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Abstract

This work is concerned with the determination of present-day ice-mass changes and
glacial-isostatic adjustment (GIA) in the polar regions from gravity-field data of the
satellite mission Gravity Recovery and Climate Experiment (GRACE). Aim is the
separation of cryospheric mass changes from the mass redistribution in the Earth’s
mantle due to GIA using geophysical modelling and the determination of the contri-
bution of glaciated areas to global sea-level change. This is done by analyzing the
time series of monthly GRACE gravity-field solutions with respect to their long-term
temporal changes. Filters are developed to optimize the trade-off between noise and
spatial resolution in the GRACE gravity fields. Also, a method for the evaluation and
combination of GRACE gravity fields from different processing is developed. Forward
models of the potential disturbance due to present-day ice-mass changes and GIA
are adjusted with respect to the GRACE observations and then used to perform a
joint gravity-field inversion for the causative mass changes on and within the Earth.
For small spatial scales (e.g. individual drainage basins of glaciers), ambiguities in
the solution of this gravimetric inverse problem are reduced by introducing a pri-
ori constraints. The relative weight of this information with respect to the GRACE
data allows determining the regional spatial resolution of the long-term changes in
the GRACE gravity fields. The main region of interest of this work is Antarctica. In
addition, investigations concerned with present-day ice-mass changes in Alaska and
Greenland are presented, along with results on the gravity-field inversion in terms of
the viscosity distribution in the Earth’s mantle under North America.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Bestimmung rezenter Eismassenänderungen und
der glazial-isostatischen Anpassung (GIA) in den Polarregionen aus den Schwerefeld-
daten der Satellitenmission Gravity Recovery and Climate Experiment (GRACE).
Ziel ist es, die heutigen Massenänderungen in den Eisgebieten von der durch GIA
verursachten Massenumverteilung im Erdmantel mittels geophysikalischer Modelle zu
separieren und den Beitrag der vereister Gebiete zur globalen Meeresspiegeländerung
zu bestimmen. Dazu werden die Zeitreihen monatlicher GRACE-Schwerefelder in Hin-
blick auf langzeitliche Änderungen analysiert. Zum einen werden Filter entwickelt,
welche die als komplementär anzusehende räumliche Auflösung und Genauigkeit der
GRACE-Schwerefelder optimieren. Desweiteren wird eine Methode entwickelt, die es
erlaubt, GRACE-Schwerefelder verschiedener Prozessierungszentren zu kombinieren
und deren Qualität zu bewerten. Modelle des durch rezente Eismassenänderungen
und GIA verursachten Störpotentials werden an die GRACE-Beobachtungen angepasst
und dann in einer gemeinsamen Schwerefeldinversion hinsichtlich der ursächlichen
Massenänderungen auf und in der Erde ausgewertet. Bei der Betrachtung klein-
räumiger Skalen (z.B. einzelner Einzugsgebiete von Gletschern) werden Mehrdeutig-
keiten, die bei der Schwerefeldinversion auftreten, durch a priori Informationen re-
duziert. Die relative Gewichtung dieser zusätzlichen Information bezüglich der Ge-
nauigkeit der GRACE-Daten erlaubt es, die regionale Auflösung langzeitiger Trends in
den GRACE-Schwerefeldern zu bestimmen. Im Wesentlichen wird in dieser Arbeit das
Gebiet der Antarktis untersucht. Darüberhinaus werden Ergebnisse zur Schwerefeld-
inversion hinsichtlich Eismassenänderung in Alaska und Grönland sowie hinsichtlich
der Viskositätsverteitung im Erdmantel Nordamerikas präsentiert.



1

Introduction

Aim of the investigations presented in this thesis is the determination of the present-
day ice-mass change and glacial-isostatic adjustment (GIA) of the Earth in response
to the retreat of the major ice sheets in the polar regions from Gravity Recovery and
Climate Experiment (GRACE) satellite gravity data.

During the GRACE mission the Earth’s gravitational potential is determined with
unprecedented accuracy at regular, typically monthly, time intervals (e.g. Tapley et al.,
2004). The potential’s temporal variations represent a constraint on mass movement
within the Earth system associated with various geophysical processes (Figure 1.1).
The largest contribution to the potential’s temporal variation is caused by the the
seasonal redistribution of water on the Earth’s surface associated with the global
hydrological cycle. But the increasing length of the GRACE time series (currently
∼ 6 years) allows the temporal linear trend in the potential to be determined with
increasing reliability. Over land, these long-term changes (∼ 10 to 100 a) are mainly
caused by mass changes of glaciers and ice sheets and by GIA following the retreat of
the major ice sheets after the Last Glacial Maximum (LGM), ∼ 21 ka before present
(BP). Other processes include interannual variations of the hydrological cycle and
mass movement within the Earth’s deep interior. Figure 1.6 shows the degree power
of the rate of geoid-height change predicted for various long-term processes. The
separation and quantification of the individual components of mass changes in the
GRACE data by filtering and subsequent inversion of GRACE data using a forward
modelling approach is the focus of this thesis.

The relevant results of this project are published in three scientific articles, Sas-
gen et al. (2006) (Section 4.4), Sasgen et al. (2007a) (Section 4.4) and Sasgen et al.
(2007b) (Section 6.1), as well as in a manuscript, which is currently under the co-
authors’ revision (Sasgen et al., 2008) (Section 6.4). Being the first author of these
publications, their content is mainly subject to my responsibility. Apart from general
scientific advices of the co-authors, my supervisor Prof. Dr. Martinec assisted with
the theoretical formulation of the filter techniques presented in Sasgen et al. (2006)
and Sasgen et al. (2007a). This dissertation includes these publications, along with
an outline of the scientific framework they are embedded in. Additional unpublished
results of the project supplement the published material. Because the peer-reviewed
papers are included in a closed form and with only minor modifications (e.g. revised
equation and figure numbering), some information may be redundantly presented, for
which I would like to apologize to reader.

5
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Figure 1.1: Geophysical processes and induced temporal variation of the geoid height
(after Ilk et al., 2005).
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1.1 Polar ice sheets

The Antarctic Ice Sheet and the Greenland Ice Sheet are the largest contingent ice
masses on Earth, and their development since their initial formation some 30 and
10 Ma ago, respectively, is closely linked to global climate and sea-level change (e.g.
Siegert, 2001). The current mass of the Antarctic Ice Sheet is estimated to be ∼ 56.6 m
(Lythe et al., 2001) that of the Greenland Ice Sheet to be ∼ 7.3 m (Bamber et al., 2001)
equivalent sea-level (ESL)1. A better knowledge of the ice sheets’ current state will
lead to a better understanding of their role in the global climate system. This will
contribute to better constraints on the cryosphere components of climate models and,
hence, increase the reliability of climate predictions. The following summary is mainly
based on Lemke et al. (2007), who the reader may consult for additional references.

The Transantarctic Mountains divide Antarctica into East and West Antarctica.
The western part of the Antarctic Ice Sheet, the West Antarctic Ice Sheet, is based
on bedrock below present-day sea-level with the majority of the slopes inclined land
inward. This constellation disposes the West Antarctic Ice Sheet to rapid ground-
ing line retreat favoring rapid disintegrations (Weertman, 1974; Oppenheimer, 1998;
Schoof, 2007); the West Antarctic Ice Sheet holds the potential to change global mean
sea level by 5 to 6 m ESL. Most vigorous changes are observed in the Amundsen Sea
Sector, which is the region with discharge into Amundsen Sea, covering ∼ 20% of the
volume and area of the West Antarctic Ice Sheet. The ice streams and glaciers in this
region are among the fastest in Antarctica exhibiting surface velocities of hundreds of
m/a up to ∼ 3 km/a (Figure 1.2). In contrast, most of the East Antarctic Ice Sheet
rests on bedrock well above sea level in arid conditions and is therefore considered to
be less sensitive to global climate change.

For Antarctica, most of the annual precipitation is assimilated by the ice sheet.
The net annual flux of mass into the ice sheet, i.e. the sum of all processes of water
transfer across its surface (precipitation, evaporation/sublimation, surface melting,
wind abrasion, a. o.), is termed net surface-mass balance (Vaughan et al., 1999) and
is ∼−4.9 to −5.6 mm/a ESL. For comparison, the estimated sea-level contribution of
the Antarctic Ice Sheet lies between −0.12 to 0.17 mm/a ESL (Shepherd & Wingham,
2007). The mass accumulated by the ice sheet is compacted to ice and moves, mainly
driven by gravity, via ice streams (i.e. flow channeled in ice) and outlet glaciers (i.e.
flow channeled in rock) to ice shelves in the periphery of the continent. From the
ice shelves, to which the inflowing ice attaches, it is discharged to the ocean mainly
by iceberg calving and basal melting, although re-freezing underneath the ice shelf
may occur. The ice shelves represent ∼ 10% of the area of the Antarctic Ice Sheet,
and nearly all accumulated ice is discharged via the ice shelves, discharge rates being
mainly controlled by ocean temperature and ocean circulation. Surface melting is of

1In this work, equivalent sea-level (ESL) is defined as the equivalent water volume of the ice mass
under consideration divided by the global ocean area, fixed to 362× 106 km2, assuming the densities
of water and ice of ρW = 910 kg/m3 and ρI = 1020 kg/m3, respectively. Values of the ESL are given
in reference to the ocean system, meaning that a negative continental ice-mass change correspond to
positive values of ESL.
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minor importance for most of Antarctica. An exception is the Antarctic Peninsula,
where mountain glaciers prevail that experience extensive surface melting in summer
(e.g. van de Berg et al., 2005). Figure 1.3 shows the spatial distribution of mean accu-
mulation, approximated by the sum of precipitation and evaporation/sublimation) for
the years 1958 to 2001 from the re-analysis project ERA-40 data of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF [online]). Accumulation rates are
highest along the coastal fringe with its steep topographic gradient, along the Antarc-
tic Peninsula and in the Amundsen Sea Sector.

Ice shelves appear to impede inflow of ice streams and glaciers, as they are stabilized
by friction along their edges and by exalted seabed. It is observed that the collapse
of an ice shelf can lead to acceleration of tributary ice streams and glaciers (e.g.
Scambos et al., 2004). Also, ice flow may be lubricated by water penetrating further
into the interior of the ice sheet changing its basal conditions there. Ice shelves are in
contact with ocean water that is considered to be an important factor for controlling
its stability; warmer ocean temperatures may lead to increased basal melting and
disintegration of ice shelves and, hence, reduce buttressing of ice streams and promote
basal conditions of the ice sheets in favour of sliding and subglacial deformation.
These changes of the glacier dynamics may penetrate tens to hundreds of km further
into the ice sheet’s interior (Thomas et al., 2004; Rignot et al., 2008) and may cause
acceleration of ice flow, leading to negative ice mass balances and potentially to a
further destabilization of the grounded portion of the ice sheet.

For the Greenland Ice Sheet, slow ice flow by internal deformation similar to that
of the Antarctic Ice Sheet is important only in the central part of the ice sheet. Its
extent is largely constrained by the topography and the continental shelf located some
ten km from the present-day margin of ice sheet. Also, mainly due to warmer climate
conditions, surface melting and associated discharge into the ocean accounts for about
60% of the mass outflow (Huybrechts et al., 1991) and is particularly important for
low-elevation regions along the coastal fringe, while above elevations of 2000m it is
rare. Most glaciers discharge directly into the ocean in fjords, although some ice
shelves exist. Prominent region of extensive summer melting is the southernmost
part, whereas mass loss by iceberg calving prevails in the eastern and western parts of
the ice sheet. The climate conditions in the north are cold and dry, whereas the south-
east expediences milder maritime conditions accompanied by larger precipitation due
to this region’s proximity to the North Atlantic.

Considering turnover times of the ice sheet on the order of several ka, delayed
responses to past changes may partially be the cause for present-day ice-mass changes.
However, it has been argued that the constraint on the ice sheet’s past may not be
sufficient for accurate predictions. Also, the spatial resolution of ice sheet-models
for these predictions does not allow for small-scale processes and associated fast ice
responses that are considered to be effective for readjusting to a dynamic equilibrium
after perturbations in the past. Therefore, these processes are not considered in this
investigation.

Primary indicator for an ice sheet’s current state is the mass balance, which is the
defined as the difference between mass input to the ice sheet and mass loss to the

http://www.ecmwf.int/
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Figure 1.2: Ice-surface velocity in Antarctica from InSAR data (Rignot et al., 2008).

ocean. It reflects the ice sheet’s deviation from an idealized equilibrium state. It
is influenced by interannual and long-term variability of the climate conditions and,
hence, of the net surface-mass balance as well as by changes of the dynamics of the
ice flow in response to contemporary and past variations of the ice sheet’s boundary
conditions (atmospheric, oceanic and basal conditions).

1.2 Mass balance estimates from satellite observations

Mass balances are estimated from Interferometric Synthetic Aperture Radar (InSAR)
data using the mass budget method, which compares, for individual glacial drainage
basins, InSAR-measured ice flow over the groundling line (Figure 1.2) with modelled
or empirically estimated accumulation within each drainage basin. Outflow is deter-
mined by the surface velocity of the ice along the groundling line, which is considered
to be representative also of flow velocities at greater depth of the moving ice column.
Accumulation is often estimated using regional climate models, which are calibrated
with in situ observations. Alternatively, in situ accumulation measurements are in-
terpolated using horizons of snow layers identified, for example, by airborne radar
measurements. The main uncertainty of this method are errors in the accumula-
tion estimate, which are particularly large (∼ 30%) for small and wet drainage basins
(Rignot et al., 2008).

Also, repeated measurements of the ice sheet’s surface elevation with airborne|space
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Figure 1.3: Spatial distribution of mean accumulation in Antarctica from ERA-40 data,
approximated by the sum of precipitation and evaporation averaged for the years 1958 to
2001.

born radar|laser altimetry are used to estimate mass balances. Interpretation of
surface-elevation changes in terms of ice-height changes requires the application of
corrections for depth-dependent snow- and ice-density variations and for the vertical
motion of the underlying bedrock. Most important is the accurate estimation of the
snow column’s density profile, with firn densification and snow compaction leading
to uncertainties of 10 mm/a (Cuffey, 2001), compared to which bedrock motion is
considerably smaller. For spaceborne radar altimetry measurements (e.g. European
Remote Sensing Satellites, ERS-1 and ERS-2 [online]) an additional problem is the
poor quality of the radar reflection for high-sloped regions along the fringe of the
ice sheet, where most accumulation and discharge is expected to occur (Figure 1.3).
Also, the reflection of high-elevation parts within the radar footprint (∼ 20 km) dom-
inates the signal, which may therefore contain only few information on changes of ice
streams and glaciers residing in deep channels. Spaceborne laser altimetry operates
with smaller footprints (65m for the Ice, Cloud and Land Elevation Satellite, ICESat
[online]) and is therefore also capable of resolving rougher terrain, but difficulties
arise from cloud cover limiting the times for data acquisitions, as well as from the
atmospheric conditions influencing the accuracy of the laser pointing.

The method investigated in this thesis focusses on the determination of the mass
balance of the Antarctic Ice Sheet, the Greenland Ice Sheet and Alaska glaciers from

http://earth.esa.int/ers/
http://icesat.gsfc.nasa.gov/
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Figure 1.4: Northern Hemisphere deglaciation since the LGM as described by load model
NAWI (Zweck & Huybrechts, 2005).

satellite-gravimetry measurements provided by GRACE. In contrast to the mass bud-
get method and repeated altimetry, which are based on measurements of the ice sheets’
geometry, GRACE data provide information on the temporal variations of the Earth’s
gravitational potential and, hence, indirectly on the causative mass changes. The prin-
ciple problem with this method is that the potential disturbance represents the sum
of various sources of mass change. In the polar regions, signal magnitudes comparable
to those of present-day ice-mass changes are predicted for mass changes within the
Earth’s mantle due to GIA. To model this GIA signal and to separate it from the
cryospheric changes in a combined inversion is the aim of this project.

1.3 Glacial-isostatic adjustment

Viscoelastic earth modelling

The Earth responds to changes of the load on its surface, for example, the retreat
and re-advance of ice sheets, with viscoelastic deformation seeking to gain a new
equilibrium state. This process is called GIA. The prediction of GIA is a classi-
cal problem in geophysics. Theory and numerical models solving this problem as
well as first interpretations of GIA observations in terms of the Earth’s viscoelas-
tic structure date back to the mid-1970s (e.g. Peltier, 1974; Cathles, 1975). Since
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Figure 1.5: Antarctic deglaciation since the LGM as described by load model HUY
(Huybrechts, 2002).

then, theoretical descriptions and their numerical implementation have continuously
been advanced (e.g. Wu & Peltier, 1982; Yuen & Peltier, 1982; Wolf, 1987; Lambeck
et al., 1990; Mitrovica & Peltier, 1992; Fjeldskaar, 1994; Han & Wahr, 1995; Fang &
Hager, 1995; Kaufmann & Wolf, 1996; Vermeersen et al., 1996; Wu & Ni, 1996; Ver-
meersen & Sabadini, 1997; Nakada, 1999). Current models include the solution of
the sea-level equation (Farrell & Clark, 1976; Hagedoorn et al., 2007), which governs
mass redistributions in the ice|ocean system and moving of coastlines, GIA-induced
variations of the Earth’s rotation (e.g. Mitrovica et al., 2005; Martinec & Hagedoorn,
2005; Sabadini & Vermeersen, 2002) and two- and three-dimensional distributions of
mantle viscosities (e.g. Gasperini & Sabadini, 1989, 1990; Kaufmann & Wolf, 1999;
Wu et al., 1998; Zhong et al., 2005; Tromp & Mitrovica, 1999a,b; Martinec, 2000) and
may allow for non-Newtonian rheologies (e.g. Giunchi & Spada, 2000) and compress-
ible viscoelasticity (e.g. Zhong et al., 2005). Further developments will allow us to
consider non-hydrostatic pre-stresses obtained from mantle convection modelling and
physical coupling of earth and load models as da well as ta assimilation. In this the-
sis, a radially symmetric self-gravitating Maxwell viscoelastic earth model based on
the solution method proposed in Martinec (2000) is used. Its theory is outlined in
Section 2.4.
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Inversion of GRACE data for GIA

So far, most of the GIA-related investigations of GRACE data represent first com-
parisons of predictions and observations. For example, GIA signals were identified
and evaluated over North America, (e.g Tamisiea et al., 2007), Antarctica (e.g. Sasgen
et al., 2007a) and Fennoscandia, (e.g. Steffen et al., 2008). Although most predicted
GIA signals are distinct features in the gravity fields’ linear trend, uncertainties re-
main with respect to contemporary mass-change processes overlapping GIA signals,
such as interannual hydrological variations in North America (e.g. Rangelova et al.,
2007; Rangelova & Sideris, 2008) and present-day ice-mass changes and tidal aliasing
in Antarctica (e.g Moore & King, 2008). Nevertheless, Paulson et al. (2007a,b) used
GRACE over North America together with palaeo sea-level indicators (SLI) to invert
the GIA signal for mantle viscosities. In contrast, Tamisiea et al. (2007) used the
GRACE data as constraint on geometry of the Laurentide Ice Sheet in North America
during the LGM.

1.4 Satellite gravimetry

For about three decades, measurements of satellite orbits, for example, by ground-
based laser ranging within the Laser Geodynamics Satellite (LAGEOS) satellite mis-
sion, have been used to determine the static gravitational potential of the Earth.
Early missions have mainly provided information on the long-wavelength component
of the Earth’s gravitational potential, because the satellites were released at high
altitudes (LAGEOS at ∼ 6000 km) to reduce the influence of non-gravitational accel-
erations (mainly atmospheric drag). Further shortcomings of the early missions were
the insufficient reduction of residual non-gravitational accelerations, the poor orbit de-
termination based on terrestrial networks only, and missing coverage at high latitudes
(e.g. NRC Committee on Earth Gravity from Space, 1997).

The GRACE succeeds the Deutsche Zentrum für Luft- und Raumfahrt (DLR) mis-
sion Challenging Minisatellite Payload (CHAMP), which successfully implemented
satellite-to-satellite tracking (SST) of type high-low (commonly between GPS satel-
lites and LEOs) for satellite gravimetry, magnetometery and atmospheric sounding.
For GRACE, high-low SST is combined with low-low SST (between two LEOs) by
two identical satellites in the same near-polar orbit, which measure their distance with
submicron precision by a mircowave ranging system. This measurement along with
the measurements of gravitational and non-gravitational accelerations using onboard
accelerometers allow the determination of the Earth’s static gravity field and its tem-
poral variations on time scales of ∼ 30 days with unprecedented accuracy (e.g. Tapley
et al., 2004a).

Currently, the GRACE mission lifetime is estimated up to 2012 to 2018 (Schmidt,
2007), depending on the scenario of non-gravitational drag. A temporal satellite-
gravimetry mission, GRAF, succeeding GRACE and continuing the time series is
currently in discussion. Modifications of mission parameters (e.g. lower altitudes
and larger masses of the satellites) for increasing mission performance (e.g. spatial
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Figure 1.6: Degree-power spectrum of the predicted rate of geoid-height change due
to present-day ice-mass changes and GIA. The predictions include glacier melting in
Antarctica (Rignot & Thomas, 2002; Thomas et al., 2004, red), Greenland (Krabill et al.,
2000; Rignot & Kanagaratnam, 2006, orange) and Alaska (Arendt et al., 2002, green), GIA
on the Northern Hemisphere (dark blue) and in Antarctica (light blue) calculated using
the glacial histories of Huybrechts (2002) and Zweck & Huybrechts (2005), respectively.
Also indicated is the temporal linear trend of the continental hydrological variations (grey)
estimated from the WaterGAP Global Hydrology Model (WGHM, Döll et al., 2003) for
January 2002 to June 2007.

resolution) are currently assessed with simulations. In parallel, substantial changes of
the mission geometry and satellite instrumentation, such as SST by a laser ranging
system are investigated for the further development of temporal satellite gravimetry.

1.5 Outline

The thesis is organized as follows. Section 2 describes the forward modelling of po-
tential disturbances in the polar regions related to mass redistribution on and within
the Earth. Section 3 introduces satellite-based recovery of the Earth’s gravitational
potential with GRACE, while focussing on the dynamic approach of monthly gravity-
field determination used at GFZ. In Section 4, error characteristics of the GRACE
data are presented, along with post-processing methods for the enhancement of the
desired geopysical signals. Section 5 introduces the gravimetric inverse problem of
determining mass changes from their associated potential disturbances. Approaches
to solve this problem for the GRACE data are outlined and the method of adjusting
the forward models detailed in Section 2 is described. In Section 6 results of the inver-
sion of GRACE data for ice-mass changes and GIA in the polar regions are presented



1.5 Outline 15

and discussed. Section 7 summarizes the results of this project and presents ideas for
further developements.
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Modelling of potential disturbances in

global ice regimes

This chapter outlines the basic theory underlying the computational forward models
used in this study. Section 2.1, presents the solution of the Poisson equation repre-
sented in terms of spherical-harmonic functions. Section 2.2 introduces the concept
of surface-mass changes and the associated potential disturbances. The theory for
calculating the response of the Earth’s body to surface-mass changes is described in
Section 2.3 and Section 2.4. It is distinguished between instantaneous mass changes
(∼ 10 a, present-day ice-mass changes), for which the Earth’s response is assumed to
be purely elastic, and long-term surface-mass changes (∼ 100 to 1000 a, glaciation
histories), for which the consideration of the more complex viscoelastic deformation
of the Earth’s body is required. The outline of the viscoelastic theory is formulated
according to Wolf (1997), Klemann et al. (2003) and Wolf (2003) and mainly taken
from Sasgen et al. (2005). The solutions of the associated field equations subject to
the interface conditions follows the spectral finite-element method developed by Mar-
tinec (2000), which is also the numerical approach underlying the computation of the
perturbation of the viscoelastic earth model used in this study.

2.1 Solution of the Poisson equation for spherical geom-

etry

The gravitational potential at point (r,Ω) of the density distribution %(r′,Ω′) within
the Earth is expressed by Newton’s integral

V (r,Ω) = G

∫
Ω0

∫ rs(Ω′)

r′=0

%(r′,Ω′)
|r− r′|

(r′)2dr′dΩ′, (2.1)

where G is the gravitational constant of 6.67259× 10−11 m3kg−1 s−2, and Ω stands
for the spherical co-latitude ϑ and longitude ϕ, hence Ω := (ϑ, ϕ), Ω0 is the full
solid angle and dΩ is its infinitesimal element, and rs(Ω) is the radial distance to the
Earth’s surface in a geocentric coordinate system. For the problems investigated here,
spherical geometry is assumed and rs(Ω) is approximated by R, which is the mean
radius of the Earth.

The expansion of the reciprocal distance |r− r′|−1 for r > r′ in the Legendre poly-

17
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nomials is (e.g. Heiskanen & Moritz, 1967)

1
|r− r′|

=
1
r

∞∑
j=0

(
r′

r

)j

Pj(cos Ψ), (2.2)

where Ψ is the angular distance between Ω and Ω′. Application of the addition
theorem for spherical-harmonic functions (A.14) allows us to express the reciprocal
distance according to

1
|r− r′|

=
4π
r

∞∑
j=0

1
2j + 1

(
r′

r

)j j∑
m=−j

Yjm(Ω)Y ∗
jm(Ω′), (2.3)

where Yjm(Ω) are the fully normalized surface spherical-harmonic functions (Sec-
tion A.1) and the asterisk denotes complex conjugation.

With the spherical-harmonic expansion of the density distribution according to
(A.1),

%(r′,Ω′) =
∞∑

j=0

j∑
m=−j

%jm(r′)Yjm(Ω′), (2.4)

and by substitution of (2.4) into (2.1) as well as by application of the orthonormality
relation of the spherical-harmonic functions (A.5), Newton’s integral (2.1) can be
expressed by

V (r,Ω) = 4πGr
∞∑

j=0

j∑
m=−j

[
1

2j + 1

∫ R

r′=0

(
r′

r

)j+2

%jm(r′)dr′
]
Yjm(Ω). (2.5)

For temporal variations of the density distribution, (2.1) becomes

V (r,Ω, t) = G

∫
Ω0

∫ R

r′=0

%(r′,Ω′, t)
|r− r′|

(r′)2dr′dΩ′, (2.6)

and, by analogy,

V (r,Ω, t) = 4πGr
∞∑

j=0

j∑
m=−j

[
1

2j + 1

∫ R

r′=0

(
r′

r

)j+2

%jm(r′, t)dr′
]
Yjm(Ω), (2.7)

for the associated temporal variations of the potential disturbances.

2.2 Potential disturbance of surface-mass changes

The external gravitational potential V (r,Ω) can be divided into the component in-
duced by the density distribution within the Earth and within a thin layer of thick-
ness h on its surface, V I(r,Ω) and V S(r,Ω), respectively. With the linearity of
the Poisson equation with respect to the potential and source terms, it holds that



2.2 Potential disturbance of surface-mass changes 19

V (r,Ω) = V I(r,Ω) + V S(r,Ω). For the limit of surface masses in a layer of infinitesi-
mal thickness, i.e. Helmert’s second condensation (Helmert, 1884), Newton’s integral
simplifies to

V S(r,Ω) = G

∫
Ω0

σ(Ω′)
|r− r′|

R2dΩ′, (2.8)

where

σ(Ω) =
1
R2

∫ R+h

r=R
%(r,Ω)r2dr (2.9)

is called surface-mass density. With (2.3) and σ(Ω) =
∑

jm σjmYjm(Ω), the potential
disturbances at the Earth’s surface are given by

V S(R,Ω) = 4πGR
∞∑

j=0

j∑
m=−j

[
1

2j + 1
σjm

]
Yjm(Ω). (2.10)

Comparison with the expansion of the potential disturbance to fully normalized spher-
ical harmonics,

V S(R,Ω) =
∞∑

j=0

j∑
m=−j

V S
jmYjm(Ω), (2.11)

relates the potential coefficients, V S
jm, to the coefficients of the distribution of the

surface-mass density:

V S
jm = 4πGR

1
2j + 1

σjm. (2.12)

For some investigations with very small spatial scales, the Earth’s body may be ap-
proximated as a rigid sphere and the potential disturbance can be calculated by (2.12).
However, in general, the Earth responds to mass changes on its surface with deforma-
tion, which induces a potential disturbance V I in addition to V S. This contribution
may be separated into an elastic component V I

el. caused by the Earth’s instantaneous
response to present-day surface-mass changes (Section 2.3), and a viscoelastic compo-
nent V I

visc. induced by the delayed mass readjustment within the Earth to perturba-
tions of the isostatic equilibrium of past surface-mass changes (i.e. increment of the
gravitational potential φ(∆) in Section 2.4).

Here, temporal variations of the potential disturbances are considered, V (r,Ω, t) =
V I(r,Ω, t) + V S(r,Ω, t), which are discretized with regard to the temporal GRACE
resolution according to ∆V (r,Ω, t) = V (r,Ω, tn) − V (r,Ω, tm), with tm < tn and
tn − tm ≈ 30 days, assuming that static components do not change for t ∈< tm, tn >,
which also removes unknown static components of the gravitational potential.

With Bruns’s theorem (e.g. Heiskanen & Moritz, 1967; Martinec, 1998), the geoid
height and its temporal variations, Njm(t), can be approximated by

Njm(t) ≈ Vjm(t)
g0

=
4πGR
g0

1
2j + 1

σjm(t), (2.13)
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where g0 ≈ 9.81 m/s2 is the mean gravitational acceleration on the Earth’s surface
and

N(Ω, t) =
∞∑

j=0

j∑
m=−j

Njm(t)Yjm(Ω). (2.14)

Figures in this thesis represent potential disturbances by the associated change in the
geoid height calculated according to (2.13) and (2.14).

2.3 Elastic earth response

For mass redistributions on time scales ∼ 10 a, the Earth’s deformation can be consid-
ered as instantaneous (e.g. Cathles, 1975; Klemann, 2003), independent of preceding
mass redistributions and governed only by the Earth’s elastic parameters, i.e. the
elastic bulk modulus κ and elastic shear modulus µ (Section 2.4).

The elastic deformation and associated potential disturbance V I
el. is calculated by

convolution of the Green’s function to an impulsive forcing qδ(Ω) with the loading
surface-mass distribution σ(Ω). The convolution is expressed by

V I
el.(Ω) = 4πGR

∫
Ω0

qδ(Ω−Ω′)σ(Ω′)dΩ′. (2.15)

Following the derivation in Section A.2, the convolution integral’s spectral representa-
tion with the simplification of a radially symmetric distribution of elastic parameters
is

V I
el.(Ω) = 4πGR

∑
j

qδ
j0

√
4π

2j + 1

∑
m

σjmYjm(Ω). (2.16)

With the normalization q′j =
√

4π(2j + 1)qδ
j0, the potential disturbance can be ex-

pressed by

Vjm = V I,el.
jm + V S

jm = 4πGR
1

2j + 1
(q′j + 1)σjm, (2.17)

where q′j are the elastic surface load Love numbers (e.g. Farrell, 1972; Wahr et al.,
1998; Han & Wahr, 1995). The elastic load Love numbers are shown in Figure 2.1
for the incompressible and compressible elastic parameterizations according to the
Preliminary Reference Earth Model (PREM, Dziewonski & Anderson, 1981). Here,
qj = q′j +1 represents the potential disturbance by the surface-mass change and by the
associated Earth’s elastic deformation. For the approximation of the Earth’s body as
a rigid sphere q′j = 0 and, hence, qj = 1. The load Love number q′j for j = 0, which
describes the variation of the total mass within the Earth, is, by definition, 1 for mass
conservation. The load Love number q′j for j = 1 represents the variation of position
of the center of mass with respect to the chosen coordinate system. It is here 0, such
that the center of mass reference frame is realized.
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Figure 2.1: Spectral convolution function for the elastic-incompressible (red), elastic-
compressible (green) and rigid (dashed blue line) earth model. Shown are qj = q′

j + 1,
which represent the sum of surface potential disturbances by direct gravitational attrac-
tion and by the elastic Earth response (surface load Love numbers).

2.4 Viscoelastic earth response

Glacial isostasy is concerned with the gravitational-viscoelastic response of the Earth
to surface loads. To derive the governing incremental field equations and interface
conditions, infinitesimal perturbations of a compositionally and entropically strat-
ified, compressible Earth initially in hydrostatic equilibrium are considered, where
the perturbations are assumed to be isocompositional and isentropic. In the follow-
ing, the Lagrangian representation of arbitrary tensor fields, fij...(X, t), will be used,
which refers the field values to the current position, ri(X, t), of a particle whose initial
position, Xi, at the time epoch t = 0 is taken as the spatial argument. The total field,
fij...(X, t), is then decomposed according to fij...(X, t) = f

(0)
ij...(X) + f

(δ)
ij...(X, t), where

f
(0)
ij...(X) is the initial field and f

(δ)
ij...(X, t) is the material incremental field, i.e. the

increment with respect to the particle. Sometimes, it is more convenient to consider
the spatial incremental field, i.e. the increment with respect to a fixed location, given
by f (∆)

ij... = f
(δ)
ij...−f

(0)
ij...,kuk, where ui is the particle displacement. For the material gra-

dient of a field, we use fij...,k(X, t) := ∂fij...(X, t)/∂Xk. Henceforth, the arguments ri
and t will be suppressed.
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2.4.1 Equations for the total fields

For a gravitating Earth undergoing quasi-static perturbations of some initial state,
the momentum equation is

τij,j + ρ(0)gi = 0, (2.18)

where τij is the non-symmetric Piola-Kirchhoff stress, ρ(0) the initial volume mass
density and gi the gravitational force per unit mass. The field gi is given by

gi = φ,jb
−1
ji , (2.19)

with φ the gravitational potential and b−1
ij the inverse of bij := ri,j . The gravitational

potential equation can be written as

j(φ,ijb
−1
ik b

−1
jk + φ,ib

−1
ik,jb

−1
jk ) = −4πGρ(0), (2.20)

where j := det[bij ] is the Jacobian determinant andG Newton’s gravitational constant.
The constitutive equation is of the form

tij = t
(0)
ij +Mij [rm,k(t− t′) rm,`(t− t′)− δk`], (2.21)

where tij = j−1bkjτik is the symmetric Cauchy stress tensor, Mij the anisotropic
relaxation functional transforming the strain history given by the term in brackets
into the current material incremental Cauchy stress, t′ the excitation time epoch and
δkl the Kronecker delta. With Mij , t

(0)
ij and ρ(0) prescribed, (2.18)–(2.21) constitute

the system of total field equations for ri, tij , and φ.
In order to incorporate ice and water loads, the gravitating Earth is assumed to

possess (internal or surficial) interfaces of discontinuity occupied by material sheets
whose interface or surface mass density, σ, is prescribed. Then, according to Klemann
(2003) and Wolf (2003) the following interface conditions result from (2.18)–(2.21):

[ri]+− = 0, (2.22)

[φ]+− = 0, (2.23)

[niφ,jb
−1
ji ]+− = −4πGσ, (2.24)

[njtij ]+− = −giσ. (2.25)

2.4.2 Equations for the initial fields

Commonly, the Earth is assumed to be initially in hydrostatic equilibrium, which
results in a radially symmetric density distribution. With the mechanical pressure
defined by p := −tii/3, then t(0)ij = −δijp(0) applies and (2.18)–(2.21) reduce to

−p(0)
,i + ρ(0)g

(0)
i = 0, (2.26)

g
(0)
i = φ

(0)
,i , (2.27)

φ
(0)
,ii = −4πGρ(0), (2.28)

p(0) = ξ(ρ(0), λ(0), ψ(0)). (2.29)
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The last expression is the state equation, ξ the state function, λ(0) a field representing
the initial composition and ψ(0) the initial entropy density. With ξ, λ(0) and ψ(0)

prescribed, (2.26)–(2.29) constitute the system of initial hydrostatic field equations
for g(0)

i , p(0), ρ(0) and φ(0).
Supposing σ(0) = 0, the following initial interface conditions are obtained from

(2.22)–(2.25):

[r(0)
i ]+− = 0, (2.30)

[φ(0)]+− = 0, (2.31)

[n(0)
i φ

(0)
,i ]+− = 0, (2.32)

[ p(0)]+− = 0. (2.33)

2.4.3 Equations for the incremental fields

After decomposition of the total fields in (2.18)–(2.21) into initial and incremental
parts followed by linearization with respect to the increments, we obtain, for isotropy,

t
(δ)
ij,j + (p(0)

,j uj),i − g
(0)
i (ρ(0)uj),j + ρ(0)g

(∆)
i = 0, (2.34)

g
(∆)
i = φ

(∆)
,i , (2.35)

φ
(∆)
,ii = 4πG(ρ(0)ui),i, (2.36)

t
(δ)
ij = δij

∫ t

0
[m1(t− t′)− 2

3m2(t− t′)] dt′ [uk,k(t′)] dt′

+
∫ t

0
m2(t− t′) dt′ [ui,j(t′) + uj,i(t′)] dt′,

(2.37)

where m1 and m2 are the bulk- and shear-relaxation functions, respectively, and sym-
bols dt and d 2

t denote the first- and second-order material time-derivative operators,
respectively. With m1 and m2 prescribed and the initial fields given as the special
solution to the initial field equations and interface conditions, (2.34)–(2.37) constitute
the material-local form of the incremental gravitational-viscoelastic field equations for
g
(∆)
i , t(δ)ij , ui and φ(∆).
Decomposing the total fields in (2.22)–(2.25) into initial and incremental parts fol-

lowed by linearization gives

[ui]+− = 0, (2.38)

[φ(∆)]+− = 0, (2.39)

[n(0)
i (φ(∆)

,i − 4πGρ(0)ui)]+− = −4πGσ, (2.40)

[n(0)
j t

(δ)
ij ]+− = −g(0)

i σ. (2.41)

Before solving (2.34)–(2.37) subject to the interface conditions (2.38)–(2.41), the re-
laxation functions must be specified. In the following, (2.37) is specialized for elastic-
compressible and a viscoelastic-incompressible material.
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2.4.4 Elastic-compressible constitutive equation

Partial integration of (2.37) allows us to separate the stress depending on the current
time epoch, i.e. the elastic stress, from the stress depending on all previous time
epochs, i.e the viscoelastic stress:

t
(δ)
ij = δij

[
m1(0)uk,k(t)− 2

3m2(0)uk,k(t)

−
∫ t

0
dt′m1(t− t′) [uk,k(t′)] dt′

+ 2
3

∫ t

0
dt′m2(t− t′) [uk,k(t′)] dt′

]
+m2(0)[ui,j(t) + uj,i(t)]−

∫ t

0
dt′m2(t− t′) [ui,j(t′) + uj,i(t′)]dt′.

(2.42)

This expression can be simplified by introducing the linearized strain εij := [ui,j +
uj,i]/2, which can be decomposed according to εDij := εij − 1

3δijεkk into deviatoric, εDij ,
and dilatational, δijεkk/3, parts. Then, (2.42) becomes

t
(δ)
ij = δijm1(0)εkk + 2m2(0)εDij − 2

∫ t

0
dt′m2(t− t′) εDij dt

′. (2.43)

On the assumption of perfect elasticity, the viscoelastic stress may be neglected and
(2.43) reduces to

t
(δ)
ij = δijm1(0)εkk + 2m2(0)εDij , (2.44)

where m1(0) and m2(0) correspond to the elastic bulk modulus κ and elastic shear
modulus µ, respectively.

2.4.5 Viscoelastic-incompressible constitutive equation

The form of (2.37) for incompressibility is obtained if εkk ≡ uk,k → 0 and κ → ∞.
Since t(δ)ij remains finite and the definition of the incremental mechanical pressure,

p(δ) := −t(δ)ii /3 = −κεkk, continues to apply, (2.43) reduces to (Wolf, 2003)

t
(δ)
ij = −δijp(δ) + 2µεDij − 2

∫ t

0
dt′m2(t− t′) εDij dt

′, (2.45)

where the viscoelastic behaviour is controlled by the shear-relaxation function, m2.
Commonly, m2 is chosen to represent a Maxwell-viscoelastic rheology:

m2(t− t′) := µe
−µ

η (t−t′)
H(t− t′), (2.46)

where η is the shear viscosity and H the Heaviside function1.

1The Heaviside function of t is defined by H(t− t′) :=

�
0 for t− t′ ≤ 0
1 for t− t′ > 0

.
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2.4.6 Spectral finite-element solution method

The solution of the field equations and interface conditions for the viscoelastic-incom-
pressible case is implemented out following the time-domain spectral finite-element
approach by Martinec (2000). In contrast to other solution methods, such as the
normal-mode method (e.g. Wu & Peltier, 1982; Peltier, 1985; Han & Wahr, 1995)
or the propagator-matrix method (e.g. Wolf, 1985c; Martinec & Wolf, 1998), this
approach formulates the initial- and boundary-value problem in a weak sense (e.g
Kř́ıžek & Neittaanmäki, 1990), i.e. it imposes the least constraints on the properties
of the viscosity, elasticity and density distributions. Moreover, the time dependence is
formulated as a time-evolution problem and allows the implementation of arbitrarily
changing surface loads, which are considered directly in the solution at each time step.
The solution for the elastic-compressible case is based on the standard approach of a
spatial convolution of the load Love numbers (Farrell, 1972) with the load function,
which is detailed in Section A.2. The determination of the load Love numbers is
carried out following the the normal-mode method (e.g. Wu & Peltier, 1982; Peltier,
1985; Han & Wahr, 1995).

2.4.7 Time-difference scheme for Maxwell viscoelasticity

First, the time dependence of the viscoelastic-incompressible constitutive equation
(2.45) is represented according to a time-difference scheme. The field variables ui,
t
(δ)
ij , p(δ) and φ(∆) (V I

visc. in Section 2.2) are represented by their values at discrete
time epochs, t0 = 0 < t1 < ... < tt−1 < ti < ti+1. With regard to a convenient
numerical solution, the explicit Euler time-difference scheme is adopted. Then, the
viscoelastic stress at the current time epoch, ti+1, can be decomposed into the elastic
stress at ti+1 and the viscous stress at the previous time epoch, ti. The time step
between two epochs must be chosen sufficiently small to guarantee the stability of the
numerical solution.

2.4.8 Weak formulation of the initial and boundary-value problem

For the reformulation of the initial and interface conditions in a weak sense, the energy
functional, E , is defined as the sum of the energy associated with the pressure Epress,
the elastic shear energy Eshear, the gravitational energy, Egrav, and the term associated
with the uniqueness of the solution, Euniq. The linear functional F i+1 is introduced as
the sum of the dissipative part at ti, F i

diss, and the part associated with the interface
conditions F i+1

inter. After this, the variation equation of the energy functional δE and
the linear functional δF i+1 is solved for a test function depending on the field variables
ui, φ(∆) and p(δ).

2.4.9 The spectral finite-element representation

In the next step, the field variables are expanded into spherical-harmonic functions.
For a fixed time epoch, ti+1, the angular dependence of the solutions is expressed
as vector spherical harmonics for ui and scalar spherical harmonics for φ(∆) and p(δ)
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(Section A.1) and substituted in the variation equation. The radial dependence of the
variables is represented by finite elements, with the nodes 0 = r1 < r2 < ... < rP <

rP+1 = a.

2.4.10 The Galerkin system

After introducing the spectral finite-element representation of the field variables, the
Galerkin system is obtained as a system of P + 1 linear equations for ui, φ(∆) and
p(δ) and each spherical-harmonic degree and order. The Galerkin method for approxi-
mating the solution to the field equations and interface conditions is finding a distinct
solution for a fixed time epoch, ti+1, such that variational equality is satisfied. Such
a solution of ui, φ(∆) and p(δ) is called the spectral finite-element solution.
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The Gravity Recovery and Climate

Experiment (GRACE)

Primary objective of the GRACE space mission of the National Aeronautic and Space
Agency (NASA) and the Deutsche Zentrum für Luft- und Raumfahrt (DLR), launched
March 17, 2002, is the determination of the temporal variations of the Earth’s grav-
itational potential with high temporal and spatial resolution and, thus, providing
novel constraints on global mass transport within the Earth system (e.g. Tapley et al.,
2004a; Tapley et al., 2004; Tapley & Reigber, 2001; Deutsches GeoForschungsZen-
trum, 2008 [online]). Secondary objective of the GRACE mission is the sounding of
the Earth’s atmosphere and ionosphere by Global Positioning System (GPS) radio-
occultation measurements (e.g Wickert et al., 2005).

The GRACE mission realizes SST of type low-low proposed by Wolf (1969) (Fig-
ure 3.2). It consists of two low-orbiting (altitude of ∼ 300 to 450 km) identically
constructed satellites, GRACE-A and GRACE-B, flying in the same near-polar orbit
with an inclination of 89.5o and eccentricity of < 0.005 accurately measuring their
distance (∼ 200 km) and change of distance by a K- and Ka-band microwave ranging
system. The principle idea is that the two satellites flying in along-track formation ex-
perience the inhomogeneities of the Earth’s gravitational potential and the associated
perturbations of their orbits with a time delay, which causes changes in the satellites’
relative distance (i.e. range), velocity (i.e. range rate) and acceleration (i.e. range
acceleration), measured by the K-band ranging systems (e.g. Case et al., 2004).

Inferring changes in Earth’s gravitational potential from range and range-rate data
requires the determination of accelerations due to non-gravitational causes, such as
atmospheric drag and pressure of solar radiation. These accelerations are measured for
each satellite by on-board high-precision accelerometers and removed during gravity-
field processing from the K-band measurements. Precise orbit determination is carried
out using data of twelve channel two-frequency GPS receivers, while the satellites’ rel-
ative orientation is determined by star cameras mounted onto the accelerometers. Ad-
ditionally, each satellite carries a laser retroreflector, which allows calibration, mainly
of the GPS-based positioning, using terrestrial laser ranging of the International Laser
Ranging Service (ILRS, Pearlman et al., 2002).

Within the GRACE mission, temporal variations of the gravitational potential are
recovered as average monthly solutions of fully normalized Stokes gravitational poten-
tial coefficients, V GRACE

jm (GRACE Level 2 product). Data sets of monthly solutions
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Figure 3.1: Availability of GRACE gravity-field solutions. Latest releases of the Science
Data Systems are GFZ RL04 (65 months) (Flechtner, 2007), CSR RL04 (69 months)
(Bettadpur, 2007a) and JPL RL04 (71 months) (Watkins & Dah Ning, 2007). The CNES
RL01C release provides ten-day solutions based on the constrained gravity-field determi-
nation (equivalent to 64 months) (Biancale et al., 2006).

are regularly computed at Deutsches GeoForschungsZentrum (GFZ), Center for Space
Research (CSR) at the University of Texas, and Jet Propulsion Laboratory (JPL) in
Pasadena and stored for the scientific community in the two GRACE archives ISDC
[online] and PO.DAAC [online] . Also, ten-day solutions are computed, for example
at the Bureau Gravimetrique International of the Centre National d’Ètudes Spatiales
(CNES). All solutions are available as fully normalized Stokes potential coefficients
and represent largely independent results of the satellite-based gravity-field determi-
nation. The data sets (i.e. GRACE releases) are continuously revised and improved;
the temporal coverage of the most recent releases are shown in Figure 3.1.

This chapter is organized as follows. Section 3.1 presents the GRACE instrumenta-
tion and its measurements. Section 3.2 outlines the dynamic approach of gravity-field
determination based on the satellites’ measurements used at GFZ. Section 3.3 de-
scribes the background models required for the determination of GRACE solutions.

3.1 Satellite measurements

The most relevant instrumentation onboard each GRACE satellite are K-band mi-
crowave ranging system, accelerometer, GPS receiver and star camera (Figure 3.3).
The initial measurements of these instruments are processed at JPL and made avail-
able as GRACE Level 1B product (Case et al., 2004) within the GRACE archives.
Processing steps common to all observations are 1) transformation of measurement
units to Système international d’unités (SI) units, 2) time referencing (from onboard

http://isdc.gfz-potsdam.de/grace
http://podaac.jpl.nasa.gov/grace/
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Figure 3.2: Principle of satellite-to-satellite tracking (SST) of type low-low and high-low
realized implemented in the GRACE mission.

time based on the Ultra-Stable Oscillator to GPS-system time), 3) spatial referencing
from the instruments’ local reference frame to the unified Science Reference Frame, 4)
elimination of outliers, and 5) joint noise filtering and data resampling. The following
description follows Case et al. (2004) and Flechtner (2001øn).

3.1.1 K-band microwave ranging system (KBR)

The intra-satellite distance between GRACE-A and GRACE-B and its changes are
measured with an accuracy of ∼ 1 µm using a K-band microwave ranging system
(HAIRS, JPL, USA). Each satellite is equipped with a dual-frequency microwave
transmitter and receiver operating in the K- (24 GHz) and Ka- (32 GHz) band. The
K-band frequencies of the satellites are shifted by 500 KHz to avoid signal interferences.
From four simultaneous phase measurements at a sampling rate of 10 Hz, dual-one-
way ranges are calculated at JPL. During this procedure, it is necessary to correct the
range data for biases of multiple integers of the carrier wavelength, distance changes of
the satellites during signal propagation and misalignment of the satellites. From the
range data, first and second time derivatives of the intra-satellite range, i. e. range rate
and range acceleration, respectively, are calculated numerically. Additional processing
steps include the transformation of the reference frame, low-pass noise filtering and
accompanied resampling of the initial 10 Hz data at 0.2 Hz intervals.

http://www-app2.gfz-potsdam.de/pb1/op/grace/
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Figure 3.3: GRACE instrumentation (Flechtner, 2001øn).

3.1.2 Accelerometer (ACC)

In order to derive changes of the Earth’s gravitational potential from inter-satellite
range measurements from LEO satellites, it is necessary to account for contributions
from non-gravitational forces acting on the spacecraft. For GRACE, the dominating
terms come from the atmospheric drag, radiation pressure forces (solar and terres-
trial), but also linear accelerations caused by imperfections of the attitude control sys-
tem. Since existing models for the non-gravitational forces are not accurate enough,
the GRACE satellites are equipped with capacitative accelerometers (SuperSTAR,
CNES, France). The basic principle is to retain a proof mass (a small cube) floating
inside a capacitor. When located precisely in the center of mass of the spacecraft,
the motion of the proof mass is only affected by gravitational accelerations. In con-
trast, the motion of the capacitor, which is rigidly attached to the satellite, is driven
by both gravitational and non-gravitational forces. Measuring the voltage necessary
to retain the cube motionless thus provides information on the strength of the non-
gravitational accelerations. The specified accuracy of the acceleration measurement is
1× 10−10 m/s2 in radial and along-track direction and 1× 10−9 m/s2 in cross-track di-
rection for the cumulative frequency spectrum from 2× 10−4 to 1× 10−1 Hz (Schmidt,
2007). Current investigations indicate that this accuracy is not completely achieved
(e.g. Fackler, 2005), which is one potential cause for observed degradations of the
GRACE gravity fields. Due to the design of the accelerometer, the measurements
need to be corrected for instrument-specific parameters, which comprise, for example,
biases and scale factors for each instrumental axis. These must be estimated along
with the gravity field and other orbital parameters, since a calibration on ground is
not feasible. Additional details on the parameter model of the accelerometer and its
relevance for the gravity-field recovery can be found in Schmidt (2007).

http://www-app2.gfz-potsdam.de/pb1/op/grace/
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3.1.3 GPS receiver (GPS)

Precise orbit determination at the cm level is achieved by satellite-to-satellite tracking
(SST) of the type high-low using GPS. Each satellite is equipped with a 16-channel
dual-frequency GPS receiver (BlackJack, JPL, USA), which observes GPS code and
phase measurements. Four out of the 16 channels are reserved for the reception
of GPS-based occultation measurements, allowing for a radiometric sounding of the
ionosphere and the atmosphere, which is the secondary mission objective. From pre-
cise measurements of the time delay between the occulted and non-occulted GPS
signals, vertical atmospheric refractivity and temperature profiles are obtained with
high vertical resolution (Wickert et al., 2005).

3.1.4 Star camera assembly (SCA)

Data from two star camera assemblies (SCA) are used to determine the absolute
and relative orientation of the GRACE satellites and the onboard instruments in the
inertial space. The SCA consist of two simultaneously operating digital camera heads
mounted at the port and starboard sides of the accelerometer at an angle of 45o

with respect to the zenith. Comparison of the images with onboard maps of star
constellations allows the determination of the satellite attitude with an accuracy of
<0.3mrad. In flight, the SCA measurements are fed into the attitude and orbit control
system AOCS to establish the K-band link, which requires a permanent 1.5 degree
pitch of the two satellites.

3.1.5 Additional devices

The GRACE satellites are also equipped with a Coarse Earth and Sun Sensor (CES,
Astrium GmbH, Germany), which provides an estimate of Sun and Earth position
to allow for a coarse positioning of the satellite in cases of mode drops. In order to
compensate for offsets of the accelerometers from the center of mass, mass trim units
(MTU) are mounted onboard each satellite. Such deviations may occur in the course of
the mission from asymmetric degassing of the cold gas tanks. The location is checked
by means of satellite manoeuvres and the MTUs are used in case offsets larger than
0.2 mm are observed. For the generation of the KBR signal and time tagging, a Ultra-
Stable Oscillator (USO, John Hopkins University, USA) is installed. Also mounted are
laser-retro reflectors to enable precise Satellite Laser Ranging (SLR) measurements
with stations of the International Laser Ranging Service (ILRS) network.

3.2 Dynamic approach for gravity-field determination

This section outlines the basic principles of satellite-based determination of the Earth’s
gravitational potential. The presentation, which largely follows Schmidt (2007), is
limited to the recovery of the gravity field using the dynamic approach used at GFZ.
Other methods of gravity field determination are based, for example, on the dynamic
approach with the parametrization of local mass concentrations (e.g. Rowlands et al.,
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2005; Luthke et al., 2006), the consideration of the satellites’ energy conditions (e.g.
Han, 2004), or the modified dynamic approach based on the integral formulation of
the equation of motion (e.g. Mayer-Gürr, 2007).

3.2.1 Equation of motion

The dynamic approach for the determination of the Earth’s gravitational potential is
based on Newton’s equation of motion for a satellite in a geocentric inertial frame,

mr̈ = f(t, r, ṙ), (3.1)

where m is the mass of the satellite, and r, ṙ and r̈ are the vectors of the satellite’s
position, velocity and acceleration, respectively, with respect to the geocenter. f de-
scribes conservative (i.e. gravitational) and non-conservative (i.e. non-gravitational)
forces exerting accelerations on the satellite,

r̈ = ac + anc. (3.2)

The gravitational acceleration,

ac = −GM
r3

r + aSTAT + aST + aAOT + aAOD + aP, (3.3)

consists of the attraction of the Earth as a point mass, −GMr3/r, static contributions
from the Earth’s potential, aSTAT, luni-solar solid-earth tides, aST, atmosphere and
ocean tides, aAOT, non-tidal mass variations of the atmosphere and ocean, aAOD, and
the direct gravitational attraction of celestial bodies, aP. The gravitational potential
of the Sun and planets are considered to arise from point masses, whereas the Moon’s
gravitational potential is expanded to spherical-harmonic degree and order four.

The sensitivity of the GRACE observation system requires to account for tidal,
but also non-tidal short-term mass variations (i.e. hours to a few days). If such
contributions remain unmodelled, it has been shown that such signal alias into the
monthly mean estimates of the gravity field, causing characteristic striping features
in its spatial representation. The phenomena that need to be considered mainly
comprise short-term mass variations in the atmosphere and the oceans (see for the
specifications on the models used as part of the background models). The reduction
of such variations is referred to as de-aliasing.

The non-gravitational accelerations for GRACE are

anc = aAD + aSR + aER + aCS + aR, (3.4)

where aAD refers to atmospheric drag, aSR and aER to radiation pressure of the Sun
and the Earth (surface albedo), aCS to accelerations caused by the satellites’ attitude
control system, and aR to residual contributions caused by, for example, interactions
with the electromagnetic field or mechanical deformations due to temperature vari-
ations, which are usually not considered in gravity field determination. The sum of
all non-gravitational accelerations are measured by the accelerometers of the GRACE
satellites described in Section 3.1.2.
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3.2.2 Equation of observations

The problem of solving the equation of motion based on satellite data is formulated by
relating satellite observations, d (i.e. range, range rate, range acceleration, GPS-phase
measurements, satellite orientation, etc.) to the satellites’ position and velocity, r, ṙ

(3.1),

d = F (q), (3.5)

with q = (t, r, ṙ,p), where p contains the parameters of dynamic (e.g. the desired
Stokes potential coefficients V GRACE

jm ), kinematic (e.g. K-band calibration) and geo-
metric (e.g. GPS station coordinates) and other to be estimated unknowns (e.g. GPS
phase ambiguities). The function F relating the observations and unknown parame-
ters, which is in general non-linear, is linearized with respect to a set of reference
parameters, q0, using a Taylor expansion series,

F (q) ≈ F (q0) +
∂F (q)
∂q

∣∣∣
q=q0

∆q, (3.6)

where q0 and d0 = F (q0) are reference values of the parameters and the associated
predictions of the satellite measurements (i.e. theoretical observations), respectively.
The partial derivatives of F with respect to r, ṙ and the parameters p can be calcu-
lated from (3.5). The determination of the partial derivatives of r, ṙ with respect to
p, which arise due to application of the chain rule, are calculated numerically along
the satellite’s orbit by integration of the associated variational equation; details are
given by Schwintzer et al. (1991).

The linerization (3.6) allows us to reformulate the parameter estimation in terms of
estimating deviations (improvements) of the initial set of parameters, q̂ = q̂0 + ∆q,
that minimize, in a least-squares sense, the difference between observed and predicted
satellite measurements. Introducing the matrix A containing the partial derivatives
of the observations with respect to the unknowns,

A =
∂F (q)
∂q

∣∣∣
q=q0

, (3.7)

and using the linearization of (3.6), the minimization criterion takes the form

(A∆q −∆F )TC−1
D (A∆q −∆F ) != min

∆q
, (3.8)

where ∆F = F (q) − F (q0), and CD = var(d) represents the variance-covariance
matrix of the satellite measurements. With (A.36), the least-squares solution of (3.8)
for the optimal estimates of parameter deviations ∆q̂, is

∆q̂ = (ATCD
−1A)−1ATCD

−1∆F , (3.9)

where q = q0 + ∆q̂. For simplification, it is usually assumed that all satellite mea-
surements are uncorrelated, i.e. the off-diagonal elements of CD are zero. Also, the
absolute error level is not known, but estimated in the adjustment. However, the rel-
ative error level in CD, which attributes different weight to different measurements,
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is important. Following (A.37), the errors of CD are propagated to the parameter
estimates ∆q̂ according to

C̃M = (ATC−1
D A)−1. (3.10)

The matrix contains the variances of the Stokes potential coefficients δV GRACE
jm re-

ferred to as formal GRACE errors.
Monthly and long-term solutions of the gravity field are determined at GFZ. For

monthly solutions, satellite data of ∼ 30 days (i.e. one day acquires ≈ 15 revolutions)
are used in the estimation of one set of parameter improvements (3.9). Shorter time
intervals are possible, however, at the cost of being able to solve only for a smaller
number of Stokes coefficients (i.e. a lower spatial resolution of the gravity field). This
can be compensated by including more a priori information from background models
(Section 3.3) or by regularization of the equations of observations using, for example,
the Kaula rule of thumb (Kaula, 1966) in a constrained gravity-field determination.
Long-term unconstrained solutions, such as the static gravity field EIGENCG03C
(Förste et al., 2005), involve satellite data of several years.

3.3 Background models

The dynamic approach carried out at GFZ relies on models of the static gravitational
potential and its periodic and aperiodic temporal variations for the prediction of ap-
proximate satellite measurements (3.6). For GFZ RL04, the background models are
specified in Flechtner (2007). Further investigations with regard to the influence of
these background models on the resulting monthly solutions can be found in Schmidt
(2007).

For GFZ RL04, static and periodically time-varying a priori background models
are mainly implemented according to the International Earth Rotation and Reference
Systems Service (IERS [online]) convention 2003 (Mc Carthy & Petit, 2004). They ac-
count for gravitational perturbations due to solid Earth, atmosphere and ocean tides.
Also considered are changes in the gravitational potential due to the deformation of
the solid Earth and the oceans associated with the changes in the Earth’s centrifugal
potential following variations in the Earth’s pole of rotation (solid-Earth and ocean
pole tide). The solid-Earth pole tide mainly influences the spherical-harmonic co-
efficients j,m = 2, 1, whereas the ocean pole tide must be considered up to degree
and order 30. The static gravity-field solution used at GFZ is the EIGENCG03C
(Förste et al., 2005). It is complete to degree and order 360 and based on GRACE
and CHAMP satellite data, which are combined with gravimetric and altimetric data
for achieving higher spatial resolution.

Aperiodic mass redistributions are dominantly climatologically induced, mainly by
the atmosphere and the ocean. These short-term mass variations, if not properly re-
duced from the satellite observations, may cause temporal aliasing and degradation of
the mean monthly gravity-field solutions. At GFZ, these mass variations are predicted
using atmospheric data from ECMWF and the baroclinic Ocean Model for Circulation

file:www.iers.org
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and Tides (OMCT [online] , Dobslaw & Thomas, 2007), which is forced with ECMWF
data. From the mass redistribution, changes of the gravitational potential and, even-
tually the accelerations acting on the satellites (aAOD) are calculated and reduced
in the observation equation. For GRACE investigations concerned with atmospheric
and oceanic changes, the monthly means of these predictions are issued as Stokes po-
tential coefficients (AODL1B product, Flechtner, 2006) and must be res-substituted
into the de-aliased monthly gravity-field solution in order to approximately restore
the atmospheric and oceanic signals. Other short-term mass variations, foe exam-
ple, from continental hydrological processes, are currently not removed since their
determination remains a dedicated mission objective.

http://www.gfz-potsdam.de/portal/-?$part=CmsPart&$event=display&docId=1956008&cP=sec15.quicksearch


36 The Gravity Recovery and Climate Experiment (GRACE)



4

Post-processing of GRACE gravity-field

solutions

The purpose of data post-processing is the enhancement of the geophysical signal of
interest, while reducing undesired signal components or contaminating noise. The
choice of the appropriate filtering largely depends on the signal and noise character-
istics and often a priori knowledge of both components enter the filter design and its
optimization. This chapter describes a selection of post-processing methods developed
for (or adapted to) monthly GRACE gravity-field solutions.

Filtering of GRACE solutions mainly aims at suppressing noise in the Stokes poten-
tial coefficients, which increases with increasing degree and order. Therefore, filters
for GRACE data are commonly low-pass filters, although for some applications also
the influence of low degrees and orders (e.g. j,m = 2, 0, which is not well-determined
by GRACE) may need to be reduced. More literature about filtering GRACE data
can be found in the database of GRACE publications [online] . The filters introduced
in this chapter follow the convolution principle of Jekeli (1981). They operate in the
spectral domain, which means that filter functions are applied directly to the GRACE
potential coefficients. This assists the filter design and is computationally efficient.

This chapter is organized as follows. Section 4.1 presents the uncertainty character-
istics of the GRACE data. In Section 4.2, linear spatial convolution filtering based on
isotropic (i. e. order-independent) smoothing functions is introduced. In this context,
the method of Wiener optimal filtering developed within this project (Sasgen et al.,
2006) is presented and compared with Gaussian filtering, which is commonly applied
within the GRACE scientific community. Section 4.3 presents two methods of non-
isotropic (i. e. order-dependent) filtering. First, the de-correlation filter of Swenson &
Wahr (2006) is outlined, which aims at reducing empirically determined correlations
between errors of GRACE coefficients. Then, the non-isotropic statistical filter is pre-
sented, which was developed within the research team at GFZ (e.g. Fleming et al.,
2006 [online]) for an improved separation of deterministic and stochastic components
in the GRACE-coefficients time series.

37
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4.1 Uncertainty characteristics of monthly solutions

The errors of the GRACE potential coefficients, δVjm, can be divided into

δV GRACE
jm = δV Inst.

jm + δV Alias.
jm + δV Reg.

jm , (4.1)

where δV Inst.
jm are the instruments’ errors (KBR, ACC, GPS and SCA), δV Alias.

jm are
the errors due to aliasing (quality of background models, temporal and spatial para-
meterizations) and δV Reg.

jm are the errors associated with regularization of the set of
normal equations to be solved for V GRACE

jm (Schmidt, 2007). Apart from stochastic
noise, δV GRACE

jm may contain systematic errors, which can be attributed to one or
more of the following categories: 1) measurement errors of the instruments (e.g. noise
characteristic of the accelerometer), 2) spatial and temporal sampling errors (i.e. or-
bit coverage), 3) inaccuracies in the background models (e.g static gravity field) or
4) inappropriate parametrization of the geodetic model (e.g. insufficient number of
Stokes potential coefficients). Investigations with regard to these error sources can be
found in Schmidt (2007). Although systematic errors appear to be important, they
are problematic to quantify and not further considered in this work. The investigation
of GRACE data from different processing centers, however, provides some empirical
estimate for this source of uncertainty.

4.1.1 Formal uncertainties

The uncertainty characteristic of the GRACE data is mainly a result of the satellites’
orbit parameters. According to Newton’s law of gravitation, the external gravitational
potential decays inversely with distance from its source. This attenuation is depen-
dent on the wavelength and results in increased damping of short-wavelength anom-
alies with increasing distance from their sources. Measurements of the gravitational
potential at the satellite’s altitude, H (∼ 500 km for GRACE), need to be downward
continued to obtain the gravitational potential at the Earth’s surface. Comparison of
(A.19) with V (r = R) and V (r = R + H) gives the degree-dependent amplification
factor (R+H/R)j+1 for the harmonic downward continuation. Measurement errors
are amplified in the same way and cause the uncertainties in the Stokes potential co-
efficients to become larger with increasing degree and order (Figure 4.1). Therefore,
it is necessary to filter the Stokes coefficients with regard to balancing the trade-off
between the gravity field’s spatial resolution and its accuracy. The GRACE baseline
shown in Figure 4.1 indicates the predicted GRACE accuracy at a satellite altitude
of 500 km (NRC Committee on Earth Gravity from Space, 1997).

The spatial distribution of GRACE errors mainly results from the temporal and
spatial sampling of the satellites in the near-polar orbit. With an along-track data
sampling rate of ∼ 0.2 Hz (e.g. Level 1B data of the K-band instrument) and the av-
erage velocity of the GRACE satellites of 7 km/s, an approximate spatial sampling in
north-south direction of ∆λ = 35 km is obtained. The sampling in east-west direction
is coarser and to obtain a spatial resolution of ∆λ = 200 km, data acquisition over
∼ 30 days is required. This poorer track coverage, particularly in equatorial regions,
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Figure 4.1: Degree-power spectrum of monthly GRACE solutions (red) and associated
formal errors (blue) for the months August 2002 to August 2007 as well as the Kaula rule
of thumb (grey solid line) and the GRACE baseline (grey dashed line). The solutions for
August 2004, September 2004 and October 2004 (orange) are of poorer quality due to
repeat orbits, which is also indicated by their large formal errors (light blue).

increases aliasing errors and degrades the determination of near-sectorial Stokes co-
efficients (j ≈ m) visible as characteristic north-south oriented striping in the spatial
gravity field.

Average monthly solutions represent a compromise between temporal resolution
and spatial ground-track coverage, i.e. sufficient number of satellite revolutions within
time interval. Shortage of data may occur when orbits are repeated within a month
or longer time intervals, depending on the decrease in the satellites’ altitude due to
atmospheric drag (e.g. Wagner et al., 2006). Repeat orbits also lead to an increase
also of aliasing errors and a degradation of the gravity-field solutions. A prominent
example is the 61/4 resonance orbit around September 2004 (61 revolution within 4
days) with exceptionally large errors in the Stokes potential coefficients (Figure 4.1).

4.1.2 Assessment of formal uncertainties

Figure 4.2 shows the degree-power spectrum of formal GRACE errors for the monthly
solution of April 2004 obtained by error propagation according to (3.9). The errors
are dominated by an increase in power with increasing degree. However, to asses
whether the formal errors are an adequate representation of the true uncertainties,
empirical errors are calculated. This is done by fitting a temporal model, which
describes the deterministic signal components for each coefficients’ time series by the
method of least-squares (Section 4.3.2). The residual (i.e. data minus deterministic
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Figure 4.2: Degree-power spectrum of GRACE solution and associated errors for April
2004 (red) and with respect to static gravity-field solution EIGEN-CG03 (green, Förste
et al., 2005). Also shown are the associated formal (dark blue) and calibrated (light blue)
errors, the Kaula rule of thumb (solid grey line) and the GRACE baseline (dashed grey
line) as well as the static gravity-field solution EIGEN-CG03 (orange).

part) are interpreted as an empirical error estimate. Because this estimate may still
contain geophysical signals that are not removed by the temporal model (e.g. the
Sumatra earthquake in 2004, acceleration of glacier mass loss, interannual variations),
it is considered as an upper bound on the GRACE errors (Wahr et al., 2004). In the
following, this error estimate will be referred to as residual error. Figure 4.2 shows that
the uncertainty level represented by the formal errors lies between the GRACE baseline
and the residual error. Particularly for low degrees, the formal errors appear to
underestimate the uncertainties. Possible reasons are that the influence of inaccurate
background models (e.g. the static gravity-field solution) is larger than assumed. To
account for this shortcoming, formal errors are calibrated according to Schmidt et al.
(2008) by applying a j-dependent scaling factor in order to best-fit the residual errors
(Figure 4.2). The order-dependences of the formal and calibrated GRACE errors are
shown in Figure 4.3. The spectrum of the residual errors and the ratio of calibrated
and residual GRACE errors for April 2004 is shown in Figure 4.4. It is visible that
large degree- and order-dependent differences between calibrated and residual errors
remain. There are prominent stripes along j for given a order m of coefficients with j
of equal (even/odd) parity that have been attributed to correlations between GRACE
errors (Swenson & Wahr, 2006) and are further discussed in Section 4.3.

Figure 4.6 shows the spatial distribution of GRACE errors for calibrated errors and
the ratio of calibrated and residual errors, averaged for the months August 2002 to
August 2008. The calibrated errors do not show the north-south oriented striping
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a) b)

Figure 4.3: Spectrum of a) formal and b) calibrated errors of GRACE solution for April
2004.

characteristic for GRACE data due to missing covariances of the calibrated GRACE
errors. The ratio of average calibrated and residual errors indicates that calibrated
errors underestimate errors over the polar regions by∼ 30% and overestimate errors for
the mid-latitudes by a factor of ∼ two. Dominant longitudinal striping, visible in the
residual errors of a single monthly solutions (e.g. April 2004, Figure 4.5), are strongly
reduced by the temporal averaging. This suggests that correlations between errors of
different degree and order are temporally largely uncorrelated, although contradicting
results are found with the statistical filter (Section 4.3.2).

4.2 Isotropic filtering

For linear convolution filtering, the output signal y(Ω) is given by the spatial convo-
lution of the filter response function h(Ω) with the input signal x(Ω),

y(Ω) =
∫
Ω′

0

h(Ω′)x(Ω−Ω′)dΩ′, (4.2)

where Ω stands for the spherical co-latitude ϑ and longitude ϕ. Hence, Ω := (ϑ, ϕ),
Ω0 is the full solid angle and dΩ its infinitesimal element.

The signals x(Ω) and y(Ω) are assumed to be square-integrable functions over the
unit sphere and thus can be represented as series of scalar spherical harmonics. In
the case of isotropic filtering, h = h(ϑ), and the convolution integral (A.11) in the
spectral domain takes the form

yjm = hjxjm, (4.3)
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a) b)

Figure 4.4: Spectrum of a) residual errors and b) ratio of residual and calibrated errors
of the GRACE solution for April 2004.

where hj and xjm are the spherical-harmonic coefficients of the filter response function
and the signal, respectively (Section A.2).

4.2.1 Gaussian smoothing

The GRACE gravity-field solutions are often smoothed with a Gaussian averaging
filter introduced by Jekeli (1981), because it is an effective low-pass filter with smooth
properties in the spectral and spatial domains. The Gaussian filter function can be
represented by

hG(ϑ) = h0e
− 1

2
( ϑ

ϑ0
)2
, (4.4)

where ϑ0 is the spatial half width, implicitly defined as h(ϑ0) = 0.5h(0). The normal-
ization factor h0 is here defined as h0 = 1 to assure that the input signals’ amplitudes
are not attenuated. The representation of hG(ϑ) in terms of spherical-harmonic coeffi-
cients, hG,j , is obtained by numerical integration of (A.9), although recursion formulas
can be found in Jekeli (1981) and Wahr et al. (1998).

The Gaussian spatial-averaging method has commonly been applied to monthly
GRACE solutions with values of h(ϑ0) ranging between 2 and 14o corresponding to
∼ 220 to 1550 km, respectively (Wahr et al., 2004). Typically, h(ϑ0) ≈ 6.5o (720 km)
is chosen, which is somewhat larger than the optimal Gaussian smoothing half-width
of ∼ 4o determined by the Wiener optimal filter (Sasgen et al., 2006, , Section 4.4 and
Section 4.2.2).
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Figure 4.5: Spatial distribution of residual errors of the GRACE solution for April 2004.
The cut-off degrees are jmin = 2 and jmax = 50.

a) b)

Figure 4.6: Spatial distribution of a) calibrated errors and b) ratio of residual and cali-
brated errors averaged for the GRACE solutions from August 2002 to August 2007. The
cut-off degrees are jmin = 2 and jmax = 50.

4.2.2 Wiener optimal filtering

The spatial averaging method for GRACE data proposed by Sasgen et al. (2006)
(Section 4.4) is based on the Wiener optimal filtering approach. In contrast to the
Gaussian averaging method, which requires the ad hoc definition of the spatial half-
width ϑ0 of the filter function, the Wiener optimal filter is adaptive to a priori in-
formation on the degree-power spectra of the desired gravitational signal and the
contaminating noise.

The filter coefficients of the Wiener optimal filter, hW,j , are determined by least-
squares minimization of the difference between the desired and the filtered signal,
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while assuming that the input signal consists of the true signal contaminated by an
additive, uncorrelated noise. The minimization criterion results in the formula for the
Wiener filter coefficients,

hW,j =
σ2

s,j

σ2
s,j + σ2

n,j

, (4.5)

where σ2
s,j and σ2

n,j are the expected degree-power spectra of the desired signal and
contaminating noise, respectively. The derivation of (4.5) is given in Sasgen et al.
(2006) (Section 4.4).

The basic advantage of the Wiener filter is that the parameterized signal and noise
degree-power models are adaptive to the actual signal-to-noise ratio of a given monthly
GRACE solution. Figure 4.7 shows the spectral and spatial representation of the op-
timal filter function, hW,j and hW(ϑ), respectively, for the monthly solutions for April
2004 (standard-quality solution) and September 2004 (poor-quality solution due to re-
peat orbits). For comparison, the inferred optimal Gaussian filter functions are shown.
It is visible that the Wiener optimal filter broadens with increasing error level in the
GRACE data. This is also visible in Figure 4.8, which shows the optimal Gaussian
filter width of monthly solutions for August 2002 to August 2008. Also indicated are
optimal filter widths for the linear (∼ 3.5o) as well as annual (∼ 4o) and semi-annual
(∼ 4.5o) oscillating temporal components of GRACE time series (Section 4.3.2).

The degree-power spectra used for estimation of the optimal filter coefficients hW,j

represent global averages of signal and noise in the GRACE data. On the one hand,
this is of advantage, because the a priori information entering the filter design is
weak, which increases the filter’s robustness with respect to the a priori assumptions.
On the other hand, GRACE errors do not exhibit homogeneous global distributions.
For example, for the polar regions formal errors are below the global average due
denser ground-track coverage (Figure 4.6) and isotropic Wiener filtering may over-
smooth signals. This problem can be solved by adapting the Wiener optimal-filtering
principle to regional representations of the gravity field, such as localized spectral
base functions (Wieczorek & Simons, 2005). Also, the Wiener optimal filter can be
generalized for signal and noise models varying in both degree and order. This non-
isotropic (order-dependent) filtering is advantageous to account of for the longitudinal
variations of the GRACE errors (Han et al., 2005).

4.3 Non-isotropic filtering

In this section, two methods for non-isotropic filtering are presented. The order-
dependent filter of Swenson & Wahr (2006) determines the spectral components that
vary smoothly as a function of even/odd degree (i.e. correlated components) by
Savitzky-Golay filtering (Savitzky & Golay, 1964) and subtracts them from the origi-
nal coefficients. The statistical filter, by contrast, makes use of the stochastic behavior
of the degrading stripes over time, which leads to an exceptional high noise level in
some coefficients. The Student’s t-test and Fisher F -test allow us to identify and
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Figure 4.7: Comparison of Wiener optimal and Gaussian filter functions. Shown are the
resulting filter coefficients (circles) and spatial weighting functions (lines) of the Wiener
filter for April 2004 (red) and September 2004 (dark blue) together with the equivalent
Gaussian filter of 4o (orange) and 6o (light blue).

remove these coefficients, as it compares the magnitude of the inferred temporal com-
ponent with the coefficients’ residual variability. In this work, statistical filtering is
preferred as it results in a more consistent signal over the polar regions. The disadvan-
tage of this filter is that it cannot be used to de-stripe single monthly solutions. Also,
more important, there is indication that some coefficients’ correlated errors are also
correlated in time (Figure 4.9) and therefore passed-through by the statistical filter.
The combined application of both filters may yield the best results (Davis et al., 2008),
given that they are optimized with respect to the signals investigated, which has not
been done in this work.

4.3.1 De-correlation filtering

Swenson & Wahr (2006) empirically found that correlations between coefficients of
degree with even/odd parity exist, while coefficients with different parity and differ-
ent orders appear to be uncorrelated. The de-correlation filter determines, for each
parity and order, spectral components that vary smoothly as a function of degree
and subtracts them from the original coefficients. The de-correlation filtering follows
three main steps. First, the spectrum of coefficients is split into two components with
degrees of even and odd parity. Then, for all orders, the coefficients’ spectra along j
are smoothed with a Savitzky-Golay moving average filter (Savitzky & Golay, 1964),
which is based on a polynomial fitted to the spectrum. Finally, the smoothed spec-
trum, which is interpreted as the GRACE coefficients’ correlated noise, is subtracted
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Figure 4.8: Optimal spatial half-width of the Gaussian filter derived from Wiener optimal
filtering for the GRACE solutions from August 2002 to August 2008. Also indicated are
optimal Gaussian filter widths for the temporal linear trend (green) as well as annually
(red) and semi-annually (orange) oscillating components in the GRACE solutions’ time
series.

from the unfiltered spectrum.
The filter can be optimized by adjusting the order of the polynomial fitted to the

spectrum and the width of the window used for averaging. Swenson & Wahr (2006)
recommended using a polynomial of degree 2, but did not specify the appropriate
width of the averaging window. It is evident that the filter width should decrease with
increasing degree j, such that the resulting filtered signal approaches the input signal
with increasing degree j, which means that most of the input signal is considered
as correlated and filtered out. This should be at degrees ∼ 40 to 50. The authors
also recommended that input signals are passed-through for degrees ≤ ∼ 8 to avoid
distortion of the low-wavelength geophysical signals. It is not the intention of this
work to optimize the filter parameters, since an alternative method of de-correlation
filtering is proposed in the next section. However, a de-correlation filter applied above
degree and order ∼ 8, with a polynomial of degree 2 and a window width of ∼ 30 at
j = 9, linearly decreasing to 3 for j∼ 40, produces satisfactory results (not shown).

4.3.2 Statistical filtering

The statistical filter presented by Fleming et al. (2006 [online]) is based on the assump-
tion that the time series of each GRACE potential coefficient consists of a deterministic
signal and stochastic noise. To each coefficients’ time series, a parameterized model
of the temporal variations of the GRACE coefficients is fitted by least-squares adjust-
ment. Then, the statistical significance of each parameter is determined. If the test
of significance is passed, the parameters are considered significant for representation

http://www.csr.utexas.edu/grace/GSTM
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of the temporal changes of the gravity field and are used; otherwise, the parameter is
neglected (set to zero). With this information, the temporal model for each coefficient
is reduced to include only significant temporal components, and the parameters of the
temporal model are re-estimated.

Temporal decomposition
The temporal variations of the Stokes potential coefficients are described by

xjm(t) = ajmt+ bjm +
2∑

l=1

[cljm sin(lωt) + dl
jm cos(lωt)], (4.6)

where ajm is the linear trend, bjm is a reference value, and cljm and dl
jm represent an-

nual (l = 1) and semi-annual (l = 2) oscillations. The frequency ω is 2π/365.24 day−1.
The terms cljm and dl

jm for l = 1, and to a much lesser extent for l = 2, are impor-
tant for investigations of changes of the continental hydrology, whereas ajm is related
to long-term changes in the gravity field mainly arising from present-day ice-mass
change and GIA. In the following, it is assumed that the coefficients’ time series are
uncorrelated and the indices j and m are omitted.

The system of linear equations relating the parameters of the temporal model to
the observations {ti, x(ti)}, i = 1, 2, ..., N , is given by

x = Fp + e, (4.7)

where p is the vector containing the coefficients a, b, cl, dl, and F is the design matrix
of the system,

F =


t1 1 sin(ωt1) cos(ωt1) sin(2ωt1) cos(2ωt1)
t2 1 sin(ωt2) cos(ωt2) sin(2ωt2) cos(2ωt2)
· · · · · · · · · · · · · · · · · ·
ti 1 sin(ωti) cos(ωti) sin(2ωti) cos(2ωti)

 . (4.8)

It is assumed that the coefficients’ errors e have zero means, are normally distributed,
independent and uncorrelated in time,

E(e) = 0, var(e) = CD = σ2
i I, (4.9)

where E and var is the statistical expectancy and the variance-covariance matrix oper-
ator, respectively. According to Section A.6.1, the parameters’ least-squares estimate
is p̂ = (F TC−1

D F )−1F TCDx (A.34), where the parameter variances are obtained by
error propagation (A.35),

var(p̂) = (F TC−1
D F )−1 = σ2(F TF )−1. (4.10)

The residuals are calculated as the difference between the data and the fitted model
r = x− x̂, where x̂ = F p̂. They are used as a posteriori estimate of data variances,

ŝ2 =
rTr

N − p
, (4.11)
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where p denotes the number of statistically significant terms of the temporal model
(4.6), such that E(ŝ2) = σ2. As mentioned in Section 4.1, GRACE variances based
on the residual represent maximum estimates, because they may contain unmodelled
geophysical signal (e.g. Wahr et al., 2004).

The statistical significance of the parameters â and b̂ is tested with the T -test
statistic,

T =
|p̂a,b|
ŝa,b

, (4.12)

where p̂a,b is calculated according to (A.35) and ŝ2 as an estimate of σ2. The t-test
statistic follows a Student’s t-distribution tN−p(α) with N − p degrees of freedom
and the confidence level α. It is a measure of the deviation of the parameter p̂a,b

from zero in units of the associated standard deviation. Therefore, if T > tN−p(α),
the assumption that the parameters p̂a,b = 0 (null hypothesis) is rejected at the
confidence level α in favour of the alternative hypothesis, p̂a,b 6= 0, and the parameter
is considered to be significant for representation of the temporal variations.

The statistical significance for ĉl and d̂l is tested simultaneously using the Fisher
F -test statistic, which is calculated according to

F =
1

2ŝ2
cl,dl

(p̂cl , p̂dl)T W−1(p̂cl , p̂dl), (4.13)

where W is a 2×2 matrix consisting of the diagonal block of (F TF )−1 associated with
(p̂cl , p̂dl). The null hypothesis, p̂cl = p̂dl = 0, is tested using the Fisher F -distribution
F2,N−4(α) with 2 and N − 4 degrees of freedom and rejected if F > F2,N−4(α) at the
confidence level α.

Filter design
The statistical filter for the GRACE data is represented by

yjm = xjms
p̂
jm(α), (4.14)

where sp̂
jm(α) is 1 if the parameter of the temporal component p̂ is statistically sig-

nificant in the coefficients’ time series xjm(t), otherwise it is 0. This statistical tests
are implemented for a predefined confidence level α (here, 95 and 99 %).

Figure 4.9 shows the results of statistical tests at the confidence levels α of 95
(red and orange) and 99% (orange) for each GRACE coefficient. The distribution of
coefficients with significant annual and linear temporal components is similar to the
distribution of GRACE errors for the coefficients shown in Figure 4.3. Coefficients
of high degree and order are dominated by noise, hence sjm = 0. The number of
significant coefficients is largest for the annual oscillation, which represents the largest
signal in the GRACE data, followed by the linear-trend component. Semi-annual
oscillations are nearly insignificant for the current length of the GRACE time series.
However, it should be stated that several coefficients in noise-dominated spectral range
(& 30) show significant deterministic variations. In particular, a significant annual
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oscillation is determined for coefficients with m∼ 12 and j well above 30. This suggests
that GRACE errors are, to some extent, correlated in time, which complicates the
temporal decomposition and the interpretation of the resulting terms. It is also visible
that correlations between coefficients of equal parity are reduced, but not entirely
filtered out. For example, the linear temporal component retains the specific odd/even
parity pattern (e.g. for m = 7) identified in the spectrum of the residuals (Figure 4.4).
It is concluded that the correlated GRACE errors also exhibit systematic variations
in time, which requires further investigation.

Figure 4.10 shows the degree-power spectra of the linear, annual, and semi-annual
temporal components after statistical filtering and, for comparison, after 4o Gaussian
filtering and without filtering. It is visible that the statistical filter reduces the power
similar to a Gaussian filter up to degree and order ∼ 30. For higher degrees, increasing
variability in the degree power of the statistical filtered data suggests incomplete
noise reduction. It can also been seen that the filter is adaptive; the linear temporal
component requires less smoothing than the annual component, which is also indicated
in Figure 4.8.

Figure 4.11 and Figure 4.12 show the spatial representation of the statistical filter
function. It represents the application of sp̂

jm(α) to the spectral representation of a
Dirac delta function located at the equator (0o E; 0o N) and approximately on the
polar circle (0o E; 65o N), respectively. At the equator (Figure 4.11), the filter func-
tion associated with the annual component is similar to an ellipse with major and
minor axes of ∼ 7o and 4o, respectively. The filter function for the linear trend is also
non-isotropic with stronger meridional averaging (∼ 9o compared to 4o). However,
distinct side lobes are visible, which may arise from systematic noise not eliminated
by the filter. The filter function for the semi-annual component represents an ellipse
for values within its spatial half-width. Outside, side lobes are pronounced. To-
wards the pole (Figure 4.12), the spectrum of the Delta function becomes dominated
by zonal harmonics and, as a consequence, the anisotropy of the filter response de-
creases. This exemplifies that the statistical filter rejects noisy coefficients without
introducting/accouting for correlations between coefficients and their errors and re-
duces the full spectrum to a set of reliable coefficients. On the one hand this is of
advantage, because signals are not distorted. On the other hand, correlated for errors
between coefficients are only partially removed. The performance of the filter in the
polar regions is exemplified for the temporally linear trend in the GRACE data for
Antarctica (Figure 4.13). A comparison of the statistical filter, the Wiener optimal
filter and the Gaussian filter is shown for the annually and semi-annually oscillating
components in Figure 4.14.
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a)

b)

c)

Figure 4.9: Statistical significance of the GRACE coefficients’ temporal components.
Shown are the results of the Student t-test for a) the linear trend and of the Fisher F -test
for b) annual and c) semi-annual oscillations at a confidence level of 95% (red and orange)
and 99% (orange).



4.3 Non-isotropic filtering 51

a)

b)

c)

Figure 4.10: Degree-power spectrum of the GRACE coefficients’ temporal components
for a) the linear trend, b) annual and c) semi-annual oscillations, without excluding
statistically insignificant coefficients (blue) and with excluding statistically insignificant
coefficients at a confidence level of 95% (orange) and 99% (red), respectively. Also shown
are the spectra after applying a 4o Gaussian filter (green)
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a) b)

c) d)

Figure 4.11: Spatial representation of statistical filter response functions. Shown are filter
responses to a Dirac delta function located at (0oE; 0oN) for a) the 4o Gaussian filter,
and the statistical filter for b) the linear trend as well as c) annual and d) semi-annual
oscillations.
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a) b)

c) d)

Figure 4.12: The same as Figure 4.11, but for a Dirac delta function located at (0oE; 65oN).
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a) b)

c) d)

e) f)

g) h)

Figure 4.13: Filtered and unfiltered linear trend of the GRACE solutions over Antarctica
for a) GFZ RL04, c) CNES RL01C, e) JPL RL04 and g) CSR RL04 without filtering and,
respectively, b), d), f) and h) with statistical filtering. The cut-off degrees are jmin = 12
and jmax = 50. The solutions considered range from January 2003 to December 2006.
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a) b)

c) d)

e) f)

Figure 4.14: Annual and semi-annual temporal component of the GRACE solutions for
August 2003 to August 2007, respectively, a) and b) without filtering, c) and d) with
the statistical filter and e) and f) with the Wiener optimal filter. The cut-off degrees are
jmin = 3 and jmax = 60.
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4.4 Wiener optimal filtering of GRACE data (published)

Abstract†

We present a spatial averaging method for Gravity Recovery and
Climate Experiment (GRACE) gravity-field solutions based on the
Wiener optimal filtering.
The optimal filter is designed from the least-square minimization of
the difference between the desired and filtered signals. It requires
information about the power spectra of the desired gravitational sig-
nal and the contaminating noise, which is inferred from the average
GRACE degree-power spectrum. We show that the signal decreases
with increasing spherical harmonic degree j with approximately 1/jb,
where b = 1.5 for GRACE data investigations. This is termed the
Second Kaula rule of thumb for temporal variations of the Earth’s
gravity field. The degree power of the noise increases, in the loga-
rithmic scale, linearly with increasing j.
The Wiener optimal filter obtained for the signal model with b = 1.5
closely corresponds to a Gaussian filter with a spatial half width of
4o (∼ 440 km). We find that the filtered GRACE gravity signal is
relatively insensitive to the exponent b of the signal model, which
indicates the robustness of Wiener optimal filtering. This is demon-
strated using the GFZ-GRACE gravity-field solution for April 2004.

†Sasgen, I., Martinec, Z. & Fleming, K., 2006. Wiener optimal filtering of GRACE

data. Stud. Geophys. Geod., 50(4): 499–508. Received: November 24, 2005; Re-

vised: February 3, 2006; Accepted: February 16, 2006. Copyright 2006 Springer Science

and Business Media, Dodrecht, The Netherlands. Reproduced with kind permission of

Springer Science and Business Media.

4.4.1 Introduction

The Gravity Recovery and Climate Experiment (GRACE) space mission was launched
by the National Aeronautic and Space Agency (NASA) and the Deutsche Zentrum
für Luft- und Raumfahrt (DLR) on March 17, 2002. The primary mission objective
is to provide monthly solutions of the Earth’s gravity field with a spatial resolution of
∼ 400 km. These solutions are of particular interest when attempting to investigate
time-variable phenomena such as hydrological or oceanic mass variations (e.g. Tapley
et al., 2004; Reigber et al., 2005).

The gravity-field solutions are available in the two GRACE archives, ISDC [online]
and PO.DAAC [online] , as fully-normalized Stokes potential coefficients, which are
independently computed at the GeoForschungsZentrum (GFZ) Potsdam, the Center
for Space Research (CSR) at the University of Texas, and the Jet Propulsion Labo-
ratory (JPL) in Pasadena. In this paper, we use 34 solutions from the years 2003 and
2004, that were provided by the CSR (18 solutions, release 2) and GFZ (16 solutions,
release 3) processing centres.

In principle, the error of the GRACE potential coefficients increases with increasing
spatial resolution, which implies that the error of the GRACE potential coefficients
increases towards higher spherical-harmonic degrees. Spatial averaging of the GRACE

http://isdc.gfz-potsdam.de/grace
http://podaac.jppl.nasa.gov/grace
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gravity-field solutions allows optimizing the tradeoff between noise reduction and spa-
tial resolution.

This has commonly been done using a Gaussian spatial averaging function (e.g.
Wahr et al., 1998; Swenson & Wahr, 2002), which requires an ad hoc definition of an
averaging radius. In this paper, we present an alternate spatial averaging method
based on the Wiener optimal filtering. In contrast to the Gaussian averaging method,
the Wiener optimal filter is constructed using the degree-power spectra of the desired
signal and the contaminating noise, which is a weaker constraint on the signal-to-noise
ratio (e.g Press et al., 1992).

The paper is organized as follows. First, we adapt the basic theory of the Wiener
optimal filtering approach, originally applied to the analysis of time series, to spatial
filtering on a sphere. Next, we determine the optimal filter coefficients for the available
GRACE data, and then we compare the results with those based on Gaussian filtering.

The main objective of this paper is to present the theory of the degree-dependent
Wiener (least-squares) optimal filtering on a sphere in a transparent way. Additionally,
we develop signal and noise models summarizing the current data sets. In future, this
theory can be generalized to allow for degree- and order-dependent filtering of GRACE
data (e. g. Han et al., 2005).

4.4.2 Wiener optimal filtering on a sphere

The Wiener filter (e.g. Wiener, 1949) is a linear convolution filter for which the actual
output signal y(Ω) is given by the spatial convolution of the filter response function
h(Ω) with the measured input signal x(Ω),

y(Ω) =
∫
Ω′

0

h(Ω′)x(Ω−Ω′)dΩ′, (4.15)

where Ω stands for the spherical co-latitude ϑ and longitude ϕ. Hence Ω := (ϑ, ϕ),
Ω0 is the full solid angle and dΩ its infinitesimal element. The signals x(Ω) and y(Ω)
are assumed to be square-integrable functions over the unit sphere and thus can be
represented as series of scalar spherical harmonics Yjm(Ω) of degree j and order m,[

x(Ω)
y(Ω)

]
=

∞∑
j=0

j∑
m=−j

[
xjm

yjm

]
Yjm(Ω), (4.16)

where xjm and yjm are the spherical-harmonic expansion coefficients of x(Ω) and
y(Ω), respectively, and Yjm(Ω) = Pjm(ϑ)eimϕ, where Pjm(ϑ) is the fully-normalized
associated Legendre function of degree j and order m. We assume that the Wiener fil-
ter is rotationally symmetric, h = h(ϑ), and can be represented as a series of Legendre
polynomials Pj(cosϑ),

h(ϑ) =
∞∑

j=0

2j + 1
4π

hjPj(ϑ), (4.17)

where the factor (2j + 1)/4π is introduced to normalize the expansion coefficients
hj . Considering the expansions (4.16) and (4.17) and applying the Laplace addition
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theorem for spherical harmonics (e.g Varshalovich et al., 1989),

Pj(cosψ) =
4π

2j + 1

j∑
m=−j

Y ∗
jm(Ω′)Yjm(Ω), (4.18)

where ψ is the angular distance between points Ω and Ω′ and the asterisk denotes
the complex conjugation, the spherical-harmonic form of convolution (4.15) can be
expressed as

yjm = hjxjm. (4.19)

The Wiener optimal filter (Figure 4.15) is designed such that (i) the actual output
signal y(Ω) is close to a desired output signal d(Ω) in the least-square sense, such
that

E2 :=
∫
Ω0

∣∣∣y(Ω)− d(Ω)
∣∣∣2dΩ =

∞∑
j=0

j∑
m=−j

∣∣∣yjm − djm

∣∣∣2 (4.20)

is minimized, where the equality is due to Parseval’s identity for spherical-harmonic
series, (ii) the measured signal x(Ω) consists of the true signal s(Ω) contaminated by
an additive noise n(Ω),

x(Ω) = s(Ω) + n(Ω), (4.21)

(iii) the signal s(Ω) and the noise n(Ω) are uncorrelated, so that their cross product,
when integrated over the full solid angle, gives zero,∫

Ω0

s(Ω)n(Ω)dΩ =
∞∑

j=0

j∑
m=−j

sjmn
∗
jm = 0, (4.22)

and (iv) the desired output signal is identified with the uncontaminated original signal,
d(Ω) = s(Ω).

Under these requirements, the least-square criterion E2 takes the form

E2 =
∞∑

j=0

{
σ2

s,j(1− hj)2 + σ2
n,jh

2
j

}
, (4.23)

where

σ2
s,j :=

j∑
m=−j

|sjm|2, σ2
n,j :=

j∑
m=−j

|njm|2,

are the degree power spectra of the signal s(Ω) and noise n(Ω), respectively. Thus,
the aim is to search for such a hj that minimizes E2. Differentiating (4.23) with
respect to hj , and setting the result equal to zero gives

hj =
σ2

s,j

σ2
s,j + σ2

n,j

, (4.24)
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Figure 4.15: Principle of Wiener optimal filtering. The filter minimizes the difference
between the desired output signal and the actual (filtered) output signal in a least-squares
sense.

where j = 0, 1, . . .. This is the formula for the optimal Wiener filter coefficients, which
is also stated, without derivation, in Seo & Wilson (2005). Note that hj approaches
unity when the noise is negligible, and zero when the noise is dominant. Equation
(4.24) therefore gives the optimal transition between these two extremes.

The Wiener filter is isotropic and depends only on the degree power of the signal and
noise models. It is known, however, that the GRACE error is larger for higher orders
than for lower orders, which induces longitudinal stripes in the gravity field solutions
(Figure 4.19). In future, the presented theory can be generalized to accommodate
signal and noise models dependent on both degree and order (e.g. Han et al., 2005).

4.4.3 Signal and noise degree-power spectra from and for GRACE

data

Determining the Wiener filter coefficients according to equation (4.24) requires a way
of finding separate estimates of the degree-power spectra of the desired gravitational
signal, σ2

s,j , and the contaminating noise, σ2
n,j . In fact, there is no way to do this

from the measured signal x(Ω) alone without some additional information or some
assumptions. Fortunately, extra information can be obtained from the GRACE data.

Figure 4.16 shows the average degree-power spectrum of the GRACE gravity-field
solutions. This average spectrum is calculated by

< σ2
GRACE,j >=

1
N

N∑
n=1

σ2
GRACEn,j (4.25)

for N = 34 monthly GRACE solutions with 2 ≤ j ≤ 120. The solutions are taken
relative to a reference field, which is computed as the average of the considered GFZ
and CSR solutions, respectively. We chose this reference field, on the one hand, for
its consistency with the GRACE data, and, on the other, to be assured that the
computed relative solutions are not biased. In general, it is possible to use other
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reference fields, such as the static field EIGEN-CG03C (Förste et al., 2005), without
significantly changing the results presented in the following.

We assume that the lower-degree part (j < 21) of this averaged spectrum contains
information about gravity signals, the spectrum for j > 29 reflects the noise contam-
inating the GRACE data, while the two overlap in the range of 20 < j < 30. This
intuitive division is in agreement with the generally accepted idea that the gravity
field induced by hydrological and ocean-mass variations is the largest contribution to
the GRACE gravity observations. The corresponding degree-power spectrum, shown
in Figure 4.16 (Wahr et al., 2004), gradually decreases with increasing degree j, sup-
porting our assumption. The average GRACE degree-power spectrum of the gravity
signals (j < 21), in terms of the geoid-height squared in mm2, is parameterized by the
inverse-power function of j,

< σ2
GRACE,j >=

10a

jb
, (4.26)

where the parameters a = 0.48 and b = 1.5 have been obtained by a least-squares
adjustment.

We refer to this formula as the second Kaula rule of thumb for temporal variations
of the Earth’s gravity field, since function (4.26) for a = 9.81 and b = 3 is known as
the Kaula rule of thumb (Kaula, 1966), which gives the estimate of the degree power
of the Earth’s static gravity field. Function (4.26) is then extrapolated into the region
largely influenced by noise j > 20. Figure 4.16 shows that the extrapolation mimics
the convex shape of degree-power spectrum of the hydrology and ocean models. The
spectra do not coincide exactly, since there are other mass changes in the Earth system
that contribute to the GRACE higher-degree power spectrum. We also confine the
least-squares adjustment to degrees j < 15 in order to exclude GRACE coefficients
which may be influenced by resonance effects in satellite-orbit determination, and to
determine the sensitivity of b to the choice of degrees used for the adjustment. In
this case, we obtained a = 0.59 and b = 1.66. Then, to test the sensitivity of the
Wiener filter to the parameter b of the underlying signal model, we have additionally
parameterized function (4.26) with a = 0.97 and b = 2 (Figure 4.16), which is in
better agreement with the predictions from the hydrology and ocean models.

It should be emphasized that the second Kaula rule of thumb is derived empirically
from the two years of GRACE data, and may change over time. The physical laws
underlying this relationship are not understood. Nevertheless, it contains information
about the time-varying gravity field that can be used during the processing of satellite
data.

The degree-power spectrum of the average formal GRACE errors suggests the para-
metrization of the degree-power spectrum of the noise by a linear function in a loga-
rithmic scale (Figure 4.16, black circles),

log σ2
n,j = c+ dj. (4.27)

The actual values of the parameters c and d have been obtained by a least-square
procedure from the average GRACE degree-power spectrum for the range j > 29,
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Figure 4.16: Signal and noise degree-power spectra. Shown is the average degree-power
spectrum of 34 GRACE gravity-field solutions. According to predictions from hydrology
and ocean models (Wahr et al., 2004) (faint-dotted line) and the average formal GRACE
errors (black circles), the average GRACE spectrum is divided into the region dominated
by the signal (j < 21, black diamonds) and the region dominated by noise (j > 29, white
circles). The corresponding regions are then used to design the best-fitting functions,
(4.26) and (4.27) (see text), for the GRACE gravity signal (solid lines) and the contam-
inating noise (dashed line). The transition between the region dominated by the signal
and the noise (crosses) is not used to design the filter.

resulting in c = −2.66 and d = 0.05 (Figure 4.16, dashed line). Finally, extrapolating
the noise degree-power spectrum to the region dominated by the signal, that is for
j < 30, and computing the difference

σ2
s,j =< σ2

GRACE,j > −σ2
n,j , (4.28)

we obtain the degree-power spectrum of the signal, σ2
s,j , needed for constructing the

Wiener filter coefficients.

One point needs to be emphasized. Because the Wiener optimal filter results from
least-square minimization, the quality of the signal obtained by Wiener filtering differs
from the true signal by an amount that is of the second order in precision compared
to that from which the optimal filter is determined. This means that even a crude
separation of the observation into signal and noise components can provide excellent
results when it is applied to data. In particular, this suggests that the influence of
the exponent b of the signal model is rather small, which will be demonstrated in the
next section.
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4.4.4 Application to GRACE gravity-field solution

Having specified the signal and noise degree-power spectra, we calculate the Wiener
optimal filter coefficients according to equation (4.24) and transform this spectral
response function to the spatial domain according to equation (4.17). Figure 4.17
shows the Wiener filter response function for the signal models with b ∈ {1.5, 2} in
the spectral and spatial domain. For comparison, we include the response functions
of a Gaussian filter hG(ϑ) for 4◦ spatial half width ϑh, defined implicitly by hG(ϑh) =
0.5hG(0).

We note that the Wiener optimal filter is a low-pass filter, that is, in general, similar
to a Gaussian filter. In particular, the differences between the response functions of
the Wiener filter assuming a signal model with b = 1.5 and the 4◦ Gaussian filter
are small. If b = 2 instead of b = 1.5 is used, which assumes a larger power of the
desired signal at the lower degrees, the spatial width of the Wiener filter broadens. In
this case, its spatial half width corresponds approximately to that of a 4.5o Gaussian
filter. This again exemplifies the basic principle of the Wiener optimal filter, which
optimizes, based on relatively coarse assumptions about the expected degree-power
spectra of the signal and the noise, the tradeoff between the spatial resolution and the
noise reduction. For instance, given that the noise level of future GRACE solutions is
expected to be lower, the filter will allow for a higher spatial resolution.

As an example, the Wiener optimal filter for b = {1.5, 2} and the 4o Gaussian
filter are applied to the GFZ-GRACE gravity-field solution for April 2004 (release 3).
Figure 4.18 shows the degree-power spectra of the geoid-height changes after filtering.
We again see that the Wiener optimal filter assuming b = 1.5 for the signal model
(red circles) performs very similarly to the 4◦ Gaussian filter (blue circles). However,
with regard to the higher degrees of the spectrum, the Wiener filter is adaptive to the
power of the noise contaminating the GRACE data, since its filter coefficients reflect
the signal-to-noise ratio specific for the actual data. For the same reason, the filter
adjusts to the desired gravitational signal. If the signal is expected to be more powerful
at the lower degrees, i. e. if b = 2 describes the desired signal more appropriately, then
the filter coefficients are such that the decrease in power with increasing j is faster
(green circles).

Figure 4.19 shows the spatial representation of the spectral results shown in Fig-
ure 4.18, that is the spatial geoid-height change of the GFZ-GRACE gravity-field
solution for April 2004 before and after filtering. In general, the spatial patterns
are very similar for all investigated filters. In particular, the differences between the
Wiener filter assuming b = 1.5 for the signal model and the 4o Gaussian filter are neg-
ligible. The pattern obtained for the Wiener filter with b = 2 is slightly smoother, i. e.
the power of the higher degrees has been reduced, which has already been indicated
by the degree-power spectra shown in Figure 4.18. However, the general pattern is
not changed, demonstrating the robustness of Wiener optimal filtering.
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Figure 4.17: Wiener optimal and Gaussian filter response functions in the spectral (cir-
cles) and spatial (lines) domain. Shown are the Wiener optimal filter assuming b = 1.5
(full circles, solid line) and b = 2 (empty circles, dashed line) for the signal model (see
text), and the 4o Gaussian filter (dotted circles, dotted line).

4.4.5 Summary

We have derived a spatial averaging method based on the Wiener optimal filtering
on a sphere, which can be applied to the GRACE gravity-field solutions. For this
approach, no spatial width of the filter needs to be specified. However, assumptions
about the degree power of the desired gravitational signal and the contaminating noise
must be made.

The spectra of the expected signal and noise were derived from the average degree-
power spectrum of 34 GRACE solutions. We showed that the degree-power spectrum
of the gravity signals contained in GRACE data decreases as 1/jb, where b = 1.5, with
increasing spherical-harmonic degree j. We call this relation the Second Kaula rule of
thumb for temporal variations of the Earth’s gravity field. Additionally, the parameter
b = 2 was used, which is in better agreement with predictions of the expected signal,
to test the sensitivity of the results the choice of the signal model. As far as the
contaminating GRACE data noise is concerned, the logarithm of its degree-power
spectrum increases linearly with degree j.

The Wiener optimal filter is found to be a low-pass filter, and is similar to a Gaussian
filter. In particular, for b = 1.5, the Wiener optimal filter performs similarly to a
Gaussian filter with the spatial half-width of 4◦ (∼ 440 km). Moreover, we demon-
strated that the filter is relatively insensitive to the exponent b of the underlying signal
model. Hence, we conclude that Wiener optimal filtering is a robust method of spa-
tially averaging GRACE data. As mentioned, one basic advantage of this method is
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Figure 4.18: Degree-power spectrum of the geoid-height change of the GFZ-GRACE
solution for April 2004, unfiltered (diamonds) and filtered (circles). Wiener filter assuming
b = 1.5 (full circles) and b = 2 (empty circles) for the signal model (see text), and the
4o Gaussian filter (dotted circles). Also shown are the degree-power models of the signal
(solid lines) and the noise (dashed line) used for the design of the Wiener filter.

that no spatial half width has to be predefined. The Wiener filter is optimally adjusted
to the desired gravitational signal and the noise specific to the available GRACE data.

In general, the Wiener optimal filter can be developed for signal and noise models
that vary with both degree and order. This has not been included in this paper.
However, recent investigations have pointed out that non-isotropic filtering (e. g. Han
et al., 2005) is advantageous since the orbit of the GRACE satellites causes larger
errors in the potential coefficients of higher orders than of lower orders. This effect
is visible e. g. in the longitudinal stripes and will, in future, be addressed by a more
generalized Wiener optimal filter approach.

Acknowledgments

We thank Roland Schmidt from the GFZ Potsdam for helpful discussions, and two
anonymous reviewers, whose comments have helped us to improve the manuscript.
The second author acknowledges support from the Grant Agency of the Czech Re-
public through Grant No. 205/03/0778.



66 Post-processing of GRACE gravity-field solutions

a) b)

c) d)

Figure 4.19: The geoid-height change of the GFZ-GRACE solution for April 2004 with
respect to the GFZ reference field (see Section 3) (a) unfiltered and processed with the
Wiener filter assuming (b) b = 1.5 and (c) b = 2 for the signal model, and (d) the 4o

Gaussian filter. The cut-off degrees are jmin = 3 and jmax = 120.
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4.5 Wiener optimal combination and evaluation of the

GRACE gravity fields over Antarctica (published)

Abstract†

We present an appraisal method for the Gravity Recovery and
Climate Experiment (GRACE) gravity-field releases based on the
Wiener optimal evaluation approach. The Wiener optimal evalua-
tion uses linear convolution filtering and the subsequent addition of
multiple inputs to minimize (in a least-squares sense) the difference
between the combined optimal output and a desired output. Inves-
tigating the individual filtered outputs with respect to the desired
output provides a measure of the quality of each input.
Here, the inputs are linear trends of the gravity-field change over
Antarctica inferred from the Stokes potential coefficients of the 4 in-
dependent GRACE releases; GFZ RL03, CSR RL01C, JPL RL01C
and CNES RL01C, each with at least 27 months worth of data. The
desired output is based on the predicted gravity-field change over
Antarctica resulting from by present-day ice-mass changes and on-
going glacial-isostatic adjustment (GIA). We demonstrate that the
combined output of the Wiener optimal evaluator improves the qual-
ity of the signal over Antarctica with regards to the desired output.
We show that 3 of the 4 GRACE releases essentially constitute the
desired signal in the optimal combination, while one mainly reduces
the contaminating noise over the oceans. The best agreement with
the predicted gravity-field change over Antarctica is represented by
the release CNES RL01C.
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4.5.1 Introduction and Motivation

For almost 4 years, the Gravity Recovery and Climate Experiment (GRACE) space
mission of the National Aeronautic and Space Agency (NASA) and the Deutsche Zen-
trum für Luft- und Raumfahrt (DLR) has provided monthly solutions of the Earth’s
gravity field with a spatial resolution of ∼ 400 km (Bettadpur, 2004b; Tapley & Reig-
ber, 2001; Tapley et al., 2004a). The increasing length of the time series allows us to
determine, in addition to the periodic variations, a statistically reliable linear trend
in the temporal gravity-field change induced by, for example, present-day ice-mass
variations and ongoing glacial-isostatic adjustment (GIA).

In this study, we consider the monthly gravity-field solutions provided by the Sci-
ence Data System (SDS) centers - the GeoForschungsZentrum (GFZ) Potsdam, the
Center for Space Research (CSR) at the University of Texas, and the Jet Propul-
sion Laboratory (JPL) in Pasadena, as well as the GRACE solutions determined by
the Bureau Gravimetrique International of the Centre National d’Ètudes Spatiales
(CNES). All solutions are available as fully-normalized Stokes potential coefficients
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and represent independent determinations of the gravity field (Figure 4.20).
The process of determining the Stokes potential coefficients from the various mea-

surements made by the GRACE satellites is complex, and requires a number of as-
sumptions to be made concerning processing and noise-reduction strategies and back-
ground models, which sometimes differ between the solution providers. In addition,
updates to a provider’s solutions, issued as releases, are also based on revised assump-
tions and procedures, and may result in considerably different solutions.

Stochastic descriptions of the GRACE gravity-field solutions usually indicate that
later releases are of a better quality than earlier releases. However, it is also necessary
to evaluate the GRACE solutions from the perspective of geophysical modeling in
order to identify and understand the disagreements that arise between predictions
and GRACE observations, which may arise from inaccurate temporal background
models used during solution processing (e.g. Flechtner et al., 2006 [online]).

It is the aim of this paper to provide a method for the optimal combination and
evaluation of different GRACE releases with respect to a predicted gravity-field sig-
nal. The method is based on the Wiener filtering technique, which has been used in
geodetic problems to reduce noise (e.g. Kotsakis & Sideris, 2004; di Leonardo & Dick-
mann, 2004). Here, it is applied to the spherical-harmonic coefficients representing
the temporal linear trend in the gravity fields of different GRACE releases with the
aim of reducing non-geophysical components that are considered as noise.

The paper proceeds as follows. First, we present the theory of the Wiener optimal
evaluator. Then, we focus on the region of Antarctica and predict the contemporary
gravity-field change using a viscoelastic earth model subject to reconstructions of
present and past changes of the Antarctic Ice Sheet (AIS). Next, we identify the linear
trends in the temporal gravity-field change over Antarctica as observed by GRACE
by considering the 4 independent releases of the Stokes potential coefficients. Finally,
we use the Wiener optimal evaluator to combine the resulting trend-only fields and
evaluate their qualities with respect to the predicted gravity-field change.

4.5.2 Wiener optimal combination and evaluation

The Wiener optimal evaluator is based on linear convolution filtering and subsequent
addition of 2 or more inputs, with the aim of optimally adjusting the filtered output
to be close to a desired output (Figure 4.21). The filtered output is optimal in the
sense that it is the closest (in terms of least squares) to the desired output that the
filter can produce. This convolution can be expressed as

y(Ω) =
∫
Ω′

0

h(Ω′).x(Ω−Ω′)dΩ′, (4.29)

where y is the optimal output, and x and h are K-dimensional vectors of K measured
inputs (here, K GRACE releases) and the associated filter functions (determined from
the inputs and the desired output), respectively, for k = 1, ...,K where K ≥ 2. The
dot denotes the scalar product of vectors and Ω stands for the spherical co-latitude
ϑ and longitude ϕ. Hence, Ω := (ϑ, ϕ), where Ω0 is the full solid angle and dΩ

http://isdc.gfz-potsdam.de/
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Figure 4.20: Temporal coverage of the four GRACE releases used in this paper (see also
Section 4.5.5). The time series consist of 31 (GFZ RL03L), 41 (CSR RL01C), and 27
(JPL RL01C) monthly solutions, as well as 86 10-day solutions (CNES RL01C)

its infinitesimal element. The inputs x(Ω) and the output y(Ω) are assumed to be
square-integrable functions over the unit sphere and can be represented as a series of
scalar spherical harmonics Yjm(Ω) of degree j and order m, as defined in Sasgen et al.
(2006),[

x(Ω)
y(Ω)

]
=

∞∑
j=0

j∑
m=−j

[
xjm

yjm

]
Yjm(Ω), (4.30)

where xjm and yjm are the spherical-harmonic coefficients of x(Ω) and y(Ω), re-
spectively. Assuming that the spatial filter functions are rotationally symmetric, the
spherical-harmonic form of convolution (4.29) can be expressed as

yjm = hj .xjm. (4.31)

More explicitly, the combined optimal output yjm is formed from the individual out-
puts yk,jm, that is yjm =

∑K
k=1 yk,jm, where yk,jm=hk,jxk,jm.

The optimal filter coefficients hk,j are designed such that the combined output
y(Ω) is close to a desired output d(Ω) in a least-square sense, such that E2 :=∫
Ω0

∣∣∣y(Ω) − d(Ω)
∣∣∣2dΩ =

∑∞
j=0

∑j
m=−j

∣∣∣yjm − djm

∣∣∣2 is minimized with respect to
hk,j . Introducing the matrices of the degree cross-power spectra of the multiple in-
puts, Sxx

kl,j :=
∑j

m=−j xk,jmx
∗
l,jm, for k, l = 1, ...,K, and of the multiple inputs and

the desired output, Sxd
k,j :=

∑j
m=−j xk,jmd

∗
jm, for k = 1, ...,K (the asterisk denotes
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Figure 4.21: Principle of the Wiener optimal evaluator. Here, xk(Ω) are the GRACE
gravity-field solutions, d(Ω) is a geophysical-model prediction, y(Ω) is the optimally com-
bined GRACE solution, and hk(Ω) are the filter functions to be determined from the
inputs and the desired output.

the complex conjugation), and the scalar of the degree-power spectrum of the desired
output, σ2

d,j =
∑j

m=−j djmd
∗
jm, the least-squares criterion E2 takes the form

E2 =
∞∑
j

[hj .S
xx
j .h

∗
j − hj .S

xd
j − h∗

j .S
∗xd
j + σ2

d,j ]. (4.32)

Thus, the aim is to search for a hj that minimizes E2. Differentiating (4.32) with
respect to hj , and setting the result equal to zero gives

hj = [Sxx
j ]−1.Sxd

j , (4.33)

which is the formula for the optimal filter coefficients.

4.5.3 Predicted gravity-field change over Antarctica (construction of

the desired output)

Present-day ice-mass balance
Figure 4.22 presents the rate of geoid-height change over Antarctica associated with
the ice-mass balance of the 33 Antarctic drainage basins (after Rignot & Thomas
(2002); Thomas et al. (2004), Ivins, pers. comm., 2005) and glaciers at the tip of the
Antarctic Peninsula (Rignot et al., 2004), as determined mainly from airborne- and
satellite altimetry measurements. At present, two regions are subject to vigorous ice-
mass changes and cause a large geoid-height change: the Antarctic Peninsula (∼−0.4
mm/a), and the area adjacent to the Amundsen Sea in West Antarctica (∼−2.0
mm/a), with East Antarctica being essentially in balance. Along the Antarctic Penin-
sula, the predicted rates of the geoid-height change are low, despite this region being
responsible for a significant proportion of Antarctica’s contribution to global mean
sea-level change (i.e. 0.07 mm/a for this region compared to ∼ 0.24 mm/a for the
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a) b)

Figure 4.22: Rate of geoid-height change induced by (a) present-day ice-mass changes
and (b) ongoing GIA. The results are filtered to simulate the current GRACE resolution
using the Wiener optimal filter (Sasgen et al., 2006). The addition of both signals (desired
output model) is shown in Figure 6a.

glaciers draining into the Amundsen Sea). This is due to GRACE being less sensitive
to smaller spatial wavelengths of the geoid-height change, that are strongly reduced
by spatial filtering, here done with the Wiener optimal filtering.

Glacial-isostatic adjustment

We predict the glacial-isostatic adjustment-induced rate of geoid-height change (Fig-
ure 4.22) by subjecting a gravitationally self-consistent viscoelastic earth model (Mar-
tinec, 2000) to a glacial history of the AIS based on the thermomechanical model of
Huybrechts (2002). The earth model consists of 4 radially symmetric layers: an elastic
lithosphere with a thickness of 100 km, the upper-mantle with a viscosity of 5.2× 1020

Pa s, the lower-mantle with a viscosity of 5.9× 1021 Pa s and a liquid core. The values
of the earth model are based on an analysis of GIA in Fennoscandia (Martinec &
Wolf, 2005) and lie within the range of earth-model parameters usually considered
for Antarctica (e. g. Zwartz et al., 1998). The reconstruction of the AIS is adjusted
to incorporate additional ice during the Last Glacial Maximum equivalent to a global
mean sea-level change of −10 m, the largest amount being attributed to the region of
the Ronne Ice Shelf, West Antarctica. This value is in agreement with the estimate
of Ivins & James (2005), and lies within the range proposed by Bentley (1999).

The earth model and the AIS reconstruction used here result in rather small values
for the associated glacial-isostatic adjustment, with the largest rate of geoid-height
change, ∼ 1.6 mm/a, occuring over the Ronne Ice Shelf, West Antarctica (∼ 293oE,
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Figure 4.23: Degree correlation between the desired output and the various inputs; GFZ
RL03L (white circles), CSR RL01C (crossed circles), JPL RL01C (black circles) and
CNES RL01C (dotted circles), and the optimal output considering all 4 (solid line), 3
(dashed line; GFZ RL03L, CSR RL01C and JPL RL01C), and 2 (dotted line; GFZ RL03L,
CSR RL01C) GRACE releases. The 95% statistical significance is indicated by the grey
line.

81oS). We consider this conservative prediction to be appropriate, since at present,
the GRACE data do not indicate a larger glacial-isostatic adjustment signal.

4.5.4 GRACE gravity-field change over Antarctica

4.5.5 Releases considered

We investigate the linear trends of the temporal gravity-field change over Antarctica
inferred from 4 GRACE data sets, the GFZ release 3 unconstrained (GFZ RL03)
(Flechtner, 2005), CSR release 1 constrained (CSR RL01C) (Bettadpur, 2004a), JPL
release 1 constrained (JPL RL01C) (Watkins, 2003) and the constrained CNES release
(CNES RL01C) (Biancale et al., 2006). These time series represent the longest time
series of - preferably constrained - gravity-field solutions that are available from the
SDS centers and CNES (see also Figure 1), and capture some of the variety existing
among the different GRACE data sets. The gravity field solutions used are corrected
for gravitational variations induced by, for example, solid-Earth tides, pole tides, ocean
tides, as well as atmosphere processes, as well as ocean processes, except for the GFZ
RL03L, for which the ocean de-aliasing product AOD1B RL03 was found to introduce
artificial trends over land (Flechtner, 2006; Bettadpur et al., 2006).
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4.5.6 Temporal trend

We determine the linear temporal trends in the GRACE gravity fields by decomposing
the time series of the Stokes potential coefficients into linear and annual-oscillating
components. We perform a Student’s t-test to analyze the statistical significance
of the linear terms, and neglect the statistically insignificant coefficients at the 95%
confidence level, which decreases the noise level and reduces the latitudinal strip-
ing attributed to correlations between potential coefficients (Swenson & Wahr, 2006).
The GFZ RL03L solutions, which are based on an unconstrained gravity-field deter-
mination, are filtered using the Wiener optimal filter (Sasgen et al., 2006). The filter
reduces the power of the coefficients, particularly at higher degrees and orders, with
respect to the expected signal-to-noise ratio, in a manner similar to smoothing with a
Gaussian averaging function of ∼ 3o spatial half width. Because the solutions of the
other selected releases are a product of constrained gravity-field determinations, this
additional filtering is not necessary.

To investigate the gravity-field change over Antarctica, data north of 60oS are
masked out. This is done by calculating a new set of Stokes coefficients representing
the product of the original GRACE gravity fields and a mask which is 1 south of
60oS and 0 everywhere else, using the method of vector-coupled sums (e.g. Martinec,
1989). We also only consider the linear-trend coefficients that lie within the spectral
range from degree and order 12 to 50. The upper limit represents the maximum cut-
off degree of the CNES RL01C solutions, which is applied to all other solutions for
consistency. The choice of this limit is not crucial, since the power of the filtered and
constrained gravity fields decreases by more than 3 orders of magnitude by degree
and order 50. The lower limit is determined by the degree below which the degree
correlation (e.g. Martinec, 1994) between the GRACE coefficients and the predicted
gravity-field change over Antarctica is not significant (Figure 4.23). We apply this
limit to reduce the influence of the long-wavelength gravity-field anomalies that arise
from sources in the farfield with respect to Antarctica. For a global application, e. g.
the combination and evaluation of global hydrological models, the truncation of the
lower degrees may not be necessary. However, in this case, care must be taken not to
misinterpret low-degree geoid-height changes that are influenced by processes in the
Earth’s interior.

Figure 4.24 shows the rate of geoid-height change over Antarctica inferred from the
time series of the Stokes potential coefficients of the 4 GRACE releases considered.
All results indicate a strong negative trend in the geoid-height change of up to ∼−0.9
mm/a (GFZ RL03L), −1.4 mm/a (CSR RL01C), −1.4 mm/a (JPL RL01C) and −1.4
mm/a (CNES RL01C) over the Amundsen Sea sector, West Antarctica, which we
attribute to the previously noted rapid glacier melting in this region (Velicogna &
Wahr, 2006). In addition, a rapid rise in the geoid height at the rate of up to ∼ 1.1
mm/a (GFZ RL03L), 1.1 mm/a (CSR RL01C), 1.6 mm/a (JPL RL01C) and 1.0
mm/a (CNES RL01C) occurs in the region of the Ronne Ice Shelf, and is explained
by the inflow of mantle material due to GIA. We note that, however, the location of
the strongest positive anomaly differs between the releases. A comparison with the
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predicted or desired signal (Figure 4.25) shows that for GFZ RL03L, CSR RL01C,
and JPL RL01C, the strongest positive anomaly is northwest of the predicted location,
while for CNES RL01C, the predicted and observed locations generally agree. Another
area of rising geoid, at least partially associated with glacial-isostatic adjustment, is
observed over the Ross Ice Shelf. However, the rates are lower and the spatial pattern
of the anomaly less pronounced, with greater interference with the anomalies over the
ocean, particularly for JPL RL01C. There are also several anomalies over the land and
ocean that require further investigation to determine whether they can be explained
by geophysical processes, or represent observational noise in the GRACE solutions.
It should be stated that the anomalies over the ocean after correction with a de-
aliasing product (CSR RL01C, JPL RL01C and CNES RL01C), are of the same order
of magnitude as when this correction is not done (GFZ RL03L). This suggests that
either there are unmodeled geophysical processes, or that the de-aliasing atmospheric
and oceanic models introduce additional noise into the GRACE solutions.

4.5.7 Combination of GRACE gravity fields over Antarctica

Figure 4.25 shows the desired output and the optimal (filtered) output of the Wiener
optimal evaluator for the combination of the 4 GRACE releases considered. In general,
the gravity-field change of the optimal and desired output agree to a large extent, with
the negative trend over West Antarctica due to glacier melting and the positive trend
over the Ronne and Ross Ice Shelves arising from glacial-isostatic adjustment being
well pronounced. The magnitudes of the contaminating anomalies over the ocean are
reduced in the optimal output to a level considerably below the peak magnitudes of
the changes over land. The combination of all 4 releases shows the highest level of
adjustment of the desired output. Using only 3 (GFZ RL03L, CSR RL01C and JPL
RL01C) and 2 (GFZ RL03L, CSR RL01C) releases decreases the adjustment, which is
indicated by a lower degree correlation between the combined outputs and the desired
output, as shown in Figure 4.23. This means that the excluded releases contain useful
information about the gravity field over Antarctica, and/or contribute to the removal
of unmodeled signals or observational noise.

4.5.8 Evaluation of GRACE gravity fields over Antarctica

Investigating the individual outputs that, by summation, form the combined, output
allows us to identify the specific contribution of each release. Figure 4.26 shows the
4 individual outputs from each release that form the combined output (Figure 4.25).
We see that the CNES RL01C makes the largest contribution to the optimal output,
followed by CSR RL01C. The other releases have lower magnitudes and are, to a
large extent, used to minimize the unmodeled signals over the oceans and reduce
the strong positive anomaly over East Antarctica (∼ 55oE, 68oS), especially present
in the original trends from CSR RL01C (Figure 4.24) and CNES RL01C releases
(Figure 4.24). We rank the 4 releases using the normalized energy of the residual, Rk =
P

j

Pj
m=−j rjmr∗jm

P
j

Pj
m=−j rk,jmr∗k,jm

, where rk,jm is the residual of the k-th input and the associated
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a) b)

c) d)

Figure 4.24: Rate of geoid-height change over Antarctica for the GRACE releases (a)
GFZ RL03L (filtered, see text), (b) CSR RL01C, (c) JPL RL01C and (d) CNES RL01C.
The cut-off degrees are jmin = 12 and jmax = 50.

individual output, and rjm is the residual of the desired output and the optimal
output. Rk approaches 0 for a total disagreement between the k-th input and the
optimal output, and 1 for a full agreement between the k-th input and the optimal
output. We obtain the following ranking: CNES RL01C (0.85), CSR RL01C (0.58),
GFZ RL03L (0.56) and JPL RL01C (0.42).

The CNES RL01C dominates the optimal output as its spatial pattern shows the
strongest similarity to the desired output. The Wiener optimal evaluator is sensitive to
the spatial pattern of the desired output, owing to the assumption that the function
used for the linear convolution filtering is isotropic, which, for example, does not
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a) b)

Figure 4.25: Rate of geoid-height change over Antarctica for (a) the desired output, and
the optimal (filtered) output for the combination of (b) 4 (GFZ RL03L, CSR RL01C,
JPL RL01C and CNES RL01C) GRACE releases. The cut-off degrees are jmin = 12 and
jmax = 50.

allow any rotation or translation of the spatial pattern of the input. We consider this
behaviour to be advantageous for the evaluation of the releases, since the expected
areas of major gravity-field change in Antarctica correspond to regions undergoing
geophysical processes that have been identified from other data sources. Moreover,
the filtering needs to be constrained to isotropic averaging functions, otherwise any
output could, in principal, be generated from any input.

4.5.9 Summary

We have presented the Wiener optimal evaluator as method for the optimal combina-
tion and evaluation of multiple inputs with respect to a desired output. The method
is based on the least-squares minimization of the difference between the optimal and
desired outputs using isotropic filtering and the subsequent summation of the multiple
inputs. It represents a first step in rationalizing and testing a filter technique, and al-
lows us to evaluate the GRACE gravity-field solutions from a geophysical perspective.

We have applied this method to investigate linear trends in the temporal gravity-
field change over Antarctica inferred from 4 independent GRACE releases. The desired
output represents the gravity-field change induced by present-day ice-mass changes
and glacial-isostatic adjustment. We demonstrate that the linear trends identified
in the GRACE solutions essentially reflect these processes. However, one problem
with applying this method to Antarctica is the lack of constraints on the geophysical
processes that are being modeled, and that assuming an a priori spatial pattern may
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a) b)

c) d)

Figure 4.26: Individual outputs of the Wiener optimal evaluator for the releases (a) GFZ
RL03L, (b) CSR RL01C, (c) JPL RL01C and (d) CNES RL01C. The cut-off degrees are
jmin = 12 and jmax = 50.

lead to some error. This would, to larger extent, also be true for processes operating
over other temporal scales, such as sub-annual, annual, and inter-annual.

We have shown that the optimal combination of several GRACE releases agrees
better with the prediction and reduces unmodeled anomalies over the ocean, with the
level of adjustment decreasing for smaller numbers of releases used in the combination.
This means that all included releases contain useful information about the gravity-
field change over Antarctica, or, at least, contribute to the removal of undesired signal
or noise.

We found that the linear trend inferred from CNES RL01C represents the largest
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contribution to the combined output, since its spatial pattern of gravity-field change
largely corresponds to the spatial pattern of the prediction. The trends from the GFZ
RL03L and the CSR RL01C solutions represent an equal, but considerably lower,
contribution to the combined output. The JPL RL01C represents the smallest con-
tribution to the optimal output.

It should be mentioned that the validity of the ranking the GRACE releases is
limited to the region of Antarctica. The results described here are not representative
for other regions. However, given an appropriate desired output, the Wiener optimal
evaluator is applicable to various spatial and temporal scales and is useful for (1)
producing an optimal combination from multiple GRACE releases, (2) quantifying
the (dis)agreement between predictions and observations, and, if desired, (3) assist
with the selection of one specific GRACE release for further investigation.

One possible application of the Wiener optimal evaluator with respect to the im-
provement of the GRACE accuracy discussed by Schrama & Visser (2007) is the
generation of a refined temporal background model. For example, using a combina-
tion of GRACE data and global hydrological models during the level 2 data processing
may increase the accuracy of the resulting gravity-field solutions.
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5

Methods of GRACE gravity-field

inversion

This chapter is concerned with the inversion of the gravitational potential in terms of
the for mass density distribution in the Earth system, which is known as the gravi-
metric inverse problem. The problem is ill-posed in the sense that its solution is 1)
unstable, which means that the mass-change solution diverges with decreasing wave-
length (increasing spatial resolution), and 2) non-unique, which means that the num-
ber of solutions (mass density distributions) producing the same external gravitational
potential is infinite.

Section 5.1 introduces the gravimetric inverse problem. Section 5.2 outlines the
method for the inversion of GRACE gravity field developed by Swenson & Wahr
(2002) used to determine optimal average values of mass change in confined regions.
Section 5.3 presents the forward modelling approach for the solution of the gravimetric
inverse problem applied in this study.

5.1 Gravimetric inverse problem

The gravimetric inverse problem is concerned with the determination of the mass
distribution within the Earth from its external gravitational potential, i.e. finding
%(r,Ω) from known V (r,Ω) in (2.1).

The instability of the solution to this problem can be seen from (2.5), where the
integration over r results in V (r,Ω) ∝ 1/j2. This means that the inverse transfer
function from V (r,Ω) → %(r,Ω) diverges ∝ j2 for j →∞. The instability reduces to
V (r,Ω) ∝ 1/j for the condensation of the masses within a layer on the Earth’s surface
(2.10). Furthermore, the instability of the solution can be overcome by the truncation
of series of Stokes potential coefficients at some cut-off degree jmax or by reducing the
influence of high-frequency components (smoothing).

The non-uniqueness is demonstrated according to Martinec (1998) as follows. Given
is the mass density distribution %0 that satisfies (2.1), and let ∂B of the body B have
a continuous normal n, then additional solutions can be represented as

% = %0 +∇2h, with h
∣∣
∂B

=
∂h

∂n

∣∣∣
∂B

= 0. (5.1)

These do not represent a contribution to the external gravitational potentials, which

79
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is proven by Green’s third identity (e.g. Weisstein, 2008 [online]),

V (r > R) = G

∫
B

∇h(r′)
|r− r′|

dV ′ = G

∫
∂B

(∂h(r′)
∂n

1
|r− r′|

−h(r′) ∂
∂n

1
|r− r′|

)
dS′ = 0.

(5.2)

The non-uniqueness can be handled by introducing meaningful a priori constraints on
the mass distribution. For example, the concentration of the mass changes into a thin
layer on the Earth’s surface results in the unique solution of the inverse gravimetric
problem (2.17). However, for the GRACE data this assumption is not justified for
regions with GIA, where mass changes within the Earth’s interior cause potential
disturbances that may be misinterpreted as surface-mass changes.

5.2 Optimized basin averaging

A method often used to invert GRACE potential coefficients in terms of surface-mass
changes is described in Swenson & Wahr (2002). The principle idea is to determine
average mass-change values within specific regions, ΩR, bound by distinct geographical
features, e.g. water divides. Let f(Ω) be the spatial representation of the basin
function defined by

f(Ω) :=

{
1, Ω ∈ ΩR

0, Ω /∈ ΩR

, (5.3)

with the area ΩR =
∫
Ω0
f(Ω)dΩ′ and f(Ω) =

∑
jm fjmYjm(Ω)1. With the assumption

that all mass changes are concentrated on the Earth’s surface, the gravitational poten-
tial can be inverted directly for the mass-change distribution σ(Ω) =

∑
jm σjmYjm(Ω)

is according to (2.17)

σjm =
1
qj

1
4πGR

(2j + 1)Vjm. (5.4)

Then, F (Ω) = f(Ω)σ(Ω) describes the mass change within the basin by

F (Ω) = f(Ω)σ(Ω) =
∑
j1m1

j2m2

fj1m1σj2m2Yj1m1(Ω)Yj2m2(Ω) != FjmYjm(Ω). (5.5)

The product of the two scalar surface spherical-harmonic functions can be solved by
the Clebsh-Gordon series

Yj1m1(Ω)Yj2m2(Ω) =
∑
jm

Qjm
j1m1j2m2

Yjm(Ω), (5.6)

where Qj1m1j2m2 are the Clebsh-Gordon coefficients (e.g. Martinec, 1989), such that

Fjm =
∑
j1m1

j2m2

fj1m1σj2m2Q
jm
j1m1j2m2

. (5.7)

1P∞
j=0

Pj
m=−j is henceforth denoted by

P
jm.

http://mathworld.wolfram.com/GreensIdentities.html
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The total integrated mass change within the basin is according to (A.7)∫
Ω0

F (Ω)dΩ′ =
∫
Ω0

f(Ω)σ(Ω)dΩ′ =
√

4πF00, (5.8)

where

F00 =
∑
j1m1

j2m2

fj1m1σj2m2Q
00
j1m1j2m2

=
1√
4π

∑
jm

fjmσ
∗
jm. (5.9)

The average mass change within the drainage basin, σR, is then obtained by

σR =
1

ΩR

∫
Ω0

F (Ω)dΩ′ =
1√
4π

1
f00

∑
jm

fjmσ
∗
jm. (5.10)

It is obvious from (5.4) and (5.10) that (2j+1)fjmV
∗
jm → 0 for j,m→∞ is required

to obtain convergence of the summation in (5.10). Also, for GRACE data, potential
coefficients of high degree and order need to be suppressed, e.g. in the simplest case by
isotropic filtering hjVjm (Section 4) to reduce the error of the resulting average mass
change σR. Regarding hj being applied to fjm rather than to Vjm shows that this
filtering can also be considered as smoothing the basin averaging function and, thus,
including more signal from outside the basin (leakage) in the basin average. Swenson
& Wahr (2002) developed several strategies to optimize smoothed basin averaging
functions in order to reduce GRACE errors, leakage errors or both.

5.3 Forward modelling

Here, the gravimetric inverse problem is solved by adjusting forward models of mass-
change processes such that predicted and observed potential disturbances agree. The
major advantage of this approach is that superimposed signals in the gravitational
potential can be separated and attributed to individual sources of mass change. Ad-
ditionally, ambiguities in the inversion are reduced by constraining the inversion to
produce solutions that are geophysically meaningful. Moreover, errors due to trunca-
tion or smoothing of the potential coefficients are small, as filtering is applied in the
data and the model domain.

As described in Section 2, long-term changes of the gravitational potential in the
polar regions are dominantly caused by present-day ice-mass changes and GIA. The
relation of the Earth’s elastic response to surface-mass changes, (2.17), can be gener-
alized for a viscoelastic continuum according to

Vjm(s) = 4πGRqj(s)
1

2j + 1
σjm(s), (5.11)

where s is the Laplace variable and qj(s) are the viscoelastic surface-load Love numbers
in the Laplace domain for a specified viscosity distribution (e.g. Wu & Peltier, 1982).
For instantaneous mass variations (present-day ice-mass changes), s → 0 and qj(s)
approaches the elastic surface-load Love numbers qj of (2.17). Due to the linearity of
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the GIA problem with respect to its boundary conditions, the potential disturbances,
Vjm(s), scale linearly with the surface loading σjm, given that the viscosity distribution
and temporal evolution of the glacial history remain unchanged. Although this relation
is a first-order approximation, which neglects non-linear coupling in the ice|ocean|earth
system described by the sea-level equation (e.g. Farrell & Clark, 1976; Hagedoorn,
2005), it allows a simultaneous linear adjustment of signal amplitudes of present-day
ice-mass changes and GIA in a joint inversion.

5.3.1 Design matrix

The changes in the Stokes potential coefficients due to surface mass changes, σR,
within the region ΩR, are

V R
jm = Hj

∫
Ω0

σR(Ω)Y ∗
jm(Ω)dΩ, with VR(Ω) =

∑
jm

V R
jmYjm(Ω), (5.12)

where σR(Ω) = 0 outside the region and Hj = 4πGRqj(2j + 1)−1. For mass conserva-
tion, σR(Ω) is compensated by a water layer uniformly distributed over the area of the
present-day oceans, which is neglected in the following derivation. It is of advantage
to separate σR into the normalized mass distribution function w(Ω) and the total
mass change mR within the region,

wR(Ω) :=

{
1, Ω ∈ ΩR

0, Ω /∈ ΩR

, and
∫
Ω0

w(Ω)dΩ = 1, (5.13)

such that σR(Ω) = mRwR(Ω). Then, (5.12) becomes

V R
jm = HjmR

∫
Ω0

wR(Ω)Y ∗
jm(Ω)dΩ = HjmRw

R
jm. (5.14)

The disturbing potential associated with more than one mass change region ΩRα ,
α = 1, 2, ...,K, are obtained by summation,

V Model(Ω) =
∑
α

VRα(Ω) =
∑
α

∑
jm

V Rα
jm Yjm(Ω) =

∑
α

∑
jm

Hjw
Rα
jmmRαYjm(Ω).

(5.15)

The aim is to minimize the difference between GRACE and modelled potential dis-
turbances, V GRACE(Ω) and V Model(Ω,mRα), respectively, in the Lp-norm sense with
respect to the total mass change within each region, mRα . This is expressed by

∥∥∑
α

∫
ΩSα

[
V GRACE(Ω)− V Model(Ω,mRα)

]
dΩ

∥∥
Lp

!= min
mRα

, (5.16)

where ΩSα are the adjustment areas that potentially differ from ΩRα . In this work,
ΩSα are defined to include the peak potential disturbances of V Model(Ω).
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5.3.2 Unconstrained estimate

The minimization criterion (5.16) can be considered by the method of least squares.
Let V (Ω) = {VRα(Ω)}α=1,2,...,K , be the vector containing the normalized potential
disturbances for the K regions, along with the vector containing the total mass change
within each region m = {mRα}α=1,2,...,K , such that V Model(Ω) = V m. Then, the cost
function (5.16) in the L2-norm becomes

‖
∫
ΩSα

[
V GRACE(Ω)− V (Ω)m

]
dΩ‖2 != min

mRα

. (5.17)

With the spatial discretization

VRα(Ωi) =
∑
jm

Hjw
Rα
jmYjm(Ωi), (5.18)

Ωi ∈ ΩS, i = 1, 2, ..., N , the data vector V GRACE = {V GRACE(Ωi)}i=1,2,...,N ,
and the design matrix of the linear problem can be formulated according to
F = {VRα(Ωi)}α=1,2,...,K

i=1,2,...,N . Then, the minimization criterion (5.17) takes the form

(V GRACE − Fm)TCD(V GRACE − Fm) != min
m
. (5.19)

The estimated solution m̂ of (5.19) is (Section A.6)

m̂ = (F TC−1
D F )−1F TCDV GRACE, (5.20)

with the optimal model V̂ Model(Ω) = V (Ω)m̂. In (5.19) and (5.20), CD (dimension
N × N) is the variance-covariance matrix of the data, which represents the spatial
representation of GRACE-coefficient errors (Section A.4).

5.3.3 Constrained estimate

In some cases, the least-squares solution (5.20) may not give acceptable results from a
geophysical point of view. For example, estimates of mRα and the associated signals of
potential disturbances VRα may exhibit large variations between neighboring regions,
which compensate each other. Such oscillations can be reduced by including a priori
constraints on the model parameters along with their uncertainties in the definition of
the cost function (5.19). In the inversion for present-day ice-mass changes and GIA,
additional constraints may come from independent observational data (e.g. InSAR
mass-budget estimates, Section 6.4) and constraints on the glacial history, respectively.

The a priori constrained solution of (5.17), which is described in more detail in
Section A.6.2 is

m̂ = mP + (F TCD
−1F + CM

−1)−1F TCD
−1(V GRACE − Fm), (5.21)

where mP and CM represent the parameters and variance-covariance matrix of the a
priori model.
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6

Interpretation of GRACE gravity-field

changes

The present chapter presents results of the GRACE gravity-field inversion for mass
changes in Antarctica. The results described in Section 6.1 are taken from the publi-
cation Sasgen et al. (2007b). Additional investigations supplementing this publication
are presented in Section 6.2. The inversion for mass changes in North America and
Greenland are presented in Section 6.3. Also, first assessments of GRACE as a con-
straint on mantle viscosities below North America are made, although further inves-
tigations, considering complementary data, such as GPS, tide gauges and SLIs, are
required. Section 6.4 shows the results of mass changes in individual West Antarctic
drainage basins obtained by the constrained inversion of GRACE and InSAR data.
These investigations are currently prepared for publication (Sasgen et al., 2008).
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6.1 Regional ice-mass changes and glacial-isostatic ad-

justment in Antarctica from GRACE (published)

Abstract†

We infer regional mass changes in Antarctica using ca. 4 years of
Gravity Recovery and Climate Experiment (GRACE) level 2 data.
We decompose the time series of the Stokes coefficients into their lin-
ear as well as annual and semi-annual components by a least-squares
adjustment and apply a statistical reliability test to the Stokes po-
tential coefficients’ linear temporal trends. Mass changes in three
regions of Antarctica that display prominent geoid-height change are
determined by adjusting predictions of glacier melting at the tip of
the Antarctic Peninsula and in the Amundsen Sea Sector, and of the
glacial-isostatic adjustment (GIA) over the Ronne Ice Shelf. We use
the GFZ RL04, CNES RL01C, JPL RL04 and CSR RL04 potential-
coefficient releases, and show that, although all data sets consistently
reflect the prominent mass changes, differences in the mass-change
estimates are considerably larger than the uncertainties estimated
by the propagation of the GRACE errors. We then use the boot-
strapping method based on the four releases and six time intervals,
each with 3.5 years of data, to quantify the variability of the mean
mass-change estimates. We find 95% of our estimates to lie within
0.08 and 0.09mm/a equivalent sea-level (ESL) change for the Antarc-
tic Peninsula and within 0.18 and 0.20 mm/a ESL for the Amund-
sen Sea Sector. Forward modelling of the GIA over the Ronne Ice
Shelf region suggests that the Antarctic continent was covered by
8.4 to 9.4 m ESL of additional ice during the Last-Glacial Maximum
(ca. 22 to 15 ka BP). With regards to the mantle-viscosity values
and the glacial history used, this value is considered as a minimum
estimate. The mass-change estimates derived from all GRACE re-
leases and time intervals lie within ca. 20% (Amundsen Sea Sector),
30% (Antarctic Peninsula) and 50% (Ronne Ice Shelf region) of the
bootstrap-estimated mean, demonstrating the reliability of results
obtained using GRACE observations.

†Sasgen, I., Martinec, Z. & Fleming, K., 2007. Regional ice-mass changes and glacial-

isostatic adjustment in Antarctica from GRACE. Earth Planet. Sci. Lett., (264):

391–4001. Received: May 10, 2007; Revised: September 19, 2007; Accepted: September

20, 2007. Copyright 2007 Elsevier, Oxford, United Kingdom. Reproduced by kind

permission of Elsevier.

6.1.1 Introduction

The determination of the Earth’s gravity field at regular time intervals by the Gravity
Recovery and Climate Experiment (GRACE) allows the investigation of mass move-
ment within the Earth system (e.g. Tapley et al., 2004a). GRACE consists of two
low-orbiting satellites in the same near-polar orbit, accurately measuring their sep-
aration (ca. 200 km) by a k-band ranging system. These data, together with GPS,
accelerometer and star-camera measurements (GRACE Level 1 data), are used to
solve for the spectral representation of the Earth’s gravitational potential or Stokes
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potential coefficients at approximately monthly time intervals (GRACE Level 2 data).
The largest contribution to the gravity field’s temporal variability arises from the

seasonal redistribution of water associated with hydrological processes. In addition,
the increasing length of the GRACE time series (currently ca. 4 years) allows secular
changes in the gravity field to be inferred with increasing reliability. Over land, this
secular trend is mainly induced by changes in the mass of ice sheets and glaciers and
by the inflow of mantle material into regions of former glaciation arising from the
glacial-isostatic adjustment (GIA) following the Last-Glacial Maximum (LGM, ca. 22
to 15 ka BP). Other sources of long-term changes include, for example, imbalances in
the hydrological cycle and processes in the Earth’s deep interior.

Within this context, GRACE observations have been employed to determine the
mass balance of polar ice sheets by mainly using the following three approaches. The
first, basin averaging, is commonly applied to determine average mass changes in
predefined geographical regions, for example drainage basins (e.g. Swenson & Wahr,
2002; Velicogna & Wahr, 2005; Ramillien et al., 2006; Velicogna & Wahr, 2006). This
approach can be optimized with respect to the expected signal and the influence of
observational noise, such as far-field signals or the increasing uncertainty associated
with GRACE coefficients of higher spherical-harmonic degree and order. Often, for-
ward modelling is applied in estimating the signal loss due to filtering. An alternative
method is based on simulations or forward modelling of the mass change of interest
using independent geophysical information (e.g. Chen et al., 2006b). Depending upon
the nature of the problem, different methods of adjusting the forward models to the
GRACE gravity-field solutions are used. The relationship between the changes in the
gravitational potential and the sources of mass change is given by the forward models.
In contrast, the third approach determines local mass concentrations directly using
k-band and other GRACE Level 1 data, together with a priori information concerning
the geometry and location of the mass changes under consideration (e.g. Luthke et al.,
2006). Compared to the first two approaches, its main advantage is that regionally
a spatial resolution is achieved. Also, the resulting distribution of surface masses do
not require additional calibration.

Despite using similar or identical sets of GRACE coefficients, the various approaches
have produced significantly different estimates of secular ice-mass change in the polar
regions, with their equivalent sea-level (ESL) change ranging, for example, for the
Greenland Ice Sheet from 0.23± 0.06 (Velicogna & Wahr, 2005) to 0.54± 0.05 mm/a
ESL (Chen et al., 2006a) and for the Antarctic Ice Sheet from 0.14± 0.09 (Ramillien
et al., 2006) to 0.38± 0.20 mm/a ESL (Velicogna & Wahr, 2006). For Antarctica,
a large cause of the discrepancy between these estimates is the uncertainty in the
contributions from GIA.

This paper aims to quantify the most prominent glacier melting and the GIA in
Antarctica using the second approach. We refine the previous study of Chen et al.
(2006b) by a noise reduction strategy applied to the GRACE data and extend their
investigation by simultaneously considering three regions of prominent geoid-height
change shown in Figure 6.1. In contrast to previous studies, we estimate the GIA
signal from the GRACE observations and do not apply an a priori GIA correction.
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Figure 6.1: Map of Antarctica based on the Antarctica Digital Database
(ADD Consortium, 2000) and the Digital Chart of the World (ESRI, 2003). We focus our
investigation to the regions delimited by the coordinate rectangles (solid lines), namely
(1) the tip of the Antarctic Peninsula, (2) the Amundsen Sea Sector and (3) the Ronne
Ice Shelf region.

Also, we assess the robustness of our mass-change estimates with respect to the dif-
ferent GRACE releases and the observational period chosen by the application of the
bootstrap method.
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6.1.2 Geoid-height change over Antarctica from GRACE

We investigate four independent time series of the GRACE Stokes potential coeffi-
cients that describe the gravity-field changes mainly occurring over land (GSM Level
2 data): GFZ RL04 (Flechtner, 2007), JPL RL04 (Watkins & Dah Ning, 2007), CSR
RL04 (Bettadpur, 2007a) of the GRACE Science Data System (SDS) centers and
CNES RL01C (Biancale et al., 2006 [online]). The solutions of the SDS centers are
unconstrained determinations of the gravity field at approximately monthly time in-
tervals. The solutions of the CNES RL01C represent moving averages of three 10-day
solutions and were computed using a regularization method. This method allows the
determination of the gravity field during periods of low ground-track coverage that
is during resonances in the satellites’ orbit and the Earth’s rotation. The releases
contain at least 48 months of data, respectively, and represent the processing centers’
latest gravity-field solutions. In order to homogenize the temporal coverage of the
data sets, only solutions between January 2003 and December 2006 are used. Al-
though the solutions include the same GRACE Level 1 data (Bettadpur, 2007b), we
consider them as independent representations of the gravity field, since the individual
processing strategies, e.g. the choice of background and de-aliasing models, induce
differences in the gravity fields that are above the expected GRACE uncertainty.

We decompose the time series of the Stokes potential coefficients into their linear as
well as annual and semi-annual components by a least-squares adjustment, assuming
constant variances over time. Using the Student’s t-test statistic, we set to zero the
resulting linear trend terms xo

jm for the time series of each coefficient of spherical-
harmonic degree j and order m > 25 not exhibiting a statistically significant linear
trend at a confidence level of 99%. The minimum of the degree power of unconstrained
gravity-field solutions at j ≈ 25 indicates that coefficients of lower degrees and orders
are signal dominated and do not require filtering (e.g. Sasgen et al., 2006). In turn, the
significant deviation of the degree power of constrained and unconstrained solutions
for j > 25 suggests that noise reduction should be applied above this degree and order.

The noise reduction strategy applied can be summarized as yp|o
jm = x

p|o
jmsjm, where

y
p|o
jm are the filtered coefficients of the predicted|observed temporal linear trend x

p|o
jm,

respectively, and sjm represents the statistical filter that is 1 if the trend xo
jm is

statistically significant, otherwise it is 0 (sjm = 1 for j,m ≤ 25). According to this
criterion, we omit, for example, a number of the near-sectorial coefficients (j ≈ m),
since these are degraded by the satellites’ less dense across-track sampling, resulting in
the often discussed north-south striping (Swenson & Wahr, 2006). This degradation
is also reflected in the coefficients’ large stochastic variability when compared to their
inferred temporal linear trend. Additional spatial smoothing of the gravity fields is
not applied.

The higher-degree and -order coefficients of the constrained CNES RL01C solutions
contain less noise than those of unconstrained solutions due to the Kaula regulariza-
tion method applied during the CNES processing. This regularization stabilizes the
fluctuations in the higher spectral range by constraining the solution to the mean
field, which allows an improvement to the signal-to-noise ratio by weighing more the

http://bgi.cnes.fr:8110/
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better-quality data (Lemoine et al., 2007). In the spatial domain, the regularization
results in smoother and less noisy gravity fields. As mentioned above, a compari-
son of the degree-power spectra of unconstrained and the constrained CNES RL01C
solutions indicates that this a priori noise reduction is effective for coefficients with
j > 25. Hence, for coefficients in this spectral range, we estimate an equivalent a
posteriori noise reduction that is then applied to the prediction when investigating
the CNES RL01C solutions. The filtering procedure used is similar to Wiener optimal
filtering (e.g. Seo & Wilson, 2005; Sasgen et al., 2006) and it involves the ratio of the
degree power of the CNES RL01C trend and the degree power of the unconstrained
GFZ RL04 trend. In general, the application of this additional smoothing filter to the
prediction is necessary to derive unbiased mass-change estimates from constrained
gravity-field solutions, such as the CNES RL01C.

We also confine our investigation to the Stokes coefficients with j,m ≥ 12 to reduce
the long-wavelength signal in the GRACE data arising from mass changes in the far-
field with respect to Antarctica and from the Earth’s deep interior. The removal of
these long wavelengths also reduces the overlap of signals from the individual regions.
This limit is determined by calculating the degree correlation of the predicted geoid-
height change over Antarctica described in the following section and the GRACE
observations (e.g. Sasgen et al., 2007a). Figure 6.2 shows that the degree correlation
for all releases is statistically significant for j ≥ 12 (the 95% confidence limit is indi-
cated by the dashed line).

It should be mentioned, however, that the geoid-height change induced by mass
changes of small spatial scales is not only reflected by coefficients of higher degrees
and orders, and vice versa. Therefore, it is necessary to reconsider the coefficients of
the lower degrees and orders that were omitted during the adjustment procedure in
the mass-change models in order to obtain meaningful mass-change estimates.

Figure 6.3 shows the resulting rate of geoid-height change over Antarctica as inferred
from the four GRACE releases considered. All releases show three prominent anom-
alies that are associated with known mass change processes, namely at the tip of the
Antarctic Peninsula and in the Amundsen Sea Sector, where rapid glacier melting ob-
served by other methods (e.g. laser altimetry) induces a negative rate of geoid-height
change, and over the Ronne Ice Shelf (West Antarctica), where the GIA-induced in-
flow of mantle material following the retreat of the Antarctic Ice Sheet after the LGM
causes an increase in the geoid height. In the following, we adjust the mass-change
models for these three regions with respect to the noise-reduced GRACE observations.
The source of the distinct positive geoid-height change in East Antarctica (centered
ca. 50o E; 70o S) is not identified and will therefore be excluded from this investigation.

It should be noted that the inferred rates of geoid-height change shown in Figure 6.3
may differ due to the noise-reduction function sjm, which is specific for each individual
GRACE release. This will be accounted for by applying each reduction to the mass-
change models. The remaining variability is due to observational uncertainties in
the GRACE releases and the slightly different months of gravity-field determination
considered and will be used to assess the robustness of our mass-change estimates.
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Figure 6.2: Degree correlation between the predicted and observed rate of geoid-height
change over Antarctica for GFZ RL04 (circles), CNES RL01C (asterisk), JPL RL04
(diamonds) and CSR RL04 (crosses). The 95 % significance level is indicated by the
dashed line. The investigation is limited to the Stokes potential coefficients of 12 ≤
j,m ≤ 50, for which all releases show a significant correlation with the geoid-height
change predicted by the mass-change models employed.

6.1.3 Modeled geoid-height change due to present-day ice-mass changes

and GIA

The geoid-height change over Antarctica is predicted using a viscoelastic earth model
subjected to surface-mass changes occurring in selected Antarctic drainage basins and
to the glacial history of the entire ice sheet for the last glacial cycle. The predicted
geoid-height change xp

jm can be expressed as

xp(s) =
R2

g0

∑
j

qj(s)
4π

2j + 1

∑
m

σjm(s)Yjm, (6.1)

where R is the Earth’s radius, g0 is the normal gravity at the Earth’s surface, Yjm are
fully normalized scalar spherical-harmonic functions, σjm are the spherical-harmonic
expansion coefficients of surface-mass change, s is the Laplace variable, and qj are the
viscoelastic surface-load Love number in the Laplace domain for a specified viscosity
distribution (e.g. Wu & Peltier, 1982). For quasi-instantaneous mass variations (s→
0), such as present-day ice-mass changes, qj approaches the surface-load elastic Love
numbers.

Altimetry and Interferometric Synthetic Aperture Radar (InSAR) measurements of
the Antarctic Ice Sheet indicate that there are two regions experiencing prominent
ice-mass change: the tip of the Antarctic Peninsula, where particularly the glaciers
Hektoria/Green/Evans, Jorum, Crane, Flask, Leppard and Drygalski were observed to
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rapidly retreat following the collapse of the Larsen B Ice Shelf in March 2002, resulting
in an estimated mass loss of ca. 0.07mm/a ESL (Rignot et al., 2004; Scambos et al.,
2004) and the Amundsen Sea Sector, in particular the glaciers Pine Island, Thwaites,
Smith and Kohler, with an estimated total loss of ca. 0.24mm/a ESL (Thomas et al.,
2004). Other drainage basins of the ice sheet appear to be almost in balance (e.g. Remy
& Frezzotti, 2006), except for Ice Stream C (ca. 230o E; 85 o S), West Antarctica, which
is observed to be accumulating mass at a rate of −0.05 mm/a ESL due to a decrease in
its flow velocity (Rignot & Thomas, 2002). The geoid-height change associated with
these mass changes is calculated according to (6.1) assuming an elastic earth model.

The GIA-induced geoid-height change is calculated according to (6.1) using a vis-
coelastic earth model combined with the glacial history of Huybrechts (2002). The
Huybrechts (2002) reconstruction is based on results from a thermomechanical ice-
sheet model that simulates the variation in the volume and extent of the Antarctic Ice
Sheet. The temporal evolution used here is linearly interpolated from four snapshots
of the state of the ice sheet at 15, 7, 4 ka BP and at present. Its main characteristic
is the late deglaciation of the Ronne Ice Shelf region, which continues until today.
In agreement with glaciological and geomorphologic evidence (e.g. Bentley, 1999; An-
derson et al., 2002; Ivins & James, 2005), the reconstruction also features the largest
reduction of ice mass in Antarctica around the region of the Ronne Ice Shelf. This, in
turn, leads to the largest GIA-induced geoid-height change signal consistent with that
predicted using the geomorphologic reconstruction of Lambeck & Chappell (2001).
Although the glacial history of Peltier (2004) based on globally distributed paleo sea-
level indicators also requires a rather late initiation of Antarctic deglaciation (ca. 15
ka BP), it includes the largest retreat of ice, hence, the largest GIA signal over the
Ross Ice Shelf. In this work, we focus on the GIA signal over the Ronne Ice Shelf to
adjust the glacial history of Huybrechts (2002), as the predicted GIA signals in the
other regions of the Antarctic continent are considerably smaller in magnitude, which,
in turn, is supported by the GRACE observations.

We use a four-layer viscoelastic earth model consisting of an elastic lithosphere of
thickness hL = 100 km, an upper mantle of viscosity ηUM =5.2× 1020 Pa s, a lower
mantle of viscosity ηLM =5.9× 1021 Pa s and a fluid core. This viscosity profile cor-
responds to that determined for Fennoscandia using the relaxation time spectrum
derived from regional paleo-shorelines (Martinec & Wolf, 2005). However, it is also
satisfactory when reproducing global sea-level change over the past 20 ka, and we
therefore consider it to be a global-average earth model also appropriate for the man-
tle beneath West Antarctica, of which very little is known. However, we also modify
the viscosity profile within a plausible range to assess its influence on our mass-change
estimates. As a result, we find that changing the viscosity values mainly influences
the magnitude of the predicted GIA-induced geoid-height change, while its spatial
pattern is retained (not shown here).
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6.1.4 Mass-change estimate

The predictions representing the geoid-height change over all regions of interest, i. e.
the Antarctic Peninsula, the Amundsen Sea Sector and the Ronne Ice Shelf, are fil-
tered by the version of the statistical filter, sjm discussed above, that is adapted
to the noise level of the GRACE release under consideration. This is necessary to
verify the consistency of the modeled geoid-height change after the noise reduction
and avoids biasing the resulting mass-change estimates. For the investigation of the
trends inferred from CNES RL01C solutions, the modeled geoid-height changes are
additionally smoothed by the spatial-averaging filter described in Section 2.

After filtering, we synthesize the coefficients with 12 ≤ j,m ≤ 50 of the predicted
and observed geoid-height change, yp

jm and yo
jm, to obtain their associated spatial

representation, yp
i and yo, respectively. Here, the index i refers to the modeled geoid-

height change including the signal over the region of interest, i. e. the Antarctic
Peninsula (i = 1), the Amundsen Sea Sector (i = 2) and the Ronne Ice Shelf region
(i = 3).

We adjust the magnitude of each modeled geoid-height change to fit the GRACE
data such that the residual signals over the three areas, Ωi, i = 1, 2, 3 (coordinate
rectangles in Figure 6.1 and Figure 6.3), are minimized in the L1-norm sense. The
size of the three adjustment areas is chosen to be consistent with the spatial GRACE
resolution of ca. 4o, which is estimated from the signal-to-noise ratio of the degree-
power spectrum using the Wiener optimal-filtering approach (Sasgen et al., 2006). The
adjustment is carried out on a 0.25o × 0.25o grid. The L1 norm is used as it is most
sensitive to extreme values, which are, for the GRACE data, the most robust with
respect to the remaining observational noise. We include an adjustment area around
the peak values of the geoid-height change to assure that the fitting is insensitive to
changes in the spatial pattern of the geoid-height change or lateral variations in the
positions of the extreme values due to residual noise.

We make use of the cost function E defined as

E :=
3∑

i=1

∫
Ωi

‖yo(Ω)− yp
i (Ω)αi‖L1

dΩ, (6.2)

which is minimized with respect to the scale factors αi. Having determined αi, the
optimal model of the geoid-height change for Antarctica is given by the scaling and
summation of the three geoid-height change models, yα =

∑3
i=1 y

p
i (Ω)αi. The surface-

mass change of interest is then determined by using the linear relation between the
source of the mass change and the associated variation of the gravitational potential
according to (6.1). This is done by considering the full spectral range of the models
of the geoid-height change.

It should be mentioned that even though the adjustment areas Ωi and peak mass
changes are spatially separated, the modeled geoid-height change for each of the three
regions will overlap with the other, even after reducing the long-wavelength compo-
nents of the gravity field. We account for the remaining overlaps by adjusting the
models of all three regions simultaneously, as expressed by the summation in (6.2).
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Also, data outside of the areas Ωi are not considered when determining the scale
factors αi.

6.1.5 Uncertainty in the mass-change estimate

One method used to determine the uncertainty in our mass-change estimates is by the
propagation of the variance of the least-squares regression parameters, var(xo

jm), to
the parameters αi. For uncertainties arising from the use of a single GRACE release,
we assume no covariances between the linear-trend coefficients. The variance with
respect to two spatial coordinates Ωk,l on the adjustment grid can be expressed by

var(xo)kl =
∑
jm

Yjm(Ωk)var(xo
jm)Yjm(Ωl). (6.3)

The variance of the adjustment parameter αi is given by (e.g. Koch, 1999)

var(αi) =
∑

kl y
p
i (Ωk)varkl(xo)yp

i (Ωl)
[
∑

kl y
p
i (Ωk)y

p
i (Ωl)]2

, (6.4)

where yp
i denotes the spatial representation of the modeled geoid-height change for

the individual regions and Ωk,l ∈ Ωi represent the spatial coordinates within the
associated adjustment area.

Another method used to assess the robustness of our results is by conducting a
bootstrap estimate (e.g. Efron & Tibshirani, 1993) of the mean mass change. The
bootstrap estimate can be used to infer the statistical properties of a distribution
from a small number of samples (ca. 20) on the assumption that each individual sam-
ple captures the essential properties of the underlying population. Here, the sample
observations are the 24 mass-change estimates for each of the three regions derived
from the four GRACE releases using six 3.5 year-long time intervals that are shifted
with respect to each other by one month. The first interval is January 2003 to June
2006, hence the last time interval is June 2003 to November 2006. For comparison,
we also obtain estimates using the full four-year period, January 2003 to December
2006. Shifting the time intervals allows us to assess the stationarity of the signals
investigated and the uncertainty that arises from not including other time variations
into our model, such as accelerations and longer-term oscillations. We randomly draw
a collection of 24 samples from our 24 mass-change estimates and calculate their mean
assuming equal probability of each mass-change estimate. The procedure is repeated
1000 times. The resulting distribution of means provides a measure of the uncertainty
of the inferred mean mass change, which includes the differences between the GRACE
releases and the variations in the temporal linear trend with respect to the observation
period.

6.1.6 Results and discussion

The top of Figure 6.4 shows the mass-change estimates based on the four-year period
(January 2003 to December 2006) of the GFZ RL04, CNES RL01C, JPL RL04 and
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CSR RL04 releases; (a) ice loss at the tip of the Antarctic Peninsula and in the
Amundsen Sea Sector and (b) mass change of the Antarctic Ice Sheet since LGM, as
inferred from the GIA signal over the Ronne Ice Shelf (third region). The values in (b)
correspond to the additional ice mass required with respect to the reconstruction of
Huybrechts (2002) at 15 ka BP that is necessary to produce the observed geoid-height
change over the Ronne Ice Shelf regions, given the earth-model parameters employed
(hL = 100 km, ηUM =5.2× 1020 Pa s and ηLM =5.9× 1021 Pa s). Here, we assume that
the scale factor determined also applies to the other regions of Antarctica with past
ice-mass changes described in the glacial history, for example, the region of the Ross
Ice Shelf and the Amery Ice Shelf (East Antarctica). The associated error bars are
calculated according to (6.3) and (6.4). It is noticeable that the results obtained from
the four releases differ significantly, in particular the mass-change estimates derived
from the signal over the Ronne Ice Shelf. Similar results using the unfiltered spectral
range of the GRACE data indicate that this variability is not a product of the noise
reduction applied. In general, the GFZ RL04 and the CSR RL04 give very similar
results, compared to which the values of the CNES RL01C are slightly higher, and
the values of the JPL RL04 are somewhat lower. This variability in the results with
respect to the different releases is probably due to observational uncertainties that
are underestimated by the propagated errors. As shown in Figure 6.3, all releases
consistently reflect the predicted geoid-height change and are therefore considered to
be appropriate for deriving mass-change estimates.

The bottom of Figure 6.4 presents the results of the bootstrap estimate. Shown
are histograms of 20 equidistant bins that indicate the frequency of each mean mass-
change estimate. The diamond and bar above each histogram represent the mean of
the population and the interval bracketing 95% of the estimates, respectively. The
grey-shaded areas indicate the variability of all 24 underlying mass-change estimates.

For the Antarctic Peninsula, our inferred mean mass change of 0.08 mm/a ESL
(± ca. 6 %) agrees well with the values determined from radar interferometry (0.07 mm/a
ESL; Rignot et al., 2004). This is remarkable since the mass change in this region is
very localized and is likely to be influenced by mass changes associated with the
Antarctic Circumpolar Current. However, we observe that the values for all releases
and all six time intervals are bracketed between 0.07 and 0.11 mm/a ESL, with most
of the CNES RL01C estimates being higher and a slight increase of mass loss for later
time intervals. The increasing values for later time intervals indicate a non-stationary
process that may, for example, be caused by an acceleration of the melting of glaciers
in this region, a period of enhanced melting during the end of 2006, or a long-term
mass change in the surrounding ocean.

For the Amundsen Sea Sector, 95% of our bootstrap estimates of the mean mass
change lie between 0.18 and 0.20 mm/a ESL, the values of all releases and time in-
tervals ranging between 0.16 and 0.23 mm/a ESL. The mass loss for each of the time
intervals investigated is nearly constant, meaning that the variability mainly arises
from the differences in the releases. Also for this region, the GFZ RL04 and the CSR
RL04 produce results which are closest to each other (∼±0.01 mm/a ESL), while the
CNES RL01C and JPL RL04 based estimates are ca. 0.03 mm/a ESL higher and lower,
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respectively. The bootstrap-estimated mean of 0.19 mm/a ESL(± 6%) is considerably
lower than the most recent estimate based on aircraft- and satellite-laser altimetry,
ca. 0.24mm/a ESL (Thomas et al., 2004), but it is somewhat higher than a previous es-
timate of 0.17± 0.03 mm/a ESL (Rignot & Thomas, 2002). It is close to the minimum
of the range of 0.21± 0.04 to 0.28± 0.05 mm/a ESL presented by Chen et al. (2006b),
who investigated using a forward modelling approach the constrained CSR RL01C
gravity fields. However, our estimate is much lower than the rate of 0.30± 0.06 mm/a
ESL determined by Ramillien et al. (2006) using the basin-analysis approach and the
CNES RL01C release. An explanation for this large deviation is that the authors
considered a larger number of West Antarctic glaciers and also applied an a priori
GIA correction of 0.06 mm/a ESL to the mass-change estimate.

For the Ronne Ice Shelf region, based on the glacial history of Huybrechts (2002)
and the earth model parameters used (hL = 100 km, ηUM =5.2× 1020 Pa s and
ηLM =5.9× 1021 Pa s), 95% of the adjusted models of the GIA-induced geoid-height
change suggest that the Antarctic continent was covered by 8.4 to 9.5 m ESL of ad-
ditional ice during the LGM. The range of values inferred from all releases and time
intervals is 6.1 to 10.8 m, representing a larger variability than the values for the
other two regions. A possible explanation is that the ocean tides under the Ronne Ice
Shelf may not have been completely removed from the GRACE gravity-field solutions
(King et al., 2005; King & Padman, 2005; Han et al., 2005b). The bootstrap-estimated
mean mass change is 9.0 m ESL(± ca. 6 %). It lies in the range of 6.1 to 13.1m ESL
proposed by Bentley (1999) and largely agrees with the value of 10.1 m ESL of Ivins
& James (2005). The value corresponds to a maximum rate of geoid-height change
over the Ronne Ice Shelf region (ca. 293o E; 81o S) of 1.5 mm/a when synthesizing the
full spectral range (2 ≤ j,m ≤ 50). This rate of geoid-height change is at the lower
end of the range predicted by Kaufmann (2002) (ca. 1.5 to 3 mm/a), but it is 2 to 3
times larger than the range of 0.4 to 0.6mm/a predicted by Ivins et al. (2001).

It should be stated that our interpretation of the GIA signal depends on the as-
sumed earth model, and, to a much greater extent, on the details of the Antarctic
deglaciation. The combination of the viscosity profile and glacial history used here
results in a rather large GIA signal over the Ronne Ice Shelf, and we therefore con-
sider our value to be a minimum estimate. For example, using higher upper-mantle
viscosities of ηUM =6× 1020 Pa s and ηUM =8× 1020 Pa s, reduces the magnitude of
the GIA signal over the Ronne Ice Shelf. This can be compensated by a ca. 10% and
ca. 15%, respectively, larger mass change of the Antarctic Ice Sheet since the LGM.
In contrast, a reduced upper-mantle viscosity of ηUM =4× 1020 Pa s suggests a ca. 5%
smaller amount of additional ice during the LGM. The mass-change estimates are
not sensitive to the lower-mantle viscosity, because variations in the gravity field that
would arise from changing this parameter are important only in the lower spectral
range that is not considered.

A similar GIA signal is obtained using the reconstruction of Lambeck & Chappell
(2001), which features ca. 33m ESL of additional ice at the LGM and a much ear-
lier retreat compared to the glacial history of Huybrechts (2002). This illustrates the
ambiguity inherent in the inversion of the GIA signal and emphasizes that additional
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constraints on the timing of the deglaciation are required. However, the mass-change
estimates for the Antarctic Peninsula and the Amundsen Sea Sector are not signif-
icantly influenced when the reconstruction of Lambeck & Chappell (2001) is used,
owing it producing an similar GIA signal in Antarctica as the Huybrechts (2002)
model.

6.1.7 Conclusions

We have determined noise-reduced temporal linear trends in geoid-height change over
Antarctica from four independent GRACE releases and have fitted these observations
by adjusting mass-change models reflecting three regions of prominent ice-mass loss
(Antarctic Peninsula and the Amundsen Sea Sector) and GIA (Ronne Ice Shelf region).

We have shown that the mass-change estimates of the GRACE releases differ signif-
icantly and that the conventional propagation of GRACE errors underestimates these
uncertainties. We have then calculated a bootstrap estimate of the mean mass change
based on 24 mass-change estimates, each of which was derived from 3.5 years worth
of data, allowing us to assess the robustness of our results.

For the Antarctic Peninsula, the ice-mass loss estimated for all releases and time
intervals considered is bracketed between 0.07 and 0.11mm/a ESL, the bootstrap-
estimated mean mass change being 0.08mm/a ESL (± ca. 6 %), which agrees with
values inferred from radar interferometry (0.07 mm/a ESL; Rignot et al., 2004). For
the Amundsen Sea Sector, the ice-mass loss determined is between 0.16 and 0.23 mm/a
ESL, the bootstrap estimate giving 0.19 mm/a ESL(± 6%). This is considerably lower
than an laser-altimetry measurement of 0.24 mm/a ESL(Thomas et al., 2004) and
close to the minimum of the previous GRACE-based estimate of Chen et al. (2006b)
(0.21±0.04 to 0.28±0.05 mm/a ESL). We have interpreted the signal over the Ronne
Ice Shelf in terms of GIA using a viscoelastic earth model and the glacial history
of Huybrechts (2002). For all releases and time intervals, the signal suggest a mass
change of the Antarctic Ice Sheet since the LGM of between 6.1 and 10.8 m ESL, the
value varying by ca. 15% for the range of plausible viscosity profiles. The bootstrap
estimate of 9.0 m ESL (± ca. 6 %) agrees with the geomorphologic estimate of 6.1 and
13.1 m ESL by Bentley (1999). We have found that the mass-change estimates for all
releases and time intervals lie within ca. 20% (Amundsen Sea Sector), 30% (Antarc-
tic Peninsula) and 50% (Ronne Ice Shelf region) of the bootstrap-estimated mean,
demonstrating the reliability of mass-change estimates in Antarctica from GRACE
observations.
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a) b)

c) d)

e) f)

g) h)

Figure 6.3: Rate of geoid-height change over Antarctica determined from (a) GFZ RL04,
(c) CNES RL01C, (e) JPL RL04 and (g) CSR RL04, and the associated adjusted geoid-
height change resulting from present-day ice-mass changes and GIA for (b) GFZ RL04,
(d) CNES RL01C, (f) JPL RL04 and (h) CSR RL04. The three coordinate rectangles
(solid lines) indicate the areas used for the adjustment of the geoid-height change models,
namely the Antarctic Peninsula, the Amundsen Sea Sector and the Ronne Ice Shelf region.
The cut-off degrees are jmin = 12 and jmax = 50.
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a) b)

Figure 6.4: Mass changes in Antarctica as inferred from the four GRACE releases. (a)
Present-day ice-mass changes along the Antarctic Peninsula (i.e. Hektoria/Green/Evans,
Jorum, Crane, Flask, Leppard and Drygalski glaciers) and the Amundsen Sea Sector (i.e.
Pine Island, Thwaites, Smith and Kohler glaciers) and (b) mass change of Antarctic Ice
Sheet since the LGM. Top: Mass-change estimates and associated propagated errors for
the four GRACE releases considering the four-year period January 2003 to December
2006. Bottom: Histogram of bootstrap-estimated mean mass changes. The grey-shaded
area indicate the minimum and maximum mass changes obtained using all GRACE re-
leases and time intervals.
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6.2 Supplement to publication of previous section

In addition to the results published in Sasgen et al. (2007b) (Section 6.1), investiga-
tions concerned with the temporal linear trend of the mass changes in Antarctica are
presented. The results indicate that the stochastic averaging (bootstrap estimation)
carried out in the paper may not be fully justified, since deterministic temporal mass
variations can be identified in all GRACE releases, and, even more importantly, since
the GRACE releases show systematic biases.

Figure 6.5 shows the values of mass change for the Antarctic Peninsula, West
Antarctica and for the Antarctic Ice Sheet since the LGM as inferred from the GIA
signal over the Ronne Ice Shelf region. For the Antarctic Peninsula, mass-loss rates
increase by 0.02 mm/a ESL with shifting of the time interval used for the computation
of the trend towards later times for all releases except CSR RL04. The differences
between the GRACE releases amount to ∼ 0.04 mm/a ESL. For West Antarctica,
interannual variations of the linear trend are .0.01 mm/a ESL. However, the range
of estimates exhibited by the GRACE releases is large, ranging between 0.16 (JPL
RL04) and 0.23 mm/a ESL (CNES RL01C). The amplitude of the inferred GIA signal
decreases with proceeding time interval for GFZ RL04 and JPL RL04, while largely
remaining constant for CNES RL01C and CSR RL04. Again, also the differences
between releases are large (between 6.4 and 10.2 m ESL for JPL RL04 and CNES
RL01C, respectively).

The reason for the instability of the temporal trend over the Ronne Ice Shelf is not
clear. Potential cause is inaccurate modelling of ocean tides underneath the ice shelf
during GRACE processing, which then alias into long-term changes of the gravity field.
Significant aliasing errors are predicted mainly for the K1 and K2 tides using CSR
RL04; tidal errors for GFZ RL04 are smaller (Moore & King, 2008). The biases of the
different releases can partially be explained by the power of the GRACE gravity fields.
Figure 6.6 shows the cumulative degree power of the gravity fields’ temporal linear
trend for the four releases investigated with (except for CNES RL01C) and without
statistical filtering. First, it is visible that the power of the constrained CNES RL01C
fields are higher than that of the remaining releases in the unfiltered spectral range
j < 22. The CNES solution providers claim that merely coefficients of degree and order
j > 30 are stabilized by a Kaula-type regularization. However, the diagram shows
that coefficients with degrees and orders > 25 appear to be increasingly constrained,
i.e. unconstrained and constrained spectra are no longer parallel. However, JPL RL04
typically results in smaller values, for which Figure 6.6 gives no indication.
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a)

b)

c)

Figure 6.5: Mass changes in Antarctica from four GRACE releases. Present-day ice-mass
changes along a) the Antarctic Peninsula and b) the Amundsen Sea Sector in mm/a ESL,
and c) mass change of the Antarctic Ice Sheet since the LGM as inferred from the GIA
signal over the Ronne Ice Shelf region in m ESL.
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Figure 6.6: Cumulative degree-power spectrum of the GRACE coefficients’ linear trend
for GFZ RL04 (dark blue), CNES RL01 (light blue), JPL RL04 (red) and CSR RL04
(green). The respective spectra after statistical filtering for j,m ≥ 25 are shown as
dashed lines. The lower cut-off degree is jmin = 3.
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6.3 North America and Greenland ice-mass changes and

GIA

The following investigation is an attempt to invert GRACE data for present-day ice-
mass changes in Alaska and Greenland as well as for GIA over North America, applying
the methods developed for Antarctica (Sasgen et al., 2007b). Improvements to this
study are suggested in Section 6.3.5.

The results are based on the unconstrained GRACE solutions of GFZ RL04, CSR
RL04 and JPL RL04 as well as the constrained GRACE solutions of CNES RL01C,
for the time interval January 2003 to December 2006. The full time interval TFULL

is divided into six 3.5 a subintervals, T1, T2, ..., T6, each of which being shifted by one
month. For each subinterval, the time series of Stokes potential coefficients are decom-
posed according to (4.6) into linear trend, offset as well as annual and semi-annual
oscillating components by the method of least-squares assuming constant variances
over time. In Sasgen et al. (2008) (Section 6.4), a weighted least-squares decomposi-
tion is used to account for GRACE solutions of poor quality associated with periods
of repeat orbits.

6.3.1 Forward modelling of the geoid-height change

Present ice-mass change in Alaska

Arendt et al. (2002) determined the mass balance of 28 Alaskan glaciers for the years
mid-1990 to 2001 by considering repeated airborne laser-altimetry measurements. The
glaciers cover ∼ 13% of the glaciated area in Alaska and were among 39 other glaciers,
whose mass changes were determined for 1950 to 1996. By extrapolating data to
unmeasured glaciers, Arendt et al. (2002) found a rate of mass loss for the entire
region of 0.28 ± 0.10 mm/a ESL (mid-1990 to 2001), which is nearly twice the value
of 0.14 ± 0.04 mm/a ESL obtained for the earlier measurement period (1950 to 1996).
The largest portion of this value (∼ 75%) is attributed to glaciers draining into the
Gulf of Alaska. The mass balance model of Arendt et al. (2002) used for calculating
the potential disturbance according to (2.17) is shown in Figure 6.7.

Present ice-mass change in Greenland

The forward model for the Greenland Ice Sheet is based on elevation changes observed
by airborne laser altimetry between the years 1994 to 1999 (Krabill et al., 2000). The
surveyed area mainly covers the interior of the ice sheet with elevations > 2000 m,
but Krabill et al. (2000) extrapolated values towards the coast by estimating thinning
rates from surface-air temperature using positive degree-day models (e.g. Braithwaite,
1995). Other discharge processes, such as dynamic thinning of the ice and acceleration
of glaciers are neglected. The distribution of elevation changes for the Greenland Ice
Sheet is shown in Figure 6.7. The minimum sea-level contribution of these glacial
changes is ∼ 0.13 mm/a ESL, although Krabill et al. (2000) do not assign errors to
this estimate. It is recognized that glaciers in Greenland are diverse and exhibit
complex behaviour (e.g Howat et al., 2007). Assuming that mass changes are linearly
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a) b)

Figure 6.7: Ice-thickness change observed in a) Alaska (Arendt et al., 2002) and b) Green-
land (Krabill et al., 2000) from airborne laser altimetry.

proportional to elevation changes is a major simplification, which needs to be refined
in future investigations.

Past ice-mass change in North America and Greenland

The glaciation history used for calculating the viscoelastic Earth response over North
America and Greenland is load model NAWI (Zweck & Huybrechts, 2005). This
reconstruction is based on the results of the glaciological modelling of the evolution of
the area and volume of the Pleistocene Ice Sheets in response to climatic forcing during
the last-glacial cycle. The time series of the climatic forcing, i.e. temporal variations
of precipitation and temperature anomalies, are based on climate models, which were
adjusted to reconcile with the δ18 O record of the Greenland Ice Core Project (GRIP
[online]). The version of load model NAWI employed here features additional ice
in the Northern Hemisphere during the LGM (∼ 20 ka BP) relative to present day
of ∼ 102.2 m ESL, distributed as 76.3 (Laurentide), 23.6 (Eurasia), 2.0 (Greenland)
and 0.3 m ESL (Iceland). The spatial distribution of the ice thickness change since
the LGM for North America, Greenland and Iceland is shown in Figure 6.8. The
temporal evolution described by NAWI is characterized by a gradual increase in ice
volume from 120 to 20 kaBP followed by a rather abrupt deglaciation (Figure 6.9).
Later, NAWI will be adjusted with respect to the GRACE-observed GIA signal over
North America; the relative distribution of ice mass in the Northern Hemisphere,

http://www.esf.org/activities/research-networking-programmes/life-earth-and-environmental-sciences-lesc/completed-esf-research-networking-programmes-in-life-earth-and-environmental-sciences/greenland-icecore-project-grip/more-information.html
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Figure 6.8: Ice-thickness change since the LGM over North America, Greenland and
Iceland as described by load model NAWI.

however, is held fixed, which represents a strong simplification.
The earth model parameter values employed hL = 100 km, ηUM = 6.0× 1020 Pa s

and ηLM =2.0× 1022 Pa s, are close to the values determined by Wolf et al. (2006).
Later, also the viscosity values are varied within plausible bounds to assess the re-
sults’ sensitivity to the Earth’s viscoelastic structure. The investigations presented
are limited to GIA predictions based on the glaciological model NAWI. So far, other
reconstructions, such as the geomorphological model ICE-5G (Peltier, 2004) have not
been used.
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Figure 6.9: Mass change of the Northern Hemisphere ice sheets during the Last-Glacial
Cycle for load model NAWI.
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6.3.2 Post-processing of GRACE data

After temporal decomposition (Section 4.3.2), the statistical filter, sjm, is applied to
the coefficients linear trend component for degrees and orders j,m ≥ 25. No additional
smoothing is applied. To the forward model used in conjunction with the constrained
CNES RL01C solutions, an equivalent smoothing filter is applied, which accounts
for the a priori noise reduction used during the solution processing. The lower cut-
off degree is determined using the degree correlation of V Model(Ω) and V GRACE(Ω)
calculated according to (A.29). Figure 6.10 shows that coefficients with j < 5 exhibit
no significant correlations for all releases and are therefore omitted. Most coefficients
in the high spectral range are eliminated by the statistical filter due to their poor
signal-to-noise ratio (Section 4.1), and the spherical harmonic series is truncated at
cut-off degree jmax = 50. Filtering or truncation of the spherical-harmonic expansion
series is equally applied to the forward model and the GRACE data, which obviates
biases of the mass change estimates. The rate of geoid-height change for the forward
model and GRACE, with and without statistical filtering, are shown in Figure 6.13
(GFZ RL04), Figure 6.14 (CNES RL01C), Figure 6.15 (JPL RL04) and Figure 6.16
(CSR RL04).

Over North America, GRACE data is corrected for trends of potential disturbances
due to interannual variations in total hydrological water storage. These trends are
predicted using the WGHM model (Döll et al., 2003) for each GRACE time interval
(Tfull, T1, T2, ..., T6). The statistical filter for each interval and release is applied to
the spectral representation of the potential disturbances caused by the WGHM trend,
and the filtered signal is subtracted from the GRACE data (Figures 6.13 to 6.16).
So far, WGHM has not been validated with respect to modelling long-term changes
(∼ 10 a). However, for the length of time intervals investigated here (∼ 4 a), linear
trends in hydrology are primarily due to interannual variations in precipitation and
surface storage, for which the model has been designed.

6.3.3 Model adjustment

The forward model is adjusted to the GRACE data according to (5.16). The adjust-
ment areas, ΩSα , α = 1, 2, 3, are coordinate rectangles (Figures 6.13 to 6.16), which
encompass the prominent potential disturbances predicted for Alaska (56.5 to 63.5 oN
and −155 to −135 oE), Greenland (62 to 70 oN and −46 to −28 oE) and North Amer-
ica (50 to 65 oN and −110 to −70 oE). Following Sasgen et al. (2007b), the L1-norm is
used in the definition of the cost function (5.16), since it is less sensitive to outliers.
This, however, requires a numerical search for the optimal solution.



6.3 North America and Greenland ice-mass changes and GIA 109

Figure 6.10: Degree correlation between the predicted and observed rate of geoid-height
change over the Northern Hemisphere for GFZ RL04 (circles), CNES RL01C (asterisk),
JPL RL04 (diamonds) and CSR RL04 (crosses) for the time interval January 2003 to
December 2006. The 95 % confidence level is indicated by the dashed line. Stokes
potential coefficients with j,m < 5 are exluded due to insignificant correlation (grey-
shaded area).
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6.3.4 Results and Discussion

This section describes the results of the GRACE gravity-field inversion over North
America and Greenland. The top of Figure 6.11 shows the present-day ice-mass
changes of the Alaskan glaciers and the Greenland Ice Sheet, as well as the sea-
level contribution of NAWI since the LGM necessary to reproduce the GIA signal
over North America for fixed earth-model parameters (hL = 100 km, ηUM =6.0× 1020

Pa s and ηLM = 2.0× 1022 Pa s). The estimates are based on the time interval Tfull,
and the error bars are calculated according to (6.3) and (6.4). The bottom of Fig-
ure 6.11 represents the bootstrap-estimated mean value for each region based on the
24 individual estimates (4 releases and 6 subintervals), along with the minimum and
maximum estimates indicated by the gray-shaded area. The individual estimates are
shown Figure 6.12.

Alaska

The mass change of the glaciers in Alaska is estimated to lie between 0.17 and
0.29 mm/a. The bootstrap-estimated mean of 0.21 mm/a ESL (± 7%) is lower than
the value of 0.28 ± 0.10 mm/a ESL obtained by airborne laser altimetry, however,
both values agree within their ranges of uncertainties. It is also less than the values
of 0.31 ± 0.09 mm/a ESL (Tamisiea et al., 2005) and 0.28 ± 0.06 mm/a ESL (Chen
et al., 2006c) obtained from GRACE data (CSR releases) for mid-2002 to mid-2004 and
mid-2002 to 2006, respectively. However, Figure 6.12 shows that, although mass-loss
rates are largely independent of the subinterval, large differences between the GRACE
releases’ values exist; CSR RL04 and CNES RL01 produce larger values compared to
GFZ RL04 and JPL RL04. Also, for CSR RL04, later time intervals produce sig-
nificantly smaller mass-loss rates, more than for the other releases. For the earliest
time interval T1, which best corresponds to the period investigated by Tamisiea et al.
(2005) and Chen et al. (2006c), the mass-loss rate is 0.25 mm/a ESL and in closer
agreement with their values. Nevertheless, the residual, i.e. V (Ω)GRACE− V̂ (Ω)Model,
indicates additional mass losses along the coast between 50 oN and 60 oN (Figures 6.13
to 6.16). This region is included in the forward model (Figure 6.7), but it is not indi-
vidually parameterized and, therefore, not separately adjusted; further refinement of
the forward model is necessary.

Without the GIA correction, i.e. excluding the GIA component from the forward
model, mass-loss rates increase by ∼ 0.05 mm/a ESL, with an uncertainty of <0.01
mm/a ESL for the range of plausible viscosity values (Figure 6.17), which confirms
the estimate of Tamisiea et al. (2005). The sign of the GIA correction (apparent mass
loss) is explained by the outflow of mantle material associated with the collapse of the
viscoelastic forebulge, which is the dominant GIA signature along the margin of the
former Laurentide Ice Sheet (Figure 6.8). GIA due to local ice-mass variations during
the late Pleistocene or early Holocene in Alaska is expected to be small owing to the
low viscosity values of the Earth’s upper mantle in this region (e.g. Tamisiea et al.,
2005; Larsen et al., 2003). Also, the influence of oceanic mass variations is estimated
to be small (Tamisiea et al., 2005) and not investigated further in this work.
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a) b)

Figure 6.11: Bootstrap-estimated mass change in North America and Greenland from
four GRACE releases. a) Present-day ice-mass changes of glaciers in Alaska and of the
Greenland Ice Sheet and b) mass change of Laurentide Ice Sheet since the LGM. Top:
Mass-change estimates and associated propagated errors for the four GRACE releases
considering the four-year period January 2003 to December 2006. Bottom: Histogram
of bootstrap-estimated mean mass changes. The grey-shaded area indicate the minimum
and maximum mass changes obtained using all GRACE releases and time intervals.

Variations of the mass-change estimates with regard to the chosen subinterval are
< 10% for individual releases (Figure 6.12). In contrast, differences between releases
are 2 to 3 times larger. So far, the reason for these biases is not known. However, they
appear to result from differences in the solution processing rather than from short-
comings in the filtering and inversion of the potential fields. An indication of this is
the cumulative degree power spectrum from cut-off degree jmin = 3 (Figure 6.6). For
example, CNES RL01C exhibits larger power compared to all other releases, even for
degrees j < 25, which have not been regularized during processing. In contrast, JPL
RL04 often recovers lower amplitudes compared to the other releases (Figures 6.13 to
6.16). This tendency has also been observed for Antarctica (Figure 6.5).

Greenland

The mass loss of the Greenland Ice Sheet is estimated to lie between 0.35 to 0.60 mm/a
ESL, the bootstrap-estimated mean being 0.51 mm/a ESL (± 6%). This value is
almost four times the minimum estimate of 0.13 mm/a ESL obtained from laser-
altimetry measurements (Krabill et al., 2000) for the years 1994 to 1999. More recent
laser-altimetry estimates with more realistic considerations of snowfall, dynamic thin-
ning and surface melting in coastal low-elevation regions result in mass-loss rates of
∼ 0.22 ± 0.03 mm/a ESL between 1997 and 2003 (Krabill et al., 2004). InSAR mea-
surements of the ice-surface velocity indicate ice discharge increasing from 0.23 ±
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0.08 mm/a ESL in 1996 to 0.57 ± 0.10 mm/a ESL in 2005 (Rignot & Kanagaratnam,
2006). The year 2005 value, which represents approximately the mid-point of the
GRACE time interval, is in close agreement with the bootstrap estimated mean of
0.51 mm/a (± 6%).

For each release, values vary within <10% of their mean. Most of this variation is
caused by increasing values at later time intervals explained by the acceleration of the
ice sheet’s discharge, mainly south of 66 oN before the year 2000 and up to 70 oN by
the year 2005 (Lemke et al., 2007). For example, CSR RL04 mass-loss rates gradually
increase from 0.51 (T1) to 0.58 mm/a ESL (T6), although previous GRACE estimates
based on shorter time series also suggested a doubling of discharge rates for the years
2004 to 2006 compared to the years 2002 to 2004 (Velicogna & Wahr, 2006).

Previous mass-change estimates from GRACE range between 0.28 ± 0.04 mm/a
ESL (Luthke et al., 2006, years 2003 to 2005, mass concentration approach) to 0.63
± 0.10 mm/a ESL (Velicogna & Wahr, 2006, years 2003 to 2006, CSR RL01, opti-
mized basin analysis), which largely coincides with the range of 0.35 to 0.60 mm/a
ESL obtained from this investigation considering all releases and all time intervals.
Again, variability of the values is mainly caused by systematic biases in the releases
(Figure 6.12); GFZ RL04 and CSR RL04 produce similar results, while CNES RL01
and JPL RL04 give higher and lower estimates, respectively. This behaviour is similar
to the mass-loss rates obtained for West Antarctica (Figure 6.5).

Without removing GIA, mass-loss rates are larger by ∼ 0.08 mm/a ESL owing
to not correcting for the collapse of the viscoelastic forebulge largely encompassing
North America. The uncertainty based on the range of plausible viscosity values
(Figure 6.17) is <0.05 mm/a ESL. This value, based on glacial history NAWI and
the earth model parameters given in Section 6.3.1, is 3 to 4 times larger than the
correction calculated by Velicogna & Wahr (2005) using the glacial histories ICE-
5G (Peltier, 2004) and ICE-3G (Tushingham & Peltier, 1991) outside Greenland,
together with ICE-5G and GREEN1 (Fleming et al., 2004; Fleming & Lambeck, 2004)
for Greenland.

The residual (i.e. V GRACE− V̂ Model) is close to zero over most of the Greenland Ice
Sheet (Figures 6.13 to 6.16). At the most northern part, however, all releases (except
JPL RL04) indicate additional mass loss not adequately represented by the forward
model based on Krabill et al. (2000) (rate of geoid-height change ∼−0.5 mm/a).

Laurentide Ice Sheet and associated GIA

The amount of additional ice in the Northern Hemisphere necessary to produce the
North American GIA signal observed by GRACE lies between 53.2 and 112.5 m ESL
(without JPL RL04 between 104 and 127 m ESL), for load model NAWI and fixed
earth-model parameters (hL =100 km, ηUM = 6.0× 1020 Pa s and ηLM = 2.0× 1022

Pa s). The bootstrap-estimated mean of 101.2 m ESL (±6%) for all releases is in close
agreement with the initial value of 102.2 m supported by the glacial history NAWI. As
for the region of Alaska and Greenland, the variability of the values with respect to
the chosen time interval is small (∼ 3% for GFZ RL04, CNES RL01C and CSR RL04,
∼ 14% for JPL RL04), however, biases between releases are large. CNES RL01C
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(Figure 6.14) and JPL RL04 (Figure 6.15) show two distinct anomalies east and west
of Hudson Bay, presumably caused by GIA. It has been argued that the Laurentide
Ice Sheet consisted at some stage of two distinct ice complexes (Peltier, 2004) and,
recently, Tamisiea et al. (2007) have interpreted the GRACE data in favour of such a
scenario. This two-dome structure is not particularly pronounced in the glacial history
NAWI, but two GIA centers can also be accommodated by forward models with large
upper- and lower-mantle viscosities (Figures B.1 to B.4), if the description of the sea-
level equation allows for migration of coastlines (Hagedoorn, 2005). However, GFZ
RL04 (Figure 6.13) and CSR RL04 (Figure 6.16) do not exhibit this distinct spatial
pattern. The area of the Hudson Bay is a shallow-water region, and models of the
ocean tides underlying GRACE processing have low accuracy under these conditions
and may produce artefacts. Therefore, more investigations are needed to conclude
whether a two-dome ice geometry existed.

Constraint on mantle viscosities

Figure 6.17 shows the sensitivity of the adjustment of load model NAWI with respect
to different viscosity values underlying the GIA prediction. Varying the mantle vis-
cosities results in changes in the predicted GIA signal and, therefore, may change the
misfit between the data and model. The values indicated represent deviations in the
ESL of load model NAWI required to compensate the changes in the predicted GIA
to again minimize the misfit. For load model NAWI, a minimum misfit (required scal-
ing of the load < 2%) is achieved for upper- and lower-mantle viscosities (ηUM; ηLM)
of (4× 1020; 4× 1022) Pa s for GFZ RL04, (6× 1020; 2× 1022) Pa s for CNES RL01C,
and (8× 1020; 1× 1022) Pa s for CSR RL04. For JPL RL04, magnitude of the misfit
comparable to those of the other releases is not achieved within the range of plausible
viscosity values, which is further indication that this release has some bias.

A possibility to improve the uncertainty with respect to the volume involved in the
glacial history is proposed by Paulson et al. (2007b). For a set of viscosity parameters,
a scaling factor for the glacial history is first estimated with respect to minimizing the
misfit between GRACE data and the GIA model. Because unrealistic scaling of the
load can be partially compensated employing unrealistic viscosity values and can still
provide minimal misfit, it is recommended to limit the scaling of NAWI to a plausible
range, which is, however, difficult to quantify. One constraint on NAWI is represented
by indicators of eustatic sea-level change suggesting a total sea-level change between
116 and 121±5 m ESL due to ice-sheet melting. The current version of the model
contains 102.2 m ESL, while the minimum contribution of Antarctica is estimated to
be 9± 3 m ESL (Sasgen et al., 2007b). Therefore, upscaling NAWI by at most 17% is
possible without violating the estimate of 121 ± 5 m ESL. A down-scaling should be
< 17%, because the current sea-level contribution of NAWI and Antarctica results in
a value of 112.2 m ESL, which is already below the geological record of 121±5 m ESL.
After scale adjustment of the load model, the misfit is evaluated according to

χ2 :=
1

ΩSα

∫
ΩSα

[V GRACE(Ω)− V̂ Model(Ω)
δV GRACE(Ω)

]2
dΩ, (6.5)
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where δV GRACE(Ω) is the spatial representation of the GRACE variances (Section A.4).
The misfit is then mainly governed by the regional agreements of the spatial patterns.
Due to the temporal evolution of the load distribution, spatial patterns of the GIA
signal are sensitive to the viscosity distribution. Figure 6.18 shows the misfit of the
GIA model and the GRACE data with respect the viscosity distribution. The best
fitting viscosity distribution under the condition that the scaling of NAWI is < 17%
is summarized in Table 6.1.

Reference Load model Data inverted Viscosity
ηUM (Pa s) ηLM (Pa s)

Wolf et al. (2006) ICE-3G TG, GPS, AG, SLI 3×1020 1.6×1022

Paulson et al. (2007b) ICE-5G CSR RL04, SLI 5.3×1020 2.3×1021

This study NAWI GFZ RL04 4×1020 4×1022

CNES RL01C 6×1020 2×1022

CSR RL04 6×1020 2×1022

Table 6.1: Viscosity values obtained from inversion of the GRACE-observed GIA signal over
North America. The load models are ICE-3G (Tushingham & Peltier, 1991), ICE-5G (Peltier,
2004) and NAWI (Zweck & Huybrechts, 2005). The data are tide gauges (TG), absolute
gravimetry (AG) and indicators of later- or post-glacial relative sea-level change (SLI). The
lithosphere thickness hL is held constant at 100 (Wolf et al., 2006, this study) and 120 km
(Paulson et al., 2007b).



6.3 North America and Greenland ice-mass changes and GIA 115

a)

b)

c)

Figure 6.12: Mass changes in North America and Greenland from four GRACE releases.
Present-day ice-mass changes for a) Alaskan glaciers and b) the Greenland Ice Sheet in
mm/a ESL, and c) mass change of the Northern Hemisphere ice sheets inferred from the
GIA signal over North America in m ESL.
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a) b)

c) d)

e) f)

Figure 6.13: Predicted and observed rate of geoid-height change over North America
and Greenland for a) GFZ RL04 unfiltered and b) with the statistical filter applied, c)
WGHM, d) statistically filtered GFZ RL04 minus WGHM, i.e. b) minus c), e) adjusted
models of present-day ice-mass changes and GIA, and f) residuals, i.e. d) minus e).
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a) b)

c) d)

e) f)

Figure 6.14: The same as Figure 6.13, but for CNES RL01C.
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a) b)

c) d)

e) f)

Figure 6.15: The same as Figure 6.13, but for JPL RL04.
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a) b)

c) d)

e) f)

Figure 6.16: The same as Figure 6.13, but for CSR RL04.
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a) b)

c) d)

Figure 6.17: Sensitivity of the adjustment of the GIA signal over North America to
upper- and lower-mantle viscosities for a) GFZ RL04, b) CNES RL01C, c) JPL RL04
and d) CSR RL04. Values refer to scaling factors determined for load model NAWI in %.
Viscosity values that require adjustment of load model NAWI by < 17% are outlined in
green.
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a) b)

c) d)

Figure 6.18: Misfit between predicted and observed rate of geoid-height change over
North America after scale adjustment of NAWI for a) GFZ RL04, b) CNES RL01C, c)
JPL RL04 and d) CSR RL04. Viscosity values that require adjustment of load model
NAWI by < 17% are outlined in green.
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6.3.5 Concluding remarks

For the Greenland Ice Sheet, accelerating mass loss is observed, which should be
considered, for example, as quadratic term in the temporal model. Also, the forward
model should be refined to describe individual drainage basins, for which mass changes
observed by GRACE can be determined using the constrained inversion presented for
West Antarctica in Section 6.4. Over North America, it is required to assess the quality
of the hydrological signal of WGHM, at least by employing alternative hydrological
models. Glacial histories with a more pronounced two-dome structure (e.g. ICE-5G)
should be tested, as very different results of the inversion for mantle viscosities may be
obtained. Also, individual deglaciation scenarios for the various Northern Hemisphere
ice sheets need to be considered. Linear scaling of the glacial history of the Laurentide
Ice Sheet is not adequate due to non-linear coupling between ice and water loads and
the Earth’s deformation. In contrast to Antarctica, additional constraints on the GIA
signal exist (e.g. GPS, tide-gauge, SLI and terrestrial gravimetric data) and should
be considered in a joint inversion.
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6.4 Combined InSAR and GRACE estimate of West Antarc-

tic glacial changes (in prep.)

Abstract†

We estimate ice-mass loss in seven drainage basins in West Antarc-
tica from the Gravity Recovery and Climate Experiment (GRACE)
data (GFZ RL04, GSM Level 2) using an inverse gravimetric ap-
proach. The inversion is constrained by InSAR data to minimize
the ambiguity of the resulting mass estimates. We use InSAR obser-
vations of the ice-surface velocity as an indication of mass change,
assuming that large mass loss occurs in areas of fast glacier flow.
From these mass distribution functions we construct forward mod-
els of the geoid-height change and their spatial correlations for each
drainage basin. Then, the difference between the GRACE data and
the forward model is minimized by adjusting the total amount of
mass change within each drainage basin. To overcome the ambi-
guity inherent in this inverse problem, we constrain its solution by
including a priori InSAR estimates of drainage basins’ mass change
using the minimization criterion. The amount of constraining (sta-
bilization) is dependent on the uncertainties of the forward model
as well as of the GRACE data, for which three error scenarios are
investigated. This approach allows the determination of the spatial
resolution of GRACE over West Antarctica. We find that uncon-
strained (GRACE only) mass change estimates are possible to carry
out for three to four combined drainage basins. The unconstrained
GRACE estimate (−85.8 Gt/a, for the years 2002 to 2007) is lower
than the InSAR mass-change rate (−94.3 Gt/a, for the years 1996
and 2000), however, the results from both data sets are in general
agreement.

†Sasgen, I., Martinec, Z. & Bamber, J., 2008. Combined InSAR and GRACE estimate

of West Antarctic glacial changes. in prep.

6.4.1 Introduction

The West Antarctic Ice Sheet mostly rests on bedrock below present-day sea level and
is therefore considered to be rather unstable and sensitive to global climate changes
(e.g. Lemke et al., 2007). Based on data for the last decade, the associated contribution
to sea-level change from the West Antarctic Ice Sheet is estimated to be ∼ 0.13 to 0.38
mm/a (Shepherd & Wingham, 2007). Its potential contribution to global sea-level
change is ∼ 5 m (Lythe et al., 2001).

At present, most prominent changes, such as rapid thinning, fast glacier flow and
large mass loss, are observed mainly for glaciers and ice streams discharging into
Amundsen Sea Embayment and, to a lesser extent, for glaciers further west along the
coast towards the Wrigley Gulf. Repeated laser and radar altimetry show decreasing
ice-surface elevations (e.g. Davis et al., 2005) and Interferometric Synthetic Aperture
Radar (InSAR) records exceptionally high (up to ∼ 3 km/a) and in some parts in-
creasing ice-surface velocities (e.g. Thomas et al., 2004). Mass-balance estimates from
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these measurements indicate that the West Antarctic Ice Sheet loses mass between
∼ 0.13 ± 0.01 (Zwally et al., 2005, for 1992 to 2002) and 0.31 ± 0.15 mm/a (Rignot
et al., 2008, for 2006) of equivalent sea-level change.

Recently, data from the Gravity Recovery and Climate Experiment (GRACE) mis-
sion (e.g. Tapley et al., 2004a; Tapley et al., 2004; Tapley & Reigber, 2001) have
successfully been analyzed to determine the ice sheet’s mass balance (Shepherd &
Wingham, 2007). The GRACE consists of two satellites lying in near-polar orbits
at an altitude of ∼ 450 km. The GRACE satellites are separated by ∼ 200 km and
continuously measure their separation by a microwave link with an accuracy at the
µm level. This measurement, together with on-board accelerometer measurements of
non-gravitational force, star cameras and GPS data of the satellites’ orientation and
position, respectively, allows the determination of the Earth’s gravitational potential
with unprecedented accuracy at monthly time intervals (Schmidt et al., 2008). The
temporal variations of the gravity field can be inverted for mass changes in the Earth’s
interior (e.g. Tamisiea et al., 2007; Sasgen et al., 2007b; Paulson et al., 2007b) and on
its surface and provide a new method for monitoring the mass balance of the Antarctic
Ice Sheet (e.g. Ramillien et al., 2006; Velicogna & Wahr, 2006).

The principal problem of the gravity field inversion for mass changes is that the
signals observed are the sum of various sources of mass change. With increasing spa-
tial resolution, lateral overlapping can be reduced, but for the GRACE data, better
resolution also implies greater noise (e.g. Jekeli, 1981; Swenson & Wahr, 2002). The
globally optimized trade-off between resolution and noise results in a spatial resolu-
tion of ∼ 500 km (e.g. Sasgen et al., 2006; Schrama & Visser, 2007), which is largely
governed by the altitude of satellites’ measurements of the gravitational potential. Ad-
ditionally, signals arising from on the surface of the Earth (e.g. glacier melting) may
overlap with signals arising from within the Earth (e.g. glacial-isostatic adjustment,
GIA), and numerical models with additional constraints are required to separate the
individual contributions.

In this paper, we determine mass balances of seven West Antarctic drainage basins
by the inversion of GRACE gravity fields. We minimize the ambiguity of the resulting
mass-change estimates by constraining the inversion with forward models based on
InSAR data. We determine the number of drainage basins resolvable by GRACE and
provide the associated mass-change estimates. Additionally, combined GRACE and
InSAR estimates are given. Throughout this paper, values with the units mm/a refer
to the rate of geoid-height change, whereas values with units Gt/a refer to surface-mass
changes.

6.4.2 Observations

GRACE data

We use 55 unconstrained GRACE monthly solutions of the Earth’s gravity field pro-
vided by the German Research Centre For Geosciences (Flechtner, 2005, GFZ RL04,
GSM Level 2 data, [online]). The time series of Stokes gravitational potential coeffi-
cients are complete to degree and order 120 and cover ∼ 5 years from August 2002 to

http://isdc.gfz-potsdam.de/
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August 2007. Missing months within this interval are June 2003 (problems with ac-
celerometer data) as well as September 2002, December 2002, January 2003, January
2004 and May 2007 (in preparation at the time of writing). Each Stokes coefficients’
time series is decomposed into an annual and semiannual oscillating component, a
linear trend and an offset by the method of least squares. After removal of these
temporal components, we find that the residual retains quasi-periodic variations with
a period of ∼ 2.3 a. We attribute these mass changes to inter-annual variations mainly
in snow accumulation (a detailed analysis is currently being prepared) and repeat the
temporal decomposition by additionally including this term, which reduces the resid-
ual’s RMS by ∼ 14%. During decomposition and throughout this paper, three models
of GRACE variances are used: formal (Flechtner, 2005), calibrated (Schmidt et al.,
2008) and one based on the residual after removing deterministic signal components
(residual). No additional filtering or smoothing is applied. Instead, we repeat our cal-
culations for increasing spherical-harmonic cut-off degrees, such that increasing noise
in the GRACE coefficients propagates to the resulting mass-change estimate. Un-
certainties at high latitudes are significantly below the global average (e.g. Schmidt
et al., 2008) and show less striping, particularly for the temporal trend (Sasgen et al.,
2007b; Davis et al., 2008) due to denser track coverage. Therefore, we do not to apply
a priori smoothing or decorrelation filtering (Swenson & Wahr, 2006), but consider
the regional noise characteristics during the inversion.

InSAR data

We use ice-surface velocities from InSAR (Figure 6.19) as an indication of the spatial
distribution of mass changes in the Amundsen Sea Sector (Rignot et al., 2008). The
InSAR data covers nearly all of the drainage basins in the Amundsen Sea Sector,
i.e. Pine Island Glacier (PIG), Thwaites (THW), Haynes/Smith/Kohler (HSK), Getz
(GET) and DeVicq (DVQ). For Hull (HUL) and Land (LAN), which are not com-
pletely covered by this InSAR data set, modelled balance velocities are used (Rignot
& Thomas, 2002). In addition, mass-budget estimates of the drainage basins’ mass
balance derived from this data set are used (Rignot et al., 2008) (Table 6.2 and Ta-
ble 6.2). The values represent the difference between average accumulation (input)
for the years 1980 to 2004 obtained from regional atmospheric climate modelling for
Antarctica (RACMO2/ANT, van den Broeke et al., 2006a; van de Berg et al., 2006;
van den Broeke et al., 2006b), whereas outflow is calculated from InSAR measured
ice-flow velocity over the grounding line for the years 1996 (GET, DVQ, HUL and
LAN) and 2000 (PIG, THW and HSK). The thickness of the ice along the grounding
line and its position are determined from digital elevation models and InSAR, respec-
tively. Flow velocity is assumed to be constant for the ice column above the grounding
line. The main uncertainty arising from the mass-budget method is associated with
the input (accumulation) estimate and amounts to ∼ 10% for dry, large basins and
to ∼ 30% for wet, small basins in the vicinity of the coast; outflow uncertainties lie
between 2 to 15% (Rignot et al., 2008).
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Figure 6.19: Ice-surface velocity in the Amundsen Sea Sector from InSAR (Rignot et al.,
2008). The drainage basins (green outlined) are Pine Island Glacier (PIG), Thwaites
(THW), Haynes/Smith/Kohler (HSK), Getz (GET), DeVicq (DVQ), Hull (HUL) and
Land (LAN).

6.4.3 GIA correction

We subtract the trend in the gravity field caused by GIA in Antarctica, yGIA, from the
GRACE observation, yGRACE (Figure 6.20). GIA is modelled using the viscoelastic
earth model of Martinec (2000) consisting of an elastic lithosphere of thickness hL =
100 km, an upper mantle of viscosity ηUM =5.2× 1020 Pa s, a lower mantle of viscosity
ηLM =5.9× 1021 Pa s and a fluid core. The earth model is subjected to the glacial
history of the Antarctic Ice Sheet for the last 120 ka based on the thermomechanical
ice-sheet model of Huybrechts (2002) (HUY). Following Sasgen et al. (2007b), HUY
was scaled to an Antarctic contribution to sea-level change since the Last-Glacial
Maximum (LGM) of 9 m, such that the predicted GIA amplitude over the Ronne Ice
Shelf (ca. 1.5 mm/a, full spectral range) agrees with the GRACE observations for
the viscosity structure specified above. Over the Amundsen Sea Sector, GIA due to
HUY is less important (ca. <1 mm/a, full spectral range). Similar amplitudes are
also obtained using the geomorphologic reconstruction of Lambeck & Chappell (2001)
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(ANU). Regional details of Paleocene and Holocene ice retreat in the Amundsen Sea
Sector that may have induced a local GIA signal are not sufficiently well known to
be included in this modelling. Instead, differences between the deglaciation scenarios
HUY and ANU are investigated. For comparison, we also calculate mass-change
estimates without GIA corrections, as well as a minimum and maximum estimates.
In the following, the GIA corrected trend in the GRACE gravity fields (Figure 6.20)
is denoted as

y(Ω) = yGRACE(Ω)− yGIA(Ω), (6.6)

where Ω := (ϑ, ϕ) are the spherical colatitude ϑ and longitude ϕ.

6.4.4 Forward modelling of gravity-field changes

We model the trend in the gravity field arising from mass changes in k = 1, 2, ..., 7
drainage basins in the Amundsen Sea Sector (PIG, THW, HSK, GET, DVQ, HUL
and LAN, Figure 6.19) by allocating their total mass change, m = {mk}k=1,2,...,7,
according to the spatial mass-distribution function w(Ω). Inside each basin, wk(Ω)
is linearly proportional to the ice-surface velocity from InSAR (Figure 6.19), outside
the basin wk(Ω) = 0. The underlying assumption is that mass loss in the Amundsen
Sea Sector predominantly occurs in areas of fast glacier flow, which is supported by
empirical and theoretical evidence (Rignot et al., 2008).

We normalize the spatial mass distribution function according to
∫
Ω0

wk(Ω)dΩ = 1
for all k and expand it to the fully normalized spherical harmonics of degree j and
order m, Yjm(Ω), where w(Ω) = wjmYjm(Ω). Then, for each drainage basin, the
normalized geoid-height change x(Ω) = {xk(Ω)}k=1,2,...,7 is calculated by

xk(Ω) =
R2

g0

jmax∑
jmin

qj
4π

2j + 1

∑
m

wk
jmYjm(Ω), (6.7)

where R is the radius of the Earth, g0 the gravity at the Earth’s surface, and qj are
the elastic-compressible surface-load Love numbers (e.g. Farrell, 1972). Multiplication
of each drainage basin’s normalized geoid-height change signal xk(Ω) with its total
mass change mk and subsequent superposition of signals results in the forward gravity
model for the entire Amundsen Sea Sector (Figure 6.20),

yP(Ω) =
∑

k

xk(Ω)mk. (6.8)

Table 6.2 lists the InSAR-based mass-change estimates, m, along with their uncer-
tainties σ = {σk}k=1,2,...,7. As a consequence, the forward model’s uncertainties are
described by the a priori covariance matrix, CM = γklσkσl, where γkl is the spatial
correlation (e.g. Gubbins, 2004) between the drainage basins’ signals of geoid-height
change, γkl := corr(xk(Ω), xl(Ω)).

Figure 6.21 shows the correlations of the forward models γkl of the seven drainage
basins for upper spherical-harmonic cut-off degrees jmax = 30, 55 and 80, which are
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ordered according to their geographical proximity. As expected, increasing the cut-
off degree reduces correlations between signals. At cut-off degree 30, the correlation
matrix shows ∼ two distinct blocks (green outline in Figure 6.21), consisting of the
drainage basins PIG, THW, HSK and the drainage basins GET, DVQ, HUL and LAN,
respectively. This suggests that mass changes derived from the gravity field can be
retrieved for these regions independently. At cut-off degree 55, combined signals from
∼ four regions are resolvable. However, even at cut-off degree 80, significant overlaps
between the seven drainage basins’ signals exist, which may lead to ambiguous and
unrealistic results of the gravity-field inversion.

6.4.5 Inversion of the gravity-field changes

We aim at finding the mass-change distribution in the Amundsen Sea Sector that
produces the gravity-field change y(Ω) observed by GRACE ((6.6)), such that ‖y(Ω)−
yP(Ω)‖ is minimized, where yP(Ω) is the forward gravity model in (6.8). We formulate
this inverse problem in terms of the design matrix F, which consists of the normalized
geoid-height change arising from the k-th drainage basin at the i-th spatial grid point,
Ωi, i = 1, 2, ..., N (here, a 0.25o×0.25o grid), F = {xk(Ωi)}k=1,2,...,7

i=1,2,...,N . Then, the
spatially gridded forward model is expressed by yP = {yP(Ωi)}i=1,2,...,N = Fm and
the L2-norm minimization criterion takes the form

(y − yP)2 != min
m
. (6.9)

The inversion of GRACE data for mass changes is non-unique and unstable due
to the limited resolution of the GRACE data and the smoothing (integral) property
of the measured gravitational potential, which is visible from (6.7). The system of
equations resulting from (6.9) is possibly underdetermined and it may be necessary
to stabilize its solution by including a priori constraints on the parameterized total
mass change m and their uncertainties σ. This constrained solution is given by (e.g.
Gubbins, 2004; Tarantola, 2005)

m̃c = m + (FTC∗−1
D F + C−1

M )−1FTC∗
D(y − Fm), (6.10)

where C∗
D = CGRACE + CGIA is the covariance matrix of the data, which consists

of GRACE uncertainties as well as of the GIA uncertainties discussed later, and T

denotes matrix transposition.
The amount of a priori information included in the inversion is governed by the bal-

ance between data and model variances. It can be quantified by the resolution matrix,
R = I − C̃MCM

−1, where C̃M represents the a posteriori parameter covariances of
the GRACE+InSAR model given by C̃M = (FTC∗−1

D F+C−1
M )−1 (e.g. Gubbins, 2004;

Tarantola, 2005). The trace of the resolution matrix, trR, is commonly interpreted
as the number of parameters resolved by the data (here, the GRACE data),

trR = trI− tr(C̃MCM
−1), (6.11)

whereas trI and tr(C̃MCM
−1) are the total number of parameters (here, seven drainage

basins) and the number of parameters constituted by a priori information (here, the
InSAR model), respectively.
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The spatial representation of the GRACE variances, CGRACE, is calculated from the
uncertainties of the Stokes potential coefficients according to e2i =

∑
jm σ2

jmY
2
jm(Ωi).

Covariances are not considered, such that CGRACE = eIeT, where I is the identity
matrix and e = {e(Ωi)}i=1,2,...,N . As mentioned above, we use estimates of σ2

jm based
on formal, calibrated and residual GRACE errors.

The uncertainty of the GIA correction, CGIA, is assumed to be proportional to its
magnitude, ei = βyGIA

i , where constraints on Antarctic GIA from various GRACE
data sets indicate β ≈ 0.2 (Sasgen et al., 2007b). Also, covariances in CGIA are
assumed to be zero, such that CGIA = eIeT.
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a) b)

c) d)

Figure 6.20: Predicted and observed rate of geoid-height change over West Antarctica for
(a) GFZ RL04 (without GIA correction), (b) GFZ RL04 with GIA correction, (c) GFZ
RL04 minus GIA correction, and (d) optimal forward model based on combined InSAR
and GRACE data. The cut-off degrees are jmin = 7 and jmax = 55. The yellow circles
indicate the area used for the adjustment of the forward model.
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a) b) c)

Figure 6.21: Correlation of model parameters for cut-off degrees jmin = 7 and (a) jmax =
30, (b) jmax = 55 and (c) jmax = 80.
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6.4.6 Results

Influence of cut-off degree and GIA correction
Figure 6.22 shows the total mass change for all Amundsen Sea Sector drainage basins,∑7

k=1mk, for the unconstrained (dashed, GRACE) and constrained (solid, GRACE-
+InSAR) inversion. With GIA correction (green for HUY and blue for ANU), resulting
mass changes are largely constant for cut-off degrees between 30 and 60, lying within
∼ 3% of their mean. Above degree 60, the mass-loss signal is increasingly degraded
by noise in the GRACE data.

The insensitivity of the results with respect to the chosen cut-off degree indicates
that the forward model and GRACE data have similar spectral characteristics. This
suggests that GIA (which is not part of the forward model) has been successfully
removed from the GRACE data. It also verifies that mass biases are not introduced
by limiting our analysis to a given spectral range. For comparison, without GIA
correction in (6.6), unconstrained estimates (dashed red line) show significant biases,
particularly for the lower degrees, for which the GIA signal has the largest amplitude.

For cut-off degrees 40 to 60, unconstrained mass-change rates range between −78
and −86 Gt/a, or ∼ 5% around their mean, when correcting with the minimum and
maximum GIA prediction for HUY (grey shaded area). This GIA uncertainty esti-
mate is conservative and encompasses values obtained when using the ANU model,
as well as when varying the upper- and lower-mantle viscosities between 4× 1020 and
8× 1020 Pa s, and 5× 1021 and 4× 1022 Pa s, respectively, for the HUY model. Con-
straining the inversion with InSAR mass-budget estimates according to (6.10) leads
to stronger negative mass loss rates between ∼−83 and −88 Gt/a, which are closer
estimates based on InSAR data only of ∼−94.3± 18.5 Gt/a.

Resolvability of individual drainage basins
Figure 6.23 shows the number of parameterized drainage basins resolved by the GRACE
data for cut-off degrees between 30 and 80, which is calculated according to (6.11).
For calibrated GRACE uncertainties (green), the number of drainage basins resolved
increases from ∼ two at cut-off degree 30 to a maximum of ∼ four at cut-off degree
50 and remains constant until degree 80. At cut-off degree ∼ 42, GRACE and In-
SAR constitute ∼ three and a half drainage basins each, meaning that both data
sets are combined in the inversion with approximately equal weights. With the more
pessimistic model of GRACE uncertainties based on the residual (blue), not more
than ∼ three drainage basins can be resolved. For formal GRACE uncertainties (red),
which are currently too optimistic but represent the announced mission accuracy, at
most five drainage basins can be resolved. We conclude that GRACE data alone does
not allow the determination of individual mass change estimates for all seven drainage
basins in the Amundsen Sea Sector.

Mass change for four combined drainage basins
With regard to the GRACE resolution for calibrated uncertainties (Figure 6.23),
we combine the seven drainage basins to four. This is done by merging drainage
basins with high signal correlations γkl in the forward model (Figure 6.21), i.e. PIG,
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Figure 6.22: Mass change in the Amundsen Sea Sector obtained by constrained (solid)
and unconstrained (dashed) inversion of GRACE gravity fields without GIA correction
(red) as well as with GIA corrections based on HUY (green), minimum|maximum HUY
(grey-shaded area, unconstrained solution) and ANU (blue) for cut-off degrees jmax = 30
to 80.

THW|HSK, GET and HUL|DVQ|LAN. The GRACE spatial resolution for the inde-
pendent retrieval of the mass signal for these four drainage basins is equivalent to
∼ 200 km. For the reduced number of parameters (i.e. k . trR), the unconstrained
solution of the inverse problem is about equal to the constrained solution and given
by m̃u = (FTC∗−1

D F)−1FTC∗
Dy.

Table 6.2 lists mass changes for the four merged drainage basins obtained from
InSAR (Rignot et al., 2008), GRACE and combined GRACE+InSAR data for cut-off

degree 55. Uncertainties are calculated according to σ̃c|u =
√

diag(C̃M). We find
that independent estimates of InSAR and GRACE data compare well, particularly
for HUL|DVQ|LAN, and lie within ∼ 4 Gt/a around their combined estimates. An
exception is GET, for which InSAR indicates a mass loss of −11.1 Gt/a, however,
with an uncertainty of 18.3 Gt/a, whereas GRACE suggests values close to 0 (−0.5±
0.9 Gt/a). For GET, the combined GRACE+InSAR estimate of −1.2 ± 0.9 Gt/a is
closer to the GRACE estimate due to a weak constraint by a large uncertainty of the
InSAR data.

Mass change for seven drainage basins

The mass changes for all seven seven drainage basins based on InSAR and GRACE+InSAR
data for cut-off degree 55 are shown in Table 6.3. For this number of drainage basins,
the inversion of GRACE data is unstable (values of neighboring drainage basins os-
cillate between ∼±40 Gt/a); results are therefore not shown. Stabilization overcomes
these ambiguities and leads to similar values for InSAR and GRACE+InSAR esti-
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Figure 6.23: Number of parameters resolved by GRACE for cut-off degrees jmax = 30 to
80 and formal, calibrated and residual GRACE uncertainties.

mates, with differences below ∼ 4 Gt/a. As for the four previous drainage basins, an
exception is GET, for which the combined estimate of −3 ± 0.8 Gt/a lies ∼ 8 Gt/a
below the InSAR value.

6.4.7 Discussion

Total mass change in the Amundsen Sea Sector estimated from GRACE is −85.8 ±
1.5 Gt/a (Table 6.2), which is somewhat lower than the value of −94.3±18.5 Gt/a from
InSAR, yet within its uncertainty. For the constrained inversion (GRACE+InSAR,
Table 6.3), mass loss is −87.0± 1.2 Gt/a and lies within the range of the independent
InSAR and GRACE values. The largest uncertainty in the InSAR mass budget re-
lates to GET, for which errors in accumulation and outflow are exceptionally large.
Neglecting this drainage basin, reconciles InSAR (−86.6 ± 2.7 Gt/a) and GRACE
(−85.8± 1.5 Gt/a) estimates within their respective uncertainties.

An overestimation of mass loss by InSAR for GET may be a consequence of larger
accumulation within the GRACE time interval (years 2002 to 2007) compared to the
mean for the years 1980 to 2004. Interannual variations in accumulation rate with
respect to the mean are estimated to ∼ 15% (Shepherd & Wingham, 2007) and may
therefore compensate the drainage basins’ imbalances by increased outflow (∼ 10 to
50%). On the other hand, GRACE may underestimate mass loss if the GIA signal
subtracted is too low in amplitude, although corrections in excess of an additional −5
Gt/a are not supported by our GIA models (Figure 6.22). Also, there is evidence of
accelerating outflow of PIG, THW, and HSK for the years 1974 to 2007 from InSAR,
which should in future be considered as, for example, a quadratic term in the temporal
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decomposition of the GRACE time series.

6.4.8 Conclusion

We used forward models based on InSAR data to constrain the inversion of GRACE
gravity fields for mass changes of seven West Antarctic drainage basins. We analysed
the GRACE resolution over the Amundsen Sea Sector and found that unconstrained
(GRACE only) mass balance estimates are possible for three to four combined drainage
basins. For these basins, results lie within ∼±4 Gt/a of the InSAR estimates. An
exception is GET, for which GRACE indicates no significant imbalance as opposed to
large values inferred from InSAR. This deviation introduces somewhat lower mass-loss
rates for the entire Amundsen Sea Sector of −85.5± 1.5Gt/a (for the years from 2002
to 2007) based on GRACE compared to −94.3 ± 1.5 Gt/a based on InSAR (outflow
measurements for the years 1996 and 2000). The difference may arise from the un-
derestimation of accumulation in the InSAR data and/or a too small GIA correction
applied to GRACE. Finally, we combined InSAR and GRACE data for the seven
drainage basins with about equal weights, resulting in a mass loss of −87.0± 1.2 Gt/a
for the entire Amundsen Sea Sector.

Drainage basin InSAR GRACE GRACE + InSAR

Area Year m σ m̃u σ̃u m̃c σ̃c

(103km2) (Gt/a) (Gt/a) (Gt/a) (Gt/a) (Gt/a) (Gt/a)

PIG 164.0 2000 -23.7 1.5 -19.8 0.7 -21.5 0.7

THW|HSK 218.4 2000 -38.0 3.8 -43.3 0.7 -42.2 0.7

GET 92.1 1996 -11.1 18.3 -0.5 0.9 1.2 0.9

DVQ|HUL|LAN 43.0 1996 -21.6 3.5 -22.1 0.7 -21.7 0.7

Total 517.5 -94.3 19.1 -85.8 1.5 -86.7 1.5

Table 6.2: Ice-mass change for four combined drainage basins in the Amundsen Sea Sector.
For InSAR data, the year of the outflow measurement is indicated. The mid-point of the time
interval for the GRACE data is 2004/2005. Calibrated GRACE errors and cut-off degrees
jmin = 7 and jmax = 55 are used.

Drainage basin InSAR GRACE + InSAR

Area Year m σ m̃c σ̃c

(103km2) (Gt/a) (Gt/a) (Gt/a) (Gt/a)

PIG 164.0 2000 -23.7 1.5 -21.9 0.4

THW 181.9 2000 -22.1 1.9 -22.5 0.3

HSK 36.5 2000 -15.9 3.3 -19.0 0.4

GET 92.1 1996 -11.2 18.3 -3.0 0.8

DVQ 16.0 1996 -14.0 2.8 -11.7 0.5

HUL 14.2 1996 -3.7 1.5 -3.9 0.1

LAN 12.8 1996 -3.9 1.5 -5.1 0.3

Total 517.5 -94.3 19.0 -87.0 1.2

Table 6.3: Ice-mass change for 7 drainage basins in the Amundsen Sea Sector. For InSAR
data, the year of the outflow measurement is indicated. The mid-point of the time interval for
the GRACE data is 2004/2005. Calibrated GRACE errors and cut-off degrees jmin = 7 and
jmax = 55 are used.
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7

Summary

In this study, the GRACE time series of potential coefficients was used to quantify
present-day ice-mass changes and their associated sea-level change, as well as GIA in
the polar regions.

The work included the development of the Wiener optimal filter for GRACE data.
The filter is isotropic, and its filter function resembles a Gaussian function in the
spatial domain. Its width, however, is adaptive to signal-to-noise ratio of the GRACE
potential coefficients and, therefore, allows the determination of an optimal spatial
half-width for individual monthly solutions as well as for the temporal components
extracted from the time series of GRACE solutions. For monthly solutions of standard
quality (e.g. April 2004), the Wiener optimal filter function is largely equivalent to a
4o-Gaussian filter function; for months with poor quality (e.g. September 2004), it is
∼ 6o. Correlations between the GRACE coefficients’ errors were not considered, and
a future generalization of the theory for anisotropic filter functions may enhance the
filter’s performance. Another improvement can be made by the regionalization of the
filter using local base functions instead of spherical harmonics.

Another possibility for geophysical-signal extraction was presented with the statis-
tical filtering, which tests, for each coefficient’s time series, the significance of deter-
ministic temporal components. It was been shown that this allows the identification
of coefficients with low signal-to-noise ratios that degrade the GRACE solutions. Al-
though the basic assumption of this approach is the independence of each coefficient,
also with respect to time, the statistical filter partially reduces also the coefficients’
correlated errors. The spatial response function of the statistical filter is anisotropic at
the equator, but towards the pole anisotropy decreases. For Antarctica, a significant
noise reduction is achieved without distortion of modelled signals. However, mass
change signals remain in the desert areas of central Antarctica. This suggests that
GRACE errors are, to some extent, also correlated with respect to time. This problem
needs to be further addressed.

The inversion of potential disturbances for their sources of mass change was carried
out using the forward modelling approach. The principle idea is to find a linear combi-
nation of modelled signals that optimally adjust the observed potential disturbances.
In this work, minimization is done with respect to scaling factors of the forward mod-
els that describe potential disturbances due to present-day ice-mass changes and GIA.
For GIA, linear scaling of the forward model is justified by the linear dependence of
the GIA signal on the amplitude of the forcing load model for fixed glacial history and
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fixed earth-model parameters. This approximation neglects non-linear coupling in the
earth|ice|ocean system, but avoids elaborate computations, such as Monte Carlo simu-
lations for finding optimal model parameters. In the future, the GIA modelling will be
refined by quantifying parameter sensitivities with respect to GRACE data and other
observations. For Antarctica, mass changes of individual drainage basins were been
modelled. The potential disturbances produced are similar to those of point masses,
and the model adjustment is similar to the determination of mass concentrations (e.g.
Rowlands et al., 2005), although this approach is usually applied to GRACE Level 1B
data to increase spatial resolution that is otherwise lost for GRACE solutions of the
Stokes potential coefficients.

Table 7.1 summarizes the results of the GRACE potential-field inversion. Present-
day ice-mass changes are observed to lie between 0.17 and 0.29 mm/a ESL (±5%)
for Alaska, 0.35 and 0.60 mm/a ESL (±3%) for Greenland, 0.06 and 0.11 mm/a ESL
(±14%) for the Antarctic Peninsula, and 0.16 and 0.23 mm/a ESL (±2%) for the
Amundsen Sea Sector in West Antarctica (Pine Island, Thwaites, Smith and Kohler
glaciers). The errors in brackets refer to propagated GRACE errors calculated ac-
cording to (6.3) and (6.4). The range of the values is mainly due to differences in the
results from different releases, which remains one of the principle problems of GRACE
data that needs further investigation. The influence of GIA on the results is small
(< 6 % for the given range of plausible viscosity profiles), also for West Antarctica,
owing to simultaneously including (instead of a priori subtracting) GIA in the adjust-
ment of forward models of present-day ice-mass changes. The adjusted GIA models,
in addition, indicate mass changes since the LGM between 55 to 127m ESL (±6%) for
the Laurentide Ice Sheet and between 6.1 and 10.4 m ESL (±4%) for the Antarctic Ice
Sheet assuming standard viscosity values. Without JPL RL04, which appears to be
significantly biased, the range of values for the Lauerentide Ice Sheet reduces to 104 to
127 m ESL. Changes of the viscosities within plausible bounds can compensate scaling
for the ice sheets within the range of −28 to 50% for the Laurentide Ice Sheet and be-
tween −4 to 30% for the Antarctic Ice Sheet, which demonstrates the ambiguity in the
GIA inversion and the necessity for further constraints. Ambiguities of the inversion
of GRACE data for mass changes of individual drainage basins in West Antarctica can
be reduced, for example, by InSAR estimates, although for ∼ four combined drainage
basin separated by ∼ 250 km meaningful estimates are possible only using GRACE
data.
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Region GFZ RL04 CNES RL01C JPL RL04 CSR RL04 GIA

Present-day ice-mass change (mm/a ESL) uncert.

Alaska 0.17(±7) 0.17(±4) 0.25(±3) 0.22(±5) (±6)

Greenland 0.48(±4) 0.58(±2) 0.38(±3) 0.52(±3) (±5)

Antarctic Peninsula 0.08(±10) 0.08(±5) 0.07(±10) 0.07(±7) (±3)

Amundsen Sea Sector 0.21(±2) 0.24(±1) 0.17(±2) 0.20(±1) (±5)

Past ice-mass change (m ESL)

Northern Hemisphere ice sheets 108.4(±7) 100.2(±1) 57.2(±6) 116.5(±5) (−28 to 50)

Antarctic Ice Sheet 6.5(±4) 10.3(±2) 8.2(±4) 4.4(±3) (−4 to 30)

Table 7.1: Present-day and past ice-mass changes in the polar regions from GRACE. Uncer-
tainties (%) associated with the GRACE releases refer to propagated residual GRACE errors.
The GIA uncertainty represents the variation (%) of the mass-change estimates with respect
to changing the viscosity distributions within plausible bounds.
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A

Mathematical supplements

A.1 Surface spherical harmonics

A scalar field described by a square-integrable function f(ϑ, ϕ) defined on the unit
sphere Ω0 := [0, π] × [−π, π] can be expanded into a series of surface spherical har-
monics in the form

f(ϑ, ϕ) =
∞∑

j=0

j∑
m=−j

fjmYjm(ϑ, ϕ), (A.1)

where fjm are the complex, fully normalized spherical-harmonic coefficients of degree
j and order m, ϑ and ϕ are co-latitude and longitude, respectively, and Yjm(ϑ, ϕ) are
the surface spherical-harmonic functions given by

Yjm(ϑ, ϕ) = Pjm(cosϑ)eimϕ, (A.2)

with Pjm(cosϑ) the fully normalized associated Legendre functions of degree j and
order m. The summation

∑∞
j=0

∑j
m=−j is henceforth denoted by

∑
jm. The surface

spherical harmonics Yjm(ϑ, ϕ) are symmetric,

Yj,−m(ϑ, ϕ) = (−1)mY ∗
jm(ϑ, ϕ),

Yj,−m(π − ϑ, ϕ) = (−1)j+mYjm(ϑ, ϕ),
(A.3)

complete,∑
jm

Yjm(ϑ, ϕ)Yjm(ϑ′, ϕ′) = δ(cosϑ− cosϑ′)δ(ϕ− ϕ′), (A.4)

and orthonormal,∫
Ω0

Yj1m1(ϑ, ϕ)Y ∗
j2m2

(ϑ, ϕ) sin dϑdϕ = δj1,j2δm1,m2 , (A.5)

where the asterisk denotes complex conjugation.
This allows the coefficients fjm to be expressed as

fjm =
∫ π

−π

∫ π

0
f(ϑ, ϕ)Y ∗

jm(ϑ, ϕ) sinϑdϑdϕ, (A.6)
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where, in particular,

f00 =
1√
4π

∫ π

−π

∫ π

0
f(ϑ, ϕ) sinϑdϑdϕ (A.7)

represents the integral of f(ϑ, ϕ) over the unit sphere. In addition, if f(ϑ, ϕ) is a real
function,

fj,−m = (−1)mf∗jm (A.8)

holds, and fj0 are the real zonal coefficients. Functions depending on colatitude only,
f = f(ϑ), can be expanded into a series of Legendre polynomials, Pj(ϑ), with the
expansion coefficients

fj =
∫ π

0
f(ϑ)Pj(ϑ) sinϑdϑ. (A.9)

In geodesy, the spherical-harmonic expansion is particularly relevant for the de-
scription of the Earth’s gravitational potential. However, it is common to adopt the
geodetic norm (e.g. Heiskanen & Moritz, 1967) rather than the quantum-mechanics
norm (e.g. Varshalovich et al., 1989) employed in this study and express functions in
terms of the fully normalized Stokes coefficients, C̄jm and S̄jm, which are related to
the coefficients in the quantum-mechanics norm by

fj0 =
√

4πC̄j0, m = 0,

Re fjm = (−1)m
√

2πC̄jm, m 6= 0,

Im fjm = (−1)m+1
√

2πS̄jm, m 6= 0.

. (A.10)

A.2 Spatial convolution

For linear convolution filtering the output signal y(Ω) is given by the spatial convolu-
tion of the filter response function h(Ω) with the input signal x(Ω),

y(Ω) =
∫

Ω′0

h(Ω′)x(Ω− Ω′)dΩ′, (A.11)

where Ω represents for the spherical co-latitude ϑ and longitude ϕ. Hence Ω := (ϑ, ϕ),
Ω0 is the full solid angle and dΩ its infinitesimal element.

The signals x(Ω) and y(Ω) are assumed to be square-integrable functions over the
unit sphere and, thus, can be represented as series of scalar spherical harmonics Yjm(Ω)
of degree j and order m (Section A.1),[

x(Ω)
y(Ω)

]
=

∞∑
j=0

j∑
m=−j

[
xjm

yjm

]
Yjm(Ω), (A.12)
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with xjm and yjm being the associated spherical-harmonic expansion coefficients of
x(Ω) and y(Ω), respectively. In the case of isotropic filtering, h = h(ϑ), the filtering
function can be represented as a series of Legendre polynomials Pj(cosϑ),

h(ϑ) =
∑

j

hj0

√
2j + 1

4π
Pj(cosϑ), (A.13)

where, using the addition theorem for spherical-harmonic functions (e.g Varshalovich
et al., 1989, Sect. 5.17.2.),

Pj(cosψ) =
4π

2j + 1

∑
m

Yjm(Ω)Y ∗
jm(Ω′). (A.14)

Considering the expansions (A.12) and (A.13), y(Ω) takes the form

y(Ω) =
∫
Ω′

∑
j

hj0

√
4π

2j + 1

∑
m

Yjm(Ω)Y ∗
jm(Ω′)

∑
j′m′

xj′m′Yj′m′(Ω′)dΩ′ (A.15)

and reduces according to the orthormality (A.5) to

y(Ω) =
∑

j

hj0

√
4π

2j + 1

∑
m

xjmYjm(Ω). (A.16)

With y(Ω) =
∑

jm yjmYjm(Ω), the convolution in the spectral domain becomes

yjm =
√

4π
2j + 1

hj0xjm, (A.17)

where the factor
√

2j + 14π is introduced to normalize the expansion coefficients hj0,
such that

yjm = hjxjm. (A.18)

A.3 Stokes potential coefficients

The external gravitational potential of the Earth can be expressed as an expansion of
solid spherical-harmonic functions, which represent solutions of the Laplace equation
for the gravitational potential in the source-free space. The external gravitational
potential V (r,Ω) is expressed by

V (r,Ω) =
GM

R

jmax∑
j=0

(
R

r
)j+1

m=j∑
m=−j

VjmYjm(Ω), (A.19)

where G is the gravitational constant, M is the Earth’s total mass, R is the equatorial
semi-axis of the Earth’s reference ellipsoid, and Vjm are the fully normalized (unitless)
potential coefficients associated with the spherical-harmonic functions Yjm(Ω). The
factor GM/r represents the gravitational potential of a spherically symmetric body
with mass M , i.e. point mass M , and, thus the coefficients Vjm with j > 0 describe
the deviations of the gravitational potential from spherical symmetry.
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A.4 Spatial distribution of GRACE variances

The spatial distribution of GRACE variances of the potential, var(V (Ω)), is calculated
from the GRACE coefficients’ variances, var(Vjm), by linear error propagation. Let
β = {βjm} and γ = {γjm} be column vectors of the real and imaginary part of the
GRACE coefficients Vjm, respectively,

βj0 = Vj0, m = 0,

βjm = 2ReVjm, m > 0,

γjm = −2ImVjm, m > 0,

(A.20)

and let B
c|s
i = {Y c|s

jm(Ωi)} be the associated vectors of the cosine term Y c(Ω) =
Pjm(ϑ) cos(mϕ) and sine term Y s(Ω) = Pjm(ϑ) sin(mϕ) of the spherical harmonic
functions, Yjm(Ω) at the spatial point Ωi. Then, the potential at this point is given
by

V (Ωi) = Bc
iβ + Bs

iγ. (A.21)

Linear error propagation gives the spatial representation of the variance-covariance
matrix of the potential,

var(V (Ωkl)) = Bc
k var(β)Bc

l + Bs
k var(γ)Bs

l +

Bc
k cov(β,γ)Bs

l + Bs
k cov(γ,β)Bc

l .
(A.22)

For uncorrelated errors between cosine and sine terms, cov(β,γ) = cov(γ,β) = ∅.
Additionally, for uncorrelated errors between coefficients of different j and m,

[var(β)]j1m1,j2m2 = σ2
βjm

δj1j2δm1m2 ,

[var(γ)]j1m1,j2m2 = σ2
γjm

δj1j2δm1m2 ,
(A.23)

and the sum in (A.22) takes the form

var(V (Ωkl)) =
∑
jm

[Y c
jm(Ωk)σ2

βjm
Y c

jm(Ωl) + Y s
jm(Ωk)σ2

γjm
Y s

jm(Ωl)]. (A.24)

A.5 Characteristic geodetic quantities

A.5.1 Spatial resolution

The spatial wavelength of a spherical harmonic of degree j at the Earth’s surface is
λ = 2πR/j ≈ 40× 106 m/j. The minimum resolvable (alias-free) wavelength λmin is
related to the spatial resolution ∆λ by the Shannon-Nyquist criterion,

λmin > 2∆λ, (A.25)

which gives the spatial resolution of the spherical harmonic of degree j of ∆λ ≈20× 106 m/j.
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A.5.2 Degree power

The power |fj |2 of the function f(Ω) for a specific degree j corresponding to a specific
spatial wavelength is called degree power, and its square root is called degree ampli-
tude, |fj |. The degree power |fj |2 is obtained from the spherical-harmonic expansion
coefficients fjm by

|fj |2 =
∫
Ω0

fj(Ω)fj(Ω)dΩ =
j∑

m=−j

fjmf
∗
jm = 4π

j∑
m=0

(C̄2
jm + S̄2

jm), (A.26)

where

fj(Ω) =
j∑

m=−j

fjmYjm(Ω) (A.27)

with C̄2
jm and S̄jm are the fully normalized Stokes coefficients in the geodetic norm

(A.10).
The power of the function f(Ω) in the spectral band [j1, j2] is called the cumulative

degree power,

|fj1,j2 |2 =
j2∑

j=j1

|fj |2. (A.28)

In general, the coefficients in the spherical-harmonic expansion of a function depend
on the choice of the coordinate system. However, |fj |2 and |fj1,j2 |2 are quantities
independent of the orientation of the coordinate system and, therefore, allow the
comparison of the spectra of two scalar fields. A graph of |fj |2 versus j is called a
degree-power spectrum, whereas a graph of |fj | versus j is called a degree-amplitude
spectrum. In this study, spectra of the geoid height, N , and the rate of geoid-height
change, Ṅ , are plotted in the geodetic norm as degree-amplitude spectra.

A.5.3 Degree correlation

The degree correlation, rj , of two functions f(Ω) and g(Ω) is given by (e.g Martinec,
1994)

rj =
1√

|fj |2|gj |2

∫
Ω0

fj(Ω)gj(Ω)dΩ =

∑j
m=−j fjmg

∗
jm√∑j

m=−j fjmf∗jm

√∑j
m=−j gjmg∗jm

.

(A.29)

A.6 Least-squares solution of linear inverse problem

This section introduces the concept of solving the linear inverse problem by the method
of least-squares. More details can be found in, for example, Tarantola (2005) and
Gubbins (2004), upon which this summary is based.
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The inverse problem is concerned with the determination of m = {mk}k=1,2,...,K ,
parameters of the model according to di, i = 1, 2, ..., N , data samples, assuming that
m and d are quantitatively related. In general, the relation between m and d can
be arbitrary complicated involving, for example, implicit and non-linear functional
dependencies.

For linear problems or problems that can be linearized, the relation between d and
m of the forward model is expressed by a system of linear equations,

d = Fm, (A.30)

where F is the N ×K design matrix of the problem, which is independent of d and
m. Equi-determined problems (N = K) have exactly one solution, i.e. m = F−1d.
Overdetermined problems, i.e. problems with more equations than parameters (N >

K), have multiple approximate solutions from which, according to a a priori specified
criterion (e.g. minimization of errors), an optimal solution is selected (Section A.6.1).
Underdetermined problems (N < K), or problems that are underdetermined with
respect to a particular, and overdetermined with respect to other parameters, also
have a variety of solutions, from which one is selected by limitation of the solution
space or placing constraints on the parameters (Section A.6.2).

In general, observations d are likely to be contaminated by stochastic noise, e, which
introduces inconsistencies to be included in (A.30) according to

d = Fm + e. (A.31)

Suppose that m̂ is an estimate of model parameters obtained, for example, by m̂ =
F ′−1d, where F ′ represents the square matrix for the number of equations reduced
by N − K for the equi-determined system. Then, the prediction of the data, d̂, is
obtained by d̂ = Fm̂, and its residual from the data is r = d− d̂. The minimization
of r with respect to m in the L2-norm is expressed by

E := rTr
!= min

mk

, (A.32)

which is the criterion most frequently used for the solution of linear inverse problems.

A.6.1 Unconstrained estimate

Minimization of the residual r in the L2-norm (A.32) means that an m needs to be
found, such that

∂E

∂mk
=
∂(rTr)
∂mk

!= 0. (A.33)

Here, it is assumed thatmk are independent of each other, which means that ∂mk∂ml =
δkl. The estimated solution m̂ to (A.33) is given by (e.g. Gubbins, 2004)

m̂ = (F TF )−1F Td (A.34)
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if (F TF )−1 exists, which is the case if F TF is non-singular. The solution (A.34) is
based on the assumption of equal quality of the data d. However, it may be useful to
introduce weights in the least-squares criterion (A.32), such that

EW := rTW Dr
!= min

mk

, (A.35)

where W D refers to the weighting matrix associated with the data and may be, for
example, the inverse variances matrix of the data, C−1

D , such that a large weight is

placed upon data with small errors. Then, the solution to ∂EW∂mk
!= 0 becomes

m̂ = (F TC−1
D F )−1F TC−1

D d (A.36)

with the a posteriori covariance matrix of the model,

C̃M = (F TC−1
D F )−1. (A.37)

A.6.2 Constrained estimate

For problems that are mildly underdetermined with respect tomk, but overdetermined
with respect to other mk, the least-squares solution (A.34) may not produce satisfac-
tory results in the sense that the estimated parameters m̂ are far from some a priori
value of mP obtained from independent data. In these cases, the solution m̂ typically
shows an undesired oscillatoric character that can be damped by including a priori
constraints on the parameters, mP, along with their uncertainties in the minimization
criterion.

The most elementary stabilization is to include the norm of the solution, N = mTm,
in the minimization criterion (A.35) according to

EC(m) = EW + γ2N, (A.38)

where γ is a regularization parameter that governs the contribution of EW versus N
in (A.38). The choice of γ is not unique, but depends on the characteristics of the
inverse problem. The solution of ∂EC∂mk

!= 0 is (e.g. Gubbins, 2004)

m̂ = (F TC−1
D F + γI)−1F TC−1

D d. (A.39)

Often, it is more appropriate to constrain the solution to be close to an independent a
priori parameter estimate, mP, and minimize N = ∆mT∆m, where ∆m = m−mP

such that the solution of the minimization (A.38) becomes

m̂ = mP + (F TCD
−1F + γI)−1F TCD

−1(d− FmP). (A.40)

Instead of controlling the influence of the a priori estimate mP in (A.40) by the
parameter γ, it is possible to introduce weights represented by the inverse matrix of
the variances of the model parameters, CM, analogue to the weight matrix for the
data. Then, the solution takes the form

m̂ = mP + (F TC−1
D F + C−1

M )−1F TCD
−1(d− FmP). (A.41)
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With the propagation of the variance for linear operators, the a posteriori covariance
matrix of the parameter estimates, ĈM, becomes

ĈM = (F TC−1
D F + C−1

M )−1. (A.42)



B

Additional forward modelling results

B.1 GIA over North America

Supplementary to Section 6.3, predictions of the rate of geoid-height change over North
America due to the glacial history NAWI are shown for various viscosity distributions.
The upper cut-off degree is jmax = 256.

149



150 Additional forward modelling results

a) b)

c) d)

Figure B.1: Predicted rate of geoid-height change over North America due to GIA for
load model NAWI and a lower-mantle viscosity ηLM of 5× 1021 Pa s. The upper-mantle
viscosities ηUM are a) 2× 1020, b) 4× 1020, c) 6× 1020 and d) 8× 1020 Pa s.
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a) b)

c) d)

Figure B.2: The same as Figure B.1, but for a lower-mantle viscosity ηLM of 1× 1022 Pa s.
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a) b)

c) d)

Figure B.3: The same as Figure B.1, but for a lower-mantle viscosity ηLM of 2× 1022 Pa s.
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a) b)

c) d)

Figure B.4: The same as Figure B.1, but for a lower-mantle viscosity ηLM of 4× 1022 Pa s.
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Transport and Mass Distribution in the Earth System. GOCE-Projektbüro Deutsch-
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Abbreviations

1. Acronyms of space-geodetic projects, instrumentation, data bases and
organizations

Abbreviation Page Description

ACC 27 Accelerometer (GRACE instrumentation)
CNES 85 Centre National d’Ètudes Spatiales
CSR 27 Center for Space Research
DLR 27 Deutsche Zentrum für Luft- und Raumfahrt
ECMWF 34 European Centre for Medium-Range Weather Forecasts
ERS-1|ERS-2 9 European Remote Sensing Satellites
GFZ 5 Deutsches GeoForschungsZentrum
GPS 13 Global Positioning System
GRACE 5 Gravity Recovery and Climate Experiment (mission launched

17th March 2002)
GRIP 105 Greenland Ice Core Project
ICESat 9 Ice, Cloud, and Land Elevation Satellite (mission launched

12th January 2003)
IERS 34 International Earth Rotation and Reference Systems Service
ILRS 27 International Laser Ranging Service
InSAR 9 Interferometric Synthetic Aperture Radar
ISDC 27 Information Systems and Data Center
JPL 27 Jet Propulsion Laboratory
KBR 27 K-band microwave ranging system (GRACE

instrumentation)
LAGEOS 13 Laser Geodynamics Satellite
NASA 27 National Aeronautic and Space Agency
PO.DAAC 27 Physical Oceanography Distributed Active Archive Center
PREM 20 Preliminary Reference Earth Model
SCA 27 Star camera assembly (GRACE instrumentation)
SDS 85 Science Data System centres (CSR, GFZ and JPL)
SST 9 Satellite-to-satellite tracking
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2. Text tokens

Abbreviation Page Description

AIS 67 Antarctic Ice Sheet
BP 5 before present
ESL 7 equivalent sea level
GIA 5 glacial-isostatic adjustment
LGM 5 Last Glacial Maximum (∼ 21 ka BP)

3. Load models

Abbreviation Page Description

ANU 123 Pleistocene deglaciation model for Antarctica based on
geomorphological data

GREEN1 111 Pleistocene deglaciation model for Greenland based on
geomorphological data

HUY 123 Pleistocene deglaciation model for Antarctica based on
numerical modelling

ICE-3G|ICE-
5G

105 Global pleistocene deglaciation models based on
geomorphological data

NAWI 105 Pleistocene deglaciation model for the Northern Hemisphere
based on numerical modelling

OMCT 34 Ocean Model for Circulation and Tides
WGHM 14 WaterGAP Global Hydrology Model
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