Aus dem Institut für Experimentelle Pädiatrische Endokrinologie der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

DISSERTATION

Der Einfluss der Chronobiologie auf das Körpergewicht von Kindern und Jugendlichen

zur Erlangung des akademischen Grades Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

von

Anna Friedrich

aus Berlin

Datum der Promotion: 25.06.2017
Inhaltsverzeichnis

1 Abstrakt ... 6
 1.1 Englisch .. 6
 1.2 Deutsch ... 7

2 Einleitung .. 9
 2.1 Übergewicht und Adipositas bei Kindern und Jugendlichen ... 9
 2.1.1 Prävalenz .. 9
 2.1.2 Risikofaktoren ... 11
 2.1.3 Folgen .. 12
 2.2 Chronobiologie ... 13
 2.3 Hypothesen .. 20

3 Material und Methoden ... 21
 3.1 Studiendesign ... 21
 3.2 MCTQ-Fragebogen ... 22
 3.3 MAINTAIN-Studie ... 25
 3.4 Datenerhebung ... 27
 3.5 Statistische Methoden .. 29

4 Ergebnisse .. 30
 4.1 Querschnittuntersuchung ... 30
 4.1.1 Stichprobencharakterisierung ... 30
 4.1.2 Schlafcharakterisierung der Gruppen ... 31
 4.1.3 Einflussfaktoren auf die Schlafvariablen ... 32
 4.2 Ergebnisse der Längsschnittuntersuchung ... 34
 4.2.1 Stichprobencharakterisierung (T-3) ... 34
 4.2.2 Medienkonsum und tägliche Aktivität (T-3) ... 35
 4.2.3 Schlafcharakterisierung (T-3) ... 35
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.4</td>
<td></td>
<td>Einflussfaktoren auf die Schlafvariablen (T-3)</td>
<td>36</td>
</tr>
<tr>
<td>4.2.5</td>
<td></td>
<td>Lichtexposition und Medienkonsum (T-3, T0, T12)</td>
<td>39</td>
</tr>
<tr>
<td>4.2.6</td>
<td></td>
<td>BMI-SDS (T-3, T0, T12)</td>
<td>42</td>
</tr>
<tr>
<td>4.2.7</td>
<td></td>
<td>Schlafvariablen (Chronotyp, SJL, Schlafdauer) zu T-3, T0, T12</td>
<td>42</td>
</tr>
<tr>
<td>4.2.8</td>
<td></td>
<td>Zusammenhang BMI-SDS und Schlafvariablen (T-3)</td>
<td>43</td>
</tr>
<tr>
<td>4.2.9</td>
<td></td>
<td>Ergebnisse der Gewichtsreduktionsphase (T-3 bis T0)</td>
<td>45</td>
</tr>
<tr>
<td>4.2.10</td>
<td></td>
<td>Ergebnisse der 12-monatigen Phase nach Gewichtsreduktion (T0 bis T12)</td>
<td>48</td>
</tr>
<tr>
<td>4.2.11</td>
<td></td>
<td>Zusammenfassung der Ergebnisse</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Diskussion</td>
<td>51</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>Diskussion des Probandenkollektivs</td>
<td>51</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>Diskussion der Methoden</td>
<td>53</td>
</tr>
<tr>
<td>5.2.1</td>
<td></td>
<td>Bestimmung des BMI</td>
<td>53</td>
</tr>
<tr>
<td>5.2.2</td>
<td></td>
<td>Fragebogen MCTQ</td>
<td>53</td>
</tr>
<tr>
<td>5.2.3</td>
<td></td>
<td>Medienkonsum und Aktivität in der Selbsteinschätzungsmethode</td>
<td>55</td>
</tr>
<tr>
<td>5.3</td>
<td></td>
<td>Diskussion der Querschnittsergebnisse</td>
<td>56</td>
</tr>
<tr>
<td>5.4</td>
<td></td>
<td>Diskussion der Längsschnittergebnisse</td>
<td>60</td>
</tr>
<tr>
<td>5.4.1</td>
<td></td>
<td>Schlafcharakterisierung zum Zeitpunkt T-3 und Vergleich zum Querschnitt</td>
<td>60</td>
</tr>
<tr>
<td>5.4.2</td>
<td></td>
<td>Einflussfaktoren Alter, Pubertätsstatus, Migrationshintergrund, Geschlecht</td>
<td>61</td>
</tr>
<tr>
<td>5.4.3</td>
<td></td>
<td>Lichtexposition, Medienkonsum und tägliche Aktivität</td>
<td>63</td>
</tr>
<tr>
<td>5.4.4</td>
<td></td>
<td>Zusammenhang BMI-SDS und Schlafverhalten</td>
<td>66</td>
</tr>
<tr>
<td>5.4.5</td>
<td></td>
<td>Zusammenfassung der Diskussion der Längsschnittuntersuchung</td>
<td>71</td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td>Abschließende Bemerkung und Schlussfolgerung</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Literaturverzeichnis</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Anhang</td>
<td>82</td>
</tr>
<tr>
<td>7.1</td>
<td></td>
<td>Abkürzungsverzeichnis</td>
<td>82</td>
</tr>
<tr>
<td>7.2</td>
<td></td>
<td>Abbildungsverzeichnis</td>
<td>84</td>
</tr>
<tr>
<td>7.3</td>
<td></td>
<td>Tabellenverzeichnis</td>
<td>85</td>
</tr>
<tr>
<td>Kapitel</td>
<td>Titel</td>
<td>Seitenzahl</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>Erhebungsbogen MCTQ</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>Eidesstattliche Versicherung</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>Lebenslauf</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td>Danksagung</td>
<td>94</td>
<td></td>
</tr>
</tbody>
</table>
1 Abstrakt

1.1 Englisch

Background: Up to a third of children and adolescents in Europe are overweight. Metabolic processes and bodyweight are influenced by chronobiology – the adaptation of organisms to rhythmic processes. Chronobiology discriminates between different sleep-wake-rhythms, known as chronotypes. During adolescence chronotypes become delayed and thus the discrepancy between the chronotype and the socially forced sleep-awake-time increases with age. This misalignment between social time (sleep time during the week) and biological time (sleep time during the weekend), also called “social jetlag”, can be a risk factor for obesity. Our two studies investigated the influence of chronobiology on the body weight of children and adolescents.

Methods: The chronotype was defined by the mid-sleep-time (time point), a cardinal variable that can be compared by the terms “earlier” and “later”. The chronotypes vary from very early (“larks”) to very late (“owls”). The Munich Chronotype Questionnaire (MCTQ) was used to examine children and adolescents aged between 10 to 18 years. In the cross-sectional study overweight or obese patients (n=83) and a normal weight control group (n=128) were questioned. The longitudinal study included 97 obese patients, who were questioned before, immediately after and one year after a structured weight loss period.

Results: In both the cross-sectional and longitudinal studies the age of the subjects positively correlated with later chronotypes and increased social jetlag. In the cross-sectional study male subjects had a later chronotype than female subjects. Within the longitudinal study patients with earlier chronotypes prior to the weight loss phase lost more weight during the structured weight loss phase than patients with later chronotypes. Besides initial bodyweight, chronotype had the largest influence on weight reduction. Subjects with earlier chronotypes had more exposure to light after the weight reduction phase. Patients showed increased sleep duration and less social jetlag during the weight loss phase in comparison to pre- and post-therapeutic phases.

Conclusion: Chronotype has a significant effect on weight reduction in children and adolescents. Patients with a sleep-wake-rhythm in accordance with their individual chronotype showed greater weight reduction. We conclude that the adaptation of sleep-wake-rhythms towards individual chronotypes should play a greater role in obtaining more effective weight reduction. Desynchronization should be avoided, especially in adolescents with a relatively late chronotype. Attention should be paid to sufficient natural light exposure and avoidance of blue light (LED-screens of TVs, computers, smartphones) in the evening.

1.2 Deutsch

Ergebnisse: Je älter die Probanden der Querschnitt- und Längsschnittstudie waren, desto später war ihr Chronotyp und umso größer der Social Jetlag. In der Querschnittuntersuchung hatten männliche Probanden einen späteren Chronotyp als weibliche.

Schlussfolgerung: Der Chronotyp hat einen signifikanten Einfluss auf die Gewichtsreduktion bei Kindern und Jugendlichen. Probanden, deren Tagesablauf während der Gewichtsreduktionsphase an ihren individuellen Chronotyp angepasst war, erzielten eine größere Gewichtsreduktion. Zu schlussfolgern ist, dass der Anpassung des Schlaf-Wach-Rhythmus an den individuellen Chronotyp mehr Aufmerksamkeit beigemessen werden sollte, um eine
Abstrakt

effektivere Gewichtsreduktion zu erreichen. Insbesondere bei Jugendlichen mit relativ spätem Chronotyp sollte eine Desynchronisation des Chronotyps vermieden werden. Dabei sollte vor allem auf eine ausreichende natürliche Lichtexposition sowie Vermeidung von starkem blauwelligen Licht (LED-Bildschirme bei TV, PC, Smartphones) in späten Abendstunden geachtet werden.
2 Einleitung

2.1 Übergewicht und Adipositas bei Kindern und Jugendlichen

2.1.1 Prävalenz

Übergewicht und Adipositas haben in den letzten Jahrzehnten weltweit zugenommen [4], wobei sich in vielen Ländern, u. a. in der Europäischen Region der WHO, die Prävalenz seit den 1970er Jahren verdreifacht hat [3, 5, 6]. Darunter ist auch ein starker Anstieg bei Kindern und Jugendlichen seit den 1980er Jahren zu verzeichnen [7].

Dabei zeigte sich in den USA, dass extrem adipöse Kinder und Jugendliche eine noch größere Gewichtszunahme als diejenigen anderer adipöser Altersgruppen aufwiesen [8, 9]. Europa, Nordamerika und Teile des westlichen Pazifiks stellten 2004 die Spitzenreiter der Übergewichtsprävalenz bei Kindern und Jugendlichen dar [7].

Als problematisch erweist sich der Datenvergleich verschiedener Länder aufgrund unterschiedlicher Klassifizierungen von Übergewicht und Adipositas im Kindes- und Jugendalter [6].

Der WHO zufolge ist 2007 in der Europäischen Region bis zu einem Drittel der Kinder übergewichtig [3].

Für Deutschland liegen seit 2006 repräsentative Daten für die Beschreibung von Übergewicht und Adipositas bei drei- bis 17-jährigen Kindern und Jugendlichen vor, welche 2003 bis 2006 vom Robert-Koch-Institut im Rahmen der „Studie zur Gesundheit von Kindern und Jugendlichen in Deutschland“ (KiGGS) erhoben worden sind (s. Abbildung 1). Die Studie zeigt, dass 15% der
Einleitung

14.836 eingeschlossenen Kinder übergewichtig (> 90. bis 97. BMI-Perzentile) und mehr als ein Drittel davon (6,3% der 14.836) adipös (> 97. BMI-Perzentile) waren.

Abbildung 1: KiGGS: Anteil der Übergewichtigen nach Altersgruppen und Geschlecht in Deutschland 2006
(adaptiert nach Kurth et al. [11])

In Ländern mit mittlerem und niedrigem Einkommen scheint dieses Plateau, wie es in Industrieländern zu sehen ist, noch nicht erreicht zu sein. Hier zeigt sich eine deutliche Zunahme von Adipositas bei Kindern und Jugendlichen. Ursächlich scheint die etwas verzögerte Anpassung an den westlichen Lebensstil mit hochkalorischer Ernährung und Zunahme der

2.1.2 Risikofaktoren

Als eine multifaktoriell verursachte chronische Erkrankung entsteht die Adipositas auf Basis einer genetischen Prädisposition für Übergewicht im Zusammenhang mit begünstigenden Verhaltens- und Umwelteinflüssen in bestimmten vulnerablen Lebensphasen [13, 14]. Neben den erwähnten epidemiologischen Risikofaktoren - niedriger sozioökonomischer Status und Migrationshintergrund - spielt die genetische Prädisposition eine wesentliche Rolle. So ergibt sich ein genetischer Anteil der Body-Mass-Index-Varianz (BMI-Varianz) von 40 bis 60 % [13].

Beispielsweise zeigen amerikanische Kinder und Jugendliche bestimmter ethnischer Gruppen ebenso wie solche mit lateinamerikanischer, afrikanischer und indianischer Abstammung ein erhöhtes Risiko für Übergewicht und Adipositas [15]. Dabei handelt es sich um polygene Vererbungsformen („multifaktorielle Vererbung“). Viel seltener kommen monogene Erbveränderungen durch Mutation in bestimmten Genen vor, wie beispielsweise eine Mutation des Hormons Leptin (Gewichts- und Appetitregulation), eine Mutation MC4-Rezeptors (1,7% der adipösen Jugendlichen) oder des Proopiomelanocortin-Rezeptors (POMC-Rezeptor) [13, 16, 17]. Auch syndromale Formen mit Adipositas als Begleiterscheinung existieren, darunter das Prader-Willi-Syndrom, das Alström-Syndrom, das Bardet-Biedl-Syndrom oder das Cohen-Syndrom [1].

Der Verhaltens- und Umwelteinfluss wird sehr deutlich, wenn man betrachtet, dass die Adipositasprävalenz in den USA um das Dreifache zunahm, obwohl sich die genetische Anlage in den letzten 40 Jahren wenig verändert hat [1].

Einleitung

2.1.3 Folgen

Die über eine Million Todesfälle jährlich weltweit [3] sowie die enormen gesundheitsökologischen Auswirkungen durch Behandlungskosten und Defizite in der
Einleitung

Erwerbsfähigkeit [35] machen die Adipositas zu einer gesundheitspolitischen Herausforderung [3].

2.2 Chronobiologie

Der Mensch zeigt viele rhythmische Prozesse wie beispielsweise die Temperaturregulation oder die Regulation der Gehirnaktivität, des Blutdrucks und der Hormonsekretion [36].

Beim Menschen und bei Mäusen bewegt sich die endogene zirkadiane Periodenlänge („free-running“) zwischen 24,3 und 23,7 Stunden. Diese Periodendauer wird durch eine zentrale Uhr, dem Nucleus Suprachiasmaticus (SCN) im ventralen Hypothalamus, autonom über molekulare Mechanismen generiert [38]. Über den Tractus retinohypothalamicus aus dem Chiasma opticum erhält er die Lichtinformationen, die auf die Retina des Auges treffen, worüber der endogene Rhythmus mit der Umwelt synchronisiert wird [39]. Grundlage für die Wirkung des SCN sind die sogenannten „Clock-Genes“ (CLOCK, BMAL1, Period and Cryptochrome), welche die Expression vieler anderer Gene bewirken, die den SCN in seinen 24-Stunden-Rhythmus zwingen [40].

Neben der zentralen Uhr, dem SCN, bestehen auch periphere Uhren auf zellulärer Ebene, welche eine zirkadiane Oszillation peripherer „Clock-Genes“ aufweisen (s. Abbildung 2). So konnten in Tierstudien periphere Uhren im Verdauungssystem (Leber [41], Magen [42], Pankreas [43], Darm [44], Fettgewebe) nachgewiesen werden, wobei 25% der Gene des menschlichen Fettgewebes eine zirkadiane Expression aufweisen [45, 46]. Die peripheren Uhren scheinen über unterschiedlichste Mechanismen (neuronale und hormonale Verknüpfung) durch den SCN synchronisiert zu werden [36, 46].
Einleitung

Eine Rückkopplung lässt diese peripheren Uhren durch Körpertemperatur und Hormone wie Insulin beeinflussen. Möglicherweise bereiten sie auf Nahrungsaufnahme und Nahrungskarenz bzw. Schlafen und Wachen vor [46].

Durch unterschiedliche Einflüsse kann der zirkadiane Rhythmus desynchronisiert, verspätet oder vorgezogen werden [47] (s. Abbildung 3).
Abbildung 3 (Wirz-Justice et al. 2009): Schematische Darstellung der Schlafzeiten über sechs nacheinander folgende Tage (rot) in Bezug auf den Licht-Dunkel-Zyklus (weißer bzw. schwarzer Balken) unter verschiedenen Bedingungen. (Mit freundlicher Genehmigung) [47]

Neben der inneren Uhr, die sich zum Beispiel im Rahmen von Schichtarbeit oder Jetlag nach einem Flug bemerkbar macht, beeinflussen zwei weitere „Uhren“ den menschlichen Körper. Zum einen ist das die sogenannte „Sonnenuhr“, nach der die regionale Zeit gestellt wird und unmittelbar mit Licht- und Temperaturwechsel einhergeht, und zum anderen die sogenannte „soziale Uhr“, die den Menschen zwingt, sich an bestimmte Schlaf-Wach-Rhythmen zu halten (Schule, Arbeitsstätte) [48].

Einleitung

freien Tagen früh auf und geht früh zu Bett, bei einem Spättyp verschiebt sich dieser Rhythmus um einige Stunden. Er schläft an freien Tagen lange aus und schläft erst sehr spät wieder ein. Der Chronotyp ist abhängig vom Alter, Geschlecht, dem genetischen Hintergrund, aber auch von der Umwelt, vor allem der Lichtexposition [48-53].

Studien zeigen, dass Kinder generell frühe Chronotypen sind und dass sich mit zunehmendem Alter der Chronotyp verspätet bis zu einem Maximum in der Adoleszenz, welches auch als Marker des Endes der Adoleszenz diskutiert wird [54, 55]. Mit fortschreitendem Alter beobachtet man eine Annäherung des Chronotyps an den des Kindesalters und ab dem Alter von 60 Jahren sogar einen noch früheren Chronotyp [49, 55].

Parallel zur Abnahme der Schlafdauer in den letzten Jahrzehnten [56] hat sich auch der Chronotyp in den letzten zehn Jahren verspätet [53].

Abbildung 4 (Roenneberg et al. 2007): Chronotyp (MSFsc, s. Kapitel 3.2) in Abhängigkeit vom Alter. Systematische Unterschiede zwischen Männern (offene Kreise) und Frauen (schwarze Punkte). Die graue Linie zeigt den Durchschnitt für die gesamte Studienpopulation. Die jüngsten Probanden waren 12 Jahre alt, ab 12 bis 60 Jahren wurde gemittelt für jedes Lebensjahr, über 60 Jahren wurde für 5-Jahresabstände gemittelt. Vertikale Linien zeigen die Standardabweichung vom Mittelwert an. (Mit freundlicher Genehmigung) [49]

Verschiedene externe Reize (Licht, Nahrungsaufnahme, Temperaturänderung, Aktivität) haben Einfluss auf die zirkadiane innere Uhr und somit den Chronotyp. Es stellte sich heraus, dass der Einfluss des Lichtes (Intensität, Zeitpunkt und Dauer der Exposition, Wellenlänge) der
Einleitung

wesentlichste Faktor zur Synchronisierung der inneren Uhr ist. Es wird auch als „Zeitgeber“ oder „Taktgeber“ zur Synchronisierung der inneren Uhr bezeichnet [53, 57].

Die Intensität des Lichtes hat dabei großen Einfluss. So liegt sie im Freien bei etwa 10.000 Lux, während sie in Räumen als künstliches Licht nur 400 Lux beträgt. 2007 zeigten Roenneberg et al. [49], dass der Chronotyp deutlich von Lichtdauer und -Intensität beeinflusst war (s. Abbildung 5). Bei Probanden dieser Studie, die sich mehr als 2 Stunden im Freien aufhielten, war beispielsweise der Chronotyp um mehr als eine Stunde verfrüht.

Ronneberg et al. schlussfolgerten aus einem von ihnen beobachteten positiven Zusammenhang von Lichtexposition und Schlafphase, dass die Stärke des Zeitgebers genau wie bei anderen Organismen den täglichen Beginn der Aktivitätsphase des Menschen beeinflusst [48]. Auch der Zeitpunkt starker Lichteinwirkung beeinflusst die Schlafphase [58].

Andere Faktoren wirken eher additiv und haben allein keinen ausreichenden Einfluss, so beispielsweise eine aktivitätsabhängige Temperaturveränderung, regelmäßige Nahrungsaufnahme oder kurzfristige künstliche Lichtexposition (z. B. LED-Bildschirm, Raumbeleuchtung) [49]. Auch körperliche Aktivität allein zeigte sich nicht als „Zeitgeber“ [61].

Einleitung

Abbildung 5 (Roenneberg et al. 2007): Durchschnittlicher Chronotyp in Abhängigkeit von der täglichen Lichtexposition (s. Kapitel 0), r=0,96; p<0,001, n=41 232 (MSFsasc=Mid Sleep on Free days corrected for sleep debt accumulated over the workweek, SEM= Standard Error of the Mean). Die vertikalen Linien geben die Standardabweichung an (SEM). Die Ordinate ist umgedreht, vom späten Chronotyp unten zum frühen Chronotyp oben. (Mit freundlicher Genehmigung) [49]

Da dieser „Zeitzonen-Wechsel“ durch soziale Zwänge verursacht wird (der Wecker klingelt am Montagmorgen, damit der Jugendliche zur sozialen Einrichtung Schule geht), wird er von Roenneberg et al. [64] als Social Jetlag bezeichnet.

Bei Erwachsenen ist zum Beispiel die Schichtarbeit eine Ursache für Social Jetlag [64]. Es konnte gezeigt werden, dass mit jeder weiteren Stunde Social Jetlag bei Erwachsenen das Risiko übergewichtig oder adipös zu sein um 33 Prozent steigt [53].

Was sind die Ursachen für den Social Jetlag bei Jugendlichen? Während der Adoleszenz treten in diesem Zusammenhang zwei wesentliche physiologische Veränderungen auf.

Zum einen verzögert sich die nächtliche Melatoninsekretion, wodurch es zu einer Verzögerung des zirkadianen Rhythmus kommt [65, 66].

Zum anderen scheint es in diesem Alter zu einer veränderten Schlafinduktion zu kommen, wobei sich das Gefühl, müde zu sein, langsamer akkumuliert und die Gehirnantwort auf Schlafentzug geringer zu sein scheint [67].

Der mit dem frühen Aufstehen in der Schulzeit einhergehende Social Jetlag sowie das durch das pathologische Schlafverhalten verursachte chronische Schlafdefizit gehen mit negativen körperlichen und psychischen Veränderungen einher [56]. Depressionen, Fatigue und Malaise werden durch Veränderungen im Schlaf-Wach-Rhythmus begünstigt, was wiederum negative Auswirkungen auf die körperlichen Funktionen hat [64, 68, 69].
Einleitung

So wird eine karzinogene Wirkung auf Menschen in Schichtarbeit, welche Social Jetlag einschließt, seit 2007 durch die „International Agency for Research on Cancer“ (IARC, eine Einrichtung der WHO) als wahrscheinlich angenommen [70]. Bei der Metaanalyse von zehn Studien berechneten die Autoren eine Risikoerhöhung für Brustkrebs um 3% für alle fünf Jahre, in denen Schichtarbeit betrieben wird, bzw. 13% pro 500 Nächte Schichtarbeit [71]. In einer großen Studie von Karlsson et al. [72] \((n = 27485)\) wurde demonstriert, dass nicht nur massive Gewichtszunahme (v.a. abdominelles Fettgewebe) in Verbindung mit Schichtarbeit steht, sondern auch ihre Komorbiditäten wie Hyperglyzerinämie, niedriges High-Density Lipoprotein (HDL), Diabetes mellitus und kardiovaskuläre Störungen (metabolisches Syndrom) [72]. Die Störung des zirkadianen Rhythmus und die abnehmende Schlafdauer haben starken Einfluss auf die Entwicklung von Übergewicht und Adipositas sowie ihrer Komorbiditäten [27, 53].

Betont werden muss, dass Jugendliche in diesem Zusammenhang besonders für die Entwicklung einer Adipositas gefährdet sind, weil sie zum einen durch die oben beschriebenen Faktoren einen vermehrten Social Jetlag haben als andere Altersgruppen und zum anderen die Adoleszenz eine vulnerable Phase für die Entwicklung von Adipositas ist. So ist eine frühzeitige Intervention in der Kindheit und Adoleszenz mit Fokus auf die zirkadiane Rhythmik Ziel derzeitiger Untersuchungen zur Vorbeugung von Adipositas.
2.3 Hypothesen

Seit einigen Jahren gibt es vermehrt wissenschaftliche Untersuchungen und Hinweise darauf, dass der Schlaf-Wach-Rhythmus einen wichtigen Einfluss auf viele Regulationsmechanismen im Körper hat (s. Kapitel 2.2 [41-46, 48]).

Der Einfluss der Chronobiologie auf das Gewichtsverhalten bei adipösen Kindern und Jugendlichen wurde noch nicht hinreichend untersucht, weshalb die vorliegende Arbeit versucht, diese Lücke zu füllen.

Folgende Hypothesen sollen in dieser Arbeit untersucht werden.

Querschnittuntersuchung:

Haupthypothese H1:

Längsschnittuntersuchung:

Haupthypothese H2:
Die Schlafvariablen Chronotyp, Social Jetlag und Schlafdauer haben bei Kindern und Jugendlichen innerhalb eines strukturierten Gewichtsreduktionsprogramms einschließlich Nachbeobachtungsphase einen Einfluss auf die Gewichtsreduktion.

Nebenhypothese N1:
Es gibt einen zusätzlichen Einfluss von Alter, Geschlecht, Pubertätsstatus oder Migrationshintergrund auf die Schlafvariablen.

Nebenhypothese N2:
Es gibt einen Zusammenhang von Chronotyp und Lichtexposition während der Gewichtsreduktionsphase.
3 Material und Methoden

3.1 Studiendesign

Es erfolgte eine Querschnittsanalyse, in der eine Gruppe adipöser und übergewichtiger Jugendlicher hinsichtlich des Schlafverhaltens mit einer Kontrollgruppe verglichen wurde, und zum anderen eine Längsschnittanalyse, in der ein Teil der Probanden der MAINTAIN-Studie (s. Kapitel 3.3) hinsichtlich ihres Schlaf- und Gewichtsverhaltens näher untersucht wurde (s. Abbildung 6).

Für diese Arbeit wurden drei Gruppen von Kindern und Jugendlichen in einer klinischen Studie hinsichtlich ihres Schlaf- und Gewichtsverhaltens, vor allem im Sozialpädiatrischen Zentrum
Material und Methoden

(SPZ), Campus Virchow Klinikum der Charité Berlin, im Zeitraum 2010 bis Januar 2014 untersucht und miteinander verglichen.

Ein Patientenkollektiv A aus der Adipositassprechstunde, ein Probandenkollektiv B gesunder Jugendlicher einer Schule aus Strausberg bei Berlin sowie ein Patientenkollektiv C (n = 98) der MAINTAIN-Studie (Langzeitinterventionsstudie an adipösen Kindern in Berlin) wurden mit einem standardisierten internetbasierten Fragebogen, dem Munich Chronotype Questionnaire (MCTQ) [48], befragt.

In einem weiteren Schritt wurde aus den Gruppen A und B eine Gruppe gebildet (n = 212), welche wiederum anhand des BMI-SDS nach Kromeyer-Hauschild unterteilt wurde: Normalgewichtig (zwischen 10. und 90. Perzentile = zwischen -1,29 und 1,29), n = 128 Übergewichtig (ab 90. Perzentile entspricht ≥1,29), n = 84.

3.2 MCTQ-Fragebogen

1. Angaben zur Bettgehezeit (Zeit, zu der der Proband ins Bett geht), die Schlafvorbereitungszeit (Zeit, zu der der Proband tatsächlich einschlafen möchte, z. B. Licht löschen nach dem Lesen), die Einschlafdauer, die Aufwachzeit mit Angabe, ob mit oder ohne Wecksignal, und die Dauer der Aufstehzeit,
2. Angaben zum durchschnittlichen Aufenthalt im Freien bei Tageslicht,
3. Angaben zu Schul- oder Arbeitszeiten (Beginn, Ende), Flexibilität der Arbeitszeit, Schul- oder Arbeitswege (Angaben zu Dauer und Transportmittel),
Material und Methoden

Regelmäßige Arbeit

Abbildung 7: Auszug des MCTQ [48] (www.theweb.org, siehe Anhang)

Variablen, die der MCTQ lieferte und die für die weiteren Betrachtungen verwendet wurden, waren:

a) **Chronotyp**: „Mid-Sleep on Free Days corrected for Over-Sleep on Free Days“ (MSFsc): Mitte der Schlafzeit an freien Tagen als Uhrzeit,

b) **Social Jetlag (SJL)**: Absoluter Betrag der Differenz von Mid-Sleep on Freedays und Mid-Sleep on Workdays (abs (MSF-MSW)) in Stunden,

c) **Schlafdauer**: durchschnittliche tägliche Schlafdauer pro Woche in Stunden,

d) **Lichtexposition**: durchschnittliche tägliche Lichtexposition pro Woche in Stunden.

Die Variable **MSFsc** für den Chronotyp (a) entspricht dem Mittelpunkt der Schlafzeit am Wochenende / an freien Tagen, welche für ein „Überschlafen“ am Wochenende (um Schlafmangel während der Woche auszugleichen) korrigiert wurde und somit die Mitte zwischen Einschlafen und Aufwachen als Uhrzeit darstellt. „Mid-Sleep Time on Free days“ (MSF) wurde über die im MCTQ erfassten Schlafenszeiten wie folgend berechnet: MSF= Schlafbeginn am Wochenende + (Schlafdauer am Wochenende / 2).
Diese Variable wurde anschließend für „Überschlafen“ korrigiert:
MSFsc = MSF - (Schlafdauer Wochentage – Schlafdauer Wochenende) / 2).

Der SJL (b) stellt den absoluten Wert der Differenz von Schlafzeitmittelpunkt am Wochenende und Schlafzeitmittelpunkt an Wochentagen und somit den „Jetlag“ der unterschiedlichen Schlafzeiten innerhalb einer Woche dar. Midsleep on Workdays (MSW) berechnet sich anhand der Schlafzeiten wie folgt:
MSW = Schlafbeginn an Wochentagen + (Schlafdauer an Wochentagen / 2).
Der SJL wird dann aus MSF und MSW berechnet:
SJL = abs (MSF – MSW).

Für die Variable „Schlafdauer“ wurde anhand der erfragten Schlafenszeiten die Schlafdauer für freie Tage und die Schlafdauer für Wochentage / Schultage berechnet und daraus die über die gesamte Woche gemittelte Schlafdauer errechnet:
Schlafdauer = Schlafdauer der Wochentage * 5 + Schlafdauer der freien Tage * 2) / 7.

Unter der durchschnittlichen wöchentlichen Lichtexposition (d) versteht man den Schulweg, wenn nicht im Fahrzeug absolviert, die Hofpausen mit Aufenthalt auf dem Schulhof, sowie Sportaktivitäten und alle sonstigen Aktivitäten im Freien. Die tägliche Lichtexposition wurde mittels MCTQ jeweils für die Wochentage sowie das Wochenende erfragt und dann der tägliche Durchschnitt analog zur Schlafdauer für die gesamte Woche berechnet.

Beispiel: Person X schläft an freien Tagen von 00:00 bis 08:00 Uhr (MSF = 04:00 Uhr; Schlafdauer an freien Tagen = 8 h).
Person X schläft an Arbeitstagen von 23:00 bis 05:00 Uhr (MSW = 02:00 Uhr; Schlafdauer an Arbeitstagen = 6 h).
Social Jetlag beträgt damit 2 Stunden (SJL = MSF - MSW = 4 - 2 = 2 h).
Der für Überschlafen am Wochenende korrigierte Schlafzeitmittelpunkt (entspricht dem Chronotyp der Person X) beträgt MSFsc = 04:00 – [(6 h – 8 h) / 2] = 03:00 Uhr.
Die durchschnittliche Schlafdauer der Person X beträgt (6 h * 5 + 8 h * 2) / 7 = 6,6 h.
Material und Methoden

3.3 MAINTAIN-Studie

Diese Arbeit stellt ein Teilprojekt der MAINTAIN-Studie dar.
Die MAINTAIN-Studie ist eine Langzeitstudie der klinischen Forschergruppe KFO 218/1 der Charité in Berlin / Potsdam und umfasst zwei zentrale Projekte (Z-Projekt-Erwachsene und Z-Projekt-Kinder) sowie 8 Teilprojekte (u.a. Mausmodell), welche sich klinisch und tierexperimentell mit der Fragestellung nach peripheren und zentralnervösen Aspekten der hormonellen Gegenregulation nach Gewichtsreduktion beschäftigt.

„Z-Projekt Kinder“ ist eine randomisierte kontrollierte Studie einer multimodalen Lebensstilintervention auf die Gewichtserhaltung bei Kindern im Alter von 10 bis 17 Jahren (n = 137) [74]. Ziel ist die Gewinnung von Informationen, die zum grundlegenden Verständnis der hormonellen Regulationsmechanismen bei Gewichtsreduktion und Erhaltung eines reduzierten Körpergewichtes führen, zur Erarbeitung neuer Behandlungskonzepte.

Die Studie (s. Abbildung 8) gliedert sich in eine 16-wöchige Gewichtsreduktionsphase (im Rahmen eines Aufenthaltes in der Rehabilitationsklinik AHG für Kinder und Jugendliche in Beelitz-Heilstätten), an der alle Kinder teilnehmen, und eine Gewichtserhaltungsphase.

Einschlusskriterium für die Studienphase war eine Gewichtsreduktion von 0,2 des BMI-SDS nach Kromeyer-Hauschild. Es erfolgte eine umfangreiche medizinische Eingangsuntersuchung zu T-3 (Gewicht, Größe, Blutdruck, Nüchtern-Blutentnahme, Bauch- und Hüftumfang, internistische und neurologische Untersuchung, Energieumsatzmessung und Körperfettbestimmung sowie die Erhebung persönlicher Informationen zu Begleiterkrankungen, Lebensstil und Schlaf-Wachrhythmus), welche auch zu den Zeitpunkten T0 und T12 wiederholt wurde, sowie ein 48-monatiges Follow-Up.

Die Kinder und Jugendlichen wurden zu T0 in zwei Gruppen nach Alter, Geschlecht und BMI randomisiert. Die Interventionsgruppe (n = 65) wurde regelmäßig im vierwöchigen Abstand weiter vom MAINTAIN-Studienteam in Berlin betreut. Die Kontrollgruppe (n = 72) bildet eine „Free-living“-Gruppe, welche selbstständig die während der Rehabilitation erhaltenen Empfehlungen während eines Jahres umsetzen soll [74-76].
3.4 Datenerhebung

Querschnittuntersuchung:
Die Datenerhebung erfolgte für Patientenkollektiv A (aus der Adipositassprechstunde) und Kontrollgruppe B (Jugendliche einer Schule aus Strausberg b. Berlin) der Querschnittuntersuchung prospektiv mit dem MCTQ.

Die Messung des Gewichts und der Körpergröße erfolgte ohne Schuhe und mit leichter Kleidung. Die Körpergröße wurde mit einem Stadiometer (Fa. Keller) auf 0,1 cm genau ermittelt und das Körpergewicht mithilfe einer elektrisch geeichten Waage (Fa. Soehnle) auf 0,1 kg genau gemessen.

Anschließend wurde der Internetfragebogen von den Teilnehmern vor Ort ausgefüllt.

Die Rohdaten wurden in den Internetfragebogen MCTQ eingeben.

Längsschnittuntersuchung:
Für die verbundene Stichprobe der MAINTAIN-Studie (Gruppe C) wurden 98 Probanden im Alter von 10 bis 17 Jahren, welche mindestens bis zum Zeitpunkt T12 an der Studie teilgenommen hatten, befragt.
Material und Methoden

Im Folgenden sind weitere Ein- und Ausschlusskriterien für die Studienteilnahme der Querschnitt- und Längsschnittuntersuchung aufgeführt.

Einschlusskriterien:
- Gruppe Übergewichtig / Adipös (A und C): BMI über der 90. Perzentile (Bestimmung BMI-SDS nach Kromeyer-Hauschild [106]), zusätzlich für Gruppe C: Gewichtsreduktion bis zum Zeitpunkt T0 von 0,2 des BMI-SDS und Teilnahme an der MAINTAIN-Studie
- Kontrollgruppe (B): BMI zwischen 10. und 90. Perzentile (Bestimmung BMI-SDS nach Kromeyer-Hauschild [106])
 - Alter 10 bis 18 Jahre
 - altersentsprechende Entwicklung
 - Einwilligung nach mündlicher und schriftlicher Aufklärung (gemeinsam mit einem Erziehungsberechtigten)

Ausschlusskriterien:
- akute oder chronische Erkrankungen, die die Gewichtsentwicklung beeinflussen (z.B. Hyper- Hypothyreose, Morbus Cushing etc.)
- genetische Syndrome und monogene Mutationen, die das Gewicht beeinflussen (Prader-Willi-Syndrom, Bardet-Biedl-Syndrom, Cohen-Syndrom, MC4-Rezeptor-Mutation etc.)
- Medikamenteneinnahme, die die Gewichtsentwicklung (z.B. Kortikosteroide) bzw. den Schlaf beeinflusst (Sedativa, Psychopharmaka, Opiate etc.)
Material und Methoden

3.5 Statistische Methoden

Die statistische Auswertung der Daten erfolgte mithilfe des Statistikprogramms „Statistical Package for the Social Sciences“ IBM SPSS 22.

Für die Stichprobenbeschreibung wurden Mittelwert und Standardabweichung (MW ± SD) berechnet. Häufigkeiten wurden in Prozent (%) angegeben.

Die Korrelationsberechnungen erfolgten mithilfe des Rangkorrelationskoeffizienten nach Spearman-Rho, um allgemeine funktionale (monotone) Zusammenhänge darzustellen.

Für die Regressionsanalyse wurde das Forward-Selection-Modell verwendet, d.h. es werden nur die Variablen angezeigt, die signifikant einen Einfluss auf die Zielvariable haben.

Bei p-Werten > 0,001 wurde der exakte Wert angegeben, wenn p < 0,001 wurde dies vermerkt. Testunterschiede mit einer Irrtumswahrscheinlichkeit von p < 0,05 wurden als statistisch signifikant gewertet.
4 Ergebnisse

4.1 Querschnittuntersuchung

4.1.1 Stichprobencharakterisierung

Die Gesamtstichprobe \(n = 212\) wurde anhand des BMI-SDS nach Kromeyer-Hauschild in zwei Gruppen unterteilt:

Normalgewichtig (zwischen 10. und 90. Perzentile = zwischen -1,29 und 1,29) \(n = 128\) und **übergewichtig / adipös** ab 90. Perzentile (≥ 1,29) \(n = 84\) (s. Tabelle 1). Während das Alter in beiden Gruppen annähernd gleich war, zeigt sich hinsichtlich des Geschlechts ein leichtes Überwiegen des männlichen Geschlechts in der Gruppe der Normalgewichtigen vs. der Übergewichtigen.

Tabelle 1: Stichprobencharakterisierung

<table>
<thead>
<tr>
<th>BMI-SDS nach Kromeyer-Hauschild' (MW ± SD)</th>
<th>normalgewichtig (n = 128)</th>
<th>übergew. / adipös (n = 84)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,025 ± 0,10</td>
<td>2,60 ± 0,62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alter ' (MW ±SD)</th>
<th>normalgewichtig (n = 128)</th>
<th>übergew. / adipös (n = 84)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14,98 ± 1,24 Jahre</td>
<td>15,25 ± 1,53 Jahre</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geschlecht ' (n, Prozent)</th>
<th>normalgewichtig (n = 128)</th>
<th>übergew. / adipös (n = 84)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>männlich 70 (55%)</td>
<td>männlich 40 (48%)</td>
</tr>
<tr>
<td></td>
<td>weiblich 58 (45%)</td>
<td>weiblich 44 (52%)</td>
</tr>
</tbody>
</table>

*n-ges=212
4.1.2 Schlafcharakterisierung der Gruppen

Tabelle 2: Schlafcharakterisierung der Gruppen

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>MW ± SD</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSF_sc / Chronotyp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>normalgewichtig</td>
<td>128</td>
<td>5,10 ± 1,29 Uhr</td>
<td>0,017* (a)</td>
</tr>
<tr>
<td>übergew. / adipös</td>
<td>83</td>
<td>4,64 ± 1,48 Uhr</td>
<td></td>
</tr>
<tr>
<td>Social Jetlag</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>normalgewichtig</td>
<td>128</td>
<td>3,09 ± 1,20 h</td>
<td>0,018* (a)</td>
</tr>
<tr>
<td>übergew. / adipös</td>
<td>83</td>
<td>2,67 ± 1,30 h</td>
<td></td>
</tr>
<tr>
<td>Schlafdauer</td>
<td></td>
<td></td>
<td>0,634 (a)</td>
</tr>
<tr>
<td>normalgewichtig</td>
<td>128</td>
<td>7,67 ± 1,05 h</td>
<td></td>
</tr>
<tr>
<td>übergew. / adipös</td>
<td>83</td>
<td>7,59 ± 1,27 h</td>
<td></td>
</tr>
<tr>
<td>Lichtexposition</td>
<td></td>
<td></td>
<td>0,001* (b)</td>
</tr>
<tr>
<td>normalgewichtig</td>
<td>128</td>
<td>2,50 ± 1,52 h</td>
<td></td>
</tr>
<tr>
<td>übergew. / adipös</td>
<td>83</td>
<td>3,22 ± 1,80 h</td>
<td></td>
</tr>
</tbody>
</table>

normalgewichtig: 10.-90. Perz. des BMI-SDS; übergewichtig und adipös: ≥ 90. Perzentile; (a) T-Test für unabhängige Stichproben; (b) Mann-Whitney-Test, * p < 0,05 (signifikant)

Tabelle 3: Korrelationen nach Spearman Rho des BMI-SDS nach Kromeyer-Hauschild

<table>
<thead>
<tr>
<th></th>
<th>Korrelationskoeffizient</th>
<th>P-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe Übergewichtig / Adipös</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI-SDS vs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSFsc</td>
<td>0,167</td>
<td>0,132</td>
</tr>
<tr>
<td>Social Jetlag</td>
<td>0,163</td>
<td>0,141</td>
</tr>
<tr>
<td>Schlafdauer</td>
<td>-0,194</td>
<td>0,078</td>
</tr>
<tr>
<td>Lichtexposition</td>
<td>0,218</td>
<td>0,047*</td>
</tr>
<tr>
<td>Gruppe Normalgewichtig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI-SDS vs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSFsc</td>
<td>0,052</td>
<td>0,560</td>
</tr>
<tr>
<td>Social Jetlag</td>
<td>0,103</td>
<td>0,246</td>
</tr>
<tr>
<td>Schlafdauer</td>
<td>-0,027</td>
<td>0,758</td>
</tr>
<tr>
<td>Lichtexposition</td>
<td>0,220</td>
<td>0,012*</td>
</tr>
</tbody>
</table>

Gruppe Übergewichtig / Adipös: n = 83; Gruppe Normalgewichtig: n = 128; * p<0,05 (signifikant)
4.1.3 Einflussfaktoren auf die Schlafvariablen

4.1.3.1 Altersbezogene Schlafcharakterisierung der Gruppen

Tabelle 4: Altersabhängigkeiten

<table>
<thead>
<tr>
<th>Schlafvariable</th>
<th>Normalgewichtig</th>
<th>Übergewicht und Adipösig</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSF_sc /Chronotyp</td>
<td>normalgewichtig</td>
<td>0,204 (0,021)*</td>
</tr>
<tr>
<td></td>
<td>übergew. / adipösig</td>
<td>0,266 (0,015)*</td>
</tr>
<tr>
<td>Social Jetlag</td>
<td>normalgewichtig</td>
<td>0,071 (0,159)</td>
</tr>
<tr>
<td></td>
<td>übergew. / adipösig</td>
<td>0,284 (0,009)*</td>
</tr>
<tr>
<td>Schlafdauer</td>
<td>normalgewichtig</td>
<td>-0,303 (<0,001)*</td>
</tr>
<tr>
<td></td>
<td>übergew. / adipösig</td>
<td>-0,307 (0,005)*</td>
</tr>
<tr>
<td>Lichtexposition</td>
<td>normalgewichtig</td>
<td>-0,125 (0,159)</td>
</tr>
<tr>
<td></td>
<td>übergewichtig</td>
<td>0,217 (0,049)*</td>
</tr>
</tbody>
</table>

normalgewichtig: n = 128; übergewichtig und adipösig: n = 83; * p<0,05 (signifikant)

4.1.3.2 Geschlechtsbezogene Untersuchung der Schlafvariablen

Ergebnisse

Tabelle 5: Charakterisierung der Schlafvariablen (Aufteilung nach Geschlecht)

<table>
<thead>
<tr>
<th></th>
<th>MW ± SD</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSF_sc /Chronotyp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td>5,16 ± 1,55 Uhr</td>
<td>0,025*</td>
</tr>
<tr>
<td>weiblich</td>
<td>4,72 ± 1,18 Uhr</td>
<td></td>
</tr>
<tr>
<td>Social Jetlag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td>2,99 ± 1,31 h</td>
<td>0,512</td>
</tr>
<tr>
<td>weiblich</td>
<td>2,88 ± 1,21 h</td>
<td></td>
</tr>
<tr>
<td>Schlafdauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td>7,53 ± 1,12 h</td>
<td>0,214</td>
</tr>
<tr>
<td>weiblich</td>
<td>7,73 ± 1,15 h</td>
<td></td>
</tr>
<tr>
<td>Lichtexposition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td>2,53 ± 1,44 h</td>
<td>0,042*</td>
</tr>
<tr>
<td>weiblich</td>
<td>3 ± 1,83 h</td>
<td></td>
</tr>
</tbody>
</table>

T-Test bei unabhängigen Stichproben; männlich: n = 97; weiblich: n = 114, * p<0,05 (signifikant)
4.2 Ergebnisse der Längsschnittuntersuchung

Im Rahmen dieser Arbeit wurden Teilnehmer der laufenden MAINTAIN-Studie untersucht. Insgesamt wurden 98 Patienten der Adipositas-Sprechstunde (Gruppe C) zu bestimmten Studienzeitpunkten (T-3, T0, T12) hinsichtlich ihres Schlafverhaltens befragt. Zum Zeitpunkt T0 erfolgte eine Randomisierung in eine Kontroll- und eine Interventionsgruppe. Im Folgenden werden die Teilergebnisse dargestellt.

4.2.1 Stichprobencharakterisierung (T-3)

<table>
<thead>
<tr>
<th>Tabelle 6: Stichprobencharakterisierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht (n, %)</td>
</tr>
<tr>
<td>männlich</td>
</tr>
<tr>
<td>weiblich</td>
</tr>
<tr>
<td>Pubertätsstatus zu T-3 (n, %)</td>
</tr>
<tr>
<td>präpubertär</td>
</tr>
<tr>
<td>pubertär</td>
</tr>
<tr>
<td>postpubertär</td>
</tr>
<tr>
<td>Migrationshintergrund (n, %)</td>
</tr>
<tr>
<td>deutsch</td>
</tr>
<tr>
<td>türkisch</td>
</tr>
<tr>
<td>anderer</td>
</tr>
<tr>
<td>Randomisierung ab T0 (n, %)</td>
</tr>
<tr>
<td>Kontrollen</td>
</tr>
<tr>
<td>Intervention</td>
</tr>
<tr>
<td>Alter zu T-3 (MW ± SD)</td>
</tr>
<tr>
<td>BMI-SDS nach Kromeyer-Hauschild T-3 (MW ± SD)</td>
</tr>
</tbody>
</table>

n-gesamt = 98; MW Mittelwert; SD Standardabweichung; n Probandenzahl
4.2.2 Medienkonsum und tägliche Aktivität (T-3)

Die Kinder und Jugendlichen konnten ihren Medienkonsum und ihre tägliche Bewegungsaktivität selbst bewerten (Medienkonsum: niedrig < 2h, moderat 2 bis 3 h, hoch > 3h, tägliche Aktivität: hoch ≥ 90 min, moderat 30 bis < 90 min, niedrig < 30 min). 48% der teilnehmenden Probanden schätzten ihren Medienkonsum als hoch ein und nur 20% bewerteten ihn als niedrig. Die tägliche Aktivität wurde mit 45% als moderat eingeschätzt (s. Tabelle 7).

<table>
<thead>
<tr>
<th>Selbsteinschätzung zu T-3</th>
<th>niedrig</th>
<th>moderat</th>
<th>hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienkonsum (n, Prozent)</td>
<td>19 (20,4%)</td>
<td>29 (31,2%)</td>
<td>45 (48,4%)</td>
</tr>
<tr>
<td>Tägliche Aktivität (n, Prozent)</td>
<td>21 (22,6%)</td>
<td>42 (45,2%)</td>
<td>30 (32,3%)</td>
</tr>
</tbody>
</table>

4.2.3 Schlafcharakterisierung (T-3)

Wie in Tabelle 8 ersichtlich, wurden Mittelwerte und Standardabweichung für die den Schlaf charakterisierenden Variablen MSF_sc, Social Jetlag, Schlafdauer und Lichtexposition zum Zeitpunkt T-3 ermittelt.

<table>
<thead>
<tr>
<th>Schlafvariable zu T-3</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSF_sc / Chronotyp</td>
<td>4,19 (± 1,17) Uhr</td>
</tr>
<tr>
<td>Social Jetlag</td>
<td>2,6 (± 1,15) h</td>
</tr>
<tr>
<td>Schlafdauer</td>
<td>8,49 (±1,69) h</td>
</tr>
<tr>
<td>Lichtexposition</td>
<td>2,76 (±1,54) h</td>
</tr>
</tbody>
</table>

n = 98, MW ± SD
4.2.4 Einflussfaktoren auf die Schlafvariablen (T-3)

4.2.4.1 Einflussfaktor Alter

Das Alter korreliert signifikant mit den Schlafvariablen. Mit zunehmendem Alter verspätet sich der Chronotyp (s. Abbildung 9), steigt der Social Jetlag und verringert sich die Schlafdauer. Die Lichtexposition korreliert nicht signifikant mit dem Alter (siehe hierzu Tabelle 9).

Tabelle 9: Korrelationen Alter und Schlafvariablen

<table>
<thead>
<tr>
<th>Schlafvariable</th>
<th>Spearman-Rho-Korrelation (p) mit Alter</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSF_sc /Chronotyp</td>
<td>0,530 (<0,001)*</td>
</tr>
<tr>
<td>Social Jetlag</td>
<td>0,494 (<0,001)*</td>
</tr>
<tr>
<td>Schlafdauer</td>
<td>-0,475 (<0,001)*</td>
</tr>
<tr>
<td>Lichtexposition</td>
<td>-0,190 (0,060)</td>
</tr>
</tbody>
</table>

n = 98, * p<0,05 (signifikant)

Abbildung 9: Chronotyp (MSFsc in MEZ) und Alter der Längsschnitt-Gruppe
 Ergebnisse

4.2.4.2 Einflussfaktor Pubertät

Analogs zum Alter hat der Pubertätsstatus ebenfalls einen nachweisbaren Einfluss auf die Schlafvariablen (s. Tabelle 10). Postpubertär verspätet sich der Chronotyp (s. Abbildung 10), steigt der Social Jetlag und verringert sich die Schlafdauer. Die Lichtexposition korreliert nicht signifikant mit dem Pubertätsstatus.

Tabelle 10: Pubertätscharakteristika zu T-3

<table>
<thead>
<tr>
<th></th>
<th>MW ± SD</th>
<th>p-Wert (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSF_sc /Chronotyp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>präpubertär</td>
<td>3,57 ± 0,85 Uhr</td>
<td><0,001*</td>
</tr>
<tr>
<td>pubertär</td>
<td>3,73 ± 1,03 Uhr</td>
<td></td>
</tr>
<tr>
<td>postpubertär</td>
<td>4,7 ± 1,13 Uhr</td>
<td></td>
</tr>
<tr>
<td>Social Jetlag</td>
<td></td>
<td>0,002*</td>
</tr>
<tr>
<td>präpubertär</td>
<td>1,51 ± 0,94 h</td>
<td></td>
</tr>
<tr>
<td>pubertär</td>
<td>2,15 ± 1,06 h</td>
<td></td>
</tr>
<tr>
<td>postpubertär</td>
<td>2,74 ± 1,13 h</td>
<td></td>
</tr>
<tr>
<td>Schlafdauer</td>
<td></td>
<td>0,003*</td>
</tr>
<tr>
<td>präpubertär</td>
<td>8,73 ± 0,78 h</td>
<td></td>
</tr>
<tr>
<td>pubertär</td>
<td>8,9 ± 1,2 h</td>
<td></td>
</tr>
<tr>
<td>postpubertär</td>
<td>8,1 ± 1,1 h</td>
<td></td>
</tr>
<tr>
<td>Lichtexposition</td>
<td></td>
<td>0,072</td>
</tr>
<tr>
<td>präpubertär</td>
<td>2,98 ± 1,7 h</td>
<td></td>
</tr>
<tr>
<td>pubertär</td>
<td>3,19 ± 1,66 h</td>
<td></td>
</tr>
<tr>
<td>postpubertär</td>
<td>2,36 ± 1,32 h</td>
<td></td>
</tr>
</tbody>
</table>

n-gesamt=98, präpubertär n = 11, pubertär n = 39, postpubertär n = 48, (c) Kruskal-Wallis-Test, * p<0,05 (signifikant)
4.2.4.3 Einflussfaktor Migrationshintergrund

Der Migrationshintergrund zeigt keine signifikante Korrelation mit den Schlafvariablen zum Zeitpunkt T-3 (s. Tabelle 11).

Tabelle 11: Migrationshintergrund zu T-3

<table>
<thead>
<tr>
<th></th>
<th>MW ± SD</th>
<th>P-Wert (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSF_sc /Chronotyp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>deutsch</td>
<td>4,13 ± 1,07 Uhr</td>
<td>0,703</td>
</tr>
<tr>
<td>türkisch</td>
<td>4,31 ± 1,28 Uhr</td>
<td></td>
</tr>
<tr>
<td>anderer</td>
<td>4,17 ± 1,24 Uhr</td>
<td></td>
</tr>
<tr>
<td>Social Jetlag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>deutsch</td>
<td>2,39 ± 1,11 h</td>
<td>0,951</td>
</tr>
<tr>
<td>türkisch</td>
<td>2,28 ± 1,09 h</td>
<td></td>
</tr>
<tr>
<td>anderer</td>
<td>2,43 ± 1,32 h</td>
<td></td>
</tr>
<tr>
<td>Schlafdauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>deutsch</td>
<td>8,68 ± 1,14 h</td>
<td>0,184</td>
</tr>
<tr>
<td>türkisch</td>
<td>8,16 ± 1,10 h</td>
<td></td>
</tr>
<tr>
<td>anderer</td>
<td>8,50 ± 1,26 h</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 10: Zusammenhang von Chronotyp (Mitte der Schlafzeit) und Pubertasstatus
Ergebnisse

<table>
<thead>
<tr>
<th>Lichtexposition</th>
<th>deutsch</th>
<th>2,79 ± 1,61 h</th>
<th>0,252</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>türkisch</td>
<td>2,35 ± 1,13 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>anderer</td>
<td>3,17 ± 1,75 h</td>
<td></td>
</tr>
</tbody>
</table>

n-gesamt = 98 (deutsch n = 45, türkisch n = 28, anderer n = 25), (c) Kruskal-Wallis-Test

4.2.4.4 Einflussfaktor Geschlecht

In der MAINTAIN-Stichprobe konnte man keine geschlechtsspezifische Tendenz der Schlafvariablen erkennen (s. Tabelle 12).

Tabelle 12: Geschlechtsabhängigkeiten zu T-3

<table>
<thead>
<tr>
<th>MSF_sc /Chronotyp</th>
<th>MW ± SD</th>
<th>P-Wert (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>männlich</td>
<td>4,13 ± 1,22 Uhr</td>
<td>0,628</td>
</tr>
<tr>
<td>weiblich</td>
<td>4,24 ± 1,13 Uhr</td>
<td></td>
</tr>
<tr>
<td>Social Jetlag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td>2,21 ± 1,31 h</td>
<td>0,227</td>
</tr>
<tr>
<td>weiblich</td>
<td>2,5 ± 1 h</td>
<td></td>
</tr>
<tr>
<td>Schlafdauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td>8,51 ± 1,15 h</td>
<td>0,882</td>
</tr>
<tr>
<td>weiblich</td>
<td>8,5 ± 1,2 h</td>
<td></td>
</tr>
<tr>
<td>Lichtexposition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td>3 ± 1,68 h</td>
<td>0,168</td>
</tr>
<tr>
<td>weiblich</td>
<td>2,56 ± 1,4 h</td>
<td></td>
</tr>
</tbody>
</table>

n-gesamt = 98, männlich n = 45, weiblich n = 53, (a) t-Test bei unabhängigen Stichproben

4.2.5 Lichtexposition und Medienkonsum (T-3, T0, T12)

Die tägliche Lichtexposition der Probanden (s. Tabelle 13) stieg von Zeitpunkt T-3 zum Zeitpunkt während des Rehabilitationsaufenthaltes (T0) an und sank von T0 zu T12.

Zusätzlich wurde der Medienkonsum untersucht. Es findet sich eine leichte Korrelation (K = -0,235), jedoch eine hohe Signifikanz (p = 0,02) zur Lichtexposition (s. Abbildung 12).

In der Selbsteinschätzung bewerteten 46% der Probanden ihren Medienkonsum zum Zeitpunkt T-3 als zu hoch. Am Ende der Gewichtsreduktionsphase (T0) wurde der Medienkonsum von der Mehrheit (48%) als moderat bewertet (s. Tabelle 14).
Ergebnisse

Ein Jahr nach der Gewichtsreduktion (T12) bewerteten 41% der Studienteilnehmer ihren Medienkonsum als moderat und 35% als hoch. Die Lichtexposition änderte sich von T-3 zu T12 nicht signifikant (s. Tabelle 14).

Tabelle 13: Lichtexposition

<table>
<thead>
<tr>
<th>Lichtexposition zu T-3 (n=98)</th>
<th>p-Wert</th>
<th>Lichtexposition zu T0 (n=97)</th>
<th>p-Wert</th>
<th>Lichtexposition zu T12 (n=95)</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,76 ± 1,54 h</td>
<td><0,001* (a)</td>
<td>3,93 ± 1,6 h</td>
<td><0,001* (a)</td>
<td>2,95 ± 1,74 h</td>
<td>0,281 (a)</td>
</tr>
</tbody>
</table>

n=95, MW ± SD, (a) t-Test für verbundene Stichproben mit paarigen Werten, * p < 0,05 (signifikant)

Tabelle 14: Selbsteinschätzung Medienkonsum (Prozent)

<table>
<thead>
<tr>
<th></th>
<th>niedrig</th>
<th>moderat</th>
<th>hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-3</td>
<td>20%</td>
<td>31%</td>
<td>48%</td>
</tr>
<tr>
<td>T0</td>
<td>26%</td>
<td>48%</td>
<td>27%</td>
</tr>
<tr>
<td>T12</td>
<td>24%</td>
<td>41%</td>
<td>35%</td>
</tr>
</tbody>
</table>

n-gesamt = 98

In der Betrachtung der Lichtexposition und des subjektiven Medienkonsums in den Boxplots (s. Abbildung 11) ist erkennbar, dass dem subjektiv niedrigen Medienkonsum eine höhere Lichtexposition zu Grunde liegt als dem subjektiv moderaten und hohen Medienkonsum.

Abbildung 11: Lichtexposition und subjektiver Medienkonsum
Es konnte eine leichte negative Korrelation zwischen der Lichtexposition zu Ende der Gewichtsreduktionsphase (Erfassungszeitpunkt T0) und dem Chronotyp zu diesem Zeitpunkt festgestellt werden (s. Tabelle 15). Ein Zusammenhang der Lichtexposition mit dem Chronotyp zum Zeitpunkt T-3 bestand nicht.

Tabelle 15: Korrelationen (Spearman Rho) Lichtexposition zum Ende der Gewichtsreduktionsphase (T0)

<table>
<thead>
<tr>
<th>Lichtexposition vs.</th>
<th>Korrelationskoeffizient</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronotyp / MSFsc (T0)</td>
<td>-0,281</td>
<td>0,005*</td>
</tr>
<tr>
<td>Social Jetlag (T0)</td>
<td>-0,125</td>
<td>0,221</td>
</tr>
<tr>
<td>Schlafdauer (T0)</td>
<td>0,064</td>
<td>0,533</td>
</tr>
</tbody>
</table>

n = 97, * signifikant für p<0,01 (zweiseitig)
4.2.6 BMI-SDS (T-3, T0, T12)

Die Tabelle 16 zeigt den BMI-SDS nach Kromeyer-Hauschild (s. Kapitel 3.4) für die einzelnen Befragungszeitpunkte sowie für die einzelnen Differenzen. Der BMI-SDS vom Zeitpunkt T-3 zu T0 ist signifikant gesunken und von T0 zu T12 wieder signifikant gestiegen.

Tabelle 16: BMI-SDS nach Kromeyer-Hauschild zu T-3, T0, T12

<table>
<thead>
<tr>
<th>BMI-SDS zu T-3** (MW ± SD)</th>
<th>p-Wert T-3 vs. T0</th>
<th>p-Wert T0 vs. T12</th>
<th>p-Wert T-3 vs. T12</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,48 ± 0,43</td>
<td><0,001*(a)</td>
<td><0,001*(a)</td>
<td><0,001*(a)</td>
</tr>
<tr>
<td>2,05 ± 0,51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3 ± 0,61</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** n-gesamt=98; * p < 0,05 (signifikant); (a) t-Test für verbundene Stichproben mit paarigen Werten (n=jeweils 97)

4.2.7 Schlafvariablen (Chronotyp, SJL, Schlafdauer) zu T-3, T0, T12

Im folgenden Abschnitt werden die Variablen MSF_sc (Chronotyp), Social Jetlag und durchschnittliche Schlafdauer für die Zeitpunkte T-3, T0 und T12 betrachtet (s. Tabelle 17).

Chronotyp: Der Mittelpunkt der durchschnittlichen Schlafzeit verfrühte sich signifikant von T-3 (04:11 Uhr) zum Zeitpunkt T0 (02:58 Uhr). Der Schlafzeitraum der Probanden verfrühte sich um 1 h 13 min. Von T0 zu T12 (04:34 Uhr) verspätete sich der Chronotyp signifikant. Vom Zeitpunkt T-3 zu T12 verspätete sich der Chronotyp ebenfalls.

Social Jetlag: Der Social Jetlag betrug vor der Gewichtsreduktion (T-3) 2 h 22 min und während der Gewichtsreduktionsphase (T-3 bis T0) nur noch 50 min. Von T0 und T12 stieg er auf 2h 36min an. Auch von T-3 zu T12 zeigt sich ein Anstieg um 14 min.

Schlafdauer: Die durchschnittliche wöchentliche Schlafdauer nahm von T-3 (8 h 29 min) zu T0 (9 h 8 min) zu und von T0 zu T12 (8 h 12 min) ab. Von T-3 zu T12 nahm sie ebenfalls ab (Differenz: 17 min).
Tabelle 17: Schlafvariablen zu T-3, T0 und T12

<table>
<thead>
<tr>
<th></th>
<th>MW ± SD</th>
<th>p-Wert T-3 vs. T0 (n=95)</th>
<th>p-Wert T0 vs. T12 (n=95)</th>
<th>p-Wert T-3 vs. T12 (n=95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronotyp (Uhrzeit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSFsc (Chronotyp) zu T-3 (n=98)</td>
<td>4,19 ± 1,17</td>
<td><0,001* (a) (n=95)</td>
<td><0,001* (d)</td>
<td>0,007* (d)</td>
</tr>
<tr>
<td>MSFsc (Chronotyp) zu T0 (n=97)</td>
<td>2,97 ± 0,52</td>
<td><0,001* (d)</td>
<td><0,001* (d)</td>
<td>0,045* (d)</td>
</tr>
<tr>
<td>MSFsc (Chronotyp) zu T12 (n=95)</td>
<td>4,57 ± 1,4</td>
<td><0,001* (d)</td>
<td><0,001* (d)</td>
<td>0,008* (d)</td>
</tr>
<tr>
<td>Social Jetlag (h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Jetlag zu T-3 (n=98)</td>
<td>2,37 ± 1,15</td>
<td><0,001* (d)</td>
<td><0,001* (d)</td>
<td>0,045* (d)</td>
</tr>
<tr>
<td>Social Jetlag zu T0 (n=97)</td>
<td>0,84 ± 0,5</td>
<td><0,001* (d)</td>
<td><0,001* (d)</td>
<td>0,045* (d)</td>
</tr>
<tr>
<td>Social Jetlag zu T12 (n=95)</td>
<td>2,6 ± 1,23</td>
<td><0,001* (d)</td>
<td><0,001* (d)</td>
<td>0,008* (d)</td>
</tr>
<tr>
<td>Schlafdauer (h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schlafdauer zu T-3 (n=98)</td>
<td>8,49 ± 1,17</td>
<td><0,001* (a)</td>
<td><0,001* (a)</td>
<td>0,008* (a)</td>
</tr>
<tr>
<td>Schlafdauer zu T0 (n=97)</td>
<td>9,13 ± 0,81</td>
<td><0,001* (a)</td>
<td><0,001* (a)</td>
<td>0,008* (a)</td>
</tr>
<tr>
<td>Schlafdauer zu T12 (n=95)</td>
<td>8,2 ± 1,13</td>
<td><0,001* (a)</td>
<td><0,001* (a)</td>
<td>0,008* (a)</td>
</tr>
</tbody>
</table>

* p < 0,05 (signifikant), (a) t-Test für verbundene Stichproben mit paarigen Werten, (d) Wilcoxon-Test

4.2.8 Zusammenhang BMI-SDS und Schlafvariablen (T-3)

Es wurde der Zusammenhang des Ausgangsgewichts mithilfe des BMI-SDS (T-3) und dem Schlafverhalten zum ersten Untersuchungszeitpunkt (T-3) ermittelt.
Hierbei zeigt sich, dass der BMI-SDS mit der Chronotypzeit (s. Tabelle 18, s. Abbildung 13) korreliert. Die Korrelation der durchschnittlichen wöchentlichen Schlafdauer und dem BMI-SDS liegt marginal unter dem Signifikanzniveau (p = 0,063).
In der Forward-Selection-Regressionsanalyse zeigt das Alter (zu T-3) als einzige der untersuchten Variablen einen signifikanten Einfluss auf die Zielvariable BMI-SDS zu T-3 (s. Tabelle 19). Der BMI-SDS hängt demnach mit dem Alter zusammen. Adjustiert wurde für Geschlecht, Pubertätsstatus, MSFsc / Chronotyp, Social Jetlag, Schlafdauer und die Lichtexposition jeweils zum Zeitpunkt T-3.
Ergebnisse

Tabelle 18: BMI-SDS und Schlafvariablen zum Zeitpunkt T-3

<table>
<thead>
<tr>
<th>BMI-SDS vs. :</th>
<th>Korrelationskoeffizient</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSFsc / Chronotyp</td>
<td>0,201</td>
<td>0,047*</td>
</tr>
<tr>
<td>Social Jetlag</td>
<td>0,145</td>
<td>0,154</td>
</tr>
<tr>
<td>Schlafdauer</td>
<td>-0,189</td>
<td>0,063</td>
</tr>
<tr>
<td>Lichtexposition</td>
<td>0,071</td>
<td>0,487</td>
</tr>
</tbody>
</table>

n-gesamt = 98, * p<0,05 (signifikant)

Abbildung 13: BMI-SDS und Chronotyp zu T-3

Tabelle 19: Forward-Regressionsergebnisse für Zielgröße BMI-SDS T-3

<table>
<thead>
<tr>
<th>Alter zu T-3</th>
<th>B</th>
<th>Konfidenzintervall für B (95%)</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,090</td>
<td>0,045</td>
<td>0,135</td>
</tr>
</tbody>
</table>

signifikant p<0,05

Adjustiert für die Variablen: Geschlecht, Pubertätsstatus (T-3), MSF_sc/Chronotyp (T-3), Social Jetlag (T-3), Schlafdauer (T-3), Lichtexposition (T-3), *signifikant p<0,05*
4.2.9 Ergebnisse der Gewichtsreduktionsphase (T-3 bis T0)

Weder die Schlafdauer noch die Lichtexposition korrelieren signifikant mit der Gewichtsdifferenz (BMI-SDS dT-3T0). Der Social Jetlag reduzierte sich signifikant von T-3 zu T0, der BMI-SDS ebenfalls (s. Kapitel 4.2.6 und 4.2.7). Wenn sich der SJL von T-3 zu T0 verringert hat, haben die Kinder in dieser Zeit weniger Gewicht reduzieren können als die Kinder, deren SJL von T-3 zu T0 gestiegen ist (siehe hierzu Abbildung 15).

Tabelle 20: Korrelationen der BMI-SDS-Differenz zwischen T-3 und T0 (dT3T0) mit Schlafvariablen T-3

<table>
<thead>
<tr>
<th>BMI-SDS (dT-3T0) vs</th>
<th>n</th>
<th>Korrelationskoeffizient</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSF_sc / Chronotyp T-3</td>
<td>98</td>
<td>0,284</td>
<td>0,005*</td>
</tr>
<tr>
<td>BMI-SDS T-3</td>
<td>98</td>
<td>0,275</td>
<td>0,006</td>
</tr>
<tr>
<td>Social Jetlag T-3</td>
<td>98</td>
<td>0,215</td>
<td>0,033*</td>
</tr>
<tr>
<td>Schlafdauer T-3</td>
<td>98</td>
<td>-0,119</td>
<td>0,244</td>
</tr>
<tr>
<td>Lichtexposition T-3</td>
<td>98</td>
<td>0,005</td>
<td>0,962</td>
</tr>
</tbody>
</table>

N=98, * signifikant p<0,05
Ergebnisse

Abbildung 14: Gewichtsdifferenz BMI-SDS zwischen T-3 und T0 (dT-BMI) und Chronotyp T-3

Abbildung 15: Gewichtsdifferenz BMI-SDS zwischen T-3 und T0 (dT-BMI) und SJL T-3

Die Regression (s. Tabelle 21) weist auf, dass der Ausgangs-BMI-SDS (T-3) und die Chronotypzeit zu T-3 einen signifikanten Einfluss auf die Gewichtsreduktion von T-3 zu T0 (BMI-SDS dT-BMI) haben. Wie in der Korrelationstabelle (s. Tabelle 20) aufgezeigt und mit der
Ergebnisse

Forward-Selection-Regression (s. Tabelle 21) bestätigt, nahmen die Probanden mit einem früheren Chronotyp zu T-3 mehr Gewicht ab als jene mit einem späten Chronotyp.

Tabelle 21: Forward-Regressionsergebnisse für Zielgröße dT-3T0 BMI-SDS nach Kromeyer-Hauschild

<table>
<thead>
<tr>
<th>B</th>
<th>Konfidenzintervall für B (95%)</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Untergrenze</td>
<td>Obergrenze</td>
</tr>
<tr>
<td>BMI-SDS T-3</td>
<td>0,095</td>
<td>-0,019</td>
</tr>
<tr>
<td>MSF_sc / Chronotyp</td>
<td>0,032</td>
<td>0,004</td>
</tr>
</tbody>
</table>

Adjustiert für die Variablen: Alter (T-3), Geschlecht, Pubertätsstatus (T-3), MSF_sc/Chronotyp (T-3), Social Jetlag (T-3), Schlafdauer (T-3), Lichtexposition (T-3), * signifikant p<0,05
4.2.10 Ergebnisse der 12-monatigen Phase nach Gewichtsreduktion (T0 bis T12)

Es wurde das Gewichtsverhalten nach der Gewichtsreduktion zwischen T0 und T12 (dT0T12) im Zusammenhang mit dem vorangegangenen Schlafverhalten zum Zeitpunkt T0 untersucht. Dabei zeigt sich keine Korrelation des Gewichtsverlaufs zwischen T0 bis T12 mit Chronotyp, Social Jetlag, Schlafdauer und Lichtexposition (s. Tabelle 22). In der Forward-Selection-Regressionsanalyse (s. Tabelle 23) für die Zielvariable BMI-SDS nach Kromeyer-Hauschild dT0T12 ergibt sich ein signifikanter Einfluss der Randomisierung in Interventions- und Kontrollgruppe auf den Gewichtsverlauf.

Tabelle 22: Korrelationen der BMI-SDS-Differenz zwischen T0 und T12 (dT0T12) mit Schlafvariablen T0

<table>
<thead>
<tr>
<th>BMI-SDS nach Kromeyer-Hauschild (dT0T12) vs. :</th>
<th>n</th>
<th>Korrelationskoeffizient</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSF_sc / Chronotyp T0</td>
<td>97</td>
<td>-0,138</td>
<td>0,178</td>
</tr>
<tr>
<td>Social Jetlag T0</td>
<td>97</td>
<td>-0,132</td>
<td>0,199</td>
</tr>
<tr>
<td>Schlafdauer T0</td>
<td>97</td>
<td>0,055</td>
<td>0,596</td>
</tr>
<tr>
<td>Lichtexposition T0</td>
<td>97</td>
<td>-0,025</td>
<td>0,809</td>
</tr>
</tbody>
</table>

Tabelle 23: Forward-Regressionsergebnisse für Zielvariable dT0T12 BMI-SDS

<table>
<thead>
<tr>
<th>Randomisierung ab T0</th>
<th>B</th>
<th>Konfidenzintervall für B (95%)</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,133</td>
<td>0,002</td>
<td>0,265</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Untergrenze</th>
<th>Obergrenze</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,047*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjustiert für die Variablen: BMI-SDS nach Kormeyer-Hauschild (T0), Alter (T0), Geschlecht, Pubertätsstatus (T0), MSF_sc/Chronotyp (T0), Social Jetlag (T0), Schlafdauer (T0), * signifikant p<0,05
4.2.11 Zusammenfassung der Ergebnisse

Abbildung 16: Ergebnisübersicht der Untersuchungsgruppen (MSFsc = Chronotyp, SJL = Social Jetlag, SD = Schlafdauer, LE = Lichtexposition)

4.2.11.1 Querschnittuntersuchung

Es findet sich ein Unterschied zwischen normalgewichtigen (Gruppe B) und übergewichtigen / adipösen (Gruppe A) Kindern und Jugendlichen (s. Abbildung 16). Der Chronotyp der Gruppe der übergewichtigen / adipösen Probanden war früher (4,64 ± 1,48 Uhr vs. 5,10 ± 1,29 Uhr, p = 0,017) und der Social Jetlag geringer (2,67 ± 1,30 h vs. 3,09 ± 1,20 h, p = 0,018) als bei der Kontrollgruppe. Gruppe A gab eine längere Lichtexposition an (3,22 ± 1,8 h vs. 2,5 ± 1,52 h, p = 0,001).

Für beide Gruppen konnte gezeigt werden, dass mit zunehmendem Alter der Chronotyp später war (Gr. A: p = 0,015, Gr. B: p = 0,021) und die Schlafdauer mit zunehmendem Alter abnahm.
Ergebnisse

(Gr. A: \(p = 0,005 \), Gr. B: \(p < 0,001 \)). Zusätzlich zeigte sich in der geschlechtsspezifischen Untersuchung, dass weibliche Probanden im Vergleich zu den männlichen einen früheren Chronotyp (\(4,72 \pm 1,18 \) Uhr vs. \(5,16 \pm 1,55 \) Uhr, \(p = 0,025 \)) und eine längere Lichtexposition aufwiesen (\(3 \pm 1,83 \) h vs. \(2,53 \pm 1,44 \) h, \(p = 0,042 \)).

4.2.11.2 Längsschnittuntersuchung

Vor der Gewichtsreduktion (T-3) fand sich eine positive Korrelation zwischen Chronotyp und BMI-SDS (\(K = 0,201, p = 0,047 \)), allerdings zeigte das Alter in der Regressionsanalyse den größten Einfluss auf den BMI-SDS (\(B = 0,09, p < 0,001 \)).

Zu Ende der Gewichtsreduktionsphase (T0) wurden ein früherer Chronotyp, ein geringerer Social Jetlag und eine längere Schlafdauer als vorher und ein Jahr danach festgestellt (s. Abbildung 16).

Patienten mit früherem Chronotyp vor der Gewichtsreduktion (T-3) konnten vom ersten zum zweiten Befragungszeitpunkt (T-3 bis T0) mehr Gewicht reduzieren als solche mit späterem Chronotyp (\(K = 0,284, p = 0,005 \)). Ein Einfluss des Chronotyps auf die Gewichtsreduktion konnte mit der Forward-Regressionsanalyse bestätigt werden (\(B = 0,032, p = 0,024 \)).

Auch in der Längsschnittuntersuchung zeigen sich mit zunehmendem Alter ein späterer Chronotyp (\(p < 0,001 \)), ein höherer Social Jetlag (\(p < 0,001 \)) und eine verringerte Schlafdauer (\(p < 0,001 \)). Gleiches gilt für den Einfluss des Pubertätsstatus auf die Schlafvariablen (MSFsc: \(p < 0,001 \), SJL: \(p = 0,002 \), SD: \(p = 0,003 \)). Der Migrationshintergrund als auch das Geschlecht hatten in dieser Gruppe keinen Einfluss auf die Schlafvariablen.

In der Selbstbeurteilung vor der Gewichtsreduktion (T-3) gab die Mehrheit der Probanden einen übermäßigen Medienkonsum und eine moderate tägliche Aktivität an. Die Lichtexposition war zu Ende der Gewichtsreduktionsphase (T0) signifikant höher (\(p < 0,001 \)) als zu T-3 und T12 (s. Abbildung 16). Eine leichte negative Korrelation zwischen Medienkonsum und Lichtexposition wurde gezeigt (\(K = -0,235, p = 0,02 \)). Je höher die Lichtexposition am Ende der Gewichtsreduktionsphase (T0), desto früher war der Chronotyp (\(K = -0,281, p = 0,005 \)).
5 Diskussion

Die Inzidenz der Adipositas und assoziiert er Folgeerkrankungen steigt nicht nur in Industrieländern dramatisch an, sondern nimmt auch in urbanen Regionen von Schwellen- und Entwicklungsländern zu [6]. Neben genetischen Faktoren, spielen vor allem Veränderungen des Lebensstils (wie Ernährung [23], Schlafverhalten [79], körperliche Aktivität [11]) eine große Rolle, die besonders in der vulnerablen Phase des Kindes- und Jugendalters entscheidend für die Entwicklung von Adipositas sind [80].

Zentrales Anliegen dieser Arbeit ist es, die Zusammenhänge zwischen Schlafverhalten und Adipositas anhand einer Querschnittanalyse und einer Längsschnittanalyse bei Kindern und Jugendlichen zu untersuchen.

In Kapitel 5 werden zunächst das Probandenkollektiv und methodische Grundlagen kritisch dargestellt und anschließend die Ergebnisse hinsichtlich der Fragestellungen für die Querschnittanalyse und die Längsschnittanalyse diskutiert und mit der aktuellen Studienlage verglichen.

5.1 Diskussion des Probandenkollektivs

Für die Querschnittanalyse wurden übergewichtige und adipöse Kinder und Jugendliche (A) mit einer normalgewichtigen Kontrollgruppe (B) verglichen (s. Abbildung 6, s. Kapitel 4.1.1). Beide Gruppen waren hinsichtlich des Alters ähnlich aufgestellt und deshalb gut vergleichbar. Dies stärkt die Aussagekraft der Studie, da ein Alterseinfuss auf die Schlafvariablen zu vermuten war [53]. Ergebnislimitierend könnte die kleine Stichprobenzahl sein, sowie die Ungleichverteilung der Probandenzahl (n-Übergewicht/Adipöös = 84, n-Kontrolle = 128). In der Gruppe Übergewichtig waren beide Geschlechter relativ ausgewogen vertreten, wohingegen in der Kontrollgruppe die männlichen Probanden mit 55% leicht überwogen. Da ein geschlechtsabhängiger Zusammenhang mit dem Schlafverhalten vermutet wurde [53], könnten die Ergebnisse an dieser Stelle beeinflusst worden sein. In der Querschnittsanalyse wurden keine Daten zur Ethnizität und Migrationshintergrund erhoben, welche zumindest bei der Gewichtsbetrachtung als mögliche Einflussfaktoren zu sehen sind [15].
Diskussion

Die Längsschnittanalyse (s. Kapitel 4.2.1) umfasste 98 adipöse Teilnehmer der MAINTAIN-Studie (s. Kapitel 3.3), die zum ersten Untersuchungszeitpunkt im Mittel 13,6 ± 1,8 Jahre alt waren. Zu beachten ist, dass die Probanden jünger waren und die Standardabweichung des Alters im Vergleich zu den Gruppen der Querschnittsanalyse größer war.

Der Pubertätsstatus stellt einen der größten Einflussfaktoren auf das Schlafverhalten dar [55], weshalb für die Einordnung der Ergebnisse das aktuelle Pubertätsstadium zu beachten ist (T-3: 11 präpubertär, 39 pubertär, 48 postpubertär).

Die Geschlechter waren weitestgehend gleichverteilt (w = 54% vs. m = 46%).

54% der Teilnehmer weisen einen Migrationshintergrund auf (n-deutsch = 45, n-türkisch = 28, n-anderer = 25).
Diskussion

5.2 Diskussion der Methoden

5.2.1 Bestimmung des BMI

Als Maß für die Körperfettmasse hat sich der Body-Mass-Index (BMI= Körpergewicht (kg) / Körpergröße (m)²) etabliert [81], wobei er Körpergröße und Körpergewicht in einer Größe vereint. Er wird von der „European Childhood Obesity Group“ (ECOG) und der „Childhood Group der International Obesity Task Force“ (IOTF) zur Beurteilung von Übergewicht und Adipositas bei Kindern und Jugendlichen empfohlen [82, 83]. Andere Methoden zur Bestimmung der Körperfettmasse erweisen sich als klinisch nicht praktikabel und teuer [23].

5.2.2 Fragebogen MCTQ

Es gibt unterschiedliche Möglichkeiten das Schlafverhalten bzw. den Chronotyp zu erfassen wie beispielsweise mit Hilfe von Schlaufgebüchern, Fragebögen und Aktimetrie, bei der die Probanden ein Aktimeter am Handgelenk tragen, welches ihre Bewegungsaktivität aufzeichnet. Der internetbasierte MCTQ (www.theWep.org, s. MCTQ im Anhang [48]) erwies sich als eine sehr gute kostengünstige, klinisch praktikable und bereits etablierte Methode zur Erfassung der Schlafpräferenzen der Probanden. Während der Erprobung des Fragebogens konnte ein starkes Übereinstimmen der im 5-wöchigen Schlaufprotokoll subjektiven Einschätzung des Chronotyps (qualitativ) und der mit dem MCTQ erhobenen Schlafzeiten (quantitativ) gezeigt werden [48].
Diskussion

2013 umfasste die Datenbank über 150 000 Einträge weltweit und ermöglichte damit eine umfassende Beurteilung des Schlafverhaltens unterschiedlicher Populationen [53, 73, 84].

Andere Fragebögen, die für die Einschätzung des Chronotyps verwendet werden, erfragen vor allem subjektive Schlafräumen im Konjunktiv, wie beispielsweise „Wann würden Sie aufstehen, wenn Sie komplett frei Ihren Tag planen könnten?“ im „Morningness-Eveningness-Fragebogen“ (MEQ) von Horne et al. [85]. Mit dem MCTQ allerdings wird das Schlafverhalten quantitativ mit vergleichsweise einfachen Fragen getrennt zu Wochentagen und Wochenenden erfasst, was im MEQ nicht der Fall ist. Außerdem können mit ihm weitere Bereiche wie Kaffee- und Alkoholkonsum und die tägliche Lichtexposition erhoben werden [48].

Über den MCTQ erfolgte die Erfassung der Schlafvariablen Chronotyp (MSFsc), Social Jetlag, Schlafdauer, zudem ergibt sich eine Aussage zur durchschnittlichen Lichtexposition der Probanden (s. Kapitel 3.2 zur Berechnung der Variablen).

Der Abschnitt „Aufenthalt am Tageslicht“ erfragt die Lichtexposition an Wochentagen und an freien Tagen und ist in Stunden und Minuten anzugeben. Als sehr hilfreich hat sich erwiesen, dass ein Mitglied des Studienteams die Kinder und Jugendlichen unterstützte und ihnen half, die Zeiten für Schulwege, Hofpausen und Aktivitäten im Freien zu ermitteln, da ihnen die Beantwortung dieser Frage etwas schwer fiel.

Bei allen Jugendlichen kann man einen späten Chronotyp aufgrund des Alters und der Hinweise in der aktuellen Literatur vermuten (s. Kapitel 2.2). Dieser späte Chronotyp ist laut Allebrandt et al. [86] einer Schwankung zwischen Sommer- und Winterzeit ausgesetzt.

Es besteht also ein jahreszeitlicher Einfluss, wobei späte Chronotypen ihre Schlafdauer während der Sommerzeit (Umstellung der Uhr 1h vor / später von Ende März bis Ende Oktober) verringern und der durchschnittliche Chronotyp der Population in der Sommerzeit als früher erfasst wird [86]. Ein Defizit der vorliegenden Arbeit ist, dass die Gruppe Übergewichtig (A) von März bis August 2013 befragt, während die Daten der Kontrollgruppe Normalgewichtig (B)

Dabei ist zu beachten, dass die MAINTAIN-Probanden durch die Teilnahme an der Langzeitstudie noch vertrauter mit den Abläufen der Studie sind und dieser Effekt der sozialen Erwünschtheit wohlmöglich noch ausgeprägter ist.

5.2.3 Medienkonsum und Aktivität in der Selbsteinschätzungsmethode

Diskussion

5.3 Diskussion der Querschnittsergebnisse

Zentrales Anliegen für die Querschnittsuntersuchung war, herauszufinden, ob sich normalgewichtige und übergewichtige / adipöse Kinder und Jugendliche hinsichtlich ihres Schlafverhaltens unterscheiden und ob es zusätzlich zum Alter und Geschlecht einen Einfluss des Chronotyps, des Social Jetlags und der Schlafdauer auf den BMI-SDS gibt (s. Kapitel 2.3).

In der Schlafcharakterisierung fiel auf, dass sich der Chronotyp signifikant unterschied, wobei die Gruppe Übergewichtig / Adipös (Gruppe A) einen früheren Chronotypen als die Kontrollgruppe aufwies (s. Kapitel 4.1.2). Die Differenz der Mittelwerte ergab für die Gruppe Übergewichtig / Adipös einen um 28 Minuten früheren Schlafmittelpunkt. Die Gruppe Übergewichtig / Adipös hatte mit durchschnittlich 2,67 h ± 1,3 h zudem einen signifikant geringeren Social Jetlag als die Kontrollgruppe mit durchschnittlich 3,09 h ± 1,2 h.

In der Studie von Roenneberg et al. [53] fand man heraus, dass es im oberen BMI-Bereich eine Korrelation des Social Jetlags mit dem BMI gibt (BMI ≥ 25; n = 20 731), jedoch nicht im Normalbereich des BMI (BMI ≤ 25; n = 43 308) [53]. In seiner normalgewichtigen Stichprobe ist der Social Jetlag also kein Prädiktor für einen höheren BMI.
Außerdem wurden im Vergleich zu Roenneberg et al., der vor allem Daten von Erwachsenen erhob, nur Kinder und Jugendliche zwischen zehn und 18 Jahren untersucht. Da der Chronotyp und der Social Jetlag sowie Schlafdauer mit dem Alter und Pubertätsstatus korrelieren [55, 90], kann es bereits durch geringe Altersunterschiede zwischen den Gruppen zu Veränderungen der Schlafvariablen kommen. Man müsste für jedes Alter und Pubertätsstatus während der
Diskussion

Adoleszenz eine differenzierte Analyse der Schlafvariablen vornehmen, um potentielle Effekte beobachten zu können.

Eine detaillierte Subgruppenanalyse (alters-, pubertäts- und geschlechtskorreliert) konnte aufgrund des kleinen Studienkollektivs nicht erfolgen. Zukünftig sollten sich diese Untersuchungen an wesentlich größeren Stichproben orientieren, um für die Adoleszenzphase orientierende Durchschnittswerte bezüglich Chronotyp, Social Jetlag und Schlafdauer definieren zu können.

Der Fakt der saisonalen Unterschiede des Chronotyps sowie das Verhalten des „sozial erwünschten Antwortens“ der in der Adipositas-Sprechstunde betreuten Gruppe Übergewichtig / Adipös (Gruppe A; s. Kapitel 5.2.2), erklären den früheren Chronotyp sowie höheren Social Jetlag der Gruppe Übergewichtig / Adipös. Späte Chronotypen werden während der Sommerzeit als früher erfasst [86] (s. Kapitel 5.2.2).

Auch die Dauer der Lichtexposition könnte ein Resultat dieser Limitierungen sein, da die Gruppe Übergewichtig ihrer Angaben nach 3,22 ± 1,80 h und damit rund 43 Minuten länger als die Kontrollgruppe im Freien aufhielt. Hierbei wäre einerseits zu mutmaßen, dass man sich im Sommer eher im Freien aufhalten mag als im Winter, und andererseits, dass die Gruppe Übergewichtig / Adipös ihre Antwort nach der bestmöglichen Erwartungshaltung des SPZ ausgewählt hat.

Ferner spielen sozioökonomische Unterschiede der Probandenkollektive eine Rolle (s. Kapitel 5.1), welche die Ergebnisse ebenfalls beeinflussen können.

Männliche Probanden wiesen einen signifikant späteren Chronotyp auf und hielten sich kürzer im Freien auf als die Mädchen.

Die in der Querschnittuntersuchung festgestellten Alters- und Geschlechtsunterschiede bestätigen weitestgehend die Ergebnisse aktueller Studien [53, 55, 60, 90]: Roenneberg et al. [53] zeigten ebenfalls, dass die Schlafdauer bei Männern geringer ist als bei Frauen und dass sie mit zunehmendem Alter abnimmt, untersuchten dabei allerdings eine weite Altersspanne (zehn bis 80 Jahre). Sie konnten eine Spitze des Social Jetlags zu Ende der Pubertät
feststellen, auch hierbei zeigten männliche Probanden höhere Werte als weibliche. Im Vergleich zu anderen Altersklassen findet sich bei Jugendlichen also die größte Diskrepanz zwischen den Schlafzeiten der Schultage und dem Wochenende.

Sadeh et al. zeigten in ihrer Longitudinalstudie ebenfalls eine altersabhängige Reduktion der Schlafdauer und einen verzögerten Schlaflbeginn bei Schulkindern [90].

Der Chronotyp wird mit zunehmendem Alter in der Pubertät später und erreicht seinen spätesten Punkt zum Ende der Pubertät [55].

In der Arbeit von Lange et al. [92] von 2015 wurden Geschlechterunterschiede bei der Auswirkung von Medienkonsum auf das Schlafverhalten untersucht: Ein Konsum von täglich über drei Stunden Internet und Computer (aOR = 2.56, p < 0.05) war bei Jungen mit Schlafproblemen assoziiert. Bei Mädchen zeigte ein Musikhören von über drei Stunden täglich Schlafbeschwerden (aOR = 4.24, p < 0.05) [92].

Die Hypothese H1 für die Querschnittuntersuchung (s. Kapitel 2.3) kann, was die Einflüsse des Alters und des Geschlechts auf das Schlafverhalten bei Jugendlichen betrifft, im Grundsatz bestätigt werden und ist vereinbar mit aktuellen Studienergebnissen anderer Arbeiten. Differenzen im Schlafverhalten der beiden Gruppen konnten ebenfalls festgestellt werden, allerdings deckt sich dies wenig mit der aktuellen Literatur. Gründe hierfür sind jahreszeitliche Differenzen in der Datenerhebung sowie sozial erwünschte Antworttendenzen der Patienten des
Diskussion

SPZ. Grundsätzlich kann, wie in oben genannter Literatur beschrieben, von unterschiedlichen Zusammenhängen der einzelnen Gewichtsgruppen mit ihrem Schlafverhalten ausgegangen werden, jedoch konnte in der Querschnittsuntersuchung kein Zusammenhang zwischen Übergewicht und Schlafverhalten ermittelt werden.
5.4 Diskussion der Längsschnittergebnisse

Anliegen war, herauszufinden, ob der Chronotyp, der Social Jetlag und die Schlafdauer bei Kindern und Jugendlichen im Rahmen einer Längsschnittuntersuchung mit strukturierter Gewichtsreduktion und anschließender Nachbeobachtungsphase einen Einfluss auf die Gewichtsabnahme und den Gewichtserhalt während dieser Phasen haben.
Ferner soll ermittelt werden, inwiefern die Faktoren Alter, Pubertätsstatus, Geschlecht und Migrationshintergrund Einfluss auf das Schlafverhalten und den zirkadianen Rhythmus haben.
Weiterhin wird untersucht, ob es einen Zusammenhang von Chronotyp und Lichtexposition zu Ende der Gewichtsreduktionsphase gibt (s. zu den Hypothesen Kapitel 2.3).

5.4.1 Schlafcharakterisierung zum Zeitpunkt T-3 und Vergleich zum Querschnitt

Der Chronotyp der Probanden der Längsschnittstudie (Gruppe C) war zu T-3 früher als jener der Kontrollgruppe (Gruppe B) und früher als jener der Gruppe Übergewichtig / Adipös (Gruppe A, s. hierzu Abbildung 16).
Eine mögliche Erklärung für diese Zusammenhänge wären ebenfalls die saisonalen Differenzen bei der Erfassung, denn Längsschnittgruppe und Gruppe Übergewichtig / Adipös stimmen grob überein, jedoch weisen sie im Vergleich zur Kontrollgruppe einen wesentlich früheren Chronotyp und höheren Social Jetlag auf. Die Kontrollgruppe wurde zur Winterzeit, die Gruppe Übergewichtig / Adipös zur Sommerzeit und die Längsschnittgruppe zu beiden Zeiten befragt (s. hierzu Kapitel 5.2.2).
Dass Chronotyp und Social Jetlag der Längsschnittgruppe zu T-3 im Vergleich zur Gruppe Übergewichtig / Adipös früher bzw. geringer sind, könnte am ehesten auf den Altersunterschied zurückzuführen sein, da die Längsschnittgruppe zum Zeitpunkt T-3 im Mittel jünger war (s. Kapitel 4.2.11).

5.4.2 Einflussfaktoren Alter, Pubertätsstatus, Migrationshintergrund, Geschlecht

Der Einfluss von Alter und Pubertätsstatus der Längsschnittgruppe zum Zeitpunkt T-3 auf die Schlafvariablen (s. Tabelle 9, Tabelle 10) deckt sich ebenso wie die Ergebnisse der Querschnittanalyse mit anderen Studien [53, 55, 60, 90].

Das Alter korreliert mit dem Social Jetlag (p < 0,001), dem Chronotyp (p < 0,001) und der Schlafdauer (p < 0,001). In einer Studie von Roenneberg et al. [53] aus 2012 fand man ebenfalls heraus, dass das Alter neben Chronotyp und Geschlecht den größten Einfluss auf die Schlafdauer habe. Auch die positive Korrelation zwischen Alter und Social Jetlag stimmt für den Abschnitt während der Adoleszenz mit dem Ergebnis dieser Studie überein [53].

Die Gruppe wurde ihrem Pubertätsstatus entsprechend in präpubertär, pubertär und postpubertär unterteilt. Mit aufsteigendem Pubertätsstatus war auch der Chronotyp später (p < 0,001), der Social Jetlag höher (p = 0,002) und diese Probanden schließen durchschnittlich kürzer (p = 0,003).
Diskussion

Roenneberg et al. konstatierten, dass der Chronotyp zu Ende der Adoleszenz seinen spätesten Bereich während des Lebens erreicht [55], was für eine Korrelation des Chronotyps mit dem Pubertätsstatus spricht [54]. Alter und Pubertätsstatus sind stark miteinander verknüpft, weshalb ähnliche Ergebnisse für das Schlaflverhalten zu erwarten waren. Dabei ist zu beachten, dass der Pubertätsstatus als genauerer Parameter dem Alter vorzuziehen ist [55].

29% der Längsschnittgruppe hatten einen türkischen Migrationshintergrund, wobei die meisten eng mit ihrer Kultur verbunden sind. Der Einfluss des Fastenmonats Ramadan und das damit verbundene Fasten von Sonnenaufgang bis Sonnenuntergang verlagern den Tagesablauf bei einigen in die Nacht. Auch unsere Probanden berichteten, lange wach zu bleiben, um noch essen zu können. Es ist daher von Wichtigkeit, die Daten nicht während des Ramadan zu erheben, was für diese Arbeit beachtet wurde.

In der Längsschnittuntersuchung konnte man im Gegensatz zur Querschnittuntersuchung keine geschlechtsspezifische Tendenz der Schlafvariablen erkennen (s. Tabelle 12). Im Vergleich mit anderen Studien wurde jedoch ein Zusammenhang erwartet [53]. Haraszti et al. [98] konnten in ihrer Studie ebenfalls keinen Geschlechterunterschied des Social Jetlags feststellen, jedoch einen etwa 20-minütigen Unterschied des Chronotyps (p < 0,001). Weibliche Studierende wiesen einen früheren Chronotyp auf (03:57 Uhr ± 2 min) als ihre männlichen Kommilitonen (04:18 Uhr ± 4 min) [98]. Möglicherweise kommt es durch erhöhten Körperfettanteil und damit verbundene vermehrte Östrogenproduktion zu einem verminderten Geschlechtereinfuss auf den Chronotyp und Schlafverhalten. Das MAINTAIN-Probandenkollektiv stellt insofern ein ganz besonderes dar, da es zu T-3 einen BMI-SDS von 2,48 ± 0,43 aufwies, was einer Adipositas an der Grenze zur

In anderen Studien fand sich bei Mädchen ein späteres Aufstehen und eine längere Schlafdauer am Wochenende als bei Jungen in der frühen Adoleszenz mit der Vermutung, dass dies mit dem früheren Beginn der Pubertät der Mädchen zu erklären sei [102, 103].

Die Nebenhypothese N1 für die Längsschnittanalyse (s. Kapitel 2.3), es gebe einen zusätzlichen Einfluss der Faktoren Alter, Pubertätsstatus, Geschlecht und Migrationshintergrund, lässt sich für die Faktoren Alter und Pubertätsstatus bestätigen. Für die Faktoren Geschlecht und Migrationshintergrund konnte kein Zusammenhang zum Schlafverhalten gezeigt werden. Der fehlende Geschlechtereinfluss könnte zum einen durch die fortgeschrittener Pubertät der Mädchen und im Zusammenhang damit die erst noch beginnende Beeinflussung des Schlafverhaltens beim männlichen Geschlecht erklärt werden. Zum anderen mag dies auch an einem veränderten Hormonhaushalt der adipösen Jugendlichen im Vergleich zu normalgewichtigen liegen.

5.4.3 Lichtexposition, Medienkonsum und tägliche Aktivität

Vermutet wurde, dass ein erhöhter Medienkonsum der Jugendlichen mit einer geringeren Lichtexposition, also weniger Aufenthalt im Freien zugunsten des Medienkonsums, zusammenhängt und eine längere Lichtexposition zum Ende der Gewichtsreduktionsphase (zu T0) zu erkennen ist. Weiterhin wurde untersucht, ob es einen Zusammenhang zwischen der Lichtexposition in der Gewichtsreduktionsphase (T0) und dem Schlafverhalten gibt.

Es wurde die Selbsteinschätzungs Methode verwendet um grobe Tendenzen abschätzen zu können (s. Kapitel 4.2.2 und 4.2.5). Dabei fiel auf, dass 48% der Jugendlichen ihren
Diskussion

Medienkonsum zu Beginn (T-3) als zu hoch bewerteten. Die körperliche Aktivität wurde von 45% als moderat bewertet, allerdings auch von 32% als angemessen hoch. Hier mag der Effekt eines erwünschten Antwortens mit hineinspielen (s. Kapitel 5.2.2).

In der Abbildung 11 ist zu erkennen, dass die Aussagen in etwa mit der Lichtexposition übereinstimmen: Diejenigen, welche ihren Medienkonsum als zu hoch oder moderat angaben, hielten sich weniger im Freien auf, als diejenigen, welche ihren Medienkonsum als niedrig einschätzten. In der objektiven Betrachtung des wöchentlich berechneten Medienkonsums mit der Lichtexposition (s. Abbildung 12) konnte eine leichte negative Korrelation festgestellt werden (p = 0,02). Jemand, der mehr Medien konsumiert, hält sich tendenziell weniger im Freien auf.

Der Aufenthalt im Freien nahm vom ersten Zeitpunkt (T-3: 2,76 ± 1,54h) im Vergleich zum Ende der Gewichtsreduktionsphase (T0: 3,93 ± 1,6h) zu (p < 0,001). Auch der Medienkonsum wurde zu T0 als geringer bewertet. Zu Ende der Gewichtsreduktionsphase scheint sich der Medienkonsum zumindest subjektiv zugunsten der Lichtexposition verringert zu haben.

In der Gewichtserhaltungsphase (T0 bis T12) war wieder ein signifikanter Abfall der Lichtexposition zu erkennen (p < 0,001), was damit zusammenhängen könnte, dass die Jugendlichen während der Gewichtsreduktionsphase gezielt dazu aufgefordert wurden, sich im Freien aufzuhalten. Dort wurden gemeinsame Aktivitäten ausgeführt und gemeinsam Sport gemacht. Ein Jahr später hielten sich die Jugendlichen wieder ähnlich lange wie zu Beginn (T-3, p = 0,281) im Freien auf. Auch in der Selbsteinschätzungsmethode stieg die prozentuale Angabe eines zu hohen Medienkonsums von T0 zu T12.

Die Zeiten der Lichtexposition zu T-3 und T12 sind vergleichbar mit Ergebnissen von Roenneberg et al. [48], denn die Probanden hielten sich 1,5 h täglich an Wochentagen und am Wochenende fast 4h am Tag draußen auf (entsprechend etwa 2,2 h täglich in der gesamten Woche). Dabei reichten die Zeiten von 5 min bis zu 8 h [48]. Damit verglichen kann eine hohe Lichtexposition der Jugendlichen zum Ende der Gewichtsreduktionsphase (T0) bestätigt werden.

„Je länger die Lichtexposition desto früher ist die Schlafphase bzw. der Chronotyp“. Diese Aussagen trafen Roenneberg et al. und bestätigen eine Korrelation der Lichtexposition mit dem Chronotyp [48] (s. Kapitel 2.2). Auch in dieser Arbeit konnte für die Gewichtsreduktionsphase (T-3 bis T0) ein leichter negativer Zusammenhang zwischen der Lichtexposition und dem Chronotyp festgestellt werden (p = 0,005; s. Tabelle 15). Je mehr das Licht als Synchronisierungsreiz wirkt, desto besser ist der Chronotyp synchronisiert und desto früher wird er vergleichsweise bei den Probanden der Längsschnittstudie.
Diskussion

Roenneberg et al. [49] zeigten, dass sich unter einer Lichtexposition von 2 h der Chronotyp wenig verändert. Wichtig sei dies aber für späte Chronotypen, die unter Schlafefinbußen während der Arbeitswoche litten und diese limitieren könnten, wenn sie früher einschlafen würden. Diese sollten sich demzufolge länger als 2 h täglich im Freien aufhalten [49]. Analog gilt dies auch für das Probandenkollektiv heranwachsender Jugendlicher, welche wegen ihres vergleichsweise späten Chronotyps besonders an den sozial bedingten Wachzeiten, den frühen Schulzeiten, leiden.

Der hohe Medienkonsum (Smartphones, Tabletts, TV, PC) zu Beginn der Studie (T-3) kann dazu beitragen, dass der Chronotyp beeinflusst und somit verspätet wird. So zeigte eine Studie von Cajochen et al. 2011, dass der abendliche Gebrauch von LED-Bildschirmen den Melatoninanstieg verringere und schlussfolgerten, dass bei langfristigem Gebrauch der zirkadiane Rhythmus verspätet werde [104] (s. auch Kapitel 5.4.4.1). Die Melatoninsuppression durch abendliches LED-Licht (mit kurzwelligem blauen Licht bei etwa 430 nm) führt zu einer verlängerten Einschlafzeit sowie Schlafproblemen [105] und einer Reduktion der initialen Delta-Wellen im EEG [106]. Allerdings sind auch die Kausalitäten des „Nachtlebens“ der Jugendlichen zu diskutieren: Ob Jugendliche spät zu Bett gehen, weil sie sich spät mit Freunden treffen, in die Clubs gehen und abends lange mit ihren Smartphones spielen, oder aber ob sie all das machen, weil sie nicht früher einschlafen können, bleibt offen [55]. Sicher mag auch das soziale Umfeld, das Untereinander der Jugendlichen, einen Einfluss als eine Art Gruppenzwang auf ihre Schlaufgewohnheiten haben.

5.4.4 Zusammenhang BMI-SDS und Schlafverhalten

Wie im Methodenteil erläutert, wurden zu den Zeitpunkten T-3, T0 und T12 Befragungen zum Schlafverhalten durchgeführt, um die Schlafvariablen zu erfassen (Chronotyp, Social Jetlag, Schlafdauer, Lichtexposition), sowie die Messung des BMI-SDS vorgenommen. Im Folgenden werden die Zeitpunkte T-3, T0 und T12 analysiert.

Anschließend werden drei unterschiedliche Zeitpunkte bzw. Zeitspannen betrachtet: Das Schlafverhalten des Ausgangszeitpunktes T-3 wird hinsichtlich des BMI-SDS zu T-3 diskutiert. Das Schlafverhalten der Gewichtsreduktionsphase (T-3 bis T0) und der 12-monatigen Beobachtungsphase (T0 bis T12) werden hinsichtlich der BMI-SDS-Veränderung während dieser Zeitspannen analysiert.

5.4.4.1 BMI-SDS und Schlafvariablen zu den Zeitpunkten T-3, T0 und T12

Der BMI-SDS nahm im Rahmen der MAINTAIN-Studie (als Einschlusskriterium mindestens -0,2 des BMI-SDS) von T-3 zu T0 um 0,43 (p < 0,001) ab. Anschließend wurde die Gruppe randomisiert in eine Interventionsgruppe, bei der bis zu T12 eine Lifestyle-Intervention zum Gewichtserhalt erfolgte, und eine Kontrollgruppe mit sogenannter Freeliving-Phase. Beide Gruppen zusammen konnten nach der etwa 15-monatigen Studienphase ein reduziertes Gewicht (p < 0,001) nachweisen (T12: 2,3 ± 0,61).

Die Ergebnisse zeigen, dass sich der erfasste Chronotyp von T-3 zu T0 deutlich verfrüht hat (T-3: 4,19 Uhr ± 1,17; T0: 2,97 Uhr ± 0,52) und von T0 zu T12 (4,57 Uhr ± 1,4) eine Verspätung nachweisbar war. Vergleicht man jedoch den Anfangs- und Endzeitpunkt der Längsschnittstudie findet sich insgesamt eine Verspätung des Chronotyps (p = 0,007; s. Tabelle 17).

Roenneberg et al. [107] teilten seine Population (zehn bis 80 Jahre) hinsichtlich des Chronotyps in Frühtyp MSFsc ≤ 3:59 Uhr, Intermediärer Typ: MSFsc = 4:00-4:59 Uhr und Spättyp: MSFsc ≥ 5:00 Uhr ein, machten hierbei aber deutlich, dass sich diese Werte auf die Studienpopulation bezogen [107].

Die Verspätung des Chronotyps über den Gesamtzeitraum (T-3 bis T12) ist erklärbar mit der altersabhängigen Verspätung des Chronotyps während der Adoleszenz mit zunehmendem Pubertätsstatus und deckt sich mit Ergebnissen anderer Studien [55] (vergleiche Kapitel 5.3 und 5.4.2).
Ist der Chronotyp in so kurzer Zeit (3 Monate von T-3 zu T0) beispielsweise durch die veränderte Lichtexposition zu ändern? Wie in Kapitel 2.2 erwähnt, ist Licht der stärkste Synchronisierungsreiz für die innere Uhr. Der Zeitpunkt der Lichtexposition sowie die Stärke und Dauer des Lichtes beeinflussen den Schlaf-Wach-Rhythmus [48, 58], aber auch andere Faktoren wie aktivitätsabhängige Temperaturänderung und regelmäßige Nahrungsaufnahme (CMC = Circadian Molecular Clock = nahrungsabhängige zirkadiane Hauptuhr im dorsomedialen Nucleus des Hypothalamus [108]) wirken additiv bei der Synchronisierung der Schlaf-Wach-Phase [49]. Ebenso können ein vermindelter Aufenthalt am Tageslicht sowie eine Exposition künstlichen v. a. blauwelligen Lichts nach Sonnenuntergang dazu führen, dass sich der Rhythmus verspätet bzw. desynchronisiert wird [53, 57, 104].

So demonstrierten Cajochen et al. 2011 [104], dass eine einmalig 5-stündige abendliche Exposition eines LED-Bildschirms (kurzwelliges Licht) eine signifikante Suppression des normalerweise abends steigenden Melatonins im Speichel sowie subjektiver und objektiver Müdigkeit mit sich brachte. Dadurch wurden der zirkadiane Rhythmus, die Aufmerksamkeit und die kognitive Leistung beeinflusst. Cajochen et al. gingen davon aus, dass ein regelmäßiger Gebrauch von LED-Bildschirmen in einer zirkadianen Phasenverschiebung resultiere [104]. Wenn man sich die Studienpopulation der vorliegenden Arbeit betrachtet, vorwiegend pubertierende Heranwachsende, welche nach eigenen Angaben zum Zeitpunkt T-3 erheblich stark Medien konsumierten und sich wenig im Freien aufhielten (s. Kapitel 4.2.2 und 4.2.5), kann man davon ausgehen, dass der in dieser Arbeit erfasste initiale Chronotyp zu T-3 bereits ein verzögerter und leicht desynchronisierter Chronotyp sein könnte.

In der Rehabilitation zur Gewichtsreduktion von T-3 bis T0 gab es geregelte Tagestrukturen (feste Aufweckzeiten während der Woche, tägliche Sportaktivitäten, Lichtexposition), sodass man davon ausgehen kann, dass die Probanden zum Zeitpunkt T0 auf einen Schlaf-Wach-Rhythmus synchronisiert waren.

3), ist es möglich, dass ein individueller Chronotyp innerhalb einiger Wochen (beispielsweise von T-3 zu T0) veränderbar ist und die Probanden zum Zeitpunkt T0 auf einen Schlaf-Wach-Rhythmus synchronisiert waren. Dass die Probanden während dieser Zeit nicht gegen ihre innere Uhr lebten, zeigt der niedrige Social Jetlag und die vergleichsweise hohe Schlafdauer zum Zeitpunkt T0. Eine Schlafdauer von durchschnittlich 9,13 h während der Gewichtsreduktionsphase fällt in die Empfehlungen für optimalen Schlaf (8,5 h bis 9,5 h) für Jugendliche [56].

Der Chronotyp hat sich von T-3 zu T12 relativ verspätet (p = 0,007) und passend dazu hat der Social Jetlag zugenommen (p = 0,045). Ebenso hat die Schlafdauer vermutlich altersabhängig von T-3 auf T12 abgenommen (p = 0,008).

Es stellt sich die Frage nach dem ursprünglichen, genetisch festgelegten Chronotyp. Diesen kann man vermutlich unter natürlichen Umständen nicht erfassen. Sein „Entrainment“ in der natürlichen Umgebung wird wahrscheinlich durch eine multikomplexe Interaktion verschiedener sich verändernder Zeitgeber beeinflusst [49].

Der anfänglich erfasste Chronotyp zu T-3 könnte bereits ein desynchronisierter, verzögerter Chronotyp als Resultat aus zu wenig Lichtexposition und zu viel Medienkonsum an LED-Bildschirmen und künstlichem Licht an späten Abendstunden sein. Möglicherweise kann die im Rahmen dieser Studie durchgeführte strukturierte Gewichtsreduktion von T-3 zu T0 mit regelmäßigem langem Aufenthalt im Freien, regelmäßigen Mahlzeiten und sportlicher Aktivität (und damit verbundene Temperaturänderung), dazu beitragen, dass der Chronotyp synchronisiert wird oder (sollte er zu T-3 nicht desynchronisiert sein) dass zumindest eine Phasenvorschiebung verursacht wird. Der Aufenthalt am Tageslicht stieg von T-3 zu T0 um mehr als eine Stunde (p < 0,001).

Die Verzögerung des Chronotyps zum Zeitpunkt T12 könnte dann wieder eine Desynchronisierung durch weniger Entrainment zur Ursache haben. Denn ohne das strukturierte Rehabilitationsprogramm (intensive längere Lichtexposition, regelmäßige Mahlzeiten) und die daher nun vermutlich später am Tag einsetzenden Zeitgeber könnte ein schwächerer Synchronisierungsreiz zur Verzögerung beigetragen haben. Zudem ließe sich ein altersabhängiges Verzögern des Chronotyps von T-3 zu T12 (p = 0,007) vermuten [49].

In den Befragungsgesprächen gaben die Patienten an, nach einigen Wochen Rehabilitation oft schon vor dem Wecken wach gewesen zu sein, da sie sich an die frühe Zeit „gewöhnt“ hätten. In einer anderen Studie, die den MCTQ verwendete [53], wurden Probanden ausgeschlossen, wenn
Diskussion

sie auch an freien Tagen von einem Wecker geweckt wurden. Da die meisten Patienten schon nach wenigen Wochen der Rehabilitierung angaben, vor dem Wecker wach geworden zu sein, konnten wir diese mit einschließen. Zudem deutet dies ebenfalls darauf hin, dass sich während der strukturierten Rehabilitation mit regelmäßiger intensiver Lichtexposition und regelmäßigen Mahlzeiten der Chronotyp der Kinder verändern ließ.

5.4.4.2 Zusammenhang des BMI-SDS und der Schlafvariablen (T-3)

5.4.4.3 Ergebnisse der Gewichtsreduktionsphase (T-3 bis T0)

Der Social Jetlag fiel signifikant von T-3 zu T0, ebenso der BMI-SDS. Vergleichsweise Spättypen werden möglicherweise im Rahmen des Gewichtsreduktionsprogramms früher geweckt als ihrer inneren Uhr entsprechend, haben demzufolge einen größeren Social Jetlag und somit eine geringere Gewichtsreduktion. Ein Jugendlicher, der also in der Ausgangssituation wenig Social Jetlag hat und demzufolge einen früheren Chronotypen haben muss, kann während
Diskussion

des Rehabilitationsprogramms (T-3 bis T0) nach seinem zirkadianen Rhythmus leben und eine größere Gewichtsreduktion erreichen.

Der erfasste Chronotyp zu Ende der Gewichtsreduktion (T0) war früher als der zu Beginn erfasste Chronotyp. Durch Veränderungen des Tagesablaufes mit regelmäßigen Mahlzeiten, Temperaturänderungen durch körperliche Aktivität im Freien und damit verbundener Intensivierung der Lichtexposition könnte es zu einer relativen Verfrühung des Chronotyps gekommen sein (s. auch Kapitel 5.4.1). So spielt die Anpassung an den initialen Chronotyp vermutlich eine wichtige Rolle für ein Ansprechen auf das Gewichtsreduktionsprogramm. Auch in der Regressionsanalyse bestätigt sich der Chronotyp neben dem Ausgangs-BMI-SDS als wichtigste Einflussgröße auf die Menge der Gewichtsreduktion ($B = 0,032; p = 0,024$, s. Tabelle 21).

Zu schlussfolgern ist, dass jemand, der gegen seine innere Uhr lebt, weniger Gewicht reduziert.

Ronneberg et al. [49] weisen darauf hin, dass sich wissenschaftliche Studien, Schul- und Arbeitspläne oder medizinische Betrachtungen eher an der individuellen zirkadianen Uhr als an der sozialen externen Zeit orientieren sollten [49]. So wäre eine mögliche Konsequenz, dass man die Therapieprogramme an den jugendlichen Chronotyp anpassen sollte, um effektivere Gewichtsreduktionen zu erreichen.

Die Haupthypothese H2 der Längsschnittuntersuchung (s. Kapitel 2.3), der Chronotyp habe einen Einfluss auf die Gewichtsreduktion innerhalb eines strukturierten an die zirkadiane Rhythmik angepassten Rehabilitationsprogramms, konnte somit bestätigt werden.

5.4.4.4 Ergebnisse der 12-monatigen Gewichtserhaltungsphase (T0 bis T12)

Vermutet wurde ein Einfluss des vorangehenden Schlafverhaltens (T0) auf den Gewichtsverlauf in der Nachbeobachtungsphase (T0 bis T12). Zu beachten ist hierbei, dass die MAINTAIN-Population zu T0 randomisiert wurde in eine Interventionsgruppe, welche einem Therapieprogramm mit dem Ziel des Gewichtserhalts nachging, und in eine Kontrollgruppe. In der Regressionsanalyse zeigte sich die Randomisierungsgruppe als größter Einfluss auf den Gewichtsverlauf ($B = 0,133, p = 0,047$).

Signifikante Korrelationen zwischen Schlafverhalten und BMI-SDS bestanden nicht.
Diskussion

5.4.5 Zusammenfassung der Diskussion der Längsschnittuntersuchung

Bei der Untersuchung der Längsschnittstudie interessierte vorwiegend, ob Chronotyp, Social Jetlag und Schlafdauer bei Kindern und Jugendlichen innerhalb eines strukturierten Gewichtsreduktionsprogramms mit zirkadianer Anpassung, wie regelmäßige Mahlzeiten und Aufenthalt im Freien, einen Einfluss auf die Gewichtsreduktion haben.

In der Tat konnte im Rahmen dieser Arbeit gezeigt werden, dass ein früher Chronotyp zum Studienbeginn mit einer stärkeren Gewichtsreduktion einherging als ein vergleichsweise später Chronotyp. Möglicherweise litten frühe Chronotypen während der Gewichtsreduktionsphase weniger unter einem Social Jetlag als Spättypen. In der Rehabilitation begann der Tag um 07:00 Uhr morgens, was nur dem frühen Chronotyp gerecht wird. Auch der Social Jetlag korrelierte zum Studienbeginn negativ mit der Gewichtsreduktion (p = 0,033), d. h. Probanden, die zu Beginn unter einem relativ größerem Social Jetlag litten, konnten weniger erfolgreich abnehmen als diejenigen mit wenig oder ohne Social Jetlag.

Ähnlich hierzu zeigten Roenneberg et al. [53] 2012 in ihrer Arbeit, dass Übergewicht und Adipositas mit steigendem Social Jetlag ebenfalls ansteigen, wohingegen bei Normalgewichtigen (BMI < 25) kein solcher Zusammenhang gesehen werden konnte. Alter, Geschlecht und Schlafdauer zeigten in beiden Gewichtsgruppen einen Einfluss auf den BMI [53]. Ein Zusammenhang der Gewichtsabnahme mit der Schlafdauer fand sich in unserer Untersuchung nicht, wobei die Schlafdauer während der Gewichtsreduktionsphase einem optimalen Schlaf in dieser Altersgruppe (8,5 h bis 9,5 h) entsprach [56].

Bemerkenswert ist, dass der Chronotyp neben dem Ausgangsgewicht (unter Adjustierung für diverse Variablen, s. Tabelle 21) den größten Einfluss auf die Menge der Gewichtsabnahme hatte.

In der Längsschnittuntersuchung fand sich ein zusätzlicher Einfluss von Alter und Pubertätstatus auf das Schlafverhalten, was sich mit anderen Studien deckt [49, 54, 55]. Es konnte kein Zusammenhang mit dem Geschlecht oder dem Migrationshintergrund gesehen werden, obwohl ein Geschlechteneinfluss auf Chronotyp, Social Jetlag und Schlafdauer vermutet wird [49, 53, 54]. Zu diskutieren ist einerseits ein möglicher veränderter Hormonhaushalt der adipösen Jugendlichen im Vergleich zu normalgewichtigen [99]. Zum anderen könnte der fehlende Geschlechteneinfluss durch einen Ausgleich bei weiter fortgeschrittener Pubertät der Mädchen im Vergleich zu den Jungen [102] und erst noch beginnender geschlechterabhängiger
Diskussion

Beeinflussung des Schlafverhaltens der männlichen Probanden verursacht sein. Der Einfluss wäre demzufolge nicht detektierbar.

Es konnte außerdem ein geringer Zusammenhang von Chronotyp und Lichtexposition während der Gewichtsreduktionsphase aufgezeigt werden, was sich mit Untersuchungen von Roenneberg et al. deckt [49]. Je länger sich die MAINTAIN-Probanden im Freien aufhielten, desto früher war der Chronotyp. Es fand sich zudem ein geringer Zusammenhang zwischen Medienkonsum und Lichtexposition während der Längsschnittstudie.

Zusammenfassend ist die Anpassung des Schlaf-Wach-Rhythmus an den individuellen Chronotyp während der Gewichtsreduktionsphase von Bedeutung für das Ausmaß der Gewichtsreduktion.

In der Gewichtsreduktionsrehabilitation wurden die Kinder früh geweckt, weshalb die Frühtypen etwas mehr von Gewichtsreduktionsphase profitieren und dementsprechend noch besser abnehmen konnten als Spättypen.

Eine mögliche Therapiekonsequenz wäre, die Kinder vorher nach ihren Chronotypen einzuteilen und dann zu ihren Zeiten aufstehen und schlafen zu lassen, um eine noch effektivere Gewichtsreduktion erreichen zu können.
5.5 Abschließende Bemerkung und Schlussfolgerung

Vier wesentliche Feststellungen erlauben die Ergebnisse dieser Arbeit:

4. Bei Querschnittstudien dieser Art wäre zukünftig darauf zu achten, die Daten ausschließlich während der Winter- oder ausschließlich während der Sommerzeit zu erfassen. Eine größere Studienpopulation sollte für eine Querschnittuntersuchung angestrebt werden.

Vor allem aber kommt der Aufklärung älterer Kinder sowie Jugendlicher zum richtigen Umgang mit LED-Bildschirmen und der Lebensstilberatung hinsichtlich des Aufenthalts im Freien größte Wichtigkeit zu. Die Anwendung der Lichttherapie, wie sie beispielsweise für Ärzte in der Schichtarbeit empfohlen wird, ist auch für Jugendliche mit Social Jetlag zu diskutieren. Die phasenvor- oder phasenrückverlagernden Effekte von intensiver Lichtexposition, v.a. durch kurzwelliges blaues Licht, seien am stärksten, wenn der starke Lichtimpuls nahe am Minimum des endogenen Temperaturrhythmus (bei vielen Menschen um ca. 03.00 Uhr morgens) appliziert würde [2, 17].

Eine weitere Möglichkeit der Prävention von Adipositas hat sich mit dem Fenster der Chronobiologie geöffnet, sodass nun mehr Therapiekonzepte in diesen Bereich v. a. für Kinder und Jugendliche aufzubauen sind.
6 Literaturverzeichnis

103. Munch, M., Kobialka, S., Steiner, R., Oelhafen, P., Wirz-Justice, A., and Cajochen, C., Wavelength-dependent effects of evening light exposure on sleep architecture and sleep

7 Anhang

7.1 Abkürzungsverzeichnis

AGA Arbeitsgemeinschaft Adipositas im Kindes- und Jugendalter
aOR adjustiertes Odds Ratio
b. bei
BMI-SDS Body Mass Index Standard Deviation Score
cm Zentimeter
CMC Circadian Molecular Clock
d Delta (Differenz)
ECOG European Childhood Obesity Group
Fa. Firma
h Stunden
HDL High-density Lipoprotein
IARC International Agency for Research on Cancer
IOTF Childhood Group der International Obesity Task Force
kg Kilogramm
LED Light-emitting diodes
MCTQ Munich ChronoType Questionnaire (Fragebogen zur Erfassung des Schlafverhaltens, s. Kapitel 3.2)
MEQ Morningness-Eveningness-Questionnaire (Fragebogen zur Erfassung des Schlafverhaltens)
MEZ Mitteleuropäische Zeit
min Minuten
MSF Mid-Sleep on Free Days
MSF_sc Mid-Sleep on Free Days corrected for Oversleep on Free Days
MSW Mid-Sleep on Work Days
MW Mittelwert
n Zahl
NASH Nicht-alkoholische Steatohepatitis
n. s. nicht significant
Perz. Perzentile
POMC Proopiomelanocortin
s. siehe
SAD Seasonal affective disorder
SCN Nucleus suprachiasmaticus
SD Standardabweichung
SEM Standard Error of the Mean
SJL Social Jetlag
SPSS Statistical Package for the Social Sciences
SPZ Sozialpädiatrisches Zentrum
T-3 Zeitpunkt vor der Gewichtsreduktion in der Längsschnittstudie
T0 Zeitpunkt zu Ende der Gewichtsreduktionphase in der Längsschnittstudie
T12 Zeitpunkt ein Jahr nach der Gewichtsreduktion in der Längsschnittstudie
u. a. unter anderem
USA United States of America
übergew. übergewichtig
vs. versus
WHO World Health Organisation, Weltgesundheitsorganisation
z.B. zum Beispiel
7.2 Abbildungsverzeichnis

Abbildung 1: KIGGS: Anteil der Übergewichtigen nach Altersgruppen und Geschlecht in Deutschland 2006

Abbildung 2: Molekularer Aufbau des zirkadianen Systems bei Säugetieren

Abbildung 3: Schematische Darstellung der Schlafzeiten über sechs nacheinander folgende Tage in Bezug auf den Licht-Dunkel-Zyklus

Abbildung 4: Chronotyp in Abhängigkeit vom Alter.

Abbildung 5: Durchschnittlicher Chronotyp in Abhängigkeit von der täglichen Lichtexposition

Abbildung 6: Übersicht der Untersuchungsgruppen

Abbildung 7: Auszug des MCTQ

Abbildung 8: MAINTAIN-Studie

Abbildung 9: Chronotyp und Alter der Längsschnittgruppe

Abbildung 10: Zusammenhang von Chronotyp und Pubertätsstatus

Abbildung 11: Lichtexposition und subjektiver Medienkonsum

Abbildung 12: Lichtexposition und berechneter Medienkonsum

Abbildung 13: BMI-SDS und Chronotyp zu T-3

Abbildung 14: Gewichtsdifferenz BMI-SDS zwischen T-3 und T0 und Chronotyp T-3

Abbildung 15: Gewichtsdifferenz BMI-SDS zwischen T-3 und T0 und SJL T-3

Abbildung 16: Ergebnisübersicht der Untersuchungsgruppen
7.3 Tabellenverzeichnis

Tabelle 1: Stichprobencharakterisierung .. 30
Tabelle 2: Schlafcharakterisierung der Gruppen ... 31
Tabelle 3: Korrelationen nach Spearman Rho des BMI-SDS nach Kromeyer-Hauschild 31
Tabelle 4: Altersabhängigkeiten .. 32
Tabelle 5: Charakterisierung der Schlafvariablen (Aufteilung nach Geschlecht) 33
Tabelle 6: Stichprobencharakterisierung ... 34
Tabelle 7: Selbsteinschätzung zu T-3 Medienkonsum und tägliche Aktivität 35
Tabelle 8: Schlafvariablen zu T-3 ... 35
Tabelle 9: Korrelationen Alter und Schlafvariablen ... 36
Tabelle 10: Pubertätscharakteristika zu T-3 .. 37
Tabelle 11: Migrationshintergrund zu T-3 .. 38
Tabelle 12: Geschlechtsabhängigkeiten zu T-3 .. 39
Tabelle 13: Lichtexposition .. 40
Tabelle 14: Selbsteinschätzung Medienkonsum (Prozent) .. 40
Tabelle 15: Korrelationen (Spearman Rho) Lichtexposition zum Ende der Gewichtsreduktionsphase (T0) ... 41
Tabelle 16: BMI-SDS nach Kromeyer-Hauschild zu T-3, T0, T12 42
Tabelle 17: Schlafvariablen zu T-3, T0 und T12 ... 43
Tabelle 18: BMI-SDS und Schlafvariablen zum Zeitpunkt T-3 ... 44
Tabelle 19: Forward-Regressionsergebnisse für Zielgröße BMI-SDS T-3 44
Tabelle 20: Korrelationen der BMI-SDS-Differenz zwischen T-3 und T0 (dT3t0) mit Schlafvariablen T-3 .. 45
Tabelle 21: Forward-Regressionsergebnisse für Zielgröße dT-3T0 BMI-SDS nach 47
Tabelle 22: Korrelationen der BMI-SDS-Differenz zwischen T0 und T12 (dT0T12) mit Schlafvariablen T0 .. 48
Tabelle 23: Forward-Regressionsergebnisse für Zielvariable dT0T12 BMI-SDS 48
7.4 Erhebungsbogen MCTQ

Ludwig-Maximilians-Universität München
Institut für Medizinische Psychologie
Goethestr. 31 D-80336 München

Munich Chronotype Questionnaire

Wichtig!!! Füllen Sie diesen Fragebogen nicht aus, wenn Sie innerhalb der letzten 3 Monate in einer Schichtarbeit tätig waren oder noch tätig sind. Falls dies der Fall sein sollte, gehen Sie bitte zum folgenden Link.

Beantworten Sie bitte ALLE Fragen, auch wenn manche Fragen schwierig zu beantworten scheinen. Spontane Antworten sind meistens die besten Antworten!

Achten Sie bitte darauf, eindeutige Uhrzeiten anhand der 24 Stunden Skala anzugeben (z.B. 23:00 Uhr anstatt 11:00 Uhr abends).

Erklärung zum Datenschutz

Der Umgang mit allen Daten, die Sie im Rahmen der CHRONOTYP-Befragung machen, unterliegt den allgemeinen Bestimmungen des Datenschutzes und wird von der Ethikkommission der Universität München überwacht.

Ich will nicht zum Fragebogen.
Ich will zum Fragebogen.

Informationen zu Ihrer Person

<table>
<thead>
<tr>
<th>Datum</th>
<th>2016.1.3 - 17:55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>eMail</td>
<td>(Wenn Sie keine eMail-Adresse angeben, können wir Ihnen keine persönliche Auswertung Ihres CHRONOTYPES zusenden.)</td>
</tr>
<tr>
<td>Alter</td>
<td></td>
</tr>
<tr>
<td>Geschlecht:</td>
<td>• weiblich</td>
</tr>
<tr>
<td></td>
<td>• männlich</td>
</tr>
<tr>
<td>Größe</td>
<td>cm</td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg</td>
</tr>
<tr>
<td>Land</td>
<td></td>
</tr>
<tr>
<td>Wohnort</td>
<td></td>
</tr>
<tr>
<td>Postleitzahl</td>
<td></td>
</tr>
</tbody>
</table>

Vermittlungsinformation

Sind Sie auf diese Seite durch einen bestimmten Arzt vermittelt worden oder sind Sie Teilnehmer eines bestimmten Projektes, dann geben Sie bitte hier Ihr Kennwort an:

Regelmäßige Arbeit

Ich gehe einer regelmäßigen Arbeit nach (dies schließt Hausfrau oder Hausmann ein)?

• Ja • Nein

Wenn "JA", wie viele Tage in einer Woche? []

Anleitung: Bitte füllen Sie alle Felder aus, auch falls Sie nicht regelmäßig arbeiten. Machen Sie Ihre Angaben bitte anhand der 24-Stunden Skala (d.h. 23:00 Uhr statt 11:00 Uhr abends).

Arbeitstage

1. Ich gehe ins Bett um [] Uhr.

2. Manche Menschen bleiben noch eine Weile wach, wenn sie im Bett liegen!

Ich bin bereit einzuschlafen um [] Uhr.
Anhang

Um einzuschlafen, brauche ich ______ Minuten.

Ich wache um ______ Uhr auf,
- mit Wecker
- ohne Wecker

Ich stehe auf nach ______ Minuten.

Freie Tage

Ich gehe ins Bett um ______ Uhr.

Manche Menschen bleiben noch eine Weile wach, wenn sie im Bett liegen!

Ich bin bereit einzuschlafen um ______ Uhr.

Um einzuschlafen, brauche ich ______ Minuten.

Ich wache um ______ Uhr auf.
- mit Wecker
- ohne Wecker
Kommentarfeld: Bitte geben Sie HIER an, falls Sie zurzeit KEINE Möglichkeit haben Ihre Schlafrhythmen selbst zu bestimmen (z.B. wegen eines Hausierens, wegen Kind(er) etc.). Nutzen Sie dieses Feld auch um zusätzliche Informationen zu geben, falls diese vom System erfragt werden:

Aufenthalt im Freien

Im Durchschnitt halte ich mich so lange draußen bei Tageslicht auf (ohne Dach über dem Kopf):

<table>
<thead>
<tr>
<th>An Arbeitstagen</th>
<th>Stunden</th>
<th>Minuten</th>
</tr>
</thead>
<tbody>
<tr>
<td>An freien Tagen</td>
<td>Stunden</td>
<td>Minuten</td>
</tr>
</tbody>
</table>

Arbeitszeiten

Ich war innerhalb der letzten 3 Monate als Schichtarbeiter tätig.

Ja (bitte weiter bei "Meine Arbeitszeit ist ...")

Nein

Meine übliche Arbeitszeit beginnt um:

: Uhr

Meine übliche Arbeitszeit endet um:

: Uhr

Meine Arbeitszeit ist...

- sehr flexibel.
- ein bisschen flexibel.
- eher nicht flexibel.
- sehr unflexibel.

Zu meinem Arbeitsplatz gelange ich...

- in einem geschlossenen Fahrzeug (z.B. Auto, Bus, U-Bahn).
- nicht in einem geschlossenen Fahrzeug (z.B. zu Fuß, mit dem Rad).
- ich arbeite zu Hause.

Für den Hinweg zum Arbeitsplatz benötige ich täglich

circa Minuten

Für den Rückweg zum Arbeitsplatz benötige ich täglich

circa Minuten
Hinweis: Tragen Sie bitte den Wert "0" ein, falls Sie Folgendes nicht konsumieren!

Lifestyle

<table>
<thead>
<tr>
<th>Trinken / Rauchen</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>So viele Zigaretten rauche ich</td>
<td>im Durchschnitt pro Woche:</td>
</tr>
<tr>
<td>So viele Gläser Bier trinke ich</td>
<td>im Durchschnitt pro Woche:</td>
</tr>
<tr>
<td>So viele Gläser Wein trinke ich</td>
<td>im Durchschnitt pro Woche:</td>
</tr>
<tr>
<td>So viele Gläser Schnaps trinke ich</td>
<td>im Durchschnitt pro Woche:</td>
</tr>
<tr>
<td>So viele Tassen Kaffee trinke ich</td>
<td>im Durchschnitt pro Woche:</td>
</tr>
<tr>
<td>So viele koffeinhaltige Soft-Drinks trinke ich</td>
<td>im Durchschnitt pro Woche:</td>
</tr>
<tr>
<td>So viele Tassen schwarzen Tee trinke ich</td>
<td>im Durchschnitt pro Woche:</td>
</tr>
<tr>
<td>So oft nehme ich Schlaf fördernde Medikamente pro Woche ein:</td>
<td></td>
</tr>
</tbody>
</table>

(C) 2006, Till Roenneberg, & Martha Merrow, LMU München
7.5 Eidesstattliche Versicherung

Die Bedeutung dieser eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unwahren eidesstattlichen Versicherung (§156,161 des Strafgesetzbuches) sind mir bekannt und bewusst.“

Datum

Unterschrift

Anteilserklärung an etwaigen erfolgten Publikationen

Anna Friedrich hatte zum Zeitpunkt der Einreichung keinen Anteil an publizierten Originalarbeiten. Eine Publikation ist jedoch in Vorbereitung.

Unterschrift der Doktorandin

91
7.6 Lebenslauf

Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.
Anhang
7.7 Danksagung

Allen voran gilt mein herzlicher Dank Frau PD Dr. med. Susanna Wiegand für die Überlassung dieses spannenden Promotionsthemas und die kompetente Betreuung. Ich möchte ihr danken für die Einführung in das wissenschaftliche Arbeiten, ihre Unterstützung, die gedanklichen Anregungen und konstruktiven Gespräche.

Prof. Dr. Till Roenneberg und Frau Dr. Céline Vetter aus dem Institut für Medizinische Psychologie der Ludwig-Maximilians-Universität München gilt mein Dank für die Kooperation und die Möglichkeit den MCTQ für die Studie verwenden zu dürfen. Frau Dr. phil. Vetter möchte ich für anregende Diskussionen und ihre konstruktive Kritik danken.

Mein herzlicher Dank gilt weiterhin allen Ärzten und Mitarbeitern des Instituts für ihre kollegiale Zusammenarbeit. Ich danke insbesondere Frau Dr. med. Johanna Overberg, Annika Bickenbach, Frau Dr. rer. medic. Anne-Madeleine Bau, Frau Andrea Ernert und Dr. med. Almut Dannemann.

Vor allem danke ich aber meinen Studienteilnehmern, ohne die solch eine wissenschaftliche Arbeit nicht möglich gewesen wäre.

Auch meiner Familie und meinen Freunden möchte ich danken für die fortwährende Ermutigung und den liebevollen Beistand.