Chapter 3

Applications and Results

In this chapter the theoretical results outlined in the last chapter are applied to different
systems. First, the different methods for control of quantum-systems are tested on some
model potentials. Then several ab initio calculations on exemplary molecules are presented,
which are needed for the development of the CRS Hamiltonian for these systems. Finally
the dynamics of one of these molecules is studied within the CRS approximation using the
MCTDH method.

3.1 Model Systems

Here calculations are presented on one- and two—dimensional model systems of a double
minimum potential for the proton transfer reaction. The parameters for the model potential
were either chosen in a way to highlight some special feature of the dynamics or fitted to
ab initio data to represent a specific molecular system.

3.1.1 Driven Quantum Tunneling

The 1d—model system used in this section consists of a slightly asymmetric double minimum
potential, which is a generic model case for proton transfer. The potential parameters have
been fitted to ab initio data for substituted malonaldehyde (presented in Scheme 3.1). In
experiments, this molecule allows easy changes of the potential properties by exchanging
one of the O—atoms with a different atom, e.g. sulfur. Therefore a wide range of potential
shapes can be represented with this type of proton transfer system. In the following
calculations the possible coupling of the proton transfer to the heavy atom modes, which
would lead to a 2d-model system, is neglected. This leads to a potential for a single reaction
coordinate V'(¢), in the characteristic form of a double minimum potential with the minima
located at ¢ = +¢q, and separated by a barrier of height V? at or near ¢ = 0. The respective
energies at these minima are slightly offset by a difference of §. The appropriate potential
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Figure 3.1: By means of a non-symmetric substitution of one of the H atoms in
malonaldehyde the previously symmetric double minimum potential describing the
transfer of H; develops a slight energy asymmetry.

is given as
o VB —§/2

Vig) = 2 (q —q0) + a4 (= ) (¢4 q0)*- (3.1)

This potential is shown in Figure 3.2 for a set of parameters taken from Ref. [124] (and
given in the figure caption). In this reference the parameters were chosen in accordance
with previous theoretical studies on malonaldehyde [125]. The eigenstates and energy
eigenvalues resulting from the solution of the stationary Schrédinger equation (2.1) are
plotted in Figure 3.2. As can be seen there, the first two levels are nearly degenerate
and have eigenfunctions belonging to states being rather localized in either the reactant or
product potential well. For this set of parameters all higher lying states are characterized
by delocalized wavefunctions, which cannot be clearly associated with one of the minima.

To simulate the isomerization reaction, the system initially was put into a reactant
state, represented by the lowest eigenstate W, of the potential curve. The coupling to the
field was modeled with the semi-classical dipole approximation, as presented in Section
2.5.1. Effects of rotation are neglected, which in effect means that the molecule is kept in
a fixed position with respect to the polarization of the electric field. This allows for both
the field and the dipole to be treated as a scalar instead of a vector property, resulting in
a system Hamiltonian Hg = Hy — 1€ (t) depending only on the absolute values of &(t) and
1. The dipole operator is modeled as a linear function of the proton transfer coordinate in
the form pu = p(q) = eq even though the amount of charge transferred during isomerization
is likely to be less than one elementary charge e.

The study of this molecular model by Dosli¢ et al [125, 124] as an isolated system with-
out coupling to the environment showed the potential of using optimal control strategies
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Figure 3.2: Potential, energy levels and the first two eigenfunctions of the system tai-
lored to represent a substituted malonaldehyde. The parameters used for the potential
Eq. (3.1) are VB =6.25 x 1072E),, § = 0.257 x 1073 E}, and qo = lao.

to design the necessary laser fields to drive the transfer reaction. In this reference the ap-
plication of the optimal control theory led to a laser field which initiates a driven quantum
tunneling in the system [126]. The optimal control method with a very low penalty factor
for the total field intensity produced an optimal field, which quite closely reproduces the
field obtained from a pump-dump approach with two analytical sin? laser pulses, where the
population transfer occurs via a delocalized state above the barrier. Introducing a higher
penalty for the allowed time—integrated intensity resulted in a completely different picture:
For this set of parameters the algorithm produces an optimal field, which consists mainly
of a more or less constant plateau, flanked by short switch on and switch off regions. The
population dynamics generated by this field takes place entirely between the lowest two
eigenstates W, and Wy, as plotted in Figure 3.2. No population is transferred via energet-
ically higher states, delocalized above the barrier. This leads to the conclusion, that the
plateau field drives the transfer through and not over the potential barrier. The resulting
electrical field not only has a lower maximum intensity, reducing the chance of competing
processes like ionization during the transfer, but also reaches the goal of complete isomer-
ization earlier (only 1.5 ps opposed to the 2 ps required for the pump—dump pulse). This
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Figure 3.3: The situation before, during and after the plateau field starts to drive the
population from the left to the right well (from top to bottom). In the middle panel
the effective potential V — u€ created by the plateau field is plotted as a dashed line.
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reaction pathway is plotted in Figure 3.3 and can be described in the following steps:

1. The initial wavefunction ¥ (¢ = 0) = ¥, is an eigenfunction of the undisturbed model
potential V(¢). During the switch on phase this state is converted into a coherent
superposition of the states ¢;, obtained from the solution of

(I:Io - Mgp) ¢i = Eigi, (3.2)

where &, is the plateau field of the pulse and the E; represent the changed energy
eigenvalues of the system.

2. During the plateau phase of the pulse the coherent superposition of these new eigen-
states leads to the observed tunneling dynamics. If the field is chosen in such a way,
that the two lowest diagonal elements of the perturbed Hamiltonian are exactly de-
generate, the population transfer between reactant and product wells are completed
within the tunneling time 7 = h/(4&p1112).

3. When the field is switched off after the tunneling time 7 the system stabilizes in the
— now again stationary — state Ws.

The plateau field, &,, needed for this process can be calculated from the matrix elements
of the Hamiltonian from Eq. (3.2) in the basis {U;, U5}. In this representation the Hamil-
tonian during the plateau phase is

E, 0 i1 f12
Hqg = — & . 3.3
5 [( 0 £ ) P < fo1 22 )] (33)

The resonance condition which follows from this expression is
E1 - gpull = E2 - gp,U/QZ (34)

which can be used to obtain the plateau field £,. Note, that because of the asymmetry in
the potential the two diagonal elements of ji are not equal, which means that the plateau
field is not exactly the one that would compensate the asymmetry of the potential of the
system given by Eq. (3.1) [127].

Driven Quantum Tunneling with Dissipation

One of the most interesting aspects of the tunneling approach to isomerization is, that the
reaction path transfers the population via the lowest possible eigenstates. So in contrast
to the pump—dump approach, which has to include at least one higher lying, excited state,
this process should allow better control, when the effects of energy dissipation are included
into the calculations, as the relaxation rate increases with the energy of the populated
levels. In this section the impact of including a generic coupling to an environment within
the Redfield-model is examined.
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For this the total Hamiltonian is written in the separated form given in Eq. (2.76), with
the system part being calculated in the semi-classical dipole approximation, i.e.

. K2 2 .
Hs(t) = Tomag? +Vig) =~ E(1) (3.5)

H

and the interaction between the system and the bath being represented by a factorized
operator in the form given by Eq. (2.83). The form of the coupling is taken as a standard
bilinear term [63, 127, 128]

Hs p =g\ nkQe (3.6)
£

where A\'/? is some system specific length scale parameter and k¢ the coupling of the system
coordinate to the (dimensionless) oscillator coordinate ()¢ of mode §. This environment is
completely characterized by the spectral density entering the calculation of the damping
matrix given by Eq. (2.116). In the following an Ohmic spectral density of the form

J (w) = awe™@l/we (3.7)

is assumed, where w, is a system specific cutoff frequency. In order to model in particular
the coupling to the low frequency modes of the molecular scaffold which have the most
prominent effect on the proton transfer coordinate, w./2mc was taken as 500 cm 'in all
calculations.

The dynamics in this system takes place almost entirely between the lowest two eigen-
states, if the tunneling isomerization approach is applied. These two states are, in this
low barrier system, sufficiently close to the top of the barrier to have a significant coupling
and therefore allow tunneling to take place on a picosecond time scale. To highlight the
effects of the laser field and without addressing the possibility of preparing such an initial
molecular configuration, all initial population is placed in the lowest molecular eigenstate
Wy, which is located in the left hand well, corresponding to 7" = 0K. Due to the fact
that the lowest two eigenstates are nearly degenerate, the introduction of an environment
with finite temperature then, of course, results in this initial condition being nonstation-
ary. At room temperature the thermal distribution results in an almost 50:50 population
distribution between W; and W, in equilibrium. The laser pulse generated by optimal
control in [124], which drives the tunneling from the initially prepared state ¥; into Vs,
is replaced by an analytical pulse consisting of sin? switch-on and switch-off flanks with
a constant plateau field between them. For the studied system the — arbitrarily chosen
— length t,, = tog = 1251fs for the switching times, and a plateau field determined from
Eq. (3.4) as £, = 0.136 - 1072 E},/eap, produced an almost 100% population transfer in
the isolated system for a plateau time of ¢, = 1250fs. The field as well as the resulting
dynamics are shown in Fig. 3.4 (solid lines). In Ref. [124] it was pointed out that there
is quite some flexibility of this tunneling scheme concerning the pulse shape. Thus the
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Figure 3.4: The laser pulse used for the isomerization in the system presented in
Fig. 3.2. The pulse-parameters are ¢, = 12501fs, t,, = top = 125fs and &, = 0.136 -
1073 E}/eaq. In the lower panel the respective populations of the first two eigenstates
are given for different strengths of the coupling to the environment: « = 0 (solid line),
a = 0.01) (dot-dashed line), a = 0.04)\ (dashed line) and o = 0.08\ (dotted line).

choice of the switch-on and switch—off times is rather arbitrary. In the extreme limit of a
so—called half-cycled pulse the plateau time would be zero. Interestingly such half-cycled
pulses can be generated in the sub-picosecond domain as was demonstrated in Ref. [129].

Upon inclusion of energy and phase relaxation due to the interaction with the dissi-
pative environment, in the Redfield formalism presented in Section 2.4.2, the efficiency of
isomerization decreases drastically. To show this, calculations have been performed for dif-
ferent coupling strengths leading to different transfer rates, k15, of the two levels involved.
At room temperature the coupling between the tunneling levels is kj» = aA™' /120 fs™!
and ko; = aA™'/93.9fs7'. For the coupling strengths used here, a = 0.01\, 0.04), 0.08),
the initially localized state would thermalize on a time scale greater than 1.4 ps. Thus
using a pulse having the total duration of 1.5 ps the calculation are just at the edge where
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Figure 3.5: Comparison of the transferred population in the right potential well,

transferred with the pump—dump scheme, compared to the tunneling method. The
dissipation strength for both calculations is set to the medium coupling (@ = 0.04)).

a non thermal population of ¥y, and therefore control can be achieved after the pulse is
over. Note, that for finite « the initial depopulation of ¥, is accelerated due to the dissi-
pation, because in addition to the tunnel coupling the transfer now has a channel going via
population relaxation. The results of these calculations are presented in Fig. 3.4 for the
different coupling strengths used (differently dashed lines). It can be clearly seen, that for
the strongest coupling (o« = 0.08\) the tunneling process just barely manages to create a
non-thermal distribution of the population, before the system moves back into equilibrium.
The effect of the faster depopulation of the initial level can also be seen clearly.

The big advantage of the isomerization via tunneling in contrast to the pump—dump
approach in the presence of dissipation can be seen in Fig. 3.5. This shows the population
dynamics of the tunneling process in contrast to the one generated by a pump-dump pulse.
In both cases the laser field has been optimized to generate almost complete population
transfer from left to right in the isolated system. The resulting pulses were then applied
to the same system, but with dissipation included. While the tunnel-field manages to pro-
duce a quite significant transfer to the right well, which then slowly decays into thermal
equilibrium, the pump—dump—field does not increase the population of ¥y beyond its equi-
librium value. The reason for this is, that the population transferred by the pump—pulse
into the delocalized above—barrier state, immediately starts to decay back into ¥; and W,.
Due to the high energy difference this happens on a faster time scale than the pulse length,
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Figure 3.6: Potential, energy levels and the first four eigenfunctions of a system with
a barrier 3.5 times as high as the one presented in Fig. 3.2

so that the dump pulse finds no population to dump. The only effect of the pulse is, that
some of the excited population decays into the desired state W, leading to an accelerated
thermalization of the system.

Pump—Tunnel Approach

In order to model situations where the barrier separating reactants from products is higher,
which is the case, e.g., for substituted pyrazoles [130], the same potential as given by
Eq. (3.1) is used, but with the barrier height scaled by a factor of 3.5. This model potential
is used to discuss general aspects of the dynamics without referring to any specific molecule.
The potential together with the resulting solutions of the stationary Schrédinger equation
are shown in Figure 3.6. Apparently, there are now two localized states on both the
reactant and product side. Again, in the following, the molecule is assumed to be prepared
in such a way, that the initial proton wavepacket is localized in the lowest eigenstate of the
reactant well.

This increase in the potential barrier leads, of course, to a strong reduction in the
tunneling probability between the lowest pair of eigenstates. In a scenario like the one
discussed in the previous section, the tunneling time between the lowest pair of states
brought into resonance by an external plateau field, would be around 130 ps.
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Figure 3.7: Panel a) shows the laser pulse obtained from optimal control theory for
the isomerization in the system shown in Fig. 3.6, as presented in Ref. [126]. In panel
b) the population dynamics induced in the high—barrier system is shown. The dotted
line shows the population in all states above the first four.

In order to, to find a good reaction pathway, optimal control [66] was employed on
the isolated system to find a laser pulse driving the isomerization from the initial state
in the left well to the right. This approach resulted in a pulse, which is shown in Figure
3.7. During the first 500 fs the pulse is rather oscillatory with a dominating frequency of
1952c¢cm™!. In the remaining time interval the pulse changes rather smoothly in a way
which reminds on the plateau type tunneling pulse presented in the previous section and
in Ref. [126].

Inspecting the population dynamics plotted in Fig. 3.7 one finds that during the os-
cillatory stage of the pulse the system is excited from the ground state, ¥y, to the first
vibrationally excited of the reactant well, 5. Subsequently, the pulse drives the tunneling
to the state W, localized in the product well. Above barrier states are populated only
marginally during the excitation stage.

This behavior leads to the following general reaction path for ultrafast switching of
the proton position in high barrier systems: First, a pump—pulse selectively populates a
vibrationally excited state localized in the reactant potential well. This excited state should
be chosen such, that there is a chance for considerable tunneling coupling to an excited
state localized in the product well. This pump—pulse is then be followed by a plateau—type
pulse which triggers the tunneling, as described in the previous section for the tunneling
between the lowest doublet of states.

This isomerization scheme is examined further in the following, using simplified analyt-
ical pulses. For the pump—pulse which induces the population inversion between the states
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Figure 3.8: The analytical laser pulse used to drive the isomerization in the high
barrier model system. It starts with an excitation pulse to populate the second state
in the reactant well and only then the tunnel field is switched on. The pulse—parameters
are & = 1.7- 1073 By /eag, to = 5201s, wy/2mc = wy3/2mc = 1930cm ™1, ¢, = 1150 fs,
ton = to = 125fs and &, = 0.137 - 1073 E}, /eay.

¥, and W3 a sin® shaped pulse was chosen (see, for instance [62, 112]):
Eex(t) = Epsin(wpt) sin®(wt/ty) 0 <t < t. (3.8)

The pulse length, t; and its maximum amplitude, &y, are determined so, that the desired
transition is completed at time t,. The search for the optimum set of parameters has
been guided by the optimal control results. Using t; = 520 fs the other parameters were
found as £ = 1.7- 1073 E}, /eqy if the frequency was kept fixed at the transition frequency
wo/2mc = wiz/2mc = 1930cm™". If the two processes of excitation and tunneling are
kept completely sequential, the plateau pulse driving the tunneling begins at time ¢,. Its
parameters are chosen such that a transfer between W3 and ¥, with close to 100% efficiency
is achieved. To determine the neccessary plateau field, again the relation Eq. (3.4) can be
employed, replacing levels one and two with three and four. The total time for isomerization
then is given by ty + ton + o + . The resulting "hand made” optimal pulse is shown
in in Fig. 3.8 and the population dynamics of the four lowest states induced by it can be
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Figure 3.9: The populations of the lowest four levels in the double minimum potential
under the influence of the field shown in Fig. 3.8. (Coupling strengths as in Fig. 3.4)

found in Fig. 3.9 (solid lines). In order to characterize the efficiency of control the reaction
yield is defined as |W5|? + |W4|? with the populations taken at the time when both pulses
are over. In the present case the yield is 0.98, a value which in principle could be improved
by using refined searching techniques, e.g. employing genetic algorithms, for finding better
parameters for the pulse, but as the main aim was to study the general impact of dissipation
on this type of reaction, this was not considered necessary.

Switching on the interaction with the environment results in a reduction of this yield
as is shown in Fig. 3.14. As a general trend this is, of course, not surprising, as the finite
life times of the levels mostly counteract the desired steps on the reaction path for the
laser driven isomerization. The population of the excited state from which the tunneling
is supposed to start and which is prepared by the pump—pulse decays due to the included
dissipation. This is especially evident if the tunneling pulse starts after the excitation pulse
has finished. In this case, for fast relaxation (a = 0.08)), the population of W3 is only
about 0.8 at the moment the tunnel-pulse starts (cf. Fig. 3.9). It should be noted, however,
that this decay partially is going into the desired direction, i.e. ¥y and ¥, are populated
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Figure 3.10: Another possibility to choose the laser pulse is to overlap the pulse
exciting the system with the one driving the tunneling process, as shown here. (The
tunneling starts at ¢ = 0fs, together with the excitation pulse.) The pulse-parameters
are & = 1.7- 1073 By /eag, tg = 52018, wp/2mec = wy3/2mc = 1930cm™! | ¢, = 15101s,
ton = tog = 125fs and &, = 0.137 - 1073 E}, /eay.

also by the relaxation processes. The population relaxation rates for this model potential
are: ky = a7 /48 psT!, kyy = aXTH/T021s7Y, kg = aATH/T09 157, k3o = aXT! /41 psT!,
and kg1 = aX71/0.75ns7 L. Due to the small ky; the non-thermal distribution created by
the laser field is maintained for some nanoseconds in this situation, in contrast to the low
barrier model, where the system thermalized on the time scale of a few picoseconds.
Clearly, in a dissipative environment, one of the most important properties of an efficient
control pulse is its length. In contrast to the situation in an isolated system, the field has
to work against the competing effects of energy relaxation, which destroy the coherences
between the states. Thus a more efficient control should be possible for shorter control
pulses. The optimal field in Fig. 3.7 indicates that it should be possible to use overlapping
pulses instead of the sequential scheme without deteriorating the yield for the isolated
system. The resulting time-dependence of the field is plotted in Fig. 3.10 (for parameters
see figure caption), and the respective population dynamics can be found in Fig. 3.11 for
the same set of coupling strengths as in Fig. 3.4. In this case the population transfer
pathway ¥; — W3 — W, is open from the very beginning. This possibility results in an
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Figure 3.11: The population dynamics of the lowest four levels generated by the pulse
shown in Fig. 3.10. (Coupling strengths as in Fig. 3.4)

increased yield as can be seen in Fig. 3.14. Closer inspection of |¥y|? in Fig. 3.11 shows
that there is some gain in population already during the second half of the pump—pulse.
In fact the pump-pulse acts as a dump-pulse for the level pair U,/W,. The efficiency of
this process which apparently is very favorable for obtaining high yields depends on the
amount of population transferred from V3 to ¥, during the interval ;.

This effect is caused by the fact, that the plateau field has to create an almost symmet-
rical potential to open the tunneling—reaction path, which then of course also generates
energetically degenerate pump- and dump—frequencies in the product and reactant wells.
To investigate the scale of this effect further, the time ¢, was increased to 1090 fs, i.e. the
period where both pulses overlap is extended. For effective population of W3 the value of
& was reduced at the same time to & = 0.82 x 1072 E}, /eay . Furthermore, the plateau
time for the tunnel-pulse had to be increased to ty, = 1780 fs in order to allow for a transfer
of the population which is pumped into V3 during the second half of the pump—pulse as
well. Again these parameters are just a compromise made to accommodate high yield,
low intensity, and short pulse duration. The pulse form is shown in Fig. 3.12 and the
respective populations are plotted in Fig. 3.13 for the various coupling strengths. As can
be seen from the evolution of |¥y|?, this pulse dumps substantial population into the state
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Figure 3.12: Same as in Fig. 3.10, but for longer pump- and tunnel-pulses with
lower intensity of the pump pulse. The pulse-parameters are & = 0.82 x 103 E}, /eay,

to = 1090fs, wo/2mc = wiz/2mc = 1930 cm™!, t, = 1780f1s, ton = tog = 125fs and
&, =0.137 x 1073 B}, /eay.

W, from where it cannot escape in the monitored time interval. This is the main reason
for the increased yield as compared with the two cases studied before despite the fact that
this setup needs the longest time for isomerization (cf. Fig. 3.14).

Conclusion

These examinations show, that optimal control can find reaction pathways in molecular
systems, which previously have not been examined. The proposed pathway drives the
isomerization via tunneling through the reaction barrier, thereby avoiding the necessity
to populate higher excited states. Additional studies about this type of driven tunneling
are presented in some other publications as well [38, 85, 131]. This mechanism works for
the low barrier tunnel scheme, already proposed in Ref. [125] for an isolated system, and
for the newly proposed pump—tunnel pathway proposed in the framework of this work
[127]. The calculations showed that this fact made both reactions more robust against the
inclusion of dissipation. Nevertheless, with increasing coupling strength to the environment
the chances for realizing the control schemes for both models decrease drastically. Even
these relatively simple, one—dimensional models therefore show, that an effective control
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Figure 3.13: The population dynamics of the lowest four levels generated by the pulse
shown in Fig. 3.12. (Coupling strengths as in Fig. 3.4)
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Figure 3.14: The isomerization yield, defined as the combined population of states
Uy and ¥y at the end of the pulses shown: in Fig. 3.8 (squares), in Fig. 3.10 (circles)
and in Fig. 3.12 (crosses) for the different dissipation strengths.
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of molecular reactions in condensed phase is quite difficult. While the models without any
coupling to the environment often allow nearly perfect control of specific quantum states
of the system, the picture changes completely in the presence of dissipation. In this case
the scenario turns into a “race against time” to manage some sort of control, before the
energy of the laser pulse, which should excite some localized bonds, dissipates into the
bath and the total system moves into a thermalized, incoherent state. In more realistic
molecular models, which include more than one degree of freedom, this problem can already
turn up for strongly coupled modes in the form of IVR, even before an additional generic
environment is included.

3.1.2 Tests for Control Schemes

After in the last section the control efficiency for a specific reaction path, with and without
dissipative effects, was examined, this section deals with the application of various control
schemes to different one- and two—dimensional models. The goal here is to see, if there are
any algorithms available, which can aid the search for a good reaction path in a specific
potential surface, and which are able to generate the electrical field necessary to follow this
path.

Local tracking Control

In the following the method of local tracking control presented in Section 2.5.4 is applied
to one dimensional model potentials. The first test calculations follow the model described
in [117, 118] and test the algorithm on a Morse type oscillator. After this the method is
expanded to include error control and a double minimum potential.

Morse Potential

The Morse potential used for the initial calculations was given in the form
V(z) = Eplexp{—2-a(x —x¢)} — 2 exp{—a(x —x¢)}] + Ep (3.9)

with the dissociation energy Ep = 0.2101 - Ej, the minimum position zy = 1.75ap and
the Morse parameter o = 1.22a3'. This potential was used in [117] as a model for the
HF-molecule. Within this potential the position expectation value was controlled along a
path defined by a classical particle obeying of the equation of motion for an anti-damped

particle

+ VYa (3.10)

where m = 1745.4m, is the reduced mass in the HF-molecule and the anti-damping is set
to v = 1.0. The dipole function used for the model has an exponentially damped linear
form pu(z) = pox exp{—Cx*}, with yo = 1.154D and ¢ = 0.0064a5" [117].
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Figure 3.15: The prescribed path (dotted line) and the path actually generated
(dashed line) in a Morse—potential with the simple inverse tracking control presented
in Section 2.5.4. While the wavepacket remains close to the harmonic part near the
minimum it remains localized and the control is nearly perfect. The control breaks
down as soon as the wavepacket starts to spread, when it reaches the more anharmonic
part of the potential.

Following the algorithm presented in Eq. (2.150), it can be seen, that the position op-
erator commutates with the dipole operator, making it necessary to use the first derivative
of the position, i.e. the momentum operator, to calculate the control field. This gives the
following equation for the field:

mgd + <dV(m) >

(1) = <du<x>c>m

dx

(3.11)

The derivative of the dipole and the potential result from the application of the momentum
d

operator p = 7 in the commutators of Eq. (2.150).

The resulting position tracking and the electrical field used for it are presented in
Figs. 3.15 and 3.16. It can be seen that the position tracking is almost perfect for the first
80007/ E}, (=~ 2001fs) of the calculation. After this time the algorithm suddenly, and rather
violently, breaks down. The electrical field calculated from the control equations up to
this point was rather large, but otherwise behaved reasonable (i.e. it shows small, regular
oscillations). The significant constant part of the field is caused by the fact, that the
initial, stationary wavepacket already has a position expectation value, which is slightly

offset from the classical minimum of the potential, caused by the anharmonicity of the
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Figure 3.16: The control field for the simple position control presented in Fig. 3.15.
The field has a rather strong constant component, and is much to intense for “real life”
application.

Morse potential. As the initial values for the classical path and the expectation value
to be controlled have to match, the classical trajectory sees a potential gradient, which
the electrical field then has to introduce to the system in the form of the constant field.
Approaching later times, it starts an exponential growth, which quickly reaches values
where not only the numerical solution of the time dependent Schrodinger equation breaks
down, but also any real molecule would be ionized immediately. After this, the field displays
a more or less irregular behavior, in which the peaks reach values of up to 300 Ej /eap (not
plotted). This breakdown of control happens, after the wavepacket starts to enter the more
anharmonic parts of the Morse potential. This already shows the biggest limitation of the
algorithm: It relies on expectation value of a wavepacket to calculate the required electrical
field to control this state. If the wavepacket is tightly localized, the quantum system has
expectation values, which more more less correspond with the function values taken at the
position expectation value (i.e. (f(x)) ~ f({x))). This is the central, necessary condition
for this algorithm to produce useful results. If the wavepacket enters an anharmonic part
of the potential and starts to spread out this condition breaks down, as the different parts
of the packet start to sample widely separated parts of the potential.

Another problem of this approach is, that the control equation (2.150) does not allow
for any error in the tracking. As soon as there are deviations in the real path of the
expectation value from the prescribed value, the algorithm has no way to correct for this.
Therefore, the method was expanded by Rabitz et al. with the additional terms needed to
keep any deviations, introduced by numerical errors or the effect of spreading wavepackets,
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Figure 3.17: The prescribed path (dotted line) and the path actually generated
(dashed line) in a Morse—potential for which the position and the error of the wave-
function were controlled at the same time. This method does not produce a perfect
tracking, but manages to keep the wavepacket under control for a longer time than
the simple approach of Fig. 3.15. Here the algorithm breaks down shortly before the
dissociation limit is reached.

under control (Eq. (2.151))[118].
While the equations and parameters for the classical path and the potential remain the
same, the control field is now calculated from

£(t) = @ it (D) b i )+ - )| a2

which includes terms damping the error in the generated path with the factor p, (for the
original path) and p; (for the resulting momentum path).

The position tracking calculated with this approach and the electrical field used for
it are presented in Figs. 3.17 and 3.18. This algorithm produces only an approximate
tracking, but manages to keep the wavepacket under control for a significantly longer time.
The effect of the error control at the beginning of the pulse is the loss of the perfect
tracking achieved with the simpler method presented before. This is compensated by the
fact that the control remains possible for a much longer time. As can be seen in Fig. 3.17,
the position expectation value closely follows the classical path nearly to the dissociation
limit. Shortly before this is reached, the wavepacket finally becomes so spread out, that
even the error damping term in the control field cannot maintain the control any longer.
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Figure 3.18: The control field for the position control with additional error control
presented in Fig. 3.17. This field no longer has the strong constant component, which
was found in Fig. 3.16, therefore in the beginning it is significantly weaker, but its
intensity, especially at later times, is still much too high for useful applications.

The electrical field again exhibits irregular behavior after the control breaks down, but
with a strongly reduced amplitude, when compared to the exact tracking. The maximum
values reached are on the order of 3 E}, /eap.

The effect of the different algorithms on the shape of the wavepacket is shown in
Fig. 3.19. There the shape of the wavefunction in position space is plotted for t = 0%/ E},
(black), for t = 8000 i1/ E}, (red), the time where the exact tracking algorithm looses control
of the system, and for ¢ = 12000 i/ E}, (blue, only for the method with error control). One
can easily see, that the exact tracking method produces a quite spread out distribution
with several sub-peaks, where the expectation value of x does no longer coincide with the
location of the maximum probability density in the wavepacket. In contrast to that, after
the same control time the approximate tracking manages to keep the system in a rela-
tively localized state, which allows the algorithm to continue with the control for a further
4000 i/ Ey,, until the classical path nearly reaches the dissociation limit. In this anharmonic
region the wavepacket finally becomes delocalized as well (depicted in the lower panel as
the blue curve), leading to the breakdown of the control scheme.

Double Minimum (DM) Potential

After the test with the Morse potential, the inverse tracking method is applied to a DM
potential. For this the model potential used for the driven tunneling in the last section
(Eq. (3.1)), together with a linear dipole moment (u(x) = pox, pop = 0.75¢) is chosen.
The barrier is set at the higher value, as used for the pump—tunnel model, resulting in a
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Figure 3.19: The wavepackets generated by the simple exact tracking method and
the approach including error control (black: initial condition, red: ¢t = 8000/ E},, blue:
t = 12000 2/ E}) in the Morse potential. It can be clearly seen that the second method
manages to keep the wavepacket better localized, leading to the longer possible control
time.
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Figure 3.20: Exact tracking in a double minimum potential. Again the tracking is
perfect while the WP stays near the harmonic minimum on one side of the potential.
As soon as it starts to spread out while trying to move across the barrier, the control
breaks down.

potential as shown in Fig. 3.6. The classical path for the control of the position expectation
value is calculated from an anti-damped oscillator (Eq. (3.10)) in the starting well, and
switched to a damped one (7 = —1) as soon as the trajectory passes over the barrier into
the target well. The first calculations are again performed with the exact tracking control
field given by Eq. (3.11).

The resulting position tracking and the electrical field used for it are presented in
Figs. 3.20 and 3.21. As within the Morse potential, the control is perfect for the first
part of the calculations, while the wavepacket stays near the nearly harmonic minimum
of the product well. As soon as the system reaches the anharmonic part near the barrier,
the control breaks down and only produces irregular fluctuations within a spread out
wavepacket. This means that, while the excitation of the localized initial state to an energy
above the barrier is no problem, the algorithm is not able to dump the resulting wavepacket
into the reactant well. The electrical field resulting from the control equations again has a
constant component, resulting from the slight anharmonicity already seen by the ground
state wavefunction. The tracking is successful, and the field reasonable for approximately
the first 7000 71/ E), of the dynamics. Then strong deviations from the prescribed track
start to appear, and the field exhibits the spike like behavior already seen for the Morse
potential. The main difference is, that the intensity remains below 0.5 E}/eap during the
process.

To improve this result, the DM system was then treated with the tracking algorithm
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Figure 3.21: The control field for the simple position control in a double minimum
potential, as presented in Fig. 3.20.

including the error control terms (Eq. (3.12)). All the other parameters are retained from
the previous exact tracking method.

The results of these calculations are presented in Figs. 3.22 and 3.23. This time, the
error control only leads to slightly improved controllability of the system. The classical
path in the reactant well is tracked nearly perfectly for one more oscillation than for the
exact method, but afterwards the deviations from the prescribed track are also significant.
It looks, as if control is regained for a period, when the classical path crosses the barrier,
but after this short interval the expectation value settles into a random fluctuation around
zero, similar to the one calculated from the method without error control. The electric
fields generated differ in the respect, that the algorithm including error control does not
generate the constant component of the field found in the previous calculation, and in
the slightly smaller maximum amplitude of field spikes generated, when the control breaks
down. For this calculation the maximum amplitude does not rise above 0.3E},/eap.

Looking at the development of the wavepacket for the two methods in Fig. 3.24, this
time no significant gains in localization for one of the two algorithms can be found, as
the control breaks down at approximately the same time. The main difference is, that
the exact tracking produces a wavepacket still mostly localized in the reactant well at
the time the classical path crosses over to the product side (red curve). At the same
time, the error control method already managed to transfer half of the population over
the barrier, resulting in an evenly distributed wavepacket. This can be also seen from the
track of the position expectation value, which is still on the product side for the exact
tracking, and close to zero for the error control method. At later times (blue curve) both
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Figure 3.22: The system from Fig. 3.20 with error control. This only leads to a small
improvement in the ability to track the position of the WP. The control again fails to
drive the system completely over the barrier.
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Figure 3.23: The control field for the position control with additional error control
presented in Fig. 3.22.
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Figure 3.24: The form of the wavepackets for the two tracking methods (black: initial
time, red: time at which the classical path crosses zero, blue: ¢ = 16000 h/E}) in the
DM potential. The simple tracking produces a spread WP still mostly in the product
well. The method including error control results in a WP distributed more more less

evenly between the two wells.
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algorithms have distributed the wavefunction over the whole accessible potential, resulting
in an expectation value for the position oscillating around zero and an complete inability
to apply the inverse tracking algorithm to the delocalized system.

These results show, that the inverse tracking control of a simple variable like the po-
sition, is not able to drive quantum system over a barrier or into an anharmonic region
of a potential. As soon as the initially localized wavefunction starts to spread out due to
anharmonicity, or even splits at a barrier, the algorithm breaks down and cannot regain
control. The field is generated by the control equations always under the assumption, that
the main part of the wavepacket is localized at the calculated expectation value of the
system. If this is no longer true, the field only affects the part of the wavefunction, which
really is located there, in the desired manner and has unpredictable results on all parts
located at different points of the potential.

Variance Control

To get around the limitations of the position control presented above, the tracking control
algorithm was used to control not only the position expectation value, but also the variance,
defined by ((%x — (x))?) = (x2) — (%)%, of the wavepacket. The reasoning behind this is,
that if the algorithm is successful in controlling the variance, it can be set up to maintain a
constant value for this during the control period. If this is possible, the resulting wavepacket
should then be tightly localized and allow the application of the position tracking method
even after entering an anharmonic part of the potential.

Obviously, this approach requires the simultaneous control of two different variables,
the position and the square position, as from these two the variance can be calculated.
This makes it necessary to employ the algorithm using a cost functional (Eq. (2.153)),
resulting in the simultaneous, competitive tracking of all the desired variables. This cost
functional is build from the sum of the tracking errors of the position expectation value
(x) and its square (x?). The resulting cost functional developed for this work has the form

2 diy* R 2 2 s dt x2 L
z=w |t (G- (0n))] e [Zp (dyg - (0 >)

1=0

2

+ WeE?  (3.13)

where <Of)‘> = (x) is the position expectation value and <Of)‘2> = (x?) is the expectation
value of the squared position operator. The O, with higher indices are the higher order
operators, as calculated from Eq. (2.149) and the y, and yg‘z are the prescribed classical
trajectories for the position and its square. The two terms for these properties are sup-
plemented by the third term, which penalizes a high amplitude of the electrical field. All
terms are weighted relative to their importance in the control with a set of arbitrary co-
efficients W;. To generate the optimal tracking field, the derivative of this functional with
respect to £ has to be calculated, set to zero and solved for £.
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Performing the derivation and calculating all the commutators for the higher order
operators results in

£(t) = (3.14)
{WX (38Y e (32 4 w} .
{ors (G | (i + (55 ) + ot i — o)+ o — x| +
d

) [ (2

ot (3 + - Lx0) + 0%)]) + i (" - ()]}
This formula reduces to the already known equation for the position control with error
damping (Eq. (3.12)), if the weights W, and W are set to zero. It can also be seen, that
the weighting of the term for the electrical field only results in a reduction of the total
amplitude, as this factor only occurs in the denominator of the expression. The addition
of this term also prevents the occurrence of singular points in the calculated field, which
would occur if the expectation values in the other terms are zero.

This expression is then used to calculate £(¢) in the same DM potential used in the last
section. The classical path for the squared position operator is set so, that the resulting
variance (X2) — (X)” stays constant at its initial value. The relative weights W,> and W,
in the control equation can be set arbitrarily.

The position tracking and the electrical field generated by the algorithm for an equal
weighting of the two classical control pathways (W2 = W, = 0.5) and a small penalty
for a high electric field (W = 0.5) are presented in Figs. 3.25 and 3.26. Choosing differ-
ent weighting factors (i.e. weighting either the position or the variance tracking stronger)
destroys all the effects differing from the pure position control reported in the following.

Surprisingly, the field generated is nearly identical to the one resulting from the cal-
culations for the position expectation value only, as presented in Fig. 3.23. This small
difference, generated by the additional control of (x?), results in a significant difference
in the generated position tracking. Both the simple exact tracking and the algorithm in-
cluding error control result in a control path, which is nearly identical to the prescribed
track in the reactant well, they loose control when the wavepacket approaches the barrier
and finally result in a completely spread out system, whose position expectation value
oscillates around zero. In the first part, the competitive tracking of the two expectation
values appears to be worse: While the control of the system is again lost at approximately
the same point of the prescribed path, the resulting track on the reactant side of the DM
potential is not reproducing the classical path exactly. This is caused by the fact, that one
electrical field cannot be used to track two different variables simultaneously and exactly.
The minimizing of the error functional only results in a compromise field, which minimizes
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Figure 3.25: The prescribed path (dotted line) and the path actually generated
(dashed line) in a DM potential, employing a simultaneous control of the position and
the variance of the wavefunction. As the control of the variance keeps the system more
compact when crossing the barrier, the algorithm manages to produce a wavepacket,
which is clearly localized more on the product side of the potential.
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Figure 3.26: The control field for the position control with additional error control
presented in Fig. 3.25.
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Figure 3.27: The wavepackets generated by the simultaneous control of position and
variance, in the upper panel without and in the lower with dissipation. (black: initial
condition, red: ¢ = 10000 i/ E}, blue: ¢ = 20000/ /E}).

90



3.1. MODEL SYSTEMS

1 ' T
Wy

0.8; :

S $lt = e -8
0.6} | _O

c

=

0.4¢ | 6.

:
02 - |W3|2\3 |

0 8 16 24 - 5
t [au]
0.04}

0.03¢ |

®

fi :

0.02; ;

m

0.01}
0 G -
0 8 16 24 2 >

t [au]

Figure 3.28: The level populations of the lowest three eigenstates and the total energy
of the propagation with variance control, as presented in Fig. 3.25. The horizontal line
in the lower panel indicates the height of the barrier.
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the weighted error for each track at each point of the path. The important gain this imple-
mentation of the algorithm managed to make can be seen for longer times: The position
expectation value also settles down to a oscillatory behavior, which this time is not moving
around zero, but is located significantly on the target side of the DM potential. Looking
at the distribution of the wavepacket for the different times, presented in the upper panel
of Fig. 3.27, one can see clearly, that this form of the algorithm manages to drive the
system over the potential barrier while still retaining a relatively localized shape. At the
time the classical path crosses the barrier, only a small part of the wavepacket has split
off from the main peak. Further propagation then causes the wavefunction to split, the
main part moving into the target well and a small rest dropping back to the reactant side.
So even though the generated position expectation value is far from the desired target
value, the algorithm manages to control the system in the sense, that the population of
the reactant state is larger than the one of the inital one after the end of the control time
is reached. In Fig. 3.28 this population dynamics of the lowest three eigenstates, and the
total energy of the system is plotted. This shows, that the algorithm really manages to
guide the wavepacket into a stable state, which is located mostly on the product side, and
not to some high energy, above barrier wavepacket, which is only there for a short time
before oscillating back. The population dynamics in the upper panel shows, that in the
beginning of the control, while the prescribed path is still closely followed, the oscillations
of the wavepacket are generated by a superposition of the first and third eigenstate. Then,
at approximately ¢ = 8000 h/E}, the oscillations of the classical path get too large, to be
represented by only these two eigenfunctions, and move into the more anharmonic region
of the barrier. At this time the control starts to deviate from the prescribed path and the
electrical field resulting from the control algorithm exhibits the strong spiking behavior.
These field spikes manage to depopulate ®; and ®3 almost completely, and transfer most
of the population to higher excited states. This behavior of the field slowly stops at around
t = 15000 2/ Ej, and the excited population is dumped mostly into @5, located in the target
well. The total energy of the system, plotted in the lower panel of Fig. 3.28, shows, that
the laser pulse increases the energy of the wavepacket significantly above the barrier, and
then manages to dump the system back to a total energy far below it. This means, that
in the absence of dissipation, the system stays localized in the target well indefinitely.

This control is possible with just using the potential, the dipole moment and some
classical trajectories generated within this potential. No further assumptions are made
for the electrical field, which finally acts on the quantum system. The drawback of the
approach is, that the calculated field exhibits spikes of unreasonable high amplitude when
the control starts to break down. Applying these field strengths to a real molecule would
lead to the immediate ionization of the system. An additional problem is, that the results
depend significantly on the choice of the weighting factors W,» and Wy and on the error
control terms p;. While some combination of parameters results in the presented results,
even slight changes can lead to completely different results for the wavepacket dynamics.
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Figure 3.29: The same system as the one presented in Fig. 3.25. Here the dissipation
destroys the slight localization generated by the control algorithm, as the population
decays back into the lower lying product well.

potential form Morse H double minimum
control type | error control || error control | error + variance control
W 1.0 1.0 0.5
W 0.0 0.0 0.5
We 0.0 0.0 0.5
oy 0.5 0.5 0.5
I 0.1 0.1 0.1
oY - - 0.5
oy - - 0.1

Table 3.1: The various damping and weighting coefficients used in the inverse tracking
control calculations.

In a final calculation for the inverse tracking algorithm, it was tested, if the method is
stable versus the introduction of dissipation to the system. For this, the Redfield approach
to the dissipation already used for the driven tunneling in Section 3.1.1 is included into
the calculations. In contrast to the approaches presented in [6, 117, 118, 119], for this a
density matrix has to used to describe the system. Therefore it is necessary to replace the
expectation value with a thermal average (i.e. going from (z) to tr(p)).

As the generic coupling strength to the environment the weak coupling (o = 0.01);
cf. Fig. 3.4) is chosen. The position trace for a calculation using the same parameters as
the one shown in Fig. 3.25 is presented in Fig. 3.29. It can be seen, that even the weak
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dissipation introduced destroys the efficiency of the control algorithm completely. The
coupling to the bath causes the system to relax back to the energetically lower reactant well,
resulting in a final localization of the position expectation value slightly on the reactant
side. This effect is caused by the fact, that the high intensity field, generated at the time
the algorithm tries to move the wavepacket over the barrier, populates high—energy states
above the barrier. This can be seen in the level population plotted in Fig. 3.28, where in
the time interval between 8000 //E}, and 16000 h/E), most of the population is in levels
above the third. These have a relatively short lifetime, resulting in a fast dissipation back
into the ground state. As the initial wavefunction was located on the reactant side, the
exited states populated are those with a high dipole coupling to the initial state on the
reactant side. The decay therefore results mainly in a repopulation of the initial state,
while only a small fraction decays to the product side.

Conclusion

The applications of the local tracking control showed, that the algorithm is able to keep a lo-
calized wavepacket under excellent control. Unfortunately, this control needs unrealistically
high field—strength, which in real life experiments would cause the immediate ionization
of the molecule. Additionally, the method is not very stable for spread out wavepackets,
which deviate from the prescribed classical trajectory. The simplest approach used, the
exact tracking method, breaks down immediately, if the expectation value generated from
the calculated field deviates from the prescribed track. This effect can be slightly reduced
by introducing an error control mechanism into the control equations (Eq. (3.12)). This en-
ables a slightly longer control time, but the algorithm still fails, as soon as the wavepacket
starts to enter an anharmonic part of the potential and spreads out. As noted above, this
limitation of the algorithm results from its reliance on the expectation value to calculate
an electric field, which is then applied to the total wavepacket, and not only to the part
of it, which is close to this expectation value. In a further step, it was tried to delay
the spreading of the wavepacket, and therefore the loss of control, by keeping the system
tightly localized. To do this, the local tracking algorithm was used for the simultaneous,
competitive tracking of both the position expectation value and the expectation value of
x?. From these two values, it is possible, to construct the variance of the wavepacket,
which should be kept minimal during the control, to ensure a localized system. While this
approach also did not manage to keep (X) on the desired target track, after crossing the
barrier in the DM potential studied, the field now indeed kept the wavepacket localized
for a longer time. This stronger localization allowed the algorithm, to guide part of the
wavepacket into the desired product well, while leaving a smaller component split off on
the reactant side. Due to this split, the total expectation value of the system does not
reproduce the classical target track at all, after the wavefunction has divided at the barrier.
This causes the error control terms in the algorithm, which rely on the deviation of the
expectation value from the track, to produce corrections, which are unnecessary for the
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main part of the wavefunction, und wrong for the small part, which has split off from it.
Unfortunately, these error terms are needed, to allow the competitive tracking algorithm
to work at all, so only some combination of weights for the constants p; controlling the
error damping produces useful results. (The values used in the calculations presented are
listed in Table 3.1.) As very small changes in these coefficients produce completely differ-
ent results, and no direct causal connection between the change in them and the quality
of the tracking could be identified, the algorithm in principle replaces the search for good
pulse parameters with the search for good error damping parameters. Here the difference
is, that one can make good guesses at reasonable values for laser pulse parameters, which
is not true for the error control terms. At the same time, the tracking algorithm produces
an unreasonably strong field and is not stable against the inclusion of dissipation, as shown
in Fig. 3.29.

With these facts in mind, the method of inverse tracking control as presented here,
cannot be recommended for the calculation of control fields for a proton transfer reaction,
as these always have to deal with double minimum potentials. Therefore all the problems
with splitting wavepackets discussed above cannot be avoided in these systems, making the
method of position tracking unsuitable for reaction control. In a recent work by Fujimura
[116] an approach using not the position expectation value, but the kinetic energy as an
control parameter produced promising results for control even in double minimum systems.

Genetic Algorithms

To allow the control of a quantum system with a genetic algorithm (GA), as presented in
Section 2.5.3 and Appendix B, two main conditions have to be fulfilled:

1. The quantity, which one wants to control has to be encoded into a form usable for
a GA. In the application to the control of a quantum system, this means, that the
parameters of the laser pulse, which is supposed to control the wavepacket, have to
be coded into genetic strings, as described in Appendix B.

2. A quality function has to be defined for the parameters to be controlled. This function
defines the fitness of an individual in the parameter space searched. This fitness
should be given as a single number between zero (completely unfit) and one (perfect
specimen). The definition of this function depends on the desired results.

In the scenario of the laser control of a quantum system, one normally has a defined
initial state |¢;), which one wants to drive into a known target state |¢). The laser pulses
acting on the initial state are encoded into genetic strings, resulting in the population,
which has to be optimized with the GA. The quality of each individual can then be defined
by the amount of population transferred by each pulse into the target state, i.e. if the field
of the n'" individual results in a time evolution operator ﬂn(t), acting on the initial state,
the overlap | <ﬂn¢)l @) | defines the quality function for the laser pulse.
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After the definition of the quality function for an individual laser pulse, a suitable
parametrization of the pulse has to be chosen. If one wants to model the experimental pulse
shaper used by Gerber [37], it would be necessary to split the pulse into the 128 Fourier
components, which can be addressed by the model used there. As this number of param-
eters results in an enormous parameter space to be searched, this type of parametrization
was not chosen for the following calculations. Instead, the laser is parametrized as a se-
quence of sin’~pulses, as defined by Eq. (2.144), which require only four parameters per
pulse: initial time ¢, length 7, amplitude F, and frequency w. For the models in the follow-
ing sections, a sequence of either two or three of these pulses is used, to allow for processes
like the pump—dump scheme sketched in Fig. 2.3.

1D Models

As a model potential in the one dimensional case, again the DM potential defined for the
driven tunneling in Section 3.1.1, both with the low and the high barrier, is used. To allow
the pump-dump type of reaction path, a sequence of two or three sin?-pulses is used in
this scenario, resulting in a total number of eight or twelve parameters, which have to be
searched. Within the GA used, each of these parameters is encoded into a 20 digit binary
string, resulting in 22° — 1 possible values for each of them. In this approach, a suitable
range has to be chosen for each of the parameters, to fix the grid spacing of the discrete
encoding. This shows the limitation of this approach: One can either choose a very large
interval, scanning a wide range of the parameter, but resulting on a rather coarse grid, or
narrow the range, giving a fine grid but limiting the flexibility of the pulse. In the first case,
one can generate unexpected types of pulses, but due to the large grid spacing normally
cannot reach very good control, as the optimal parameters normally lie between two grid
points. In the second case one has to do a preselection of the available parameter space,
which already prescribes a certain type of reaction path.

The first calculations are done for the low barrier system, without coupling to the
environment. The laser pulse is restricted to two sin?-pulses, while the eight parameters of
these pulses are allowed to vary in a wide range. The initial and final times of both pulses
is only restricted to fall within the total simulation length of 40000 //E)(~ 1ps). The
amplitude can vary between zero and 0.003E},/eap, and the frequency between zero and
4.5-1073E} /h. This upper limit has been selected, as the energy difference between ¥, and
U3 is only 4.2-102E}, /h, so any higher frequency pulse would pump into higher, undesired
states. So while the parameters can vary relative freely, here already a restriction based on
the previous knowledge of the eigenstates of the system is included into the calculations. In
the further calculations, an “unrestricted” parameter space is a set of parameter as above
for each pulse, with the upper limit of the allowed frequencies set to a value above the
barrier. For all GA calculations using two pulses, the number of generations was limited
t0 Ngen = 500 and the population size of each of these generations was just Npyop, = 5.

The target of the GA control is set to the population of the lowest vibrational level in
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Figure 3.30: The electrical field generated by the GA for the low barrier malon-
aldehyde model. In the lower panel the population dynamics induced by the field is
plotted (¥y: solid black; ¥3: dotted blue; Wy: dotted green; Wo: solid red). The pulse
parameters are given in Table 3.2 on page 115.
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Figure 3.31: The typical efficiencies of the laser control, generated by a GA, for the
transfer from the reactant to the product well. Panel a) show the efficiency of the
algorithm for an optimization of a two pulse laser in the low barrier case, as presented
in Fig. 3.30. In panel b) the optimization for the same pulse is tried for the high barrier
(Fig. 3.34). Here the pulse does not have enough parameters to reach good efficiency.
In panel c¢) nearly the same quality as in a) is regained by adding a third pulse to the
field (Fig. 3.36).

98



3.1. MODEL SYSTEMS

the target well, i.e. to |Uy|%. The resulting efficiency of the control is plotted in panel a) of
Fig. 3.31. One sees clearly, that the random starting population of pulses has a fitness of
close to zero. This could be expected, as the chance of starting with a good control pulse in
the large parameter space possible is highly unlikely. The GA then starts with its random
mutations and recombinations to improve the total fitness of the population. As the laser
control is very sensitive to small changes, i.e. a very small detuning from an optimal pulse
leads already to small efficiencies, the first improvements happen in relatively big jumps.
These occur, when one of the random mutations or recombinations by chance created
an individual close to the optimum. This pulse then either gets replaced by a completely
different specimen, which in turn was generated via random mutations, or slowly takes over
the population and slowly refines itself via recombinations. This happens mostly, when
the pulse is already close to optimal, and all big parameter variations would only lead to
a worse fitness. When this point is reached, only very small and infrequent increases in
the efficiency can be seen. The total population transfer reached with a two pulse scheme,
optimizing 8 parameters in a mostly unrestricted parameter space is 0.86. As the algorithm
has spend quite a long time on a flat efficiency plateau, it is unlikely, that a much better
pulse can be found. To reach 100% transfer, the values allowed by the grid in parameter
space, which is quite coarse, due to the large ranges defined, would have to hit the true
optimal values. This again is unlikely, so to increase the population transfer further, the
parameter space has to restricted to get a finer mesh size.

Even though the results are not perfect, one already sees, that an unrestricted GA can
generate good control pulses. Looking at the population dynamics in Fig. 3.30, one also
sees, that the field generated drives the wavepacket along a reaction path not found before.
(The pulse parameters for this and all following pulses are given in Table 3.2 on page 115.)
The driven quantum tunneling presented in Section 3.1.1 requires a form of the field, which
cannot be reproduced with the two sin?-pulses, so it is not surprising, that this is not found.
The GA manages to find a pulse, which does not follow the classic pump-dump scheme
U, — U3 — ¥, one would choose when designing analytical pulses. Instead, it tunes the
frequencies in such a way, that the transfer follows the path ¥y — U3 — ¥, — ¥,, using
one high frequency pulse for the pump ¥; — ¥3 and for the dump ¥, — ¥, and one low
frequency component for the transfer U3 — W,.

In contrast to this, it is possible to restrict the frequencies of the two pulses to a
parameter range around the values required for the process Wy — W3 — Wy, This is shown
in Fig. 3.32. Even though the allowed parameter range for the frequency now is much
smaller, the control efficiency increases only marginally. To reach perfect transfer, even
more restrictive ranges are necessary. What can be seen in the plot of the population
dynamics is, that now really only U3 is significantly populated, and the laser pulse consists
of two overlapping components with slightly different frequency.

In the next calculation, dissipation in the Redfield approach is added to the calculation.
The coupling is set to the value for weak system—bath interaction (o = 0.01); cf. Fig. 3.4)
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Figure 3.32: Same as in Fig. 3.30, only with a smaller allowed parameter range for
the GA. Instead of the full frequency range, the pulses are now limited to a narrow
region fitted to the pump—dump process ¥; — W3 — Wy, Color coding in this (and
all following pictures of this type) as in Fig. 3.30. The pulse parameters are given in
Table 3.2 on page 115.
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Figure 3.33: Same as in Fig. 3.30, only with added dissipation. The pulse parameters
are given in Table 3.2 on page 115.
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and the parameters are again allowed to vary freely, as for the calculations for Fig. 3.30.
The simulations for the driven quantum tunneling with dissipation showed, that popula-
tion transfer via higher excited states is not very efficient in the presence of system—bath
interactions. The same result is found by the GA. Even though the initial conditions are
exactly the same as for the first calculation, the algorithm now does not generate the re-
action path including ¥,. Instead, one pulse has an almost zero frequency, resulting in a
field very close to the plateau type field found for the driven quantum tunneling in Section
3.1.1. The second pulse drives an excitation into W3, from where the population decays
into both the reactant and the product ground state. This pulse corresponds to the first
part of the pump—dump scheme, where the dumping is left to the dissipation. Most of the
population transfer is driven by the “zero frequency” pulse, which avoids the higher excited
states. This pulse sequence generates a population of more than 0.72 in the target state
W, at the end of the total time. The field already stops halfway through the calculation,
to allow the population pumped into ¥3 to decay back into the ground state.

Moving to the model potential with the higher barrier used in Section 3.1.1, one sees
the first limits of the GA approach. After increasing the height of the barrier, and still
only allowing a sequence of two pulses with large, unrestricted parameter intervals, the
algorithm is not able to find a good control pulse to reach the ground state of the target
well efficiently. The limited flexibility of the 8 parameters does not allow a good reaction
path for this type of transfer. This can also be seen in panel b) of Fig. 3.31, which shows
that the calculation already has difficulties starting, spending several hundred iterations
finding the first pulse producing any kind of transfer. The final efficiency is only slightly
above 0.2, even though the initial state has been nearly completely depopulated. Most of
the population is pumped to higher levels, and not dumped into the desired state. For this
process, a much longer time would be required, as the states above the barrier are only
weakly coupled to the initial and target levels. To give the algorithm additional flexibility
in the available time, a third laser pulse is added to the system.

The initial calculation with the third pulse, using again an unrestricted parameter
space, produced no improvement of the transfer rate, but results in an efficiency of just
0.15. Looking at the laser field generated, and the population dynamics induced by it
shows, that the first pulse does not affect the system at all, i.e. the actual effect is that of
a two pulse control, with a third pulse just increasing the complexity of the GA. In fact,
if the algorithm is left some more time, the first, ineffective pulse is bound to mutate to
something useful, but the large parameter space available makes this very unlikely. As the
GA calculated for the same number of generations (Ngen = 500) as the previous runs, and
the size of each generation was already doubled to N, = 10, this can take quite some
time to happen.

Instead of continuing the search in the unrestricted parameter space, the ranges were
narrowed down to represent a pump—transfer—dump process along the eigenstates ¥; —
U3 — U, — WUy, The efficiency of this calculation is plotted in panel c) of Fig. 3.31. One
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Figure 3.34: The GA with only two laser pulses is not very efficient for the high
barrier model (cf. the efficiency plot in panel b) of Fig. 3.31). Even though the ground
state gets depopulated, the two pulses have not enough flexibility to reach the ground
state in the target well. The pulse parameters are given in Table 3.2 on page 115.
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Figure 3.35: A third laser pulse has been added to the GA, increasing the flexibility.
This in principle would allow for a better efficiency of the control found by the GA.
Still the result is worse than before, as four parameter are added to the search space,
resulting in a very slow convergence of the genetic search. The pulse parameters are
given in Table 3.2 on page 115.
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Figure 3.36: Limiting the parameter search to a region close to the reaction path
representing an excitation scheme in the form ¥, — ¥3 — ¥y — Wy finally regains
good control pulses. The pulse parameters are given in Table 3.2 on page 115.
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Figure 3.37: The same, parameter restricted search as in Fig. 3.36 only with dissipa-
tion added to the propagation. The pulse parameters are given in Table 3.2 on page
115.

can see, that with these restrictions on the parameter space the GA converges nearly as
fast as the two pulse scheme for the low barrier. The field finally generated consists of
two high frequency pulses, inducing the pump from ¥; and the dump into ¥, and a low
frequency one, coupling the tunneling doublet ¥3 and 4. The resulting efficiency is nearly
0.8. The lower yield compared to the system with the smaller barrier height is caused by
the fact that the high frequency pump/dump—pulses transfer some of the population to
levels above the third/fourth.

As for the low barrier system, the GA in the high barrier one is checked for its behavior
versus the inclusion of dissipation. Again, only a low coupling strength to the environment
is calculated (o = 0.01)\) and the parameters are kept restricted to the values of the
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Figure 3.38: A slightly different one dimensional model potential, was also used for
the GA calculations. This has a higher asymmetry than the one for malonaldehyde and
two different frequencies for the reactant and target well. Shown are the two lowest

doublets of eigenfunctions. The parameters used are: k; = 37.14Eh/a23, 1) = —0.45ap,
Ay = 0By, ky = 26.9E),/a%, 3 = 0.6ap, Ay = —0.05E},, k. = 4.3E),, C = laj' and
z. = 0.092a 3.

previous calculation. This time, the resulting laser pulse does not change its character,
compared to the calculation without dissipation, as the restrictions in the parameter space
do not allow too big deviations. (A calculation with an unrestricted parameter space
again led to extremely small efficiencies.) As in the case of the pump—tunnel calculations
for the driven quantum tunneling in Section 3.1.1 the fact, that one has to go to an
excited state, before the transfer can start, reduces the efficiency significantly. Otherwise
the dynamics still mainly follows the same reaction path as in the calculation without
dissipation (¥; — W3 — ¥, — W,), with some excitation to higher levels. For the
dissipative case, this higher excitation actually helps the transfer somewhat, as the decay
of the population goes partly into the correct well. One can also see, that at the end of the
calculation the population of W, is still increasing, as there is still some occupation left in
W4, which mostly decays into the ground state of the target well.

In addition to the already well studied model potential for malonaldehyde and its high—
barrier derivative, a different model potential was examined. While for the malonaldehyde
model, both sides of the DM potential have the same frequency, now a potential in the
form

V() = 5 (Vile) + Va(e) = T ) = Va()2 + 4k (315)

is used, describing the adiabatic coupling of the two potentials V;(z) and Va(z) with the
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Figure 3.39: The GA calculations for the model potential, using the same conditions
as for the calculation shown in Fig. 3.37, find a quite good control pulse, transferring
more than 50% of the population to the target state. The pulse parameters are given
in Table 3.2 on page 115.

coupling function k(z). By choosing harmonic oscillators with different frequencies for the
functions, one gets a DM potential with different local frequencies in reactant and product
states. This models a typical X — H---Y hydrogen bond system. The functions used here
are V,(z) = skn(z — 22)? + A, , n = 1,2 and k(z) = k.exp{—C(z — z.)?}. The resulting
potential has a higher asymmetry than the one used for the driven quantum tunneling and,
for a particle of proton mass, changes from an effective frequency of ~ 2400cm ! on the
reactant side to ~ 2000 cm~!in the product well. In Fig. 3.38 this potential, together with
the four lowest eigenstates is plotted. For the following calculations, the dipole is set to be
linear p(z) = pox with pg = 0.75€.

Applying the GA approach to this potential produced results comparable to the ones

108



3.1. MODEL SYSTEMS

Figure 3.40: Two dimensional model potential, used for the GA calculations. The
model potential from Fig. 3.38 is extended by a mode with an quadratic coupling to
the DM potential. The frequency of the added mode is 1200 cm ™! for a mass of 1im,,
the parameters used are k, = 2.9 - 1073 E}, /a%, ¢, = 50.

found for the high barrier driven quantum tunneling potential. Again a control with two
pulses has not enough flexibility to control a transfer reaction. The calculation with three
pulses only converges extremely slowly for unrestricted parameters, so that no good control
pulse has been generated from them. The calculations made with restricted parameters,
targeting the same type of reaction path as in Fig. 3.36, also produced similar results. The
main difference is a lower efficiency of this type of path, as the higher asymmetry lowers
the coupling between the wavefunction doublets in the two wells.

For a calculation including dissipation, this lower coupling also helps reaching a better
control efficiency. Using three pulses with restricted parameters, more than 50% of the
population could be transferred to the target state, as shown in Fig. 3.39. While the laser
pulse generated by the GA behaves like the one seen in Fig. 3.36, the population decaying
from higher excited states into the target well is trapped more efficiently, due to the smaller
coupling between the wells. On the time scale of &~ 1ps studied, this results in a more
efficient control scenario for the adiabatic model potential.

2D Models

As a final application of the GA, a look is taken at an extension of the 1d potentials of the
last section to two dimensions. For this, to the potential defined by Eq. (3.15) a harmonic
normal mode is added:

Vaa(,q) = V(2) + Vy(z, q) (3.16)
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Figure 3.41: Eigenfunctions in the 2d model potential. The eigenfunctions shown
represent the two lowest tunneling doublets from the 1d potential in Fig. 3.38, for
which the added mode is in its ground state.

with V;(z,q) = 3kq(q — ¢gz?)?. Here the coupling of the normal mode to the z coordinate
is of quadratic form. The resulting potential is plotted in Fig. 3.40.

If one stays in the stationary eigenstate picture to analyse the possible transfer from
one well to the other, one finds that the functions corresponding to the four lowest states in
the one dimensional model, with the added normal mode in its ground state, are still good
candidates for population transfer. These four levels again have the necessary properties
to try the pump—tunnel approach introduced in Section 3.1.1. In addition to this, one can
study, whether the added dimension allows the GA to find other suitable control strategies
not possible in 1d. What immediately comes to mind would be a reaction path exploiting
the fact, that the direct, i.e. straight line, transfer from reactant to product now sees a
higher barrier than a curved path, which requires moving also along the normal mode. To
follow this curved path, it is necessary to excite a wavepacket which also moves along q.

The GA calculations show, that the algorithm is not able to generate good control
pulses for the 2d system. The best control found after extensive searching, using both
unrestricted and restricted parameter spaces, is presented in Fig. 3.43, which shows an
calculation restricted to a parameter set close to allowing transfer via the levels shown in
Fig. 3.41. The population dynamics shows, that most of the transfer does not move via
the levels suitable for tunneling, but via a higher excited state (¥4), which also contains
no excitation of the normal mode coordinate. In Fig. 3.42, the IR spectrum shows this
normal mode only weakly, and due to its high frequency no vibrational progression can be
observed. If dissipation is included into the system, the efficiency reached depends mainly
on the maximum value of the allowed electrical field. The higher density of states, as
compared to the 1d system, decreases the lifetime of population in an excited state. The
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Figure 3.42: The stationary IR spectra for the two 2d models (IR spectra and lin-
shapes are discussed in more detail in Section 3.3.1). In the case of the high frequency
normal mode (left panel), one can only observe this frequency in its first overtone
directly. For the low frequency mode (right panel), one can observe a vibrational
progression added to the system frequency.

only efficient way to control the 2d dissipative system, which has been found by the GA in
this case, is to pump the population as far up as possible with the available field strength,
and then to rely on the dissipation into the target well to populate the desired target state.

The situation is even worse for the final 2d potential checked. This also starts with the
model potential Eq. (3.15), but with an additional low frequency normal mode, instead of
a high frequency one. In this potential, the lower normal mode frequency should increase
the chance of wavepacket excitation along it. The parameters used for V,(x,q) are k, =
2.9-10° E,/a% and ¢, = 500, resulting in a frequency of 120cm~!. The IR spectrum
of this model shows a small, but distinct vibrational progression, as seen in Fig. 3.42.
This system has such a high level density, that the targeting of a single state cannot be
done with the GA applied. The efficiency reached for such a control is plotted in panel
a) of Fig. 3.44. To get a more useful definition of the fitness of the laser, the efficiency
is redefined as the sum of the populations of all levels located below the barrier in the
target well. The resulting efficiency is plotted in panel b) of Fig. 3.44. While this shows,
that control is still possible, one looses any state selectivity, as each level summed into the
efficiency is weighted equally. The GA again moves the population mostly via states excited
along the model potential, with no component, and therefore no dynamics in the normal
mode direction. This shows, that the picture of exciting a scaffold mode to aid the proton
transfer is not valid for the models presented. The random search of the genetic algorithm
only selects population transfers via the much stronger coupled system mode, while the
weakly coupled (as seen from the IR spectrum) normal mode is ignored. For this method
to work, it would be necessary to have a strong dipole coupling along the scaffold mode to
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Figure 3.43: The electrical field generated by the GA for the two dimensional model
with high frequency coupling mode and no dissipation. In the lower panel the popu-
lation dynamics of the levels presented in Fig. 3.41 and the one higher excited state,
which is significantly populated are plotted (¥;: solid black; Wg: dotted blue; Wy:
dotted light green; Wy4: dotted dark green; Wsy: solid red). The pulse parameters are
given in Table 3.2 on page 115.
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Figure 3.44: Trying the GA for a 2d potential with a low frequency mode (120 cm™!)
results in a potential, in which the algorithm cannot target a single level efficiently, as
the density of states gets too high. This can be seen in panel a), where the efficiency is
the population of the ground state in the target well. For this one can set the efficiency
to a sum of level populations. In panel b), the total efficiency, resulting from the sum
over all levels in the target well below the barrier is plotted.
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get a good coupling to the laser field. For a proton transfer reaction, the main change of
the dipole happens for the movement of the hydrogen along the reaction coordinate. The
small movements of the scaffold do not induce a strong change in the dipole. Nevertheless,
there is still the possibility to transfer oscillator strength to the normal modes via a direct
mode coupling.

Conclusion

Extensive studies of the efficiency of the application of GA to laser control in one and
two dimensional models have been made in this section. The conclusions one can draw
from this show a limited range of applications for the usage of GA to search for optimal
laser pulses. For the calculations made for the 1d model system, the algorithms manage
to create good control fields, which could reproduce, and sometimes improve, the reaction
pathway used by the analytical pulses. These results can be generated without any previous
assumptions for the pulse parameters, as long as the target state is “easily” reached, i.e. the
quality value of an individual is significantly different from zero, even if the optimal set of
parameters has not be reached. This allows the recombination part of the GA to slowly
increase the efficiency of such individuals. If the potential gets more complicated and the
reaction path necessary is more complex, this is no longer given. In this case the quality
surface is mostly a plane at zero efficiency, with very narrow spikes of better values at
some parameters. Before the random mutations of the GA do not generate at least one
individual on one of these peaks, the search is more or less completely random. With
increasing size of the parameter space one needs bigger population sizes or a much larger
number of generations to reliably find a good set of parameters for an individual. This
is already apparent for the model systems with higher barrier and becomes obvious for
the two dimensional potentials. In these systems, more and more iterations produce an
ever smaller increase in efficiency of the final pulse. This is probably partly due to the
rather limiting parametrization of the laser field into three simple sin?>-pulses, reducing the
flexibility of the laser, as only three distinct frequency components are available. This can
be overcome by using a more variable parametrization of the pulse, e.g. using an approach
simulating the effect of a pulse shaper [37], as mentioned at the beginning of this section.
On the other hand, one has to see, that already the 12 available parameters represent an
extremely large parameter space, which can be searched for long time without hitting the
“correct” peak on the quality surface to climb (cf. Fig. 3.35).

The other main difficulty starting to appear with the 2d calculations, is again the limited
power of the computers. The main requirements of a GA is large number of generations,
to reach a good overall fitness of the population, and a population large enough to sample
enough of the available parameter-space at once. To evaluate the fitness of an individual,
a complete quantum mechanical propagation of the system is necessary. While this takes
only several seconds for the 1d systems, it takes in the worst case up to half an hour
to do this for the 2d system. The GA method applied requires around 10 individuals per
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generation and takes at least 100 generations to produce a relatively stable result. Both the
population and the number of generations are better larger than smaller. So a single run
requires at least 1000 evaluation of the quantum system, i.e. approximately 500 CPU hours
on an Origin3000 computer (R14000 CPUs) for the largest 2d model studied. Additionally,
with a large parameter space, it is quite likely, that 100 generations are far from enough
to find a satisfying result.

One of the smaller drawbacks is, that as long as one has not found an individual with a
perfect fitness, one can never be sure if the GA is finally converged to the best individual
available in the parameter space. Even after several generations producing no change, it
is possible to have a random mutation move to a better spot on the quality surface.

Even with these limitations, the application of GAs can be useful. The first criteria
is the time it takes to evaluate the quality of the system. If this is fast enough (always
depending on the computer resources available), it should be no problem to use a GA
to find an optimal control pulse. An other application would be the optimization of a
parameter set, which is only known approximately. This situation would allow to narrow
down the available parameter space sufficiently, so that only few generations of a small
population are necessary to produce an optimized result.

One should also note, that the structure of the GA allows the very efficient application
of parallel computers, as the quality of each individual of a generation is completely in-
dependent of each other. Therefore the time consuming quantum propagations necessary
for this evaluation can be spread to several processors, without needing complicated data
transfer.

As points for future work, the introduction of a more flexible laser pulse (e.g. one where
a large number of Fourier components is used as parameters, as it would be produced by
a pulse shaper) is probably the most interesting. Another area would be a more elaborate
definition of the quality function, beyond the simple population of eigenstates, as already
shown in Fig. 3.44. For instance, one could try to define the quality of a control pulse via a
functional similar to the one used in the inverse tracking algorithm (Eq. (2.153) in Section
2.5.4), which would allow to evaluate the total dynamics of the wavepacket with reference
to some reaction path, in contrast to the simple evaluation at the end of the control time
now.

3.2 Potential energy surface for the proton transfer
in 8—hydroxyimidazo[1,2—a]pyridine

For the study of proton transfer (PT) reactions, it is desirable to move away from analytical
model potentials, and use a surface generated only from quantum chemical ab initio data
points. In this section the potential energy surface for the PT in 8-hydroxyimidazo[1,2—
a|pyridine (HIP) is calculated using different quantum chemical methods. The molecule
was first studied in the group of Douhal [132], where the energies of the stationary points
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on a fully relaxed Hartree—Fock potential energy surface were calculated. The proton
tranfer reaction in this system is of special interest due to the fact that it involves a
charge separation, i.e. the two forms have a very different charge distribution and dipole
moment. In addition, the molecular system has the advantage of having a planar, very
rigid molecular scaffold, caused by the double ring structure, in contrast to other PT
systems, like malonaldehyde, where the whole molecule is very floppy. These properties
make the system interesting to study the effects of polar solvents on the PT process. In
[132], calculations for both the Sy and S state show the presence of two tautomers (enol
form and zwitterionic form). In Sy, the enol form is the most stable one, while in S the
zwitterionic one moves to the lowest energy. In both cases, the energy barrier is quite
high. Adding water as a polar solvent then greatly reduces this barrier and stabilizes the
zwitterionic structure.

The goal of the following ab initio calculations is to generate all the relevant parameters
needed to build a dynamical model, enabling a dynamical simulation for the PT reaction
in this molecule. In this section, the model is based on the calculation of an unrelaxed, two
dimensional potential energy surface (as described in Section 2.2) for the in—plane motion
of the proton within the HIP molecule. To this surface the harmonic normal modes of the
molecule are added, to generate a Cartesian reaction surface (CRS), as given by Eq. (2.35).

The starting point for the generation of this 2d potential surface is the calculation of the
most stable ground state geometries and the stationary points of the molecule. To identify
the relevant coordinates for the PT reaction, the reactant and product configuration of the
molecule, together with the transition state between the two, have to be calculated. To
determine the level of quantum chemical theory and the size of the basis set necessary, in
an initial step the fully relaxed geometries of HIP are compared for different methods. the
tautomers (E1, Z) and the transition state (TS1), as discussed in [132], are calculated using
the HF method, second—order Mgller—Plesset perturbation theory (MP2), as well as density
functional theory (DFT). For the latter method Becke’s three parameter hybrid functional
in combination with the Lee, Yang, and Parr correlation functional is used [78, 79]. Three
basis sets have been considered to study the effect of polarization and diffuse functions on
the hydrogen atoms, i.e. 6-31+G(d), 6-314+G(d,p), and 6-31++G(d,p). All calculations
have been performed using the GAUSSIAN94 set of programs [133].

The 6-31G basis set is a so called split-valence set, using a single contracted Gaussian
build from six primitive Gaussians for the inner shell atomic orbitals (see Section 2.1,
page 14), and a linear combination of a CGTF from three primitive Gaussians and one
with a single one (thus the notation 6-31G). The (d) denotes the addition of six d—type
Cartesian Gaussian functions on all heavy atoms (Li — Ca), and the (p) of further three
p-type polarization function on H and He atoms. The single + denotes a further addition
of four diffuse functions (s, p,, py, p.) to all non-hydrogen atom. These diffuse terms have
a very small orbital exponent, and are needed for accurate representation of long range
interactions. The two plus signs (++) add a single diffuse s—type function to all hydrogens
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Figure 3.45: The most stable isomer (enol E1) of HIP (C7HgN2O) as obtained from
DFT/6-31+G(d,p) geometry optimization.

as well [134].

The results are compiled in Table 3.3. It is known that the inclusion of electronic
correlation effects in the description of PT reactions can have a dramatic influence on the
energies, in particular for the reaction barrier. This can be seen in Table 3.3 where the MP2
and DFT energies are compared with those obtained from HF theory [132]. Apparently,
correlation effects decrease the HF energies by about 30%. One further notes, that in both
the MP2 and DFT calculations the inclusion of diffuse functions on the hydrogen atom
does not change the energies as much as for polarization functions. Finally, MP2 and DFT
methods give for the same basis set comparable energies, in particular for the reaction
barrier.

The optimized DFT geometry for the most stable tautomer (enol E1) is shown in
Fig. 3.45. The DFT obtained here and the HF results found in Ref. [132] differ by at most
5% in the predicted bond lengths. In addition to the configurations E1, TS1 (transition
state), and Z (zwitterionic state) reported in Ref. [132], a further tautomer E2 (enol) was
found, corresponding to an in—plane rotation of the hydrogen atom around the oxygen (C3—
O1-H1 bending). The distances between those atoms which are most affected by the PT
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Method | Basis set TS1 Z

HF 6-314+G(d) 0.06716 | 0.02306
6-31+G(d,p) 0.06674 | 0.02545
6-31++G(d,p) | 0.06674 | 0.02545
B3LYP | 6-31+G(d) 0.04576 | 0.01431
6-31+G(d,p) 0.04537 | 0.01629
6-314++G(d,p) | 0.04537 | 0.01628
MP2 6-314+G(d) 0.04723 | 0.01717
6-314+G(d,p) 0.04782 | 0.01946
6-314++G(d,p) | 0.04783 | 0.01947

Table 3.3: Comparison of energies using different methods and basis sets. Given are
the energy differences (in Hartree) of the configurations with respect to the enol E1
structure.

atoms E2 TS2 | E1 | TS1 | Z

C1-N1 | 1.36 [1.37] | 1.36 | 1.37 | 1.37 | 1.37
N1-C2 | 1.33 [1.34] | 1.33 | 1.33 | 1.33 | 1.36
C2-C3 | 1.43 [1.41] | 1.43 | 1.42 | 1.42 | 1.45
C3-C4 | 1.38 [1.36] | 1.38 | 1.38 | 1.40 | 1.43
N1-H1 | 3.85 3.501 | 237 1.23 |1.01
N1-O1 | 2.89 2.91 | 2.89 | 2.42 | 2.88
C3-0O1 | 1.36 [1.35] | 1.32 | 1.35 | 1.30 | 1.26
O1-H1 | 0.97 0.94 | 0.97 | 1.43 | 2.66

Table 3.4: Distances (in A) between atoms at the different stationary points and
transitions states. The available experimental values for the E2 structure are given in
square bracket [135]. For labeling see Fig. 3.45.
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Figure 3.46: Energies (in eV) for the stationary points as well as the transition states
obtained for the fully relaxed geometry optimization (solid) and the fixed substrate
calculation (dotted).

are given in Table 3.4 for all tautomers. The only available experimental data are for the
E2 structure [135]. Even though the latter have been obtained for crystallized HIP, where
the H1 atom forms an intermolecular hydrogen bond with the N1 atom of some other
molecule, the bond lengths for the heavy atoms are in good agreement. The transition
state, TS2, is found for a C3-O1-H1 bending angle of about 180°. The energetics of these
five configurations is shown in Fig. 3.46 (solid lines).

One can see, that the barrier separating E1 from Z is lower than that for the rotation
to E2. However, E2 appears to be more stable than Z. Nevertheless, at room temperature
there should be only a negligible probability for finding any other tautomer than E1.
Notice, that this situation might change in solution. For example, under neutral aqueous
conditions the zwitterionic structure appears to be favored [135].

In order to characterize the stationary points and the transition states a normal mode
analysis was performed. It has frequently been pointed out [124], that the low frequency
vibrations of the scaffold can have a strong influence on the PT. For instance, in the simplest
picture a O1-C3-C2 bending type of motion which reduces the PT distance might promote
PT. Table 3.5 gives all normal modes frequencies below 1000 cm™~! for E1 and Z. Those
modes which effectively modify the PT distance are characterized with respect to being of
stretch or bend type. One can see that, upon moving from E1 to Z, the changes of the

120



3.2. POTENTIAL SURFACE FOR THE HIP MOLECULE

mode | w (E1) w (Z)
1| 187 [O1-C3-C2-b] 168 [01-C3-C2-b]
2| 208 190
31272 [01-C3-s + 01-C3-C2-b] | 273 [01-C3-s + H1-N1]
4| 280 284
5 | 494 496
6 | 503 [H1-Ol-g] 521
7| 527 525 [H1-N1-C2-b]
8 | 556 [H1-Ol-g] 547 [H1-N1-C2-b]
9 | 590 597 [H1-N1-C2-b 4+ O1-C3-C2-b]
10 | 621 609 [01-C3-s]
11 | 641 641
12 | 698 658 [H1-N1-C2-b]
13| 702 702
14 | 731 713
15 | 759 738
16 | 860 831
17 | 885 839
18 | 885 883
19 | 926 938
20 | 938 955
26 | 1250 1240
42 | 3730 3750

Table 3.5: Normal mode frequencies (in cm™") on the fully relaxed potential surface
(below 1000 cm ') calculated with the DFT/B3LYP method. For those modes which
are likely to influence the PT a tentative assignment is given, based on the type of
motion of the O1 or H1: X-Y-s denotes a stretching vibration of the bond X-Y and X-
Y-Z-b a bending motion with respect to the angle enclosed by X-Y-Z. In these modes,
there are always other bonds moving as well. The last two lines give the modes closest
to the “pure” O1-H1 (or N1-H1) bending and stretching modes.

scaffold related normal mode frequencies are rather small. This indicates that in terms of
the reactant and product configurations the scaffold is only weakly affected by the PT. In
this respect HIP is rather different from more flexible molecules.

3.2.1 A Cartesian Reaction Surface for HIP

To develop the potential in the CRS formalism, one has to select suitable Cartesian reaction
coordinates, which describe the dynamics of the molecular system during the PT process.
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Figure 3.47: Two dimensional PES for the PT reaction in HIP. Each contour line
equals 0.015 Fy,, starting from zero energy at the E1 geometry.

As can be seen from the calculations of the reactant and product geometries, the only
large amplitude motion during the transfer is the in—plane movement of the hydrogen, the
molecular scaffold stays nearly unchanged for both configurations. In the following, the
in—plane coordinates of the proton is called x and y and the coordinate system is chosen
such that the z—axis points along the vector connecting the nitrogen (N1) with the oxygen
(O1) atom as labeled in Fig. 3.45. The z—coordinate of the hydrogen atom is neglected.
The substrate therefore includes 3N, — 3 degrees of freedom denoted R, following the
notation from Section 2.2, Eq. (2.35). The reference geometry, R(?), for expansion of the
substrate potential energy is set to correspond to the most stable configuration, E1, shown
in Fig. 3.45.

The next step is the calculation of the reference potential surface, V (z,y, R(?)), for this
fixed molecular geometry. For this, only the hydrogen is moved with respect to the frozen
molecular scaffold, and for the resulting configurations single point DFT calculations with
GAUSSIAN94 are performed, to find the corresponding potential energy. The potential,
resulting from a 2d-spline fit to the calculated points, is presented in Fig. 3.47. To reach
a good fit, without artificial secondary minima, which can be generated from fits to a
set, of too sparse points, 193 grid points had to be calculated in the region of interest.
As expected from the topology of the fully relaxed PES, V(z,y, R(?)) has three minima
corresponding to the E1, E2, and Z configuration. The energies at these points as well as
at the transition states are given in Fig. 3.46 (dotted lines). Since the substrate is frozen
all energies are higher than for the fully relaxed PES. However, in contrast to the latter
the barrier at TS1 is now higher than that at TS2. Also the energy of the Z tautomer
has increased much stronger than that for the E2 tautomer. Already at this point one can
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mode | w(E1) | w(TS1) | A, (TS1) | w(Z) | A, (Z)
1 208 189 0.00 | 121 0.00
2 257 244 0.00 | 204 0.00
3 322 310 0.00 | 308 0.00
4 469 326 41.50 | 392 0.49
5 496 465 0.00 | 496 0.18
6 540 504 0.33 | 543 0.00
7 554 937 0.05 | 9551 0.09
8 o972 550 0.00 | 572 0.00
9 646 611 1.54 | 633 0.00

10 674 630 0.00 | 655 0.54
11 830 664 0.06 | 675 0.00
12 868 835 0.13 | 710 0.08
13 898 855 0.00 | 711 0.00
14 916 912 0.02 | 743 0.00
15 959 956 0.00 | 838 0.00
17 1111 1104 0.05 | 882 1.24
19 1174 1172 0.00 | 1051 4.62
22 1311 1311 0.00 | 1134 5.76
23 1319 1319 0.20 | 1185 1.70
24 1357 1357 0.00 | 1231 1.49
31 1834 1832 0.03 | 1547 2.42
S A, 43.91 18.61

Table 3.6: Normal mode frequencies (in cm ') and reorganization energies (in
mHartree) on the CRS. Besides the low frequency (< 1000cm ') part of the spec-
trum those high frequency modes are listed, which have highest reorganization energy
in the Z configuration. In the E1 configuration the reorganization energies are identical
to zero.

therefore conclude that the force exerted on the substrate normal modes is much stronger
when going from E1 to Z on the CRS.

In the next step, the normal modes of the molecular scaffold, without the moving
proton, are calculated. In this section, only the normal modes at the stationary points are
examined, to get an idea about the dynamics of the scaffold at these points. Table 3.6 lists
the frequencies as well as the reorganization energies for those modes which are appreciably
coupled to the PT at TS1 and Z together with the < 1000 cm~! modes at the equilibrium
configuration, E1. The reorganization energies are calculated from Eq. (2.40). One first
notes, that the CRS normal mode frequencies differ from those of the fully relaxed surface.
This was to be expected, since the Hessian matrix has been diagonalized for the substrate
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Figure 3.48: The substrate normal modes coupled most strongly to the proton motion
at the transition state (TS1) and in the zwitterionic (Z) configuration.
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atoms only. Therefore, the character of the normal modes is likely to be different as well.
However, in particular high frequency modes involving the C-H stretching vibrations of
the scaffold are almost not affected by this reduction. At the TS1 state, the reorganization
energy for the n = 4 mode is by far the largest, i.e. it is most strongly coupled to the
PT. In Fig. 3.48 the displacement vectors along this normal coordinate are plotted. As
expected this mode is of C2-C3-0O1 bending type. This is in accord with the TS1 relaxed
geometry where the O1-N1 distance is 2.42 A as compared to 2.89 A at E1. There is a
second mode at 611 cm~! which also couples appreciably to the PT. It involves the motion
of the pyridine and imidazole rings in a way that the PT distance is modified in agreement
with the findings reported in [132]. The sum of all the displacement energies gives a hint
for the validity of the harmonic approximation. The energy of the completely relaxed
surface plus this total reorganization energy should result in the energy of the unrelaxed
surface. Looking at the values, this is in good agreement with the calculated values. At
the transition state TS1 the difference between the two potentials is 1.26 eV, the sum of
the reorganization energies is Y., A, = 1.2eV. In the zwitterionic configuration Z, the
potential difference is 0.55eV, the reorganization energies are Y., A,, = 0.51eV. So even
for the transition state, where the O1 atom is significantly displaced from its equilibrium
position the harmonic approximation is still valid. Therefore one can safely use only a
single reference geometry for the potential, a flexible reference it not necessary.

In the Z configuration the coupling to the two modes mentioned above is drastically
reduced. With the O1-N1 distance returning to 2.88 A on the relaxed surface this is
not surprising. In other words, with the proton moving away from its E1 binding site its
influence on the local vibrations there decreases. However, the relaxed geometry of the
whole scaffold is different in E1 and Z. This is reflected in the appearance of couplings
to modes involving mostly motions of the ring atoms. In Fig. 3.48 the n = 22 mode is
shown as an example. One can also see, that the vibrational frequencies are depending on
the reaction coordinates. This is most clearly shown for the n = 4 mode, whose frequency
decreases when moving to the Z structure.

For the reaction path moving to the E2 configuration, the picture is not so clear. In
this direction, no dominant normal mode was found. Instead, a multitude of modes was
distorted with comparable reorganization energy. This also is not very surprising, as, in
contrast to the PT from E1 to Z, this movement is a simple rotation of the hydrogen and
does not require the breaking and forming of bonds. One can also see in Fig. 3.46, that
the total reorganization energy of the E2 configuration is rather small, compared to the
other stationary points.

3.2.2 Laser Control Scenarios

After the calculation of the basic requirements of a CRS Hamiltonian for the PT reac-
tion in HIP, now a closer look is taken at the applicability of different control schemes to
this reaction. In Ref. [125] rather general requirements on controllable PT systems have
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Figure 3.49: In a) the dipole surface of the system calculated in the HF approximation
is shown. Each contour line equals 0.5 D, starting at zero and increasing in the direction
of the arrow. In b)-h) the eigenfunctions of the bare PT Hamiltonian which are suitable
for reaction control are plotted (cf. 3.2.1). In b) the three lowest energy states in the
respective geometries are shown. Pictures ¢) and d) give the tunneling pair 91 and @99
suitable for the tunneling transfer from E1 to Z. In e) and f) an equivalent pair (¢33
and p34) for the tunneling from E1 to E2 can be seen. Finally g) gives a delocalized
state (¢106) for a pump—dump type of transfer from E1 to Z and h) a similar state
(¢40) for this type of transfer from E1 to E2.

126



3.2. POTENTIAL SURFACE FOR THE HIP MOLECULE

been formulated. These are first checked for the fixed substrate, to see if the modeling of
the system can be handled by the proposed methods. One of the most important points,
namely the clear distinction between reactant and product states, is certainly fulfilled. To
demonstrate this, in Fig. 3.49 the wavefunctions for the energetically lowest vibrational
states in E1, E2, and Z are shown. The diagonalization of the two—dimensional system
Hamiltonian has been performed by the Fourier grid method, discussed in [99] and Ap-
pendix A.2. In the following the eigenenergies and eigenfunctions are denoted FE, and
©n (n=0,1,2,...), respectively. Starting from the E1 vibrational ground state, ¢, the
ultimate target states for isomerization control are the lowest vibrational states in E2 (¢5)
and Z (p17). In practice, however, most of the vibrationally excited states in the E2 and
Z configurations, which have energies well below the barrier are rather localized, i.e. they
can be considered as good target states as well. The approach using the eigenfunctions
in the potential for the frozen substrate is used here, as the process one is interested in is
supposed to happen very fast. Therefore one can keep the scaffold of the molecule fixed
and use a “sudden switching approximation” to analyze the possible laser control scenarios.

The success of laser control depends on how efficient the external field can interact
with the molecule. Within the semi-classical dipole approximation the value of the system’s
dipole moment is the decisive quantity in this respect. The dipole moment surface along the
reaction coordinates, p(z,y), has been determined within the DFT ab initio calculations
on the level of Hartree—Fock theory. The result is shown in Fig. 3.49. As expected the
variation of the dipole moment between the E1 and the Z configuration is rather large
(5.3D in the fixed geometry; for relaxed geometry values, see [132]). The change of the
dipole moment between the E1 and E2 structures is only 1.3D. In the vicinity of the
initial E1 configuration the gradient of the total dipole moment is dp/0z = 0.91 D/A and
op/0y = 1.93D/A.

The tunneling approach to PT control, proposed in Ref. [126] and examined closer for
the low barrier model case in Section 3.1.1 of this work, seems to be no good choice for this
potential. For this model, one has to apply a constant external field to the molecule. Its
amplitude is chosen such that the two lowest vibrational states on the reactant and product
side of the barrier are tuned in resonance. The dynamics of the localized superposition
of eigenstates created by the laser pulse then leads to tunneling. The time scale for this
process is given by the coupling between the two lowest states in a localized basis or by
the tunnel splitting in a delocalized basis. In view of the high barrier separating E1 from
E2 and Z in HIP this coupling is extremely small and tunneling takes an extremely long
time. Therefore the simple tunneling approach seems to be not appropriate for realizing
laser control of ultrafast PT in HIP.

For cases with higher barrier, it has been proposed in Section 3.1.1 and in [127], to
combine the tunneling pulse with a second, vibrational state selective pulse which excites
the system in the reactant configuration. This requires the availability of a vibrationally
excited state which is energetically close to the top of the barrier but still localized in the
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reactant well. In addition, to have efficient tunneling there should be a rather localized
vibrationally excited state on the product side which is close in energy to the excited
reactant state. In Fig. 3.49 the wavefunctions for the vibrationally excited states ¢q; and
g9 are shown, which would be suitable for the PT from E1 to Z using this scheme. The
transition energy from the ground state to yg; is 2.07eV. In order to estimate the pulse
parameters necessary for a direct excitation of this state, one has to consider only the
population inversion between the two states, g — @91. Thus any simultaneous excitation
of the neighboring excited states is neglected in the following estimates. This assumption is
reasonable if the spectral overlap of the pulse with the neighboring states is small. Further,
the laser field shall be switched on during the interval 0 < ¢ < T with the assumed form
E(t) = Eycos(wpt)sin®(tr/T). For these pulses, the area theorem [136] states, that for
resonant excitation the population inversion between these two states is obtained if the
pulse area, defined as

an T ’ / HmngOT
A= / = Hmntol 1
e [ ar e () = P (3.17)

is equal to m. Here, i, is the transition dipole moment matrix element between the
two considered states. For the present case 91 = 2.62 - 10~* D which would require
& = 1.47Ey/eay for T = 1ps. Provided the state ¢g; has been populated, the second
step of this control scheme, i.e. the tunneling, is initiated. The detuning between the
energy levels corresponding to the wavefunctions shown in Fig. 3.49 is Fgy — E9; = 9meV.
The constant field, £, necessary for triggering the complete population inversion follows
from &, = (B, — En)/(fnn — tmm) (from Eq. (3.4)), which in the present case is equal to
4.9-107* Ej, /eag. The tunneling time would be 7 = h/4 ||, = 939 fs [127].

Alternatively to these through—barrier control schemes one can explore the possibility of
an above barrier two—pulse pump-dump mechanism as put forward, e.g, in Refs. [125, 137].
Here it is required that, starting from the localized reactant state a delocalized intermediate
state can be excited by the pump—pulse. The dump—pulse then induces a transition from
this intermediate to some final localized product state. In Fig. 3.49 suitable delocalized
states for the pump-dump control of the E1 to Z (¢106) and E1 to E2 (¢4) reaction are
plotted. The former pathway requires a pump-pulse having hwy, = F196 — Fy = 2.19eV and
&y = 2.33 E}/eqyq for population inversion (7" = 1ps). The pulse parameters for excitation
of P40 are th = E40 - EO =1.44 eV and 80 = 1.65 Eh/€a0.

The energies needed for this ground state excitation is already a significant part of
the energy difference to the electronically excited state S, which is located approximately
6.5eV above the ground state Sy, as reported in [132].

Looking at the possibility of laser control from this eigenstate point of view, it should
in principle be possible to use either the pump—dump or the combined pump and tunnel
scheme to control the PT in HIP. The main requirements — namely the presence of well
separated reactant and product states and an energy difference between all possible prod-
ucts — are met. Therefore state selective control via the laser frequency should be possible,
i.e. one should be able to induce the molecule either to a rotation of the O—H bond into

128



3.2. POTENTIAL SURFACE FOR THE HIP MOLECULE

E2 or transfer the proton to the Z configuration by breaking this bond.

Unfortunately, this simple approach does not work for the HIP molecule. The problem
becomes obvious, by looking at the amplitude of the electrical field required to reach the
vibrational states needed for the transfer process. Due to the smallness of the transition
dipole matrix elements for the high overtone transitions, a complete population inversion
requires in all cases field intensities above 10'® W/cm?. This is of course far beyond the
energy which can be expected to ionize the molecule. Even the numerical simulations
cannot handle fields with this amplitude, as the potential gets distorted well beyond rea-
sonable limits. This prohibits a completion of the transfer process in the enforced time
limit of 1ps per pulse. Simply increasing this time significantly, to reduce the electrical
field required, was not considered as a suitable solution of this problem, as the control
process has to be faster than the effects of dissipation and IVR. While an isolated two-
atomic system might be controllable by using pulses of several 100 ps length, a molecule
coupled to the environment or containing couplings to molecular scaffold modes simply
distributes the incoming energy evenly to all degrees of freedom. A direct excitation of the
desired eigenstates is therefore not realistic. An alternative can be provided by vibrational
ladder climbing. Possible scenarios include the multi—pulse, multi-photon scheme as put
forward in Ref. [112], for instance, or the use of chirped pulses [138]. For example, the
complete population inversion of the transition to the first excited vibrational state of the
E1 structure would require a 1 ps pulse having an intensity of only 0.6 - 102 W/cm?. Due
to the number of levels to be climbed, this again is unrealistic due to the time required, if
dissipative effects are to be included.

Looking at the stationary IR spectrum of HIP calculated for the 2d potential surfaces,
one sees that only the O-H stretch vibration is significantly excited with the calculated
dipol moment. The O-H bending mode is not visible.

So far the influence of the orthogonal substrate modes has not been included into the
calculations. From the results discussed above, it is clear that a simple two—dimensional
description of the PT in HIP is not sufficient. Any simulation of the sub-picosecond
dynamics should at least include the n = 4 mode which modifies the PT distance and
therefore reduces the reaction barrier. While normally any coupling to other molecular
degrees of freedom is not desirable, as it leads to the distribution of the laser energy via
IVR, this mode could actually help the transfer, since it effectively reduces the barrier.
In order to estimate the possibility of a direct excitation of the n = 4 substrate mode,
the gradient of the total dipole along the ()4 normal mode in the E1 configuration has
been calculated. In linear approximation, a value of u(Q4) = 0.021Q4 was found. The
rather small gradient shows, that a control scheme building on a direct excitation of this
promoting mode might not lead to a very efficient isomerization.
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Figure 3.50: The stationary IR spectrum of HIP (IR spectra and linshapes are dis-
cussed in more detail in Section 3.3.1). One sees only a single line at the frequency
close to the O-H vibrational band. The other mode, which could be observed in this
2d model (i.e. the bending mode of the hydrogen), is not visible for the calculated
potential and dipol moment.

3.2.3 Conclusion

In this section, the necessary steps to develop a CRS Hamiltonian using ab initio data
for the PT in a real molecular system have been implemented for the HIP molecule. The
CRS was build for two Cartesian coordinates, allowing the proton to move freely in the
molecular plane and including all other vibrations of the molecular scaffold within the
harmonic normal mode approximation. One could see, that, as far as it concerns the
PT, there are three relevant tautomers. The more interesting PT pathway leads to the
zwitterionic state. This reaction has a significant coupling to a normal mode of C2-C3-01
bending type, while moving from the enol to the transition state configuration. During
these calculations, checks for the applicability of different control strategies for this system
were made in the frozen substrate approximation. From these, it was found that the
organization of the eigenstates would allow on first glance an isomerization control both
with the pump—dump as well as with the combined pump—tunnel scheme. However, the
highly excited vibrational states needed for the implementation of these schemes require
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such intense external fields to populate, that an implementation of these methods is not
possible. An efficient control with lower intensity lasers on the other hand, requires too
much time to allow the use of a fixed molecular scaffold. At the same time, one sees that
for this system the approximation of a frozen substrate is quite good, as only a few heavy
atom modes are coupled to the hydrogen motion, which would not be excited by a short
pulse.

For the future treatment of the PT in the HIP molecule, one can see that at least the
scaffold mode representing the C2-C3-0O1 bending has to be included in the dynamics of
the proton. If more modes are included, the system should be well suited for the study of
IVR processes, as only few modes couple to the hydrogen. For a complete analysis of the
IVR processes in the CRS aproach, it is necessary to calculate the full second derivatives
matrix K(z,y), at least in the vincinity of the E1 configuration. As these matices require
the same effort as a frequency analysis to calculate, the generation of the complete CRS
surface entails an enourmous amount of computational work. The high vibrational levels
required for the transfer in the frozen substrate approximation also show, that a transfer
only in the ground state is a difficult proposition. If one does not want to move via an
excited electronic state, vibrational ladder—climbing might provide the only alternative in
this respect, even after normal modes are included, which would turn the process into a
race against time, where the IVR processes compete against the control.

3.3 Laser driven deuterium dynamics in deuterated
phthalic acid monomethylester

In this Section, the required steps for the calculation of a CRS Hamiltonian from ab
initio data found in the last section are applied to the intramolecular proton dynamics
in phthalic acid monomethylester (PMME). This molecule is shown in Fig. 3.51 in its
equilibrium geometry. It was chosen for this study, because recent experiments by Stenger
et al.[30] demonstrated coherent vibrational dynamics of the O-H bond in this molecule,
using ultrafast IR, pump—probe spectroscopy. This indicates, that the movement of the
bond is modulated by lower frequency modes of the molecular scaffold, exactly the effect,
which the CRS Hamiltonian should be suited to simulate.

3.3.1 Stationary Infrared Spectra and Lineshapes

Before presenting the experimental results and the MCTDH calculations obtained for the
PMME molecule, a look is taken at the basics of spectral lineshapes. Some molecular
properties, especially the interaction between the different molecular normal modes, can
be described via the stationary infrared (IR) spectrum. This results directly from the
interaction of the molecular dipole moment & with an external field. To allow the theoretical
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Figure 3.51: The PMME molecule in its equilibrium configuration, as obtained from
a geometry optimization on the MP2 level of theory and a 6-31+G(d,p) basis set. The
atoms most important for the hydrogen transfer are labeled, and the bond Rp;_pg/p
is singled out as the reaction coordinate z.

description of such a spectrum, one has to employ the idea of linear response theory
(Ref. [61], Chapter 3 and 5).

Within this approach, the linear dielectric susceptibility of a quantum system can be
obtained from

X(t) = Trma©(t) (70" (o] iUmai(t) o) — c.c.) (3.18)

In this equation, ny, is the volume density of the molecule in the sample volume, O(¢) is
the step function, |¢g) is an eigenstate of the operator H,o1 of the system, with the energy
Ey and ﬂmol(t) is the propagation operator for the molecular system. In words, this can
be interpreted as multiplying an initial eigenstate of the system with the dipole operator,
propagating the resulting, non—stationary wavepacket in time, and calculating the overlap
of this propagated state with the initial wavefunction. The half sided Fourier transform of
this dipole autocorrelation function results in the absorption spectrum [61]:

a(w) ~ R [ dt e (ol iOma(t)i o) (3.19)

The lines of the stationary spectrum resulting from Eq. (3.19) are generated by the
vibrations of the molecule under the influence of an electric field. The lineshape reflects
some of the couplings between the normal modes of the molecule and their environment
(cf. Fig. 3.52). For the interaction between normal modes there are two main mechanisms,
with which they can interact:
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Figure 3.52: The two different approaches to the broadening of hydrogen spectral
lines. The left panel shows the approach of Robertson[25], in which an indirect coupling
is proposed. In this, the environment couples to the X — H---Y mode, which then
couples to the X—H vibration, resulting in a broad spectral peak. On the right the
model of Ratner[24] proposes a direct coupling of the environment to X-H, while this
vibration couples to X — H---Y and therefore shows a vibrational progression, which
is then hidden by the environmental broadening.

1. The movement along one mode can generate a coupling force in another one (anhar-
monic coupling). This results in the higher frequency mode (whign) to be accompanied
by a number of vibrational sidebands, separated by multiples of the lower frequency
(Wiow)- So in addition to the main line there are lines at Whigh + 1 - wiow; n = 1,2, ..,
similar to Frack—Condon progressions in electronic spectroscopy. This is shown in
Fig. 3.53a, where the vibrational progression and the red shift of the main line down
from w/2mc ~ 2350 cm ™! are clearly visible.

2. If multiple excitations of one mode exactly match the frequency of another one, there
is a resonance effect, producing a double peak, one red and the other blue shifted.
(Fermi resonance between, e.g., a bending overtone and the O-H fundamental vi-
brational mode.) An example of this is shown in the dotted spectrum of Fig. 3.53c.
In this, the peaks have strongly different oscillator strength, as the dipol moment is
oriented mainly along the fundamental O-H mode, but one sees that the lines are
shifted away from w/27rc ~ 2350 cm™", which is the frequency of the main mode and
twice that of the additional one.

3. If both effects are present, the spectrum will be modified by all the factors listed
above. This is shown in Fig. 3.53b and the solid spectrum in Fig. 3.53c. In this
last spectrum, one also sees, that the interaction of the low frequency mode with
the Fermi resonance is strongly affected as well. The spacing of the vibrational
progression gets smaller, and between the two main peaks (marked by the arrow) an
indirect coupling to the high frequency normal mode, which is not directly coupled
to the low frequency mode, becomes visible.
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Figure 3.53: Different possibilities for the influence of anharmonic couplings between
normal modes on the infrared spectrum. Panel a) shows a IR line at wpain/27c =~
2350cm !, coupled to a low frequency mode of wiyy/2mc = 100cm . The vibra-
tional sidebands, and the fact that the main line is red shifted, are clearly visible. In
panel b) an additional high frequency mode with wy;gn/27c = 1150 cm™! (uncoupled
to the low frequency one), is added. Two vibrational quanta in this mode are almost
in resonance with the base line, modifying the spectrum, pushing the base IR line
to a higher frequency. In panel c), the frequency of the second mode is changed to
Whigh [2me = 1175 cm™! , bringing its two quanta overtone excitation into exact reso-
nance and producing significant change in the spectrum. (See text, the arrow denotes
an indirect coupling, which is also visible later in Fig. 3.54.) For the dotted line, the
coupling to the low frequency mode is switched off. This shows the extent of the effects
this coupling has on the dynamics.

134



3.3. DEUTERIUM DYNAMICS IN PMME

0.16

0.12

Absorbance

0.08

0.04

2000 2200 2400
Frequency [cm™]

Figure 3.54: The experimental linear O-D stretching absorption spectrum of PMME.
The arrow denotes a possible indirect coupling as the one shown in Fig. 3.53c. (Re-
produced with permission from [30])

Both of these effects can contribute to the fact, that the spectral lines observed in complex
systems often consist of very broad peaks, as all the lines generated can be broadened by
the environment. So a double peak generated by a resonance, or a vibrational progression
of a very low frequency mode often results in a single, smeared out line in spectrum,
with all substructure lost. In Fig. 3.52, the two different approaches to the coupling of
these spectral lines to the environment is sketched out. In the indirect coupling model
of Robertson[25] the bath only couples to the normal modes, which then modify the O-
H vibration. If these broadened normal modes then couple to the O—-H, the spectrum
will only show a single broad band without substructure. The direct coupling model of
Ratner[24] proposes a coupling between the O—H vibration and the normal modes as shown
in Fig. 3.53, which then couples to the bath and gets smeared out. This will also result in a
broad band, but with a hidden substructure of possible normal mode couplings underneath.
If these are present, it is possible to observe them via coherent wavepacket excitations of
the normal modes with femtosecond spectroscopy, which motivates the experiments on
PMME described in the following section.

3.3.2 Experimental Data

In the experiment the carboxy deuterated derivative of the PMME molecule is used, to
avoid the interference of the C-H stretching modes with the observation of the O-D bond
vibration. For this PMME-D complex, pump—probe experiments in the mid—infrared were
performed, to study the dynamics of the O-D bond. The stationary IR spectrum of the
molecule is shown in Fig. 3.54. It shows some typical features of intramolecular hydrogen
bonds, namely strong broadening and a significant red-shift compared to typical harmonic
frequencies of an O-D vibration calculated via ab initio methods. Additionally, in this
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Figure 3.55: a) Temporal evolution (solid lines) and spectra (insets) of the two
dominant components from the pump-probe probe spectrum. Plotted is the time-
resolved absorbance change for a pump pulses centered at 2300 cm~! and probe pulses
at 2315cm™! | 2271 cm ™! and 2213 cm ™! (solid lines) and pump at 2100 cm ™! and probe
at 2028 cm™! (upper panel, dashed line). b) The Fourier transform of the signal in
the lower panel of a), together with the far infrared (FIR) vibrational spectrum of
PMME-D. (Reproduced with permission from [30]) ¢) The proposed excitation and re-
laxation processes for the pump—probe experiment of PMME [139], with the associated
timescales.

case the band shows a splitting into two main subbands. As the coupling of the O-D
bond dynamics to the other normal modes of the molecule cannot be derived from the
stationary spectrum, the pump—probe approach is necessary for this. The experimental
setup consisted of an infrared laser source providing pulses of duration ¢ = 130fs and 1 uJ
energy (approximately 1.3 - 101 W/cm?). The target molecule PMME-D was prepared in
a solution of non-polar C,Cly. Further details of the experimental setup can be found in
[30].

The results of the pump—probe measurements are shown in Fig. 3.55. There are two
main features visible in the absorption change, one showing an exponential decay with a
time constant of 7 &~ 400 fs, with weak oscillations superimposed. The second component
shows strong oscillations up to a time of t,sc =~ 1.5ps and a slow relaxation with a time
constant of 7, ~ 20 ps. From the experimental data, the decay time 7, was interpreted as
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Figure 3.56: Various conformations of PMME at its stationary points. The numbers
give the energies of the geometry, with respect to the lowest energy conformer, in cm =" .
The first number results from a MP2 calculation, in brackets the corresponding value
for a DFT/B3LYP calculation is shown. Both times, a Gaussian 6-314+G(d,p) basis

set was used.

the vibrational lifetime of the first excited state (vop = 1) of the O-D vibration. The other
time constant 75 was identified with the excitation and subsequent decay of low frequency
normal modes in PMME-D. This is shown in the levle scheme (Fig. 3.55¢) with the relevant
time constants. The key feature here is the fact that the system can return to a “hot”
vibrational ground state of the O-D bond, i.e. one where the bond is in the ground state,
but the molecular scaffold is in an excited state. This “hot” ground state can be observed
via the measurements of the coherent oscillations in the pump—probe spectrum. These
can be interpreted as a coherent excitation of a vibrational wavepacket in a low frequency
normal mode, caused by the laser pulse pumping the system from vop = 0 to vop = 1 and
then transfering energy to the molecular scaffold. Further details about the experimental
data and interpretations can be found in [30].

The challenge to the theory now is, to construct a suitably accurate model of the O-D
bond dynamics in PMME-D, to see if the interpretations of the experimental results can be
supported by quantum dynamical calculations. In the next sections, the energy relaxation
processes are modeled on the basis of IVR processes only, i.e. no dissipation to a bath is
included.

3.3.3 The CRS Hamiltonian

As in the calculation for HIP (Section 3.2), the calculation of the CRS Hamiltonian for
PMME starts with the analysis of the stationary states of the molecule, as produced by
quantum chemistry programs. In the following, all calculations are performed with the
GAUSSIANI8 program package [133] (example input files can be found in Appendix D.1).
To treat the hydrogen bonding correctly, the MP2 method, or alternatively a DFT with
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MP2 | DFT/B3LYP

bonds H-O1 | 0.983 0.992
0O1-C1 | 1.343 1.330

C1-C2 | 1.518 1.534

C2-C3 | 1.488 1.494

C4-02 | 1.235 1.229

O2-H | 1.702 1.539

angles H-O1-C1 | 111.2 1124
01-C1-C2 | 1194 120.2

C1-C2-C3 | 128.0 129.8

C2-C3-C4 | 124.2 124.9

C3-C4-02 | 1254 125.9

dihedrals H-O1-C1-C2 -9.4 -8.3
01-C1-C2-C3 | 38.9 25.3
02-C4-C3-C2 | -37.1 -23.8

Table 3.7: Equilibrium geometry parameters of PMME for the lowest energy con-
former from the MP2 and DFT/B3LYP calculations. Bond lengths are given in A,
angles in degree. The labels correspond to the ones given in Fig. 3.51.

the B3LYP functional are used. The basis set used for all calculations is a Gaussian 6-
31+G(d,p). The resulting most stable configurations are shown in Fig. 3.56 for the MP2
method, the energies relative to the minimum energy conformation are given therein for
both methods.

In Table 3.7 the geometry parameters of the most stable conformer, for the bonds and
angles relevant to the hydrogen bonding, are listed for both methods. One can see, that
the molecule is not planar in its lowest energetic state. From this, it easily follows, that
there is an isoenergetic enantiomer, created by mirroring the molecule on the plane of the
ring system. These two are separated by a planar (apart from the methyl group) transition
state. These states are labeled in Fig. 3.56 as E1 and E2 for the minima, and T for the
transition state between them. An additional isomer is the hydrogen—bonded rotamer R
with respect to the ester group, which is of much higher energy than E1 and E2. The
biggest difference between the MP2 and the DFT methods is, that the minimum energy
structure predicted by DFT theory is more planar than the one calculated by MP2, which
also results in a significantly lower barrier between the enantiomers. In the following,
the MP2 method is used to generate the CRS potential surface, as this is expected to
be a more reliable approximation than DFT. The MP2 results give a barrier between the
enantiomers of sufficient height to assume that the molecule remains localized in one of
the configurations E1 or E2. Configuration E1 was then chosen as the starting point
for the construction of a reaction surface for the dynamics of the intramolecular hydrogen
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bond, O1-D---02. The analysis of the stationary points also shows, that there is no stable
configuration with the hydrogen connected to the ester group. Therefore the dynamics
does not result in a true transfer reaction (as there is no second minimum to transfer
to), but only produces a vibration of the hydrogen bond. As the molecule is not planar,
the representation of this vibration in Cartesian coordinates either has to take all three
degrees of freedom of the hydrogen into account, or restrict the movement to reduced,
one dimensional reaction coordinate, only describing the length of the O-D bond. As a
frequency calculation at the E1 configuration shows a normal mode corresponding to an
almost pure OD stretching vibration, restricting the deuterium motion to one dimension
should be a good approximation for small amplitude oscillations.

Following these initial considerations, the CRS Hamiltonian is build for a Cartesian
reaction coordinate described by x = (z = Rop,y = 0,2z = 0) (i.e. the coordinate system
is rotated in such a way, that the x direction points along the OD bond, as indicated in
Fig. 3.51). The reference geometry Z(® for the harmonic normal modes, describing the
remaining degrees of freedom, is set to the E1 configuration (cf. Section 2.2, page 25ff).

The one dimensional reference potential, calculated with the MP2 method along the
defined reaction coordinate, is shown in the upper panel of Fig. 3.57. Also plotted are the
three lowest eigenstates vop = 0, 1, 2 resulting from the solution of the reference part of
the CRS Hamiltonian ﬂsys |6a) = Eq|pa). To solve the Schrédinger equation, the Fourier
grid method was used (Appendix A.2 and [99]). To allow the interaction of the molecule
with an electric field, the change of the dipole moment along this coordinate has been
calculated as well. The resulting dipole is nearly linear, with a value of pu(x = zeq) = 7D
and a slope of dy/dz =~ 1.6 D/ap at xey. From the level spacing in the potential one can see,
that this is clearly an anharmonic mode. While a harmonic mode would have equidistant
levels, in this case the level spacing decreases by more than 200 cm ™! when comparing w;
to wie. This potential would only be poorly represented by a harmonic approximation,
even though there is no real large amplitude displacements along it, due to the missing
second minimum. One can see from the eigenfunctions that the dynamics of the bond,
upon excitation to a state consisting of vop = 0 and vop = 1, can be expected to take
place within a range of about z¢q & 0.4ap around the potential minimum.

To build the normal mode part of the CRS Hamiltonian, the harmonic modes of the
molecular scaffold, without the moving deuterium, have to be calculated. For this, the
force constant matrix for the molecule has to be generated for each point on the reference
potential. The resulting set of force constants then has to be transformed following the
algorithm described in Section 2.2, page 25ff. The result of this is a set of matrices K(x)
and forces f, (), both depending on the reference coordinate 2. The matrices are diagonal
for x = 0, and then contain the square of the normal mode frequencies on the diagonal.
Moving away from the equilibrium, off-diagonal coupling elements start to appear. The
forces are all zero at x = 0, and only start to appear for a displaced deuterium atom. Taking
into account the possible displacement of the deuterium within the reference potential,
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Figure 3.57: In panel a) the 1d potential energy, calculated with MP2 and a 6-
314+G(d,p) basis set, along the reaction coordinate in PMME is shown, together with
the three lowest eigenstates. The coordinate system has been shifted by z¢q = 0.98 A=

1.85ap, to start at zero in the equilibrium position. Panels b) and ¢) show the effective
potentials for two of the normal modes, together with a characterization of the modes.
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Figure 3.58: Frequency and force acting on normal mode vo3 of PMME.

these normal modes for the CRS Hamiltonian have been classified with respect to their
reorganization energy (given by Eq. (2.40)) at the representative value o, +0.4ap. At this
point the mode with the strongest coupling is v»3 with a frequency of wy3/2mc = 985 cm ™!
The values of fo3(7) and (Ky323(x))!/? are plotted in Fig. 3.58. Both the force acting on
this normal mode, and its approximate frequency (given by the square root of the diagonal
element of the force constant matrix) show a strong change for smaller OD bond length.
This can be explained by looking at the character of the normal mode, shown in Fig. 3.57c.
Its main component is a displacement of the O in the OD bond toward the D atom. It is
clear, that this sort of movement is severely hampered, if the OD bond is shortened. Due
to the large forces resulting from this, one can assume, that for this region of the potential
the harmonic approximation breaks down. As is shown later in the dynamical calculation,
this region will fortunately not be reached by the wavepacket. This analysis has to be done
for each of the modes to be included into the CRS Hamiltonian.

Looking at the situation at zeq + 0.4ap, the total reorganization energy at this point
is Ereorg = 231 meV. More than half of this is located in the strongest coupled mode vy3,
which therefore strongly affects the dynamics of the hydrogen bond. As the experimental
results showed an oscillatory signal with a frequency of around 100cm ™!, in addition to
this mode, the strongest coupling one with a frequency below 200cm ! was identified as
v at w;/2mc = 68cm™!. These two modes (and all the ones added in further steps), are
listed in Table 3.8 with their frequency and reorganization energy at xeq + 0.4ap. The
vibrationally diabatic (VD) potentials Vg, (g,) for the two modes v, and v,3 are shown in
Fig. 3.57b and c. These potentials have been obtained from

Oul B l60) = Bt 3 (T 5 (00l Koal2)62) 62 = (0] (0 00 ) (320
- F, +Z(T + Vi (qn)),
where the mode coupling (o< K, (z)) has been neglected. These modes correspond to
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mode i | w;/2mc (em™!) | AE; (eV) | SPF grid (au) DVR (points) | added for
T 2370 - 7| -0.8-1.1 40 3d
Va3 985 | 1.273-10° | C, | -100.0 — 100.0 40 3d
n 68 | 9.469-1073 5 | -250.0 — 250.0 40 3d
Vs 147 | 8.572:1073 5 | -205.0 — 225.0 32 9d
Vs 201 | 8.925:1073 | Cj5 | -175.0 — 200.0 32 9d
vr 263 | 1.758-102 5| -175.0 - 175.0 32 9d
v 306 | 9.143-107% | Cy | -175.0 — 175.0 32 9d
Vi3 507 | 1.216-102 5 | -150.0 — 150.0 32 9d
Vg 7.537-107% | Cy3 | -125.0 — 125.0 32 9d
Ve 227 | 2.286:10 3 1| -200.0 — 200.0 24 19d
g 283 | 1.714-1073 1 | -200.0 — 200.0 32 19d
V1o 340 | 0.816-10~3 1| -150.0 — 150.0 32 19d
Vi1 412 | 3.810-10°3 1| -150.0 - 125.0 32 19d
V14 563 | 5.714-1073 1| -150.0 — 150.0 24 19d
V19 754 | 5.578-1073 1]-125.0 - 125.0 24 19d
Va0 846 | 4.898-1073 1|-125.0 - 125.0 32 19d
Vo1 861 | 0.544-1073 1|-125.0 - 125.0 24 19d
vos 1.769-10~3 1 | -100.0 - 100.0 24 19d
var 2169 | 2.694-1073 1| -100.0 — 100.0 32 19d

Table 3.8: All the substrate modes, which couple strongly to the reference potential at
z = 0.4ap. The modes are grouped according to the dimension of the calculation they

were included in, and list the grid parameters for the MCTDH program in columns

four (number of SPF, where C; means, that this mode was combined with the i*" mode
to a 2d SPF), five (range of the grid) and six (the number of grid points). Both the
bold normal mode and the sum of the two boxed ones are close to resonance to the
vop(0 — 1) transition, which could provide a good relaxation channel.
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extreme cases (vo3: strongest coupling, vi: lowest frequency), and can be used (together
with the reaction coordinate) to construct a minimal 3d model of the system. The two
modes contain already 57% of the reorganization energy at 0.4ap and include a low fre-
quency mode to introduce the oscillations of the system observed in the experiment. This
model is extended in two further steps: First six more modes with reorganization energies
greater than 6 meV (about 50 cm™!) can be identified which also influence the hydrogen
bond. These six modes are listed in the second block of Table 3.8. Together with the
first three, one now has a 9d model, which contains about 85% of the total reorganization
energy. For the largest model simulated in this work, the next 10 normal modes with
respect to decreasing coupling strength were selected to build a 19d model containing 96%
of the reorganization energy at x¢q + 0.4ap. From this one can see, that the remaining
energy is spread out in ever smaller portions over all the remaining modes. Adding further
modes brings no real improvement of the model, as the very small amount of energy not
assigned shows, that all further modes are more or less uncoupled and do not interact with
the oscillators already present at a time scale of below 2 ps. The models containing the
modes presented in Table 3.8 are all constructed without further approximations, i.e. all
off diagonal elements K, () coupling two modes present in the model are included in the
Hamiltonian.

3.3.4 MCTDH Results

The CRS Hamiltonians for the PMME models from the last section now are used in the time
dependent Schrodinger equation Eq. (2.41). Together with a suitable initial wavefunction
and a driving laser field, this will result in a dynamical wavepacket simulation for the
deuterium dynamics in PMME-D. As an exact solution of the high dimensional problem
is beyond the capabilities of todays computers, the problem is studied with the MCTDH
method, presented in Section 2.4.4, which is especially suited to problems in the form of
the CRS Hamiltonian (cf. page 49). The following dynamical calculations are performed
using the Heidelberg MCTDH program package [140], which provides a flexible way to
implement the CRS potential, generate initial wavefunctions, apply external fields to the
system and analyse the results.

The implementation of the CRS Hamiltonian calculated in the last section into this
program requires one further approximation step. Up to now the data for Vogs exists on a
grid of points (namely on the points for which the force constant matrix was calculated).
The MCTDH program requires the potential in an analytical form for the whole domain in
which the grid is defined. This makes it necessary, to fit the values obtained for K(z) and
f.(x) at discrete values of x to continuous functions of x. Therefore, all the data required
for a model was fitted to a set of polynomials (f(z) = Y, C,2™) or powers of exponentials
(f(x) =X, Cpexp{xnz}). The choice of the kind of function to fit to was guided by the
form of the data generated by the ab initio calculations. For instance, the forces for mode
Va3, shown in Fig. 3.58, are well suited for a fit to the exponential function. Most of the
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Figure 3.59: 2d cuts through the effective potential of PMME along the two normal
modes v and ro3. The cuts are for the 3d model, for each cut the cutting plane is at
a value of zero for the mode left out. The anharmonic coupling is nicely visible in the
upper panel.
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Figure 3.60: Stationary IR spectrum of the 3d PMME simulation. It results from
the Fourier transform of the autocorrelation function from a 5 ps propagation of the
dipole shifted ground state wavefunction. The rise for lower w is a numerical artefact
of the calculation.

other data could be fitted with simple polynomials up to fourth order.

The resulting analytical functions can then easily be included into the MCTDH package,
which then allows the analysis of the resulting multidimensional surface by plotting various
cuts of it. A set of exemplary 2d cuts through the 3d model potential is shown in Fig. 3.59.
For all the following calculations, the reaction coordinate x is represented on a grid from
—0.8...1.1ag with 40 points, as listed in Table 3.8. Example input files for the MCTDH
programm are given in Appendix D.2.

3d calculation

The first calculation for the PMME molecule are done for the 3d model, including only
the two modes 53 and v;. This is the only calculation, in which the reaction coordinate
was not combined with mode 53 to a 2d mode. Both modes have seven 1d SPF instead.
As an initial step to all further calculations, the ground state wavefunction of the CRS
Hamiltonian has to be calculated. This is done using a relaxation method in “imaginary
time” ([101] and note on page 42).

The zero point energy and the position expectation values for this ground state i)
are given in Table 3.9. Looking at the value for the reaction coordinate, one sees, that the
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3d | 9d (TDH) | 9d (MCTDH) 19d

ground state energy [eV] | 0.210 0.371 0.358 | 0.816
(z) [ag] 0.0345 0.0516 0.0434 | 0.0579
(qa3) 0.97 2.5040 1.88 | 3.29
(1) 11.29 |  14.8871 13.78 | 16.91
(g3) - -5.5724 442 | -6.90
(g5) - -3.6963 -2.93 | -4.44
(q7) - 4.2857 327 | 5.44
(q9) — 2.4640 2.02| 3.16
(q13) - 1.9558 1.44 | 252
(qo4) - -0.7246 -0.54 | -0.92
(¢6) — — | 272
(gs) - — | 113
(q10) - - ~| 0.70
(qu1) - - | -1.84
(q14) - - ~| -1.69
(q19) - - | -1.13
(q20) - - ~| 0.99
(go1) - - - 0.13
(q25) - - - 0.48
(qur) - - ~| -0.03

Table 3.9: The zero point energies and the positions on the grid of the ground state
wavepackets for the models of different dimensionality. The position expectation value
for the normal modes is given in coordinates mass weighted with the electron mass
[apy/Me]. () is given with respect to (zeq)-
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anharmonicity of the reference potential already results in a expectation value away from
zero. This, in turn, “switches on” the interaction between the normal modes, which would
be zero for x = Oag. As a result, the minima of the normal modes are also shifted away
from zero for the ground state. One sees, that the low frequency mode v, due to its low
force constant, is shifted by a much larger value than w53, even though its coupling to the
reaction coordinate is much weaker.

To generate a stationary spectrum for this model system, one has to follow the outline
given in Section 3.3.1. The eigenstate [¢)y) is multiplied with the dipole moment operator
of the system, and the resulting non-stationary state is propagated with the MCTDH
program without any external field. The overlap of the time dependent function calculated
with the initial function p |1)y) gives an autocorrelation function, whose Fourier transform
in turn gives the spectrum of the system. The results for this procedure are plotted in
Fig. 3.60. In this spectrum one can identify three contributions. The main peak visible
results from the transition from vop = 0 to rop = 1 in the reaction coordinate. The
smaller peak at around 700cm~'is the signature of mode v,3, which has been red-shifted
by its couplings to the reaction coordinate (as can be seen in Fig. 3.58, the frequency of
this mode decreases for = > 0), and its interaction with the low frequency mode. The last
contribution is from the mode v, which adds a weak vibrational progression to the main
peak. If one looks ahead to the higher dimensional models, for which these calculations
have been repeated, this result will, qualitatively, stay the same. All the additional modes
considered only introduce small shifts in the location of the peaks and overall broadening.
Due to their small coupling strengths and non—resonant frequencies, they add no further
structure to the spectrum.

Comparing the calculated with the experimental spectrum plotted in Fig. 3.54, one sees
only a single peak at the correct frequency but no splitting into two subbands is observed.
Only a slight vibrational progession is found. To understand this, one has to look at
the limitations of the model: The molecule is calculated with a fixed scaffold, only the
hydrogen is allowed to move. Therefore all other possible configurations of the molecule
are not included in the simulations. A configuration like the rotamer shown in Fig. 3.56
is not included in the model, althogh at the MP2 level they should not be populated
at room temperature. At the same time, the coupling of the hydrogen movement to a
normal mode vibration does not contain enough oscillator strength to produce the two
peaks of nearly equal height found in the experimental spectrum for this model. This
can be caused by a limitation of the model, e.g. a wrong frequency for a normal mode
resulting from the MP2 approximation, which moves the mode away from a resonance,
it can also point to the fact that another scaffold configuration, e.g. the rotamer, which
has a slightly weaker H-bond, could be responsible for this peak structure. In addition to
the fixed scaffold, the reaction coordinate was restricted to one dimension, disallowing any
movements away from the line given by the OD bond. Such a restriction normally results
in a potential with a higher frequency, than the one generated from a system allowed to
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move along all three degrees of freedom. In addition, the Fermi-resonance with the real
bending overtone might give rise to a double peak structure, as seen in Fig. 3.53c. In the
harmonic normal mode approximation, mode v,y reminds of a bending vibration which, in
the full 3d description, would have a frequency of 1460cm~"! and an overtone relatively close
to the O-D frequency. Another simplification is, that the dipole moment p has only been
calculated for the reaction coordinate. Due to this, the wavepacket p |ip) is only shifted
along this coordinate. All the oscillator strength in the normal modes therefore only results
from the couplings between them and z. Adding a dipole moment along the normal modes
as well might increase the signature of one of these lines significantly. Perhaps the biggest
difference between the model and reality is that the experiment has been performed in
solution, while all the ab initio calculations for the CRS Hamiltonian have been made for a
isolated molecule. This can change the character of some of the normal modes significantly,
e.g. hindering the large amplitude rotations of the ester group. Looking at the lineshapes in
Fig. 3.53, it would be enough for one normal mode to change its frequency into a favorable
resonance with the transition in the reaction coordinate, to generate a completely different
spectrum.

Keeping the limitations of the model in mind, the following calculations concentrate
on the excitation in resonance with the single peak generated by the simple 1d model.
This treatment will be justified by the reproduction of the periodic, coherent wavepacket
excitation in the results, which match the most most prominent experimental result, i.e. the
periodic modulation of the pump—probe signal. The next step therefore is the calculation
of the wavepacket dynamics with the CRS Hamiltonian. To do so, the CRS Hamiltonian
is augmented with a dipole term in the form

Heeoq = —p(x)E() with E(t) = Eysin?(nt/7) cos(Qt) (0 <t < 7). (3.21)

This type of excitation by a sin?-pulse was already used in the previous sections. For the
present calculation, the parameters of the pulse are: 7 = 300fs, Ey = 5 x 107 * E,/eap
and Q/27c = 2445 cm™! (fundamental vop transition in the 3d potential), as plotted in
Fig. 3.61a. This driving field only populates the first excited state in the reaction coordinate
appreciably.

In Fig. 3.61c-d the dynamics of the expectation values for the reaction coordinate and
the substrate modes 1y and r»3 is shown. The field induces a rapid oscillation in the
reaction coordinate, with a frequency corresponding to that of the vop = 0 — 1 transition.
One can see clearly, that the vibration is not moving around zero, but around the displaced
expectation value (z) = 0.0345ap calculated for the ground state wavefunction. The range
covered by the dynamics reaches approximately from -0.01 to 0.09 ap, while the variance
of the wavepacket oscillates slightly, but remains on average constant around 0.12 ag. This
shows, that the total system stays well localized around the potential minimum.

Due to the relatively strong anharmonic couplings between x and 1,3 in Vrs the fast
oscillations of (z) are imposed on the dynamics of (go3). This can be seen in Fig. 3.61c.
The force fo3(x) is acting in a way, that (ga3) is pushed to lower values if () is at the
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Figure 3.61: The development of the expectation values of the reaction coordinate
and the normal modes. The upper panel shows the laser field acting on the system,

which induces the dynamics. Panel b) shows the value and the variance of the reaction
coordinate z, the other two the expectation value of the modes v53 and v (in units of

[apy/me]).
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outer turning point. Overall the excitation of vo3 is rather small due to the large frequency
mismatch between these two coordinates.

Looking closely at the fast oscillations of (z), one can see that their amplitude is
modulated with a period of around 500 fs. This is caused by the anharmonic coupling to
the substrate mode v; whose dynamics is shown in Fig. 3.61d. This mode is only weakly
coupled to x, compared to 143, so it gets excited, but does not show a direct imprinting
of the fast oscillations in x on its dynamics. If one analyses the character of this normal
mode (shown in Fig. 3.57¢), one can see, that an increase of (¢;) causes a compression of
the hydrogen bond, which then is reflected in a decreased amplitude of (z).

A further analysis of the 3d model calculations showed only marginal values for effects
like energy and population redistribution between the modes. These processes are much
better visible in the calculations for the 9d model presented in the next section. Therefore
all the other methods to extract information from the calculation are presented there,
together with a short comparison of the results for the 9d system with the ones obtained
in this section for the 3d model.

9d calculation

As mentioned in the last section, the stationary spectrum of the 9d model produces no
qualitative difference to the 3d results. The only difference is a slight shift in the funda-
mental transition frequency vop = 0 — 1 to Q/27c¢ = 2430cm™" | which was used in the
following in the laser pulse driving the dynamics. The other parameters of the laser remain
the same.

Before the MCTDH calculation on the 9d model is presented, a look is taken at the
results from a TDH calculation with this 9d CRS Hamiltonian. This is done to show the
effects of the multiconfiguration approach on the dynamics.

As for the 3d case, the initial state is generated by relaxing the system to its lowest
energy state. The zero point energy and the mode expectation values for this state are
given in Table 3.9. As each additional mode adds its zero point energy to the system,
obviously the resulting ground state has a higher total energy than the one for the 3d
model. This also results in a wavefunction which has a larger energy component in the
anharmonic couplings than before, which in turn leads to higher values for (z), (¢;) and
(@o3), as shown in Table 3.9.

Starting from this initial function, the mode dynamics generated by the laser is plotted
in Fig. 3.62. One sees, that the basic features already seen for the 3d model remain the
same. The reaction coordinate is excited at its resonance frequency, oscillating around its
initial value. As a result of the stronger couplings, the amplitude of the vibration is higher.
The fast oscillation again couples directly to the dynamics of (ge3), while (q;) gets excited
at its own frequency. Looking closer one sees, that one feature of the 3d results is missing
from the TDH calculation. There is no noticeable influence of the dynamics of (¢;) on the
amplitude of the oscillations of (x). So even though additional modes were added, the 9d
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Figure 3.62: Same as in Fig. 3.61, only for the 9d model in TDH limit. The laser
field has been omitted, as it only differs marginally in frequency from the one shown
there.

model in TDH approximation shows less coupling between the modes than the 3d model
in a MCTDH calculation. Keeping this in mind, one can now move to the 9d MCTDH
results.

For the description of the 9d model, the possibility to combine modes into 2d SPF
was used, to increase efficiency. The mode combination reduces the size of the SPF basis
set required as correlations within the combined modes are treated explicitly [108]. At
the same time the total number of modes is reduced, decreasing the effort further. Of
course, this is partly offset by the larger size of the SPF's for the combined modes, which
now require the propagation of numerically exact 2d wavepackets. To treat the strongest
coupling in the 9d model explicitly, the reaction coordinate x has been combined with the
strongest coupled mode 153 using 7 SPFs. The combinations for the other modes have
been chosen based on frequency matching and using 5 SPFs: vy, (v3,v5), (v7,19), and
(113, v24). This, and the grid parameters used for the modes, is listed in Table 3.8 (page
142). This implementation results in a model with 5 MCTDH “particles” and a total of
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Figure 3.63: Natural orbital population (scaled to 1000=100%) for the combined
mode (z,143) in the 9d MCTDH calculation.

4375 (= 7 - 5*) configurations for the MCTDH propagation. To give a comparison, this
configuration requires the storage of 20615 000 grid-points (4375 configurations with 4712
grid-points each). Assuming the storage of the wavefunction in double precision complex
numbers, needing 16 bytes each, this requires approximately 315MB of memory. The full
grid, in contrast, would have 6.87-10' grid-points, needing on the order of 1PB of storage.

The relaxation with the MCTDH method produces a ground state, which is slightly
below the one generated by the TDH calculation. This is to be expected, as the multi-
configuration wavepacket is more flexible and therefore can find a configuration which is
closer to the “true” ground state. Due to the lower energy, the value of (z) is also lower,
resulting in lower mode couplings and overall lower absolute values for the (¢;), as can be
seen in Table 3.9.

To check the convergence of the multiconfiguration approach, one can take a look at
the natural orbital population (NOP) for each mode. These natural orbital can be seen
as a basis for the MCTDH wavefunction. They are obtained as the eigenvectors of the
operator pg-';) defined in Eq. (2.138) in Section 2.4.4. As with any basis set, there is in
principle an infinite number of them, but for the numerics, a finite subset has to be picked.
(For an exact definition of the NOP, see [108].) The number of orbitals for each mode
is equal to the number of SPFs provided for it. To check the quality of the set, the
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Figure 3.64: Same as in Fig. 3.62, only for the MCTDH calculation of the 9d model.

populations of all orbitals present have to be calculated, which is given by the eigenvalues
of the above operator. If the largest resulting population is larger than a threshold value,
one can assume that more orbitals are needed. This threshold is dependent on the system
and on the quantity one wants to calculate, but normally a value below 0.1% population
in the least important orbital can be considered safe. The development of the NOP for
the combined mode (z,vs3) is plotted in Fig. 3.63 for the whole propagation. One can
see, that the seven orbitals provided for this mode are quite sufficient for the initial state,
but for longer propagation times even the lowest orbital approaches a value close to 0.1%
occupation. This shows, that for longer propagations more and more SPFs are needed, to
treat the interactions between the modes correctly.

The mode dynamics, driven by the laser field, for this setup is presented in Fig. 3.64,
this time for an interval up to 2ps. Again the results do not differ much from the 3d
or 9d TDH plots, with two exceptions. The first is, that now the modulation of (x) by
the dynamics of (¢;), which has already been seen in the 3d model, can be seen even
more clearly. The other is the fact, that after the 2 ps propagation, one can clearly see a
decay in the amplitude of the (g;) oscillations. As both these effects have not been seen
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—

T=0 fs

T=325 fs

Figure 3.65: Two snapshots of the molecular scaffold for the 9d model, at t = 0fs
(top) and t = 325fs (bottom). In these pictures, the variance of the MCTDH functions
along the normal modes is translated back to the Cartesian coordinates of the scaffold
in the form of the different axis lengths for the ellipsoids representing the scaffold
atoms. (Figures curtesy of M. Dahlmann and C. Salzmann.)
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in the 9d TDH calculation, using exactly the same CRS Hamiltonian, these are obviously
multiconfiguration effects, which are neglected by the approximations made in TDH. The
displacements along the normal modes can be translated back to Cartesian coordinates to
visualize the scaffold movement caused by the laser pulse. Two snapshots of this movement
are shown in Fig. 3.65. In these pictures, not only the position of the scaffold atoms is
transformed back from the normal mode picture, but also the variance for each mode is
translated back to cartesian coordinates (Eq. (2.36)).

Ax =m ?UAq (3.22)

This is only an approximation, as the orientation of the variance is lost due to the fact
that the rotations and translation are not contained in the normal modes. Therefore one
has to define an arbitrary coordinate system, wihch will then form the different axes of
the ellipsoids used to represent the atoms. In these one sees, that the very low frequency
mode v, is responsible for the very large variance in the location of the hydrogens in the
ester group, i.e. the scaffold is very “floppy” in this region, resulting in widely spread ot
wavepackets. This can also be seen in the time evolution of the system. After 325fs the
ester group shows significant rotations, which are well visible in the wireframe edge-on
view in the upper right of the panels. This is the effect of the slow oscillations in the mode
v1, shown in Fig. 3.64.

After the analysis of the mode expectation values a more detailed view of the dynamics
is provided by inspection of the populations of the zeroth-order states and the energies of
the uncoupled vibrationally diabatic 1d potentials of the Hamiltonian. These values are
calculated for the potentials V.("(g,), as given in Eq. (3.20) for the eight normal modes
of the system, neglecting the couplings. For the energies, only the potentials for the
ground state of the OD mode are considered, i.e. only the expectation values (¥(t)|t,, +
vim (gn) [¥(t)) are calculated. The overlap with the zero order states also takes into account
the change of the potential when doing the transition vop = 0 — 1, so that the populations
are calculated for states of the form

\Ij(a)il...in (l‘, qiy - - - 7qf7 T/)a H ()On QTH - | > H nz(a)> ) (323)

where 1, is an eigenstate in the calculated 1d potential of PMME, and ¢(®? is the 4*h
eigenstate in the potential Vj,(g¢,), generated by the function in the reference potential for

mode ¢,. The values for the populations then are calculated via

Pagivein () = (Vg @, a1y, DT (3.24)

The definition of these zero order states allows one to address the substrate mode inter-
state and intrastate coupling. The strength of these effects can be assessed by estimating
the matrix elements <\I](a)i1...in H ‘\I](b)il...in> for the interstate and <‘I’(a)z‘1...in H ‘\I](a)il...in>
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for the intrastate transitions. If one neglects the rather small change in frequency for
the moment, i.e. sets (a| Kun(x)|a) = (b Kun(x) |b) = wy, the matrix elements can be
estimated as

(ol TL (i | HLTT i) 1) =
=3 () (i |k [ i) TT S,
k i#k

2 3 )y (0l ) (0t ) T 8, (3.25)
k,l i#k,l

and

(a TT (i | HTT i) la) =
Ea H 5nlml + Z 5nkmk €k
) k

- Z <fk>aa <nl(ca) ‘ dk ‘ml(cb)> H 6nzmz
k 1#£k

g 20 (K)o (s [mi”) (i [t [ i) TT S (3.26)
kyl ik,

—_

Within this approximation, the matrix elements for <n,(ca)‘ Qr ‘m,(cb)> can be estimated by

a | h
Uk
X (vmk + 1(Slk,mk+1 + \/mkélk,mk_l — 2gk(a)5lk,mk) . (327)

In this equations, the dimensionless shift between the VD potential curves is introduced as
gn(a) = —q\®\/w, /2R, with ¢'® being the shifted minimum position in state |a). Further,
FC(ng, lg, Aga) is the Franck-Condon overlap integral between two harmonic oscillators
displaced by Aga = gn(a) — gn(b) with respect to each other.

These estimates show, that the coupling between excitations of the O-D vibration and
excitations within the normal modes is determined by constants of the form (a| K, () |b)
and (a| fn(x) |b). As the shift of the minimum positions of the VD potentials is rather small,
the Franck-Condon integral takes on its maximum value for M,, = K,. This implies that
the coupling causes mostly transitions with AN = 4+1. The forces and coupling constants
for the modes of the 3d model, v; and 153 are given in Table 3.10. From these one can
see, that the strongest effect is generated by the constant (| fos(2) |¢)1), which is linear
in ¢o3. All other coefficients are at least one order of magnitude lower and only influence

the dynamics slightly.
Fig. 3.66 shows the populations P, ;,, ;.. for various VD zeroth-order states. Here the
subscript labels the VD state |a) and the respective vibrational quantum numbers of the
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Figure 3.66: Time evolution of the populations P,y;, . ;, (t) of vibrational states in
the VD potentials Vg4({g,}), under the influence of the laser plotted in Fig. 3.61. In
panel a) the first exited state of the reaction coordinate (¢ =1, iy = --- =14, = 0) and
in b) the corresponding ground state (a = 0,4 = --- = i, = 0) is plotted. Panel c)
plots the first excited state along the strongly coupled mode 143 for a = 0 (black) and
a =1 (red). The same for mode v; is shown in panel d).
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Figure 3.67: Expectation values for the uncoupled single mode Hamiltonians accord-
ing to Eq. (3.20), under the influence of the laser plotted in Fig. 3.61. Plotted is the
difference to the initial value of the energy at time zero, in cm~!. In the upper panel
a), the energy of the reaction coordinate is plotted. The dashed line shows an expo-
nential decay with 7 &~ 20 ps. The other panels show: b) mode v»3, ¢) mode v and
d) the six remaining modes.
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° (o] ® [1o) | (1] @ [11) | (Wo] f(2) |¢1)
Kii | 869:107% | 9.15-1078 6.37-10710

fi 8.82:1077 | 2.50-107° -1.66-10~°
Kzp3 | 2.01:107° | 1.95-107° 2.12-10°6
fos | 771107 | 2.15.10°° -2.00-10*
Kio3 | -2.82:10°% | -2.79-108 -1.62:10°%

Table 3.10: The expectation values of the forces and the second derivative matrix
elements, giving the coupling constants for eq. (3.25) and (3.26). All values are given
in atomic units.

mode. The quantum numbers of the other substrate modes are taken to be zero. In
the upper two panels a) and b) of this Figure, the population dynamics of the reaction
coordinate for vop = 1 and vop = 0, with the other VD modes in their vibrational ground
states. Here, the state coupling is reflected in the rapid out-of-phase oscillations of Pyo...
and Pigg... Simultaneously, the state Wgo.. is excited, for example, via a ANy3 = 1
transition as shown in Fig. 3.66¢, such that its fast oscillations are out-of-phase with the
dynamics of Pjg.... In contrast to this, the population P;iq. . shows, that the zero order
states are only an approximation, as this state is already slightly populated in the ground
state of the total wavefunction. Compared to Py, this value only oscillates around its
starting value, and does not show an overall increase via excitation.

The populations of the states Wqg;.. and Wyg;. (corresponding to v4), as they are shown
in Fig. 3.66d, are one order of magnitude below the one connected to v3 discussed above.
Their behavior follows the pattern already seen in the mode expectation values in Fig. 3.64.
While the strongly (via (fz3)) coupled mode vy3 oscillates at the driving frequency of the
OD bond, the vibrations of v; are only slightly modulated by this, while the main dynamics
takes place at the low frequency of this mode. At the same time, one can observe a decay
of the maximum amplitude for the population P, while at the same time Py is
increasing. This shows the decay of the first excited state of the reaction coordinate back
to the ground state. The decay is also visible in panel a), which shows a slow decay of
the population. At the same time, Py, is increasing. As both processes take place at a
different rate, with the decay of Pjgg... being faster, one has an indication for a complex
pattern of vibrational energy redistribution into other modes. For this, the substrate mode-
mode coupling terms are of importance as well. Additionally, the influence of the remaining
modes on the OD dynamics leads to low-frequency modulations of the populations, which
can also be seen in Fig. 3.66. In principle, in this representation all substrate modes
are vibrationally excited in both VD states. This obscures a clear interpretation of the
low-frequency modulation in, for instance, Pjgp... It should be noted that in terms of
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the dynamics the population of these vibrationally excited VD states reflect nuclear wave
packet motion in the different VD potentials of Fig. 3.57. However, the present situation
appears to be more complex as compared to the case of simple vibronic excitation due to
the relatively strong interstate coupling.

Further support for the IVR processes taking place in this mode can be seen from
the behavior of the expectation values (F;—,,) of the uncoupled Hamiltonians defined
by Eq. (3.20). In Fig. 3.67 this behavior is plotted for the reaction coordinate, the two
modes 153 and v; and the sum of all the remaining modes. The energies are plotted as
their difference from the initial value in units of cm™'. For the reaction coordinate (E,)
in Fig. 3.67a, one can see an initial increase due to laser excitation and subsequent slow
decay. The fast oscillations are again due to the coupling to the 53 mode as can be seen
by comparison with (Fy3) in Fig. 3.67b. The slower modulations apparent in (E,) and
(E93) are mostly due to the interaction with the v, mode, whose energy (E;) is plotted
in Fig. 3.67c. This mode again is not influenced strongly by the fast oscillation of the
reaction coordinate, but follows its own vibration period of about ¢; = 500 fs. The process
of IVR from the reaction mode to the other modes can be seen from the decay of (E,)
and the parallel increase of (Fy3) and the total energy of all the remaining modes (Eyest),
plotted in Fig. 3.67d. The dashed line in Fig. 3.67a shows an exponential function with a
decay time of 7 = 20 ps, which is the time—constant for the IVR processes in the isolated
9d model. Most of this energy flows into the mode 153, while the rest is distributed over
all other vibrations of the scaffold.

What can also be seen from the energy expectation values of the energy, especially from
(Es3), is the fact that the MCTDH algorithm starts to decrease in accuracy after the first
picosecond. While a part of the “ragged edge” of the energy oscillations is due to the small
number of sample points, a part of this is caused by the limited accuracy of the numerics
and the only approximate treatment of the intermode couplings. Calculations for a longer
time would therefore need additional SPFs to increase the quality of the results.

19d calculation

The 19d model for the PMME molecule is an extension of the 9d model in the previous
section. To the nine modes, combined in the same way with the same number of SPFs
as in the smaller model, additional 10 modes (given in Table 3.8) are included in TDH
approximation, i.e. uncoupled and with one SPF per mode. This means that the number
of configurations in the MCTDH calculation remains at N = 4375, as in the 9d case. The
initial, ground state wavefunction for the dynamics are again generated by a relaxation
method. The resulting mode expectation values are given in Table 3.9. Following the
trend of the previous results, the zero point energy is again higher, leading to a higher
offset in () and therefore slightly higher displacements in all other modes (g;).

The laser pulse used for the 19d model has the same parameters as that for the 9d one,
with the exception of the frequency, which again is slightly shifted to Q/27c = 2355c¢m 1.
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Figure 3.68: Same as in Fig. 3.61 and Fig. 3.64, only for the 19d model.

The results for the propagation are plotted in Figs. 3.68 (for the mode expectation values),
3.69 (for the zero order state populations) and 3.70 for the mode energy expectation values.
The plots show no additional effects of the increased number of modes, beyond the trends
already identified in the previous calculations. The most prominent change is that the
higher energy in the anharmonic couplings again lead to a larger amplitude of the high
frequency oscillations coupled to the reaction coordinate. On top of that, no qualitative
change of the dynamics could be observed.

This shows, that the 9d model already includes all the important modes, which influence
the dynamics of the molecular vibrations. All further modes, which could be included, are
too weakly coupled and do not change the result significantly. Additionally, all modes
beyond the ones of the 9d model can only be added efficiently in the TDH approach, as the
numerical effort of the MCTDH method is limited by the number of configurations resulting
from a high number of SPFs in multiple dimensions. Even with this simplification, this
larger model is at the limit of the capabilities of the available computers. As no new effect
are to be expected on this time scale, the calculations were not extended to a converged
MCTDH basis set for the 19d Hamiltonian.

161



CHAPTER 3. APPLICATIONS AND RESULTS

| | |
0.020 500 1000

t[fs]

Figure 3.69: Same as in Fig. 3.66, only for the 19d model.
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Figure 3.70: Same as in Fig. 3.67, only for the 19d model.
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3.3.5 Molecular Dynamics Calculations for PMME in Solution

The energy and population relaxation times found with the MCTDH simulations in the
last section are much longer than the experimentally observed decay of vop = 1 — 0 with
a time constant of 7T} =~ 400fs. This points toward a strong influence of the solvent on
the mode relaxation of the PMME molecule. To get an idea about the effects generated
by a solvent shell, a molecular dynamics (MD) calculation is made for a PMME molecule
in solution. A short overview over some aspect of MD simulations is given in Appendix
C, but a more detailed review can be found in the literature [141, 142]. For most of the
following calculations, the Gromacs program package (V2.0) [143, 144] has been used.

To determine the interaction of an external solvent on the relaxation processes inside a
molecule, the theory of linear response [61] has to be used. With this, one is able to relate
the classical forces acting on parts of the molecule to the reservoir correlation functions of
the reduced density matrix theory, presented in Section 2.3.3, page 37. This correlation
functions are directly connected to the effective population relaxation time 7}, describing
the exponential decay constant for the dissipation of energy from a harmonic oscillator to
the bath [98, 145, 146]. It should be sufficient to study the harmonic approximation, as
the CRS Hamiltonian in this work consists only of a nearly harmonic (at least near the
minimum) reaction potential, and a set of harmonic normal modes. For this setup, the
relaxation time 7 for an oscillator of frequency wy can be calculated from

1 tanh(Bhw/2) ((w)

T, Bhw/2 2 (3:28)

with 8 = 1/kgT and the friction spectrum
C(w) =2 /0 7t C(t)cos(wt). (3.29)
The friction spectrum is the Fourier transform of the time dependent friction, defined by
Ci) =2 (FFO)), (3.30)

with the u the mass connected to the coordinate and (F'(¢)F(0)) the classical correlation
function of the force along the relevant coordinate [98]. This force—force autocorrelation
function is the data, which can be provided by a classical MD simulation. As explained in
Appendix C, the forces on each particle have to be calculated for each MD step anyway, so
to generate the relevant autocorrelation function, one just has to have direct access to this
data, and project the resulting force on the desired effective coordinate (i.e. a molecular
bond or a more complex normal mode).

As a solvent for the PMME molecule CCly was chosen, as this molecule is a bit easier
to handle than CyCl,, which was used in the experiment. The MD parameters for this
molecule are the default values from the Gromacs program and the literature [147, 148].
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Figure 3.71: The PMME model for the MD simulation. All hydrogen atoms, except
the one responsible for the hydrogen bond, are removed and included in combined
heavy atom centers.

N N

Figure 3.72: PMME surrounded by the CCly solvent molecules. Ones can see, that
the solvent is packed extremely tight around the solute molecule.
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Furthermore, the usual procedure for a MD simulation is to combine all H atoms not
directly relevant to the calculation with neighboring heavy atoms to so called combined
centers, to avoid the small time-steps needed for the propagation of the light particles. The
PMME model resulting from this approximation is plotted in Fig. 3.71, where only the
hydrogen relevant for the intermolecular hydrogen bond is left uncombined. This simplified
PMME molecule is set into a cubic box with 724 CCl; molecules. The size of the box is set
to an edge length of 5A, with periodic boundary conditions. This reproduces the density of
CCly from the literature [149], and produces a solvent environment large enough to result
in several solvent shells around the PMME molecule. The temperature of the bath is set
to a value of 300 K. To implement the linear response theory given above, the molecular
geometry has to be kept fixed during the calculations. While this is normally done by
defining a set of constraints, which keep all the bonds and angles in the molecule fixed,
but allow rotation and translation, in this calculation simply the whole PMME molecule
is frozen in place. This prohibits the rotation, but removes the effort necessary to generate
a suitable set of constraints, which can be difficult for systems containing planar rings.
In these systems, a constraint method can also lead to numerical instabilities, which are
avoided by fixing the PMME completely. The effects of this simplification should be rather
small, as the solvent is very dense, and would not allow large translations or rotations
anyway.

In addition to the standard MD procedure of using combined atoms for the light hydro-
gens, the parameters for the Lennard-Jones interaction potential for PMME is set to the
standard values provided by Gromacs, which in turn are taken from the GROMOS molec-
ular modeling package [147]. In addition to the LJ interaction, each atom in the molecule
carries a partial charge, which can result in Coulomb interaction with the solvent. The
partial charges in PMME are calculated within standard quantum chemistry already done
for the system. The default method of GAUSSIAN to calculate the charges is the Mulliken
method [134]. This approach is easy to calculate, but the results are often not accurate
enough for MD simulations, as the strong Coulomb forces often dominate the dynamics,
and therefore require highly precise charges. Therefore, the partial charges of a molecule
to be treated with MD simulations should be calculated via a more refined method. What
is normally used is called CHELP (Charges via Electrostatic Potential) [150], which fits
the potential generated by a set of point charges to the one generated by the electronic
wavefunctions. In this specific simulation, the partial charges do not play any role, as the
solvent is not polar, i.e. all atoms of the CCl; molecule carry a charge of zero. Because
only a single PMME molecule is used, and the atoms within a single molecule are only
allowed to interact via bond forces, there is no Coulomb interaction in the whole system
of PMME and solvent. A sample input for Gromacs can be found in Appendix D.3.

The simulation with these parameters does not allow a good representation of the forces
acting on the single proton in the reduced PMME model. For non polar environments there
is nearly no interaction between the proton and the surrounding molecules, as the LJ forces
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between the hydrogen and the solvent are zero. In further analysis of the model it turns
out, that the frequency of the O-H vibration is much to high for the coupling to the solvent
to lead to a relaxation time on the order of 2 ps. Therefore the relaxation observed in the
experiment has to be explained with processes involving other normal modes and the T}
time of the O—H coordinate is of no direct interest.

What can be calculated with small errors from the simulation, is the force acting along
the normal mode coordinates of the two most relevant modes, v; and v»3. The error results
from the simplification with the combined atoms, which means that the forces calculated
for the MD simulations do not act on the same scaffold, as the one defined by the normal
modes. But as the displacement vectors on the hydrogens are relatively small for the two
modes considered, this should only produce a small offset from the actual value.

To produce a useful force-force autocorrelation function, it is necessary to average over
the results of several MD runs with independent starting conditions. At the same time,
the total length of the runs has to be long enough to result in a “clean” Fourier transform,
i.e. one where the true vibrational effects of the solvent are larger than the numerical noise,
which always accompanies the statistical forces of a MD simulation. A longer autocorrela-
tion function also increases the accuracy of the discrete Fourier transform. The following
calculations are based on 30 MD runs with a length of 30 ps each. For each of these runs a
new set of random solvent velocities, consistent with a temperature of 300 K is generated.
Before the MD simulation for the autocorrelation function is started, the configuration
is equilibrated for five additional ps, to guarantee a statistical distribution of the solvent
molecules.

The classical MD forces acting on the PMME scaffold shown in Fig. 3.71 are then
extracted for each time step of the simulation, and projected on the normal mode vectors
for 11 and vp3. For this projection the forces on the hydrogens not included in the MD
model are set to zero. The autocorrelation function of this force, averaged over all 30 runs
is presented in the upper panel of Fig. 3.73. The friction spectrum resulting from these
functions, according to Eq. (3.28), is presented in the lower panel of the same Figure. In this
plot one can see, that the non—polar solvent produces nearly featureless spectrum, without
any significant peaks. The oscillations visible in the autocorrelation function result in the
numerical noise visible in the spectrum below 100cm '. The other features visible are
several small peaks around 700 cm~!. These correspond to the principal C—Cl vibrations
of the classical CCl,; model. According to this results, the T} time of the 153 mode, which
samples the spectrum at 985cm™", is on the order of ~ 100 ps, i.e. the mode couples only
weakly to the solvent at its natural frequency. In contrast to this, 1y samples its friction
spectrum at 68 cm !. Therefore, even though its spectrum is nearly identical to the one
for vsg, its 17 time is on the order of ~ 2ps, which is a little too long compared to the
experimental value of ~ 500fs. To get better results for this time, it would be necessary
to average over even more MD runs, as the frequency of the v; mode falls in the region of
the strong numerical noise at the lower end of the spectrum.
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Figure 3.73: The upper panel shows the force—force autocorrelation function of the
solvent, exerted on the normal modes v (black) and 43 (red) of PMME. In the lower
panel the spectrum of these functions is shown, scaled to the inverse lifetime [ps~!] at
the relevant frequency.
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3.3.6 Conclusion

In this section, for the first time extensive simulations for a “real life” molecule using the
CRS Hamiltonian were presented. To build the Hamiltonian, only data from ab initio sim-
ulations has been used, and the dynamics of the system has been calculated in the MCTDH
method. The simulation of the Hamiltonian was implemented for models with different
numbers of dimensions, to test the behavior of a multidimensional CRS Hamiltonian and
the performance of the MCTDH method. The approach to build the Hamiltonian was
simplified by selecting only a single reaction coordinate, so that only along this straight
one dimensional line the second derivative matrix of the molecular system had to be de-
termined. This simplification makes it possible to calculate only on the order of 10 ab
initio points to define the total reaction potential and the normal modes for it. This is in
contrast to the nearly 200 points necessary for a good 2d potential in the HIP molecule. At
the same time, the quantum chemistry showed, that the PMME molecule has significantly
different geometries and energies, when treated with DF'T methods, compared to the MP2
calculations. Therefore the computationally much cheaper DF'T method cannot be used to
build the CRS Hamiltonian in this case, and the more accurate, but much more demanding
MP2 approach had to be used. As each point on the reaction surface took about one day
to calculate on an Origin3000 computer (R14000 CPUs), one can quickly see, that the one
dimensional limit is the only way of getting results for this kind of system (i.e. one, where
the DFT methods are not reliable) in a reasonable time.

The second derivative matrices of the molecular potential at the points on the reaction
surface then give all the necessary data to build the CRS Hamiltonian from the harmonic
normal modes of the molecular scaffold. This form of the Hamiltonian, as already pre-
sented for the HIP molecule, allows the treatment of the PMME molecule in nearly full
dimensionality. The only degrees of freedom, which are neglected are the two coordinates
of the hydrogen, which are kept fixed. It was shown in [151], that it is possible to treat
this nearly full dimensional PMME model within the TDH approximation. This large
number of dimensions cannot be handled by the more accurate MCTDH method, which
was applied in this work. Therefore, it was necessary, to select from this set of normal
modes the most important ones at each point of the reaction surface. These were selected
by analysing the reorganization energy for the single modes at the potential points. This
selection allows one, to reduce the dynamics again, from the full dimensional system, to
one which only contains the most important modes, dominating the dynamics, thereby
enabling one to study the model in reduced dimensionality, but increased numerical accu-
racy. Applying the MCTDH method to the reduced model with the most important modes
produces results in an acceptable time, while the same approach would be prohibitively
expensive for the full dimensional model. At the same time the TDH calculations for the
9d model showed, that most of the relaxation effects are only prominent in the multiconfig-
uration approach, i.e. the increased accuracy is necessary to model the IVR processes one
is interested in. The largest model examined was the 19 dimensional one, which contains
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almost the complete reorganization energy of the full CRS picture.

For these models of different dimensionality the dynamics after excitation with a laser
pulse tuned to the transition frequency vop = 0 — 1 as well as the stationary IR spectrum
was examined. From the stationary spectrum one could see that the CRS model with
a fixed scaffold and only a 1d reaction coordinate does not reproduce the double peak
structure seen at the OD vibration frequency in the experiment. This shows, that the
limited CRS model cannot reproduce the effects of the proton dynamics completely, even
though the normal modes add flexibility to the molecular scaffold. This probably means
that additional effects may be generated by large amplitude motions of the scaffold or via
a coupling to an overtone of the bending mode of the O-D bond. As this type of motion
cannot be modeled with the limited computing power available, the study had to be limited
to the effects visible in the present model.

However, this limited approach has several advantages over calculations using other
potential surfaces, i.e. unrelaxed molecular potential. With the CRS Hamiltonian it is, at
least locally, possible to generate a potential surface with full dimensionality, which allows
the identification of the relevant degrees of freedom without prior knowledge about the
normal modes of the molecule. The formalism of the Hamiltonian used is also well suited
to the application of the efficient MCTDH method, as it is already written in a factorized
form, and contains all the couplings in the potential energy operator.

As mentioned above, the combination of the CRS Hamiltonian with the MCTDH
method allows one to study the molecule on different levels of accuracy (by including
different numbers of normal modes) and to tailor the numerical effort for the calculations
(by increasing or reducing the number of configurations in the MCTDH equations). In the
calculations presented, vibrational wavepacket simulations after a laser excitation of the
OD bond were made for 3d, 9d and 19d models. The most notable results of these simu-
lations were the observation of the effects of the anharmonic coupling between the modes,
which led to a modulation of the OD stretching vibration. The most notable can be seen
on a time scale of about 500 fs, which corresponds to one of the low frequency normal
modes, modulating the deuterium bond geometry. This is in accord with the experimental
observation of coherent vibrational dynamics in this system (Fig. 3.55). Additionally it
was shown, that in the MCTDH model the population excited by the laser pulse into the
vop = 1 state decays slowly back into the ground state vop = 0. This effect was not
observed in the TDH calculations made in this and previous works [151]. The decay time
calculated for the 9d model is on the order of 20 ps, which is much longer than the exper-
imentally observed time scale of 7} = 400fs. This result was not changed by including a
further 10 modes for the 19d model. The additional modes were only included in the TDH
limit, as the numerical effort to converge the 9d model was already very high. The calcula-
tion of the first 300 fs on this accuracy needed approximately 13:30h on a Pentium III with
866 MHz to obtain the numerically converged result. Including the additional 10 modes in
the TDH limit increased this time to 67:00h on the same computer. This shows, that it is
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isolated system coupled to a bath
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Figure 3.74: The fast decay of the experimentally observed oscillations can be ex-
plained by the coupling to the environment. In the left panel a system is shown in
which the system frequency v, is not matched by the normal mode frequencies v; and
vj. An exitation in the system cannot get easily rid of its energy in this case. If a
bath is added to the picture, one has an additional continuous band of bath modes
(shown on the right). Any energy mismatch between the system and the normal mode
frequencies can now be compensated by a bath mode from this band, allowing a much
faster relaxation.

unfeasible to obtain fully converged results for this model with the available hardware.

The fact that the inclusion of this 10 additional modes in TDH limit does not open vis-
ible new relaxation channels cannot be clearly attributed to a single cause. The numerical
approximations of the model do probably not allow for a relaxation, as was observed in
the 9d TDH simulations as compared to the MCTDH ones. Another reason could simply
be that the additional modes are to weakly coupled to produce any effects on this time
scale. From the smallness of the reorganization energy missing from the 9d model, one can
assume that, even if the TDH limit is responsible for some of behavior, the decay time will
not decrease by much in a converged 19d model. This shows, that it is necessary to take
a closer look at the effects of the solvent on the quantum dynamics.

In Fig. 3.74, the possible effects of a bath is sketched out. The addition of a solvent
provides the system with a continuous set of bath modes, which can act as a sink for the
energy released in a relaxation process. For isolated PMME a direct transition vop =1 — 0
is not possible, therefore the energy would have to be transferred to the normal modes as
listed in Table 3.8 in a higher order process. As there is no mode in direct resonance with
the system frequency, a transition of this type would also be slow. The normal modes with
the best energy match are highlighted in Table 3.8: v4; and the sum of v, and 145 are close
to the system frequency. With an additional bath, this energy mismatch can be buffered
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via the solvent modes to allow processes in the form

hvop =1 — Z hvi + hvgolvent
[

where ¢ is a set of suitable normal modes. If the frequency band of the solvent phonons
is sufficient to move the normal modes plus solvent into exact resonance with the system,
this can decrease the relaxation time by orders of magnitude.

The MD calculations made To study these solvent effects, classical MD calculations for a
non-polar solvent (CCl,) similar to the one used in the experiment (CyCly) were performed.
To connect the results from the classical description of the solvent to the quantum picture of
the molecule the theory of linear response has been used. The friction spectrum obtained
for these calculations then would have to be used in a dissipative quantum simulation
(Eq. (2.101)) of the molecular model. Due to the limitations of the MD simulations the
results in this work are only used as a first estimate of the possible effects. They show,
that the coupling of the normal modes to the bath phonons is only efficient for modes with
a frequency v < 200cm~!unless one hits a resonant mode of CCl,. From the results of
the calculations for PMME, one sees that the inclusion of a solvent potentially decreases
the decay time in low frequency molecular normal modes by an order of magnitude to
around 2 ps. This is only a first, relatively crude estimate, but already much closer to the
experimentally observed times of T} = 400fs. Further improvements in this respect can
be expected from a more exact treatment of environmental effects, including dissipative
quantum simulations.
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