(x) =

{
0 if x ∈ K

∞ else

to the function to minimize. The convex sets leading to indicator functions χK satis-
fying (A8) are possibly unbounded hypercubes as given in the following example.

Example 4.1. Let ψ ∈ (R ∪ {−∞})n, ψ ∈ (R ∪ {∞})n with ψ ≤ ψ. Then

K := {u ∈ Rn : ψ ≤ u ≤ ψ}

is closed and convex and ϕ = χK satisfies (A8). If additionally J0 satisfies (A6) the
minimization problem for J = J0 + ϕ is a discrete quadratic obstacle problem.

4.2 Truncated Nonsmooth Newton Methods for Convex

Minimization Problems

For the rest of this chapter we consider the algebraic solution of the minimization
problem (4.1) for J given by (4.2) assuming that J0 and ϕ satisfy (A3) and (A8),
respectively. Since we are especially interested in problems obtained by discretization
of partial differential equations, we will now introduce nonlinear monotone iterative
methods that can be combined with multigrid techniques to obtain fast and globally
convergent nonlinear multigrid methods.

While many common methods for nonsmooth minimization directly apply multilevel
ideas to the minimization problem [69, 80, 104] we will present a different approach
that is based on a Newton-type method for a related Lipschitz continuous operator.
This approach can also be viewed as a globally convergent extension of the well-known
primal and primal–dual active set methods for obstacle problems [14, 64, 65].
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4 Truncated Nonsmooth Newton Multigrid

4.2.1 Monotone Nonlinear Smoothers

Simple linear iterations for linear system with a symmetric positive definite matrix
can often be expressed in terms of minimization algorithms for the associated mini-
mization problem. For example the Gauß–Seidel iteration is equivalent to successive
minimization in the coordinate directions while the Jacobi iteration is equivalent to
parallel minimization in these directions.

Based on this interpretation the extension of these methods to nonsmooth nonlinear
minimization problems is straightforward. We will describe these iterations in terms
of correction operators F with

uν+1 = uν + F(uν). (4.10)

The nonlinear Gauß–Seidel method FGS obtained by successive minimization of J in
the coordinate directions ei can be written as

FGS(x)i = ρ

(
J, x+

i−1∑

j=1

FGS(x)jej, ei

)
.

using the notation

ρ(J, x, d) := argmin
ρ∈dom(J)

J(x+ ρd) (4.11)

for the minimizer of J along a line x+Rd. In the case that J0 satisfies (A6), i.e., that
it is a quadratic energy, this reduces to

FGS(x) = (D + L+ ∂ϕ)−1(b−Rx)− x (4.12)

for the splitting A = D + L+R of A in diagonal, left and right part.
Similarly the nonlinear Jacobi method FJ obtained by parallel minimization of J in

the coordinate directions ei can be written as

FJ(x)i = ρ(J, x, ei).

which reduces for the quadratic energy to

FJ(x) = (D + ∂ϕ)−1(b− (L+R)x)− x. (4.13)

Proposition 4.2. FGS and FJ are well-defined, Lipschitz continuous operators having
the property

FGS(x) = FJ (x) = 0 ⇔ ∂J(x) = ∇J0(x) + ∂ϕ(x) ∋ 0,

i.e., the correction at x is zero if and only if x solves (4.1).
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4.2 Truncated Nonsmooth Newton Methods

Proof. First we note that FGS can be evaluated successively starting from the first com-
ponent by solving scalar minimization problems for convex functionals J0(y + (·)ei) +
ϕi(·) for varying y ∈ Rn. For FJ this is even possible in parallel. By standard argu-
ments these minimization problems are equivalent to variational inequalities

r ∈ R : 〈∇J0(y + rei), (v − r)ei〉+ ϕi(yi + v)− ϕi(yi + r) ≥ 0 ∀v ∈ R (4.14)

which have a unique solution by the same arguments as used in Proposition 4.1.
In contrast to Proposition 4.1 the datum y appears in the nonlinear operator here.

Thus we have to extend the arguments in order to prove Lipschitz continuity. To this
end let r1, r2 ∈ R be two solutions of (4.14) for data y1, y2 ∈ Rn, respectively. Without
loss of generality assume that y1i = y2i = 0. Testing the variational inequality for r1

with r2 and vice versa yields
〈
∇J0(v2)−∇J0(v1), (r2 − r1)ei

〉
≤ 0

for vj = yj + rjei. Together with (A3) this gives

‖v2 − v1‖2HJ0
≤
〈
∇J0(v2)−∇J0(v1), v2 − v1

〉

≤
〈
∇J0(v2)−∇J0(v1), y2 − y1

〉

≤ L∇J0‖v2 − v1‖‖y2 − y1‖

and thus

|r2 − r1| ≤ ‖v2 − v1‖ ≤
‖v2 − v1‖2HJ0

λmin(HJ0)‖v2 − v1‖ ≤ L∇J0

λmin(HJ0)
‖y2 − y1‖.

Hence FJ(x)i and FGS(x)i depend Lipschitz continuously on x and the latter also on
FGS(x)j , j < i, showing the Lipschitz continuity of both operators. Now assume that
FGS(x) = 0 or FJ (x) = 0. Then

〈∇J0(x), (v − x)iei〉+ ϕi(vi)− ϕi(xi) ≥ 0 ∀vi ∈ R

holds for i = 1, . . . , n. Summing up these inequalities yields (4.9) with y = 0, which is
equivalent to (4.1).

This result is a key ingredient to prove the convergence of these iterative methods.
The following convergence result was proved by Kornhuber [69, 72] for quadratic ob-
stacle problems and piecewise quadratic problems. In order to extend the proof to the
more general case considered here we introduce the following monotonicity assumption
for a correction operator F :

(A9) The operator F : domϕ → Rn is monotone in the sense that J(u + F(u)) ≤
J(u) holds for all u ∈ domϕ. If a sequence uν ∈ domϕ satisfies uν → u′ and

J(uν+1) ≤ J(uν + F(uν)) ∀ν ∈ N (4.15)

then u′ = u∗ is the minimizer of J .
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4 Truncated Nonsmooth Newton Multigrid

Under this assumption we can even relax the requirements on J :

Theorem 4.1. Assume that J is strictly convex, lower semicontinuous, coercive and
proper and that F satisfies (A9). Furthermore, assume that J(x+C(x)) ≤ J(x). Then
the sequence uν generated by

uν+
1
2 = uν + F(uν),

uν+1 = uν+
1
2 + C(uν+ 1

2 )
(4.16)

converges to the unique solution u∗ of (4.1) for every u0 ∈ domϕ.

Proof. By monotonicity of F and C and the coercivity of J the sequence (uν) is
bounded. Thus there exists a convergent subsequence (uνi). Now let (uνi) be any
convergent subsequence with uνi → u′. Then we have

J(uνi+1) ≤ J(uνi+1) ≤ J(uνi + F(uνi)) ≤ J(uνi)

and from (A9) we get u′ = u∗. Thus each accumulation point u′ must be the solution
of (4.9) which provides convergence of the whole sequence.

Corollary 4.1. The Gauß–Seidel method FGS satisfies assumption (A9) and the se-
quence generated by (4.16) with F = FGS converges to the unique solution u∗ of (4.1)
for every u0 ∈ domϕ.

Proof. Monotonicity of FGS is given by construction. Now let uν ∈ domϕ be a con-
vergent sequence with uν → u′ and (4.15). Then we have

J(uν+1) ≤ J(uν + FGS(u
ν)) ≤ J(uν) ∀ν ∈ N

and thus by continuity of FGS and J on domϕ

J(u′) = lim
ν→∞

J(uν + F(uν)) = J(u′ + F(u′)).

Since the Gauß–Seidel method implies FGS(u) = 0 if J(u + FGS(u)) = J(u) holds,
this yields FGS(u

′) = 0 and, by Proposition 4.2, u′ = u∗. Hence Theorem 4.1 can be
applied to obtain global convergence.

The essential property used to prove convergence of the Gauß–Seidel method is

FGS(x) 6= 0 ⇒ J(x+ FGS(x)) < J(x). (4.17)

While the Jacobi method does in general not have this property, the component wise
corrections x+ (FJ (x)− x)iei still satisfy the following monotonicity by construction:

FJ (x) 6= 0 ⇒
{
∀i : J(x+ FJ(x)iei) ≤ J(x),

∃i′ : J(x+ FJ(x)i′ei′) < J(x).
(4.18)
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4.2 Truncated Nonsmooth Newton Methods

As it is known from the Jacobi method for linear problems we will need to introduce
damping to ensure convergence. To this end we define the directional sublevel set of J
along the line x+ Rd by

ρ<(J, x, d, r) := {r : J(x+ rd) ≤ J(x+ rd)}.

Then we clearly have ρ(J, x, d) ∈ ρ<(J, x, d, r) for all r ∈ R.

Corollary 4.2. The damped Jacobi iteration F(x) = ρJ(x)FJ (x) with

ρJ(x) ∈ ρ<

(
J, x,FJ (x),

1

n

)
(4.19)

satisfies assumption (A9) and the sequence generated by (4.16) with F = ρJFJ con-
verges to the unique solution u∗ of (4.1) for every u0 ∈ domϕ.

Proof. Since x + 1
nFJ(x) is a convex combination of the component wise corrections

x+FJ(x)iei the monotonicity and property (4.17) for the Lipschitz continuous operator
1
nFJ follows from (4.18) and convexity of J . Monotonicity of ρJFJ is then given by
(4.19). Now let uν ∈ domϕ be a convergent sequence with uν → u′ and (4.15). Then
we have

J(uν+1) ≤ J(uν + ρJ(u
ν)FJ (u

ν))

≤ J

(
uν +

1

n
FJ(u

ν)

)
≤ J(uν) ∀ν ∈ N.

Now we can proceed literally as in Corollary 4.1 with FGS replaced by 1
nFJ .

The cheaply available damping parameter ρJ(uν) = 1/n will in general be much too
pessimistic. More reasonable damping parameters can be obtained by approximating
the exact minimizer ρ(J, uν ,FJ(u

ν)) starting from 1/n, e.g. by bisection.

4.2.2 Inexact Nonlinear Smoothers

Until now we implicitly assumed that the solution of the scalar minimization problems
within one step of the Gauß–Seidel or Jacobi method can be done exactly. While this
is true for quadratic or piecewise quadratic J it does in general not hold for other
nonlinear energies. In this subsection we give a convergence proof that also holds true
for inexact evaluation of these minimization problems e.g. by bisection. To prove the
convergence result we will extend the ideas of the proof given in Kornhuber [73] for
the Gauß–Seidel method and a quadratic J0 to more general energies.

Theorem 4.2. Let FGS be an inexact version of FGS given by

FGS(x)i = ω(x, i)ρ

(
J, x+

i−1∑

j=1

FGS(x)jej , ei

)
, ω(x, i) ∈ [ω0, 1]

for some fixed ω0 ∈ (0, 1]. Then FGS satisfies (A9).
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4 Truncated Nonsmooth Newton Multigrid

Proof. Monotonicity of FGS is given by construction. Furthermore, by convexity, the
inequality (4.8), and the inequality (4.14) with v = 0 we can estimate the norm of the
correction Tiy := ρ(J, y, ei)ei for any y ∈ domϕ by

J(y)− J(y + ω0Tiy) ≥ ω0

(
J0(y)− J0(y + Tiy) + ϕi(yi)− ϕi(yi + Tiy)

)

≥ ω0

(
1

2
‖Tiy‖2HJ0

+ 〈∇J0(y + Tiy),−Tiy〉+ ϕi(yi)− ϕi(yi + Tiy)

)

≥ ω0

2
‖Tiy‖2HJ0

.

Now let uν ∈ domϕ be a convergent sequence satisfying uν → u′ and (4.15). Set

wν
i := uν +

i∑

j=1

FGS(x)jej = uν +
i∑

j=1

ω(uν , j)Tjw
ν
j−1.

Then we have for all ν ∈ N

J(uν+1) ≤ J(wν
i ) ≤ J(wν

i−1 + ω0Tiw
ν
i−1) ≤ J(wν

i−1) ≤ J(uν).

This monotonicity and the above estimate yield

J(uν)− J(uν+1) ≥ J(wν
i−1)− J(wν

i−1 + ω0Tiw
ν
i−1) ≥

ω0

2
‖Tiwν

i−1‖2HJ0
.

Now continuity of J gives Tiwν
i−1 → 0. Together with the triangle inequality and

ω(uν , j) ≤ 1 this implies

‖wν
i − uν‖HJ0

=

∥∥∥∥
i∑

j=1

ω(uν , j)Tjw
ν
j−1

∥∥∥∥
HJ0

≤
i∑

j=1

‖Tjwν
j−1‖HJ0

→ 0

and thus Tiu′ = limν→∞ Tiw
ν
i−1 = 0. Hence u′ is a fixed point of FGS and thus

u′ = u∗.

Theorem 4.3. Let FJ be an inexact version of FJ given by

FJ(x)i = ω(x, i)ρ

(
J, x, ei

)
, ω(x, i) ∈ [ω0, 1]

for some fixed ω0 ∈ (0, 1]. Then the damped method ρJ(x)FJ(x) with

ρJ(x) ∈ ρ<
(
J, x,FJ(x),

1

n

)

satisfies assumption (A9).
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4.2 Truncated Nonsmooth Newton Methods

Proof. By definition of ρJ , convexity, and monotonicity we have with Tiy := ρ(J, y, ei)ei

J

(
x+ ρJ(x)FJ(x)

)
≤ J

(
x+

1

n

n∑

i=1

ω(x, i)Tix

)
≤ 1

n

n∑

i=1

J(x+ ω(x, i)Tix)

≤ 1

n

n∑

i=1

J(x+ ω0Tix) ≤ J(x).

This inequality and the first estimate in the proof of Theorem 4.2 provide

J(x)− J(x+ ρJ(x)FJ(x)) ≥
1

n

n∑

i=1

J(x) − J(x+ ω0Tix) ≥
ω0

2n

n∑

i=1

‖Tix‖2HJ0
.

Now let uν ∈ domϕ be a convergent sequence satisfying uν → u′ and (4.15). Then the
last estimate implies

J(uν)− J(uν+1) ≥ ω0

2n

n∑

i=1

‖Tiuν‖2HJ0
→ 0

and thus Tiu′ = limν→∞ Tiu
ν = 0. Hence u′ is a fixed point of FJ and thus u′ = u∗.

Theorem 4.2 and Theorem 4.3 allow to replace FGS and ρJFJ by their inexact ver-
sions FGS and ρJFJ in the iteration in Theorem 4.1. A practical stopping criterion for
the bisection method that guarantees the accuracy condition required in Theorem 4.2
and Theorem 4.3 is given in [75].

4.2.3 Derivatives of Nonlinear Smoothers

Although the Gauß–Seidel and the damped Jacobi method converge globally for the
above minimization problem (4.1) they are in general not satisfactory. For the linear
case where J = J0 is quadratic it is well known that their convergence rates deteriorate
rapidly if the problem results from a discretized differential operator. This property is
in general directly inherited by the nonlinear versions.

However, the convergence results offer the possibility to introduce additional correc-
tions C to accelerate the convergence. This is used in [69, 72, 75] to add corrections
obtained by minimization in the direction of certain subspaces spanned by coarse grid
functions. While this approach leads to a sequence of nonlinear subproblems we will
present a simpler approach (first introduced in [58] for quadratic obstacle problems)
that leads to a linear subproblem in each iteration step.

The usual application of Newton’s method for a minimization problem would deal
with the equivalent optimality system. Due to the nonsmooth nonlinearity the mini-
mization problem (4.1) is in general only equivalent to the inclusion

∂J(u∗) = ∇J0(u∗) + ∂ϕ(u∗) ∋ 0 (4.20)

where ∂ϕ is the set-valued subdifferential of ϕ. The application of a classical Newton
method would require ∂J to be differentiable. Since this operator is in general not even
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4 Truncated Nonsmooth Newton Multigrid

single-valued for the present problem class we have to look for a different formulation
of (4.20).

The iteration (4.10) can be regarded as fixed point iteration for the operator I + F
where I is the identity matrix. Instead of looking at the induced iteration we now
consider the operator F for a reformulation of the problem. As long as F satisfies
assumption (A9) the minimization problem (4.1) and the variational inclusion (4.20)
are equivalent to

F(u∗) = 0 (4.21)

for the continuous operator F . This offers the possibility to apply a Newton-type
method to (4.21). Since FGS and FJ are even Lipschitz continuous operators a standard
nonsmooth Newton method as introduced in Kummer [79], Pang [85], Qi and Sun [89]
using a generalized Jacobian in the sense of Clarke (see [34]) as linearization for F
could be applied. However, it will not be an easy task in general to compute generalized
derivatives since a classical chain rule does not hold for the considered operators. Thus
we will postulate the chain rule and use it to construct a generalized linearization of
F that will in general not coincide with the generalized Jacobian.

We restrict our considerations regarding linearizations to the case that J0 satisfies
(A6); i.e., the smooth part of J is quadratic. In this case FGS and FJ take the form
(4.12) and (4.13), respectively. The resulting algorithms will be extended to other
smooth nonlinearities J0 satisfying (A3) later on.

The derivation of linearizations of fi := (Aii(·) + ∂ϕi(·))−1 : R → R is essential for
the construction of generalized linearizations of FGS and FJ . Thus we investigate the
smoothness of the scalar functionals ϕi and their piecewise derivatives first.

Lemma 4.2. The limits

ϕ′
i,−(x) := lim

ξրx
ϕ′
i(ξ), ϕ′′

i,−(x) := lim
ξրx

ϕ′′
i (ξ) ∀x ∈ (a0i , a

mi

i ],

ϕ′
i,+(x) := lim

ξցx
ϕ′
i(ξ), ϕ′′

i,+(x) := lim
ξցx

ϕ′′
i (ξ) ∀x ∈ [a0i , a

mi

i ).

exist in R ∪ {−∞,∞}.
Proof. The existence of the limits for x ∈ (aki , a

k+1
i ) and of the limits of ϕ′′

i at the
aki is guaranteed by (A8). We only have to show the existence of the limits of ϕ′

i

for x = aki . First we note that ϕ′
i is monotone. Furthermore, it is bounded on each

interval (ak−1
i , aki ) with k < mi since ϕi cannot be convex on (ak−1

i , ak+1
i ) otherwise.

Thus limξրaki
ϕ′
i(ξ) exists and is finite for k < mi and either finite or ∞ for k = mi.

Limits from above can be shown analogously.

Note that both one-sided derivatives coincide for x ∈ (aki , a
k+1
i ). For x = aki with

0 < k < mi either the limits ϕ′
i,−(x) and ϕ′

i,+(x) or ϕ′′
i,−(x) and ϕ′′

i,+(x) do not coincide
due to the maximality of the intervals. While in the latter case a one-sided second
derivative makes sense this is no longer true in the former one since the subdifferential
∂ϕi is set-valued in this case. In view of this fact and Lemma 4.2 we can now give
linearizations of fi in the following way:
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4.2 Truncated Nonsmooth Newton Methods

Lemma 4.3. Each fi is single-valued, monotone and Lipschitz continuous. An element
∂fi(x) of the generalized Jacobian in the sense of Clarke ∂Cfi(x) is given by

∂fi(x) =

{
0 if ∂ϕi(fi(x)) is set-valued,

(Aii + ϕ′′
i (fi(x)))

−1 else.
(4.22)

For ϕ′′
i we use either the one-sided derivative ϕ′′

i,− from below or ϕ′′
i,+ from above.

Consequently (Aii + ϕ′′
i (fi(x)))

−1 is set to zero if at least one one-sided derivative is
infinite.

Proof. Single-valuedness, monotonicity and Lipschitz continuity follow directly from
application of Proposition 4.1 to 1

2Aii(·)2 + ϕi(·). For the derivative we first note
that the preimages Uk

i = f−1
i ((aki , a

k+1
i )) are nonempty open intervals by continuity

of fi and strict monotonicity of the maximal monotone operator f−1
i . Hence fi is

differentiable on Uk
i with

f ′i(x) =
(
(f−1

i )′(fi(x))
)−1

= (Aii + ϕ′′
i (fi(x)))

−1 ∈ R ∀x ∈ Uk
i .

Now we consider the preimages

f−1
i (aki ) = Aiia

k
i + ∂ϕi(a

k
i )

of aki . If ∂ϕi(a
k
i ) is set-valued then f−1

i (aki ) is a non-trivial interval on which fi is
constant. Hence we have 0 = f ′i in the interior and 0 ∈ ∂fi on the closure of the
interval. If ∂ϕi(a

k
i ) is single-valued then f−1

i (aki ) is a single point. Since R decomposes
into the previously mentioned preimages, elements of the generalized Jacobian at the
finite number of isolated points f−1

i (aki ) can be given as limits of the derivatives in the
sets Uk

i which are zero if ϕ′′
i is infinite.

If we want to derive generalized linearizations of FGS and FJ from derivatives of fi,
so-called truncated matrices appear naturally. In order to ease the handling of such
matrices we introduce the following notation for truncated matrices and vectors. Some
useful properties of such matrices and of the Moore–Penrose pseudoinverse

M+ := lim
ǫ→0

(MTM + ǫI)−1MT (4.23)

are collected in Section A.6 of the appendix.

Definition 4.2. Let I,J ⊂ N be index sets, x ∈ Rn a vector, and M ∈ Rm,n a matrix.
Then define the truncated matrix MI,J ∈ Rm,n and the truncated vector xI ∈ Rn by

(MI,J )ij :=

{
Mij if i ∈ I and j ∈ J ,
0 else,

(xI)i :=

{
xi if i ∈ I,
0 else.

Furthermore, define the abbreviation MI :=MI,I.

59



4 Truncated Nonsmooth Newton Multigrid

Having derivatives for fi we are ready to construct linearizations of FGS and FJ . To
this end let x ∈ Rn and y = FGS(x). Starting from (4.12) we get

FGS(x) = (D + ∂ϕ)−1
(
b− (R+ L)x− LFGS(x)

)
− x.

Assuming a chain rule we can now define a generalized linearization of FGS by

∂FGS(x) := ∂
(
(D + ∂ϕ)−1

)(
b− (R+ L)x− LFGS(x)

)(
−(R+ L)− L∂FGS(x)

)
− I.

Since the i-th component of (D + ∂ϕ)−1 is just fi we can plug in the derivatives of fi
at ri = (b− (R+ L)x− LFGS(x))i to get

∂FGS(x) = diag
(
∂fi(ri)

)(
−(R+ L)− L∂FGS(x)

)
I′(x+y)

− I

Now fi(ri) = xi + yi and the representation of the Moore–Penrose pseudoinverse in
Lemma A.5 yield

∂FGS(x) =
(
D + ϕ′′(x+ y)

)+
I′(x+y)

(
−(R+ L)− L∂FGS(x)

)
− I

with the index set of inactive components given by

I(v) := {i : ∂ϕi(vi) is single-valued} , (4.24)

I ′(v) :=
{
i ∈ I(v) : max{ϕ′′

i,−(vi), ϕ
′′
i,+(vi)} <∞

}
. (4.25)

While multiplication from the left by IN\I′(x+y) implies

∂FGS(x)N\I′(x+y),N = IN\I′(x+y) (4.26)

multiplication by D + ϕ′′(x+ y)I′(x+y) provides

(
D + ϕ′′(x+ y)

)
I′(x+y)

(
∂FGS(x) + I

)
=
(
−R− L

(
∂FGS(x) + I

))
I′(x+y),N

which is equivalent to
(
D + L+ ϕ′′(x+ y)

)
I′(x+y),N

(
∂FGS(x) + I

)
= −RI′(x+y)

and hence

∂FGS(x)I′(x+y),N = −
(
D + L+ ϕ′′(x+ y)

)+
I′(x+y),N

RI′(x+y) − II′(x+y)

= −
(
D + L+ ϕ′′(x+ y)

)+
I′(x+y)

RI′(x+y) − II′(x+y).

Together with (4.26) we get

∂FGS(x) = −
(
D + L+ ϕ′′(x+ y)

)+
I′(x+y)

RI′(x+y) − I. (4.27)

Using the same arguments we can derive

∂FJ (x) := −
(
D + ϕ′′(x+ y)

)+
I′(x+y)

(L+R)I′(x+y) − I. (4.28)

60
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4.2.4 Nonsmooth Newton Methods for Nonlinear Smoothers

Now we want to apply Newton-type methods

uν+1 = uν −H(uν)−1F(uν) (4.29)

for the iterative solution of (4.21). Unfortunately the linearizations ∂FGS and ∂FJ

incorporate inverse matrices and are not positive semidefinite although the original
problem is convex. To overcome this drawback we now present a reformulation in
terms of minimization algorithms for the energy J . This has also the advantage that
it provides a natural way to globalize the methods.

Lemma 4.4. Assume that J0 and ϕ satisfy (A6) and (A8), respectively. Then the
derivative of J restricted to the smooth components given by

∇J(y)I′(y) := (∇J0 + ϕ′)(y)I′(y) = (Ay − b+ ϕ′(y))I′(y)

satisfies

∇J(x+ FGS(x))I′(x+FGS(x)) = RI′(x+FGS(x))FGS(x),

∇J(x+ FJ(x))I′(x+FJ (x)) = (L+R)I′(x+FJ (x))FJ (x).

Proof. (4.12) and (4.13) yield

(D + L+ ∂ϕ)(x + FGS(x)) ∋ b−Rx,

(D + ∂ϕ)(x +FJ (x)) ∋ b− (L+R)x.

Adding RFGS(x)− b and (L+R)FJ(x)− b to these equations we get

(∇J0 + ∂ϕ)(x + FGS(x)) ∋ RFGS(x),

(∇J0 + ∂ϕ)(x +FJ (x)) ∋ (L+R)FJ (x).

Restriction to the inactive sets provides the assertion.

Theorem 4.4. Let F = FGS or F = FJ . If H(uν) = ∂F(uν) is used in a nonsmooth
Newton step (4.29) the resulting iteration can be equivalently rewritten as the following
two-stage method

uν+
1
2 = uν + F(uν), (4.30)

uν+1 = uν+
1
2 + C(uν+ 1

2 ), (4.31)

with the linear correction operator

C(v) := −
(
A+ ϕ′′(v)

)+
I′(v)

∇J(v)I′(v). (4.32)
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Proof. We give the proof for F = FGS . For simplicity define v = uν+
1
2 by (4.30).

Inserting ∂FGS in the equation for the Newton correction we get
[(
D + L+ ϕ′′(v)

)+
I′(v)

RI′(v) + I

]
(uν+1 − uν) = F(uν)

and hence

(uν+1 − v)N\I′(v) = (uν+1 − uν)N\I′(v) −F(uν)N\I′(v) = 0 = C(v)N\I′(v).

Furthermore, we have

RI′(v)(u
ν+1 − uν) =

(
D + L+ ϕ′′(v)

)
I′(v)

(v − uν+1).

Adding RI′(v)(v − uν+1) and using Lemma 4.4 we get

∇J(v)I′(v) = RI′(v)F(uν) =
(
A+ ϕ′′(v)

)
I′(v)

(v − uν+1)

and finally

(uν+1 − v)I′(v) = −
(
A+ ϕ′′(v)

)+
I′(v)

∇J(v)I′(v) = C(v)I′(v).

Thus we have shown uν+1 − v = C(v).
The proof for F = FJ is obtained by replacing L by 0 and R by L+R, respectively.

The reformulation of the nonsmooth Newton method in Theorem 4.4 has the advan-
tage that the linear subproblem to be solved in each iteration step has a much nicer
structure. The matrix (A+ ϕ′′(v))I′(v) is symmetric and, due to convexity of J and
truncation, positive semidefinite. Furthermore, its kernel is known since it is spanned
by the Euclidean unit vectors ei with i /∈ I ′(v). By symmetry the matrix is even
positive definite on its range which is just the reduced subspace

VI′(v) = span{ei : i ∈ I ′(v)} (4.33)

obtained by omitting the rows and columns with indices i /∈ I ′(v). Thus common iter-
ative methods like the preconditioned conjugate gradient method or multigrid methods
can be applied for the iterative solution of (4.32).

Remark 4.1. While ∇J(v)I′(v) is the gradient of J reduced to the subspace VI′(v) where
it is differentiable, the matrix (A+ ϕ′′(v))I′(v) represents a linearization of ∇J(v)I′(v)

and thus a reduced Hessian of J on this subspace. Hence (4.30) and (4.31) can also be
regarded as subsequent application of the nonlinear smoother on the whole space and a
Newton step on the reduced space V

I′(uν+1
2 )

.
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4.2 Truncated Nonsmooth Newton Methods

Remark 4.2. For twice continuously differentiable ϕ the matrix in (4.32) reduces to
the Hessian of J at uν+

1
2 . In case of a nonquadratic J0 the application of a classical

Newton step also leads to a formulation similar to (4.30) and (4.31). However, in
this case the matrix in (4.32) does not contain the Hessian of J . It contains a matrix
consisting of the second partial derivatives of J at uν above and at uν+

1
2 on and below

the diagonal.

In light of Remarks 4.1 and 4.2 we can generalize the method to other smooth
nonlinearities. Assume that (A3), (A8), and (A4) are satisfied. Then we define the
reduced gradient and the reduced Hessian of J at v on the subspace VJ for an index
set J ⊂ I ′(v) by

∇J(v)J :=
(
∇J0(v) + ϕ′(v)

)
J
, ∂2J(v)J :=

(
∂2J0(v) + ϕ′′(v)

)
J
. (4.34)

Now (4.32) can be generalized by defining

C(v) := −
(
∂2J(v)I′(v)

)+
∇J(v)I′(v). (4.35)

Note that this is not equivalent to the application of classical Newton method for twice
continuously differentiable J (see Remark 4.2) since we use the more recent information
of uν+

1
2 even on and below the diagonal.

Even though the linearization of ∇J in (4.34) is restricted to components where
ϕ is locally smooth the second derivatives ϕ′′

i might get very large leading to arbi-
trarily ill-conditioned linear systems. This effect appears additionally to a possible
ill-conditioning of ∂2J0(v) resulting from a discretized differential operator. If the lin-
ear systems are solved iteratively this will in general lead to a considerable slowdown
even if multigrid methods are applied. Therefore, we restrict the linearization further
to

I ′′(v) := {i ∈ I ′(v) : ϕ′′
i (vi) < (Cϕ)i,i}. (4.36)

where Cϕ ∈ Rn,n is a positive definite diagonal matrix.

Remark 4.3. Replacing I ′(uν+
1
2 ) by some I ′ ⊂ I ′(uν+

1
2 ) leads to truncated lineariza-

tions ∂FGS and ∂FJ defined analogously to (4.27) and (4.28), respectively. Theo-
rem 4.4 remains true for H(uk) = ∂F(uk) if I ′(uν+

1
2 ) is replaced by the smaller index

set I ′(uν+
1
2 ).

In general we will truncate large second derivatives of ϕ by using large constants Cϕ.
In light of (4.27) and (4.28) such derivatives would result in small derivatives of FGS

and FJ . Hence the additional truncation essentially means to set small derivatives to
zero for these operators.
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4 Truncated Nonsmooth Newton Multigrid

4.2.5 Convergence Analysis

Now we consider the convergence analysis of the previously presented algorithms.
These algorithms have the considerable advantage that the reformulation in terms
of a smoothing operator allows to apply a Newton-type approach even if this is not
directly possible for the minimization problem. Unfortunately, the algorithms depend
heavily on the selection of the basis. If we are faced with a sequence of problems result-
ing from discretization of a partial differential equation we can in general not expect
grid independent convergence as the following example shows.

Example 4.2. Let Sh ⊂ H1
0 (−1, 1) be the space of linear finite elements on a uni-

form grid with mesh size h = 1/(n + 1) and nodes xi on (−1, 1). Discretizing the
minimization problem

u = argmin
v∈K

∫ 1

0
(v′(x))2dx (4.37)

with K = {v ∈ H1
0 (−1, 1) : v ≥ −1 a.e.} by considering it in the discrete convex set

Kh = {v ∈ Sh : v(xi) ≥ −1, i = 1, . . . , n}

leads to a discrete problem of the form (4.1) satisfying (A6) and (A8) where A is
the usual stiffness matrix. Assume that the nodes xi are ordered such that i < j if
|xi| < |xj |. Now consider the algorithm in Theorem 4.4 with F = FGS or F = FJ ,
an arbitrary correction C(v) ∈ VI′(v), the initial value u0h = −1 and hence I ′(u0h) = ∅.
Since the correction C(v) is restricted to VI′(v) only the application of F can enlarge
I ′(uν). But because uν is constant on the set co{xi : i /∈ I ′(uν)} only the leftmost and
rightmost nodes of this set might enter I ′(uν+1). Hence we know uν = −1 on the set
(−1 + (ν + 1)h, 1 − (ν + 1)h) and thus

‖uν − u∗‖ = ‖uν‖ ≥ 2− 2
ν + 1

n + 1
.

This example shows that finding the exact inactive set I ′(u∗) might take O(n) iter-
ation steps. Furthermore, the linear subproblem as proposed in Theorem 4.4 already
provides the exact solution once the correct inactive set I ′(u∗) is detected.

In light of this example it will be hopeless to look for mesh-independent convergence
results. Even local convergence results might only cover the region of finite termination.
Having this in mind we now aim at global convergence results incorporating inexact
evaluation of the linear subproblems. With such a result we can still hope that the speed
of the linear subproblem solver dominates at least asymptotically or for reasonable
initial iterates.

Theorem 4.1 gives a general convergence result for the class of algorithms we consider.
However, the corrections C(uν+ 1

2 ) need not be monotone. It is even possible that
they leave dom(J) and hence produce infinite energy. Even for smooth problems,
where these corrections reduce to classical Newton corrections, monotonicity is not
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4.2 Truncated Nonsmooth Newton Methods

guaranteed. A common remedy in classical Newton methods is to apply damping
according to the energy. While it is crucial to select appropriate damping strategies in
the smooth case to preserve properties of the local Newton convergence (see [43]) the
situation is not so clear in the presented nonsmooth case.

Since a local mesh-independent convergence theory is not at hand we need not pre-
serve properties of local Newton methods. Furthermore, we only want to apply damp-
ing to the reduced Newton-type correction C(uν+ 1

2 ) and not to the whole correction
F(uν) + C(uν + F(uν)) to allow the application of Theorem 4.1. Thus we stick to a
damping strategy based on simple energy minimization. A first attempt would be to
replace C(uν+ 1

2 ) by

ρ
(
J, uν+

1
2 , C(uν+ 1

2 )
)
C(uν+ 1

2 ). (4.38)

With this strategy the damping parameters are a priori bounded from above by

min



mini∈I+

max(domϕi)− u
ν+ 1

2
i

C(uν+ 1
2 )

,mini∈I−
min(domϕi)− u

ν+ 1
2

i

C(uν+ 1
2 )



 (4.39)

with

I+ = {i : C(uν+ 1
2 )i > 0}, I− = {i : C(uν+ 1

2 )i < 0}.
This might enforce arbitrarily small damping parameters leading to slow convergence
if uν+

1
2 almost touches dom(J) even at a single component.

To avoid this problem we introduce a projection before damping is applied. For
x ∈ domϕ the orthogonal projection of d into (domϕ)− x is given by

(P(dom ϕ)−xd)i := max {min {di,max ((domϕi)− xi)} ,min ((domϕi)− xi)} .
It does always satisfy x + P(domϕ)−xd ∈ domϕ. Now we are ready to state the mod-
ified algorithms. The following global convergence results are a direct consequence of
Theorem 4.1.

Corollary 4.3. Assume that (A3), (A8), and (A4) are satisfied and that u0 ∈ domϕ.
Then the sequence uν generated by

uν+
1
2 = uν + FGS(u

ν), (4.40)

uν+1 = uν+
1
2 + ρνP ν

(
C(uν+ 1

2 ) + ǫν
)
, (4.41)

with the truncated linear correction

C(v) := −
(
∂2J(v)I′′(v)

)+
∇J(v)I′′(v),

the projection P ν = P
(domϕ)−uν+1

2
and damping parameter

ρν ∈ ρ<

(
J, uν+

1
2 , P ν

(
C(uν+ 1

2 ) + ǫν
)
, 0
)

converges to the unique solution of (4.1) for every ǫν . The same is true if FGS is
replaced by its inexact version FGS as introduced in Theorem 4.2.
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4 Truncated Nonsmooth Newton Multigrid

Corollary 4.4. Assume that (A3), (A8), and (A4) are satisfied and that u0 ∈ domϕ.
Then the sequence uν generated by

uν+
1
2 = uν + ρνJFJ(u

ν), (4.42)

uν+1 = uν+
1
2 + ρνP ν

(
C(uν+ 1

2 ) + ǫν
)
, (4.43)

with the truncated linear correction

C(v) := −
(
∂2J(v)I′′(v)

)+
∇J(v)I′′(v),

the projection P ν = P
(domϕ)−uν+1

2
and damping parameters

ρνJ ∈ ρ<
(
J, uν ,FJ (u

ν),
1

n

)
, ρν ∈ ρ<

(
J, uν+

1
2 , P ν

(
C(uν+ 1

2 ) + ǫν
)
, 0
)

converges to the unique solution of (4.9) for every ǫν . The same is true if FJ is replaced
by its inexact version FJ as introduced in Theorem 4.3.

4.2.6 Relation to Primal–Dual Active Set Methods

In order to relate the presented algorithm to other active set type methods we assume
the case of a quadratic obstacle problem presented in Example 4.1 with ψ = −∞.

A class of well-known algorithms for this problem are primal and primal–dual active
set methods. The primal active set method for obstacle problems was introduced
by Hoppe [65]. The closely related primal–dual active set method was introduced
in Bergounioux et al. [14]. Hintermüller et al. [64] showed that this method can be
regarded as semismooth Newton method. Since the primal method coincides with
the primal–dual method after the first iteration step [64] we only consider the latter
here using the abbreviation PDAS. It is based on the primal–dual formulation for the
obstacle problem given by

Au∗ + λ∗ = b,

u∗ ≤ ψ, λ∗ ≥0, λ∗(u∗ − ψ) = 0

where λ∗ ∈ Rn is the Lagrangian multiplier for the inequality constraints. For given
λ0,u0 and a fixed constant c > 0 the primal–dual active set method reads as follows

Aν := {i : λνi + c(uνi − ψi) > 0}, (4.44)

(uν+1, λν+1) ∈ Rn × Rn :

Auν+1 + λν+1 = b,

uν+1
i = ψi for i ∈ Aν ,

λν+1
i = 0 for i /∈ Aν .

(4.45)

After the first iteration this algorithm behaves very similar to the presented algorithm
based on the nonlinear Jacobi iteration.
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4.2 Truncated Nonsmooth Newton Methods

Theorem 4.5. Let ν ≥ 1. Then the PDAS method takes the form

uν+
1
2 = uν + FJ(u

ν), (4.46)

uν+1 = uν+
1
2 + C(uν+ 1

2 , uν), (4.47)

with the linear correction

C(v,w) = −
(
A+ ϕ′′(v)

)+
J (v,w)

∇J(v)J (v,w) (4.48)

and the inactive set

J (v,w) := I ′(v) ∪
{
i : ψi = wi + a−1

ii (b−Aw)i
}
.

Furthermore, the modified PDAS method with Aν replaced by

Ãν = {i : λνi + c(uνi − ψi) ≥ 0}

coincides with the nonsmooth Newton method in Theorem 4.4 for F = FJ .

Proof. First we note that the nonlinear Jacobi step can be represented by

FJ(v)i = min
{
a−1
ii (b−Av)i, ψi − v

}
.

By the assumption ν ≥ 1 we have λν = b−Auν and for all i either λi = (b−Auν) or
ψi − uνi are zero. Hence

i ∈ Aν ⇔
[
(b−Auν)i > 0 or ψi − uνi < 0

]

⇔ ψi − uνi < (b−Auν)i

⇔
[
FJ (u

ν)i = ψi − uνi and a−1
ii (b−Auν)i 6= ψi − uνi

]

⇔ i /∈ Iν := J (uν+
1
2 , uν).

Now assume that uν+1 is defined by equations (4.46)–(4.47). Then we have uν+1
i =

u
ν+ 1

2
i = ψi for i ∈ Aν. Since uν+

1
2 ≤ ψ the left-sided first and second derivatives of ϕi

at u
ν+ 1

2
i are zero. Inserting this in (4.47) and multiplying by AIν we get

AIνu
ν+1 = AIνu

ν+ 1
2 + (b−Auν+

1
2 )Iν

=
(
b− (A−AN,Iν )u

ν+ 1
2

)
Iν

= bIν −AIν ,Aνu
ν+ 1

2 = bIν −AIν ,Aνu
ν+1

and hence (Auν+1− b)Iν = 0. Setting λν+1 := b−Auν+1 we get the equivalence to the
primal–dual active set method.

For the modified method we can similarly get i ∈ Ãν ⇔ i /∈ Ĩν := I ′(uν+
1
2 ) and

then use the same proof with Aν and Iν replaced by Ãν and Ĩν , respectively.
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4 Truncated Nonsmooth Newton Multigrid

After the first step the only difference between the PDAS method and the nonsmooth
Newton method for FJ in Theorem 4.4 is the slightly larger inactive set Iν compared
to Ĩν which also incorporates

{
i : ψi = wi + a−1

ii (b−Aw)i
}
. This is the set of all in-

dices for which the solution of the one dimensional constrained quadratic minimization
problem in the nonlinear Jacobi step coincides with the solution of the correspond-
ing unconstrained quadratic problem. This degenerate case will in general only rarely
happen.

Thus Theorem 4.5 shows that for the case of an unilaterally constrained obstacle
problem the PDAS method and the method in Theorem 4.4 are essentially the same.
Since the presented formulation also incorporates the Gauß–Seidel smoother and other
smooth and nonsmooth nonlinearities J0 and ϕ it can be regarded as a generalization
of the PDAS method.

Currently there are two types of convergence results for the PDAS method. The first
one provides global convergence if A is an M-matrix and if the linear systems are solved
exactly [64, 65]. Since problems arising from adaptive finite element discretizations
do not lead to the M-matrix property in general, this result is rather unsatisfactory.
Furthermore, it can be seen in numerical experiments that global convergence is in
general not preserved for inexact evaluation of the linear systems using e.g. one linear
multigrid step.

The second convergence result relies on a reformulation of the algorithm as semis-
mooth Newton method and the so-called slanting differentiability of the operator ap-
pearing in this formulation [64]. While this does only provide local convergence it offers
the possibility to solve the linear systems inexactly up to a tolerance required by the
surrounding Newton type method. Although the method and this convergence result
can be extended to function spaces [64, 67] e.g. for operators A : L2 → L2, this is in
general not possible if A is a differential operator because the Lagrangian multipliers
are only measures in this case. Since the convergence proof for the discrete case does
not give any knowledge on the domain of convergence it is in general not excluded that
u0, λ0 being in this domain requires

A0 = {i : u∗i = ψi}.

However, in this case the problem reduces to a linear problem and one step convergence
is obvious.

Note that the presented formulation also relies on a Newton type method. However,
the convergence analysis is based on energy descent. This allows to globalize the
method using monotonicity arguments for the natural energy J of the problem at hand.
The construction of artificial merit functions is not necessary. This global convergence
theory is still valid in case of inexact evaluation.

4.3 Truncated Nonsmooth Newton Multigrid

It is crucial for an efficient overall algorithm to use a fast method for the inexact
solution of the linear subproblems. In this section we introduce a multigrid method
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for the linear subproblems and discuss the relation of the obtained overall method to
other nonlinear multigrid methods for special cases of the minimization problem (4.1).

4.3.1 Multigrid Solution of Truncated Linear Problems

Multigrid methods are known to be one of the fastest approaches to solve linear sys-
tems resulting from discretized partial differential equations. Originally these methods
were based on a sequence of discrete problems on a hierarchy of grids [20, 63]. Ad-
ditionally to the grid for the current problem (called fine grid) there are also coarser
grids and corresponding discretizations. One step of a multigrid method applies sev-
eral so-called smoothing steps to the problem on each level. These smoothing steps
are often applications of simple relaxation methods (like the Gauß–Seidel or the Jacobi
method) called smoothers. While the smoother on the fine grid is supposed to reduce
the high frequency parts of the algebraic error the low frequency parts can be resolved
by relaxation on coarser grids.

For symmetric positive semidefinite systems one can also formulate multigrid meth-
ods as subspace correction methods for the associated minimization problems. The
framework of subspace correction methods [111, 113] unifies multigrid and domain de-
composition convergence theory and allows for mesh-independent convergence results
without regularity assumptions on the solution of the underlying partial differential
equation [23, 24].

Our interest is to introduce a multigrid method for truncated linear systems

AIu = bI (4.49)

that appear in the evaluation of the correction C(uν+ 1
2 ) in the algorithms in Corol-

lary 4.3 and Corollary 4.4 in the previous section. While solutions of this system are
only unique in the components i ∈ I , we originally aim at the computation of u = A+

I bI
and thus consider u ∈ {y ∈ Rn : vi = 0∀u ∈ I} only.

In order to introduce a multigrid method for this problem class we first recall the
basic ingredients for a subspace correction formulation of a linear multigrid method for
an untruncated problem

u ∈ V j : a(u, v) = l(v) ∀v ∈ V j (4.50)

in a finite-dimensional space V j with a symmetric positive define bilinear form a and
l ∈ (V j)′. Note that this can be written as Ax = b (without truncation) where x,A, b
represent u, a, l, respectively, with respect to a basis. Now let V 0 ⊂ · · · ⊂ V j be a
sequence of nested subspaces of V j and bk : V k × V k → R an approximation of a on
V k. Then one step of the successive subspace correction method for a given iterate uν
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is defined by

rj = l − a(uν , ·),
for k = j, . . . , 0 :

solve vk ∈ V k : bk(v
k, v) = rk(v) ∀v ∈ V k,

if k > 0 :

rk−1 = rk − a(vk, ·),

uν+1 = uν +

j∑

k=0

vk

Now assume that a basis of V k is given by

V k = span{λk1 , . . . , λknk
}, nk = dimV k.

Then the natural embedding of V k in V k+1 by the identity is represented by the transfer
operators Tk satisfying

Tk ∈ Rnk+1,nk : λki =

nk+1∑

m=1

(Tk)miλ
k+1
m ∀i = 1, . . . , nk

in the sense that they satisfy

v(k+1) = Tkv
(k)

for two representations v(k) ∈ Rnk and v(k+1) ∈ Rnk+1 of some v ∈ V k with respect to
the bases in V k and V k+1 ⊃ V k, respectively. Note that for k′ > k the representation
of the basis functions in V k with respect to the basis in V k′ is given by

λki =

nk′∑

m=1

(Tk′−1 . . . Tk)mi λ
k′
m. (4.51)

From now on we identify all vectors in the spaces V j, . . . , V 0 with suitable represen-
tations in Rnj , . . . ,Rn0 with respect to the given bases again. Then we can reformulate
the multigrid method in algebraic form using the transfer operators:

Aj = A,

rj = b−Aju
ν ,

for k = j, . . . , 0 :

vk = B−1
k rk,

if k > 0 :

rk−1 = T T
k−1

(
rk −Akv

k
)
,

Ak−1 = T T
k−1AkTk−1,

uν+1 = uν +

j∑

k=0

(Tj−1 . . . Tk) v
k.
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Here Ak and Bk denote the representations of a and bk with respect to the basis in V k.

Remark 4.4. If the minimization problem results from a partial differential equation
discretized in the first-order finite element space

V j = S
(
L(T0, . . . ,Tj)

)

on the leaf grid L(T0, . . . ,Tj) of a grid hierarchy (T0, . . . ,Tj), then by Corollary 3.1 a
natural hierarchy of subspaces and corresponding bases is given by

V k = S
(
L(T0, . . . ,Tk)

)
, {λk1 , . . . , λknk

} = B
(
L(T0, . . . ,Tk)

)
.

This hierarchy was used by Bramble et al. [22] for a parallel multigrid preconditioner.
The resulting multigrid method is denoted “full multigrid”. Note that this is in general
not optimal in the sense that the computational effort is not in O(nj) but only in O(n2j)
for strongly local refinement. Yserentant [112] showed that optimal complexity can be
achieved by restricting the corrections to suitable subspaces of V k that do not build a
nested hierarchy themselves.

If we want to use this method for truncated systems (4.49) with A replaced by AI for
varying I we have to introduce some small modifications. Since the matrix AI is only
positive semidefinite and thus not invertible, the same may happen for the restrictions
Ãk. This will in general carry over to the matrices B̃k if they are constructed in some
way from Ãk, analogously to Bk.

For example the Gauß–Seidel smoother for Ãk is given by B̃k = D̃k + L̃k where D̃k

and L̃k denote the diagonal and left part of Ãk, respectively. Consequently the inverse
of B̃k is replaced by the Moore–Penrose pseudoinverse B̃+

k which coincides with the
inverse if B̃k is invertible. The application of B̃+

k is equivalent to the subsequent scalar
minimization in the i-th coordinate directions with the exception that the i-th scalar
correction is set to zero if (D̃k)ii = 0.

To guarantee that the iterates stay within the set {y ∈ Rn : vi = 0 ∀u ∈ I} we
introduce a projection II of the sum of all corrections leading to the algorithm

Ãj = AI = IIAII ,

rj = bI − Ãju
ν ,

for k = j, . . . , 0 :

vk = B̃+
k r

k,

if k > 0 :

rk−1 = T T
k−1

(
rk − Ãkv

k
)
,

Ãk−1 = T T
k−1ÃkTk−1,

uν+1 = uν +

j∑

k=0

II (Tj−1 . . . Tk) v
k.
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The above method does not change if the transfer operator Tj−1 is replaced by
IITj−1. Hence it can also be interpreted in terms of the truncated subspaces

V k
I = P

V j
I

V k = span{P
V j
I

λki : i = 1, . . . , nk} (4.52)

where

P
V j
I
: V j → V j

I = span{λji : i ∈ I}, P
V j
I
λji =

{
λji if i ∈ I,
0 else,

is the orthogonal projection to V j
I with respect to the Euclidean inner product on

V j. In the light of (4.51) the method is a multilevel relaxation in the direction of the
truncated coarse grid functions

λkI,m = P
V j
I
λkm =

nj∑

i=1

(IITj−1 . . . Tk)im λ
j
i . (4.53)

Note that these functions only appear implicitly and that their explicit construction is
not necessary.

Remark 4.5. The extension of the above multigrid method to V-cycles and W-cycles
with multiple pre- and post-smoothing is straightforward. If one step of such linear
truncated multigrid method is applied for the inexact solution of each linear subproblem
in the nonsmooth Newton methods in Corollary 4.3 and 4.4 an overall nonlinear multi-
grid method is obtained. We call this method “Truncated Nonsmooth Newton Multigrid”
and abbreviate this with TNNMG .

The truncated basis functions have been introduced by Hoppe and Kornhuber [66]
and further analyzed by Kornhuber and Yserentant [77]. In [69] they are used to
accelerate the convergence of the monotone multigrid method for quadratic obstacle
problems. The relation of the TNNMG method to this method will be considered in
Section 4.3.2.

4.3.2 Relation to Multilevel Relaxation and Monotone Multigrid

We will now discuss the relation of the nonlinear TNNMG multigrid method introduced
in the previous subsection to other nonlinear multigrid methods. First we concentrate
on the quadratic obstacle problems in Example 4.1. For a detailed comparison of the
presented algorithms for obstacle problems we refer to Gräser and Kornhuber [58].

Several multilevel methods to solve quadratic obstacle problems are based on the
successive minimization of the energy in the directions given by the so-called multilevel
nodal basis

j⋃

k=0

{
λki ∈ V k : i = 1, . . . , nk

}
.
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As in the previous subsection the successive multilevel minimization algorithms can
be expressed by grouping the directions with respect to their level k if we additionally

introduce coarse representations ψk, ψ
k

of the obstacles:

Aj = A,

rj = b−Aju
ν ,

for k = j, . . . , 0 :

for i = 0, . . . , nk :

ṽki = (Ak)
−1
ii

(
rki −

i−1∑

m=1

(Ak)imv
k
m

)
,

vki = min
{
max

{
ṽki , ψ

k
i

}
, ψ

k
i

}
,

if k > 0 :

rk−1 = T T
k−1

(
rk −Akv

k
)
,

Ak−1 = T T
k−1AkTk−1,

uν+1 = uν +

j∑

k=0

(Tj−1 . . . Tk) v
k.

For a linear problem without constraints we have vki = ṽki and this minimization proce-
dure coincides with the multigrid algorithm presented in the previous subsection using
the Gauß–Seidel smoother Bk = Dk+Lk. In this case the hierarchic formulation allows
for an efficient implementation since all quantities needed to compute the correction
vk are available on the k-th level without considering higher levels besides the initial
restriction of rk and Ak from the next higher level. Depending on the selection of the
coarse obstacles the latter need no longer be true for the constrained case.

The multilevel relaxation introduced by Mandel [80] uses exact coarse obstacles in
the sense that the minimization of the functional J is done in the whole constraint set
K = dom J for each coarse direction. This can be achieved using the coarse obstacles
defined by

ψk
i
= min

{
z ∈ R : wk,i + z (Tj−1 . . . Tk) e

k
i ≥ ψ

}

= max
{
(ψ − wk,i)m/ (Tj−1 . . . Tk)mi : m = 1, . . . , nj

}
,

ψ
k
i = max

{
z ∈ R : wk,i + z (Tj−1 . . . Tk) e

k
i ≤ ψ

}

= min
{
(ψ − wk,i)m/ (Tj−1 . . . Tk)mi : m = 1, . . . , nj

}

where eki is the i-th Euclidean basis vector in Rnk , (Tj−1 . . . Tk) e
k
i its level-j represen-

tation in Rnj , and wk,i is the level-j representation of the intermediate iterate before
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4 Truncated Nonsmooth Newton Multigrid

the i-th correction on level k, i.e.,

wk,i = uν +

j∑

m=k+1

(Tj−1 . . . Tm) vm + (Tj−1 . . . Tk)

i−1∑

m=1

vkme
k
m.

In order to compute these obstacles it is necessary to go up to the fine level for the
computation of each scalar correction on all levels. For finite element discretizations
this amounts in the evaluation of the defect obstacles

ψ − wk,i, ψ − wk,i

on the whole support of λki for each i, k. Thus the exact obstacles can only be used at
the price of a higher complexity. Even for a problem resulting from uniform refinement
this leads to O(nj) complexity for the k-th level. While the complexity is suboptimal
the algorithm has been analyzed extensively. Based on a general result by Badea et al.
[6] a polylogarithmic (with respect to the number of levels j) upper bound for the
convergence rate was proved by Badea [5] for essentially uniformly refined grids.

One approach to avoid the complexity issue is to construct coarse obstacles ψk, ψ
k ∈

Rnk such that the coarse constraint sets

Kk =
{
v ∈ Rnk : ψk ≤ v ≤ ψ

k
}

are subsets of the defect convex set, i.e.,

(Tj−1 . . . Tk)K
k ⊂

(
K − uν ∩ (Tj−1 . . . Tk)R

nk

)
,

and build an a priori decomposition of the defect convex set, i.e.,

K − uν =

j∑

k=0

(Tj−1 . . . Tk)K
k.

Tai [104] derived suitable hierarchic decompositions of K − uν that allow for similar
convergence results as for the multilevel relaxation, while the algorithm has only O(nk)
complexity on the k-th level. Since the a priori decomposition is very pessimistic, nu-
merical examples show that this algorithm is by far slower then the multilevel relaxation
using the optimal obstacles [58].

The monotone multigrid method introduced by Kornhuber [69] tries to overcome the
complexity issue by using monotone restrictions of the defect obstacle that are neither
recomputed for each scalar minimization problem nor completely a priori. Assuming
that (Tk)li ≥ 0 and

∑
i(Tk)li = 1 hold true (as it is the case for geometric multigrid)

these restrictions are defined by

ψj = ψ − uν , ψk
i
= max

{
(ψk+1 − vk+1)m : (Tk)mi 6= 0

}
, k = 0, . . . , j − 1,

ψ
j
= ψ − uν , ψ

k
i = min

{
(ψ

k+1 − vk+1)m : (Tk)mi 6= 0
}
, k = 0, . . . , j − 1.
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4.3 Truncated Nonsmooth Newton Multigrid

The induced coarse constraint sets

Kk =
{
v ∈ Rnk : ψk ≤ v ≤ ψ

k
}

are subsets of the defect convex set incorporating all fine level corrections, i.e.,

(Tj−1 . . . Tk)K
k ⊂

(
K − uν −

j∑

m=k+1

(Tj−1 . . . Tm) vm ∩ (Tj−1 . . . Tk)R
nk

)
,

While this simplification allows to retain O(nk) complexity on the k-th level, only
asymptotic bounds on the convergence rate are known [69]. In practice this algorithm
shows almost the same convergence rates as the multilevel relaxation with optimal
obstacles [58].

For non-degenerate problems the above algorithms satisfy

{i : uνi = ψ
i
} = {i : u∗i = ψ

i
}, {i : uνi = ψi} = {i : u∗i = ψi}, ∀ν > ν0

for some finite iteration step ν0. From this moment on the multilevel relaxation as
well as the monotone multigrid method reduce to linear multigrid methods for a linear
problem restricted to all inactive components. However, their convergence will in
general be much slower than for a similar problem without constraints. The main
reason is that all coarse directions containing active components cannot contribute to
corrections since this would violate the constraints.

In order to accelerate the method the use of truncated coarse grid functions was
suggested by Hoppe and Kornhuber [66], Kornhuber [69]. For the truncated monotone
multigrid method the current inactive set after the application of the fine grid smoother
is defined by

Iν = {i : uν + vj}.

The only difference to the untruncated version is that the transfer operator Tj−1 is
replaced by the truncated version IνTj−1 and that ṽki is set to zero if (Ak)ii is zero.
As noted in the previous subsection this is equivalent to replacing the standard coarse
grid functions by their truncated versions defined in (4.53). Similar to the standard
monotone multigrid method this algorithm degenerates to a linear multigrid method
with truncated basis functions. The convergence rates of such linear methods were
analyzed by Kornhuber and Yserentant [77] and carry over to asymptotic rates for the
truncated monotone multigrid method [72]. By the same arguments as in Section 4.2.5
one can, however, not expect global mesh-independent convergence.

Now we compare the truncated monotone multigrid method (TMMG) with the
TNNMG method with nonlinear Gauß–Seidel smoother. Remember that the latter
is obtained if a linear multigrid step with truncated basis functions is applied to the
linear subproblems in the algorithm in Corollary 4.3. First we note that the nonlinear
smoothing step and the selected inactive set in the TNNMG method coincides with the
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4 Truncated Nonsmooth Newton Multigrid

nonlinear fine level smoothing and the inactive set in the TMMG method, respectively,
i.e.,

uν+
1
2 = uν + FGS(u

ν) = uν + vj , I ′′(uν+
1
2 ) = Iν .

Furthermore, the TMMG method ensured feasibility and monotonicity of all inter-
mediate iterates by using coarse grid obstacles while the TNNMG method allows the
violation for intermediate iterates and ensures feasibility and monotonicity by a pro-
jection and subsequent line search of the whole coarse correction. The only further
difference is that the TNNMG method does also apply a linear fine grid smoother.

This close relation can also be seen numerically. For many problems both meth-
ods behave almost the same [58] despite the fact that the line search in the TNNMG
method often leads to an overrelaxation that accelerates convergence. In special cases,
where the monotone projection leads to very restrictive coarse obstacles (e.g. contact
problems in elasticity with complicated domains), the TNNMG method clearly out-
performs the TMMG method (see [62]). Another advantage of the TNNMG method
is that it does only need a linear multigrid method. Thus the extension to W-cycles
and the usage of other smoothers is straight forward.

Remark 4.6. For a quadratic energy J0 and other choices of ϕ the TNNMG method is
closely related to the constraint Newton linearization method introduced by Kornhuber
[75]. This method also relies on a nonlinear Gauß–Seidel smoother on the finest level
and a Newton-type coarse grid correction. The coarse correction is based on essentially
the same truncated linearization.

In contrast to the projection used in the TNNMG method, feasibility of the coarse
correction is guaranteed by coarse obstacles that restrict the correction to a region where
ϕ is smooth. The obtained quadratic obstacle problems are solved approximately using
one step of the truncated monotone multigrid method.

Monotonicity of the coarse correction is ensured by a priori computed local damping
parameters for each coarse grid basis function instead of a global line search used by
the TNNMG method for the whole correction.
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5 Schur Nonsmooth Newton Methods

for Set-Valued Saddle Point Problems

While the problems considered in the previous chapter only incorporate local com-
ponentwise constraints we now consider additional global linear constraints. Such
problems can be written as saddle point problems with Lagrangian multipliers for the
linear constraints. Since the energy is still allowed to contain nonsmooth nonlinearities
these saddle point problems will in general be inclusions for set-valued operators. This
chapter is dedicated to the development of an efficient algebraic solver for this problem
class.

We start by introducing the saddle point problem and derive a dual minimization
problem whose optimality system is a nonlinear Schur complement equation. Then
we present and analyze descent algorithms for the dual problem including inexact ver-
sions. In order to accelerate these methods we derive generalized linearizations for the
nonlinear Schur complement that can be used in a Newton-type versions of the descent
algorithms. Finally we discuss the convergence properties and some computational
aspects of the obtained Schur Nonsmooth Newton method and its relation to other
algorithms for certain special cases of the considered problem class.

5.1 Nonsmooth Convex Minimization Problems with

Linear Constraints

Throughout this chapter we consider the nonlinear saddle point problem

u∗ ∈ Rn, w∗ ∈ Rm :

(
F BT

B −C

)(
u∗

w∗

)
∋
(
f
g

)
, (5.1)

where B, C are suitable matrices, and the set-valued operator F = ∂J is the subdif-
ferential of a strictly convex functional J : Rn → R ∪ {∞}. If not stated otherwise J
is assumed to be of the form J = J0 + ϕ : Rn → R ∪ {∞} as introduced in Chapter 4
with J0 and ϕ satisfying (A5) and (A8), respectively. Furthermore, we assume:

(A10) B ∈ Rm,n, f ∈ Rn, and g ∈ Rm. C ∈ Rm,m is symmetric and positive
semidefinite.

(A11) The saddle point problem (5.1) has a unique solution.

For C = 0 this problem is equivalent to the minimization of J − 〈f, ·〉 subject to the
linear constraint Bu = g. We are interested in the fast solution of this class of prob-
lems. Classical Newton linearization (see, e.g., Deuflhard [43], [83, 102]) can in general
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5 Schur Nonsmooth Newton Methods

not be used because of possible nonsmoothness of the nonlinearity ϕ. For example,
Problem 3.18 and Problem 3.19 obtained in Chapter 3 for discretized Cahn–Hilliard
equations contain the logarithmic potential that degenerates rapidly to an indicator
functional if the temperature goes to zero. Although this potential is differentiable
inside of (−1, 1) its limiting properties make it de facto nonsmooth for small tempera-
tures. On the other hand primal [65] and primal–dual [14, 64] active set methods are
restricted to special cases where the nonlinearity is related to inequality constraints.
Furthermore, they do not use the inherent convex structure to achieve global con-
vergence. Monotone multigrid methods for obstacle problems [69], their extension by
constrained Newton linearization to nonsmooth nonlinear problems [71, 74, 75], and
the TNNMG method derived in the previous chapter are known to be efficient globally
convergent methods. However, they cannot deal with the linear constraints in the given
saddle point problems.

Before we develop a new method for the efficient iterative solution of this problem
class we derive an equivalent dual minimization problem.

Proposition 5.1. Let J : Rn → R ∪ {∞} be a strictly convex, proper and lower
semicontinuous function whose subdifferential F = ∂J has a single-valued Lipschitz
continuous inverse F−1. Furthermore, assume that (A10) and (A11) are true. Then
the saddle point problem (5.1) is equivalent to

w∗ ∈ Rm : H(w∗) = 0 (5.2)

with the Lipschitz continuous, monotone operator H : Rm → Rm given by

H(w) = −BF−1(f −BTw) + Cw + g , w ∈ Rm . (5.3)

Proof. Due to the properties of J and F straightforward block elimination in (5.1)
provides the equivalence. Since H consists of a sum and a composition of F−1 with
affine functions the Lipschitz continuity follows directly from the Lipschitz continuity
of F−1.

The convexity of J implies the monotonicity of F−1. In combination with the non-
negativity of C we get

〈w1 − w2,H(w1)−H(w2)〉
=
〈
(f −BTw1)− (f −BTw2), F

−1(f −BTw1)− F−1(f −BTw2)
〉

+ 〈C(w1 − w2), w1 − w2〉 ≥ 0, (5.4)

yielding monotonicity of H.

The operatorH can be regarded as a nonlinear Schur complement. For a linear saddle
point problem with F = A for some symmetric positive definite matrix A it reduces
to H(w) = (BA−1BT + C)w + (g − BA−1f). The part BA−1BT of this operator is
the usual linear Schur complement. In contrast to the linear case, the right hand side
f cannot be separated from the part depending on w in general. Note that although
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5.1 Nonsmooth Convex Minimization Problems with Linear Constraints

the saddle point problem is set-valued, the operator H is single-valued, because F−1 =
(∂ϕ)−1 is single-valued or, equivalently, the minimization of J(x)−〈y, x〉 on Rn admits
a unique solution.

Theorem 5.1. Under the assumptions of Proposition 5.1 there is a Fréchet-differen-
tiable, convex functional h : Rm → R with the property ∇h = H and the representation

h(w) = −L(F−1(f −BTw), w) , w ∈ Rm , (5.5)

where

L(u,w) = J(u)− 〈f, u〉+ 〈Bu− g,w〉 − 1

2
〈Cw,w〉

denotes the Lagrange functional associated with the saddle point problem (5.1).

Proof. By [49, Corollary 5.2, p. 22] the polar (or conjugate) functional

J∗(y) = sup
x∈Rn

(〈y, x〉 − J(x)) = − inf
x∈Rn

(J(x)− 〈y, x〉)

of J is convex and has the property ∂J∗ = (∂J)−1 = F−1. Since F−1y is single-valued
for all y ∈ Rn its polar J∗ can take only finite values and the domain of the polar is
Rn. Thus J∗ is continuous on the whole space Rn by [49, Corollary 2.3, p. 12].

By [49, Proposition 5.3, p. 23] finiteness and continuity of J∗, and single-valuedness
of ∂J∗ imply Gâteaux-differentiability of J∗. The continuity of ∂J∗ = F−1 implies
that J∗ is even Fréchet-differentiable with ∇J∗ = F−1. Setting

h(w) = J∗(f −BTw) +
1

2
〈Cw,w〉+ 〈g,w〉 (5.6)

we immediately get ∇h = H using the chain rule. Convexity of h directly follows from
convexity of J∗, and symmetry and positivity of C. Finally, inserting

J∗(y) = −
(
J(F−1(y))−

〈
y, F−1(y)

〉)

with y = f −BTw into (5.6) gives (5.5).

As immediate consequence of Proposition 5.1 and Theorem 5.1 we get the equivalence
of (5.1) to an unconstrained dual problem.

Corollary 5.1. The set-valued saddle point problem (5.1) is equivalent to the dual
unconstrained convex minimization problem

w∗ ∈ Rm : h(w∗) ≤ h(w) ∀w ∈ Rm. (5.7)

By the arguments in the proof of Theorem 5.1 not only h but also h̃(w) = J∗(f −
BTw) + 〈g,w〉 is convex. Hence

h(λx+ (1− λ)y) ≤ λh(x) + (1− λ)h(y) − λ(1− λ)
1

2
‖x− y‖2C ∀λ ∈ [0, 1] (5.8)

holds for all x, y ∈ Rm, which means that h is strongly convex if C is symmetric and
positive definite. However, the latter need not be the case, and h is in general not even
strictly convex so that we have to require uniqueness separately.
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−g

Figure 5.1: The dual functional h in Example 5.1: Unique minimizer at −g for g > 0
(left), no minimizer for g < 0 (middle), non unique minimizer for g = 0
(right).

Example 5.1. Consider the saddle point problem

u,w ∈ R :

(
1 + ∂χ[0,∞) 1

1 0

)(
u
w

)
∋
(
0
g

)
(5.9)

for some g ∈ R. Then the dual functional is given by

h(w) =

{
1
2w

2 + gw if w ≤ 0,

gw if w > 0,

and is not strictly convex on (0,∞). We have to distinguish three cases (see Figure 5.1):

• For g > 0 the solution of (5.9) is uniquely given by (u,w) = (g,−g) and thus the
minimizer w = −g of h is also unique.

• For g < 0 the linear constraint does still imply u = g but ∂χ[0,∞)(g) is empty.
Hence there is no solution of (5.9). Conversely h has no minimizer since it is
not bounded from below in this case.

• For g = 0 all pairs (u,w) with u = 0 and w ≥ 0 are solutions to (5.9) and all
such w minimize h.

Corollary 5.1 offers the possibility to treat the nonsmooth saddle point problem
(5.1) as a smooth unconstrained minimization problem or as an operator equation
with a Lipschitz continuous monotone operator. This simplification comes at the price
of the fact that the functional h and the operator H = ∇h might be expensive to
evaluate, since both involve the evaluation of F−1 = (∂J)−1 and thus the solution of
an unconstrained minimization problem for the nonsmooth functional J .

5.2 Descent Methods for the Dual Problem

Once we have reformulated the saddle point problem (5.1) as the dual minimization
problem (5.7), descent methods for unconstrained minimization of differentiable func-
tionals can be applied.
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Since the operator F−1 involved in h and H = ∇h is in general not directly available,
it is complicated and expensive to use iterative methods based on local properties or
substeps as e.g. the Gauß–Seidel or Jacobi method for the solution of (5.7). For
this reason we consider so-called gradient-related algorithms based on global descent
directions. Although there are numerous basic convergence proofs (see, e.g., the classic
text book by Ortega and Rheinboldt [83]) for this class of methods none of them can
be applied directly to our setting. Thus we extend the results in a way fitting in the
presented framework.

Throughout this section we assume that h : Rm → R is a continuously differentiable
convex function having a unique minimizer w∗ and a Lipschitz continuous derivative
∇h.

The results are presented in terms of the norm ‖·‖M ,

‖x‖2M = 〈Mx,x〉 , x ∈ Rm ,

induced by a symmetric positive definite matrix M ∈ Rm,m. Elements x′ of the dual
space (Rm)′ will be represented as x′ = 〈x, ·〉 with suitable x ∈ Rm. In view of

|x′(y)| = | 〈x, y〉 | ≤ ‖M− 1
2x‖‖M 1

2 y‖ = ‖x‖M−1 ‖y‖M ,

the dual space (Rm, ‖·‖M )′ is identified with (Rm, ‖·‖M−1).
Gradient related descent methods are of the form

wν+1 = wν + ρνd
ν , ν = 1, . . . (5.10)

for a given initial iterative w0. In each step, first a search direction dν is chosen
according to the current iterate wν . Then, a step size ρν is fixed depending on wν and
dν , i.e.,

dν = d(ν,wν), ρν = ρ(ν,wν , dν) , ν = 0, 1, . . . (5.11)

with suitable mappings d and ρ. It will turn out that monotonicity is again the crucial
property. Having this in mind and in view of the algorithms developed in Chapter 4
we consider the extended algorithm

wν+ 1
2 = wν + ρνd

ν , (5.12)

wν+1 = wν+ 1
2 + C(wν+ 1

2 ) (5.13)

with an operator C having the property h(w + C(w)) ≤ h(w).

5.2.1 Convergence Analysis

In order to obtain a convergent method the descent directions should allow for sufficient
descent of h and the step sizes must realize the descent.
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Definition 5.1. The map d : N × Rm → Rm is said to generate descent directions if
for any sequence wν ⊂ Rm the directions dν = d(ν,wν) satisfy

∇h(wν) = 0 ⇐⇒ dν = 0, ∀ν ∈ N (5.14)

and

∇h(wν) 6= 0 ⇒ 〈∇h(wν), dν〉 < 0, ∀ν ∈ N. (5.15)

If d : N × Rm → Rm generates descent directions we will also call the generated
sequence dν a sequence of descent directions. Although a sequence of descent directions
allows for descent in each iteration step the method might not converge if the directions
degenerate in the sense that the angles between dν and ∇h(wν) tend to π

2 . Thus we
have to impose a stronger condition than (5.15) to exclude this case.

Definition 5.2. The map d : N × Rm → Rm is said to generate gradient-related
directions, if for any sequence wν ⊂ Rm the directions dν = d(ν,wν) satisfy

∇h(wν) = 0 ⇐⇒ dν = 0, ∀ν ∈ N (5.16)

and

−〈∇h(wν), dν〉 ≥ cD ‖∇h(wν)‖M−1 ‖dν‖M , ∀ν ∈ N (5.17)

with a constant cD > 0 independent of ν.

Note that the preconditioned gradients d(ν,wν) = −M−1∇h(wν) are gradient-
related since (5.17) is satisfied with equality and cD = 1.

Definition 5.3. Let d : N × Rm → Rm generate descent directions. Then ρ : N ×
Rm×Rm → R is said to generate efficient step sizes, if for any sequence wν ⊂ Rm and
dν = d(ν,wν) the step sizes ρν = ρ(ν,wν , dν) satisfy

h(wν + ρνd
ν) ≤ h(wν)− cS

(〈∇h(wν), dν〉
‖dν‖M

)2

(5.18)

for all ν ∈ N such that ∇h(wν) 6= 0 with a constant cS > 0 independent of ν.

In order to prove convergence it will be necessary to exploit a compactness property
provided by the following lemma.

Lemma 5.1. The sublevel set {w ∈ Rm : h(w) ≤ C} is compact for every C ≥ h(w∗).

Proof. Continuity of h implies that the set is closed. Assume that Sh≤c := {w ∈
Rm : h(w) ≤ c} is not bounded for some c ≥ h(w∗). Then there exists a sequence
(wk) ⊂ Sh≤h(w0) with the property ‖wk − w∗‖ ≥ k. We define the bounded sequence

w̃k = w∗ + (wk − w∗)/‖wk − w∗‖
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contained in the unit sphere with center w∗. Compactness guarantees the existence of
a convergent subsequence w̃kj . By continuity and convexity of h it satisfies

lim
j→∞

h(w̃kj ) ≤ lim
j→∞

k−1
j h(wkj ) + (1− k−1

j )h(w∗) = h(w∗).

Finally uniqueness of w∗ implies w̃kj → w∗ contradicting ‖w̃kj − w∗‖ = 1.

Lemma 5.2. Let wν ∈ Rm be a sequence such that ∇h(wν) → 0 and h(wν) ≤ C hold
for some C ≥ h(w∗) . Then wν converges to w∗.

Proof. By Lemma 5.1 the set S = {w ∈ Rm : h(w) ≤ C} is compact. As a consequence,
there is a convergent subsequence of wν .

Now let wνi → w∗∗ be any convergent subsequence with the limit w∗∗ ∈ Rm. Then
the continuity of ∇h provides ∇h(wν) → ∇h(w∗∗) = 0. Uniqueness of the minimizer
proves the assertion.

We are now ready to prove that the combination of gradient-related descent direc-
tions and efficient step sizes leads to a globally convergent method. Although this is a
standard result that (with small modifications) can be found in many textbooks (see,
e.g., [53, 83, 102]), we give a proof here since these variant do for example not include
the monotone correction C.

Theorem 5.2. Assume that d and ρ generate gradient-related directions and efficient
step sizes, respectively. Then the iterates wν generated by (5.11), (5.12), and (5.13)
converge to w∗ for an arbitrary initial iterate w0 ∈ Rm.

Proof. Combining the properties of dν = d(ν,wν), ρν = ρ(ν,wν , dν), and C we get

h(wν)− h(wν+1) ≥ h(wν)− h(wν+ 1
2 ) ≥ cSc

2
D ‖∇h(wν)‖2M−1 ∀ν ∈ N. (5.19)

Since h has a global minimizer, the sequence h(wν) is bounded from below and, by
(5.19), monotonically decreasing. Hence, h(wν) converges to some h∗ ∈ R and (5.19)
implies

‖∇h(wν)‖2M−1 → 0. (5.20)

Together with h(wν) ≤ h(w0) this allows to apply Lemma 5.2 which proves the asser-
tion.

Under the stronger assumption that h is strongly convex, i.e., if there is a µ > 0
such that

h(λx+ (1− λ)y) ≤ λh(x) + (1− λ)h(y) − λ(1− λ)
µ

2
‖x− y‖2M ∀λ ∈ [0, 1],

we get R-linear convergence. The following results of Lemma 5.3 and Theorem 5.3 can
even be extended to infinite-dimensional problems without additional assumptions.
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Lemma 5.3. Let h be strongly convex with a constant µ > 0. Then the following
estimates holds

µ

2
‖w − w∗‖2M ≤ h(w)− h(w∗) ≤ 1

2µ
‖∇h(w)‖2M−1 ∀w ∈ Rm. (5.21)

Proof. By Lemma A.1 in the appendix strong convexity implies

h(x) − h(y) ≥ 〈∇h(y), x− y〉+ µ

2
‖x− y‖2M ∀x, y ∈ Rm.

Inserting x = w and y = w∗ gives the left inequality while inserting x = w∗ and y = w
together with Young’s inequality provides the right one.

Theorem 5.3. Assume that the conditions of Theorem 5.2 and Lemma 5.3 are sat-
isfied. Then the iterates wν generated by (5.11), (5.12), and (5.13) satisfy the error
estimate

‖wν − w∗‖2M ≤ qν
2

µ

(
h(w0)− h(w∗)

)
(5.22)

with q = (1 − 2cSc
2
Dµ) < 1.

Proof. By (5.12), (5.13), and the right inequality in (5.21) we get

0 ≤ h(wν+1)− h(w∗) ≤ h(wν)− h(w∗) + h(wν+ 1
2 )− h(wν)

≤ h(wν)− h(w∗)− cSc
2
D ‖∇h(wν)‖2M−1

≤ (1− cSc
2
D2µ)(h(w

ν)− h(w∗)).

Combining this estimate with the left inequality in (5.21) yields
µ

2
‖wν − w∗‖2M ≤ h(wν)− h(w∗) ≤ (1− cSc

2
D2µ)

ν(h(w0)− h(w∗)),

which proves the assertion. Note that for w0 6= w∗ the estimate implies 0 ≤ 1−cSc2D2µ
because h(wν)− h(w∗) > 0.

5.2.2 Inexact Evaluation of Descent Directions

We now consider inexact search directions d̃ν obtained if the exact evaluation dν =
d(ν,wν) is replaced by some approximation

d̃ν = d̃(ν,wν) ≈ d(ν,wν). (5.23)

Proposition 5.2. Let d generate gradient-related directions that satisfy (5.17) with
the constant cD, and let d̃ generate descent directions. Assume that there is a constant
c < cD/2 such that the approximations d̃ν = d̃(ν,wν) satisfy at least one of the accuracy
conditions

‖dν − d̃ν‖M ≤ c‖d̃ν‖M ∀ν ∈ N, (5.24)

‖dν − d̃ν‖M ≤ c‖dν‖M ∀ν ∈ N, (5.25)

for all sequences wν . Then the approximation d̃ does also generate gradient-related
directions that satisfy (5.17) with the constant c̃D = cD − 2c > 0.
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5.2 Descent Methods for the Dual Problem

Proof. Let wν ⊂ Rm. Then the vectors dν = d(ν,wν) satisfy (5.16) and (5.17). We
have to prove a similar estimate for the approximations d̃ν . For d̃ν = 0 this is trivial.
For d̃ν 6= 0 we instantly get ∇h(wν) 6= 0 and thus dν 6= 0. In this case elementary
calculations involving the Cauchy–Schwarz inequality and the triangle inequality yield

∣∣∣∣∣

〈
∇h(wν)

‖∇h(wν)‖M−1

,
dν

‖dν‖M
− d̃ν

‖d̃ν‖M

〉∣∣∣∣∣ ≤ 2
‖dν − d̃ν‖M

‖d̃ν‖M
.

From ‖dν − d̃ν‖M/‖d̃ν‖M ≤ c < cD/2 we get

−
〈
∇h(wν), d̃ν

〉
≥ c̃D‖∇h(wν)‖M−1‖d̃ν‖M

with c̃D = cD−2c > 0. The proof for the second accuracy condition (5.25) uses exactly
the same arguments with ‖dν − d̃ν‖M/‖d̃ν‖M replaced by ‖dν − d̃ν‖M/‖dν‖M .

Since the constant cD needed to check the accuracy conditions in Proposition 5.2
with c < cD/2 is in general not known, we replace them by the asymptotic criteria

lim
ν→∞

‖dν − d̃ν‖M
‖d̃ν‖M

= 0 and lim
ν→∞

‖dν − d̃ν‖M
‖dν‖M

= 0, (5.26)

respectively. They imply that the criteria in Proposition 5.2 with c < cD/2 hold
for sufficiently large ν with arbitrarily small c. To see that the whole sequence d̃ν

is gradient-related assume that (5.24) or (5.25) is satisfied for ν > ν0. Hence by
Proposition 5.2 the estimate (5.17) holds for ν > ν0 with c̃D. Then it also holds for all
ν with the constant

˜̃cD = min

{
c̃D,min

{
− 〈∇h(wν), dν〉
‖∇h(wν)‖M−1 ‖dν‖M

: ν ≤ ν0

}}
> 0.

Furthermore, the constants c̃D, ˜̃cD in estimate (5.17) for d̃ν tend to the constant cD
for the exact directions dν in this case.

Remark 5.1. Another approach allows to even use almost arbitrarily inexact evalua-
tion. Having the choice to add a monotone correction C in (5.13) offers the possibility
to change the role of the descent direction according to

wν+ 1
2 = wν − ρν∇h(wν),

wν+1 = wν+ 1
2 + ρν+ 1

2
d̃ν+

1
2 .

Since the directions −∇h(wν) are trivially gradient-related we only have to impose
the condition that ρν is efficient and that ρν+1/2 is such that h(wν+1) ≤ h(wν+ 1

2 ).

Then Theorems 5.2 and 5.3 can be applied without any accuracy condition on d̃ν+
1
2 .

Convergence is guaranteed by the leading gradient step.
A possible drawback of this approach is the additional computational effort. It amounts

to the evaluation of −∇h(wν) and the computation of the second damping parameter
ρν+1/2. The later can be less expensive then the computation of ρν since it only has to
provide monotonicity. However, if the evaluation of F−1 is expensive it might still be
too costly.
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5.2.3 Step Size Rules

There is a multitude of algorithms for the selection of efficient step sizes available from
textbooks and surveys like [43, 82, 83, 87]. Since it is probably the most common
we present the step size rule by Armijo [4] (see also [43, 83]) which tracks the actual
decrease of the functional h. Furthermore, we show that the inexact evaluation of
the so-called “exact step sizes”, e.g. by bisection, also leads to efficient step sizes.
This approach relies on the derivatives of h instead of its values. Finally we prove
convergence for the sequence obtained if the step rule is adaptively switched on and
off in each step using a simple criterion depending on dν only.

Both step size rules consider the function h only along the line spanned by the current
iterate wν and the descent direction dν . Thus we define the scalar, convex function
ψ : [0,∞) → R by

ψ(r) = h(wν + rdν).

Note that its derivative

ψ′(r) = 〈∇h(wν + rdν), dν〉

is Lipschitz continuous with Lipschitz constant L ‖dν‖2M where L denotes the Lipschitz
constant of ∇h, i.e.,

‖∇h(v)−∇h(w)‖M−1 ≤ L ‖v − w‖M ∀v,w ∈ Rm . (5.27)

In order to define the Armijo step sizes consider a fixed parameter δ ∈ (0, 1). Then
a step size r ≥ 0 is called “admissible” if

h(wν + rdν) ≤ h(wν) + rδ 〈∇h(wν), dν〉 (5.28)

is satisfied.

Proposition 5.3. Let d : N × Rm → Rm generate descent directions. For a sequence
wν ⊂ Rm and directions dν = d(ν,wν) assume that fixed parameters α > 0 and δ, β ∈
(0, 1) and a sequence αν with

αν ≥ −α〈∇h(w
ν), dν〉

‖dν‖2M
is given. Then the Armijo rule defined by

ρ(ν,wν , dν) := max
{
r = ανβ

j : r admissible , j ∈ N ∪ {0}
}

∀dν 6= 0 (5.29)

and ρ(ν,wν , 0) := 0 generates efficient step sizes. More precisely the step sizes ρν =
ρ(ν,wν , dν) satisfy (5.18) with

cS = δmin

{
α, β

(
1− δ

L

)}
. (5.30)
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Proof. Let ν ∈ N such that dν 6= 0. Then ψ′(0) = 〈∇h(wν), dν〉 < 0 holds by (5.14)
and (5.15). The admissibility condition (5.28) can be rewritten as

ψ(r) ≤ ψ(0) + rδψ′(0) . (5.31)

The step size ρν is well-defined, because the set appearing in (5.29) is not empty.
Otherwise, we would have

ψ(ανβ
j) > ψ(0) + δανβ

jψ′(0) ∀j ∈ N ,

providing

ψ′(0) = lim
j→∞

ψ(ανβ
j)− ψ(0)

ανβj
≥ δψ′(0)

and, as ψ′(0) < 0, the contradiction δ ≥ 1.
For the proof of (5.18) we have to distinguish two cases. If ρν = αν , i.e., j = 0, then

the estimate

ψ(ρν) ≤ ψ(0) − δα

(
ψ′(0)

‖dν‖M

)2

holds trivially by (5.29). Now let ρν = ανβ
j with j > 0. Then

ψ

(
ρν
β

)
> ψ(0) + δ

ρν
β
ψ′(0)

and thus for some ξ ∈ [0, 1]

ρν
β
ψ′

(
ξ
ρν
β

)
= ψ

(
ρν
β

)
− ψ(0) > δ

ρν
β
ψ′(0).

In combination with the Lipschitz continuity (5.27) this leads to

−(1− δ)ψ′(0) ≤ ψ′

(
ξ
ρν
β

)
− ψ′(0) ≤ Lξ

ρν
β

‖dν‖2M ≤ L
ρν
β

‖dν‖2M ,

so that ρν can be estimated by

ρν ≥ −β
(
1− δ

L

)
ψ′(0)

‖dν‖2M
.

Inserting this estimate into (5.31), we finally get

ψ(ρν) ≤ ψ(0) − δβ

(
1− δ

L

)(
ψ′(0)

‖dν‖M

)2

.
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Starting with j = 0, efficient step sizes can be computed from (5.29) by a finite
number of tests. While the Armijo rule uses the values of h we will now present a step
size rule using the gradient ∇h = H of h which guarantees efficient step sizes ρν .

Proposition 5.4. Let d : N × Rm → Rm generate descent directions. For a sequence
wν ⊂ Rm and directions dν = d(ν,wν) assume that a fixed parameter ǫ ∈ [0, 1) is given.
Then any step rule ρ that satisfies ρν = ρ(ν,wν , dν) ≥ 0 and

〈
∇h(wν + ρνd

ν), dν
〉
∈ [ǫ 〈∇h(wν), dν〉 , 0]

generates efficient step sizes that satisfy (5.18) with

cS =
1− ǫ2

2L
.

Proof. For dν = 0 the assertion is obvious. Thus let dν 6= 0 and hence ψ′(0) 6= 0. From
ǫψ′(0) ≤ ψ′(ρν) and Lipschitz continuity of ψ′ we get

0 < ρ̃ν :=
(ǫ− 1)

L ‖dν‖2M
ψ′(0) ≤ ρν .

Noting that ψ is decreasing in [0, ρν ] and using the definition of ρ̃ν yields

ψ(ρν) ≤ ψ(ρ̃ν) = ψ(0) +

∫ ρ̃ν

0
ψ′(t)− ψ′(0) dt+ ρ̃νψ

′(0)

≤ ψ(0) + ρ̃ν

(
1

2
L ‖dν‖2M ρ̃ν + ψ′(0)

)

= ψ(0) + ρ̃ν

((
ǫ− 1

2

)
ψ′(0) + ψ′(0)

)

= ψ(0) + ρ̃ν

(
1 + ǫ

2

)
ψ′(0)

= ψ(0) −
(
1− ǫ

L

)(
1 + ǫ

2

)(
ψ′(0)

‖dν‖M

)2

.

Now we can obtain a sequence of efficient step sizes either by computing the first
zero of ψ′ exactly (ǫ = 0) or by approximating it with fixed 0 ≤ ǫ < 1. The latter can
be done for example using the bisection method which requires one evaluation of ∇h
per bisection step.

Observe that for both step size rules a sequence of evaluations of either h or ∇h is
required. In view of Theorem 5.1 this will involve one solution of the minimization
problem associated with F−1 per evaluation of h or ∇h, which can be very expensive.
In order to mitigate this disadvantage it will be useful to decide a priori if we can
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5.2 Descent Methods for the Dual Problem

choose ρν = 1 for a given wν and ν or if some kind of line search is needed. To this
end let α−1 > 0 and σ ∈ (0, 1) and define for wν , dν ∈ Rm the sequence

αν =

{
‖dν‖M if ‖dν‖M ≤ σαν−1,

αν−1 else.
(5.32)

For a step size rule ρ that generates efficient step sizes we will switch off the step rule
if the norm of the direction decreases by the factor σ in the following sense:

ρ̃ν =

{
1 if ‖dν‖M ≤ σαν−1,

ρ(ν,wν , dν) else.
(5.33)

Note that the sequence ρ̃ν can easily be computed in practice. If ‖dν‖M ≤ σαν−1

is not true, the step size ρ̃ν is computed using the step size rule ρ. If the criterion
is satisfied for some ν, the step size ρ̃ν′ = 1 is used and the new bound αν = ‖dν‖M
is computed. Thus the criterion for the ν-th step is checked with the bound αν−1 =
‖dν′‖M where ν ′ is the last iteration step that satisfied the criterion.

It is also possible to simplify the criterion for the selection of ρ̃ν = 1 to the stronger
criterion

‖dν‖M ≤ σmin
µ<ν

‖dµ‖M ,

and the convergence proof of the following theorem remains essentially the same.

Theorem 5.4. Assume that d and ρ generate gradient-related directions and efficient
step sizes, respectively. Furthermore, assume that d(ν, vν) → 0 implies ∇h(vν) → 0
for any sequence vν . If ρ̃ν is computed by (5.32) and (5.33) for some α−1 > 0 and
σ ∈ (0, 1) and dν = d(ν,wν), then the iterates wν obtained by

wν+ 1
2 = wν + ρ̃νd

ν ,

wν+1 = wν+ 1
2 + C(wν+ 1

2 ),

converge to w∗ for an arbitrary initial iterate w0 ∈ Rm.

Proof. Define the set

N =
{
ν ∈ N ∪ {0} : ‖dν‖M ≤ σαν−1

}

of all iterates where the step size rule is not used. If N is bounded, the sequence wν

converges by Theorem 5.2. From now on we assume that N = {η1 < η2 < η3 < . . . } is
unbounded.

For ν ∈ N the monotonicity h(wν+1) ≤ h(wν) is not guaranteed because no line
search is applied. Hence we have to show boundedness of h(wν) by other means. By
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monotonicity of C, convexity of h, and Lipschitz continuity of ∇h we get

h(wν+1) ≤ h(wν+ 1
2 )

≤ h(wν)−
〈
∇h(wν+ 1

2 ), wν − wν+ 1
2

〉

≤ h(wν) +
〈
∇h(wν)−∇h(wν+ 1

2 ), wν − wν+ 1
2

〉
−
〈
∇h(wν), wν − wν+ 1

2

〉

≤ h(wν) + L‖wν − wν+ 1
2‖2M + ρ̃ν 〈∇h(wν), dν〉

≤ h(wν) + Lρ̃2ν‖dν‖2M

for all ν. Together with ‖dηi‖M ≤ σiα−1 this implies

h(wηi+1) ≤ h(wηi) + Lσ2iα2
−1

for ηi ∈ N . Since we have h(wν+1) ≤ h(wν) for all ν /∈ N , we can apply the above
estimate recursively yielding

h(wηi+1) ≤ h(wηi) + Lσ2iα2
−1

≤ h(wηi−1+1) + Lσ2iα2
−1

≤ h(wηi−1) + Lσ2(i−1)α2
−1 + Lσ2iα2

−1

≤ · · · ≤ h(wν0) + Lα2
−1

i∑

k=1

σ2k

≤ h(w0) +
Lα2

−1

1− σ2
=: C.

From ‖dηi‖M ≤ σiα−1 we know that dηi = d(ηi, d
ηi) → 0 and thus ∇h(wηi) → 0.

Hence Lemma 5.2 implies wηi → w∗ and wηi+
1
2 = wηi + dηi → w∗.

Now let wνi → w∗∗ be any convergent subsequence of wν with ν0 > η0 and define

η̃ν = max{η ∈ N : η < ν}.

Again using the monotonicity for ν ∈ N we get

h(w∗) ≤ h(wνi) ≤ · · · ≤ h(wη̃νi+1) ≤ h(wη̃νi+
1
2 ) → h(w∗)

yielding h(wνi) → h(w∗) = h(w∗∗). Uniqueness of the minimizer implies w∗∗ = w∗.
Since this holds for any convergent subsequence, and there is at least one such subse-
quence (namely wηi) we have shown wν → w∗.

We will see that an important example for directions satisfying the extra assumption
of Theorem 5.4 is given by

d(ν,wν) = −S−1
ν ∇h(wν)
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with symmetric positive definite matrices Sν that are bounded uniformly from above
and below with respect to ν. If such directions are evaluated inexactly one does in
general not know a priori if the inexact directions satisfy

d̃(ν, vν) → 0 ⇒ ∇h(wν) → 0.

In this case the following generalization of Theorem 5.4 can be used.

Corollary 5.2. Let d and ρ satisfy the assumptions of Theorem 5.4 and let d̃ satisfy
the assumptions of Proposition 5.2 with the accuracy condition (5.24), i.e.,

‖dν − d̃ν‖M ≤ c‖d̃ν‖M ∀ν ∈ N.

If ρ̃ν is computed by (5.32) and (5.33) for some α−1 > 0 and some σ ∈ (0, 1) with dν

replaced by d̃ν = d̃(ν,wν), then the iterates wν obtained by

wν+ 1
2 = wν + ρ̃ν d̃

ν ,

wν+1 = wν+ 1
2 + C(wν+ 1

2 ),

converge to w∗ for an arbitrary initial iterate w0 ∈ Rm.

Proof. By Proposition 5.2 the directions generated by d̃ are also gradient related. Fur-
thermore, the accuracy condition (5.24) implies

‖dν‖M ≤ ‖dν − d̃ν‖M + ‖d̃ν‖M ≤ (1 + c)‖d̃ν‖M .

Hence d̃(ν, vν) → 0 implies d(ν, vν) → 0 and thus ∇h(wν). Now Theorem 5.4 can be
applied with d replaced by d̃.

The above result does no longer hold if d̃ satisfies the assumptions of Proposition 5.2
with the accuracy condition (5.25) instead of (5.24), i.e.,

‖dν − d̃ν‖M ≤ c‖dν‖M ∀ν ∈ N.

In this case d̃(ν, vν) → 0 does not imply d(ν, vν) → 0. Hence we do no longer know if
∇h(wν) → 0 is implied.

5.3 Derivatives of the Nonlinear Schur Complement

The convergence speed of gradient-related descent algorithms depends heavily on the
selection of the descent directions dν . If h is C2 the directions

dν = −(∇2h(wν))−1∇h(wν) (5.34)

lead to a damped Newton method for the operator H = ∇h. If H is not differen-
tiable but Lipschitz continuous we want to define directions similar to (5.34), replacing
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(∇2h(wν)) by symmetric positive definite matrices S(wν) ∈ Rm,m that represent gen-
eralized linearizations of H at wν .

If not stated otherwise we assume for the rest of this chapter that (A5), (A8),
(A10) and (A11) are satisfied and that h and H = ∇h are given as in Theorem 5.1.
For the special case of a quadratic obstacle problem with additional linear constraint
such linearizations S(wν) were introduced by Gräser and Kornhuber [59]. There the
piecewise linearity of H in that case was used. Here we will generalize this approach
using piecewise smoothness of H instead.

5.3.1 Derivatives of F−1

Since H is a composition and sum of affine functions with F−1 the crucial part in
the derivation of linearizations of H are linearizations of F−1. In order to derive such
linearizations for F−1 we first look at the functionals ϕi. Again it will be helpful to
consider the limits ϕ′

i,−,ϕ′
i,+,ϕ′′

i,−,ϕ′′
i,+ from Lemma 4.2, which are essentially one-sided

first and second derivatives. In view of Lemma 4.3, ϕ′′
i will again denote one of the

one-sided second derivatives if they do not coincide, and ∞ if one of them is ∞.
As in the case of the nonlinear smoothers the linearization of F−1 will be defined

piecewise and the components i where ϕi lacks regularity need special care. Thus we
again use the inactive sets

I(v) := {i : ∂ϕi(vi) is single-valued}

defined in (4.24). For convenience we also define the corresponding active sets

A(v) := {1, . . . , n} \ I(v).

In order to extract a decomposition of Rn into nontrivial subsets where F−1 is smooth
we have to distinguish different active configurations. Since the functions ϕi may have
multiple points aki where they are not smooth, an active configuration is not completely
determined by the active set itself. To distinguish different configurations we also have
to take the values at the active component into account. The equivalence classes

[c] := {v ∈ domϕ : A(v) = A(c), vi = ci ∀i ∈ A(c)}

defined for c ∈ domϕ containing all vectors with the same active configuration provide
exactly this distinction. Hence we can address an active configuration by [c] for one
representative. By definition x and y have the same active configuration if and only if
[x] = [y] and hence the representative is obviously not unique. The set of all possible
active configurations is given by

A := {[c] : c ∈ domϕ}.

By Assumption (A8) the set A is finite and domϕ can be decomposed according to

domϕ =
⋃

[c]∈A

[c].
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Since F has a single-valued inverse we have domϕ ⊃ F−1(Rn) and thus Rn = F (domϕ)
can be decomposed according to

Rn =
⋃

[c]∈A

F ([c]), F ([c]) =
⋃

x∈[c]

F (x) = {y : F−1(y) ∈ [c]}

using the images of [c] under F . Note that in general domϕ ⊃ F−1(Rn) is a real
inclusion and equality does not hold. This is due to the possibility of ϕ′

i(xi) → ∞ for
xi → ami

i . In this case F (x) is even empty for all x ∈ domϕ with xi = ami

i .
We will define the linearization of F−1 piecewise on sets where the operator is

smooth. Thus we do not only need to handle the active components but also the
smoothness intervals (ak−1

i , aki ) the inactive components are contained in. To this end
it is convenient to first define the set E of all multi-indices needed to identify these
intervals by

E := {η ∈ Nn : 1 ≤ ηi ≤ mi}.

Now we can define the sets of all vectors corresponding to an active configuration
[c] ∈ A and the open and closed smoothness intervals η ∈ E by

[c]η := {x ∈ [c] : xi ∈ (aηi−1
i , aηii ) for i ∈ I(c)},

[[c]]η := {x ∈ [c] : xi ∈ [aηi−1
i , aηii ] for i ∈ I(c)}.

Both sets are (n − |I(c)|)-dimensional hypercubes. The set [[c]]η is in general only a
subset of [c]η since domϕi may not contain a0i and ami

i . These sets provide a decom-
position of [c] in the sense that

[c] =
⋃

η∈E

[[c]]η , [c] =
⋃

η∈E

[c]η.

Note that these decompositions are not disjoint in general.
If a linearization of F−1 is to be defined piecewise it is important that the sets where

it is defined do not degenerate to lower-dimensional objects or, equivalently, that active
configurations are stable in a certain sense. This is provided by the following lemma.

Lemma 5.4. Let [c] ∈ A with F (c) 6= ∅ and η ∈ E. Then

F ([[c]]η) ⊂ F ([c]η)◦ ⊂ intF ([[c]]η) 6= ∅

holds for the open set

F ([c]η)
◦ :=

{
y ∈ F ([c]η) :

{ y ∈ (∇J0(F−1(y)))i + int ∂ϕi(F
−1(y)i) ∀i ∈ A(c),

F−1(y)i ∈ (aηi−1
i , aηii ) ∀i ∈ I(c)

}
.

Proof. Let [c] ∈ A with F (c) 6= ∅ and η ∈ E . Since ∂ϕi(ci) is set-valued for i ∈ A(c),
an element of F ([c]η)◦ can easily be constructed, which shows that F ([c]η)◦ 6= ∅. Next
we show that F ([c]η)◦ is open.
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Let y ∈ F ([c]η)
◦, x = F−1(y) be fixed and x′ = F−1(y′) for some y′ with ‖y−y′‖∞ <

ǫ. By (A8) and continuity of F−1 we instantly get

x′i ∈ (aηi−1
i , aηii )

and thus A(x′) ⊂ A(x) if ǫ is small enough.
To show A(x′) ⊃ A(x) assume that x′I(x) is known and fixed. Then x′A(x) is the

unique solution of

F (x′I(x) + x′A(x))i ∋ y′i ∀i ∈ A(x). (5.35)

By continuity of F−1 and ∇J0 the residual defined by r(b, v) := b−∇J0(v) satisfies
∥∥∥r(y, x)− r(y′, x′I(x) + xA(x))

∥∥∥
∞
< max

{
dist

(
∂Px,i, r(y, x)i

)
: i ∈ A(x)

}

for the border ∂Px,i of the set Px,i = ∂ϕi(xi) if ǫ is small enough. In this case we
have r(y′, x′I(x) + xA(x)) ∈ int ∂ϕi(xi). Hence x′A(x) = xA(x) solves (5.35) which yields
A(x′) = A(x). Thus x′ ∈ [c]η and even more y′ ∈ F ([c]η)

◦. Since y was arbitrary,
F ([c]η)

◦ must be open and we have F ([c]η)◦ ⊂ intF ([[c]]η).
Now let y ∈ F ([[c]]η) \ F ([c])◦η with x = F−1(y) be fixed. Then it is easy to give a

sequence xk ∈ [c]η with xk → x. For the sequence

yk = ∇J0(xk) + (y −∇J0(x) + zk)A(c) + (∂ϕ(xk))I(c)

with

zki =
ǫ

k





1 if i ∈ A(c) and (y −∇J0(x))i = min ∂ϕi(ci),

−1 if i ∈ A(c) and (y −∇J0(x))i = max ∂ϕi(ci),

0 else

and ǫ small enough we have

(yk −∇J0(xk))i =
{
(y −∇J0(x) + zk)i ∈ int ∂ϕi(ci) if i ∈ A(c),

∂ϕi(x
k) if i ∈ I(c)

and hence xk = F−1(yk) and yk ∈ F ([c])◦η . Since ∇J0 is continuous and ϕi is continu-

ously differentiable on (aηi−1
i , aηi+1

i ) for i ∈ I(c) we have

yk → ∇J0(x) + (y −∇J0(x))A(c) + (∂ϕ(x))I(c) = y,

which proves the assertion.

Since [c] decomposes into the sets [[c]]η , Lemma 5.4 implies

F ([c]) ⊂ intF ([c]).

While this lemma shows that the sets F ([c]) do not degenerate it does not give insight
into their structure. The following remark sheds some light on the geometry of these
sets.
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Figure 5.2: Decomposition of domϕ ⊂ R2 into the sets [c], c ∈ A ⊂ R2.

Remark 5.2. Define the points where ϕi is not differentiable by

{ã0i , . . . , ãm̃i

i } := {a : ∂ϕi(a) is set-valued} ⊂ {a0i , . . . , ami

i }.

Then the configuration [c′] without active component, i.e. A(c′) = ∅, is clearly given
by the open set

[c′] =
n∏

i=1

m̃i⋃

k=1

(ãk−1
i , ãki ) =

⋃

(k1,...,kn)
1≤ki≤m̃i

n∏

i=1

(ãki−1
i , ãkii )

and a representative is, e.g., given by c′i = 1
2(ã

0
i + ã1i ). Note that [c′] is the union

of n-dimensional open hypercubes Q(k1,...,kn). If the arguments of Lemma 5.4 are ap-
plied with the indicator functions of these hypercubes instead of ϕ it can be seen that
∇J0(Q(k1,...,kn)) ⊂ int∇J0(Q(k1,...,kn)). Hence the images of the hypercubes under ∇J0
do not degenerate in the sense that all points are limits of sequences in their interior.

If at least one component of c is active the set [c] is the union of hypercubes Q with
dimension less then n, and hence no longer open in Rn. To be precise the length of these
hypercubes in any direction ei with i ∈ A(c) is zero. However, the set (∂ϕ([c]))A(c) is
a hypercube that has nonzero lengths exactly in the directions ei with i ∈ A(c).

Figure 5.2 and Figure 5.3 show an example of the decomposition of domϕ and R2

into the sets [c] ∈ A and F ([c]), respectively. For simplicity it is assumed that all aki
differ from 0, such that ci = 0 means that the i-th component is not active. While the
sets [c] are 1-dimensional edges or 0-dimensional vertices if one or two components of
c are active, the corresponding images F ([c]) of all such sets have a nontrivial interior.
Note that F ([c]) has a curved boundary in general but edges parallel to the i-th axis if
ci = ãki for some k. For example the set F ([(0, 0)]) of all F (x) such that ϕi is smooth
at xi for all i might have all edges curved. Conversely, the set F ([(a11, 0)]) of all F (x)
such that the first component is fixed to the kink a11 (and thus active) has two straight
edges parallel to the first axis. In case of a quadratic function J0 all F ([c]), [c] ∈ A,
are (possibly unbounded) parallelepipeds.
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Figure 5.3: Decomposition of R2 into the sets F ([c]), c ∈ A ⊂ R2.

In the following we will derive a generalized linearization of F−1 that is defined
piecewise on the sets F ([[c]]η). In order to do this we first investigate these sets further
by rewriting F in terms of a Lipschitz continuous and a diagonal operator.

Lemma 5.5. Let x ∈ domϕ. Then F can by represented by

F (x) =
[
(∇J0 − I) ◦ (I + ∂ϕ)−1 + I

]
︸ ︷︷ ︸

=:T

((I + ∂ϕ)(x)) .

The operator T is Lipschitz continuous.

Proof. Ix is the gradient of the convex functional 1
2‖ · ‖2 at x. By Proposition 4.1

the operator I + ∂ϕ has a single-valued Lipschitz continuous inverse which yields the
representation of F (x). By Assumption (A3) the operator ∇J0 and thus T is Lipschitz.

Lemma 5.6. Let [c] ∈ A with F (c) 6= ∅ and η ∈ E. Then

(I + ∂ϕ)([[c]]η) ⊂ Q(c, η)

with the nonempty open hypercubes Q(c, η) =
∏n

i=1Q(c, η, i) spanned by the open in-
tervals

Q(c, η, i) =

{
ci + int ∂ϕi(ci) if i ∈ A(c),

(aηi−1
i + ϕ′

i,+(a
ηi−1
i ), aηii + ϕ′

i,−(a
ηi
i )) if i ∈ I(c).

Proof. We only have to note that I + ∂ϕ is strictly and maximal monotone and that
aηi−1
i < aηii .
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5.3 Derivatives of the Nonlinear Schur Complement

Lemma 5.7. Let [c] ∈ A with F (c) 6= ∅ and η ∈ E. Then F ([[c]]η) \ F ([c]η)◦ is a set
of measure zero.

Proof. For i ∈ A(x) the set ∂ϕi(xi) is set-valued and convex. Hence its interior is not
empty. This and the fact that (1 + ∂ϕi(xi))

−1 is single-valued implies

xi = (1 + ∂ϕi)
−1(1 + ∂ϕ)(xi) = (1 + ∂ϕi)

−1(1 + int ∂ϕ)(xi).

Thus we get I = (I + ∂ϕ)−1(I + ∂̃ϕ) for

∂̃ϕi(xi) =

{
int ∂ϕi(xi) if i ∈ A(c),

∂ϕi(xi) if i ∈ I(c).

For y ∈ F ([[c]]η), x = F−1(y), and i ∈ A(c) we especially get

yi ∈ ∇J0(x)i + int ∂ϕi(xi) ⇔ yi ∈ T (I + ∂̃ϕ)(x)

with the operator T of Lemma 5.5. Using this and Lemma 5.6 we get

F ([c]η)
◦ = T (Q(c, η)), F ([[c]]η) = T (I + ∂ϕ)([[c]]η) ⊂ T (Q(c, η))

and thus

F ([[c]]η) \ F ([c]η)◦ ⊂ T (∂Q(c, η)). (5.36)

Since ∂Q(c, η) is the boundary of an open hypercube, its measure is zero. Together with
the Lipschitz continuity of T this yields that T (∂Q(c, η)) and thus F ([[c]]η) \ F ([c]η)◦
has also measure zero (see, e.g., [110, Lemma 2.3]).

The decomposition of Rm suggests to define linearizations of F−1 on each set F ([c]η)
or F ([[c]]η) separately. However, this is not completely straightforward due to possibly
unbounded derivatives at the boundaries of these sets. In view of Lemma 5.4 we thus
first derive linearizations on the open subsets F ([c]η)◦.

Consider the operator F−1 on the set F ([[c]]η) for some fixed [c] ∈ A with F (c) 6= ∅
and η ∈ E . On this set x = F−1y is equivalent to

xA(c) = cA(c) and F (cA(c) + xI(c))I(c)︸ ︷︷ ︸
=:Gc(xI(c))

= yI(c). (5.37)

Note that this is a real equation and not only an inclusion because the restriction of
F to the components i ∈ I is single-valued. The operator Gc is the restriction of
F to the inactive components in the configuration [[c]]η . Equation (5.37) for xI(c) is
equivalent to the restriction of the minimization problem associated with F to these
components. Since the smooth part of Gc, which incorporates ∇J0, also satisfies the
strong convexity (4.3) for u, v ∈ VI(c) = {x ∈ Rn : x = xI(c)}, the operator

Gc : ([[c]]η − cA(c)) → F ([[c]]η) ∩ VI(c)
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is invertible and F−1 can be written as

F−1(y) = G−1
c (yI(c)) + cA(c). (5.38)

By definition of the set F ([c]η)◦ we know that ϕi is twice continuously differentiable at
(F−1(y))i for y ∈ F ([c]η)

◦ and i ∈ I(c). Thus the restriction of G−1 on the set F ([c]η)◦

is differentiable. Having this representation it is also clear that for i ∈ A(c) the i-th
row and column of a linearization of F−1 should be zero, since F−1(y) is constants
in the i-th component and does not depend on the i-th component of its argument y.
The remaining entries are given by the derivative of G−1

c .
The following result for the case of a differentiable ∇J0 does even incorporate the case

ϕ′
i → ±∞ that was excluded until now by only considering the open subset F ([c]η)◦.

Theorem 5.5. Let J0 be twice continuously differentiable. Then an element of the
generalized derivative in the sense of Clarke at y = F (x) is given by the pseudoinverse
(∂2J(x)I′(x))

+ of the reduced Hessian ∂2J(x)I′(x) with the reduced inactive set I ′(x)
as defined in (4.25) and (4.34), respectively. I.e., we have

(
∂2J(x)I′(x)

)+
∈ ∂B(F

−1)(y) ⊂ ∂C(F
−1)(y). (5.39)

Furthermore, F−1 is differentiable on each set F ([c]η)◦ with [c] ∈ A and η ∈ E and the
derivative is given by the matrix (∂2J(x)I′(x))

+.

Proof. First we recall that the matrix ∂2J(x)I′(x) defined in (4.25) and (4.34) is well-
defined since for i ∈ I ′(x) the function ϕi is either twice continuously differentiable at
xi or the left and right one-sided second derivatives are finite.

Let [c] ∈ A, with F (c) 6= ∅ and η ∈ E be fixed and consider y ∈ F ([c]η)
◦ and

x = F−1(y). In view of (5.38) we investigate the operator

Gc(x) = II(c)F (cA(c) + II(c)x).

Gc is differentiable on [c]η and its classical derivative is given by

∇Gc(x) =
(
∇2J0(xI(c) + cA(c)) + ϕ′′(xI(c))

)
I(c)

.

Hence G−1
c : F ([c]η)

◦ → [c]η is also smooth. If we consider ∇Gc(x) as an operator from
VI(c) to VI(c) it is invertible and the matrix representing the inverse is given by

(
∇2J0(x)I′(x) + ϕ′′(x)I′(x)

)+
(5.40)

where we have used that I ′(x) = I(x) = I(c) due to x ∈ [c]η ⊂ [c]. Since F−1 and
G−1

c differ only by a constant F−1 is differentiable at y and the derivative is also given
by (5.40).

Now let y ∈ F ([c]) with x = F−1(y) such that y is not contained in any of the sets
F ([c]η)

◦. Then y ∈ F ([[c]]η) \ F ([c]η)◦ is still true for some η and by definition ϕi is
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once but not twice differentiable at xi for i ∈ I(c). Without loss of generality assume
that η is chosen such that for i ∈ I(c) = I(x)

ξk ∈ (aηi−1
i , aηii ), ξk → xi ⇒ ϕ′′

i (ξ
k) →

{
ϕ′′
i (xi) if i ∈ I ′(x),

∞ if i ∈ I(x) \ I ′(x)

holds true where ϕ′′
i (xi) is the one-sided derivative selected in (4.34). (Otherwise choose

the appropriate η′ by increasing or decreasing the corresponding indices ηi by one.)
As in the proof of Lemma 5.4 let (xk) be a sequence with xk ∈ [c]η and xk → x. By

the choice of η and the continuity of ϕ′′
i , i ∈ I(x) on [c]η this sequence can in particular

be chosen such that

ϕ′′
i (x

k
i ) = αk, ∀i ∈ I(x) \ I ′(x)

for a fixed constant α > 1. For this sequence construct yk ∈ F ([c]η)
◦ with xk = F−1(yk)

and yk → y as in the proof of Lemma 5.4 and define the sequence of matrices Mk by

Mk := ∇2J0(x
k)I(x) + ϕ′′(xk)I′(x) + I − II(x).

Then we have

Mk →M := ∇2J0(x)I(x) + ϕ′′(x)I′(x) + I − II(x).

Application of Lemma A.5 and Lemma A.6 in the appendix together with

I ′(xk) = I(xk) = I(x)

yields

lim
k→∞

[
∇2J0(x

k) + ϕ′′(xk)
]+
I′(xk)

= lim
k→∞

[
∇2J0(x

k) + ϕ′′(xk)
]+
I(x)

=

[
lim
k→∞

(
Mk + αkII(x)\I′(x)

)−1
]

I(x)

=
[(
MA(x)∪I′(x)

)+]
I(x)

=
(
∇2J0(x) + ϕ′′(x)

)+
I′(x)

.

This proves the assertion.

Note that the case |ϕ′
i(ξ

k)| → ∞ for ξk → xi is included in Theorem 5.5. It does
not need any special treatment since ∂ϕi(xi) and thus F (x) are empty in this case.

Theorem 5.6. Let J0 be twice continuously differentiable and let all ϕ′′
i be uniformly

bounded from above by a constant cϕ′′ where ∂ϕi is single-valued. Then there is a
constant c > 0 such that F−1 is strongly monotone with respect to the semi-norm
introduced by cII0 , i.e.

〈
F−1(u)− F−1(v), u − v

〉
≥ c 〈u− v, u− v〉I0 ∀u, v ∈ Rn, (5.41)
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where I0 is the smallest inactive set, i.e.

I0 :=
⋂

y∈Rn

I ′(F−1(y)) = N \ {i ∈ N : ∃ξ ∈ R : ∂ϕi(ξ) is set-valued} .

Proof. By Theorem 5.5 F−1 is differentiable on the open set

⋃

[c]∈A,η∈E

F ([c]η)
◦ ⊂ DF−1

and by Lemma 5.7

S := DF−1 \
⋃

[c]∈A,η∈E

F ([c]η)
◦ ⊂

⋃

[c]∈A,η∈E

F ([[c]]η) \ F ([c]η)◦

has measure zero. Since ϕ′′
i is bounded from above we have

〈
[∇2J0(x) + ϕ′′(x)]I′(x)vI′(x), vI′(x)

〉
≤ (λmax(HJ0) + cϕ′′)

〈
vI′(x), vI′(x)

〉

and thus the derivative of F−1 satisfies
〈(

∇2J0(x) + ϕ′′(x)
)+
I′(x)

v, v

〉
=

〈(
∇2J0(x) + ϕ′′(x)

)+
I′(x)

vI′(x), vI′(x)

〉

≥ (λmax(HJ0) + cϕ′′)−1
〈
vI′(x), vI′(x)

〉

≥ (λmax(HJ0) + cϕ′′)−1 〈vI0 , vI0〉

for y ∈ DF−1 \S and x = F−1(y). Now the application of Lemma A.3 in the appendix
to T = F−1 yields (5.41).

In the more general case ∇J0 is not differentiable. However, some kind of lineariza-
tion ∂2J0(x) of ∇J0 at x = F−1(y) is given by (A4). Hence we will use

(
∂2J(x)I′(x)

)+
=
(
∂2J0(x) + ϕ′′(x)

)+
I′(x)

as defined in (4.34) as linearization of F−1 at y in this case also.

5.3.2 Derivatives of H

If F−1 is a continuously differentiable operator we can easily derive a linearization of
the nonlinear Schur complement

H(w) = −BF−1(f −BTw) + Cw + g

using the chain rule. The result is

∇H(w) = B∇(F−1)(f −BTw)BT + C.
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If F itself is also differentiable we have ∇(F−1)(y) = (∇F )(F−1(y))−1 and ∇H(w) as
given above is just the Schur complement of the linear saddle point problem

u ∈ Rn, w ∈ Rm :

(
(∇F )(F−1(f −BTw0)) BT

B −C

)(
u
w

)
=

(
f
g

)
,

which is the linearization of the nonlinear saddle point problem (5.1) at (u0, w0)
T with

u0 = F−1(f −BT (w0)).
In the general case these derivatives do not exist. While F is not even a single-

valued operator we know from Propositions 4.1 and 5.1 that F−1 and H are Lipschitz
continuous. Thus one could in principle select elements of the generalized Jacobian

∂CH(w) = co ∂BH(w).

However, it will be complicated to compute elements of this set since the generalized
Jacobian ∂C does not satisfy the chain rule in general. Nevertheless we use a chain rule
to obtain a generalized linearization S(w) of H at w which is not necessarily an element
of ∂CH(w). Based on the linearization of F−1 derived in the previous subsection this
approach results in

S(w) := B
(
∂2J(u)I′(u)

)+
BT + C

as linearization of H at w with u = F−1(f −BTw).

Proposition 5.5. Let J0 be twice continuously differentiable and let rankB = n. Then

S(w) ∈ ∂BH(w) ⊂ ∂CH(w) ∀w ∈ Rm.

Proof. If rankB = n the mapping defined by G(w) = f − BTw is surjective. In the
proof of Theorem 5.5 the generalized derivative of F−1 was derived as a limit of classical
derivatives that are defined on disjoint open sets F ([c]η)◦ where F−1 is differentiable.
Furthermore, the space Rn can be decomposed according to

Rn =
⋃

[c]∈A,η∈E

F ([c]η)◦ =
⋃

[c]∈A,η∈E

F ([c]η)◦.

Since F−1 is differentiable on F ([c]η)◦ this is also true for F−1◦G andH onG−1(F ([c]η)
◦).

By the classical chain rule we have ∇H(w) = S(w) at w ∈ G−1(F ([c]η)
◦). Now let

w ∈ R :=
⋃

[c]∈A,η∈E

G−1(F ([c]η)◦).

Having only a finite number of sets F ([c]η)◦ we can, without loss of generality, assume
that there is a sequence wk → w with wk ∈ G−1(F ([c]η)

◦) for a single fixed set F ([c]η)◦.
Then we have S(w) = limk→∞ S(wk) ∈ ∂BH(w).

To complete the proof we assume that there is a w ∈ Rm \R. Then there is an open
ball Bǫ(w) such that Bǫ(w) ∩ G−1(F ([c]η)

◦) = ∅ for all c, η. By the open mapping
theorem (see, e.g., [108]) G(Bǫ(w)) is also open. Thus it must intersect at least one
F ([c]η)

◦ which contradicts the assumption and shows that Rm = R.

101



5 Schur Nonsmooth Newton Methods

Remark 5.3. While Proposition 5.5 seems to give a reasonable characterization of
S(w), the assumption rankB = n is quite restrictive for the following reason. If the
saddle point problem arises from a minimization problem with linear constraints we
have C = 0 in general, and a well posed problem will have m ≤ n linear constraints
only. Combined with rankB = n this results in B to be a regular square matrix and
hence u = B−1g.

The following example shows that the assertion of Proposition 5.5 is in general not
valid if rankB < n.

Example 5.2. For K = {x ∈ R2 : xi ≥ 0, i = 1, 2} consider the saddle point problem

(
F BT

B −C

)(
u
w

)
=



(
1 0
0 1

)
+ ∂χK

(
−1
1

)

(
−1 1

)
−1





u1
u2
w


 ∋



0
0
0


 =

(
f
g

)
.

Then we have (F−1(y))i = max{0, yi} and thus the nonlinear Schur complement is

H(w) = max{0, w} −max{0,−w} + w = 2w.

Hence ∇H(w) = 2 and ∂CH(w) = ∂BH(w) = {2}. On the other hand we have
S(w) = 2 for w 6= 0 but S(0) = 1.

This problem occurs since the line f − BTw crosses three domains where F−1 is
smooth. While these domains have a nonempty interior themselves the line intersects
the one leading to F−1(y) = 0 only at the single point y = 0 of its border. Thus the
preimage of this domain under f −BT (·) collapses to the single point w = 0.

5.4 Schur Nonsmooth Newton Methods

We now consider the algorithms obtained if a linearization of the nonlinear Schur
complement is used as preconditioner for search directions

dν = −S(wν)−1∇h(wν) (5.42)

in the general descent algorithms given by (5.10), or (5.12) and (5.13). Convergence
will follow from the convergence results for gradient-related descent methods.

5.4.1 Algorithms and Convergence

Before showing convergence of the algorithms we consider the solvability of the system

S(wν)dν = −∇h(wν).

We immediately get

〈S(w)x, y〉 =
〈(

∂2J(u)I′(u)

)+
BTx,BT y

〉
+ 〈Cx, y〉 , x, y ∈ Rm,
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for u = F−1(f −BTw). Hence by (A3), (A4), and (A10) the matrix S(w) is symmetric
and positive semidefinite. However we have no guarantee that it is invertible.

Even if this matrix is invertible it will often not be possible to solve the above
system directly, and the application of iterative schemes does in general involve mul-
tiplications by

[
∂2J0(u) + ϕ′′(u)

]+
I′(u)

. While this is in principle possible the possibly

large derivatives ϕ′′
i might prevent convergence. In order to overcome this problem

recall the definition

I ′′(v) := {i ∈ I ′(v) : ϕ′′
i (vi) < (Cϕ)i,i}

of the reduced inactive set introduced in (4.36) for a positive definite diagonal matrix
Cϕ ∈ Rm,m. The induced truncated linearization of H at w with u = F−1(f − BTw)
is given by

S′(w) := B
(
∂2J(u)I′′(u)

)+
BT + C.

This additional truncation of the matrix ensures that the diagonal elements of ∂2J(u)I′′(u)

remain bounded independently of ϕ′′(u). Note that this involves the same truncated
Hessian of J as already used for the TNNMG method in Corollary 4.3 and Corollary 4.4.

Independently of this truncation the matrix S′(w) may not be invertible. In the
most extreme case S′(w) = 0 if all components are active while the system results
from a constraint minimization problem, i.e. I ′′(u) = {1, . . . , n} and C = 0. Although
this does not happen in many application problems, it is not uncommon that S′(w)
has a nontrivial kernel.

Since the kernel of
[
∂2J0(u) + ϕ′′(u)

]
I′′(u)

and thus the kernel of S′(w) with u =

F−1(f −BTw) depends only on I ′′(u), the same is true for the orthogonal projection
Pker(S′(w)) : R

m → ker(S′(w)). Hence for a fixed symmetric positive definite matrix C̃
we can define the symmetric positive semidefinite matrix

C̃(I ′′(u)) := P T
ker(S′(w))C̃Pker(S′(w)) ∈ Rm,m,

and introduce the regularized linearization of H given by

S′′(w) := S′(w) + C̃(I ′′(u)).

If vw,1, . . . , vw,l is an orthonormal basis of ker(S′(w)) then it is easy to see that
Pker(S′(w)) and C̃(I ′′(u)) are given by

Pker(S′(w)) =

l∑

i=1

vw,iv
T
w,i, C̃(I ′′(u)) =

l∑

i,j=1

〈vw,i, vw,j〉C̃ vw,iv
T
w,j.

Lemma 5.8. S′′(w) is symmetric and positive definite for all w ∈ Rm.

Proof. Let x1, x2 ∈ Rm and x•i = Pker(S′(w))xi, x
◦
i = xi − x•i . Then symmetry and

definiteness follow from
〈
S′′(w)x1, x2

〉
=
〈
S′(w)x◦1, x

◦
2

〉
+
〈
C̃x•1, x

•
2

〉
.
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Theorem 5.7. The directions generated by d(ν,w) = −S′′(w)−1∇h(w) are gradient-
related and guarantee ∇h(vν) → 0 for any sequence vν ∈ Rm with d(ν, vν) → 0.

Proof. The equivalence d(ν,w) = 0 ⇔ ∇h(w) = 0 in (5.16) follows from the fact that
each S′′(w) is regular. To prove the estimate (5.17) let w ∈ Rm and define the reduced
space

VI := span{ei : i ∈ I} = {v ∈ Rn : v = vI} (5.43)

for any index set I . For u = F−1(f −BTw) we then have
〈
∂2J(u)I′′(u)v, v

〉
≤
〈
HJ0v, v

〉
+ 〈Cϕv, v〉

≤ λmax(HJ0 + Cϕ) 〈v, v〉 ∀v ∈ VI′′(u),

and
〈
∂2J(u)I′′(u)v, v

〉
≥
〈
HJ0v, v

〉

≥ λmin(HJ0) 〈v, v〉 ∀v ∈ VI′′(u).

Since the eigenvalues of ∂2J(u) = ∂2J0(u) + ϕ′′(u) restricted to the indices in I ′′(u)
are bounded, the same is true for the restricted inverse. Thus the following estimate
holds for all v ∈ Rn

λmax(HJ0 + Cϕ)
−1
〈
II′′(u)v, v

〉
≤
〈(

∂2J(u)I′′(u)

)+
v, v

〉

≤ λmin(HJ0)
−1
〈
II′′(u)v, v

〉

≤ λmin(HJ0)
−1 〈v, v〉 .

Using these estimates for S′′(w) we get for v ∈ Rm

min

{
1

λmax(HJ0 + Cϕ)
, 1

}〈(
BII′′(u)B

T + C + C̃(I ′′(u))
)
v, v
〉

≤
〈
S′′(w)v, v

〉
≤ max

{
1

λmin(HJ0)
, 1

}〈(
BBT + C + C̃(I ′′(u))

)
v, v
〉
.

Recalling that

ker(II′′(u)) = ker
(
∂2J(u)I′′(u)

)+

it is clear that the matrix on the left of the inequality is regular. Hence the matrices
S′′(w) are bounded

γI′′(u) 〈v, v〉 ≤
〈
S′′(w)v, v

〉
≤ ΓI′′(u) 〈v, v〉

with constants γI′′(u),ΓI′′(u) > 0 depending only on the inactive set I ′′(u). Using this
we get

〈
y, S′′(w)−1y

〉
≥ γI′′(u)‖S′′(w)−1y‖2 ≥

γI′′(u)

ΓI′′(u)
‖S′′(w)−1y‖‖v‖,
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and thus (5.17) with

cD = min
J⊂{1,...,n}

γJ
ΓJ

.

Finally we note that we get ∇h(vν) → 0 from

‖∇h(vν)‖ ≤ ‖S′′(vν)‖ ‖d(ν, vν)‖ ≤ max
J⊂{1,...,n}

ΓJ ‖d(ν, vν)‖

for any sequence vν with d(ν, vν) → 0.

While this proof allows to apply the generic convergence results to the descent
method obtained using the directions dν = −S′′(wν)−1∇h(wν) for the whole prob-
lem class, it is suboptimal in the following sense:

Since all estimates are derived for the Euclidean norm, the constant cD incorporates
the condition number of ∇2J0(u), which may be large for discretized partial differential
equations. For special cases it may be possible to derive much better estimates if a
suitable norm for w is used. However, such improvements would only be visible in the
convergence result of Theorem 5.3, since the more general result in Theorem 5.2 uses
a compactness argument that does not give bounds.

Corollary 5.3. Let w0 ∈ Rm. Then the sequence wν defined by

dν = −S′′(wν)−1∇h(wν),

wν+ 1
2 = wν + ρνdν ,

wν+1 = wν+ 1
2 + C(wν+ 1

2 )

converges to the solution w∗ of (5.7) if the step size rule ρν = ρ(ν,wν , dν) generates
efficient step sizes.

The same is true if dν is replaced by descent directions d̃ν such that ‖dν−d̃ν‖ satisfies
the accuracy condition (5.24) of Proposition 5.2 and if ρν is replaced by ρ̃ν in the sense
of Theorem 5.4.

Proof. From Theorem 5.7 and Proposition 5.2 it follows that we have gradient-related
descent directions. Thus we can apply Theorem 5.2 if ρν = ρ(ν,wν , dν) is chosen. If ρν

is replaced by ρ̃ν in the sense of Theorem 5.4 we only have to note that d(ν, vν) → 0
implies ∇h(vν) → 0, by Theorem 5.7.

The algorithm in Corollary 5.3 is essentially an inexact damped Newton-type method
for the operator H = ∇h. For C = 0 it takes the form

wν+1 = wν − ρνS′′(wν)−1H(wν)

with ρν = ρ(ν,wν ,−S′′(wν)−1∇h(wν)). Since S′′(w) plays the role of a generalized
linearization of the nonsmooth nonlinear Schur complement H at w we call this a
“Schur Nonsmooth Newton method”.
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Lemma 5.9. Let J0 be twice continuously differentiable and let all ϕ′′
i be uniformly

bounded from above by a constant cϕ′′ , whenever ∂ϕi is single-valued. Then h is strongly
convex if S(w) is symmetric positive definite for all w ∈ Rm.

Proof. Let w1, w2 ∈ Rn and xi = f −BTwi. By Theorem 5.6 we have for some c > 0

〈H(w1)−H(w2), w1 − w2〉
=
〈
F−1(x1)− F−1(x2), x1 − x2

〉
+ 〈w1 − w2, w1 − w2〉C

≥ c 〈x1 − x2, x1 − x2〉I0 + 〈w1 − w2, w1 −w2〉C
= 〈w1 − w2, w1 − w2〉BcII0B

T+C .

Now let x ∈ domϕ such that I(x) = I0 and y ∈ F (x). Then the kernels of (∂2J(u)I0)
+

and cII0 coincide. Thus the reduced Schur complement

BcII0B
T + C

must also be positive definite because S(w) is. Hence ∇h = H is strongly monotone
and h is strongly convex.

Corollary 5.4. Let J0, ϕ, S(w), and ρ satisfy the assumptions of Lemma 5.9 and
Corollary 5.3, and let (Cϕ)i > cϕ′′ . Then S(w) = S′(w) = S′′(w) holds true and the
method in Corollary 5.3 converges R-linearly.

The same is true if dν is replaced by descent directions d̃ν such that ‖dν−d̃ν‖ satisfies
the accuracy condition (5.24) of Proposition 5.2.

Proof. Combine Theorem 5.7, Lemma 5.9 and Theorem 5.3.

In general one would expect local superlinear convergence of a Newton-type method.
Unfortunately our preconditioners S′′(w) are in general not contained in ∂CH(w) for
the following reasons:

• As shown by Example 5.2 we may have S′(w) /∈ ∂CH(w) if rankB 6= n due to
the lack of a chain rule.

• If ∇J0 is not differentiable it may not be possible to choose ∂2J0(w) ∈ ∂C(∇J0(w)).
Even if this is possible the lack of a chain rule may lead to S′(w) /∈ ∂CH(w).

• In case of unbounded second derivatives of ϕ additional truncation is introduced.

• S′(w) may not be invertible and thus needs to be regularized.

In all of the above cases the classical convergence analysis of semismooth Newton
methods as introduced by Kummer [79], Pang [85], Qi and Sun [89] cannot be applied.
The remaining case is considered in the following proposition.
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5.4 Schur Nonsmooth Newton Methods

Proposition 5.6. Let J0, ϕ, and S(w) satisfy the assumptions of Lemma 5.9 and let
(Cϕ)i > cϕ′′ and rankB = n. Then S(w) = S′(w) = S′′(w) holds true and the sequence
wν defined by

wν+1 = wν − S′′(wν)−1∇h(wν) (5.44)

converges superlinearly to the solution w∗ of (5.7) if ‖w0 − w∗‖ is small enough.

Proof. By Proposition 5.5 we have

S′′(wν) = S(wν) ∈ ∂BH(wν) ∀ν ∈ N.

Hence the method (5.44) is a classical nonsmooth Newton method as introduced in [89].
Since the second derivatives ϕ′′

i are bounded on F ([c]η)
◦, each ϕ′′

i with i ∈ I(c) and
thus F−1 can be extended continuously differentiable to a larger open set containing
F ([c]η)◦. This guarantees that F−1 is piecewise smooth [106, Definition 2.19] and
semismooth [106, Proposition 2.26]. Thus the above method converges superlinearly
in a sufficiently small neighborhood (see [89, Theorem 3.2], [106, Proposition 2.12]).

This result is unsatisfactory not only because of the restrictive assumptions (cf.
Remark 5.3). It also does not give any information on the domain of convergence.

Proposition 5.7. Let the assumptions of Proposition 5.6 be satisfied and assume that
the solution w∗ of (5.2) satisfies the non-degeneracy condition

∃η∗ ∈ E : f −BTw∗ ∈ F ([u∗, η∗])◦ (5.45)

with u∗ = F−1(f − BTw∗). Then (5.44) reduces to a classical Newton method for H
in the open neighborhood

U := (f −BT (·))−1(F ([u∗, η∗])◦).

Analogously the method of Corollary 5.3 with C = 0 reduces to a damped classical
Newton method on U .

Proof. We only have to note that F−1 is differentiable on F ([u∗, η∗])◦ and that f−BT (·)
is continuous.

In view of Proposition 5.7 the result of Proposition 5.6 is almost useless. Provided
that the non-degeneracy condition on w∗ holds, one can simply apply the convergence
theory for classical smooth Newton methods in a small neighborhood U ′ contained in
U . Since Proposition 5.6 does not ensure that the domain of convergence is larger
than U ′ it does not give any additional information. If the inactive set I(u∗) of w∗

and the set F ([u∗, η∗])◦ are not known, then there is no hope that the local result can
be applied. Moreover the determination of I(u∗) and F ([u∗, η∗])◦ is generally not a
simpler task then solving the original problem.
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Remark 5.4. Although the convergence analysis only guarantees superlinear conver-
gence of the undamped version in a neighborhood of unknown size or, under the non-
degeneracy condition (5.45), in a neighborhood where H is smooth, the method does in
practice converge superlinearly on a much larger domain. While it is complicated to
choose parameters for the Armijo rule such that ρν → 1 and thus asymptotic coinci-
dence with an undamped Newton method is guaranteed, this is in general the case for
the bisection rule if ǫ is small enough.

To ensure this behavior theoretically, nonsmooth analogues of well-known affine-inva-
riant damping strategies (cf. Deuflhard [43]) are needed. The crucial part here is the
development of a local convergence theory which is robust with respect to different re-
gions of smoothness.

Remark 5.5. For certain problems, where F−1 maps L2 to L2 there are convergence
results of nonsmooth Newton methods in function spaces [64, 95, 96, 106]. Discrete
analogues of these methods are asymptotically robust since the function space conver-
gence theory does not rely on smooth regions.

In contrast it is not clear how to show robustness in discrete cases that lack a function
space analogue. The general problem is that continuous properties that hold on domains
with asymptotically vanishing measure, translate into properties that do not hold for any
discrete component asymptotically.

5.4.2 Computational Aspects

As already mentioned the terms h and ∇h = H are in general not explicitly available.
In order to obtain an efficient method it is crucial to have fast iterative schemes to
evaluate these quantities.

Before dealing with this problem we note that for C = 0 the Schur Nonsmooth
Newton method in Corollary 5.3 can equivalently written as

uν = F−1(f −BTwν), (5.46)

wν+1 = wν + ρν S′′(wν)−1(Buν − Cwν − g)︸ ︷︷ ︸
=:dν

(5.47)

with ρν = ρ(ν,wν , dν). This is a preconditioned Uzawa method for the original saddle
point problem (5.1). If F is a linear operator it reduces to the classical Uzawa method
and S′′(w) reduces to the linear Schur complement. In this case the preconditioned
method obviously terminates within one step. If F is associated with a quadratic
obstacle problem and the preconditioner is omitted standard convergence results for
Uzawa methods can be applied yielding even an a priori fixed interval of allowed step
sizes [55, 56].

The first substep amounts to the evaluation of F−1, which is equivalent to the
solution of the minimization problem

uν = argmin
u∈Rn

(
J(u)−

〈
f −BTwν , u

〉)
.
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Since the assumptions made for the TNNMG method in Chapter 4 are a subset of the
assumptions for the Schur Nonsmooth Newton method considered here this problem
can be solved using the TNNMG method provided that a proper hierarchy of subspaces
is given e.g. by a multigrid hierarchy in case of a discretized partial differential equation.

If the latter is not the case it is still possible to solve the reduced linear subproblems
inexactly using other iterative methods like the preconditioned conjugate gradients
method. While even the exact solution of the linear subproblems using a direct sparse
solver (see, e.g., [39, 42]) is possible this will in general lead to an overall algorithm of
suboptimal algorithmic complexity. Since the matrix is positive definite on an explicitly
known subspace another alternative is to use an algebraic multigrid approach (see, e.g.,
[92]) to construct subspaces from the matrix only.

In the special case of a quadratic obstacle problem there are also various other
methods [36, 54, 64] especially of multigrid or domain decomposition type [5, 6, 69,
80, 104]. For a comparison of the latter we refer to [58]. While some of those methods
are restricted to the quadratic obstacle problem the methods in [5, 6, 54] can also be
applied in case of a nonquadratic J0 and the method in [69] has been extended to
piecewise smooth ϕ [75].

The evaluation of F−1 is also needed if h or ∇h have to be evaluated in order to
compute ρν using a step size rule like the Armijo rule or bisection as discussed in
Section 5.2.3. This leads to multiple evaluations of F−1 per iteration step in general.
If this is expensive it may be advantageous to adaptively switch off the step rule using
the criterion (5.33) of Theorem 5.4. In view of the interpretation of the method as a
Newton-type method one can hope that the norms of the directions decrease for good
initial iterates. In this case the step rule will not be switched on only one evaluation
of F−1 remains. However, the adaptive criterion (5.33) ensures that the method does
still converge globally if this is not the case.

The second substep (5.47) involves the evaluation of S′′(wν)−1. It can be written as
the linear saddle point problem

uν ∈ Rn, dν ∈ Rm :

(
Aν (Bν)T

Bν −Cν

)(
uν

dν

)
=

(
0
gν

)
(5.48)

with

Aν =
(
∂2J0(u) + ϕ′′(u)

)
I′′(uν)

,

Bν = BN,I′′(uν),

Cν = C + C̃(I ′′(uν)),

gν = ∇h(wν) = g + Cwν −Buν ,

for an auxiliary variable uν . Since Aν represents a linearization of F = ∂J on the
reduced space

VI′′(uν) = span{ei : i ∈ I ′′(uν)} = Rn/ kerAν , (5.49)
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this system can be regarded as a regularized linearization of the saddle point problem
(5.1) on the reduced space VI′′(uν)×Rm. By construction the linear Schur complement
of (5.48) is given by

S′′(wν) = B(Aν)+BT + C + C̃(I ′′(uν)) = Bν(Aν)+(Bν)T + C + C̃(I ′′(uν)).

Proposition 5.8. The linear saddle point problem (5.48) has a unique solution (uν , dν) ∈
VI′′(uν) × Rm given by dν = −S′′(wν)−1gν and uν = −(Aν)+(Bν)Tdν . The solutions
of (5.48) in Rn × Rm are given by (uν + vν , dν) ∈ Rn × Rm with vν ∈ V ⊥

I′′(uν) = {v ∈
Rn : v = vI′′(uν)} = kerAν .

Proof. Replace Aν by Aν + I − II′′(uν) and the right hand side of the first equation by
v with v ∈ V ⊥

I′′(uν). Then a simple block elimination yields that (uν +v, dν) ∈ Rn×Rm

with (uν , dν) as given above is the unique solution of this modified system. Now
Lemma A.5 together with the invariance of the original system under modifications
uν + v with v ∈ kerAν provide the assertion.

In view of this result the solution of (5.48) can either be obtained by considering
the system on the subspace VI′′(uν) × Rm = (Rn/ kerAν)× Rm only or by adding the
orthogonal projection onto the kernel given by PkerAν = I − II′′(uν) = IN\I′′(uν) to Aν

in order to make the part of uν in V ⊥
I′′(uν) unique.

While there are general methods to solve the nonlinear convex minimization problems
associated with F−1 the situation looks different for the linear saddle point problem.
Since the problem is linear and symmetric it is possible to use a direct solver or Krylov
methods like GMRES [93] or MINRES [84]. Due to the indefinite matrix there is no
general multigrid method. However, there are multigrid methods that work well in
special cases. Some of those methods require the saddle point problem to be related
to a quadratic minimization problem with linear constraints, i.e. Cν = 0. Since this
does not hold in general for the subproblems (5.48) we note that they can also be
reformulated in the following way.

Proposition 5.9. The linear saddle point problem (5.48) is equivalent to the saddle
point problem

uν ∈ Rn, dν0 ∈ Rm, dν ∈ Rm :



Aν 0 (Bν)T

0 Cν −Cν

Bν −Cν 0





uν

dν0
dν


 =




0
0
gν


 (5.50)

in the sense that (uν , dν0 , d
ν) is a solution of (5.50) iff (uν , dν) is a solution of (5.48)

and Cdν0 = Cdν . The solutions of (5.50) are unique in VI′′(uν) × (Rm/ kerC) × Rm

and the Schur complement is given by S′′(wν).

Again we can construct a system that is uniquely solvable in Rn × Rm × Rm by
adding PkerAν to Aν and PkerCν to the appearance of Cν on the diagonal of (5.50)
without changing the part of the solution in VI′′(uν) × (Rm/ kerC)× Rm.

110



5.4 Schur Nonsmooth Newton Methods

One class of multigrid methods for systems of the form (5.50) uses the smoother by
Braess and Sarazin [21]. Each application of this smoother incorporates the solution
of a linear problem for (Bν − Cν)((Bν)T − Cν)T . While this reduces to a discretized
second order elliptic problem for the Stokes problem it is not appropriate if Bν or Cν

themselves result from a second order differential operator.
Another approach is to construct a smoother by successively solutving small local

saddle point problems that couple only a few primal and dual unknowns in a so-
called patch. Such smoothers were introduced by Vanka [107] for the Navier–Stokes
equations. For the case of a parallel solution of the local problems, i.e. block Jacobi
patch smoothers, convergence results were established by Zulehner [116, 117], Schöberl
and Zulehner [98], and Simon and Zulehner [101].

Since the Schur Nonsmooth Newton method is robust with respect to inexact eval-
uation of dν = −S′′(wν)−1∇h(wν) it is in general only necessary to solve the linear
saddle point problem (5.48) inexactly. Furthermore, the method does still converge if
S′′(wν) is replaced by S′′(w̃ν) for some approximation w̃ν of wν , due to the uniform
boundedness of S′′(w) with respect to w. Noting that S′′(w) does, in fact, only depend
on u = F−1(f −GTw) this allows to replace S′′(wν) by

S′′(w̃ν) = B
(
∂2J0(ũ

ν) + ϕ′′(ũν)
)+
I′′(ũν)

BT +C + C̃(I ′′(ũν))

for any approximation ũν of uν . Defining

dν = −S′′(w̃ν)−1 (g + Cwν −Buν)︸ ︷︷ ︸
=∇h(wν)

, d̃ν = −S′′(w̃ν)−1 (g + Cwν −Bũν)︸ ︷︷ ︸
∇̃h(wν)

+ǫν

we know from Proposition 5.2 that the Schur Nonsmooth Newton method of Corol-
lory 5.3 converges as long as

‖dν − d̃ν‖M
‖d̃ν‖M

≤ ‖S′′(w̃ν)−1‖‖B(uν − ũν)‖M−1

‖d̃ν‖M
+

‖ǫν‖M
‖d̃ν‖M

→ 0.

While convergence of the second term can be monitored if an estimator for the algebraic
error during the linear saddle point solver is available convergence of the first term
cannot be guaranteed a priori since d̃ν is computed after ũν . However, it can be checked
a posteriori. If the tolerance for the computation of ũν ≈ uν is chosen reasonably a
recomputation of a better ũν will rarely be necessary. It is even possible to directly
check whether

−
〈
∇̃h(wν), d̃ν

〉
≥ c̃D‖∇̃h(wν)‖M−1‖d̃ν‖M

holds for some fixed guess c̃D as long as the following terms tend to zero
∥∥∥∥∥

∇h(wν)

‖∇h(wν)‖M−1

− ∇̃h(wν)

‖ ˜∇h(wν)‖M−1

∥∥∥∥∥
M−1

≤ 2
‖∇h(wν)− ∇̃h(wν)‖M−1

‖∇̃h(wν)‖M−1

= 2
‖B(uν − ũν)‖M−1

‖g + Cwν −Bũν‖M−1

→ 0.
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In the special case that the energy J is related to a quadratic obstacle problem as in
Example 4.1 the matrices in (5.48) only depend on the inactive set I ′′(uν) = I ′(uν) =
I(uν). The only dependency on uν = F−1(f−BTwν) appears in the right hand side of
this system. Due to the special structure of F−1 it can be eliminated in the following
way.

Proposition 5.10. Let J0 satisfy (A6) and ϕ be given as in Example 4.1. Then the
unique solution (ũν , w̃ν) ∈ VI′′(uν) × Rm of the linear saddle point problem

(
Aν (Bν)T

Bν −Cν

)(
ũν

w̃ν

)
=

(
(f − b−AuνA(uν ))I(uν)

g −BuνA(uν) − C̃(I(uν))wν

)
(5.51)

satisfies

dν = −S′′(wν)−1∇h(wν) = w̃ν − wn.

Proof. First we note that the solution is unique by the arguments in Proposition 5.8.
From the variational inequality (4.9) we instantly get that uν = F−1(f − BTwν)
satisfies

Aνuν + (AuνA(uν ))I(uν) = (Auν)I(uν) = (f + b−BTwν)I(uν).

Hence uνI(uν) is given by

uνI(uν) = (Aν)+
(
f + b−BTwν −AuνA(uν )

)
.

Now let dν = −S′′(wν)−1∇h(wν) and w̃ν = wν + dν . Then

S′′(wν)w̃ν = (B(Aν)+BT + C + C̃(I(uν)))wν −∇h(wν)

= B(Aν)+BTwν +BuνI(uν) −
(
g −BuνA(uν) − C̃(I(uν))wν

)

= B(Aν)+
(
f + b−AuνA(uν)

)
I(uν)

−
(
g −BuνA(uν) − C̃(I(uν))wν

)
.

Thus w̃ν = wν + dν is the second component of the solution of (5.51).

By Proposition 5.10 it is sufficient to know the inactive set I(uν) and the values
of uν in the active components A(uν) in order to compute the direction dν . This is
because the obstacle problem associated with F−1 reduces to a linear problem for the
inactive components. This linear problem for uνI(uν) is incorporated in the linear saddle
point problem by a modified right hand side while the structure of the linear saddle
point problem given by the matrices remains the same. Since the computation of the
active components is in general cheaper than the solution of the whole minimization
problem this allows to improve the performance of the algorithm. If the problem is
non-degenerate in the sense that

∃ην ∈ E : f −BTwν ∈ F ([uν , ην ])◦ (5.52)

many iterative methods like, e.g., the Gauß–Seidel method even detect the active com-
ponents after a finite number of steps [72].
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5.4 Schur Nonsmooth Newton Methods

5.4.3 Relation to Primal–Dual Active Set Methods

The primal–dual active set method introduced in Section 4.2.6 was first stated for
quadratic obstacle problems without linear constraints. However, it is often also applied
to problems with additional linear constraints Bu = g having the special structure that
B decomposes according to

(
B1 B2

)
= B,

with a regular matrix B2 ∈ Rm,m. This structure implies that the linear constraint
can be eliminated by explicit restriction to the subspace where Bu = g holds.

Besides this decomposition we will assume in this subsection that C = 0 holds and
that J results from a quadratic obstacle problem as in Example 4.1 without lower
obstacle, i.e. ψ = −∞, and without any obstacle in the i-th components with i > n1 =
n−m > 0. If we also split u∗, f , A and the convex set

K = K1 × Rm = {u1 ∈ Rn1 : u1 ≤ ψ1} × Rm

according to the splitting of B the saddle point problem (5.1) takes the form

u∗1 ∈ Rn1

u∗2 ∈ Rm

w∗ ∈ Rm
:



A11 + ∂χK1 A12 BT

1

A21 A22 BT
2

B1 B2 0





u∗1
u∗2
w∗


 ∋



f1
f2
g


 . (5.53)

Under the above assumptions we then have u∗2 = B−1
2 (g −B1u

∗
1).

Lemma 5.10. The saddle point problem (5.53) is equivalent to the box-constrained
quadratic minimization problem

u1 ∈ Rn1 : J̃(u1) ≤ J̃(v) ∀v ∈ Rn1 (5.54)

where J̃ is given by

J̃(v) = J(v,B−1
2 (g −B1v)) =

1

2
〈Mv, v〉 − 〈b, v〉 + χK1(v),

with the symmetric positive definite matrix

M = A11 − (A12B
−1
2 B1)− (A12B

−1
2 B1)

T + (B−1
2 B1)

TA22(B
−1
2 B1)

and the right hand side

b = f1 − (B−1
2 B1)

T (f2 −A22B
−1
2 g)−A12B

−1
2 g.

Proof. Since (5.53) is equivalent to the minimization of J on the affine subspace where
Bu = g holds the equivalence follows directly from the fact that J̃ represents the
restriction of J to this subspace. The representations ofM and b follow from elementary
computations. Symmetry and definiteness of M follow from symmetry and definiteness
of A.
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Proposition 5.11. The primal–dual active set method for the minimization problem
(5.54) is equivalent to



A11 A12 BT

1

A21 A22 BT
2

B1 B2 0





uν+1
1

uν+1
2

wν+1


 =



f1 − λν+1

f2
g


 , (5.55)

(uν+1
1 )Aν = (ψ1)Aν , (5.56)

(λν+1)Iν = 0, (5.57)

with the active set Aν = {i : (λν + c(uν1 −ψ1))i > 0} and the inactive set Iν = N \Aν .

Proof. Let (uν1 , λ
ν) be the iterates produced by the primal–dual active set method

(4.44) and (4.45) for the minimization problem (5.54). Define the variables

uν2 := B−1
2 (g −B1u

ν
1),

wν := B−T
2 (f2 −A21u

ν
1 −A22u

ν
2).

Then the second and third equation in (5.55) hold and from (4.45) we get

−λν+1 =Muν+1
1 − b

= A11u
ν+1
1 − f1 +A12B

−1
2 (g −B1u

ν+1
1 )

+BT
1 B

−T
2

[
f2 −A21u

ν+1
1 −A22B

−1
2 (g −B1u

ν+1
1 )

]

= A11u
ν+1
1 +A12u

ν+1
2 +BT

1 w
ν+1 − f1.

Thus (5.55) is equivalent to (4.45).

The system (5.55) still couples uν+1 and λν+1. Due to its special structure we can
eliminate λν+1.

Proposition 5.12. The primal–dual active set method for the minimization problem
(5.54) is equivalent to

(
AIν (BN,Iν )

T

BN,Iν 0

)(
uν+1

wν+1

)
=

(
(f −AψAν

)Iν
g −BψAν

)
, (5.58)

uν+1
Aν

= ψAν
(5.59)

with uν = (uν1 , u
ν
2), the active sets A0 = {i : (λ0 + c(u01 − ψ1))i > 0} and

Aν = {i : (f −Auν −BTwν + c(uν − ψ))i > 0},

and the inactive sets Iν = N \ Aν .

Proof. We start by assuming that the iterates are given by the primal–dual active set
method in the form of Proposition 5.11. Using uν+1

Aν
= ψAν

we get the splitting

(Auν+1)Iν = AIνu
ν+1 +AIν ,Aνψ = AIνu

ν+1 + (AψAν
)Iν .
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Thus the first equation in (5.58) is just the restriction of the first two equations in
(5.55) to the indices in Iν . The splitting

Buν = BN,Iνu
ν+1 +BN,AνψAν

= BN,Iνu
ν+1 +BψAν

implies the second equation. For the opposite direction we only need to note that the
first equation in (5.58) implies (5.57) with

λν = f1 −A11u
ν
1 −A12u

ν
2 −BT

1 w
ν .

Theorem 5.8. The primal–dual active set method for the minimization problem (5.54)
is equivalent to

wν+1 = wν − (BA+
Iν
BT )−1(g −Buν) (5.60)

with arbitrary w0 ∈ Rm, uν given by

uνAν
= ψAν

, uνIν = A+
Iν
(f −AψAν

−BTwν)

and Aν and Iν as defined in Proposition 5.12.

Proof. By definition of uν we have

AIνu
ν
Iν = (f −AψAν

−BTwν)Iν ,

BψAν
+BN,Iνu

ν = BψAν
+BuνIν = Buν .

Using this and Proposition 5.12 we get

(
AIν (BN,Iν )

T

BN,Iν 0

)(
uν+1 − uν

wν+1 − wν

)
=

(
0

g −Buν

)
.

Now (5.60) follows from block elimination.

This formulation of the primal–dual active set method looks very similar to the
Schur Nonsmooth Newton method. The question is if the sets of inactive indices of both
methods coincide and if uν = F−1(f−BTwν) is true. In fact if Iν = I(F−1(f−BTwν))
is true then uν takes the same values as F−1(f − BTwν) for the active indices in Aν

and solves the same linear equation for the inactive indices in Iν as F−1(f − BTwν).
Hence in this case the method reduces to

wν+1 = wν − (BA+
Iν
BT )−1∇h(wν)

which is the undamped version of the Schur Nonsmooth Newton method. However, it
is in general not true that the inactive sets coincide. An important special case where
the active sets almost do coincide is given in the following theorem.
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Theorem 5.9. Assume that A is diagonal in the first n1 lines and columns, i.e. A11

is diagonal and A12 = 0 = A21. Then for ν ≥ 1 the primal–dual active set method for
the minimization problem (5.54) is equivalent to

wν+1 = wν − (BA+
Iν
BT )−1∇h(wν)

for an arbitrary w0 ∈ Rm and the inactive set

Iν = I(F−1(f −BTwν)) ∪ {i : (F−1(f −BTwν))i = A−1
ii (f −BTwν)}.

Proof. Let ν ≥ 1 and i ∈ Aν ⊂ {1, . . . , n1}. Then either i ∈ Aν∩Aν−1 or i ∈ Aν \Aν−1

and hence one of the following conditions

(uν − ψ)i = 0, or (f −BTwν)i −Aiiu
ν
i = 0, (5.61)

is true, where Aii now denotes the i-th diagonal entry of A. For the second condition
we used the representation

λνi = (f −Auν −BTwν)i = (f −BTwν)i −Aiiu
ν
i

of the active components of the residual λν which follows directly from the assumptions
on A. By (5.61) we instantly get

i ∈ Aν ⇔ i ∈ Aν ∩ Aν−1 or i ∈ Aν \ Aν−1

⇔ λνi > 0 or (uν − ψ)i > 0

⇔ A−1
ii λ

ν
i > 0 or (uν − ψ)i > 0.

Again by (5.61) λνi > 0 is equivalent to

A−1
ii (f −BTwν)i − uνi = A−1

ii λ
ν
i > 0 = (ψ − uν)i

and (uν − ψ)i > 0 is equivalent to

A−1
ii (f −BTwν)i − uνi = 0 > (ψ − uν)i.

Hence i ∈ Aν is equivalent to

A−1
ii (f −BTwν)i > ψi

where either the right hand side or the left-hand side is equals uνi . Thus the inactive
set is given by

Iν = I(F−1(f −BTwν)) ∪ {i : (F−1(f −BTwν))i = A−1
ii (f −BTwν)}.

Now it is clear that F−1(f −BTwν) satisfies

(F−1(f −BTwν))Aν = ψAν
,

(F−1(f −BTwν))Iν = A+
Iν
(f −BTwν)

which implies uν = F−1(f −BTwν) and g −Buν = ∇h(wν).
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In the case covered by Theorem 5.9 the primal–dual active set method almost coin-
cides with the Schur Newton method. The only difference is the enlarged inactive set
which also incorporates the indices i satisfying

(F−1(f −BTwν))i = A−1
ii (f −BTwν).

These are the indices where strict complementarity does not hold, i.e., the solution of
the local unconstrained problems coincides with the obstacle. This set will in general
be small. If the selection of the active set in the primal–dual active set method is
modified according to

Ãν = {i : λνi + c(uνi − ψi) ≥ 0},

as already done in Theorem 4.5, this difference also disappears. Hence, if A and B have
the desired special structure, the Schur Nonsmooth Newton method can be regarded as
a natural globalization of the primal–dual active set method. This was first discovered
in [57] for the special case of an optimal control problem for a partial differential
equation with control constraints and an L2 regularization for the control.
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6 Adaptive Numerical Solution of

Nonlinear Saddle Point Problems

We have already introduced spatial discretizations for the time discrete Cahn–Hilliard
equation on a given grid in Chapter 3 and algebraic solvers for the efficient solution of
the obtained algebraic saddle point problems in Chapter 5. This chapter is dedicated
to the adaptive numerical solution of the time discrete problems.

First we describe a local error indicator and a refinement strategy used to construct
locally adaptive grids for the solution of nonlinear saddle point problems. Then we
discuss implementation techniques and data structures needed for the spatial problems
resulting from time discretization of an evolution problem.

6.1 Hierarchical Error Estimation for Nonlinear Saddle

Point Problems

In Section 3.4 we introduced Rothe’s method for the discretization of the Cahn–Hilliard
equation from Chapter 2. The approach allows for time-dependent adaptive grids. This
section will deal with the construction of these grids using hierarchical a posteriori error
estimators.

Hierarchical error estimators for finite element discretizations were first introduced
by Deuflhard et al. [45] and Zienkiewicz et al. [114]. The main idea is to extend the
ansatz space and to estimate the error using the difference of the current approximation
to an approximation in the extended space. For linear problems proper hierarchical
preconditioning allows to compute an improved approximation in the extended space
by local defect problems. The resulting local contributions can then be used as error
indicators for adaptive grid refinement. For an overview we refer to the monograph of
Ainsworth and Oden [1]. For linear symmetric problems local lower bounds can typi-
cally be shown without any unknown constants while upper bounds were established
using local equivalence to residual estimators by [47] (see also [19]).

Due to their robustness and simplicity hierarchical error estimators are interesting
for nonsmooth nonlinear problems. They have successively been applied to elliptic
obstacle problems [66, 78, 100, 115] and nonsmooth convex minimization problems
[61, 70, 94]. The application to quadratic saddle point problems with a superposition
operator originating from the Cahn–Hilliard equation has been discussed in [61]. In the
following we will present an extension that can be applied to time discrete anisotropic
Cahn–Hilliard equations with logarithmic or obstacle potential.

Let J0 : H1(Ω) → R be a strongly convex differentiable functional with F = ∇J0,
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6 Adaptive Numerical Solution of Nonlinear Saddle Point Problems

and ψ : H1(Ω) → R ∪ {∞} the convex, proper, and lower semicontinuous functional
given by

ψ(v) :=

∫

Ω
Ψ(v(x)) dx, Ψ : R → R ∪ {∞},

for a convex, proper, and lower semicontinuous functional Ψ. Furthermore, let b :
H1(Ω) × H1(Ω) → R be a symmetric bilinear form, c : H1(Ω) × H1(Ω) → R a
symmetric positive semidefinite bilinear form, and f, g ∈ L2(Ω) given right hand side
functions. For these quantities consider the general saddle point problem:

Problem 6.1. Find (u,w) ∈ H1(Ω)×H1(Ω) such that

〈F(u), v − u〉+ ψ(v) − ψ(u) + b(v − u,w) ≥ (f, v − u) ∀v ∈ H1(Ω),

b(u, v) − c(w, v) = (g, v) ∀v ∈ H1(Ω).

We will derive a hierarchical a posteriori error estimator for a given finite element
discretization of this continuous problem. To this end let (T0, . . . ,Tj) be a grid hi-
erarchy obtained by successive local refinement of a conforming initial grid T0 and
S(T ) the space of conforming first-order finite element functions on the leaf grid
T = L(T0, . . . ,Tj). Furthermore, we assume that elements are always refined such
that new nodes are only introduced at the midpoints of adjacent edges. Analogously
to Chapter 3 we use the discrete approximation

ψT (v) = (Ψ(v), 1)T =
∑

p∈N (T )\H(T )

Ψ(v(p))

∫

Ω
λp(x) dx

of the nonlinearity ψ on S(T ) obtained by lumping. This leads to the discretization:

Problem 6.2. Find (uT , wT ) ∈ S(T )× S(T ) such that
〈
F(uT ), v − uT

〉
+ ψT (v)− ψT (uT ) + b(v − uT , wT ) ≥

(
f, v − uT

)
∀v ∈ S(T ),

b(uT , v)− c(wT , v) = (g, v) ∀v ∈ S(T ).

While the space of conforming piecewise quadratic finite elements is often chosen
as extended space for linear problems, it leads to instabilities if it is used for obstacle
problems [54, 78]. For this reason we select the space of piecewise linear finite elements
on a globally refined grid as extended space. More precisely let T ′ be a triangulation
obtained by introducing new nodes at all edge midpoints and refining each element
τ ∈ T into 2d new simplices.

Ideally we could solve the saddle point problem in the extended space S(T ′) obtaining
approximations (uT

′
, wT ′

) and estimate the error by

‖uT − u‖1 + ‖wT − w‖1 ≤ ‖uT − uT
′‖1 + ‖wT − wT ′‖1 + ‖u− uT

′‖1 + ‖w − wT ′‖1.

If the approximation in S(T ′) is sufficiently better than the one in S(T ) the term
‖uT − uT

′‖1 + ‖wT − wT ′‖1 can be used as error estimate. This condition is known
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as saturation assumption. Unfortunately the computation of uT
′
, wT ′ ∈ S(T ′) is very

expensive since it involves the solution of a nonlinear saddle point problem with the
same algebraic structure but about 2d times as many unknowns. In order to derive a
cheaper estimate we first split the extended space by introducing a proper incremental
space V.

Theorem 6.1. The space Q = S(T ′) can be split as Q = S(T )⊕V with the incremental
space V := spanBV for the linearly independent set BV defined by

BV :=
{
λT

′

p ∈ B(T ′) | p ∈ N V
}
, N V :=

(
N (T ′) \ H(T ′)

)
\
(
N (T ) \ H(T )

)
.

Proof. First we note that, due to the restriction of new nodes to edge midpoints, T ′ is
also the leaf grid of a grid hierarchy (T0,T ′

1 ,T ′
2 , . . . ,T ′

j+1) with Ti ⊂ T ′
i for 0 < i ≤ j.

Hence by Lemma 3.4, Lemma 3.3, and Theorem 3.1 we have

spanB(T ) = S(T ) ⊂ S(T ′) = spanB(T ′).

Since BV ⊂ B(T ′) we know that BV is linear independent. Furthermore, by N (T ) \
H(T ) ⊂ N (T ′) \ H(T ′) no λ ∈ BV can be spanned by B(T ). Hence we have shown
that S(T )⊕ V ⊂ S(T ′).

To see that we even have equality let v ∈ S(T ′) and define vT = IT v ∈ S(T ) as the
linear interpolation in S(T ) and vV = v − vT ∈ S(T ′). Then by definition we have
vV(p) = 0 for all p ∈ [N (T ′) \ H(T ′)] \ N V and thus vV ∈ V.

Note that for each p ∈ N V we either have p /∈ N (T ) or p ∈ H(T ) \ H(T ′). In the
first case p is a new node in T ′ and thus placed at an edge mid point of T . In the latter
case p is a hanging node in T but no longer in T ′. Thus there must be an element
τ ∈ T such that p is on an edge of τ but a vertex of some element in {τ ′ ∈ T ′ | τ ′ ⊂ τ}
and thus also the midpoint of an edge in T . Hence N V is the set of all edge midpoints
in T that are not hanging nodes in T ′.

For the extension by piecewise quadratic finite elements the incremental space is
given by the span of the so-called quadratic edge bubble-functions associated to the
edges in T . In V these are just replaced by the piecewise linear edge bubble functions
associated to the edges in T .

In order to simplify the problem that has to be solved for the error estimator we
recall the procedure for a symmetric linear elliptic problem

u ∈ H1(Ω) : a(u, v) = l(v) v ∈ H1(Ω). (6.1)

Assume that uT is the approximation in S(T ) given by

uT ∈ S(T ) : a(uT , v) = l(v) v ∈ S(T ).

Then we compute the solution uQ = uT + (uQ − uT ) in the extended space by solving
the defect problem

uQ ∈ Q : a(uQ − uT , v) = l(v)− a(uT , v) v ∈ Q.
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The problem is localized by replacing the bilinear form a(·, ·) by a hierarchical precon-
ditioner aQ : Q×Q → R given by

aQ(v,w) := a(IT v, IT w) +
∑

p∈NV

a(λT
′

p , λT
′

p )(v − IT v)(p)(w − IT w)(p),

using the splitting v = IT v + (v − IT v) ∈ Q for v,w ∈ Q and the interpolation IT

introduced in Definition 3.9. Then we obtain an approximation ũQ of uQ by solving
the preconditioned defect problem

ũQ ∈ Q : aQ(ũQ − uT , v) = l(v)− a(uT , v) v ∈ Q.

Since uT solves the variational equation in S we find that

aQ(ũQ − uT , v) = a(IT (ũQ − uT ), v) = l(v) − a(uT , v) = 0 ∀v ∈ S(T ).

Hence we have IT (ũQ − uT ) = 0 and IT ũQ = uT . Conversely we have for any w ∈ V

aQ(w, v) = 0 ∀v ∈ S(T ).

Using this orthogonality we find that the increment eV := ũQ − IT ũQ = ũQ − uT ∈ V
is the solution of

eV ∈ V : aV(eV , v) = l(v)− a(uT , v) ∀v ∈ V,

where aV = aQ|V×V is the restriction of aQ to the incremental space given by

aV(v,w) =
∑

p∈NV

a(λT
′

p , λT
′

p )v(p)w(p).

Provided that the saturation assumption holds and that the hierarchical splitting is
stable we have an approximation eV ≈ uQ − uT ≈ u − uT . Furthermore, the nodal
values eV(p) of eV for p ∈ N V can be computed as solutions of local problems

eV(p) = argmin
ρ∈R

J(uT + ρλT
′

p ) = a(λT
′

p , λT
′

p )−1
(
l(λT

′

p )− a(uT , λT
′

p

)
,

where J(v) = 1
2a(v, v) − l(v) is the energy associated with (6.1). Now the term

‖uV‖aQ =
( ∑

p∈NV

η2p

) 1
2

with the local edge contributions

ηp = a(λT
′

p , λT
′

p )
1
2 eV(p) = ‖eV(p)λT ′

p ‖a

for the norms ‖ · ‖aQ and ‖ · ‖a induced by aQ and a can be used as an estimate for
the global error. Consequently the local contributions ηp can be used as local error
indicators for an adaptive strategy.
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For nonlinear variational inequalities we can no longer use the hierarchical precon-
ditioning and the orthogonality. However, we can generalize the approach to the non-
linear saddle point problem using local incremental problems directly. To this end we
first define the restrictions bV , cV : V × V → R of hierarchical preconditioners bQ, cQ

for the bilinear forms b and c analogously by

bV(v,w) :=
∑

p∈NV

b(λT
′

p , λT
′

p )v(p)w(p),

cV(v,w) :=
∑

p∈NV

c(λT
′

p , λT
′

p )v(p)w(p).

For the nonlinear operator F we define the diagonalized shifted restriction FV : V → V ′

to the incremental space by

〈
FV(v), w

〉
:=

∑

p∈NV

〈
F(uT + v(p)λT

′

p ), λT
′

p

〉
w(p).

Note that we cannot split the part depending on uT and the increment for the nonlinear
operator. Thus we shifted the nonlinearity by uT before diagonalizing it on V. For a
linear operator 〈F(v), w〉 = a(v,w) this definition reduces to

〈
FV(v), w

〉
:= aV(v,w) + a(uT , w).

Similarly we use a shifted version of the nonsmooth nonlinearity given by

ψV(v) := ψT ′

(uT + v) =
(
Ψ(uT + v), 1

)T ′

=
∑

p∈NV

Ψ(uT (p) + v(p))

∫

Ω
λT

′

p (x) dx + const(uT ),

where the last term is a constant depending on uT . Using these ingredients the incre-
mental problem for the hierarchical estimator reads:

Problem 6.3. Find (eVu , e
V
w) ∈ V × V such that

〈
FV(eVu ), v − eVu

〉
+ ψV(v)− ψV(eVu ) + bV(v − eVu , e

V
w)

≥
(
f, v − uT

)
− b(v − uT , wT ) ∀v ∈ V,

bV(eVu , v)− cV(eVw, v) = (g, v) − b(uT , v) + c(wT , v) ∀v ∈ V.

Testing the variational inequality with v = eV + (α − eVu (p))λ
T ′

p and the variational

equation with αλT
′

p for a fixed p ∈ N V we find that (eVu (p), e
V
w(p)) ∈ R2 can be

computed as the solution of the local saddle point problem

Fp(e
V
u (p))(α − eVu (p)) + ψp(α)− ψp(e

V
u (p)) + bp(α− eVu (p))e

V
w ≥ fp(α− eVu (p)) ∀α ∈ R

bpe
V
u − cpe

V
w = gp

123



6 Adaptive Numerical Solution of Nonlinear Saddle Point Problems

with the local representations

Fp(α) =
〈
FV(αλT

′

p ), λT
′

p

〉
, ψp(α) = Ψ(uT (p) + αλT

′

p )

∫

Ω
λT

′

p (x) dx,

bp = b(λTp , λ
T
p ), fp =

(
f, λTp

)
− b(λTp , w

T ),

cp = c(λTp , λ
T
p ), gp =

(
g, λTp

)
− b(uT , λTp ) + c(wT , λTp ).

Using the subdifferential ∂ψp this can also be written as the two-dimensional problem
(
Fp + ∂ψp bp

bp −cp

)(
eVu (p)
eVw(p)

)
∋
(
fp
gp

)
.

In order to have a unique solution we assume that cp > 0 or, equivalently, that no λT
′

p

is contained in the kernel of c. Then we can compute the solution by finding a eVu (p)
such that

0 ∈ (Fp + ∂p)(e
V
u (p)) +

(
c−1
p b2p

)
eVu (p)− (f + c−1

p g),

for example using the bisection method. There is a unique solution since Fp + ∂ψp is
maximal monotone and c−1

p b2p is positive. The other component can then be computed
as

eVw(p) = c−1
p (bpe

V
u (p)− gp).

Similar to the minimization formulation for the linear case presented above this local
solution can be interpreted as the saddle point of the Lagrangian functional Lp : R

2 →
R ∪ {∞} given by

Lp(e
V
u (p), e

V
w(p)) = LT ′

(uT + eVu (p)λ
T ′

p , wT + eVw(p)λ
T ′

p )

where LT ′
: Q×Q → R ∪ {∞},

LT ′

(u,w) = J0(u) + ψT ′

(u)− (f, u) + b(u,w) − (g,w) − 1

2
c(w,w),

is the functional associated with Problem 6.1 except that the nonlinearity is approxi-
mated with respect to Q.

Now an approximation of the global error (‖u − uT ‖2primal + ‖w − wT ‖2dual)
1/2 with

properly scaled norms ‖ · ‖primal and ‖ · ‖dual for u and w on H1(Ω) can be computed
by

e(uT ) =
( ∑

p∈NV

η2p

) 1
2
, η2p = ‖eVu (p)λT

′

p ‖2primal + ‖eVw(p)λT
′

p ‖2dual.

Again the edge contributions ηp for the edge midpoints p ∈ N V can be used as local
error indicator for an adaptive strategy. We will use the following strategy proposed
by Dörfler [46] for the Poisson equation:
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The intention is to refine a set of edges that “produce” a fixed fraction α ∈ (0, 1] of
the estimated global error e(uT )2. Moreover the set should be as small as possible. To
this end define the sets

N (Tol) = {p ∈ N V : η2p ≥ Tol}
of all local indicators that are larger than a given tolerance Tol and compute

Tol(α) = min
{
η2p : p ∈ N V ,

∑

q∈N (η2p)

η2q < αe(uT )2
}
.

Then the set N (Tol(α)) is the smallest set such that
∑

p∈N (Tol(α))

η2p < αe(uT )2.

It can easily be obtained by sorting the local contributions by their values and then,
starting from the largest value, including points p into N (Tol(α)) as long as the sum
of the local contributions in the set is smaller then the fraction α. Finally we mark all
elements in τ ∈ T such that p ∈ N (Tol(α)) is the midpoint of an adjacent edge of τ .

This strategy was analyzed by Dörfler [46] for the approximate solution of the Poisson
equation with adaptive linear finite elements on conforming grids. There it was shown
that the produced sequence of finite element solutions converges to the weak solution
of the continuous problem if the incremental spaces spanned by the quadratic edge
bubble functions are used.

6.2 Implementation Aspects

In this section we discuss some implementation aspects that are crucial for the adaptive
algorithm proposed in the previous section, especially if the solution of the stationary
problem is a subproblem for one time step of a Rothe method.

6.2.1 Spatial Adaptivity for Rothe’s Method

Consider the evolution equation
〈
du

dt
, v − u

〉
+ 〈F(u), v − u〉+ (g(u), v − u) ≥ 0 ∀v ∈ H, a.e. in (0, T ],

with u(0) = 0 for a function u : [0, T ] → H in some function space H on the domain Ω.
Here F : H → H ′ is a possibly set-valued nonlinear differential operator and g : R → R

a scalar function. For example, linear parabolic equations as well as the Allen–Cahn
and the Cahn–Hilliard equations presented in Chapter 2 can be expressed in this way.

We assume that Rothe’s method is applied to this equation using the semi-implicit
time discretization
(
uk − uk−1

∆tk
, v − uk

)
+ 〈F(uk), v − uk〉+ (g(uk−1), v − uk) ≥ 0 ∀v ∈ H, k > 0
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6 Adaptive Numerical Solution of Nonlinear Saddle Point Problems

where uk denotes an approximation of u(tk). Again we can represent the semi-implicit
and the fully implicit time discretizations introduced in Section 3.4 for the Cahn–
Hilliard equation in this way.

Although we discretize the evolution problem in function space, we solve each sta-
tionary problem approximately in a discrete finite element space. The main advantage
of Rothe’s method is that different adaptive grids can be used in each time step. Let
Tk−1 be a locally refined grid and assume that the approximation from the previous
time step is some uTk−1

k−1 ∈ S(Tk−1) in the finite element space S(Tk−1). Then the ap-
proximation for the current time step k is computed in S(Tk) for an adaptive grid Tk
by

(
uTkk , v − uTkk

)
+∆tk

〈
FTk(uTkk ), v − uTkk

〉

≥ ∆tk

(
∆tkg(u

Tk−1

k−1 ) + u
Tk−1

k−1 , v − uTkk

)
∀v ∈ S(Tk).

In general, we will have Tk−1 6= Tk. Hence, expressions of the form
(
wTk−1 , vTk

)

for grid functions wTk−1 ∈ S(Tk−1) and vTk ∈ S(Tk) have to be computed. Several
strategies are used to deal with this problem:

1. Two separate grids objects can be used. In this case two problems appear: With
typical data structures for finite element functions it is quite difficult to relate a
function from one grid to elements from the other. Moreover, this approach has
the drawback that storing two adaptive grid objects uses a lot of memory.

2. Only use a full grid object for the current time step and store nodal coordinates
and values for the function wTk−1 from the previous time step. This approach
will introduce errors since the available information does not allow to reconstruct
the exact function.

3. Construct the current adaptive grid by modifying the grid Tk−1 from the previous
time step. Starting from the grid Tk−1 the grid for the time step k can be refined
or coarsened where necessary during the adaptive cycle. Every time the grid is
refined in a region, the solution from the previous time step can be interpolated to
the new grid. In regions where the grid is coarsened the solution can be projected
to the coarse grid.

Although this approach is used often, it has several drawbacks: The projection
needed for coarsening will in general introduce errors. Moreover, it is not possible
to re-refine the grid where it was already coarsened since the old function (before
projection) values cannot be reconstructed. Also, the adaptive loop needs a
coarsening strategy in addition to a refinement strategy. Finally, this approach
will in general be expensive because the problem size will in most cases not vary
much from one time step to the next. This implies that in each time step several
(at least two) problems of approximately the same size must be solved.
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All these strategies are unsatisfactory for the reasons stated above. As a remedy the
Dune-Subgrid module was developed [60] on the basis of the dune library. The next
subsections will describe the Dune-Subgrid module and show how it allows to avoid
these problems.

6.2.2 The Dune-Subgrid Module

Dune is an object oriented C++ library [11, 12] that provides interfaces for common
functionality needed for grid based methods for partial differential equations. Most
importantly it provides a unified interface to access and manipulate adaptive hier-
archical grids. This interface is implemented by different grid managers. While the
Dune library itself does only come with grid managers for structured grids, it includes
bindings for the unstructured adaptive grid managers UG [10], ALUGrid [27, 99], and
Alberta [97].

A consequence of this design is the possibility to implement so-called meta-grids that
modify one or more other underlying grids. The fact that all grid implementations can
be accessed through the same interface allows to write generic libraries and applications
where the grid manager can be exchanged without changing the actual application code.
Since these interfaces are realized using C++ template techniques they only lead to a
very small runtime overhead [11].

The basic feature of the Dune-Subgrid module is a meta grid manager provided by
the SubGrid class that allows to treat a subset of a grid hierarchy as a grid hierarchy in
its own right. Let (T0, . . . ,Tj) be a grid hierarchy provided by a Dune grid manager.
We will call this hierarchy the “host grid”. Then the tuple (T ′

0 , . . . ,T ′
j′) is called a

“subgrid” if T ′
k ⊂ Tk for k = 0, ..., j′ and if the tuple is a grid hierarchy itself.

The SubGrid class allows to deal with such subgrids in an efficient way. An object
of the SubGrid class is created by marking a subset of the host grid’s elements for
inclusion. The marks and consecutive indices for these elements and adjacent faces,
edges, and nodes are stored internally. After creation the SubGrid allows to access the
subgrid (T ′

0 , . . . ,T ′
j′) induced by the marks.

Note that the subgrid does not store the elements, their geometry, and their father
and neighbor relation itself. If the user wants to iterate over a level T ′

k of the subgrid
it internally iterates over the whole host grid level Tk skipping the elements that are
not contained in T ′

k . Similarly iterating over the subgrid leaf T ′ = L(T ′
0 , . . . ,T ′

j′)
iterates over all host grid level grids Tk with k ≤ j′ skipping the elements that are not
contained in T ′. Thus storing a subgrid through the SubGrid class needs significantly
less memory than storing a copy of it as a classical stand alone grid manager, at least
if the subgrids size not too small compared to the host grids size.

Since the SubGrid class implements the standard Dune grid interface all algorithms
that run with classical Dune grid managers can also be used on a subgrid. This does
also include adaptive algorithms. If an element τ ∈ T ′ of the subgrid is marked for
refinement one of the following two things happens:

• If τ is not contained in the host grids leaf T = L(T0, . . . ,Tj), then the direct
children of τ are included in the subgrid.
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6 Adaptive Numerical Solution of Nonlinear Saddle Point Problems

• If τ ∈ T then the element is marked for refinement in the host grid. After
refinement of the host grid the direct children of the element are included in the
subgrid.

This strategy allows to transparently refine a subgrid such that it grows in the existing
host grid where possible and refines the host grid only where needed.

One important consequence is that T ′ is in general nonconforming even if T is
conforming, since elements introduced as “closure” during a red–green refinement in
the host grid are not necessarily included in the subgrid. In order to guarantee a
certain regularity, the SubGrid class allows to restrict the maximal level difference of
elements in T ′ that share a vertex. If such a restriction is imposed additional elements
are refined if necessary.

Besides the standard grid interface the SubGrid class also provides methods that
relate the subgrid to the host grid. For example one can check whether a host grid
element is contained in the subgrid. If this is the case one can construct the object
representing the element as part of the subgrid from an object representing it with
respect to the host grid and the other way around. For a more detailed survey of the
SubGrid interface and the internal implementation we refer to [60].

6.2.3 Spatial Adaptivity for Rothe’s Method using Dune-Subgrid

Subgrids allow to efficiently implement spatial adaptivity for time-dependent problems
avoiding the problems mentioned in Section 6.2.1. We now describe how to achieve
this and discuss its advantages and possible drawbacks afterwards.

Assume that uk−1 is the solution of the spatial problem from the previous time step as
finite element function with respect to a leaf grid T = L(T0, . . . ,Tj) of a grid hierarchy
(T0, . . . ,Tj). For the current time step we want to solve a problem using an adaptive
grid sequence that involves the integration of a product of uk−1 with a function from
the current grid. This requires the evaluation of uk−1 on suitable quadrature points in
the elements of the current grid. If we consider (T0, . . . ,Tj) as a host grid the adaptive
solution in the current time step can be done using the following algorithm.

1. Create an initial coarse subgrid (T 0
0 , . . . ,T 0

j0
) of the host grid T .

2. Solve the problem on the leaf of the current subgrid. If uk−1 needs to be evaluated
on the subgrid, evaluate it on the host grids leaf and transfer the information to
the first ancestor that is contained in the subgrid. This can be done using the
father relation in the host grid and the subgrid–host grid relation provided by
the SubGrid class.

3. Estimate the discretization error for the solution on the current subgrid. If the
desired tolerance is matched, go to step 5.

4. Adaptively refine the subgrid. If the host grid was refined implicitly by the
SubGrid class, transfer the function uk−1 to the new host grid leaf level using
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standard techniques. This can be done exactly, since the host grid is only refined
and never coarsened implicitly. Go to step 2.

5. Coarsen the host grid such that it is as coarse as possible while still containing
the subgrid, and transfer the current solution from the subgrid to the new host
grid. This can again be done exactly, since the host grid can never be coarser
than the subgrid.

In all steps the host grid is fine enough to represent solutions from the previous time
step and from the current one. Only after the coarsening in the last step, solutions from
the previous time step can no longer be represented. This is, however, no problem,
since they are no longer needed for the next time step. This approach has several
advantages compared to the approaches presented in Section 6.2.1.

Compared to the first approach using two separate grid it is much more efficient,
since the subgrid needs significantly less memory than a separate grid. Moreover, the
evaluation of the function from the old grid on the current one can be implemented
efficiently using the relation of the subgrid to the host grid.

In contrast to the second approach that stores nodal values and coordinates of the
function from the old grid, the use of a subgrid allows for the exact evaluation of uk−1 on
the current grid. This is especially important since many evolution problems conserve
certain integrals, which can only be inherited by the discretization if the respective
integration is done exactly.

The latter is also an advantage compared to the third approach that modifies the
grid from the previous time step. Furthermore, the subgrid approach is in general much
more efficient since it allows to build the grid for the current time step from a very
coarse grid. Assuming that an optimal solver is available and that the problem size
increases by a factor of at least 2 during refinement, the overall computational effort is
about 2n where n is the problem size on the finest grid. If the grid from the previous
time step needs to be modified k times to construct the current grid, this implies this
amounts in an effort of (k + 1)n.

Numerical experiments for the heat equation [60] have shown that the overall com-
putational effort for the adaptive refinement loop is at most 2.5-times as large as the
effort for the solution on the resulting fine grid. In most time steps the factor was even
contained in [1.5, 2] which is a real improvement compared to the factor k+1 where k
is at least equal to one but in almost all cases larger.

The factor becomes even larger, if we also take into account that, for strongly non-
linear problems, solutions from the coarse grid do in general provide a better initial
guess than solutions from the previous time step.

The drawbacks are the following. On the one hand the computation of subgrid
indices takes additional time. On the other hand iterating over the subgrid is slower
than iterating over the host grid for two reasons. Even if the subgrid level T ′

k is
much smaller than the host grid level Tk, one must iterate over the whole set Tk
internally. Moreover, the additional layer introduced by wrapping the host grid in
the subgrid make each grid access slower. Computational experiments in [60] showed
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6 Adaptive Numerical Solution of Nonlinear Saddle Point Problems

that this leads to an overhead of about 37% when assembling a stiffness matrix for
the Laplace operator where the subgrid covers the whole host grid. In practice this
is not a problem, because assembling the problem takes only a small fraction of time
compared to the solution of the nonlinear saddle point problems we are interested in.
Also, certain optimizations in the implementation may allow to reach a smaller number
in the future.
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7 Numerical Results

In this chapter we test the methods developed in the previous chapters numerically.
Since we did neither prove error bounds for the finite element discretization nor reliabil-
ity or efficiency of the error estimator we will not do extensive test for them. However,
we will show that the local error indicators allow the construction of adaptive grids
that capture local properties of the solution well.

The numerical tests of the algebraic solvers will concentrate on the Schur Nonsmooth
Newton method applied to the Cahn–Hilliard equation. The TNNMG method will be
used as solver for the nonlinear subproblems in each step of the Schur Nonsmooth
Newton method. Hence its efficiency will directly influence the efficiency of the latter.
Although both algebraic solvers are applicable to a variety of problems, testing them
for other problems than the Cahn–Hilliard equation is not within the scope of this
work.

For further numerical examples regarding the TNNMG method we refer to [58, 62,
94]. There is was applied to quadratic obstacle problems, contact problems in elas-
ticity, and the Allen–Cahn equation, respectively. Neither of these problems includes
a nonquadratic smooth energy so the anisotropic problems considered here are truly
novel. For the Schur Nonsmooth Newton method we refer to [57, 59], where it was
applied to the Cahn–Hilliard equation and a control problem for the Poisson equation
with control constraints. In both cases the convex energy of the saddle point problem
was a quadratic energy with obstacles. Thus the presented anisotropic problem with
logarithmic potential is again more general.

All numerical examples presented in the following use the semi-implicit time dis-
cretization of the Cahn–Hilliard equation given by Problem 3.6 with uniform time step
size ∆tk = ∆t and θC = 1. For the rank-1 regularization in (3.6) and the time step
size we select ρ = γ and ∆t = 2γ, respectively. The norms used for the phase field and
the chemical potential are

‖u‖2primal = γ (∇u,∇u) + γ (u, 1) (u, 1) ,

‖w‖2dual = ∆t (∇w,∇w) + ∆t (w,w) .

We will present results for the isotropic Cahn–Hilliard equation with

γ(x)2 = γ‖x‖2

and for the anisotropic Cahn–Hilliard equation with a scaled version of the Kobayashi
anisotropy of Example 2.1. More precisely, we use

γ(x)2 = γ
(
1 + ā cos(kβ(x))

)2
‖x‖2,
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with k = 3 and ā = 0.124 < 1/(k2−1), where β(ξ) ∈ [0, 2π] denotes the angle between
the positive x-axis and ξ.

The spatial discretization is done using linear finite elements leading to the discrete
saddle point problems in Problem 3.12. The equations are discretized on the domain
Ω = (−1, 1)2 with a symmetric coarse grid consisting of four triangles, each spanned
by the origin and two vertices of ∂Ω.

For the solution of the algebraic problems we use the Schur Nonsmooth Newton
method according to Corollary 5.3 with the following parameters:

• The truncated index set I ′′(v) uses the truncation criterion

ϕ′′
i (vi) < (Cϕ)i,i = 106

∫

Ω
λp1(x) dx.

• We do not apply any additional correction C, i.e., we use C = 0.

• As step size rule we use the inexact step sizes introduced in Proposition 5.4 with
the accuracy ǫ = 0.8.

• The step size rule is switched off dynamically according to the strategy in Theo-
rem 5.4 if the norm of the direction contracts with σ = 0.8. We select α−1 > 0
such that the step rule is not used for the first correction.

• The linear saddle point problems are solved using a linear multigrid method with
a Vanka-type block Gauß–Seidel smoother that solves local 2 × 2 saddle point
problems for all vertices successively. The multigrid method uses a V-cycle with
3 pre- and post-smoothing steps. For the generated sequence dν,µ → dν the
relative correction norm

‖dν,µ − dν,µ−1‖dual

‖dν.µ‖dual

is used as estimate of the relative error.

• The linear saddle point problems are solved inexactly such that the estimated
relative error is bounded by

max{0.1ν , e2ν−1}

where eν−1 = ‖wν−1 −wν−2‖dual is an estimate for the error of the previous step
of the Schur Nonsmooth Newton method.

• The convex nonlinear minimization problems for the evaluation of F−1 are solved
using the TNNMG method.

The TNNMG method is used with the following parameters:

• As nonlinear smoother we use the inexact nonlinear Gauß–Seidel method accord-
ing to Theorem 4.2 with ω0 = 0.5.
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7.1 Cahn–Hilliard Equations on Uniform Grids

• Three pre-smoothing steps of the nonlinear smoother are applied, followed by a
truncated linear coarse correction and another three nonlinear smoothing steps.

• The truncated index set I ′′(v) uses the truncation criterion

ϕ′′
i (vi) < (Cϕ)i,i = 106

∫

Ω
λp1(x) dx.

• The truncated linear system is solved inexactly with the multigrid method de-
scribed in Section 4.3.1 using one V-cycle with 3 pre- and post-smoothing steps.

The implementation used for the numerical tests is based on the Dune framework.
The following Dune modules where used:

• The core modules Dune-Common, Dune-Grid, Dune-Localfunctions, and
Dune-Istl, where used for the grid interface, shape functions, and matrix and
vector classes.

• The Dune-Subgrid module was used for the handling of adaptive grids during
Rothe’s method.

• The discretization module Dune-Fufem was used for the handling of grid func-
tions and finite element spaces, the assembling of matrices and vectors, and for
the implementation of the hierarchical error estimator.

• The solver module Dune-Solvers was used as infrastructure for algebraic solvers,
and the handling of multigrid transfer operators.

• The TNNMG method was implemented in the Dune-Tnnmg module.

• The Schur Nonsmooth Newton method and the nonlinearities where implemented
in the Phase-Field module.

7.1 Cahn–Hilliard Equations on Uniform Grids

In order to allow for a better comparison of the solvers behavior for different problems
we consider the Cahn–Hilliard equation for fixed γ = 4·10−4 on a sequence of uniformly
refined grids. The finest grid is obtained by eight refinements and contains 131 585
vertices.

7.1.1 Iteration History on a Fixed Grid

As a first test we investigate the convergence for the first time step of the Cahn–Hilliard
equation with the initial value

u0(x) =

{
1 if |x| ≤ 0.5,

−1 else.
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Figure 7.1: Circle example: Error over iteration step for the isotropic case (left) and
the Kobayashi anisotropy (right).

This will be referred to as the “circle example” in the following.
Figure 7.1 depicts the algebraic error over iteration steps for the temperature θ = 0,

i.e., the obstacle potential, and both choices of γ. The error is approximated by
‖wν − w̃‖dual where w̃ is precomputed up to a significantly higher accuracy. The left
and right plot show the iteration history for the isotropic case and the Kobayashi
anisotropy. For both versions the dashed line corresponds to the initial guess w0 = 0,
while the solid line results from nested iteration, using the solution from a coarser
level as initial guess. In any case superlinear convergence is observed and the iteration
history seems not to depend strongly on the initial guess. Furthermore, the algorithm
behaves the same for the isotropic and the anisotropy problem.

The same quantities are depicted in Figure 7.2 for a different initial value u0 for the
evolution. Here it is taken to be 1 inside of finitely many random circles and −1 outside.
In contrast to the initial value in the circle example the transition between both phases
is not a jump but smoothed to a sine-profile to model a typical situation during the
phase transition evolution. This will be referred to as the “random discs example” in
the following. Again the isotropic and the anisotropic problem both exhibit comparable
superlinear convergence. However, nested iteration leads to faster convergence here.

7.1.2 Mesh Dependency

Now we investigate if and how the convergence speed of the algorithm changes if
the grid is refined. To this end we consider the random discs example on different
refinement levels and for the temperature θ = 0. Since averaged convergence rates
are inappropriate due to the superlinear convergence, we plot the number of Schur
Nonsmooth Newton steps needed to achieve an algebraic error less than 10−13.

The left and right plot in Figure 7.3 depict this number for the isotropic and the
anisotropic case. Again we compare the initial guess w0 = 0 and nested iteration.
These examples show that the number of iteration steps does not increase for finer
grids. Moreover, the solution on coarse grids does even take much more iteration steps.
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Figure 7.2: Random discs example: Error over iteration step for the isotropic case (left)
and the Kobayashi anisotropy (right).
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Figure 7.3: Random discs example: Newton steps over refinement level for the isotropic
case (left) and the Kobayashi anisotropy (right).

This can be explained by the fact that very coarse grids cannot resolve the interface
layer. Thus the inactive sets selected during the algorithm tend to be unstable. While
the number of iteration steps is similar for fine grids, the anisotropic problem takes
significantly more iteration steps on coarse grids compared to the isotropic one.

Until now we have only looked at the number of Schur Nonsmooth Newton steps.
However, the computational work done in these iteration steps differs a lot for the
following reasons. On the one hand the linear saddle point problems are solved with
increasing accuracy leading to an increasing number of linear multigrid steps. On the
other hand the operator F−1 has to be evaluated at least once in all steps, but several
times if the step size rule is activated. Since the nonlinear multigrid steps are much
more expensive than the linear ones we use the former as measure for the computational
effort from now on.

For the examples of Figure 7.3 the numbers of overall TNNMG steps per refinement
level are depicted in Figure 7.4. Most of the iterates on coarser grids require significant

135



7 Numerical Results

3 4 5 6 7 8
0

20

40

60

80

100

120

refinement level

T
N

N
M

G
 s

te
ps

 

 

nested iteration

w0=0

3 4 5 6 7 8
0

20

40

60

80

100

120

refinement level

T
N

N
M

G
 s

te
ps

 

 

nested iteration

w0=0

Figure 7.4: Random discs example: Overall TNNMG steps over refinement level for
the isotropic case (left) and the Kobayashi anisotropy (right).

damping. Thus the number of TNNMG iterations does even take values larger than
1000 for the coarsest level. In order to provide a useful visualize for the more important
finer grids we truncated the plot at 120. For these finer grids the number of TNNMG
steps is bounded by 51 independently of the mesh size if nested iteration is applied.
However, it takes about twice as much steps for the initial guess w0 = 0.

In the light of the bounded number of outer iterations presented in Figure 7.3 this
shows that nested iteration provides initial guesses that are particularly suited for the
multigrid subproblem solvers, allowing for a mesh independent complexity of the overall
algorithm. Due to this fact we will use nested iteration for all following examples.

7.1.3 Robustness with Respect to the Temperature

To examine if the convergence is also robust with respect to the temperature θ in the
logarithmic potential, we now use the same example with θ varying from 10−9 to 102.
The limiting case θ = 0 was already discussed.

Figure 7.5 depicts the number of Schur Nonsmooth Newton steps needed on the
eighth level to achieve an algebraic error less than 10−13 for different values of θ. The
computational examples show that the convergence of the Schur Nonsmooth Newton
method is hardly effected by the temperature.

Figure 7.6 depicts the number of overall TNNMG steps for the same example. Again
the method is robust for θ → 0. Moreover, we observe faster convergence for high tem-
peratures θ > 0. This is not surprising since the nonlinearity dominates the differential
operator in the Ginzburg–Landau energy in this case and the problems solved by the
TNNMG method become “asymptotically diagonal” for θ → ∞.
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Figure 7.5: Random discs example: Newton steps over temperature for the isotropic
case (left) and the Kobayashi anisotropy (right).
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Figure 7.6: Random discs example: Overall TNNMG steps over temperature for the
isotropic case (left) and the Kobayashi anisotropy (right).
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Figure 7.7: Circle example: Newton steps over number of unknowns for the isotropic
case (left) and the Kobayashi anisotropy (right).

7.2 Cahn–Hilliard Equations on Adaptive Grids

Now we consider adaptive grids obtained using the local error indicators and the re-
finement strategy introduced in Section 6.1.

7.2.1 Mesh Dependency

We start with the circle example and use the smaller interface parameter γ = 10−4

now. Since the solution was most expensive for θ = 10−3 we consider this temperature
for the tests presented here.

The adaptive grid is constructed starting from a grid obtained by five uniform refine-
ments of the coarse grid. The hierarchical estimator uses the scaled norms introduced
above and the refinement strategy is applied with the fraction α = 0.64 as suggested
by Dörfler [46] (more precisely θ∗ = 0.2 for θ∗ = 1−√

α was suggested there).
Figure 7.7 and Figure 7.8 depict the number of Newton iteration steps and the

number of TNNMG steps over the number of nodes for the isotropic and the anisotropic
interfacial energy. Similar to the uniform case it can be seen that the number of Newton
steps does not increase with the number of nodes. While the same is true for the
TNNMG steps in the isotropic case, the number of TNNMG steps slightly increases
for the anisotropic case. However, it is still below 70 on the finest grid containing about
100 000 nodes. In any case the number is significantly higher for very coarse grids.

The same results are depicted in Figure 7.9 and Figure 7.10 for the random discs
example. Here the number of iteration steps is bounded in all cases for an increasing
number of nodes.

7.2.2 Hierarchical Error Estimator

In order to examine the error estimator and the quality of the resulting grids, we
consider the same examples as in the previous section again.
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Figure 7.8: Circle example: Overall TNNMG steps over temperature for the isotropic
case (left) and the Kobayashi anisotropy (right).
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Figure 7.9: Random discs example: Newton steps over number of unknowns for the
isotropic case (left) and the Kobayashi anisotropy (right).
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Figure 7.10: Random discs example: Overall TNNMG steps over temperature for the
isotropic case (left) and the Kobayashi anisotropy (right).
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Figure 7.11: Circle example: Estimated error number of unknowns for the isotropic
case (left) and the Kobayashi anisotropy (right).
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Figure 7.12: Random discs example: Estimated error number of unknowns for the
isotropic case (left) and the Kobayashi anisotropy (right).

Figure 7.11 depicts the estimated error for the circle example and the isotropic and
the anisotropic case, respectively. In order to simplify the interpretation a line with
the slope of #nodes−1/d that corresponds to the error order O(h) for uniform grids
is also plotted. After an initial phase, where the estimator decreases quickly, it takes
almost exactly the slope of this line for the isotropic and the anisotropic case. For the
random discs example in Figure 7.12 the slope can be seen even for coarse grids.

Finally we solve the anisotropic random discs example adaptively for γ = 10−3 and a
tolerance of 0.1 for the adaptive refinement. Figure 7.13 shows the solution of the first
time step and the adaptive grid. The closeup of the grid near the interface shows that
the refinement strategy using the hierarchical estimator allows for grids that capture
the interface very well. Figures 7.14 and 7.15 show further time steps of this problem.
The threefold anisotropy is clearly visible from the shape of the initially round interface
regions.
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7.2 Cahn–Hilliard Equations on Adaptive Grids

Figure 7.13: First time step: Solution (left), leaf grid (middle), and closeup of leaf grid
(right).

Figure 7.14: Time steps u5 (left), u10 (middle), u40 (right).

Figure 7.15: Time steps u80 (left), u120 (middle), u240 (right).
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7 Numerical Results

7.3 Conclusions

The numerical examples show that the Schur Nonsmooth Newton method converges
independently on the mesh size in the sense that the number of iteration steps, needed
to solve up to a fixed accuracy is bounded from above. Even more this number is in
the range of 3 to 7 for fine grids. Only on very coarse grids, which can not resolve
the interface layer, the number increases significantly. This behavior can be seen on
uniform as well as on adaptively refined grids.

Furthermore, the experiments show that the number of iteration steps for a fixed
accuracy is hardly influenced by the temperature. This result reflect the fact that the
method was designed without any smoothness assumption on the decoupling nonlin-
earity. Instead of this convex properties that are shared by the obstacle potential and
the logarithmic potential for all θ ≥ 0 where used.

If we use the number of TNNMG steps as measure for the computational effort,
the situation is similar. However, the number of TNNMG steps is in most examples
significantly smaller if nested iteration is used to compute the initial guess for the Schur
Nonsmooth Newton method. In the light of the discussion in Section 4.2.5 this can be
explained by the fact that the method is in general not mesh independent. Before fast
multigrid convergence is attained the method needs an increasing number of iteration
steps to determine the active set. In case of nested iteration the initial guess does
typically also provide a good guess for the active set. Hence this pre-asymptotic phase
is hardly visible in this case.

Finally we note that the hierarchical error estimator allows to construct grids that are
perfectly matched to the interface. While similar grids could also be obtained using
heuristic strategies that refine only near the interface, such strategies do in general
require the selection of several parameters. Furthermore, they ignore regions where
the solution is almost constant as they appear for computations with the logarithmic
potential.
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A Appendix

A.1 Properties of Convex Functions

A function f : Rn → R is called strongly convex with respect to a constant µ > 0 and
a semi-norm ‖ · ‖2M = 〈M ·, ·〉 (for a symmetric positive semidefinite matrix M) if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− λ(1− λ)
µ

2
‖x− y‖2M ∀λ ∈ [0, 1] (A.1)

holds true for all x, y ∈ Rn.

Lemma A.1. A differentiable function f : Rn → R is strongly convex with respect to
µ > 0 and ‖ · ‖M if and only if

f(x)− f(y) ≥ 〈∇f(y), x− y〉+ µ

2
‖x− y‖2M ∀x, y ∈ Rm (A.2)

or if ∇f is strongly monotone, i.e.

〈∇f(x)−∇f(y), x− y〉 ≥ µ‖x− y‖2M ∀x, y ∈ Rm.

Proof. Use literally the proof in [53] for the Euclidean norm.

Theorem A.1. Let V be a Banach space, f1, f2 : V → R ∪ {∞} convex, λ > 0, and
x ∈ V . Then

1. ∂(λf1)(x) = λ∂f1(x).

2. ∂f1(x) + ∂f2(x) ⊂ ∂(f1 + f2)(x) if f1 and f2 do not take the value ∞.

3. ∂f1(x) + ∂f2(x) = ∂(f1 + f2)(x) if f1 and f2 are lower semicontinuous, not
identical to ∞, and if there is some x0 ∈ dom f1 ∩ dom f2 where f1 and f2 are
continuous.

Proof. See [49, Chapter I, Section 5.3].

A.2 Properties of Function Spaces

Theorem A.2. Let Ω ⊂ Rd be a bounded, open set such that ∂Ω satisfies the uniform
cone condition (cf. [110]). Then there is a constant C > 0 depending only on Ω such
that

‖v‖21 ≤ CP

(
|v|21 + (v, 1)2

)
≤ CP (|v|1 + | (v, 1) |)2 .
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Proof. See [110].

Note that the uniform cone condition in Theorem A.2 is especially satisfied by a
Lipschitz boundary.

The following result on superposition operators gives provides continuity of such
operators under very few assumptions. For a comprehensive study on superposition
operators we refer to [3].

Definition A.1. Let Ω ⊂ Rd be an open set and f : Ω × R → R. The superposition
operator F induced by f is given by

(F (v))(x) = f(x, v(x)) ∀x ∈ Ω

for functions v : Ω → R. f is called a Carathéodory function if f(x, ·) is continuous
on R for almost all x ∈ Ω and if f(·, y) is measurable on Ω for all y ∈ R.

Theorem A.3. Let Ω ⊂ Rd be an open set, f : Ω × R → R a Carathéodory function,
and let the induced superposition operator F map Lp to Lq for some 1 ≤ p, q < ∞.
Then F is continuous.

Proof. See [3].

Corollary A.1. Let Ω ⊂ Rd be a bounded, open set and f : R → R be continuous and
bounded. Then the superposition operator F given by

(F (v))(x) = f(v(x)) ∀x ∈ Ω

is continuous from Lp to Lq for all 1 ≤ p, q <∞.

A.3 An Existence Result for Saddle Point Problems

Theorem A.4. Let V,Z be Banach spaces, A ⊂ V , B ⊂ Z convex, closed and
nonempty sets. Let L : A× B → R satisfy

∀µ ∈ B, L(·, µ) : A → R is convex and lower semicontinuous,

∀v ∈ A, L(v, ·) : B → R is concave and upper semicontinuous.

Furthermore, assume that

A is bounded or ∃µ0 ∈ B : lim
‖v‖V →∞

v∈A

L(v, µ0) = ∞,

B is bounded or lim
‖µ‖Z→∞

µ∈B

inf
v∈A

L(v, µ) = −∞.

Then L possesses a saddle point (u, λ) ∈ A× B, i.e.

L(u, µ) ≤ L(u, λ) ≤ L(v, λ) ∀(v, µ) ∈ A× B.

Proof. See [49, Chapter VI, Proposition 2.4].
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A.4 Convexification of a Class of Saddle Point Problems

Let H be a Hilbert space with norm ‖ · ‖H . For functionals f, g ∈ H ′, symmetric,
positive semidefinite, linear operators M,C : H → H ′, a nonlinear operator F : H →
H ′, a proper, convex, lower semicontinuous function ϕ : H → R ∪ {∞} and τ > 0
consider the saddle point problem:

Problem A.1. Find (u,w) ∈ H ×H such that

〈F (u), v − u〉+ ϕ(v)− ϕ(u) − 〈Mw, v − u〉 ≥ 〈f, v − u〉 ∀v ∈ H,

−〈Mu, v〉 − τ 〈Cw, v〉 = 〈g, v〉 ∀v ∈ H.

It will be help full to consider the modified problem:

Problem A.2. Find (u, w̃) ∈ H ×H such that
〈
F̃ (u), v − u

〉
+ ϕ(v) − ϕ(u) −

〈
M̃w̃, v − u

〉
≥
〈
f̃ , v − u

〉
∀v ∈ H,

−
〈
M̃u, v

〉
− τ 〈Cw̃, v〉 = 〈g, v〉 ∀v ∈ H.

Theorem A.5. Let α > 0. Then Problem A.1 is equivalent to Problem A.2 with

F̃ u = F (u) + 2αM − τα2C, M̃ =M − ταC, f̃ = f − αg,

in the sense that (u,w) ∈ H ×H is a solution to Problem A.1. if and only if (u, w̃) ∈
H ×H with w̃ = w + αu is a solution to Problem A.2.

Proof. Adding 0 = 〈αMu−Mαu, v − u〉 to the first and 0 = 〈ταCu− τCαu, v〉 to
the second equation in Problem A.1 leads to

〈F (u) + αMu, v − u〉+ ϕ(v)− ϕ(u) − 〈Mw̃, v − u〉 ≥ 〈f, v − u〉 ∀v ∈ H,

−
〈
M̃u, v

〉
− τ 〈Cw̃, v〉 = 〈g, v〉 ∀v ∈ H.

Testing the second equation with v − u and multiplying it by −α gives
〈(
αM − τα2C

)
u, v − u

〉
− 〈−ταCw̃, v − u〉 = −α 〈g, v − u〉 ∀v ∈ H.

Adding this to the first equation provides Problem A.2. Since we can revert all opera-
tions we have shown equivalence.

Lemma A.2. Let F = ∇J : H → H ′ for a differentiable function J : H → R

and | · |2T := 〈T ·, ·〉 the seminorm induced by an operator T . Consider the Lagrange-
functionals

L(u,w) = J(u) + ϕ(u) − 〈f, u〉+ 〈−Mu− g,w〉 − τ

2
|w|2C ,

L̃(u, w̃) = J(u) + ϕ(u) + α|u|2M − α2 τ

2
|u|2C − 〈f − αg, u〉

+ 〈(ταC −M)u− g, w̃〉 − τ

2
|w̃|2C ,

associated with Problem A.1 and Problem A.2, respectively. Then L(u,w) = L̃(u,w +
αu) and equivalently L(u, w̃ − αu) = L̃(u, w̃).
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If F is not monotone itself Theorem A.5 allows to state an equivalent saddle point
problem where F̃ might be monotone. More precisely, if F is the gradient of some
functional it allows to add some convex quadratic term with respect to M at the price
of adding a concave quadratic term with respect to C:

Theorem A.6. Let C0 : H → H ′ be a linear, continuous, symmetric, positive semidef-
inite operator such that C+C0 is coercive, i.e. | · |C+C0 is equivalent to the norm ‖ ·‖H
of H. Assume that F = ∇J − 2αM with α > 0 and a convex, differentiable functional
J : H → R that is also strongly convex or equivalently ∇J is strongly monotone, i.e.
there is a constant γ > 0 with

〈∇J(u)−∇J(v), u− v〉 ≥ γ|u− v|2C+C0
.

Then the operator F̃ from Theorem A.5 is strongly monotone if τ < γ
α2 .

Proof. From τ < γ
α2 we get γ − τα2 > 0 and hence

〈
F̃ (u)− F̃ (v), u − v

〉
= 〈∇J(u)−∇J(v), u− v〉 − τα2|u− v|2C
≥
(
γ − τα2

)
|u− v|2C + γ|u− v|2C0

≥
(
γ − τα2

)
︸ ︷︷ ︸

>0

|u− v|2C+C0
.

A.5 Properties of Lipschitz Continuous Operators

In order to be able to extract extract properties only from the domain where a Lipschitz
continuous operator is smooth, we need the following generalized mean value theorem.

Proposition A.1. Let T : Rn → Rm be Lipschitz continuous on an open convex set
U ⊂ Rn and u, v ∈ U . Then one has

T (u)− T (v) ∈ 〈co ∂CT ([v, u]), u − v〉
where ∂CT ([v, u]) is the union of all ∂T (z) for all z in the line segment [v, u].

Proof. See [34, Proposition 2.6.5].

It is also possible to extract this information from an even smaller subset as the
following result shows.

Proposition A.2. Let T : Rn → Rm be Lipschitz continuous and S ⊂ Rn a set of zero
measure. Then

∂CT (u)v = ∂ST (u)v ∀u ∈ Rn, v ∈ Rm

where ∂ST is defined by

∂ST (u) := co{ lim
k→∞

∇T (uk) : uk → u, uk ∈ DT \ S}.
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Proof. See [34, Proposition 2.6.4].

Note that it is in general not known if ∂CT (x) = ∂ST (x) holds for m > 1 (cf. [34,
p. 71]). For smooth operators the mean value theorem implies strong monotonicity if
the derivatives are uniformly bounded from below. The following lemma generalizes
this result to Lipschitz continuous operators requiring boundedness only on an arbitrary
dense set where derivatives exists.

Lemma A.3. Assume that T : Rn → Rn is Lipschitz continuous on an open convex
set U and that

〈HT v, v〉 ≤ 〈∇T (u)v, v〉 ∀v ∈ Rn, u ∈ (DT ∩ U) \ S (A.3)

holds with a symmetric positive semidefinite matrix HT and a zero measure excep-
tional set S ⊂ Rn. Then T is strongly monotone on U with respect to the semi-norm
introduced by HT , i.e.

〈T (u)− T (v), u − v〉 ≥ 〈u− v, u− v〉HT
∀u, v ∈ U.

Proof. First we note that by Proposition A.2 for x ∈ U , v ∈ Rn and Z ∈ ∂CT (u) there
are sequences uik ∈ (DT ∩ U) \ S with uik → u for k → ∞ and a convex combination
λ1, . . . , λn2+1 ≥ 0,

∑
λi = 1 sucht that

〈Zv, v〉 =
〈(

∑

i

λi lim
k→∞

∇T (uik)
)
v, v

〉
= lim

k→∞

∑

i

λi
〈
∇T (uik)v, v

〉
≥ 〈HT v, v〉 .

By the generalization mean value theorem in Proposition A.1 there are also λ1, . . . , λR ≥
0,
∑
λi = 1, t1, . . . , tR ∈ [0, 1], and Z1, ..., ZR with Zr ∈ ∂CT (u+ tr(v − u)) such that

T (u)− T (v) =

R∑

i=1

λiZi(u− v)

Together with the above estimate of 〈Zx, x〉 for Z ∈ ∂CT (y) this yields the assertion.

A.6 Truncated Matrices and the Moore–Penrose

Pseudoinverse

In this section we collect properties of so-called truncated matrices obtained by re-
stricting a given matrix to certain subspaces. For convenience we repeat the definition
originally given in Chapter 4 here:

Definition A.2. Let I,J ⊂ N be index sets, x ∈ Rn a vector, and M ∈ Rm,n a matrix.
Then define the truncated matrix MI,J ∈ Rm,n and the truncated vector xI ∈ Rn by

(MI,J )ij :=

{
Mij if i ∈ I and j ∈ J ,
0 else,

(xI)i :=

{
xi if i ∈ I,
0 else.

Furthermore, define the abbreviation MI :=MI,I.
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Lemma A.4. Let I,J ∈ N be index sets and M ∈ Rn,m a matrix, and x ∈ Rn. Then

MI,N = IIM, MN,I =MII , MI,J = IIMIJ , M(xI) =MN,Ix, (Mx)I =MI,Nx.

Proof. The identities follow instantly from Definition A.2.

Although truncated matrices are singular we can still invert the corresponding op-
erators on suitable subspaces and represent the inverse operator as matrix. In order to
simplify the notation for these opeartors we recall the definition of the Moore–Penrose
pseudoinverse M+ ∈ Rn,m of a matrix M ∈ Rm,n using Tikhonov regularization of the
symmetric positive semidefinite matrix MMT .

Definition A.3. Let M ∈ Rm,n. Then the Moore–Penrose pseudoinverse M+ ∈ Rn,m

is given by

M+ := lim
ǫ→0

(MTM + ǫI)−1MT = lim
ǫ→0

MT (MMT + ǫI)−1

of a matrix M ∈ Rm,n.

This limit exists even for singular matrices and M+ can equivalently be defined as
the unique matrix satisfying

MM+M =M, M+MM+ =M+, (MM+)T =MM+, (M+M)T =M+M.
(A.4)

The pseudoinverse reduced to the inverse if M is invertible. Beside this it has the
properties

M++ =M, (MT )+ = (M+)T , (λM)+ = λ−1M+ ∀λ > 0.

Lemma A.5. Let M ∈ Rn,n be symmetric positive definite and I ⊂ N an index set.
Then we have

M+
I := (MI)

+ =
(
(MI + I − II)

−1
)
I
=
(
(MI)

+
)
I
.

Hence M+
I is obtained by deleting the i-th rows and columns of M with i ∈ I, taking

the inverse of the reduced matrix and then inserting zero rows and columns where rows
and columns where deleted.

Proof. The matrix (MI+I−II) is also symmetric positive definite and thus invertible.
Its easy to see that for i, j ∈ I we have (MI + I − II)

−1
ij = δij . Hence we have

(MI + I − II)
−1 =

(
(MI + I − II)

−1
)
I
+ I − II .

Using this and (I − II)II = 0 we get
(
(MI + I − II)

−1
)
I
MI =MI

(
(MI + I − II)

−1
)
I
= II .

This implies the four identifies in (A.4).
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The pseudoinverse will also be helpful to handle limits of inverse matrices.

Lemma A.6. Let (Mk) with Mk ∈ Rn,n be a sequence of symmetric positive definite
matrices such that Mk → M for some symmetric positive definite matrix M ∈ Rn,n.
Furthermore, let A ⊂ N be an index set and αk > 0 with αk → ∞. Then

lim
k→∞

(Mk + αkIA)
−1 = ((I − IA)M(I − IA))

+ = (MI)
+

with I = N \ A.

Proof. Without loss of generality we assume that the indices are ordered such that
i < j for all i ∈ I and j ∈ A. Furthermore, we identify truncated matrices with the
corresponding submatrices where truncated rows and columns are deleted. We will
especially identify IA with I as submatrix. Then we have

Mk + αkIA =

(
Mk

I Mk
I,A

Mk
A,I Mk

A + αkI

)
.

Using the Schur complement

Sk :=Mk
A + αkI −Mk

A,I

(
Mk

I

)−1
Mk

I,A

the inverse is given by the decomposition

(
Mk + αkIA

)−1
=

(
I −

(
Mk

I

)−1
Mk

I,A

0 I

)((
Mk

I

)−1
0

0 (Sk)−1

)(
I 0

−Mk
A,I

(
Mk

I

)−1
I

)
. (A.5)

From Mk →M we get that the submatrices converge to the corresponding submatrix
of the limit. By continuity of building the inverse of (sub-)matrices we also have

(
Mk

I

)−1
→ (MI)

−1 .

Since all matrices Mk + αkIA are symmetric and positive definite for arbitrary αk it
is well known that the same is true for the Schur complements Sk. Thus it is always
invertible and we have

(
Sk
)−1

=
1

αk

[
1

αk

(
Mk

A −Mk
A,I

(
Mk

I

)−1
Mk

I,A

)
+ I

]−1

.

From the convergence of the submatrices we know that the term containing only sub-
matrices converges to some matrix. Hence we the whole matrix that should be inverted
converges to I and from this we get (Sk)−1 → 0. Inserting all convergence results for
submatrices in the above decomposition we get

(
Mk + αkIA

)−1
→
(
(MI)

−1 0
0 0

)
= (MI)

+
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where we switch back from submatrices to trucated matrices in the last identity. Note
that the essential step to take the limit after factoring 1/αk out is not possible for the
original full matrix since the remaining sequence (1/αkMk+IA) converges to IA which
is not invertible as full matrix.
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B List of Symbols and Notation

Ω a bounded, open, and nonempty domain in Rd, d = 1, 2, 3 . . . . . . . . . . 5

|Ω| measure of the set Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

χK indicator functional of convex set K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

∇2f Hessian matrix of a functional f : Rd ⊃M → R . . . . . . . . . . . . . . . . . . . . 9

coM convex hull of the set M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Sd−1 The unit (d− 1)-sphere in Rd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

E Ginzburg–Landau free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

〈·, ·〉 Euclidean inner product on Rd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

‖ · ‖ Euclidean norm on Rd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

〈·, ·〉M bilinear form 〈·, ·〉M = 〈M ·, ·〉 on Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

‖ · ‖M (semi-)norm on Rn induced by 〈·, ·〉M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Lp(Ω) Lebesque space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

‖·‖0 norm on function space L2(Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

(·, ·) inner product on function space L2(Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Hk(Ω) Sobolev space with weak derivatives up to order k . . . . . . . . . . . . . . . . 14

‖ · ‖k norm of the Sobolev space Hk(Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Hk
0 (Ω) Sobolev space with zero boundary values . . . . . . . . . . . . . . . . . . . . . . . . . . 14

‖·‖V norm of a vector space V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

(·, ·)H inner product of a pre-Hilbert space H . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

V ′ dual space of a normed space V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

〈·, ·〉 dual pairing of V ′ and V for a function space V . . . . . . . . . . . . . . . . . . . 14

∂ subdifferential of convex function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

a.e. almost everywhere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

151



B List of Symbols and Notation

K constrains set for phase field K := {v ∈ H1(Ω) : |v| ≤ 1, a.e. in Ω} . 18

T a (simplicial) triangulation of a domain in Rd . . . . . . . . . . . . . . . . . . . . . 23

N (T ) set of all nodes of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

E(T ) set of all edges of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

H(T ) set of all hanging nodes of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

(T0, . . . ,Tj) a grid hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

L(T0, . . . ,Tj) leaf grid of a grid hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

S(T ) first order conforming finite element space on T . . . . . . . . . . . . . . . . . . . 25

B(T ) conforming nodal basis of S(T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

(·, ·)T lumped L2 inner product on S(T ) w.r.t. a triangulation T . . . . . . . . 29

DT set where the Lipschitz continuous operator T is differentiable. . . . .48

∂B B-subdifferential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

∂C generalized Jacobian in the sense of Clarke . . . . . . . . . . . . . . . . . . . . . . . . 48

∂ generalized linearization of operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

∂2 generalized Hessian of functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ρ(J, x, d) minimizer of J along the line x+ ρd with ρ ∈ R . . . . . . . . . . . . . . . . . . . 52

I identity matrix on Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

MI,J matrix with (i, j)-th entry set to zero if i ∈ I or j ∈ J . . . . . . . . . . . . 59

MI matrix with i-th row and column set to zero if i ∈ I . . . . . . . . . . . . . . .59

xI vector with i-th component set to zero if i ∈ I . . . . . . . . . . . . . . . . . . . . 59

M+ Moore–Penrose pseudoinverse of the matrix M . . . . . . . . . . . . . . . . . . . . 59

I(v) set of all indices i where ∂ϕi(vi) is single-valued . . . . . . . . . . . . . . . . . . . 60

I ′(v) set of all indices i ∈ I(v) where ϕ′′
i (vi) is finite . . . . . . . . . . . . . . . . . . . . 60

I ′′(v) set of all indices i ∈ I ′(v) where ϕ′′
i (vi) is bounded by Cϕ . . . . . . . . . 63

PDAS primal–dual active set method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

TNNMG truncated nonsmooth Newton multigrid method. . . . . . . . . . . . . . . . . . .72

[c] set of all v with the same active configuration as c . . . . . . . . . . . . . . . . 92

152



C set of all active configurations of ϕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

E set of all multi-indices of intervals where ϕ is smooth. . . . . . . . . . . . . . 93

[c]η set of all v ∈ [c] with vi in interior of ηi-th smooth interval . . . . . . . . 93

[[c]]η set of all v ∈ [c] with vi in closure of ηi-th smooth interval. . . . . . . . .93

F ([c]η)
◦ dense open subset of F ([c]η) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

153





C List of Assumptions

(A1) γ : Rd → R is positive, 1-homogeneous, convex and C1 . . . . . . . . . . . . . . . . . . . 9

(A2) Hessian of γ2 is positive definite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

(A3) J0 is LC1 and ∇J0 is strongly monotone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

(A4) A generalized Hessian HJ0 of J0 exists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

(A5) The generalized Hessian HJ0 of J0 is bounded. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

(A6) J0 is a quadratic functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

(A7) J0 is quadratic +
∑n

i=1 γi(Div) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

(A8) ϕ is piecewise smooth and decomposes in coordinate directions . . . . . . . . . . 50

(A9) F : domϕ→ Rn is monotone w.r.t. ϕ, fixed point iteration converges . . . 53

(A10) B,C have proper size and C is symmetric positive semidefinite . . . . . . . . . . 77

(A11) Saddelpoint problem has a unique solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

155





Bibliography

[1] M. Ainsworth and J. T. Oden. A posteriori error estimation in FE analysis.
Wiley, 2000.

[2] S. Allen and J. Cahn. A microscopic theory for antiphase boundary motion and
its application to antiphase domain coarsening. Acta Metall., 27:1084–1095, 1979.

[3] J. Appell and P. P. Zabrejko. Nonlinear Superposition Operators. Number 95 in
Cambridge Tracts in Mathematics. Cambridge Univiversity Press, Cambridge,
1990.

[4] L. Armijo. Minimization of functions having Lipschitz–continuous first partial
derivatives. Pazific J. Math., 204:126–136, 1966.

[5] L. Badea. Convergence rate of a Schwarz multilevel method for the constrained
minimization of nonquadratic functionals. SIAM J. Numer. Anal., 44(2):449–
477, 2006.

[6] L. Badea, X.-Ch. Tai, and J. Wang. Convergence rate analysis of a multiplicative
Schwarz method for variational inequalities. SIAM J. Numer. Anal., 41(3):1052–
1073, 2003.

[7] J. W. Barrett and J. F. Blowey. Finite element approximation of an Allen–
Cahn/Cahn–Hilliard system. IMA Journal of Numerical Analysis, 22(1):11–71,
2002.

[8] J. W. Barrett, J. F. Blowey, and H. Garcke. Finite element approximation of the
Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal., 37(1):
286–318, 1999.

[9] J. W. Barrett, R. Nürnberg, and V. Styles. Finite element approximation of
a phase field model for void electromigration. SIAM J. Numer. Anal., 42(2):
738–772, 2004.

[10] P. Bastian, K. Birken, S. Lang, K. Johannsen, N. Neuß, H. Rentz-Reichert,
and C. Wieners. UG: A flexible software toolbox for solving partial differential
equations. Computing and Visualization in Science, 1:27–40, 1997.

[11] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber,
M. Ohlberger, and O. Sander. A generic interface for adaptive and parallel
scientific computing. Part II: Implementation and tests in DUNE. Computing,
82(2–3):121–138, 2008.

157



Bibliography

[12] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and
O. Sander. A generic interface for adaptive and parallel scientific computing.
Part I: Abstract framework. Computing, 82(2–3):103–119, 2008.

[13] G. Bellettini and M. Paolini. Anisotropic motion by mean curvature in the
context of finsler geometry. Hokkaido Math. J., 25:537–566, 1996.

[14] M. Bergounioux, K. Ito, and K. Kunisch. Primal–dual strategy for constrained
optimal control problems. SIAM J. Control Optim., 37:1176–1194, 1999.

[15] J. F. Blowey and C. M. Elliot. The Cahn-Hilliard gradient theory for phase
separation with non-smooth free energy part I: Mathematical analysis. European
J. Appl. Math., 2:233–280, 1991.

[16] J. F. Blowey and C. M. Elliot. The Cahn-Hilliard gradient theory for phase
separation with non-smooth free energy part II: Numerical analysis. European J.
Appl. Math., 3:147–179, 1992.

[17] T. Böhme, W. Dreyer, F. Duderstadt, and W. H. Müller. A higher gradient
theory of mixtures for multi-component materials with numerical examples for
binary alloys. Preprint 1286, WIAS, 2007.

[18] F. A. Bornemann. An Adaptive Multilevel Approach for Parabolic Equations in
Two Space Dimensions. PhD thesis, Freie Universität Berlin, 1991.

[19] F. A. Bornemann, B. Erdmann, and R. Kornhuber. A posteriori error estimates
for elliptic problems in two and three space dimensions. SIAM J. Numer. Anal.,
33:1188–1204, 1996.

[20] D. Braess and W. Hackbusch. A new convergence proof for the multigrid method
including the V–cycle. SIAM J. Numer. Anal., 20:967–975, 1983.

[21] D. Braess and R. Sarazin. An efficient smoother for the Stokes problem. Appl.
Numer. Math., 23(1):3–19, 1997.

[22] J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel preconditioners.
Math. Comp., 55(191):1–22, 1990.

[23] J. H. Bramble, J. E. Pasciak, Wang J., and J. Jinchao Xu. Convergence estimates
for multigrid algorithms without regularity assumptions. Math. Comp., 57(195):
23–45, 1991.

[24] J. H. Bramble, J. E. Pasciak, Wang J., and J. Jinchao Xu. Convergence estimates
for product iterative methods with applications to domain decomposition. Math.
Comp., 57(195):1–21, 1991.

[25] M. Brokate and J. Sprekels. Hysteresis and Phase Transition. Number 121 in
Applied mathematical sciences. Springer, Berlin Heidelberg New York, 1996.

158



Bibliography

[26] E. Burman and J. Rappaz. Existence of solutions to an anisotropic phase-field
model. Math. Meth. App. Sci., 26:1137–1160, 2003.

[27] A. Burri, A. Dedner, R. Klöfkorn, and M. Ohlberger. An efficient implementation
of an adaptive and parallel grid in dune. In Proc. of the 2nd Russian-German
Advanced Research Workshop on Computational Science and High Performance
Computing, 2005.

[28] G. Caginalp. An analysis of a phase field model of a free boundary. Arch. Rat.
Mech. Anal., 92:205–245, 1986.

[29] J. W. Cahn and J. E. Hilliard. Free energy of a non-uniform system i. interfacial
free energy. Jnl. of Chemical Physic, 28:258–267, 1958.

[30] J. W. Cahn and J. E. Taylor. Linking anisotropic sharp and diffuse surface
motion laws via gradient flows. Journal of Statistical Physics, 77(1–2):187–197,
1994.

[31] J. W. Cahn and J. E. Taylor. Overview no. 113 surface motion by surface diffu-
sion. Acta Metallurgica et Materialia, 42(4):1045–1063, 1994.

[32] J. W. Cahn, C. M. Elliott, and A. Novick-Cohen. The Cahn–Hilliard equation
with concentration dependent mobility: motion by minus the Laplace of the
mean curvature. European J. Appl. Math., 7:287–301, 1996.

[33] X. Chen and C. M. Elliott. Asymptotics for a parabolic double obstacle problem.
Proc. R. Soc. Lond., Ser. A, 444:429–445, 1994.

[34] F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley, New York, 1983.

[35] M. I. M Copetti and C. M. Elliott. Numerical analysis of the Cahn-Hilliard
equation with a logarithmic free energy. Numerische Mathematik, 63:39–65, 1992.

[36] R. W. Cottle, J. S. Pang, and R. E. Stone. The Linear Complentary Problem.
Academic Press, Boston, 1992.

[37] M. G. Crandall and P.-L. Lions. Viscosity solutions of Hamilton–Jacobi equa-
tions. Trans. Amer. Math. Soc., 277(1):1–42, 1983.

[38] R. Dautray and J. L. Lions. Mathematical Analysis and Numerical Methods for
Science and Technology. 5: Evolution Problems. Springer, Berlin Heidelberg New
York, 1992.

[39] T. A. Davis. Algorithm 832: Umfpack v4.3 – an unsymmetric-pattern multi-
frontal method. ACM Trans. Math. Softw., 30(2):196–199, 2004.

[40] P. de Mottoni and M. Schatzman. Geometrical evolution of developed interfaces.
Trans. Am. Math. Soc., 347(5):1533–1589, 1995.

159



Bibliography

[41] K. Deckelnick, G. Dziuk, and C. M. Elliott. Computation of geometric partial
differential equations and mean curvature flow. Acta Numer., 14:139–232, 2005.

[42] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A
supernodal approach to sparse partial pivoting. SIAM J. Matrix Analysis and
Applications, 20(3):720–755, 1999.

[43] P. Deuflhard. Newton Methods for Nonlinear Problems. Number 35 in Springer
Series in Computational Mathematics. Springer, Berlin Heidelberg New York, 1.
edition, 2004.

[44] P. Deuflhard and M. Weiser. Numerische Mathematik 3. Walter de Gruyter,
Berlin, 2011.

[45] P. Deuflhard, P. Leinen, and H. Yserentant. Concepts of an adaptive hierarchical
finite element code. IMPACT Comput. Sci. Engrg., 1:3–35, 1989.

[46] W. Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM J.
Numer. Anal., 33:1106–1124, 1996.

[47] W. Dörfler and R. H. Nochetto. Small data oscillation implies the saturation
assumption. Numer. Math., 91:1–12, 2002.

[48] C. Eck, H. Garcke, and P. Knabner. Mathematische Modellierung. Springer,
Berlin Heidelberg New York, 2008.

[49] I. Ekeland and R. Temam. Convex Analysis. North-Holland, 1976.

[50] C. M. Elliott. The Cahn-Hilliard model for the kinetics of phase separation.
In J. F. Rodrigues, editor, Mathematical Models for Phase Change Problems,
volume 88 of International Series of Numerical Mathematics. Birkhäuser, Basel,
1989.

[51] C. M. Elliott and S. Luckhaus. A generalised diffusion equation for phase sep-
aration of a multicomponent mixture with interfacial free energy. Preprint 195,
University of Bonn, 1991.

[52] C. M. Elliott and R. Schätzle. The limit of the fully anisotropic double-obstacle
Allen–Cahn equation in the nonsmooth case. SIAM J. Math. Anal., 28(2):274–
303, 1997.

[53] C. Geiger and C. Kanzow. Numerische Verfahren zur Lösung unrestringierter
Optimierungsaufgaben. Springer, Berlin Heidelberg New York, 1999.

[54] R. Glowinski. Numerical Methods for Nonlinear Variational Problems. Springer
Series in Computational Physics. Springer, Berlin Heidelberg New York, 3. edi-
tion, 1984.

160



Bibliography

[55] R. Glowinski, J. L. Lions, and R. Trémolières. Numerical Analysis of Variational
Inequalities. Number 8 in Studies in Mathematics and its Applications. North-
Holland Publishing Company, Amsterdam New York Oxford, 1981.

[56] C. Gräser. Analysis und Approximation der Cahn-Hilliard Gleichung mit Hin-
dernispotential. Diplomarbeit, Freie Universität Berlin, 2004.

[57] C. Gräser. Globalization of nonsmooth Newton methods for optimal control
problems. In K. Kunisch, G. Of, and O. Steinbach, editors, Numerical Mathe-
matics and Advanced Applications, number 60 in LNCSE, pages 605–612, Berlin,
2007. Springer.

[58] C. Gräser and R. Kornhuber. Multigrid methods for obstacle problems. J. Comp.
Math., 27(1):1–44, 2009.

[59] C. Gräser and R. Kornhuber. Nonsmooth Newton methods for set-valued saddle
point problems. SIAM J. Numer. Anal., 47(2):1251–1273, 2009.

[60] C. Gräser and O. Sander. The dune-subgrid module and some applications.
Computing, 8(4):269–290, 2009.

[61] C. Gräser, R. Kornhuber, and U. Sack. On hierarchical error estimators for
time-discretized phase field models. In Proceedings of ENUMATH 2009, 2009.
accepted.

[62] C. Gräser, U. Sack, and O. Sander. Truncated nonsmooth Newton multigrid
methods for convex minimization problems. In M. Bercovier, M. Gander, R. Ko-
rnhuber, and O. Widlund, editors, Domain Decomposition Methods in Science
and Engineering XVIII, LNCSE, pages 129–136. Springer, 2009.

[63] W. Hackbusch. Multi-Grid Methods and Applications. Springer, Berlin, 1985.

[64] M. Hintermüller, K. Ito, and K. Kunisch. The primal–dual active set strategy as
a semismooth Newton method. SIAM J. Optim., 13(3):865–888, 2003.

[65] R. H. W. Hoppe. Multigrid algorithms for variational inequalities. SIAM J.
Numer. Anal., 24:1046–1065, 1987.

[66] R. H. W. Hoppe and R. Kornhuber. Adaptive multilevel–methods for obstacle
problems. SIAM J. Numer. Anal., 31(2):301–323, 1994.

[67] K. Ito and K. Kunisch. Convergence of the primal–dual active set strategy for
diagonally dominant systems. SIAM J. Control Optim., 13(1):14–34, 2007.

[68] R. Kobayashi. Modeling and numerical simulations of dendritic crystal growth.
Physica D, 63:410 – 423, 1993.

[69] R. Kornhuber. Monotone multigrid methods for elliptic variational inequalities
I. Numer. Math., 69:167 – 184, 1994.

161



Bibliography

[70] R. Kornhuber. A posteriori error estimates for elliptic variational inequalities.
Comput. Math. Appl., 31:49–60, 1996.

[71] R. Kornhuber. Monotone multigrid methods for elliptic variational inequalities
II. Numer. Math., 72:481 – 499, 1996.

[72] R. Kornhuber. Adaptive Monoton Multigrid Methods for Nonlinear Variational
Problems. Teubner, Stuttgart, 1. edition, 1997.

[73] R. Kornhuber. On constrained Newton linearization and multigrid for variational
inequalities. Preprint A/02/2001, FU Berlin, 2001.

[74] R. Kornhuber. Nonlinear multigrid techniques. In J. F. Blowey, J. P. Coleman,
and A. W. Craig, editors, Theory and Numerics of Differential Equations, pages
179–229, Heidelberg, 2001. Springer.

[75] R. Kornhuber. On constrained Newton linearization and multigrid for variational
inequalities. Numer. Math., 91:699–721, 2002.

[76] R. Kornhuber and R. Krause. Robust multigrid methods for vector-valued Allen–
Cahn equations with logarithmic free energy. Comp. Visual. Sci., 9:103–116,
2006.

[77] R. Kornhuber and H. Yserentant. Multilevel methods for elliptic problems on
domains not resolved by the coarse grid. Contemp. Math., 180:49–60, 1994.

[78] R. Kornhuber and Q. Zou. Efficient and reliable hierarchical error estimates
for the discretization error of elliptic obstacle problems. Preprint 519, Matheon
Berlin, 2008.

[79] B. Kummer. Newton’s method based on generalized derivatives for nonsmooth
functions: Convergence analysis. In W. Oettli and D. Pallaschke, editors, Ad-
vances in optimization (Lambrecht, 1991), pages 171–194, Berlin, 1992. Springer.

[80] J. Mandel. A multilevel iterative method for symmetric, positive definite linear
complementarity problems. Appl. Math. Optimization, 11:77–95, 1984.

[81] A. Nekvinda and L. Zajíček. A simple proof of the Rademacher theorem. Časopis
Pěst. Mat, 113(4):337–341, 1988.

[82] J. Nocedal. Theory of algorithms for unconstrained optimization. Acta Numerica,
1:199–242, 1992.

[83] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations
in Several Variables. Academic Press, New York, 1970.

[84] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear
equations. SIAM J. Numerical Analysis, 12:617–629, 1975.

162



Bibliography

[85] J. S. Pang. Newton’s method for b-differentiable equations. Mathematics of
Operations Research, 15(2):311–341, 1990.

[86] O. Penrose and P. C. Fife. Thermodynamically consistent models of phase field
type for the kinetics of phase transitions. Physica D, 43:44–62, 1990.

[87] M. J. D. Powell. Direct search algorithms for optimization calculations. Acta
Numerica, 7:287–336, 1998.

[88] L. Qi. Convergence analysis of some algorithms for solving nonsmooth equations.
Mathematics of Operations Research, 18(1):227–244, 1993.

[89] L. Qi and J. Sun. A nonsmooth version of Newtons’s method. Mathematical
Programming, 58:353–367, 1993.

[90] A. Rätz, A. Ribalta, and A. Voigt. Surface evolution of elastically stressed films
under deposition by a diffuse interface model. J. Comp. Phys., 214(1):187–208,
2006.

[91] J. Rubinstein, P. Sternberg, and J. B. Keller. Fast reaction, slow diffusion and
curve shorteneing. SIAM J. Appl. Math., 49:116–133, 1989.

[92] J. W. Ruge and K. Stüben. Algebraic multigrid. In S. F. McCormick, editor,
Multigrid Methods, pages 73–130. SIAM, Philadalphia, 1987.

[93] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comp., 7:856–869,
1986.

[94] O. Sander. Multidimensional Coupling in a Human Knee Model. PhD thesis,
Freie Universität Berlin, 2008.

[95] A. Schiela. The Control Reduced Interior Point Method. A Function Space Ori-
ented Algorithmic Approach. PhD thesis, Freie Universität Berlin, 2006.

[96] A. Schiela. A simplified approach to semismooth Newton methods in function
space. SIAM J. Control Optim., 19(3):1417–1432, 2008.

[97] A. Schmidt and K. G. Siebert. Design of Adaptive Finite Element Software.
The Finite Element Toolbox ALBERTA, volume 42 of LNCSE. Springer, Berlin
Heidelberg New York, 2005.

[98] J. Schöberl and W. Zulehner. On Schwarz-type smoothers for saddle point prob-
lems. Numer. Math., 95(2):377–399, 2003.

[99] B. Schupp. Entwicklung eines effizienten Verfahrens zur Simulation kompressibler
Strömungen in 3D auf Parallelrechnern. PhD thesis, Albert-Ludwigs-Universität
Freiburg, 1999.

163



Bibliography

[100] K. G. Siebert and A. Veeser. A unilaterally constrained qadratic minimization
with adaptive finite elements. SIAM J. Optim., 18:260–289, 2007.

[101] R. Simon and W. Zulehner. On Schwarz-type smoothers for saddle point problems
with applications to PDE-constrained optimization problems. Numer. Math.,
111:445–468, 2009.

[102] P. Spellucci. Numerische Verfahren der nichtlinearen Optimierung. Birkhäuser,
Basel Berlin, 1993.

[103] B. Stinner. Derivation and Analysis of a Phase Field Model for Alloy Solidifica-
tion. PhD thesis, Universität Regensburg, 2005.

[104] X.-C. Tai. Rate of convergence for some constraint decomposition methods for
nonlinear variational inequalities. Numer. Math., 93(4):755–786, 2003.

[105] S. Torabi, S. Wise, J. Lowengrub, A. Rätz, and A. Voigt. A new method for
simulating strongly anisotropic Cahn-Hilliard equations. In Materials Science
and Technology-Association for Iron and Steel Technology, volume 3, pages 1432–
1444. Curran Associates, Inc., 2007.

[106] M. Ulbrich. Nonsmooth Newon-like Methods for Variational Inequalities and Con-
strained Optimization Problems in Function Spaces. Habilitationsschrift, Tech-
nische Universität München, 2002.

[107] S. P. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in
primitive variables. J. Comput. Phys., 65:138–158, 1986.

[108] D. Werner. Funktionalanalysis. Springer, Berlin Heidelberg New York, 3. edition,
2000.

[109] S. Wise, J. Kim, and J. Lowengrub. Solving the regularized, strongly anisotropic
Cahn-Hilliard equation by an adaptive nonlinear multigrid method. J. Comp.
Phys., 226(1):414–446, 2007.

[110] J. Wloka. Partielle Differentialgleichungen. B. G. Teubner, Stuttgart, 1982.

[111] J. Xu. Iterative methods by space decomposition and subspace correction. SIAM
Review, 34:581–613, 1992.

[112] H. Yserentant. Two preconditioners based on the mutilevel splitting of finite
element spaces. Numer. Math., 58:163–184, 1990.

[113] H. Yserentant. Old and new convergence proofs for multigrid methods. Acta
Numerica, pages 285–326, 1993.

[114] O. C. Zienkiewicz, J. P. De S. R. Gago, and D. W. Kelly. The hierarchical concept
in finite element analysis. Computers & Structures, 16:53–65, 1983.

164



Bibliography

[115] Q. Zou, A. Veeser, R. Kornhuber, and C. Gräser. Hierarchical error estimates
for the energy functional in obstacle problems. Numer. Math., 2009. submitted.

[116] W. Zulehner. A class of smoothers for saddle point problems. Computing, 65(3):
227–246, 2000.

[117] W. Zulehner. Analysis of iterative methods for saddle point problems: A unified
approach. Math. Comput., 71(238):479–505, 2002.





Zusammenfassung

Phasenfeldmodelle sind ein weit verbreiteter Ansatz zur Beschreibung von Prozessen,
die sich wesentlich durch dünne Interfaceregionen zwischen weitestgehend homogenen
Bereichen auszeichnen. Ein wichtiges Anwendungsfeld von Phasenfeldmodellen ist die
Modellierung von physikalischen Phasenübergangs- und Phasenseparationvorgängen.
Eine wesentliche Eigenschaften ist dabei, dass die Trennung der Phasen durch ein
Doppelmuldenpotential getrieben ist, welches voneinander getrennte Minima für jede
Phase besitzt. Bereits 1958 haben Cahn und Hilliard ein logarithmisches Potential
vorgeschlagen, das zwar differenzierbar ist, aber singuläre Ableitungen besitzt. Geht
die Temperatur gegen 0, so degeneriert das temperaturabhängige logarithmische Po-
tential gegen das nichtdifferenzierbare Hindernispotential.

Ziel der vorliegenden Arbeit ist die Entwicklung von Methoden zur effizienten nu-
merischen Lösung solcher Gleichungen, die auch im Fall nichtglatter Potentiale und
anisotroper Oberflächenenergien robust sind. Diese Methoden werden für die Cahn-
Hilliard-Gleichung entwickelt, die prototypisch für eine Vielzahl solcher Modelle ist.

Das Hauptresultat der Arbeit ist die Entwicklung eines schnellen iterativen Ver-
fahrens zur Lösung nichtlinearer Sattelpunktprobleme, wie sie bei der Diskretisierung
anisotroper Cahn-Hilliard-Gleichungen mit Finite-Elemente-Methoden entstehen. Die
Grundlage dieses Verfahrens ist eine Umformulierung des Sattelpunktproblems als
äquivalentes duales Minimierungsproblem. Das Energiefunktional dieses Minimierungs-
problems ist differenzierbar und seine Ableitung ist das nichtlineare Schur-Komplement
des Sattelpunktproblems.

Für dieses Schur-Komplement wird eine verallgemeinerte Linearisierung hergeleitet,
die im Rahmen eines nichtglatten Newton-Verfahrens Verwendung findet. Für dieses
so genannte „Schur Nonsmooth Newton“ Verfahren wird die globale Konvergenz mit-
tels der Äquivalenz zu Abstiegsverfahren für das duale Minimierungsproblem gezeigt.
Ferner wird bewiesen, dass die globale Konvergenz auch bei inexaktem Lösen der lin-
earen Newton Probleme erhalten bleibt.

In jedem Schritt dieses Verfahrens ist ein nichtlineares konvexes Minimierungspro-
blem zu lösen. Für die effiziente Behandlung dieser Teilprobleme wird das so genannte
„Truncated Nonsmooth Newton Multigrid“ (TNNMG) Verfahren entwickelt. Dieses
nichtlineare Mehrgitterverfahren zeichnet sich im Gegensatz zu verwandten Verfahren
durch seine Einfachheit und die Anwendbarkeit auf anisotrope Probleme aus. Hin-
sichtlich der Konvergenzgeschwindigkeit ist es bereits bekannten Verfahren ebenbürtig.

Numerische Beispiele zeigen, dass die entwickelten Verfahren gitterunabhängig kon-
vergieren. Auch erweisen sich die Verfahren als robust für verschiedene Temperaturen,
einschließlich dem Grenzfall 0. Der Grund für diese Robustheit ist, dass die Verfahren
nicht auf Differenzierbarkeit sondern der konvexen Struktur der Probleme basieren.
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