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Abstract

In terms of Information Retrieval (IR), a trend is defined as a topic area that is

growing in interest and utility over time. An example of a trend would thus be

the general topic financial crisis that started to appear on the market in late 2007

and early 2008, or the Arab Spring that started to appear on the news in 2011.

Several approaches based on methods from text mining and machine learning can

be successfully applied to the problem of mining trends in text collections. Among

others, the most popular are probabilistic topic models and diverse clustering

methods.

The weakness of the existing research in automatic trend detection in texts

lies in:

1. inconsistency in the definition of a trend

2. lack of a general scientific approach for trend mining

3. lack of the integration of explicit knowledge and therefore the difficulty in

the interpretation of algorithm’s results.

The scientific contribution of this research is contained in the suggestion to

deal with the trend detection from the perspective of trend mining that is being

defined here.

As a solution for the problem of difficulty in the interpretation of the results

from the common trend detection techniques, this research proposes the trend

template that is a knowledge-based trend mining approach. Based on this trend

template, two directions of implementation are introduced: trend ontology and

trend-indication (the trend weighting method).

The trend ontology works as an a-priori model and enables the discovery of a

trend structure in the web documents corpus. Tests with this method on a test

corpus show that mining trends with an a-priori model while integrating explicit

knowledge leads to a better quality of results considering their interpretability.

The trend-indication approach is based on time-incorporating weighting meth-

ods for selection of trend features from web documents. It enables the reduction

of features that are considered in the process of trend mining, and therefore

reduces the data so that only time-relevant information is considered for further

analysis. This method’s results on our web document corpus show that time-based

weighting functions alone can help in discovering trend-relevant features.

Both the trend ontology and the trend-indication approaches are implemented

in the tremit tool (TREnd MIning Tool), a test tool developed for this thesis,

and are tested on a test corpus. The test corpus consists of 35,635 business news

and 4,696 DAX (Deutscher Aktienindex – German stock market) reports from

German web sites in a late 2007 and early 2008. The results are compared with the



standard method results of a LDA-based topic model and the k-means clustering

algorithm on the same test corpus. Discussion of the results is contained in the

experimental part of the thesis.



Motivation

Several years ago, I was about to finish my diploma thesis on “Classification and

Generating of user-based Information Profiles using Machine Learning Methods

and Algorithms”, focusing on interpretation of results from C4.5 [Quinlan, 1993],

PART, REP-Tree, and Self-Organizing Map (SOM) [Witten and Eibe, 2005] –

algorithms applied to a set of test documents from a research project PIA (Per-

sonal Information Assistant) [PIA, 2013]. I was wondering that some of the

results were straightforward and easily interpretable, whereas the others were

difficult to understand for human. Following the decision path of J48 (the WEKA

[Hall et al., 2009] implementation of the C4.5 algorithm), I asked myself what

if, the decision tree algorithm could somehow know what it would be learning.

What if, at every step in which it takes the decision on which attribute to take for

splitting the set of learning objects it could be aware of its own decision, provided

the necessary knowledge?

It is important to first define what this knowing means and how it can be

represented. And second, we should be aware that making a learning algorithm

really knowing what it is about to learn is most probably a ’typical’ AI (artificial

intelligence) science-fiction. However, I think that my need for somehow putting

knowledge into the algorithm in the hope that it will help to make it intelligent,

make it producing more comprehensive results for human users, emerged after

finishing my diploma.

A year after my graduation, I worked for a research project on Trend Mining:

Analysis and Fusion of multimodal Data (TREMA). In general, the project focused

on exploring the algorithms for analysis of combined data: textual data from web

documents and numeric data from the stock exchange market, in order to predict

trends. The term trend mining appeared during this project constantly alongside

data and text analysis and trend detection methods. After 12 months of research

with a strong focus on industrial applications and a successful project completion,

many questions remained open for me. The main one: What do we actually mean

by mining trends – could we be more scientific about it? This question is the

basis for this thesis. For anybody who would like to know right away how this

thesis handles the topic, I recommend looking at the visualization of the thesis as

shown in Figure 1.

Berlin, January 2013



Figure 1: Thesis visualization. Source: author.
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mi jakoś mój pogl ↪ad na wszystko.

Für meinen Vater, Ryszard Streibel (1947-2010) und meinen lieben spezifischen

Freund, Axel Dietze (1968-2013), die so zeitig gegangen sind und ließen mich

irgendwie alles anders betrachten.



Contents

Abstract

Motivation

Contents

List of Figures

List of Tables

I Introduction 1

1 Trend example 3

2 Thesis focus 5

2.1 The problem and solution . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Content structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Approach and contributions 9

3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Scientific method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

II Background and Theory 17

4 Problem settings 19

4.1 Different perspectives on a trend . . . . . . . . . . . . . . . . . . . 19

4.1.1 Sociology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.3 Information retrieval . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 A common-sense trend definition . . . . . . . . . . . . . . . 24

4.2.2 Trend definition diversity in the relevant research . . . . . . 25

4.2.3 Definitions proposed in this thesis . . . . . . . . . . . . . . 26

4.3 Stepping up on complexity . . . . . . . . . . . . . . . . . . . . . . . 27



Contents

5 State of the art 29

5.1 Research areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Directions in trend mining research . . . . . . . . . . . . . . . . . . 32

5.2.1 General models . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.2 Event-based and TDT . . . . . . . . . . . . . . . . . . . . . 35

5.3 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1 ETDS Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.2 Algorithms, the web and the functionality tools . . . . . . . 38

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Theory 43

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Different approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.1 Vector space model . . . . . . . . . . . . . . . . . . . . . . . 47

6.2.2 Probabilistic approach . . . . . . . . . . . . . . . . . . . . . 47

6.2.3 Graph-based approach . . . . . . . . . . . . . . . . . . . . . 48

6.3 K-Means clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3.1 General description . . . . . . . . . . . . . . . . . . . . . . . 49

6.4 K-means: batch and incremental . . . . . . . . . . . . . . . . . . . 49

6.4.1 Distance metrics . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4.3 Geometrical interpretation . . . . . . . . . . . . . . . . . . . 52

6.5 Topic modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.5.1 General description . . . . . . . . . . . . . . . . . . . . . . . 52

6.5.2 Latent Dirichlet Allocation . . . . . . . . . . . . . . . . . . 53

6.5.3 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.5.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.5.5 Geometrical interpretation . . . . . . . . . . . . . . . . . . . 55

6.6 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.6.1 General description . . . . . . . . . . . . . . . . . . . . . . . 56

6.6.2 Expressivity levels . . . . . . . . . . . . . . . . . . . . . . . 57

6.6.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

III Trend Model 61

7 General considerations 63

7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.1.1 Specifics of the market research case . . . . . . . . . . . . . 64

7.1.2 Engineering methods . . . . . . . . . . . . . . . . . . . . . . 66

7.2 Yet another ontology? . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2.1 Methodology for trend ontology . . . . . . . . . . . . . . . . 67



Contents

7.2.2 Keyword/concept based trend ontology . . . . . . . . . . . 67

7.2.3 Term field based trend ontology . . . . . . . . . . . . . . . . 67

7.2.4 (Temporal) invariant scheme based trend ontology . . . . . 69

7.3 Important issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.4 Knowledge discovery or search problem? . . . . . . . . . . . . . . . 71

8 Trend template 75

8.1 Trend template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.1.3 Formal description . . . . . . . . . . . . . . . . . . . . . . . 77

8.2 Trend probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9 Trend ontology 81

9.1 Trend ontology – general idea . . . . . . . . . . . . . . . . . . . . . 81

9.2 Meta ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.3 Relational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.4 Applying the meta ontology . . . . . . . . . . . . . . . . . . . . . . 87

9.4.1 Topic categories . . . . . . . . . . . . . . . . . . . . . . . . 87

9.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10 Trend indication 91

10.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10.3 Trend estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

IV Experiments and Evaluation 97

11 Use cases 99

11.1 Three application fields . . . . . . . . . . . . . . . . . . . . . . . . 99

11.1.1 Mining trends from social network messages . . . . . . . . . 100

11.1.2 Trends in market research studies . . . . . . . . . . . . . . . 103

11.1.3 Trends on German Stock Market (DAX) . . . . . . . . . . . 105

12 Test corpus 107

12.1 The historical background . . . . . . . . . . . . . . . . . . . . . . . 107

12.1.1 The crisis in 2007-2008 in the news . . . . . . . . . . . . . . 107

12.1.2 Original news corpus . . . . . . . . . . . . . . . . . . . . . . 109

12.2 Content and sources . . . . . . . . . . . . . . . . . . . . . . . . . . 112

12.3 Techniques for preprocessing . . . . . . . . . . . . . . . . . . . . . 112

12.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 112

12.3.2 Named entity recognition . . . . . . . . . . . . . . . . . . . 114



Contents

12.3.3 Part of speech tagging . . . . . . . . . . . . . . . . . . . . . 115

12.3.4 Final Format . . . . . . . . . . . . . . . . . . . . . . . . . . 116

12.3.5 Vizualization . . . . . . . . . . . . . . . . . . . . . . . . . . 117

12.4 Resulting corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

13 Results 121

13.1 General introduction into evaluation . . . . . . . . . . . . . . . . . 121

13.1.1 Possible evaluation directions . . . . . . . . . . . . . . . . . 123

13.1.2 Possible evaluation approaches . . . . . . . . . . . . . . . . 124

13.1.3 Relevant evaluation methods . . . . . . . . . . . . . . . . . 125

13.1.4 Basic metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 126

13.2 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . 127

13.2.1 Evaluation frame . . . . . . . . . . . . . . . . . . . . . . . . 128

13.3 Experiments conducted . . . . . . . . . . . . . . . . . . . . . . . . 129

13.3.1 Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

13.3.2 NLP on the corpus . . . . . . . . . . . . . . . . . . . . . . . 130

13.3.3 Trend indication . . . . . . . . . . . . . . . . . . . . . . . . 133

13.3.4 Trend ontology . . . . . . . . . . . . . . . . . . . . . . . . . 138

13.3.5 Topic models . . . . . . . . . . . . . . . . . . . . . . . . . . 141

13.3.6 K-means clustering . . . . . . . . . . . . . . . . . . . . . . . 142

13.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

14 Outlook 147

Outlook 147

14.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

14.1.1 Trend mining as a research field . . . . . . . . . . . . . . . 147

14.1.2 Knowledge-based approaches to trend mining . . . . . . . . 148

14.2 Critical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

14.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Bibliography 153

A tremit: the Trend Mining Tool 163

B Zusammenfassung und Kurzlebenslauf 171



List of Figures

1 Thesis visualization. Source: author. . . . . . . . . . . . . . . . . . . .

1.1 A timeline-based visualization of selected reports. Source: author. . . 3

3.1 Solution approach. Source: author. . . . . . . . . . . . . . . . . . . . . 11

3.2 The scientific method based on six steps. Source: author. . . . . . . . 12

3.3 The scientific method within the thesis structure. Source: author. . . . 13

4.1 Diamond shaped trend model. Source: [Vejlgaard, 2008]. . . . . . . . 20

4.2 Example of trend estimation from numeric curve. Source: [Jelev, 2010] 23

4.3 Interesting, useful and important keywords in reports. Source: author. 24

5.1 Trend mining present in the relevant research fields. Source: author. . 30

5.2 Example of trends based on Google search. Source: [Google, 2011] . . 39

6.1 Information retrieval process. Source: [Göker and Davies, 2009]. . . . 44
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Introduction
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r

1
Trend example

This chapter delivers an example of a trend from which we learn the relations

between texts, the web and an emerging topic.

The reports of political developments in North Africa in the period of January

to February 2011 were dominated by the ’breaking news’ about protests and

revolutions, starting with reports of people in Tunisia overthrowing their govern-

ment, followed by news broadcast via social networks from people taking part in

protests in Egypt and by emerging social network updates and reports on protests

in Libya and plans for protests in Algeria. Clearly, there was a trend toward a

political change from old political systems, sometimes referred to as regimes by

many nations, to democracy-based systems in Northern African countries.

Figure 1.1: A timeline-based visualization of selected reports. Source: author.

Figure 1.1 illustrates on a timeline selected reports from online available news

on protests in North Africa in January and February, 2011. Anyone interested

in political events worldwide noticed at some point in January 2011 that the

3
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amount of news reporting on the situation in Egypt was growing rapidly and that

the events in Egypt were growing in importance. One could read from different

sources the reports of unrest in Egypt and there were different opinions on how the

situation was developing and what would be the consequences of this development.

Owing to the web-based forms of communication users participating in social

networks and interested in politics could follow the events described in Twitter

[Twitter, 2013] and Facebook [Facebook, 2013] posts directly [RNN-Users, 2013]

from the people taking part in the unrest in Egypt. From January 25th to Febru-

ary 13th, 2011, Twitter was dominated by the trending hashtag [Cyger, 2011]

#jan25. #jan25 was used as a tag in almost every message relating to the

Egyptian revolution. However, #jan25 that referred to January 25, 2011, the

“Day of Revolt” as named in the Wikipedia article [Wikipedia-Users, 2011a] in

Egypt started to be used also in many breaking news reports on blogs and news

sites (i.e. BBC1, AlJazeera2). Immediately, a Wikipedia [Wiki-Community, 2013]

article was written, explaining the chain of events related to the unrest taking

place in Egypt starting from January 25th, 2011 [Wikipedia-Users, 2011b]. News

articles, blogs, tweets3, and posts come from different sources but are mostly texts

written in a natural language. Most of them are publicly accessible on the web,

emerging as a constantly growing, most important information and knowledge

platform nowadays. The revolution in Egypt that took place from January 25th

until February 13th, followed by the resignation of the former Egyptian president

is, among other topics appearing in the same period, an example of a topic that

increased in interest and political relevance. Considering the two-month period

in the beginning of 2011, the Egyptian revolution is an example of a (political)

trend.

1http://www.bbc.co.uk/ online accessed on 03-March-2011
2http://english.aljazeera.net/ online accessed on 30-March-2011
3A tweet is a post from the micro blogging service Twitter that was the most popular micro

blogging service on the web in the beginning of 2011. Tweets are messages no longer than 140
characters and are published online.

http://www.bbc.co.uk/
http://english.aljazeera.net/
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2
Thesis focus

This chapter delivers an overview of the thesis content. It summarizes the

research problem which is the focus of this work and the research questions which

are being asked in the beginning of the thesis, and it describes how the answers to

these questions will be structured throughout the thesis.

2.1 The problem and solution

This thesis focuses on the problem of mining trends in web documents. Regarding

the important aspects of the problem – relevant theory, applicable approaches and

algorithms – it seeks appropriate definitions of a ’trend’ and ’trend mining’. It also

investigates relevant approaches and explores how the integration of knowledge

into a trend model influences its outcomes. It searches for the universal trend

model that enables mining trends in web documents and helps making the trend

mining results interpretable. It suggests the incorporation of knowledge and time

as important dimensions for valuing text features in text analysis needed for trend

mining.

Several methods have been proposed for the problem of topic detection and

tracking (TDT) and of the emerging trend detection in texts (ETD) (see Chapter

5, Section 5.2.1 and 5.3). These approaches bring prototypical solutions for several

general as well as specific problems related to trend mining (see Chapter 5, Section

5.2).

Although trend mining is of interest to a variety of researchers and is being

used as term in some of current research projects, there is no single definition

clarifying what it means scientifically. Regarding its specific characteristics, we

propose to define trend mining in a similar way as data mining has been defined.

The algorithms applied for detecting topics and tracking them over time mostly

5
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use their own specific definitions of what the trend is. We suggest looking

interdisciplinarily at the trend as a phenomenon, and formalizing characteristics

of a trend in computer science terms. There are methods that allow for detecting

trends by analysing topics over time, but their results are either very specific

according to the test data applied in experiments or are difficult to interpret. We

seek an universal trend model based on knowledge which allows for generating

easily interpretable results. Very few algorithms are available for tests. Most of

them are being developed on specific data sets, their implementations are not

published online and there is no possibility to test them on different sets. We

create the tremit – the trend mining tool – for tests based on both our own

algorithms and the adapted machine learning algorithms.

2.2 Research questions

While doing this research, many questions regarding mining trends emerged from

the beginning:

1. Can a knowledge-based trend model help us in understanding trends?

2. What do the trend and trend mining mean in terms of research in information

retrieval and data mining?

3. Are there any research works relevant for trend mining?

4. Which algorithms are suited for mining trends?

5. Which representation models are appropriate for trend mining?

6. Is there a general trend model?

7. While mining trends, can we know in advance whether there is a trend in

the data set?

8. Is trend mining a search or a knowledge discovery problem?

While each of these questions is relevant for this work and their answers

each contribute to the final results, the first one stands out as the main research

question. The purpose of this thesis is to deliver answers to these questions.

2.3 Content structure

The figures presented in the left corner at the beginning of every chapter aim to

help the reader to follow the path of the thesis. The thesis is structured in four

parts:

↪→ Part I: Introduction



2.3. Content structure 7

↪→ Part II: Background and Theory

↪→ Part III: Trend Model

↪→ Part IV: Experiments and Evaluation

Each part builds on the previous one and the respective chapters, with the

content structured as follows:

↪→ Chapter 1: By providing an example of a trend, the first chapter explains

the relationships between the web, the texts and the emerging topic.

↪→ Chapter 2: The research of this thesis is summarized by the second chapter-

sketching the problems and the proposed solutions, describing the research

questions and giving an overview of the thesis contents.

↪→ Chapter 3: This chapter outlines the approach we take in this research and

summarizes the contributions being made by this research.

↪→ Chapter 4: Here we discuss the general setting of our problem, giving an

insight into different perspectives on the trend research. In this chapter we

preliminarily define trend mining.

↪→ Chapter 5: This chapter describes the state-of-the-art in relevant research

fields, to help in answering the second and third questions for the relevant

works and suited algorithms.

↪→ Chapter 6: Relevant theory is introduced, and we investigate the possible

representation models in trend mining.

↪→ Chapter 7: In this chapter the general considerations for knowledge-based

trend models are described.

↪→ Chapter 8: Here we present the trend template – the universal trend model

proposed by this research.

↪→ Chapter 9: In this chapter, the trend ontology that is one of the possible

trend template implementations is described.

↪→ Chapter 10 : This chapter is devoted to the trend indication weighting

functions, which represent other possible directions of implementing the

trend template.

↪→ Chapter 11: In this chapter we describe the possible use cases that help us

in understanding in which cases there is a need for trend mining.

↪→ Chapter 12: Our test set, the text corpus, is described in this chapter.
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↪→ Chapter 13: Experiments and results are presented here. This chapter is

the conclusive chapter that helps in answering the main research question

which was posed beginning with Chapter 7.

This thesis closes with an outlook (14) and an appendix (A). The appendix

contains the description of our test tool.
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Approach and contributions

“The myth of methodology, in short form, is the belief that a play-

book exists for innovation and (...) it removes the risk from the process

of finding new ideas” (p. 37, [Berkun, 2009])

Knowing from Chapter 2 what was asked in the beginning of this research, now

we learn how the answers to the questions were found in this thesis. This chapter

provides insight into the approach taken while carrying out this research project.

It also outlines the contributions of this research.

3.1 Approach

Focusing on the problem of mining trends, we go through the following steps in

our research that are visualized in Figure 3.1:

1. Problem settings (definitions): First of all, we define the trend mining

problem settings. Here we consider the possible perspectives on the trend

as phenomenon, and choose the underlying definition of the trend from

the Information Retrieval (IR) research. We determine the preliminary

definition of trend mining and look at the problem of mining trends in web

documents from the perspective of the current web, showing the nuts and

bolts of this problem.

2. Representation models: Next, we focus on the possible representation

models for trend mining while taking the IR view. While looking in general at

the given representation models, we deal with trend mining as with a process

of information retrieval under the time constraint. The different possibilities

in IR – probabilistic approach by the example of topic models, vector space

model and statistical approach by the example of clustering method – help

9
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us to understand the expectations and limits of given algorithms that can

be applied for mining trends. We focus in particular on the possibilities of a

graph-based representation model using an ontology.

3. Knowledge integration: Continuing our thoughts on graph-based rep-

resentation, we deliberate in general on the knowledge-based trend model

using an ontology. In this step, we focus on a trend mining example from the

market research. Based on our experience in the creation of a preliminary

trend ontology, we sketch the general requirements on a knowledge-based

trend mining model. Moreover, we start to distinguish the search problem

perspective from the knowledge discovery perspective in trend mining.

4. Model: Based on the definitions assumed at the beginning of our approach

and considering the general requirements on the knowledge-based trend

model, we create the trend template that serves as the universal trend

model. The idea of integrating knowledge into trend mining now takes two

parallel directions – a knowledge-based direction and a knowledge-integrating

direction that are realized in the two different implementations of the trend

template – the trend ontology and the trend-indicating functions.

5. Evaluation (Feedback): We set the evaluation frame in which we ex-

periment with the different algorithms – the LDA-based topic models, the

k-means clustering method, and the trend template comparing the results

gained on the same test set of documents. In this step we use the experi-

ment’s results as feedback for our approach.

3.2 Scientific method

While Figure 3.1 from the previous section shows how we approach the problem

of mining trends and how we find the answer to our research question, in Figure

3.2 the general scientific method is presented. “The scientific method is the

logical scheme used by scientists searching for answers to the questions posed

within science, as well to formulate theories as to assure the means for producing

them (instruments, tools, algorithms).”[Dodig-Crnkovic, 2002] Different scientific

methods can be considered for research in computer science. A good, deep

going discussion about the science and its method is given in [Chalmers, 1999]

and another discussion about the scientific methods in computer science by

[Dodig-Crnkovic, 2002].

We choose the general scientific method [Schumm, 1991][MIT, 2011], based

on six steps: question, observation, hypothesis, experiments, data and conclusion.

Figure 3.3 shows how these steps are realized towards the content of this thesis.



3.2. Scientific method 11

problem settings- definitions

probabilistic VSM and
statistical 

graph-
based
and 
ontology

representation models:

knowledge integration-
general requirements

model- trend template

evaluation (feedback)

1

2

3

4

5

trend 
ontology

trend
indication
(weighting functions)

Figure 3.1: Solution approach. Source: author.

Step 1, the question, is covered by the introductory part of this thesis, where

we pose our research questions. The second step, the observation, is described

in the second part of the thesis, Background and Theory II, which includes the

problem settings (Chapter 4), the state-of-the-art (Chapter 5), and the theory

(Chapter 6). The third step, the hypothesis, is realized in the Trend Model Part

III of the thesis – there we present our knowledge-based trend model, which

should help in generating interpretable trend mining results. The last remaining

steps – experiments, data, and conclusion – are contained in the Experiments and

Evaluation, which is Part IV of this research.
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Figure 3.2: The scientific method based on six steps. Source: author.

3.3 Contributions

The main contributions of this work lie in:

• the definitions of the trend and trend mining

• the trend template

• the implementations of the trend template: trend ontology and trend indi-

cation

• the test corpus based on the (DAX1 ) German Stock Exchange news

• the trend mining test tool – tremit

The research content included in this thesis has been published in the papers

(doctoral consortia or symposia, workshop, conference and technical reports) listed

as follows (sorted by publication date):

1. Olga Streibel, Semantic-based Learning Method for Trend Recognition in

Simple Hybrid Information Systems, Conference on Advanced Information

Systems CAiSE2008, Proceedings of Doctoral Consortium, pages 106–113,

Montpellier, France, June 2008.

1http://www.finanzen.net/index/DAX online accessed 17-February-2013

http://www.finanzen.net/index/DAX
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Figure 3.3: The scientific method within the thesis structure. Source: author.

2. Olga Streibel, Trend Mining with Semantic-Based Learning, European Se-

mantic Web Conference ESWC2008, Proceedings of PhD Symposium, pages

71–72, CEUR. Vol-358, Teneriffe, Spain, June 2008.

3. Olga Streibel, Semantic learning for Trend Recognition in Text Collec-

tions, pages 8–9, CEUR. Vol-500, Proceedings of STI PhD Seminar, Berlin,

September 2009.

4. Olga Streibel and Malgorzata Mochol, Trend ontology for knowledge-based

Trend Mining in textual Information In IEEE Computer Society Proceed-

ings of 7th International Conference on Information Technology : New

Generations, ITNG2010, pages 1285–1288, Las Vegas, U.S., April 2010.

5. Olga Streibel, Mining Trends in Texts on the Web, Proceedings of the

Doctoral Consortium at Future Internet Symposium 2010 FIS2010, pages

80–90, CEUR. Vol-623, Berlin, Germany, September 2010.

6. Olga Streibel and Rehab Alnemr, Trend-based and Reputation-versed Per-

sonal News Network, Proceedings of the 3rd International Workshop on

Search and Mining User Generated Content SMUC2011 at 20th ACM Con-

ference on Information and Knowledge Management CIKM2011, pages 3–10,

Glasgow, U.K., October 2011.

7. Olga Streibel, Lars Wißler, Robert Tolksdorf, Danilo Montesi, Trend tem-

plate: mining trends with a semi-formal trend model, Proceedings of the
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3rd International Workshop on Ubiquitous Data Mining UDM2013 in con-

junction with 23rd International Joint Conference on Artificial Intelligence

IJCAI2013, pages 49–53, Beijing, China, August 2013.

8. Olga Streibel, Alexa Schlegel, Robert Tolksdorf, German Finance Text

Corpus: Description of the German Finance Text Corpus, corpus data

publication at Linguistic Data Consortium (LDC), 2013 to appear.

Under the supervision of Prof. Robert Tolksdorf and Prof. Adrian Paschke,

from 2010 to 2013 I was an advisor of master and bachelor theses for the following

topics:

1. “GUI for knowledge-based Trend Analysis”, Bachelor thesis. Author: Diana

Olivera Viscarra, 2013.

2. “Texts, Trends, and the Web”, Master thesis. Author: Ievgeniia Ozeran,

2011.

3. “Ontologies for Knowledge-based Trend Analysis”, Bachelor thesis. Author:

Lars Wißler, 2011.

4. “Preprocessing of Documents for Emergent Trend Detection in Text Collec-

tions”, Master thesis. Author: Iavor Jelev, 2010. (Supervising in cooperation

with Institute for Business Mathematics Fraunhofer, Kaiserslautern, Ger-

many).

Discussions with my students as well as their research on the advised topics

contributed to this thesis. Some of the content related to this thesis has been

preliminary published in the following technical reports:

1. Gökhan Coskun, Ralf Heese, Markus Luczak-Rösch, Radoslaw Oldakowski,

Ralph Schäfermeier, and Olga Streibel. Towards corporate semantic web:

Requirements and use cases. Freie Universität Berlin, 2008, Technical Report

TR-B-08-09, pages 50–56.

2. Gökhan Coskun, Marko Harasic, Ralf Heese, Markus Luczak-Rösch, Ra-

doslaw Oldakowski, Adrian Paschke, Ralph Schäfermeier, and Olga Streibel.

Realizing the corporate semantic web: Concept paper. Freie Universität

Berlin, 2009, Technical Report TR-B-09-05, pages 26–29 and 31–33.

3. Gökhan Coskun, Marko Harasic, Ralf Heese, Markus Luczak-Rösch, Ra-

doslaw Oldakowski, Adrian Paschke, Ralph Schäfermeier, and Olga Streibel.

Realizing the corporate semantic web: Prototypical implementations. Freie

Universität Berlin, 2010, Technical Report TR-B-10-05, pages 29–32.
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4. Gökhan Coskun, Marko Harasic, Ralf Heese, Markus Luczak-Rösch, Ra-

doslaw Oldakowski, Adrian Paschke, Ralph Schäfermeier, and Olga Streibel.

State of the Art Analysis – Working Packages in Phase II. Freie Universität

Berlin, 2011, Technical Report TR-B-11-07, pages 19–22.

5. Gökhan Coskun, Marko Harasic, Ralf Heese, Markus Luczak-Rösch, Ra-

doslaw Oldakowski, Adrian Paschke, Ralph Schäfermeier, and Olga Streibel.

Prototypical Implementations – Working Packages in Project Phase II. Freie

Universität Berlin, 2012, Technical Report TR-B-12-04, pages 22–23.

6. Lars Wißler and Olga Streibel. Ontologien im Trend Mining. Freie Univer-

sität Berlin, 2012, Technical Report TR-B-12-07.

In the winter term of 2012-2013 I had the opportunity to offer a trend

mining seminar for master students at the Freie Universität Berlin. The con-

tent of the seminar can be found online at: https://sites.google.com/site/

seminartrendmining. I would like to mention that this research has been devel-

oped during the time I was working in the projects: TREMA (Trends: Mining

and Fusion of Multimodal Data) and CSW (Corporate Semantic Web). This

doctoral thesis is partially funded by the Investitionsbank Berlin and by the

German Federal Ministry of Education and Research (BMBF) and the BMBF

Innovation Initiative for the New German Länder - Entrepreneurial Regions.

https://sites.google.com/site/seminartrendmining
https://sites.google.com/site/seminartrendmining
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4
Problem settings

In Chapter 4, we learn about the general problem settings, starting the search

for answers to the questions: What is a trend? What do the trend and trend mining

mean in terms of research in information retrieval and data mining? We show a

trend from different perspectives. The description of different possible perspectives

on the example presents different possible contexts of a research related to trend

mining and introduces the information retrieval (and knowledge discovery) point of

view on the trend mining problem.We dive into relevant research works searching

for the trend definitions and extract the definitions needed for our research. Since

the web is an important setting in our research scenario, we close this chapter by

discussing the increasing complexity of our research problem while considering the

web.

4.1 Different perspectives on a trend

The case of the North African uprising in 2011 presented in Chapter 1 is an

example of a trend as well as an example of a sociological phenomenon – a crowd-

based movement. The web is currently the biggest open communication platform

for users, enabling rapid emergence of crowd-based happenings [Surowiecki, 2004]

[Maier, 2008] or movements that can lead to a trend. However, the most instructive

way to understand a trend is to look at a trend curve or a diagram and to relate

it to the mathematical definitions. For these reasons we look to the fields of

sociology and mathematics, and then focus on information retrieval and data

mining in order to find their definitions of a trend.

19
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4.1.1 Sociology

There are very few scientific publications which examine trends as a phenomenon

in sociology1. The most precise one allows for understanding the “anatomy of a

trend” [Vejlgaard, 2008]. Detecting trends from the sociological point of view is

an analytical method for observing changes in people’s behavior over time with

regard to “six attitudes towards trends”(p. 30, [Vejlgaard, 2008]). The definition

of these six attitudes is based on eight different personality profiles of people who

participate in the trend process: trend creators, trend setters, trend followers,

early mainstreamers, mainstreamers, late mainstreamers, conservatives and anti-

innovators. The author visualizes the trend phenomenon itself as a diamond-shaped

trend model (p. 64, [Vejlgaard, 2008]) with regard to these groups (see Figure

4.1). The source of a trend is always trend creators, and the trend closes with the

anti-innovators. Trend setters are hereby “the most open and curious individuals

with regard to style and taste” (p. 71, [Vejlgaard, 2008]) whereas the conservatives

“prefer styles that have existed for years or even decades. They are the people who

are the most skeptical of new styles”(p. 72, [Vejlgaard, 2008]).

Figure 4.1: Diamond shaped trend model. Source: [Vejlgaard, 2008].

Trends from the sociological perspective are certain patterns of people’s

behavior and lifestyle that have evolved over a focused time interval; the word

1as for 2010, and to our best knowledge
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trend refers to a process of change. A sociologist’s perspective of the North African

political trend in the beginning of 2011 would provide an analysis of the political

changes based on observations of the different groups involved in the trend: young

protesters who most probably became the trend setters while starting the unrest

by stating their fresh political view contrary to the people supporting the old

political system (most probably the conservatives in the trend process). The

sociological perspective sheds light onto the sociological processes involved in the

change and brings a deep understanding of the trend itself.

4.1.2 Statistics

Detecting trends from the perspective of statistics is based on analysis of time-series

data. There are two goals of this analysis (p. 490, [Han and Kamber, 2006]):

• modeling time series (i.e. to gain insight into the mechanisms or underlying

forces that generate the time series)

• forecasting time series (i.e., to predict the future values of the time-series

variables)

Time series, built on real-value measurements, are the observation sequences

of a particular phenomenon, such as observations of stock exchange price changes.

They can be univariate or multivariate. Other features of time series are: stationary

and non-stationary (p. 22, [Mitsa, 2010]). “A stationary time series has a mean

and a variance and is not changing over time” (p. 22, [Mitsa, 2010]). A non-

stationary time series has no mean and increases or decreases over time. Once

a time series has been modeled, two characteristics are interesting for the time

series analysis: the trend and the periodicity. The trend analysis process consists

of four major components (p. 490-491, [Han and Kamber, 2006]):

1. trend or long-term movements

2. cyclic movements or cyclic variations

3. seasonal movements or seasonal variations

4. and irregular or random movements

A trend in this context is an indicator for a change in the data mean

[Mitsa, 2010]. The simple features of time series are: mean, median, mode,

and variance (p. 47, [Mitsa, 2010]). The definitions of mean and variance are

presented as follows (p. 47, [Mitsa, 2010]):
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• The mean “shows the average value of the time series values”. For a time

series with X = x1, x2,...,xn with N values:

µ =

∑N
i=1 xi
N

(4.1)

• The variance “shows the amount of the variation of the time series values

around the mean”. It is also known as a second moment :

σ2 =

∑N
i=1(xi − µ)2

N − 1
(4.2)

Possible characteristics of time series are: serial correlation, skewness, kurtosis,

non-linearity, self-similarity, and chaos. The definitions of skewness and kurtosis

are presented as follows [Wang et al., 2006]:

• The skewness measures the asymmetry of the histogram’s shape. For the

univariate data with the mean Yt, the standard deviation σ, and n number

of data points:

S =
1

nσ3

n∑
t=1

(yt − yt)3 (4.3)

• The kurtosis, also called heavy tails, is a measure of the curve’s peakedness.

For a univariate data with the mean Yt, the standard deviation σ, and n

number of data points:

K =
1

nσ4

n∑
t=1

(yt − yt)4 (4.4)

The self-similarity can be measured by so called Hurst exponent [Mitsa, 2010]

[Willinger et al., 1996], and the chaotic behavior by the Lyapunov exponent

[Mitsa, 2010] [Wolf et al., 1985]. Regarding the example in Figure 4.3 from a

statistical perspective, we apply a function to create a time series out of the

selected reports. As shown in Figure 4.2, we visualize the function graph that,

based on the number of news items appearing in the given time, can be further

explored for trend.

While exploring, if there is an upward trend in the news curve, we can calculate

the upward trend as follows:

xt represents the number of articles at the time point t ∈ N , whereas N represents

the set of time points that are given in a particular time measure (i.e. an hour, a

day, a month), plotted against the update of the real-value data. τ is a particular

defined time interval (i.e. three hours if the time measure is one hour or two

days if the time measure is based on days). Yt is hereby calculated as follows:
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Figure 4.2: Example of trend estimation from numeric curve. Source: [Jelev, 2010]

.

Yt := xt+τ − xt. An upward (also called positive) trend in the time interval

[t1, t1+τ ] is a trend that fulfills the following rule [Jelev, 2010]:

#t : Yt1 < Yt
N − τ < K%

(4.5)

K% is a percentage value that can be arbitrarily chosen, in relation to the detected

amplitudes in the curve progression.

In general, the statistical perspective focuses on the value-time relation of a

trend. It provides analysis techniques that bring insight into the trend progress

and helps to predict trends based on real values, without necessitating a deep

understanding of the trend’s background processes.

4.1.3 Information retrieval

Taking the computer science perspective on trend mining leads mainly into the

information retrieval research. In particular, into the research on Emerging Trend

Detection (ETD) summarized in [Kontostathis et al., 2003] that set the basic

frame for most of the research work on trend mining and either for this thesis.

According to [Kontostathis et al., 2003], detecting trends from text collections

refers to the detection of emerging topics in texts. In terms of ETD a trend in

texts is defined as “a topic area that is growing in interest and utility over time”

[Kontostathis et al., 2003].

Closely related to the emerging trend detection is the event detection research

that provides methods for event monitoring and event or anomaly detection.

The research on Topic Detection and Tracking (TDT) [Allan, 2002] summarized
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under event-based information organization, partially applies approaches from

event detection research. TDT provides a definition of topic, which is “a set of

news stories that are strongly related by some seminal real world event” (p. 2,

[Allan, 2002]).

From the information retrieval perspective, the initial example shows a topic:

Egyptian revolution that increased in interest and utility from January to February,

2011. This topic was covered by a set of news stories in the form of tweets, Facebook

status messages, and blog entries, that referred to the real world event which was

the unrest in Egypt. However, many other similar trends may have emerged at

the same time but not with the same visible impact as the Northafrican uprising.

In order to discover and analyze these emerging topics, methods, algorithms and

tools are necessary. The objective of detecting trends is “to provide an alert that

new developments are happening in a specific area of interest in an automated

way” [Kontostathis et al., 2003].

Figure 4.3: Interesting, useful and important keywords in reports. Source: author.

4.2 Definitions

In the following subsections we introduce definitions that are essential for further

reading of this thesis. Starting with the common definition of a trend in 4.2.1,

the examples of the diversity in defining trend in relevant research are introduced

in 4.2.2. Based on the introductory definitions, we specify in 4.2.3 the definition

of a trend and trend mining in the context of our research.

4.2.1 A common-sense trend definition

trend (Oxford dictionary [Oxford, 2013])
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noun

1. a general direction in which something is developing or changing:

an upward trend in sales and profit margins

2. a fashion:

the latest trends in modern dance

verb

(no object, with adverbial of direction)

1. change or develop in a general direction:

unemployment has been trending upwards

• (of a topic) be or become popular on a social networking site:

I‘ve just taken a quick look at what’s trending on Twitter right now

2. (especially of a geographical feature) bend or turn away in a specified

direction: the Richelieu River trending southward to Lake Champlain

4.2.2 Trend definition diversity in the relevant research

Trend has been defined in a variety of ways in recent research. A sample of this

definition diversity is presented below.

[Engel et al., 2010] define an emerging trend as “a change in topic for an

extended period of time as illustrated by the jump discontinuity or the slope

discontinuity”. The jump and slope discontinuity correspond to an abrupt change

in the content of the text stream (jump) or to a ramping up (or down) in a topic

for that text stream (slope). However, in providing the definition of an emerging

trend, the authors refer also to the definition of an event. They refer to “the

instantaneous discontinuity types (point or jump) as a surprise event”.

[Naaman et al., 2011] refers to significant events and temporal trends while

focusing on users’ interests and the events reflected in so called social awareness

streams. They state that “trends may reflect a varied set of occurrences, including

local events, global news events, televised events Internet-only and platform

specific memes, and hot topics of discussion”.

[Morinaga and Yamanishi, 2004] address the problem of discovering topic

trends and analyzing their dynamics in real-time. In particular they define

topic as “a seminal event or activity”.

[Kawamae and Higashinaka, 2010] frame that “each trend can be presented

as a mixture of topics and localization over time” whereas in [Kawamae, 2011]

the author refines this definition by assumption that “each trend can be presented

as a mixture of temporal words, terminology words, and localization over time”.

[Goorha and Ungar, 2010] generalize the definition of trend detection propos-

ing the use of term discovery that they frame as “automatic identification of
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emerging topics associated with products of interests”, and the research presented

in [Mathioudakis and Koudas, 2010] refers simply to emerging topics while using

the word trend.

This variety of refinements for trend and trend detection definitions in the

relevant publications is characteristic of the trend mining research. Our present

hypothesis is that there is no consensus in the trend mining research about

what precisely a trend is. The lack of consensus about trend is comprehensible

since the trend mining is a multifaceted problem: it depends on the frequency

of trend (i.e. short-term, long-term), on the art of data in which trend occurs

(i.e. real valued, textual), on the fact if trend has been directly triggered by an

event or not. Trend definition depends often on the application scenarios for

which given trend approaches are being developed. In every case it describes the

occurring change in data. On the other hand, several (i.e. [Engel et al., 2010]

[Goorha and Ungar, 2010]) works on trend mining still refer to trend definition in

[Kontostathis et al., 2003], where trend is in general “a topic area that is growing

in interest and utility over time”. This general trend definition inspired our

research.

4.2.3 Definitions proposed in this thesis

With regard to [Kontostathis et al., 2003] we propose the following definition of

a trend :

Definition 4.2.1. Trend (in texts)

is a topic area that is growing in interest and utility over time.

As in [Witten and Eibe, 2005]: data mining “is the extraction of implicit,

previously unknown, and potentially useful information from data”. Regarding it,

we propose the following definition a trend mining:

Definition 4.2.2. Trend mining

is the extraction of implicit, previously unknown and potentially useful infor-

mation from time-ordered texts or data, i.e. the information that financial

and economic crisis is emerging. Trend mining techniques can be used for

capturing a trend in order to support users in providing previously unknown

information and knowledge about the general or specific development in users’

field of interests in a given time frame, i.e. information about the forthcoming

market movements
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The main reason for introducing the trend mining definition is the intention of

using one standard term for many research works on similar or the same subject.

Methods on trend analysis, trending analysis, emergent trend detection, topic

detection and tracking, tracking changes in topics, follow the same common idea:

to capture general, temporal changes (in text or data) in order to support user

in providing previously unknown information and knowledge about the general

development in users’ field of interests. Doing so, they extract the implicit,

previously unknown and potentially useful information from time-ordered text or

data.

4.3 Stepping up on complexity

The web has become the main source of textual information for many people who

are willing to learn about the major world events. Web users, while collaborating

over social networks, blogs and micro-blogging services also contribute to news

coverage worldwide.

News feeds come from mainstream media as well as social networks. Sometimes

feeds from these social networks are more up-to-date than those that come from

mainstream media. But the overwhelming amount of information requires a user

to personally filter through it until one gets what is really needed.

Social networks like Delicious2, Diaspora3, Facebook4, Flickr5, LinkedIn6,

Twitter7, Xing8, YouTube9 have become very popular among users on the web. In

recent years, Facebook attracted hundred of millions of users worldwide, increasing

its membership from over 100 million in 2009 to over 500 million in 201110. Around

175 million11 web users in 2010 had a Twitter account. Everyday there are 95

million12 tweets worldwide and “more than 30 billion pieces of content (web links,

news stories, blog posts, notes, photo albums) each month” shared on Facebook13.

Owing to these novel forms of communication, anyone with an internet device

could follow the developments during the flood in Rockhampton in Australia

in 2010 and 2011 since residents of this town created a public Facebook group

reporting in real-time about the flood 14.

2http://delicious.com/ accessed 08-Nov-2011
3http://joindiaspora.com accessed 08-Nov-2011
4http://www.facebook.com accessed 08-Nov-2011
5http://www.flickr.com accessed 08-Nov-2011
6http://www.linkedin.com accessed 08-Nov-2011
7http://www.twitter.com accessed 08-Nov-2011
8http://www.xing.com accessed 08-Nov-2011
9http://www.youtube.com/ accessed 08-Nov-2011

10http://www.facebook.com/press/info.php?factsheet accessed 30-March-2011
11http://twitter.com/about accessed 30-March-2011
12as for September 2010
13http://www.facebook.com/press/info.php?statistics accessed 30-March-2011
14http://tinyurl.com/on2k3lj accessed 30-March-2011

http://delicious.com/
http://joindiaspora.com
http://www.facebook.com
http://www.flickr.com
http://www.linkedin.com
http://www.twitter.com
http://www.xing.com
http://www.youtube.com/
http://www.facebook.com/press/info.php?factsheet
http://twitter.com/about
http://www.facebook.com/press/info.php?statistics
http://tinyurl.com/on2k3lj
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In mainstream media, the political events in Iran in 2009 have been described

as the Twitter-Revolution15 since many people communicated about these events

using the microblogging service Twitter. Furthermore, the political developments

and revolutions in North Africa beginning in January 2011 could be followed

on Facebook, Twitter, Flickr, Bambuser, and others. Public Facebook status

updates, tweets, bookmarks, and pictures represent immediate knowledge about

our world, generated by web users. Among this content, many trends emerge in

real time.

15http://www.washingtontimes.com/news/2009/jun/16/irans-twitter-revolution/ ac-
cessed 30-March-2011

http://www.washingtontimes.com/news/2009/jun/16/irans-twitter-revolution/
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5
State of the art

Having learned the problem and its overall settings, in this chapter we take

a deeper look at the relevant works and tools in the area of trend mining. We

start with research areas and review chosen approaches while classifying them

into research directions.The discussion about relevant works continues with the

description of relevant tools, including offline analysis and web tools. The literature

and software review leads to the list of problems related to trend mining research.

Finally, a problems summary allows for more understanding of the obstacles to

trend mining research and explains how this thesis is positioned into the state-of-

the-art works in this field.

5.1 Research areas

In Section 4.1 we narrowed the computer science perspective on trends to the

information retrieval research. In the Section 4.2.3 of Chapter 4 we focused our

definition on data mining, and in the further text we consider the knowledge

discovery perspective on mining trends. Indeed, approaches to trend mining in

the literature are often classified into different research areas. This may lead to

confusion. In general, when focusing on mining trends from textual data, the

following three research areas should be mentioned:

1. emergent trend detection: a sub-area of information retrieval, related to

knowledge discovery and text mining

2. topic detection and tracking summarized as event-based information organi-

zation: an area related to information retrieval with text, and data mining

components applying event detection approaches

3. temporal data mining

29
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emergent
trend detection 
in text mining

temporal 
data mining

trend mining

topic detection 
and tracking

Figure 5.1: Trend mining present in the relevant research fields. Source: author.

How these research fields constitute the trend mining is shown in Figure 5.1.

The first research field mentioned above, the emerging trend detection re-

search, is the most relevant for our work. In [Kontostathis et al., 2003] sev-

eral systems that detect emerging trends in textual data are presented. These

so called ETD systems are classified in two main categories: semi-automatic

and fully-automatic. For each system there is a characterization based on the

following aspects: input data and attributes, learning algorithms and visual-

ization. This comparison includes an overview of the relevant research and

projects published in [Allan et al., 1998] [Lent et al., 1997] [Agrawal et al., 1995]

[Swan and Jensen, 2000] [Swan and Allan, 1999] [Watts et al., 1997]. However,

no sharp distinction has been made between the TDT and ETD research fields,

which means that many works, i.e. [Swan and Allan, 1999] or [Lavrenko et al., 2000]

can be in fact classified into both fields. The characteristics of a given approach

and the research direction lets us classify the given works more into the TDT

(event-based field) or more into the ETD (general trend mining).

The second field, topic detection and tracking research, is predominantly

related to event-based approaches. Event-based approaches for trend mining

rely on the assumption that trends are always triggered by an event, that is

often defined as “something happening” or “something taking place”(page 102,

[Lita Lundquist, 2000]). Considering a trend from the event research perspective

means that trend detection has to be understood as a monitoring task. This is

mostly the case for so called short-term trends that are indeed triggered by some
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events and in order to detect them we have to monitor the stream in which they

occur, i.e. the occurrence of “Eyjafjallajökull eruption”1 which actually occurred

in Iceland and was reported in social networks and on the news in March 2010.

However, so called long-term trends, i.e. “financial crisis” that started to be

on-topic in 2008 are not necessarily conjoined with one specific event. It is more

a chain of events or even the “soft” indicators in public opinion or news:

Askitas N., Zimmermann K.F Wochenbericht des DIW Berlin Nr. 25/2009:

“In der gegenwärtigen Wirtschaftskrise haben sich Prognosen als besonders

schwierig erwiesen. Dies ist ein weltweites Phänomen. In immer kürzerer Folge

kam es zu Prognoserevisionen, die letztlich in einem Herdenverhalten der Prog-

nostiker endete – ein typisches Zeichen für mangelnde Informationen im Markt.

Dies hatte zunächst mit der Geschwindigkeit zu tun, mit der sich in der global-

isierten Welt die negativen Impulse, die aus einem Zusammenspiel einer zyklischen

Abschwächung der Weltkonjunktur und dramatischer Krisensignale aus den Fi-

nanzmärkten entstanden, über die ganze Welt verbreiteten und insbesondere das

Investitionsklima eintrübten. Mit dieser Geschwindigkeit war die traditionelle Kon-

junkturforschung und die amtliche Statistik überfordert, da sich die Anpassungspro-

in Tagen oder Wochen vollzogen, und nicht wie sonst üblich in Monaten oder

Quartalen. Deshalb wurde noch mehr als sonst auf “weiche” Indikatorsysteme wie

Stimmungsumfragen und Handelsindizes zurückgegriffen. Auch wenn sie wenig

über die weitere Zukunft sagen können, so geben sie doch in normalen Zeiten ein

robustes Bild über die Lage, in der sich die Wirtschaft befindet”

“Forecasting proved to be particularly difficult during the current economic

crisis. This was a global phenomenon. There were adjustments of previously given

forecasts which succeeded more and more rapidly one after the other. Finally the

forecasters ended up behaving herd-like – a typical sign of the lack of information

on the market. This happened in the first place because of the very quick spread of

the negative impulses in the globalized world, as they emerged from the interaction

between the cyclical weakening of the global economy and dramatic signs of crisis

from the financial markets, clouding over the investment climate especially. The

processes of adaptation took place in days or weeks and not, as was commonly

the case, in months or quarters and such a speed just overtaxed the traditional

economic research and official statistics. And that is why the forecasters fell back

even more than usual on ”soft” indicator systems like sentiment surveys and trade

indices. Even if they do not allow them to talk of the far future, they do give them

quite a solid image of the current economic situation during normal times.”2

1The eruption an Icelandic volcano in March 2010 that caused air travel chaos in Europe
and revenue lost for the airlines

2Many thanks to Piotr Majchrzyk for the translation from German to English
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Nevertheless, the various definition of a trend as used in different research

approaches and presented in Section 4.2.2 often include a definition of an event.

The third research field, temporal data mining research [Mitsa, 2010], offers

methods for clustering, classification, dimension reduction and processing of time-

series data [Wang et al., 2005]. It addresses in general the temporal data and

the techniques of time series analysis on these data. An example definition of

temporal data is “time series data which consist of real valued sampled at regular

time intervals” [Mitsa, 2010]. Temporal data mining is an interesting research

area with a huge relevance to trend mining, but minor relevance to our approach

since the focus of temporal data mining lies generally in real valued data – not

on textual data as it is our case. On the other hand, temporal data mining

applies the data mining methodology and deals with the same approaches, such as

classification or clustering, that are relevant also for mining trends in textual data.

Furthermore, it considers the idea of temporal ontologies (page 12, [Mitsa, 2010])

that is conceptually relevant for our approach on trend ontology (see Chapter 7,

Section 7.1). While we are not discussing in detail most common approaches in

temporal data mining, we will refer as needed to some of them in the following

chapters of this thesis.

5.2 Directions in trend mining research

Before we continue with the discussion about the methods applied in trend

mining, let us have a deeper look at the different possible refinements of the trend

definition in context of the information retrieval, knowledge discovery and data

mining research. Based on these refinements, we can examine the possible research

directions and move more towards the characteristics of general trend mining

approaches and emergent trend detection algorithms. The definitions mentioned

in Section 4.2.2 sketch a general characteristic of the overall directions in trend

mining research.

In general terms, the three main directions of trend mining research can

be classified as: 1) general trend models including approaches from ETD, 2)

event-based approaches including the approaches from TDT, and 3) time-series

analysis approaches. Certainly, the three directions can be split into different

sub-directions. For example, as for the general trend models it would be different

characteristics based on input data or applied algorithms, and for the event-based

approaches it would be different tasks addressed in the TDT research.

As already mentioned above, the difference between 1) and 2) is not sharp

and many approaches could be classified in both directions. If a given approach

focuses more on an augmented definition of an event and concentrates on the

monitoring of news/text streams while searching for events, it would be classified
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more into the first direction. In case a given approach concentrates on the time-

based information processing, takes into account events as an existing but not a

necessary trigger for a trend, and deals more with an overall trend mining system

or the general algorithms for trend mining, it should be classified in the second

direction.

While assigning the approaches into these directions, our goal is to review the

trend mining problems that the researchers are focusing on, providing an overview

of underlying algorithms and data used for tests.

5.2.1 General models

Some of the general trend mining approaches have been designed as complete

trend detection systems, including visualization of the results. Their core compo-

nents are the machine learning algorithms or a combination of different analysis

methods with a learning (classification or clustering) approach. Probably the

most important one for the trend mining research is research work done by

[Lavrenko et al., 2000] where automatic trend detection based on text has been

proved feasible and useful. In their paper about Ænalyst [Lavrenko et al., 2000],

the authors describe “a system for predicting trends in stock prices based on the

content of news stories that precede trends”. Ænalyst has been designed and im-

plemented as a general architecture for the association of news stories with trends.

The system collects hybrid data: financial time series and time-stamped news

stories, re-describes time series data into“high-level features”, called trends, and

aligns then each trend with time-stamped news stories. Such news stories serve

as training sets for learning the language model which determines the statistics

of word usage patterns in the stories. This language model, learned for every

trend type, helps to monitor a stream of new incoming news stories. The model

processes new news stories due to the learned hypothesis. Authors define here

the task of trend detection as a special case of activity monitoring as introduced

by [Fawcett and Provost, 1999]. The approach has been evaluated on 127 stocks

set with resulting news collection of over 38,000 news articles from October 1999

to February 2000.

[Pottenger and Yang, 2001] propose an approach for detecting emerging trends

in conceptual content. The detection process is “analogous to the operation of

the radar system” in the sense that techniques applied for the detection enable

the identification of “regions of semantic locality in a set of collections and

screen out topic areas that are stationary in a semantic sense with respect to

time”. Based on the approach presented in [Pottenger and Yang, 2001], a general

trend mining system referred to as Hierarchical Distributed Dynamic Indexing

(HDDITM ) is created and described in [Pottenger et al., 2001]. The system relies

on unsupervised and supervised learning approaches. The detection of emerging

trends in text collections is based on semantically determined clusters of terms.
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Using linguistic feature extraction, clusters based on semantic similarity of these

features are created. At multiple points in time, the algorithm takes a snapshot of

the statistical state of the collection. Finally, a neural network that uses as input

the rate of change in the size of clusters and in the frequency and association of

features classifies topics as emerging or non-emerging. The evaluation is conducted

on two test sets from commercial patent database3.

TimeMines is a system that automatically generates timelines from date-tagged

free text corpora [Swan and Jensen, 2000]. Two separate machine learning aspects

are presented in TimeMines [Kontostathis et al., 2003]. One is the extraction of

the most significant features from the input documents. This is done by the

use of a simple statistical model for the frequency of occurrence of features in

a stream of text as described in [Swan and Allan, 1999]. The model is based

on hypothesis testing, choosing the most relevant features from the date-tagged

texts while allowing a reduction of the features set. Another learning method,

again based on hypothesis testing, groups the features from the reduced feature

set based on the similarity in their distribution within a given time period

[Kontostathis et al., 2003]. The system has been evaluated on a chosen subset

of the TDT corpora4 using 6,683 stories over 175 days (January 7th - June

30th 1995). TOA System is one of the early systems for technology opportunity

analysis. It is a semi-automatic trend detection system which enables mining of

text files using bibliometrics [Watts et al., 1997]. TOA relies on the expertise of

the user who is researching a given area. There are no inherent learning algorithms

present in the system [Kontostathis et al., 2003]. TOA and a few more of the

general ETD systems concerned with the detection of trends are summarized in

[Kontostathis et al., 2003] based on the following characteristics: input data and

attributes, learning algorithms and visualization, that are important for creating

a trend analysis system.

In [Bolelli et al., 2009] a generative model is proposed based on latent Dirichlet

allocation (LDA [Blei et al., 2003b]) that “integrates the temporal ordering of

the documents into the generative process in an iterative fashion”. This so

called segmented author-topic model (S-ATM), based on the author topic model

as presented in [Bolelli et al., 2007], integrates temporal characteristics of the

document collection. Authors conduct their experiments on a subset of CiteSeer

publications from 1990-2004 published in ACM conferences having a total number

of 41,540 documents and 35,314 authors. They present the trends for five topics

among which machine learning, processor architectures and digital libraries appear

to be on top in the tested time period.

The trend detection model over Twitter data as described in

[Kawamae and Higashinaka, 2010] relies on three steps of trend detection: identi-

3http://dli.grainger.uiuc.edu/ accessed 01-August-2011
4http://projects.ldc.upenn.edu/TDT/ accessed on 08-Nov-2011

http://dli.grainger.uiuc.edu/
http://projects.ldc.upenn.edu/TDT/
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fication of bursty keywords, grouping of bursty keywords into trends and trends

analysis. The proposed approach has been realized as an application deliver-

ing a “real-time news bulletin assembled automatically from Twitter”5. No

information about the test data set applied for the approach could be found in

[Kawamae and Higashinaka, 2010].

5.2.2 Event-based and TDT

Introduced by the topic detection and tracking research, five tasks are in the focus

of TDT field (page 3, [Allan, 2002]):

• story segmentation: the problem of dividing the transcript of a news show

into individual stories

• first story detection: the problem of recognizing the onset of a new topic in

the stream of news stories

• cluster detection: the problem of grouping all stories as they arrive, based

on the topics they discuss

• tracking: requires monitoring the stream of news stories to find additional

stories on a topic that was identified using several sample stories

• story link detection: the problem of deciding whether two randomly selected

stories discuss the same news topic

Most research works addressing one of the tasks listed above belong to the

event-based research direction of trend mining research. New event detection and

event tracking are part of the TDT initiative [Allan et al., 1998]. The detection

approach for new event detection is based on a single pass clustering algorithm

and a thresholding model that incorporates the properties of events as a major

component. This system adapts a sequential pattern matching technique used in

data mining systems. Looking for frequently occurring patterns of words allows

for the identification of frequently co-occurring terms which can be treated as a

single topic. The topic comes up from the resulting words that are defined as a

“phrase” [Lent et al., 1997]. The phrase frequency counts represent a data store

that can be mined.

In [Petrović et al., 2010] an approach for detecting new events out of the

Twitter stream is presented. The authors compare a classic method for first story

detection (FSD), based on a nearest-neighbor search in an inverted document

index to their locality sensitive hashing-based approach. Using a corpus of Twitter

data collected over 6 months (163,5 million tweets) and applying the evaluation

5http://www.blicqtimes.com/ accessed on 08-Nov-2011

http://www.blicqtimes.com/
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methods from TDT, they found out that “celebrity deaths are the fastest spreading

news on Twitter”.

In [Zeng and Zhang, 2009], which is inspired by the TDT research, a problem

of topic transition is in focus. Instead of applying topic models based on latent

Dirichlet allocation (LDA) as proposed in [Blei et al., 2003a] or probabilistic latent

semantic indexing (pLSI) [Hofmann, 1999], they propose to ground on a topic

transition model based on hidden Markov models (HMM). They compare their

methods performing experiments on two corpora: Reuters-215786 (sampled and

categorized by Reuters Ltd. in 1987, formatted and published in 1991-1992,

containing 21,578 documents in 120 topics) corpus and BBS-1544 corpus which

contains 1,544 documents from time period of July 2006 to March 2007 of BBS

website in China.

An interesting work on tracking dynamics of topic trends, presented in

[Morinaga and Yamanishi, 2004], is an example of trend mining research that

can be classified into both event-based and general model directions. The au-

thors [Morinaga and Yamanishi, 2004] focus on an online framework for tracking

dynamics of topic trends while concentrating on three tasks: topic structure iden-

tification, topic emergence detection and topic characterization that are somehow

relevant to the tasks from TDT research. [Morinaga and Yamanishi, 2004] apply

a probabilistic model which is the finite mixture and propose a time-stamp based

discount learning algorithm (a variant of an incremental expectation maximization

clustering as presented in [Neal and Hinton, 1996]) for topic structure identifica-

tion. They show their results from tests with a set of “contact data of a help desk

for an internal email service” with 1,202 records from February to May of 2004.

5.3 Tools

5.3.1 ETDS Tools

Summarizing, the different tools that emerged from ETD research were:

PatentMiner: adapts a sequential pattern matching technique used in data

mining systems. Looking for frequently occurring patterns of words, it allows

to identify frequently co-occurring terms and to treat them as a single topic.

The topic comes up from the resulting words that are defined as a ‘phrase‘

[Lent et al., 1997]. The phrase frequency counts represent a data store that can

be mined. Mining is done in this case by using a shape query processing learning

tool borrowed from data mining [Agrawal et al., 1995]

TOA: a semi-automatic trend detection system for technology opportunities

analysis [Kontostathis et al., 2003]. It enables mining of text files using bibliomet-

rics [Watts et al., 1997]. TOA relies on the expertise of the user who is researching

6http://tinyurl.com/len8xc2 online accessed on 30-July-2011

http://tinyurl.com/len8xc2
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a given area. There are no inherent learning algorithms present in the system

[Kontostathis et al., 2003].

TimeMines: a system that automatically generates timelines from date-

tagged free text corpora [Swan and Jensen, 2000]. Two separate machine learning

aspects are presented in TimeMines [Kontostathis et al., 2003]. One is the ex-

traction of the most significant features from the input documents. This is done

by the use of a simple statistical model for the frequency of occurrence of fea-

tures in a stream of text (as described in [Swan and Allan, 1999]). The model

is based on hypothesis testing, choosing the most relevant features from the

date-tagged texts and allowing one to reduce the features set. Another learning

method, again based on hypothesis testing, groups the features from the reduced

feature set, due to the similarity in their distribution within a given time period

[Kontostathis et al., 2003].

New Event Detection: including event tracking is part of the Topic Detec-

tion and Tracking (TDT) initiative [Allan et al., 1998]. The detection approach

for New Event Detection is based on a single pass clustering algorithm and a

thresholding model that incorporates the properties of events as a major compo-

nent.

HDDI: relies on unsupervised and supervised learning approaches. The

detection of emerging trends in text collections is based on semantically determined

clusters of terms. Using linguistic feature extraction, clusters based on semantic

similarity of these features are created. At multiple points in time, the algorithm

takes a snapshot of the statistical state of the collection. Finally, a neural network

that uses as input the rate of change in the size of clusters and in the frequency

and association of features classifies topics as emerging or non-emerging.

The systems described above give an overview of approaches used for emergent

trend detection in text mining with a focus on the learning methods used for

detecting trends in text collections. We conclude that there is no inherent

“best” approach for emerging trend detection in text collections and that systems’

authors are mostly combining their own methods with supervised and unsupervised

learning methods from machine learning.

Focusing more on prototypes for trend mining in financial news, we compared

[Wüthrich et al., 1998] [Peramunetilleke and Wong, 2002]

[Mittermayer and Knolmayer, 2006]. The authors of [Wüthrich et al., 1998] de-

scribe a software application which uses the daily news of major publishers to

predict the closing values of various indices in Asia, Europe and the USA. The

indices are the Dow Jones Industrial Average (Dow), Nikkei 225 (Nky), Finan-

cial Times 100 Index (Ftse), Hang Seng Index (His), and the Singapore Straits

Index (Sti). [Peramunetilleke and Wong, 2002] proceed very similarly with the

development of their algorithm, however they focus on FOREX, particularly the

USD/DEM and USD/JPY course. The goal of their system is also to predict price
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changes. The authors try to improve the usual methods, which work only with

series of numbers representing the price changes over a timeline, by processing

press releases, which supply the causes of the change and thus the context for

more accurate forecasts.

5.3.2 Algorithms, the web and the functionality tools

According to the system description in [Kontostathis et al., 2003] and regarding

the prototypes [Wüthrich et al., 1998] [Mittermayer and Knolmayer, 2006]

[Peramunetilleke and Wong, 2002], the following learning algorithms have been

proven to be useful for the problem of trend detection:

• combined “hypothesis testing”-based methods [Swan and Jensen, 2000]

• single-pass clustering [Allan et al., 1998]

• sequential pattern matching and shape query processing [Lent et al., 1997]

[Agrawal et al., 1995]

• feed-forward, backpropagation NN, C4.5 and SVM [Pottenger and Yang, 2001],

[Wüthrich et al., 1998]

• k-NN classifier, regression analysis [Wüthrich et al., 1998]

In general we noticed that relevant works include different algorithms that

have been applied to the problem of trend detection, but two general approaches

are more popular than the rest:

• probabilistic topic models

• statistical learning (combined with text mining techniques)

Besides the academic research related to trend mining, there are some tools

relevant for any analysis or experiments regarding trend mining. We chose to

mention three of them: Rapid Miner7, WEKA with Pentaho-Weka-widget8, and

GoogleTrends9, which are the most important regarding mining trends.

Figure 5.2 shows an example of how GoogleTrends visualize common un-

derstandable examples of trends. That are the financial crisis and insolvent

companies, which emerged in 2008 in the news on the web. The graph shows a

search volume index for the terms “financial crisis” (blue curve) and “insolvent”

(red curve) in Germany from 2006 to 2011.

7http://rapid-i.com/content/view/182/192/lang,en/ accessed online 01-Feb-2013
8http://wiki.pentaho.com/display/DATAMINING/Weka+Server accessed online 20-April-

2013
9http://www.google.com/trends accessed online 02-January-2013

http://rapid-i.com/content/view/182/192/lang,en/
http://wiki.pentaho.com/display/DATAMINING/Weka+Server
http://www.google.com/trends
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Figure 5.2: Example of trends based on Google search. Source: [Google, 2011]

5.4 Conclusions

Considering the ETD systems [Kontostathis et al., 2003] we notice that none of

the methods proposed concentrate on the integration of knowledge (see Table 5.1).

Approach Learning
Method

Knowledge
Integration

Semantic
Analysis

SEMI-AUTOMATIC SYSTEMS

TOA NLP, com-
putational
linguistic,
LSI, principal
component
analysis

none none partial

TimeMines statistical,
probabilistic

not expl. none none

Patent Miner query-based seq.pattern
matching

none none

AUTOMATIC SYSTEMS

Ænalyst time series
analysis,
language
models

Bayes-
classificator

none none

New Event
Detection

clustering single pass
clustering

none none

HDDI statistical back-
propagation
neural net-
works

none partial

Table 5.1: ETD-systems. Source: author.
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The research works focus on different tasks, algorithms and data sets. Regard-

ing the sets used for tests, there are no specific recommendations for the size of

the test set. Several chosen examples are summarized in Table 5.2

TEST SETS AND ALGORITHMS

Test set Time period Task Algorithm

163,5 million
twitts

6 months inverted index,
hashing

locality sensitive hashing
[Petrović et al., 2010]

41,540 docu-
ments, 35,314
authors

1990-2004 topic trends segmented author-topic model
[Bolelli et al., 2007]

21,578 doc-
uments,
120 topics
(Reuters-
21578)

1987 topic transition HMM [Zeng and Zhang, 2009]

1,202
helpdesk
records

Feb.to May
2004

finite mixture
model

probabilistic– finite mixture
[Morinaga and Yamanishi, 2004]

Table 5.2: Several algorithms and data sets. Source: author.
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What we learn from the state of the art:

• the methods underlie one general assumption of what is a trend without

an explicit definition. This implicit definition of a trend can be redefined

with regard to the specific use case and data.

• there is no fundamental “best” approach to trend mining, rather a

combination of text analysis methods and statistical learning approaches

regarding the specific trend mining task/problem is the common tech-

nique

• probabilistic approaches (e.g. probabilistic topic models) and clustering

methods are in general useful and often applied for topic detection tasks

• many different corpora varying in size, time period, labeling (automatic

part-of-speech tagging or human made labels) and language are used for

the tests and evaluation; there is no benchmarking corpora at hand10

• results of the specific methods often require validation from human

experts and the “development and use of effective metrics for evaluation

of ETD systems is critical” ( page 1, [Kontostathis et al., 2003])

Furthermore, this review of the relevant research shows that there is still

room for improvements regarding many issues. The most important once are

listed as follows:

• Time-based information retrieval makes a difference – “time-based aspect

is different from much other work in information retrieval, and specific

handling of that is likely to be helpful.” (page 13, [Allan, 2002])

• The web as a source of texts is not just a “flat” document corpus –

“Although many datasets, such as TREC .GOV collection [NIST, 2013],

have been built for research purposes, they are usually small and biased,

and cannot represent the characteristics of the real-world web graph.”

[Dai and Davison, 2010]

• Knowledge and context are important for the trend analysis –

“... we need to further analyze context, i.e. relations among

words in order to more deeply analyze the semantics of topics.”

[Morinaga and Yamanishi, 2004]

10We are aware of the TDT-corpora available at http://projects.ldc.upenn.edu/TDT/

accessed-online 01-June-2013. These are the test corpora as generated by the TDT project, and
suited for tests within the TDT-formulated tasks.

http://projects.ldc.upenn.edu/TDT/
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6
Theory

Chapter 6 helps in understanding the theory behind the methods applied to

mining trends in this thesis. It starts with an introduction into the overall approach

of IR, showing possible adoptions of it to the problem of trend mining. We go

through possible relevant theoretical backgrounds for the trend mining research in

general and continue with the representation models from IR. Three different rep-

resentation models that underly three different approaches: probabilistic, statistical

and graph-based are presented in this chapter. Showing the general differences

between them, two known algorithms are introduced and described in detail, the

topic models and the k-means clustering. This chapter closes with the description

of an ontology in the sense of Semantic Web research and relates the ontology

approach to the graph representation model mentioned in the beginning of this

chapter.

6.1 Introduction

The theory behind trend mining can be interpreted in a general way by describing

the existing theoretical approaches from relevant research fields, data mining or

information retrieval respectively. Moreover, it can be discussed by explaining

the theoretical background of specific algorithms applied for the experimental

part of this thesis. Our goal here is the understanding of the difference between

theoretical concepts relevant for trend mining in general and the theory behind

the algorithms that we choose to apply to mining trends. However, the previous

is connected to the latter – the consideration of a general trend mining approach

is important for the decision on theoretical representations of the trend model,

hence for the understanding of applied algorithms.

43
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Since the focus of mining trends in this thesis lies on the textual data

and we have to consider the document analysis, the concepts from text min-

ing [Engel et al., 2010] are hereby relevant for trend mining in any case. However,

the common text mining techniques, based on natural language processing of

text and statistical text analysis, are just a part of the problem. Relating the

trend mining to the data mining as shown in our definition from 4.2.3 leads to

theoretical concepts of machine learning methods used in data mining. However,

we do not exactly apply machine learning theory to trend mining. Hence, the

question remains: what do we need for mining trends? In any case, having

the textual data, we need a representation model and an overall idea about the

process of mining trends. A visualization of the information retrieval process from

[Göker and Davies, 2009] as shown in Figure 6.1 represents a general IR approach,

starting with the information need and resulting in a ranked number of documents.

This general approach is summarized by the authors: “There are three basic

processes an information retrieval system has to support: the representation of

the content of the documents, the representation of the user’s information need,

and the comparison of the two representations.” (p. 2, [Göker and Davies, 2009])

Accordingly, indexing refers to representing the documents, whereas the resulting

query is the user’s formulating of her/his information need. If we adopt the

information retrieval process to trend mining, we can illustrate the trend mining

process as shown in Figure 6.21, 6.32 and 6.4. Figures 6.2 and 6.3 take the overall

information retrieval process and transform it into the relevant issues regarded in

trend mining by adding time as a component into the IR. Figure 6.4 visualizes

the interpretation of trend mining that is being suggested by this thesis.

Figure 6.1: Information retrieval process. Source: [Göker and Davies, 2009].

1Axis ’Zeit’ represents the time.
2’Themengebiete’ means ’topic areas’.
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Figure 6.2: Trend mining process, results’ focus. Source: [Streibel et al., 2013a].

Figure 6.3: Trend mining process focusing on query. Source:
[Streibel et al., 2013a].

The idea of the trend mining process as visualized by Figure 6.2 concentrates

on the results representation. In this case, the time component is being added

into the process of information retrieval after the matching of a query with

indexed documents. The resulting documents are presented according to their

time relevance and the trend is contained in their content, changing over time in

regard to the same query.

In Figure 6.3, the time component is relevant for the query itself. A trend is

interpreted in this case as the change in the queries over the time.

Finally, Figure 6.4 presents our interpretation of trend mining from documents.

We propose to understand it as an overall process of information retrieval based

on time and interest. An important step in the process is that the indexing of

documents depends on time and interest selection. The query remains optional.
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documents

indexing

indexed 
documents

topics over time

information
need

time frame
selection

interest
selection

feedback

query

matching

query formulation

Figure 6.4: The overall trend mining process. Source: author.

6.2 Different approaches

In information retrieval, the representation of information contained in documents

is based on a given representation model, examples of which are listed below:

• exact match models: boolean model and region model

• vector space model (VSM)

• probabilistic models: bayesian model and language model

The boolean model is “the first model of information retrieval” (p. 3,

[Göker and Davies, 2009]) and it is a very straightforward model. It assumes

that a query, represented as a simple term, would match with a set of documents

indexed exactly with this given term in an unambiguous way. The query and

the corresponding documents are combined into new sets using Boole’s logic, e.g.
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operators: AND, OR, NOT. This model does not enable any ranking of retrieved

documents.

More sophisticated models are the vector space and the probabilistic model.

In the following subsections we discuss VSM and probabilistic models that will

help to explain the theoretical background from two algorithms introduced in

sections 6.5 and 6.3. We also introduce the basics of graph-based models of which

exemplary approach we interpret Ontology in Section 6.6.

6.2.1 Vector space model

This IR approach is based on Luhn’s similarity criterion, generally formulated as

follows:

“The more two representations agreed in given elements and their distribution, the

higher would be the probability of their representing similar information” (p. 5,

[Göker and Davies, 2009]). The idea behind VSM is to represent the query as well

as the documents in the form of vectors of terms in Euclidean space. Representing

documents as vectors in high-dimensional space in which each term corresponds

to one dimension allows for applying the similarity metrics in order to find the

best result which means the highest similarity between the query (also represented

as a vector) and the corresponding similar documents. Therefore, VSM allows for

ranking the query results according to their similarity.

If we transfer the idea of VSM for trend mining, considering the problem of

trend mining from the search problem perspective (more on this in Section 7.4 of

Chapter 7), we shall imagine the trend as an emerging topic area in a document

collection. This emerging topic area shall be represented by a vector of terms. For

each document represented as a vector, the similarity value can be determined

between the vector defining trend and the given document. The resulting list of

documents most similar to the vector of trend (terms from emerging topic area)

represent the set of documents that are potentially trend indicating and can be

further analyzed.

6.2.2 Probabilistic approach

One of the problems of vector space model is the term weighting problem (p. 7,

[Göker and Davies, 2009]). Since the vector based representation of the document

does not provide per se the values that have to be contained in the vector, term

weighting methods are needed. The most known method is Salton’s tf-idf term

weighting function [Salton et al., 1982] – based on considerations of term and

document weighting from [Jones, 1972] – that does not always perform well.

Another problem is the incremental update of the document index. When a new

document is added into the collection, all of the vectors have to be updated. The
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solutions for these problems leads to the probability theory in which probabilistic

approaches are grounded.

The probability based approach in general takes into account the estimation of

probability instead of counting the unambiguous values for terms and documents

in both, the relevancy of a term for defining the given document and in relevancy

of a document as a result for the given query. The probabilistic indexing model

suggests assigning probabilities for index terms, creating the set of possible terms

for each document. These terms are weighted by the probability P (T |D) that

dictates the level of the probability that the given document D contains the given

information that can be simply defined by the term T . The ranking of documents

is then given by P (D|T ). Other probabilistic approaches are: probabilistic retrieval

model, 2-Poisson model, Bayesian network models, and language models (p. 8-15,

[Göker and Davies, 2009]).

6.2.3 Graph-based approach

In the graph-based model, documents are represented as graphs. This represen-

tation allows for preserving the document structure and its semantics. Different

approaches for the graph-based IR model have been proposed, i.e. representing

documents by conceptual graphs. The graph-based approaches deal with the

query as a graph and the document as a graph. The goal is to find the perfect

match between them (the graph isomorphismus). Regarding the Semantic Web

with its ontology approach, documents can be represented as directed, labeled

resource description framework (RDF) [W3C, 2004] graphs and the query can be

represented using a query language, such as SPARQL [W3C, 2008]. If we would,

regarding the semantics, transform the trend represented as an emerging topic

area into a SPARQL query and model the documents as RDF graphs, and then

apply graph matching algorithms, we could retrieve all document parts fitting to

the query. Of course, it doesn’t make sense to model the emergent topic area com-

pletely as a graph since it would be too inefficient. But the modeling of documents

partially as graphs (i.e. applying schemas like FOAF [Brickley and Miller, 2010])

enables retrieval of more knowledge about the document content.

6.3 K-Means clustering

As a statistical method, the clustering algorithm k-means, applied to the problem

of document clustering, uses the VSM paradigm. Documents that have to be

clustered are represented as vectors and the k-means method applies different

distance metrics to find the similarity between these vectors.

The k-means clustering method is also called centroid-based technique and

partitioning method [Han and Kamber, 2006] [Engel et al., 2010]. This algorithm

takes as input the parameter K and partitions a given set of objects n, one of
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each represented by a vector a, into K clusters. The resulting similarity between

the objects of a respective cluster is higher than the resulting similarity between

the clusters.

6.3.1 General description

The procedure of k-means first randomly selects k of the objects, each of which

initially represents a cluster mean or center. For each of the remaining objects,

an object is assigned to the cluster to which it is the most similar, based on the

distance between the object and the cluster mean. It then computes the new

mean for each cluster. This process iterates until the criterion function converges.

Typically, the square-error criterion is used, defined as:

E =
k∑
i=1

∑
p∈Ci

|p−mi|2 (6.1)

where E is the sum of the square error for all objects in the data set; p is the

point in space representing a given object; and mi is the mean of cluster Ci (both

p and mi are multidimensional). In other words, for each object in each cluster,

the distance from the object to its cluster center is squared, and the distances are

summed. This criterion tries to make the resulting k clusters as compact and as

separate as possible (p.402, [Han and Kamber, 2006]).

6.4 K-means: batch and incremental

Vector3 a is described as (p. 82-83 in [Engel et al., 2010]):

a ∈ Rn

Elements of the vector a are:

(a[1], . . . , a[n])T

The set A is a finite set of a size |A| and describes the set of m vectors by:

A = {a1, . . . , am} ⊂ Rn

C is a prescribed subset of Rn, d is distance-like function d(x,a) The centroid c

of set A is notated with c = c(A) and represents the solution of the minimization

problem:

c = argmin

{∑
a∈A

d(x,a), x ∈ C

}
3This paragraph is the K-Means description as on p.82-82 in [Engel et al., 2010]
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In the case of the squared Euclidean distance: d(x,a) = ||xa||2 the set C may

be the entire space. When the relative entropy is used:

d(x,a) =
n∑
i=1

a[i]log(a[i]/x[i])

the set C of housing centroids x should be restricted to vectors with at least

nonnegative entries: a[i] ≥ 0

Q- the quality of the set A is defined by:

Q(A) =

m∑
i=1

d(c,a)

where c = c(A) and Q(∅) = 0

Let Π = {π1, . . . , πk} be a partition of A, i.e.⋃
i

πi = A

, and πi ∩ πj = ∅ if i 6= j. The quality of the partition Π is defined by:

Q(Π) = Q(πi) + . . .+Q(πk) =
k∑
i=1

∑
a∈πi

d(ci,a)

where ci = c(πi)

The goal is to find a partition Πmin = {π1, . . . , πk} that minimizes the value of

the objective function Q
Partitions and centroids are associated in the following way:

1 Given a partition Π = {π1, . . . , πk} of the set A one can define the corre-

sponding centroids {c(π1), . . . , c(πk)} by

c(πi) = argmin
∑
a∈πi

d(x,a), x ∈ C

2 For a set of k centroids {c1, . . . , ck} one can define a partition Π = {π1, . . . , πk}
of the set A by

πi = {a : a ∈ A, d(ci,a) ≤ d(cl,a) for each l = 1, . . . ,k}

The classical batch k-means algorithm iterates between two steps described in

6.3 to generate a partition Π
′

from a partition Π. While step 2 is straightforward,

step 1 requires to solve a constrained optimization problem. The degree of

difficulty involved depends on the distance-like function d and the set C. The

entire procedure is a gradient-based algorithm.

Incremental k-means is an iterative algorithm that seeks to change the cluster

affiliation of one vector per iteration.
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6.4.1 Distance metrics

Distance-like functions are:

• euclidean distance

• Kullback-Leibler divergence (relative entropy)

• Manhattan (city block) metric

Euclidean distance and Manhattan metric are both generalized by the Minkowski

metric:

d(i,j) = (|xi1 − xj1|p + |xi2 − xj2|p + . . .+ |xin − xjn|p)1/p (6.2)

where p is a positive integer. This distance represents Manhattan distance when

p = 1 and Euclidean distance when p = 2. There is also the possibility of assigning

weight to each variable according to its importance. Then the weighted Euclidean

distance can be computed:

d(i,j) =
√
w1|xi1 − xj1|2 + w2|xi2 − xj2|2 + . . .+ wm|xin − xjn|2 (6.3)

6.4.2 Algorithm

In general, the k-means algorithm functions as follows:

Input:

� k: the number of clusters

� D: a data set containing n objects

Output: a set of k clusters

Method:

1. arbitrarily choose k objects from D as the initial cluster centers;

2. repeat

3. (re)assign each object to the cluster to which the object is the most similar,

based on the mean value of the objects in the cluster;

4. update the cluster means, i.e., calculate the mean value of the objects for

each cluster;

5. until no change;
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6.4.3 Geometrical interpretation

The geometrical interpretation of the k-means method is illustrated in Figure 6.5

(p. 403, [Han and Kamber, 2006]). It shows the steps of clustering the different

objects according to their similarity and their distance of the cluster centres.

+

+

+
+

+ +

+

+

+

+

  (a)                                             (b)                                            (c)

Figure 6.5: Geometrical interpretation of k-means. Source: author.

6.5 Topic modeling

An example of a probabilistic model is the topic modeling that can be applied to a

set of documents. Topic modeling is a computational tool that helps in organizing,

searching and understanding “vast amount of information”. It belongs to a

group of probabilistic topic modeling - “a suite of algorithms that aim to discover

and annotate large archives of documents with thematic information”[Blei, 2011].

Without the need for prior annotation or labeling of the documents, topic modeling

as a statistical method enables us to organize and summarize documents while

discovering the themes that run through them [Blei, 2011].

6.5.1 General description

In general, the topic models offer a way to understand a given document collection

as a mixture distribution of topics. Documents in a collection can be described

by topics. The topics can be described by words. Every document in a collection

contains different topics; it is a set of topics with different probability values

that express how much a given topic characterizes the given document. In fact,

documents consist of words. The distribution of words over the topics is defined
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by the probability values that express how much a given word describes the given

topic.

Given that, a collection of documents is a set of a mixture of topics, a document

is a distribution over topics, a topic is a probability distribution over the word,

and a word is the basic unit of discrete data.

“The goal of topic modeling is to automatically discover the topics from a collection

of documents” [Blei, 2011]. The topic model can be understood as 1) a generative

model: given the topics, generate the documents or 2) inverted, as a statistical

inference problem: given the documents, infer the topics. In the following, we

describe latent Dirichlet allocation (LDA) in order to understand topic models in

greater detail.

6.5.2 Latent Dirichlet Allocation

A topic model is a generative model and it specifies a simple probabilistic procedure

by which documents can be generated. The data in generative probabilistic

modeling arises from a generative process that includes hidden variables. “This

generative process defines a joint probability distribution over both the observed

and hidden random variables. We perform data analysis by using that joint

distribution to compute the conditional distribution of the hidden variables given

the observed variables. This conditional distribution is also called the posterior

distribution.” In the case of probabilistic topic modeling, the observed variables

are the words of the documents and the hidden variables are the topic structure

[Blei, 2011].

The simplest kind of topic model is the latent Dirichlet allocation. LDA is a

generative probabilistic model of a corpus. “The basic idea is that documents are

represented as random mixtures over latent topics, where each topic is charac-

terized by a distribution over words.” Formally, the following terms are defined

[Blei et al., 2003b]:

• A word is defined as the basic unit of discrete data. Furthermore, it is

an item from a vocabulary indexed by 1, ...,V . The words are represented

using unit-basis vectors that have a single component equal to one, all other

components equal to zero. The vth word in the vocabulary is represented

by a V -vector w such that wv = 1 and wu = 0 for u 6= v.

• A document is defined as a sequence of N words: w = (w1, w2, ..., wN ),

where wn is the nth word in the sequence.

• A corpus is a collection of M documents: D = w1,w2, . . . ,wM .

The documents themselves are observed, while the topic structure — the

topics, per-document topic distributions, and the per-document per-word topic
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assignments — are hidden structure [Blei, 2011]. The generative process for a

document collection D under the LDA model is as follows [Darling, 2011]:

1 For k = 1...K :

(a) φ(k) ∼ Dirichlet(β)

2 For each document d ∈ D:

(a) θd ∼ Dirichlet(α)

(b) For each word wi ∈ d :

i. zi ∼ Discrete(θd)

ii. wi ∼ Discrete(φ(zi))

where K is the number of latent topics in the collection, φ(k) is a discrete

probability distribution over a fixed vocabulary that represents the kth topic

distribution, θd is a document-specific distribution over the available topics,

zi is the topic index for word wi, and α and β are hyper parameters for the

symmetric Dirichlet distributions that the discrete distributions are drawn from.

The generative process described above results in the following joint distribution:

p(w, z, θ, φ|α, β) = p(φ|β)p(θ|α)p(z|θ)p(w|φz) (6.4)

6.5.3 Gibbs Sampling

Gibbs Sampling it the most used algorithm based on a Markov Chain Monte Carlo

approximate inference. It is a sampling method in which the missing values of the

variables are randomly generated and the probability distribution of the variables

for which the value was simulated, are exchanged with other variables. The process

continues until an acceptable value for the conditioned probability is found (more

detailed description can be found in [Darling, 2011]). The Pseudocode 6.5.1 shows

the implementation of LDA Gibbs sampling.
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6.5.4 Algorithm

LDA Gibbs Sampling [Darling, 2011]

Algorithm 6.5.1: LDAGibbsSampling(w,d)

comment: words ∈ documents

comment: Output: topic assignments z and counts nd,k, nk,w, and nk

comment: randomly initialize z and increment counters

for each iteration

do

for i← 0 to N − 1

do

word← w[i]

topic← z[i]

nd,topic− = 1;nword,topic− = 1;ntopic− = 1
for k ← 0 to K − 1

do

p(z = k|∆) = (nd,k + αk)
nk,w+βw
nk+βxW

topic← sample from p(z|∆)

z[i]← topic

nd,topic+ = 1;nword,topic+ = 1;ntopic+ = 1

return (z), nd,k, nk,w, nk

6.5.5 Geometrical interpretation

The geometrical interpretation as given in [Blei et al., 2003a] is illustrated in

Figure 6.6. It shows so called topic simplex for three topics embedded in a word

simplex for three words.

6.6 Ontology

“...in its most prevalent use in AI, an ontology refers to an engineering artifact,

constituted by specific vocabulary used to describe a certain reality, plus a set

explicit assumptions regarding the intended meaning of the vocabulary words. This

set of assumptions has usually the form of a first order logical theory, where

vocabulary words appear as unary or binary predicate names, respectively called

concepts and relations. In the simplest case, an ontology describes a hierarchy of

concepts related by subsumption relationships; in more sophisticated cases, suitable

axioms are added in order to express other relationships between concepts and to

constrain their intended interpretation.” [Guarino, 1998]
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Figure 6.6: Topic model geometrical interpretation. Source: [Blei et al., 2003b]

6.6.1 General description

The idea of the ontology is described differently in the literature, however

always referring to one of the following – an artifact, a conceptualization, a

specification, an agreement. An ontology is “ a specification of the conceptu-

alization” according to [Gruber, 1993] and “Every ontology is a treaty–a so-

cial agreement–among people with some common motive in sharing.”(p. 439,

[Peter Norviq, 2003][Gruber, 2004]). In general, being a conceptualization, an on-

tology can be defined in terms of the AI research[Genesereth and Nilsson, 1987][Guarino, 1998]

as a structure:

< D,R > (6.5)

where D is the domain and R are the relations on D. [Guarino, 1998]. There is

a problem with this general understanding of an ontology. [Guarino, 1998] argues

that an ontology is more than a the context-less conceptualization and shows the

need for a context of a given domain, calling it the domain’s world. Proposing to

specifically define the domain as a domain space: < D,W >, and the relations

on the domain as a conceptual relations, he concludes that a conceptualization is

actually defined by:

C =< D,W,< > (6.6)

where < is a set of conceptual relations on the domain space < D,W >. The

conceptual relation ρn of arity n on the domain space < D,W > is defined as a
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total function:

ρ : W → 2D
n

(6.7)

Having defined the conceptualization, [Guarino, 1998] defines intended world

structures Sc on C, a language L, an ontological commitment K, and a set Ik(L).

The latter is the set of intended models of L according to K, namely all models of L

that are compatible with K. Given a language L with ontological commitment K,

an ontology is defined as a set of axioms designed in a way such that the set of its

models approximates as best as possible the set of intended models of L according

to K. Figure 6.7 illustrates the definition of what an ontology is, relating it to

Language L

Conceptualization C

commitment K =< C, I >

Models M(L)

Intended models IK(L)

Ontology

Figure 6.7: Definition of ontology. Source: [Guarino, 1998].

the language L and the conceptualization C mentioned above. “It is important

to stress that an ontology is language-dependent, while a conceptualization is

language-independent”[Guarino, 1998].

6.6.2 Expressivity levels

The general description of an ontology as illustrated at the beginning of this

section helps in understanding on the abstract level what an ontology is. On the

less abstract level and from the practical point of view, an ontology allows for

defining knowledge about a given domain in a formal way. The formal way means,

that there are formal languages which we can apply for defining semantics of our
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conceptualization of a given domain. The development of the research within

the Semantic Web [Berners-Lee et al., 2001] caused in particular the creation

of the respective ontology languages. Following ontology languages have been

created: DAML-OIL 4, DAML-ONT 5, RDF6, RDFS7, OWL8, OWL29. While

DAML-OIL is not in a wide use anymore, most popular is currently the use

of RDF/S and OWL/2. The difference in the respective languages lies in their

expressivity levels. RDF, based on the simple XML syntax, is the simplest

language for defining the simplest ontology (in the sense of semantic expressivity).

[Antoniou and van Harmelen, 2003]

6.6.3 Example

A very simple ontology example can be constructed as follows– for the given

description about the persons, their relationship, and their pets, we construct an

ontology visualized in the Figure 6.8. As described in (p. 50–51 [Alnemr, 2012]):

• Classes in OWL are concrete representations of concepts that describe the

domain or are relative to the domain. They are the sets that have individuals

and are represented using formal descriptions that state the requirements for

membership of the class. They can be organized in a subclasses-superclasses

hierarchy (also known as taxonomy). All classes are headed by the Thing

class. For a class to be a subclass of another, it means that all of its instances

are instances of the superclass (i.e. necessary implication). For example,

class Animal is the superclass of Cat which means all member of Cat are

also members of Animal.

• Properties in OWL are the relations between the individuals or objects, e.g.

hasChild, isFriendsWith, hasPet. They correspond to roles in DL and

relations in UML. They can have inverses (e.g. hasOwner and isOwnedBy).

They also can be symmetric (e.g. hasSibiling), transitive, reflexive or have

a single value (functional). These are characteristics that can affect their

inference behaviour. There are two types of properties: object properties

and data properties. An object property is a relation between two individuals.

A property relates objects in its domain to objects in its range. A data

property relates an object to a data value (i.e. XML Schema Datatype

value10 or an rdf literal) not other objects. For example, Olga hasAge ”30”.

4http://www.w3.org/TR/daml+oil-reference accessed 20-Jun-2013
5http://www.daml.org/2000/10/daml-ont.html accessed 20-Jun-2013
6RDF: http://www.w3.org/TR/REC-rdf-syntax/ accessed 20-Jun-2013
7http://www.w3.org/TR/rdf-schema/ accessed 20-Jun-2013
8http://www.w3.org/2004/OWL/ accessed 20-Jun-2013
9http://www.w3.org/TR/owl2-overview/ accessed 20-Jun-2013

10XML Schema: http://www.w3.org/TR/xmlschema-2/ accessed 20-Jun-2013

http://www.w3.org/TR/daml+oil-reference
http://www.daml.org/2000/10/daml-ont.html
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/2004/OWL/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/xmlschema-2/
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• Individuals in OWL are the objects in the domain that we are interested

in and which hold a unique name. They are instances of their classes e.g.

Simi is an instance of class Cat.

Simi

Charysma

Cat

Poland

Egypt

Country

fromCountry

fromCountry

has
Pet

Person

Rehab

is
Fr
ie
nd
w
ith

has
Pet

Olga

Figure 6.8: A simple ontology. Source: [Alnemr, 2012].

An ontology as a conceptualization of knowledge is applicable for any domain and

any knowledge as long as this knowledge can be represented by relevant concepts

and relations. In Chapter 7 we describe the creatoin of a trend ontology for the

market research, discussing its limits and obstacles and in Chapter 9 we give an

overview over the applicable trend ontology for financial market.
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7
General considerations

Chapter 7 explains which aspects are important of a knowledge-based approach

on mining trends. Based on a case from market research, we discuss here the

idea and the development process of a trend ontology. The discussion allows for

identifying obstacles and issues relevant for a knowledge-based approach in trend

mining. This chapter includes an excursion in the problem of trend mining in

general, posing the question: is trend mining a search or a discovery problem? We

go through possible answers to this question and chose the most appropriate way

for dealing with this problem. The search and the knowledge discovery perspective

will be mentioned again in Chapter 13.

7.1 Preliminaries

In the previous chapter we discussed possible theoretical aspects of trend mining,

including the graph based representation of the documents by the use of an ontology

model. Before we deliberate on a search versus knowledge discovery perspective

on trend mining, we report in the sections 7.1.1 to 7.3 on the development

process of an ontology for trend mining in market research. We describe the

preliminary stage of so-called trend ontology, which we created for the market

research case presented in Chapter 11. The content of this chapter is the basis for

the trend template definition in Chapter 8 and it has been mainly published in

[Streibel and Mochol, 2010].
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7.1.1 Specifics of the market research case

A trend

A trend in terms of market research is the evolution of customers’ opinion referring

to a specific topic that can be described by its categories or labels. Customer

opinion is strictly conjoined with sentiments used by customers to express linguis-

tically their emotional viewpoint on specific issues. In general, a trend mining

method for market studies should enhance the efficiency in the analysis of textual

market research data that is generated in primary and secondary research (for

more explanation on market research use case, see Figure 7.1 and description in

Section 11.1.2).

Market research

Primary research Secondary research

1. Collection of 
customers' opinions

2. Categorization of 
customers' opinions

3. Aggregation and 
statistical analysis
of categories

1. Main study objective
definition

2. Web search 

3. Aggregation of 
information

Figure 7.1: Market studies – primary and secondary research. Source: author.

Tasks in trend mining

Tasks in trend mining include the automatic categorization of open ended ques-

tions and their valuing process, the filtering of relevant information, and the

identification of trends. In terms of market studies, a trend ontology should sup-
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port the analysis process by providing knowledge regarding main market research

concepts that occur in texts of the market research projects (e.g. the concepts

image or product quality in terms of market research). The ontology should cover

the concepts’ definitions for the main keywords and terms used by customers

in order to describe their opinion (e.g. substantives, verbs, and adjectives that

help to classify sentences such as “this brand fits to me”, “I like the nice logo”).

Further, it should include the definition of categories used in terms of market

studies on customer opinion (e.g. “overall satisfaction”, “level of commitment”).

In the best case, the ontology should support the categorization of customers’

opinions based on a given list of categories that are relevant for the respective

project, therefore it should cover the knowledge about trend indicating features

of any given keyword or term (e.g. positive, negative and neutral description

keywords).

Trend ontology:

- concepts
- categories
- substantives
- verbs
- adjectives

Feature extraction        Feature selection       Feature learning

Figure 7.2: Trend mining process in market research. Source: author

.

Trend ontology requirements

A trend ontology, that has to be defined as a knowledge model supporting the

trend mining process (see Figure 7.2), is an ontology that contains:

• the meta-level knowledge about market research concepts (commonly used

in the market research)
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• common keywords used in the market research projects (based on market

research specific projects)

• knowledge about trend indicating terms and relations between the particular

concepts in market research.

Furthermore, the trend ontology should be used as a knowledge base that can be

applied in different phases of the trend mining process:

• feature extraction

• feature selection

• learning stage

7.1.2 Engineering methods

According to [Dimitrova et al., 2008], Ontology Engineering (OE) is defined as

the “set of activities that concern the ontology development process, the ontology

life cycle, and the methodologies, tools and languages for building ontologies”. In

recent years OE has evolved from a pure research topic being common in scientific

domains to real world applications, which was demonstrated by the wide range

of projects with major industry involvement and by the increasing interest of

small and medium-sized enterprises (SMEs) requesting consultancy in this domain.

At the beginning the knowledge engineers managed and controlled the ontology

authoring process, but as the ontologies become larger covering more specific

domains, the involvement of the domain experts became indispensable and the

ontology development could be tackled only through the intensive cooperation of

ontology engineers and domain experts in the context of large spatial distributed

teams. The authors of [Braun et al., 2007] state that the ontology authoring

process requires not only an active participation of domain experts but they

should also lead the entire process providing the relevant domain and conceptual

knowledge. Furthermore, a number of other aspects like dealing with context or

data and web integration become crucial. In order to build and deploy ontologies

on a large scale beyond the boundaries of the academic community, there is

still a need for technologies to assist the implementation process. Most OE

methodologies rely on specialized knowledge engineers but in real world-settings

the need for maintenance of domain ontologies emerges in the daily work of its

users [Braun et al., 2007].

7.2 Yet another ontology?

In this section, we describe our experience in modeling the trend knowledge

and creating the first version of the trend ontology that helped us in further

development of the knowledge-based trend mining approach.
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7.2.1 Methodology for trend ontology

During our research in the TREMA project, we experienced the difficulty of

applying common OE methodologies developed by academia to the practical

problem of the trend ontology development. Therefore we used an agile, practical

and expert-based method; the prototypes of trend ontologies for market research

were developed under active participation of market research experts on the basis

of three knowledge models. Our aim was to define a lightweight knowledge base

that can be used in real-time as enhancement for statistical learning methods,

therefore our trend ontologies do not include any rules. The ontologies are modeled

for the German language.

7.2.2 Keyword/concept based trend ontology

Relying on the experience of experts from the market research domain, we identi-

fied and modeled with Protégé1 using RDFS2 an initial keyword set categorized by

the main concepts of the market research (our case considered only the technology

market). The main set categories are: Image (image), Produktqualität (product

quality), Kundenbeziehung (customer relation), Service (service), Stimmungs-

bild/Wahrnehmung/Entscheidung (public opinion/customers’ opinion/decision).

Each category is implemented as a class consisting of relevant concepts that

describe the category. For the product quality category, the concept set consists

of Zuverlässigkeit (realiability), Performanz/Leistung (performance/power), etc.

We defined the class property included in, in order to express semantically the

category membership of the given keyword/concept. In addition to the categorized

concept sets, we modeled synonyms for several keywords/concepts and added

the trend-indicating property to each concept that had been classified by experts

as trend-indicating ones. Keyword/concept based trend ontology is built on a

very simple schema and can be easily applied, for instance, in order to extend

the word based feature vector creation as for machine learning methods. Figure

7.3 visualizes a snippet from the ontology, showing the connections between the

concepts.

7.2.3 Term field based trend ontology

Extending the keyword-based trend ontology we observed the emergence of so-

called term fields in market research, which correspond to the semantic fields

from the Semantic Field Theory [Lehrer, 1974]. Relying on the semantic field

idea, the extension of concept definition by adding term fields to the concept

seemed reasonable. However, defining which term belongs to the concept field

and whether a given term is trend-indicating or not is difficult the more terms

1http://protege.stanford.edu/, tool version 3.0-3.3, online accessed 01-July-2013
2http://www.w3.org/TR/rdf-schema/ online accessed 01-July-2013

http://protege.stanford.edu/
http://www.w3.org/TR/rdf-schema/
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Figure 7.3: Keyword-based trend ontology for market research. Source: author.

are used for the term field definition; we searched for the exact definition of

trend-indicating features in the texts of market research. Applying statistical

methods (e.g. term frequency in documents) supported by manual expertise, we

identified adjectives that, according to experts, were significant for a description of

customer opinion. The most relevant adjectives were: vertrauenswürdig (reliable),

kompetent (competent), vielseitig (all-round), aktuell (up-to-date). Conducting

the search for semantic fields of these adjectives and their relevance to the

main concepts of market research domain, we detected the appearance of so-

called satisfier, disatisfier and sensitive3 categories. Identifiers are adjectives

belonging to the concept and describing its features, i.e. an entertainment has

entertainment identifier which is described by the adjectives: abwechslungsreich

(varied), ansprechend (attractive), entspannend (relaxing), and similar. We defined

each main concept as a category with its semantic field and its own identifier that

consists of diversificator. Diversificators include the descriptors satisfier, disatisfier

and sensitive, which are adjectives grouped by the relevant meaning that refers to

the positive, negative and neutral customer’s opinion about a given concept. Each

identifier consists of a diversificator that refers to more or less positive customer

opinion. The customer (dis)satisfaction refers to a negative or positive trend

indication. Trend ontology based on term fields adds the meta-level concepts

identifier, diversificator, sensitive, satisfier and disatisfier to the keyword-based

trend ontology and extends concept sets in term fields.

3These terms are used in the marketing Satisfaction Research. In our case we used them to
define adjective that express satisfaction or dissatisfaction in language.
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7.2.4 (Temporal) invariant scheme based trend ontology

The adjective groups used as satisfier, disatisfier and sensitive are important

for the proper sentiment interpretation of a given set of texts. The sentiment

interpretation helps with trend detection. However, the validity of diversificators

often expires after some time. Assuming that adjectives used for describing

customer satisfaction change with time, we looked for an invariant part of trend

knowledge. The semi-automatic analysis of relevant market research news done

by experts resulted in a structure that seemed to be valid for a long period of

time and intuitively applied by experts for analysis of market research texts. This

(temporal) invariant scheme based trend ontology consists of three meta-level

ontology classes: general, quantification and classification. The general class

includes groups of the most important concepts like suppliers and companies.

Suppliers, which are important extraction features, are always used in market

research projects (regarding our case study) in order to classify the relevance of the

texts. The quantification part of our structure contains the idea of identifiers and

diversificators, and it adds the amplifier4 as a new meta-concept. Classification

consists of different categories that define the context for the quantifier. Its

character is dynamic since it strongly depends on the context at a given point

in time. The interesting subcategory of classification is the so-called structure

that defines the basic structure for the context. We observed that this category

particularly refers to the economic model of the given market. The temporal

invariant trend ontology is visualized in Figure 7.4.

7.3 Important issues

We observed the following crucial issues that, in our opinion, need to be considered

in further research on trend knowledge modeling.

• Language: Texts relevant for market research include specific language

mixed with common words expressing emotional estimation. Customer

comments depend on the target group that has been the particular focus

of market research studies – even if domain experts often use different

descriptions than non-experts, both descriptions have to be considered for

trend mining. The synonyms of market research concepts are often hard to

describe and have to be weighted since they may exhibit slightly different

semantic soundness. The term ’engagement’ refers to both involvement and

commitment, but engagement in service quality means something different

than commitment to service quality Engagement = (Involvement, Commit-

ment, ...). Furthermore, market research studies are conducted in different

languages. Semantic relations used for defining concepts dependencies rely

4Amplifiers are adverbs, e.g. sehr (much), viel (many), wenig (few), and other similar words.



70 Chapter 7. General considerations

Figure 7.4: Meta level trend ontology for market research. Source: author.

strongly on the language used in a trend ontology model. Realizing our

trend ontology for the German language, we faced problems such as which

relations might be proper for defining a dependency between Kaufkraft

(buying power/value) and Kaufentscheidung (buying decision) in terms of

Stimmungsbild (the market mood). The modeling of synonyms and the

use of relations like included-in or belongs-to, implies the emergence of

concept groups rather than taxonomic relations. Trend ontologies have more

“fuzzy” structure than ontologies created for more structure fields such as

Life Science.

• Time: Concepts used for the modeling of market research ontology and their

relevance change in time. There is a need for defining life cycles of categories
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modeled in the trend ontology in order to detect if a given instance (i.e.

satisfier instance) still belongs to the positive sentiments or if it has drifted

to the neutral sentiment; e.g. air bags in a car in the 1980’s were used as a

positive feature in a car description; however, describing cars nowadays, air

bags are an expected feature with a more neutral than positive tone when

compared to past decades. Some concepts may fade with time while others

can change their meaning or are replaced by a new concept.

• Context: Keywords and terms used in customer comments always depend

on context. Regarding the project context, description concepts should refer

to the project topic: talking about radio in terms of the Internet may imply

services like www.last.fm5, while radio in the context of a car may imply

a concrete hardware device. In texts, the context of sentiments depends

on the keywords used for their description. Picking up a concept definition

without considering the concept’s term field may lead to false conclusions in

trend mining.

• Dynamics: Trend ontology covers a very dynamic knowledge. The aspects of

time and context affect the ontology structure: meta ontology can be based

on the temporal invariant scheme (that is invariant only for a given time

period); middle ontology depends on market research topics and must be

adapted for every new study; the lowest level of trend ontology is the most

dynamic one. Modeling the trend knowledge aspect of dynamics should

be considered from both the knowledge level (concepts and their meaning

are changing over time) and the abstract level (in terms of knowledge

formalization).

• A trend structure: Even if we know that the trend-indicating keywords and

concepts are changing in time, and that their positive or negative value

differs and depends on the context, we assume that there is an invariant

trend structure which contains the three main trend detection parts: general

concepts, the trend value concepts, and the classification structure that

models the context of the trend.

7.4 Knowledge discovery or search problem?

The section above contains the description of our experience on modeling a trend

ontology in an application oriented use case, the case of mining trends in market

studies. In Section 7.1.1, we discussed trend mining in market studies as a

process of knowledge discovery, based on different steps including classification,

filtering, and aggregation of information. In Figure 7.2, we limited the trend

5www.last.fm accessed 23-Jul-2013

www.last.fm


72 Chapter 7. General considerations

mining process and focused on the classification process that consists of feature

extraction, selection, and learning – the general steps in clustering or classification

of data. In Chapter 6, we described in general the possibilities of understanding

trend mining in terms of information retrieval process. While mining trends, we

moreover assume that the information that we are about to mine is most probably

containing the trend(s), similar to the case of mining data where we assume that

we have valuable data to mine. It is useful to reflect here on the question of

whether trend mining in texts is a knowledge discovery or a search problem.

Regarding a given web document corpus that we want to mine for trends,

we have at least two different possibilities for how to approach the trend mining

task. Taking the search problem perspective, the query is the emerging topic

area (the trend) and the answer to the query is the part of the web corpus with

similar content to the content of the query (the documents that contain the trend).

However, if we already know what the trend is, since we ask for it in the corpus,

we do not need to look for it. Here one ends in the famous Meno - Socrates

discussion:

“Meno: And how will you enquire, Socrates, into that which you do not know?

What will you put forth as the subject of enquiry? And if you find what you want,

how will you ever know that this is the thing which you did not know?

Socrates: I know, Meno, what you mean; but see what a tiresome dispute you

are introducing. You argue that man cannot enquire either about that which he

knows, or about that which he does not know; for if he knows, he has no need to

enquire; and if not, he cannot; for he does not know the very subject about which

he is to enquire”([Jowett, 1949], re-cited from p. 5, [Witten et al., 2007]).

From the AI learning perspective, the emerging topic area allows for deriving

the topic-in-time labels for documents. Regarding the classification approaches,

classification within a document corpus aims to estimate whether a document

belongs to a given class C1 or C2 (if only these two classes are predefined for the

corpus). In this case, the documents are instances that have to be learnt and

predefined topics are the class labels to which the documents belong. Bringing

this approach to the trend mining problem, the goal of such classification in trend

mining would be to estimate if the web document belongs to the given “topic-in-

time”, discussing an interesting topic that is emerging in interest and utility in

other documents and represents the emerging trend. But in this case, we must

already have the training instances, the topic-in-time labels in order to perform the

classification correctly. Regarding the unsupervised (clustering) learning approach

we just have to cluster the documents according to the topic-in-time features they

contain in order to discover knowledge.

In the experimental part of our research, trend mining is being handled as a

knowledge discovery process that starts with a search. In fact, we always know

some aspect of the trend while looking for it – we search for a specific term in
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order to retrieve valuable results. Looking for the financial crisis as a trend, we

may want to have information regarding a specific stock or company or to see how

the keyword crisis is changing its context over time. We shrink the search space

starting with a specific term and obtain this part of the web document corpus,

which contains the particular term or topic with the context around it – in our

case we are applying our trend model, described in Chapter 8, to the corpus of

financial news containing information relevant to DAX (see more description in

Chapter 12).
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8
Trend template

Having learned from the previous chapter about the general important issues in

knowledge-based trend mining, we introduce in this chapter our knowledge-based

trend model starting with the definition of a trend template. In the beginning

of this thesis, we discussed different trend definitions given by the literature and

extracted the general trend definition that underlies this thesis. This chapter

formalizes this general trend definition integrating lessons learned from previous

chapters. We describe here that a trend is an emerging topic area that grows in

interest and utility over time, and that it can be described by the following features:

trigger, context, relation, time interval and amplitude.

8.1 Trend template

In Section 4.2.3 we describe a trend as a topic area that is growing in interest and

utility over time. From Chapter 4 we learn about the different views on a trend,

including the sociological trend diamond model (see Figure 4.1) from which we

learn about the different stages of a trend, based on the people involved in the trend

process: trend creators, setters, followers, mainstreamers, late mainstreamers and

conservatives. From Section 4.1.3 we conclude that a trend in documents is an

emerging topic area and that it sometimes can be triggered by an event (see 5.1).

Based on our preliminary research experiments and considerations presented in

Chapter 7, we learn that a trend always appears under a time constraint, in a given

context. In Section 8.1.1, we summarize these conclusions as assumptions about

a trend and give an abstract model of a trend by formalizing our assumptions in

Section 8.1.3. The content of this chapter is the basis for the implementations

presented in Chapter 9 and Chapter 10 and it has been mainly published in

[Streibel et al., 2013b].
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8.1.1 Assumptions

In the context of our research, a trend can be described by the following features:

• trigger

• context

• amplitude

• time interval

• relation

Moreover, we assume that these features can be extracted from a document corpus

and that they are basis of the so-called trend structure (see Section 7.3).

8.1.2 Definitions

A trigger is a thing. Triggers may be an event, a person, or a topic: anything

that triggers a trend. A trigger can but does not have to cause a trend. A trigger

makes the trend visible. An example of a trigger is Lehman Brothers insolvency

that can be classified as both a topic and an event.

Context is the area, also called the domain of the trigger. If the trigger is

a topic then the context is this topic’s area, e.g. Lehman Brothers insolvency is

in the context of real estate market.

Amplitude is the strength of given trend. It can be expressed by a number, the

higher the number, the more impact the trend has. It may also be expressed by a

qualitative value that describes the trend phase, e.g. beginning (setter), emerging

(follower), mainstream, fading (conservative).

Time is a necessary dimension while spotting a trend, since there can be no

trend without time. It is the interval in which the trend is appearing, indepen-

dent from the amplitude, e.g. the real estate crisis appeared in the years 2008-2011.

Relation expresses the dependency between a trigger and a context, it puts

the given trigger, e.g. Lehman Brothers insolvency within the given context of

the real estate crisis in a relation, e.g. Lehman Brothers insolvency is part of the

real estate crisis.

An abstract conceptualization of the proposed trend definition is shown in

Figure 8.1.2. It shows that a trend is defined by a structure that we call a trend
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Figure 8.1: An abstract conceptualization of the trend template. Source: author

.

template. The trend template consists of the main characteristics as defined

above.

8.1.3 Formal description

The trend template is an abstract model that describes the main concepts that

are important and necessary for knowledge-based trend mining. In the following,

we give the explicit definition of the trend template.

DEF. 8.1.1: Trend template (TT) is a quintuple:

TT := 〈T,C,R, TW,A〉 (8.1)

where: T is the trigger, C is the context, R is the relation, TW is the time window,

and A is the amplitude.

DEF. 8.1.2: T = Trigger is a set of concepts:

T := {t0, . . . , tn}, n ∈ N ∧ t ∈ T (8.2)
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so that if E, P , To are the sets defining:

Events:

E := {e0, . . . , en}, n ∈ N ∧ e ∈ E (8.3)

Persons:

P := {p0, . . . , pn}, n ∈ N ∧ p ∈ P (8.4)

Locations:

L := {l0, . . . , ln}, n ∈ N ∧ l ∈ L (8.5)

Topics:

To := {to0, . . . , ton}, n ∈ N ∧ to ∈ To (8.6)

then:

T := E ∪ P ∪ To ∪ L (8.7)

DEF. 8.1.3: C = Context is a union set consiting of a set of concepts and a

set of relations between them where c is a context element:

C := Cco ∪Rco, c ∈ C (8.8)

with Cco the set of concepts

Cco := {cco0, . . . , ccon}, n ∈ N ∧ cco ∈ Cco (8.9)

and Rco the set of relations:

Rco := {rco0, . . . , rcon}, n ∈ N ∧ rco ∈ Rco ∧Rco ⊆ Cco × Cco (8.10)

whereas rco defines a binary relation:

rco : ccox,ccoy −→ rco(ccox,ccoy) ∧ ccox 6= ccoy (8.11)

and the context element is defined by:

c = cco ∪ (ccoiccoj), C = Cco ∪ Cco × Cco (8.12)

DEF. 8.1.4: R = Relational is a set of relations:

R := {r0, . . . , rn}, n ∈ N ∧ r ∈ R ∧R := {T × C} (8.13)

with

ri : ti,ci −→ ri(ti,ci) (8.14)

DEF. 8.1.5: TW = Time window is a function that assigns time slices to

the time points:

TP := {tpoint|tpoint = second ∨minute ∨ hour ∨ day ∨month ∨ year} (8.15)
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TS := 〈tpoint0 . . . tpointn〉 (8.16)

TW : TP −→ TS (8.17)

DEF. 8.1.6: A = Amplitude is a function that assigns a value to the quadrupel

of 〈T,C,R, TW 〉

A : T × C ×R× TW −→ R ∪ V (8.18)

where R is the set of real values and V is the set of categorial values

a : (t,c,r,tw) −→ rvalue ∨ v (8.19)

8.2 Trend probability

Understanding a template intuitively leads to the conclusion that the template is

something that should be filled out. If we regard the trend template as the basis

for knowledge-based trend mining algorithms, we can proceed as follows: the trend

template can be filled as far as possible with fitting parts of the document set

that has to be analyzed. Yet, having some of the parts filled, we need to estimate

and to learn others. Furthermore, we need to somehow estimate the sustainability

of the recognized trend that is described by the given trend template, to estimate

the probability that the trend will continue. For these reasons, we propose to

apply Bayes’ formula.

Our general trend estimation method is then:

TT is a trend template that can be found on the given document corpus D. TD is

in general a trend in document set D that is being described by the trend template

TT . P (TD|TT ) is the a posteriori probability that TT describes the sustainable

trend TD in D, ergo the P (TD|TT ) estimates the probability that, given TT , we

found a sustainable trend TD in D. P (TD|TT ) is the posterior probability of T in

D conditioned on TT . In general, P (TD|TT ) can be calculated as follows using

Bayes’ theorem:

P (TD|TT ) =
P (TT |TD)P (TD)

P (TT )
(8.20)

where P (TD) is the prior probability of a trend T in D and it expresses that

any trend in the document set is sustainable. Similarly, P (TT ) is the prior

probability of the trend template TT and P (TT |TD) is the posterior probability

of TT conditioned on TD, which says that a sustainable trend T in D is described

by the trend template TT . However, the detailed description of the method for

the estimation of the probability for the proposed abstract trend model should

be better elaborated with the näıve Bayesian classifier and will be the subject of

future work. We are not extending this idea in the context of this thesis.
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9
Trend ontology

The previous chapter explained the idea of the trend template. This chapter

about trend ontology shows the implementation of a trend template as a trend

ontology. It describes concepts, relations and functionality of the trend ontology.

9.1 Trend ontology – general idea

One way of implementing the trend template is the realization of this model

in form of an ontology. We can understand the ontology as an instance of the

trend template or as its simplified and application oriented implementation. In

Section 6.6 of Chapter 6, we discussed what an ontology is and gave an example

of modeling the ontology. Based on the trend template presented in previous

chapter, we created an applicable model, using given concepts and properties

from RDFS/OWL1 and SKOS2. Our model serves as a general model that can be

extended regarding the particular application domain and applied for annotating

a text corpus in order to retrieve the trend structure out of it. The trend ontology

is divided in three levels: meta, middle and low that corresponds to three abstract

layers of the model (see Figure 9.1). Whereas the low level and the middle level

layers relate to the corresponding application domain (in our case it is the German

Stock Exchange, DAX), the meta level is the most interesting one. Meta ontology

incorporates the general trend features and can be applied to any application

domain. In the following, we focus on its structure. The content of this chapter is

1http://www.w3.org/TR/owl-features/ accessed online 01-June-2013
2http://www.w3.org/2004/02/skos/ accessed online 01-June-2013

81
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the basis for the experiments with trend ontology presented in Chapter 13 and it

has been mainly published in [Wißler and Streibel, 2012].

Figure 9.1: The visualization of the 3 levels trend ontology. Source: author.

9.2 Meta ontology

The meta ontology is based on other existing ontologies (see the imports shown

in Listing 9.1) in order to enhance interoperability and simplify modular domain

ontology design.

The central concepts of the ontology are Trigger, TriggerCollection, Context,

and Indication. The concepts mirror the composition of the trend template.

Trigger consists of the subconcepts: event, person, location. Concepts: topic and

group are . A snippet from the meta ontology in N3 is shown below:

@prefix skos:<http://www.w3.org/2004/02/skos/core>

@prefix lode:<http://linkedevents.org/ontology/>
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# ...

@prefic foaf:<http://xmlns.com/foaf/0.1/>

# ...

# trigger

Trigger a owl:Class;

rdfs:subClassOf (

skos:Concept

time:TemporalEntity )

# ...

# event

Event a owl:Class;

rdfs:subClassOf (

:Trigger;

lode:Event )

# ...

# person

Person a owl:Class;

rdfs:subClassOf (

:Trigger;

foaf:Person )

# ...

Listing 9.1: Trend ontology, a fragment.

1 <rdf:RDF

2 xmlns:skos=”http://www.w3.org/2004/02/skos/core#”

3 xmlns:time=”http://www.w3.org/2006/time#”

4 xmlns:rdf=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”

5 xmlns:foaf=”http://xmlns.com/foaf/0.1/”

6 xmlns:owl=”http://www.w3.org/2002/07/owl#”

7 xmlns:rel=”https://sites.google.com/site/trendontology/relation”

8 xmlns:rdfs=”http://www.w3.org/2000/01/rdf−schema#”

9 xmlns:lode=”http://linkedevents.org/ontology/”

10 xmlns:vann=”http://purl.org/vocab/vann/”

11 xmlns:dcterm=”http://purl.org/dc/terms/”

12 xmlns:dctype=”http://purl.org/dc/dcmitype/”

13 xml:base=”https://sites.google.com/site/trendontology/trendontology”>

14 <dc:title xml:lang=”en”>TRENDO: A trend ontology (META)</dc:title>

The Listings 9.1 and 9.2 present more details of the meta trend ontology.

Listing 9.2: Trend ontology, a fragment.

1 <!−− Trigger −−>
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2 <owl:Class rdf:about=”#Trigger”>

3 <dcterm:issued rdf:datatype=”http://www.w3.org/2001/XMLSchema#date”>

2012−04−15</dcterm:issued>

4 <rdfs:comment xml:lang=”en”>

5 Trigger is a thing. Examples of triggers are: an

6 event, a person, a group, or a topic− anything that triggers the

7 trend. A trigger can but does not have to cause a

8 trend. A trigger makes the trend visible. An example

9 of a trigger is Lehman Brothers’ (a name of a company from 2007) insolvency that can

10 be classified as both: a topic and an event. Trigger is anything that can trigger a trend:

a person or group, an event, location,

11 or a topic. It is defined as a subclass of skos/core/concept − an idea or notion; a unit

of thought.

12 </rdfs:comment>

13 <rdfs:subClassOf rdf:resource=”http://www.w3.org/2004/02/skos/core#Concept”/

>

14 <rdfs:subClassOf rdf:resource=”http://www.w3.org/2006/time#TemporalEntity”/

>

15 <owl:Restriction>

16 <owl:onProperty>

17 <owl:ObjectProperty rdf:about=”#keyword”/>

18 </owl:onProperty>

19 <owl:someValuesFrom>

20 <owl:Class rdf:about=”#Keyword”/>

21 </owl:someValuesFrom>

22 </owl:Restriction>

23 </rdfs:subClassOf>

24 </owl:Class>

25 <!−− Event, person, group, location and topic are the subclasses of trigger −−>
26 <owl:Class rdf:about=”#Event”>

27 <dcterm:issued rdf:datatype=”http://www.w3.org/2001/XMLSchema#date”>

2012−04−15</dcterm:issued>

28 <rdfs:comment xml:lang=”en”>

29 An event is a happening of something as might be reported on the news.

30 </rdfs:comment>

31 <rdfs:subClassOf rdf:resource=”https://sites.google.com/site/trendontology/

trendontology/#Trigger”>

32 <rdfs:subClassOf rdf:resource=”http://linkedevents.org/ontology/#Event”>

33 </rdfs:subClassOf>

34 </owl>

35 <owl:Class rdf:about=”#Person”>

36 <dcterm:issued rdf:datatype=”http://www.w3.org/2001/XMLSchema#date”>

2012−04−15</dcterm:issued>

37 <rdfs:comment xml:lang=”en”>

38 The person is an important person or relevant person in the context of the given

domain for which trend should be detected. In the terms

39 of sociologist viewpoint on trends, it could be the trend setter or the early adopter.



9.3. Relational 85

40 </rdfs:comment>

41 <rdfs:subClassOf rdf:resource=”https://sites.google.com/site/trendontology/

trendontology/#Trigger”>

42 <rdfs:subClassOf rdf:resource=”http://xmlns.com/foaf/0.1/Person”>

43 </rdfs:subClassOf>

44 </owl>

9.3 Relational

In the case of the trend ontology for the financial market, we extended the

meta ontology by an additional ontology that allows the definition of so-called

dynamic relations, Relational. The relational ontology consists of two ontology

classes RelationalThing and RelatingThing, as well as a relation scalableRelated.

A RelationalThing is something that can be connected, and a RelatingThing is

something that connects.

An example of the relating expression from the trend ontology is “ The oil

price has a strong influence on the gasoline price”. Hereby, the oil price and the

gasoline price are concepts belonging to RelationalThings. The strong influence

belongs to the RelatingThing. The relation scalableRelated allows for connecting

the RelationalThing with the RelatingThing.

Listing 9.3: Trend ontology, a snippet from Relational.owl.

1 <owl:Class rdf:ID=”RelationalThing”>

2 <rdfs:subClassOf rdf:resource=”http://www.w3.org/2002/07/owl#Thing”/>

3 <rdfs:subClassOf>

4 <owl:Restriction>

5 <owl:allValuesFrom>

6 <owl:Class rdf:ID=”RelatingThing”/>

7 </owl:allValuesFrom>

8 <owl:onProperty>

9 <owl:ObjectProperty rdf:ID=”scalableRelation”/>

10 </owl:onProperty>

11 </owl:Restriction>

12 </rdfs:subClassOf>

13 </owl:Class>

14 <owl:Class rdf:about=”#RelatingThing”>

15 <rdfs:subClassOf rdf:resource=”http://www.w3.org/2002/07/owl#Thing”/>

16 <rdfs:subClassOf>

17 <owl:Restriction>

18 <owl:onProperty>

19 <owl:ObjectProperty rdf:about=”#scalableRelation”/>

20 </owl:onProperty>

21 <owl:someValuesFrom rdf:resource=”#RelationalThing”/>

22 </owl:Restriction>
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23 </rdfs:subClassOf>

24 </owl:Class>

25 <owl:ObjectProperty rdf:about=”#scalableRelation”>

26 <rdfs:domain>

27 <owl:Class>

28 <owl:unionOf rdf:parseType=”Collection”>

29 <owl:Class rdf:about=”#RelationalThing”/>

30 <owl:Class rdf:about=”#RelatingThing”/>

31 </owl:unionOf>

32 </owl:Class>

33 </rdfs:domain>

34 <rdfs:range>

35 <owl:Class>

36 <owl:unionOf rdf:parseType=”Collection”>

37 <owl:Class rdf:about=”#RelationalThing”/>

38 <owl:Class rdf:about=”#RelatingThing”/>

39 </owl:unionOf>

40 </owl:Class>

41 </rdfs:range>

42 </owl:ObjectProperty>

Figure 9.2: The applied meta ontology. Source: [Wißler and Streibel, 2012].
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9.4 Applying the meta ontology

The trend ontology allows for the parsing of a document corpus. The ontology

is filled by the respective terms from the documents, classifies them into the

concepts, captures the relations between them and therefore creates a meaningful

structure of concepts from the corpus.

The application of the ontology to the particular test corpus requires some

adjustments to the specifics of the given corpus, such as omitting the corpus

specific stop words, adding some corpus specific relations. Also the respective

concepts can be completed by some use case dependent sub-concepts. In Figure

9.2 we visualize the meta level ontology applied on our test corpus.

Which relations are used in the specific case of a particular corpus depends on

the application scenario. Three basic relations of our ontology allow already for

the extraction of useful meaning for further trend analysis and can be extended

on demand:

• skos:related: manually created relation

• rel:countableRelated: statistic relation, counts the appearance of two

concepts together.

• skos:member: semantic relation, shows through the integration in topic

in which topics a given concept emerges

9.4.1 Topic categories

While analyzing the test corpus we focused on the different categories of topics

that emerge from the documents. In particular, the web news about the different

companies and their stocks on the market offer a good opportunity for the analysis

of the specific emerging topics. We divided the news of the test corpus into groups

that are listed below.

• BusinessVolume: information about the technical market position of

companies such as sales news, quarterly reports, debts

– Topic creating classes: sales, company

• ConcernNews: information about corporations such as their market posi-

tion, customer development, management board changes

– Topic creating classes: concern Type, company

• FinancialEvent: events relevant for the stocks such as bankruptcy, natural

disasters, war
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– Sub-classes: insolvency (keyword: Insolvenz), takeover (keyword:

Uebernahme)

– topic creating classes: location

• MarketNews: general market reports, economic downturn, market senti-

ment, crises, bubbles

– topic creating classes: group, political, sentiment

• Recommendation: investment recommendation

– topic creating classes: analyst, share, financial Instrument

• ShareNews: general news about stocks

– topic creating classes: company, share

• SharePriceChange: specific news about stock estimation

– Sub-class: target

– topic creating classes: share, share factor

The documents from the test corpus can be classified by their keywords into

the groups listed above. The respective combination of the concepts from a given

document determines the topic groups to which the document belongs.
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9.5 Algorithm

The Pseudocode 9.5.1 illustrates our trendDescription method.

Algorithm 9.5.1: createTrendDescription(c,o)

comment: parse ∀ document ∈ corpus

comment: into ontology

parse(c, inO, outO){
model.read(inO)

create.reasoner(inO)

do {
parse(keywords);

match.model(keywords,inO){
for keyword← 0 to i

if inO.concept.label==keyword or

keyword.prefix or keyword.postfix==

inO.concept.label.prefix or .postfix

then matches.add(keyword)}

relate.model(matches, inO){
if model.getRelation(matches).isEmpty

then model.createRelation(matches)

else model.incCounter(matches)}}

model.write(outO)}
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10
Trend indication

We have learned one possibility of trend template interpretation in the last

chapter. This chapter focuses on selection and extraction of trend indicating

features from text corpus, showing that the knowledge inspired model can be

realized in a statistical way. We learn here the weighting methods for trend

features and discuss the possibilities of knowledge integration into the feature

extraction process.

10.1 Preliminaries

In the following we describe the definitions of outliers, interestingness, utility and

trend indication that are used later in the definitions of topic, topic area, emerging

topic and emerging topic area. The content of this chapter is the basis for the

experiments with the weighting functions presented in Chapter 13. The trend in-

dication functions and the trend estimation algorithm have been mainly published

in [Streibel and Alnemr, 2011] in combination with the reputation approach. The

reputation approach, presented more detailed in [Alnemr and Meinel, 2011], is a

very useful extension to the trend estimation approach but it lies outside of our

thesis’ focus. The methods explained in this chapter are based on the use case

described in 11.1.1.

10.2 Definitions

Continuing with the example of informing oneself by reading users’ posts from

Twitter reporting on unrests in Egypt from January to February 2011 (see also

the example in Chapter 1 and the use case description in 11.1.1), we introduce

our trend estimation approach. According to the general definition as provided

91
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by related research on trend mining, trends in texts are defined as emerging topic

areas and an emerging topic in texts is a topic that ”increases in interest and

utility over time”[Kontostathis et al., 2003].

In order to estimate a trend we define in the following a time window, outliers,

interestingness, utility and the trend indication.

Definition 10.2.1. Time window and time slice

twindow is a time interval in which trends can occur. A day is an example of time

window.

tslice is a subinterval of time window. If its starting point lies at t0, the end point

has to lie at tk < tn. Regarding a day as an example of time window, an hour is

an example of a time slice.

twindow = [t0...tn] ∧ tslicek = [t0...tk]

twindow :=< tslicek,...,tslicen >

|tslicek| = |tslicen| ∧ k,n ∈ N ∧ k < n (10.1)

Definition 10.2.2. Outliers

An outlier is a term that appears, compared with the whole time window, signif-

icantly often in a given time slice. An outlier as a value can be determined for

every term by calculating:

outlier(w)tslice := TF(w,|P |tslice ) ∗ IPF(w,|P |twindow
) (10.2)

IPF(w,|P |twindow
) := log

|P |twindow

PF (w)twindow

whereas: TF(w,|P |tslice ) says how frequent a term w appears in the posts of particular

time slice1. |P | expresses the total number of given posts. IPF(w,|P |twindow
)

determines the appearance of the particular term w in the whole window.

If we consider the beginning of the reports on Egyptian unrests on 25th of

January and the twindow = day,tslice = hour, the terms as ’#jan25’, ’Egypt’,

’revolution’ were outliers on this day and would have the most significant outlier

values among other terms of chosen time window.

Definition 10.2.3. Interestingness

interest(w)tslice = f(w)tslice := log
TF(w,|P |tslice )

|W |tslice
(10.3)

where |W | is the number of all terms considered.

interest(w)twindow
:=

1the calculation is based on the principle of the weighting method TFIDF[Salton et al., 1982]
by including time as an calculation dimension
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< f(w)tslicek, f(w)tslicek+1, . . . , f(w)tslicen > (10.4)

expresses increasing interest if:

f(w)tslicek < f(w)tslicek+1 < . . . < f(w)tslicen

The interest values of our example terms ”#jan25”, ”Egypt”, ”revolution”

were constantly increasing over the time slices of time windows beginning from

January 25th.

Definition 10.2.4. Utility

The utility can be described by the number of resources that, in a given time

window, have been tagged with the term w divided by the number of all resources

tagged in this time window:

util(w)twindow
:= log

|R|(tag=w)twindow

|R|(tag)twindow

(10.5)

where |R| is the number of resources (posts, status messages, tweets) in the given

system.

Similar to the interestingness, we can identify increasing and decreasing utility for

every term while looking slice for slice in whole time window, of the utility value

increase or decrease.

Regarding our example, the utility values of ’#jan25’, ’Egypt’ were significantly

high since more and more messages were tagged with these terms.

Definition 10.2.5. Trend indication

Only terms with significant high outlier values have to be considered as trend

indicating. Terms with their outlier values below a certain threshold can be

omitted.

trendind(w)twindow =
interest(w)tslice ∗ util(w)twindow

ratio(twindow)
(10.6)

whereas:

ratio(twindow) = |twindow|

is the size of time window given by the number of its time slices.

A feature in texts (e.g. a term or a term pair) is trend indicating if:

a) it has a significant outlier value and

b) its interest and utility values, in relation to the frequency of the time window,

are increasing
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Let the C be a category and S topic (subject). Further, let c describe concept,

let t describe time, tslice time slice, twindow time window, f frequency, u utility,

and w word. Further, let call an arbitrary tagging system a TS.

Definition 10.2.6. Topic

A topic is a set of words from a vocabulary.

Definition 10.2.7. Emerging topic

An emerging topic in a given time window is the set of all trend indicating words

in this time window.

Definition 10.2.8. Topic area

A topic area in a given time slice is the intersection of the subset of all words that

appear frequently enough to be detected and rare enough to be important in given

time slice with the set of words used as tags (e.g. Twitter’s hashtags) in a TS in

this time slice.

Let call wtslice ∈Wtslice the set of all words in a given time slice and w(d,tslice) ∈
W(d,tslice) ∧ d ∈ D the set of words in a document in given time slice.

Definition 10.2.9. Emerging topic area

Let wtslice ∈ Wtslice where Wtslice be the set of all words in a given time slice.

w(dk,tslice) ∈Wdk
tslice

where Wdk
tslice

is the set of words in a document k in given time

slice with dk as an arbitrary document in given time slice dk ∈ D.

Odk,tslice is the set of all outlying and interesting words in an arbitrary document

of given time slice woutlier∧interestdk,tslice
∈ O whereas Odk,tslice ⊆Wdk

tslice
and emerging

topic area is the conjunction of all:

Odk,tslice ∪Odk+1,tslice ∪ . . .∪Odn,tslice ∪ TS
tag
tslice

Emerging topic area in given time

slice is the conjunction of all subsets of all outlying and interesting words in all

documents of this time slice with the chosen set of words used as tags in a TS in

this time slice.

10.3 Trend estimation

The stepwise weighting method based on functions as presented above allows us

to select the trend features out of a given text corpus in a chosen time window.

Trend features are in particular, the trend indicating terms in texts. Regarding

the trend template defined in Chapter 8, the terms with certain outlier values

that are of increasing interestingness value can be understood as the triggers.

The trend indicating terms from the given text corpus can be understood as the

context of the triggers.

The particular terms of high trend indicating values are, if treated separately,

without any meaning. Only if we know that ’Cairo’ is a capital of ’Egypt’, ’Tahrir
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Square’ is a place in Cairo, we can conclude that these terms are also semantically

connected and probably describe one particular place.

In order to verify any connections between the trend indicating terms, we use

knowledge from an ontology. A trend ontology as presented in Chapter 7 or any

ontology that describes the domain in which we are looking for trends is applicable

for enhancing the calculated terms (in our example: political domain). In our

example, we propose first to look up in Dbpedia2 since it is the most popular

source of structured knowledge on the web.

Figure 10.1: Trend indicating keywords. Source: author.

Figure 10.1 shows a timeline-based visualization of selected reports on protests

in North Africa in January to February 2011 with reference to the features that

we look for: outliers, interesting words, useful words, trend indication.

The Pseudocode 10.3.1 describes the general algorithm for selection of trend

features from status messages stMessages, and tweets twMessages.

2http://dbpedia.org accessed 01-June-2013

http://dbpedia.org
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Algorithm 10.3.1: selectTrendFeatures(stMessages, twMessages)

comment: PRE: stMessages, twMessages

comment: POST: tMessages, noMessages, noPeers

PREPROCESS :

findBestT imeSlice(PARAM : timewindow);

parsMessage();

calculateStopWordList(PARAM : timewindow);

for each stMessage,twMessage

removeStopwords();

stemm();

tokenize();

tsV ectors = createT imeStampedMessageV ectors();

END PREPROCESS;

TREND FEATURE SELECTION :

for each term ∈ tsV ectors
calculateOutlierV ();

calculateInterestingnessV ();

calculateUtilityV ();

for each term ∈ tsV ectors
if (term.OutlierV > treshold&&

term.InterestingnessV ← upper ∈ tsV ectors&&

term.UtilityV > threshold)

calculateTrendindication(term);

tTermList = addTermToTrendingList();

END TREND FEATURE SELECTION ;

TREND FEATURE ENHANCEMENT :

for each term ∈ tTermList
if(lookupOntology(term))

createRDFdescription(term);

for each message ∈ tsV ectors
if(message ⊃ termfromtTermList)
createRDFdescription();

END TREND FEATURE ENHANCEMENT ;
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11
Use cases

The goal of this chapter is to show three different cases in which the trend

mining approaches presented in this thesis can be applied. In order to derive

the general requirements on trend mining, we introduce the different fields of

application discussing their particular characteristics. Based on the trend example

from the first chapter of this thesis, we describe the first use case that illustrates

mining trends from social network messages. A following example describes mining

trends in a market research application. The chapter closes with the description

of mining trends in financial markets – the showcase that serves as the running

example for the evaluation part of this thesis.

11.1 Three application fields

While talking about trends, one can think of changes in the political preferences

of a given country before elections, and the shrinking or growing of percentages

of followers for each party in the three months before presidential elections. An

enthusiast of technology gadgets could associate trends with the newest technology

products emerging on the market in the last year. In many cases one thinks about

the ups and downs of financial markets, i.e. NASDAQ1 or DAX2 curves over

stock values in recent months. Indeed, there are many common examples of the

word trend and popular conceptions of application fields in which trend mining

approaches are useful which were discussed in Chapter4. As for this research,

in every kind of problem which involves the reading of textual content that is

necessary for the purpose of understanding the development in the particular

1http://www.nasdaq.com/ online accessed 10-August-2012
2http://www.finanzen.net/index/DAX online accessed 10-August-2012
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field of interest, trend mining methods presented in this thesis are useful. The

following sections illustrate cases of mining trends in different tasks:

• mining political trends in a particular field of interest while reading social

network updates

• mining market trends while conducting a typical market research study

• mining stock exchange trends on a particular financial market

11.1.1 Mining trends from social network messages

There are many possibilities for informing oneself about what is happening in

the world. One method is by reading users’ updates on social networks, such as

Twitter messages and Facebook status updates as illustrated in Figure11.1:

Figure 11.1: Informing oneself from timelines. Source [Streibel and Alnemr, 2011].

We analyzed the process of informing ourselves while reading daily Twitter3

timelines and Facebook4 “top news” during the unrest in Egypt from January 26th

to February 11th in 2011 and discovered interesting issues about the process itself.

We noticed that the process mainly involves filtering out the relevant information,

and can be summarized in 5 steps:

1. Estimating trending messages:

3https://twitter.com/ online accessed 10-August-2012
4http://www.facebook.com/ online accessed 10-August-2012

https://twitter.com/
http://www.facebook.com/
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1.1 Which topics are emerging in the timeline?

1.2 What are trending5 hashtags6 in general?

1.3 Which tweets include the trending hashtags and what are they about?

What updates appear as the top stories on Facebook?

2. Choosing trending and interesting tweets: Which timeline messages fit into

my field of interest and piques my curiosity today?

3. Estimating information’s reputation: Who are the authors of trending and

interesting messages? Which of them are interesting according to my own

field of interests and according to my own subjective criteria:

3.1 Is the author a real person or a web robot?

3.2 Is this person trustworthy?

3.3 What does this person write about in general?

3.4 Does this person write a lot of messages interesting to me?

4. Extending the list of trending and interesting messages by messages written

by the authors of high reputation

5. Reading the information and external links in the tweets that are trending,

interesting and trustworthy: linking to external news (blogs, mainstream

news portals)

Regarding the time period January 26th through February 11th 2011, an example

of trending messages on Twitter were messages marked with the hashtag #jan25

and #Cairo. Most users interested in the political developments worldwide could

notice an increasing number of messages in their timeline containing information

about the situation in Egypt. Terms like “Egypt”, “revolution”, “President

Mubarak”, “protest”, “Tahrir Square”, etc. seemed to appear more frequently

than usual. And more Twitter users started to retweet posts containing these

words. However, misleading and irrelevant information was also posted using

these trending terms for purposes other than the informing others about what was

happening in Egypt during those days. An example of situation relevant tweet

from February 11th 2011 that uses trending terms: #Egypt #Jan25 #Mubarak

#Tahrir is shown in Figure 11.2. In order to distinguish the useless from the

valuable information, one had to search for more information about the authors

of the tweets by reading their Twitter profiles or their past posts. In cases where

it was not possible to find more information about the authors, the statistics were

significant in estimating whether the given author is a person who could post

5based on Twitter’s own trend estimation for trending tags in messages
6http://hashtags.org/ online accessed 01-June-2011

http://hashtags.org/
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Figure 11.2: An example of a situation relevant tweet. Source: Twitter.

trustworthy information: how many messages on similar topics did the author

post, how many followers does the author have, how many other users retweeted

the posts of this author and how did they comment on this post. After estimating

the reputation value of the authors and hence the trust value of the trending

and interesting posts, one could continue with reading the chosen tweets and

the information contained within them (often the tweets contained links to other

social networks posts: blogs, pictures, videos).

Trend mining

Reputation Selection

Final Renement

Personal News Network

Fi
lte
r

Tweet 
messages

Status 
messages

External 
User 

Preferences

tMessage, 
noPeers, 

noMessages

rMessage, 
ROs

fMessages

Figure 11.3: Trend mining in a PNN. Source [Streibel and Alnemr, 2011]

The Figure 11.3 illustrates the process of trend mining in social network
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messages.

11.1.2 Trends in market research studies

Se
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Figure 11.4: A trend in terms of market research. Source: author

The objectives of market research projects are to identify market trends as

well as to analyze consumer preferences and consumer behavior in the market. A

general example of how a trend can be understood in terms of market research is

illustrated in Figure 11.4. In general, market research studies are accomplished

with projects focused on a certain topic, i.e. on IT market products, and based

on two main types of questions:

• quantitative questions (scaled questions): simple choice questions and mul-

tiple choice questions related to the topic

• open ended questions: results of primary research (e.g. customers reasons

or motivations, their comments, etc.), results of secondary research (e.g.

results based upon internet research in order to analyze general trends in a

specific market, such as the IT market)

In primary research, the open ended questions are systematically integrated into

a market research questionnaire, complementing the quantitative questions. The

processing of those open ended questions includes the following steps:

• collection of respondents’ opinions

• back translation in a common language: if a study is conducted in a given

country, in customers’ native language, it is often helpful to translate it into

English or German when it is relevant for the market research topic

• categorization

• aggregation and statistical analysis of categories (frequencies and percentages

of a given topic)
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In the secondary research an explorative process follows additionally to the

primary research. It is used in certain types of studies where a broader input and

orientation is needed in addition to the study data. The secondary research can

be divided into the following stages:

• definition of main study objective, i.e. smartphones

• development of hypotheses that provide a structure for the information

research and a focus for the research based upon the required and relevant

information, i.e. Samsung Galaxy7 is growing in popularity in the IT mobile

smartphone market. A hypothesis can be answered with a ‘yes’ or a ‘no’.

• collection and screening of relevant internet links

• qualitative and explorative expert interviews (optional)

• aggregation of information

Types of secondary information can be:

• user and buying experiences

• reports about products or markets

• test reports

• predictable or unpredictable events

• regulations and laws

• sales channels

Both question types are crucial for trend detection. While the analysis of quanti-

tative questions is based on the examination of numeric data and can be done

automatically using appropriate statistical tools, the analysis of open ended ques-

tions still requires human involvement since it is based on the opinion analysis –

text analysis where the steps based on categorization, generalization, and inter-

pretation of information are mostly conducted manually. Categorization involves

the analysis of positive or negative tagged customer comments that are written

in form of unstructured text. Furthermore, the secondary research in market

studies includes, in general, the analysis of Internet sources like reports, comments,

and news articles that are relevant for the topic of the market research study.

Secondary research, like primary research, aims at identifying the customers’

opinion trends by categorizing news regarding customer sentiments hidden in

texts due to the categories given by the project topic. In general, limitations

7http://smartphones.samsung.de/ online accessed 10-August-2012

http://smartphones.samsung.de/
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of the current approaches are mainly based on the difficulty of automatic trend

discovery in textual information (customer opinions, articles, reports, news).

Regarding our case study, the main goal of market research is the analysis

of market and buying patterns by processing a broad amount of text-based

information. The core task in such text processing is the evaluation of customer

opinions which is based on enhanced text analysis. This includes the detection of

relevant statements, evaluation of statements and text categorization due to the

given project category list regarding the dependencies between sentiments and

categories.

11.1.3 Trends on German Stock Market (DAX)

Figure 11.5: DAX curve in September’07 and May’08. Source: [Economics, 2011].

Figure 11.5 presents DAX, a major stock market index which tracks the

performance of large companies based in Germany. Curve based on DAX points

in September 2007 to May 2008.

The ability to follow the developments of a given financial market and the

possibility of deriving trends from such developments is crucial for many people.

Traditionally, world events as reported by financial and economic news sources

are important indicators for the strength and consistency of the value of trading

instruments, i.e. company stocks, and currencies, i.e. the Euro. Such reported

events can have far reaching implications to the value of investments made by

institutions. Other examples of market moving news are the reported performance

of a company or a key speech by a leading political figure or a company chief

executive. A clear correlation can be observed between news reports and financial
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market fluctuations with structures of names and movements. Crucially, this

correlation is causative: the information precedes the fluctuations. Information

about critical events may be presented through a variety of media. Conventional

information sources are newswire systems such as Reuters, but online news portals

also play an increasingly important role. These systems deliver several thousands

of pieces of information every day to the desktop of the investor. It is the task

of the investor to filter through these data, supported by keyword based filters

of the site, for the relevant headlines. While headline information may be of

immediate value, the required information such as predictions, expectations and

other indications of change may not be as immediately obvious. These content

features of the full news text are our main concern.

Furthermore, the first indications of changes in events are likely to be evidenced

at the source of the event. This may be evident elsewhere – in a company’s ad-

hoc announcement, or even in a blog or discussion forum. The need to extract

the significant information from the massive quantity available is now known

to be a prime need for all forms of knowledge and information management in

business. The strategic and timely delivery of such content in a form that (human

or mechanical) decision makers will be able to react to can be considered as a

significant requirement for information systems.8

8Many thanks to Petra Ristau from JRC GmbH Berlin for the use case explanation.
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12
Test corpus

Data mining books recommend that you “get to know your data” before analyz-

ing it. In this chapter we describe the data, which is in the case of this thesis the

text corpus used for the evaluation. Sketching the historical context of the news

contained in the text corpus, we provide the reader with the description of the

corpus’ content and sources. By presenting different text mining techniques that

have been applied to the corpus, we provide a summary of a possible simple analysis

of the documents by making use of state-of-the-art NLP routines. Throughout the

chapter there are graphics that help to explain what particular kind of information

results from each text mining technique. After reading this chapter, there should

be a sufficient understanding of our test data as well as an idea of how far a

simple text analysis can bring us.

12.1 The historical background

We choose to start the description of the corpus by explaining the context of the

corpus content. The historical content helps to explain why we mainly experiment

with the news stories which occurred between September 2007 and May 2008. At

the end of this section, there is a brief description about the origin of the corpus,

to help in understanding initial obstacles in getting interpretable results presented

in Chapter13.

12.1.1 The crisis in 2007-2008 in the news

In 2007 the so-called worldwide financial crisis started by the emergence of the

sub-prime mortgage crisis on the real estate market in the U.S. . From 2007 to

107
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2008 several important events took place on the financial markets worldwide,

among others: Bear Stearns Inc.1 collapse, Citigroup2 losses, Lehman Brothers3

insolvency, as well as several other events as i.e. bank failures. A good retrospective

view of these events regarding 306 companies worldwide from the corporate

governance perspective on economic crisis is described in [Erkens et al., 2012].

In the emerging economic crisis, September 2007 is just another month in

which two important events are being reported on economic news; On the one

hand, U.S. dollar is reaching its deepest value counted from 1990. On September,

14th, in one of its news, German economic news provider Godmode Trader reports:

“US-Dollar: Vorsicht, Vorsicht...:

Der Dollar steht am Scheideweg. Der Dollar-Index, der den Wert des US-Dollars

gegenüber anderen Weltwährungen abträgt und als Richtschnur bei der Orien-

tierung darüber gilt, ob der Dollar jetzt eben stark oder schwach tendiert, ist auf

dem niedrigsten Niveau seit dem Jahr 1990. ”4

On the other hand the run on Northern Rock [Shin, 2009] in London follows on

September 15th:

“The rush of customers taking money out of Northern Rock continued for a second

day on Saturday, amid concerns over its emergency Bank of England loan.” writes

BBC news5.

The Figure 12.1 shows the USD curve falling since 2002, “DAX, positiver Trend

wäre nur noch Zufall” [Godmode, 2011]. In March 2008 JP Morgan plans the

takeover of Bear Stearns Inc. . New York Times publishes on March, 17th:

“After a weekend of intense negotiations, the Federal Reserve approved a $30 billion

credit line to help JPMorgan Chase acquire Bear Stearns, one of the biggest firms

on Wall Street, which had been teetering near collapse because of its deepening

losses in the mortgage market.”6 BBC writes:7

“Rescue for troubled Wall St bank

(...) The deal values Bear Stearns, which has been at the centre of the US mortgage

debt crisis, at just $236m (£116m). Its shares have lost 98% of their value since

their high of $158 in April one year ago, when the bank was worth $18bn. (...)”

Shortly after, in April 2008 German Stock Exchange DAX value are falling:

“DAX, positiver Trend wäre nur noch Zufall

“Nach den sehr ungünstigen Vorgaben aus dem Späthandel der Wall Street vom

Freitag sowie aus Fernost habe der DAX gestern mit einem Gap nach unten

eröffnet und weitere Verluste eingefahren. Flankiert von negativen Nachrichten

aus dem Unternehmenssektor (die fünftgrößte US Bank Wachovia vermeldete

1until 2008 an investment bank based in New York
2http://www.citigroup.com/citi/ online accessed 29-Sep-2012
3investment bank based in U.S.
4http://tinyurl.com/mnx83ea online accessed 29-Sep-2012
5http://news.bbc.co.uk/2/hi/business/6996136.stm online accessed 29-Sep-2012
6http://tinyurl.com/k3xb3lm online accessed 29-Sep-2012
7http://news.bbc.co.uk/2/hi/business/7299938.stm online accessed 29-Sep-2012

http://www.citigroup.com/citi/
http://tinyurl.com/mnx83ea
http://news.bbc.co.uk/2/hi/business/6996136.stm
http://tinyurl.com/k3xb3lm
http://news.bbc.co.uk/2/hi/business/7299938.stm
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Figure 12.1: A falling curve for USD since 2002. Source: [Godmode, 2011].

nach Angaben der Marktbeobachter einen Quartalsverlust sowie die Planung einer

Kapitalerhöhung), wären somit zum Wochenauftakt die Bären am Ruder gewesen.”

The events mentioned above are only a tiny snippet of information related to the

financial and economic crisis which appeared in the news late 2007 and early 2008.

However, their importance confirmed our first intuitive impression that online

news articles that appeared between September 2007 and April 2008 are part of

the bigger, global trend of so called financial crisis. We assumed that this period

between September 2007 and April 2008 is an interesting time window in which

definitely a trend occurs and therefore trend mining techniques can be applied.

Figure 12.2 draws the “crisis anniversary” graphic showing the global events on

the Dow Jones curve. Source: Bloomberg, shown at BBC news8.

12.1.2 Original news corpus

During the TREMA (Trend Mining, Analysis and Fusion of Multimodal Data)

research project funded by Investment Bank Berlin, conducted in 2007 and 2008

in Berlin under the cooperation between Free University Berlin, JRC GmbH,

neofonie GmbH, and Metrinomics GmbH, a test corpus of over 300,000 web news

8http://www.bbc.co.uk/news/business/economy/ online accessed 01-June-2013

http://www.bbc.co.uk/news/business/economy/


110 Chapter 12. Test corpus

Figure 12.2: The “crisis anniversary” graphic on the Dow Jones. Source:
Bloomberg.

were created for research purposes. Business news in the German language from

German news providers had been stored, anonymized, preprocessed and generally

classified into two groups: the articles relevant to general financial market topics,

and web news relevant to market research issues regarding the study of technical

products and information technology markets. The preprocessed original news

corpus was handed out to Free University Berlin for the purpose of further research.

The corpus data was stored in the form of XML files in two directories on a

DVD. The original corpus consisted of 276,587 documents of financial news (1.5

GB directory on a hard disc) and 74,145 documents of IT market products (331,6

MB directory on hard disc). A very large part of the corpus consisted of spam

articles, articles with encoding errors (encoding label differed from encoding in

text body and text title), and articles without a time stamp or with an error in

their time stamp. The initial tests could not be performed on this corpus and in

order to make it useful some time had to be invested into cleaning the data while

following the steps outlined below:

• manual overview of the usefulness of the text content: sorting out chat

boards and forums comments that weren’t related to the business news

• sorting encoding: we focused on UTF-8 encoded documents

• trustworthiness of the source: we chose to focus on the main news providers

and sorted out blogs that concentrated on the long discussions of smaller

financial events (such as rising or falling of specific stocks on DAX)

• checking time stamps: time stamps in the files incorporated many errors

and had to be sorted out

• sorting out empty articles
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• sorting out spam articles

We used automatic as well as manual methods to clean the data. At the end of

our cleaning procedure the corpus consisted of 90,000 documents.

Listing 12.1: One of documents as XML file from the original corpus

1 <Document>

2 <Meta>

3 <BaseUrl>http://de.biz.yahoo.com/</BaseUrl>

4 <MimeType>text/html</MimeType>

5 <ContentEncoding>iso−8859−15</ContentEncoding>

6 <Keywords>adva,adva akkumulieren,akkumulieren,

7 deutschland,deutschland netzwerktechnik, deutschland,hardware,hardware ,

netzwerktechnik,netzwerktechnik hardware,&quot;akkumulieren&quot;,&quot;

akkumulieren&quot; gesel,&quot;halten&quot;,&quot;halten&quot; jetzt,2007,2007

bekannt,2007 vergleich,5 millionen,</Keywords>

8 <Description>Westerburg aktiencheck de AG − Der Analyst Henning Wagener von

AC Research erhöht sein Rating für die Aktien von ADVA ISIN DE0005103006/

WKN 510300 von zuvor &quot;halten&quot; auf jetzt &quot;akkumulieren&quot;

Die Gesellschaft habe Zahlen für das abgelaufene vierte Quartal und das

Gesamtjahr 2007 bekannt gegeben Demnach habe das Unternehmen im vierten

Quartal 2007 im Vergleich zum entsprechenden Vorjahreszeitraum einen Umsatzrü

ckgang um 7 5 Millionen Euro auf 53 8 Millionen Euro hinnehmen müssen </

Description>

9 <Abstract shortend=”true” source=”meta”>Westerburg aktiencheck de AG − Der

Analyst Henning Wagener von AC Research erhöht sein Rating für die Aktien von

ADVA ISIN DE0005103006/ WKN 510300 von zuvor &quot;halten&quot; auf

jetzt &quot;akkumulieren&quot; Die Gesellschaft habe Zahlen für das [..]</

Abstract>

10 <Title source=”head”>ADVA akkumulieren − Y! Finanzen</Title>

11 <LastVisitDate unit=”s”>1210454130</LastVisitDate>

12 <FirstVisitDate unit=”s”>1205967991</FirstVisitDate>

13 <LastModifiedDate unit=”s”>1210454130</LastModifiedDate>

14 <CreationDate unit=”s”>1205967991</CreationDate>

15 <Size unit=”b”>16782</Size></Meta>

16 <Title>ADVA akkumulieren</Title>

17 <Body>Aktienkurse Adva Optical Network... ADV.DE 2.55 −3.41% Westerburg (

aktiencheck.de AG) − Der Analyst Henning Wagener von AC Research erhöht sein

Rating für die Aktien von ADVA (ISIN DE0005103006/ WKN 510300) von zuvor ”

halten” auf jetzt ”akkumulieren”. Die Gesellschaft habe Zahlen für das abgelaufene

vierte Quartal und das Gesamtjahr 2007 bekannt gegeben. Demnach habe das

Unternehmen im vierten Quartal 2007 im Vergleich zum entsprechenden

Vorjahreszeitraum einen Umsatzrückgang um 7,5 Millionen Euro auf 53,8 Millionen

Euro hinnehmen müssen. </Body>

18 <Date>Mittwoch 19. März 2008, 16:17 Uhr</Date>

19 </Document>
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12.2 Content and sources

For our experiments we use a document corpus consisting of business news

only in the German language. The corpus originates from the following web

sources: comdirect9, derivatecheck10, Handelsblatt11, GodmodeTrader12, Yahoo13,

Financial Times Deutschland14, and finanzen.net15. The corpus provides news

from January 2007 to May 2008. In general, the content of the corpus is focused

on finance and business information concerning German companies and stocks. It

focuses on the situation at DAX, as well as on reviews and ratings of German

companies and shares. It is not only about German companies, but also what

is discussed in the German finance and business world. In addition, the corpus

contains company-related news regarding Allianz, Bayer, Siemens, ThyssenKrupp,

Volkswagen, Apple, Oracle, Starbucks, Lanxess, Fraport, Novartis, Meditec,

Google, Ebay, Deutsche Telekom, Thyssen, Daimler, Adva, Yahoo, Porsche, E.ON,

CentroSolar, Solarworld, Commerzbank, Citigroup. Initially, the preprocessed

and pre-cleansed corpus contained about 90,000 XML files. While performing

more tests, we had to extract a cleaner part of this document corpus. The final

test documents are divided into 35,650 articles about general business news and

over 5,000 articles with specific DAX reports.

12.3 Techniques for preprocessing

In order to get a more detailed overview of the corpus content, we applied ad

hoc different NLP analysis techniques.By sorting out other error files, the overall

amount of files was reduced from about 42,300 to about 40,500 (5% loss). In order

to provide more relevant information about every document, we use mainly (1)

named-entity recognition, (2) part-of-speech tagging, and (3) stemming, and add

the tags: NER, POS, StemmedBody in addition to the already given XML tags like

meta (e.g. URI, keywords, CreationDate, . . . ), title, abstract, body and date

in the test corpus files.

12.3.1 Preprocessing

In general, the preprocessing has to be performed in order to reduce the amount

of text features for the further analysis. Methods applied in preprocessing always

depend on the art of aimed analysis. In most cases it is useful to apply lexical

9http://www.comdirect.de/inf/index.html, online accessed 25-April-2012
10http://derivatecheck.de/, online accessed 25-April-2012
11http://www.handelsblatt.com/weblogs/, online accessed 25-April-2012
12http://www.godmode-trader.de/, online accessed 25-April-2012
13http://de.biz.yahoo.com/, 25.04.2012
14http://www.ftd.de/, online accessed 25-April-2012
15http://www.finanzen.net, online accessed 30-April-2012

 http://www.comdirect.de/inf/index.html
http://derivatecheck.de/
http://www.handelsblatt.com/weblogs/
http://www.godmode-trader.de/
http://de.biz.yahoo.com/
http://www.ftd.de/
http://www.finanzen.net


12.3. Techniques for preprocessing 113

analysis methods in which words in the text are lowcased (capital letters replaced

by lowercase), numbers, punctuation and additional characters are excluded, and

stop words are removed. Stop words are words that do not carry any content per

se and therefore can be omitted in the further content analysis. As for the stop

words, we apply the Apache Lucene library16: GermanAnalyzer17 default stop

word set. Additionally, we extend it by our own 300 stop words. An example of

the additional stop words used for our test corpus is shown below.

aber, alle, allem, ..., allen, aller,

aus, ..., derselbe, derselben, ...,

eines, einig, ..., zu, zum, zwar

Next to the removing of stop words is the stemming or lemmatization of the text.

Sometimes it is useful to stem the documents before further analysis. In some

cases it is better to lemmatize the text. A difference between both methods is

very well described in one sentence:

“If confronted with the token saw, stemming might return just s, whereas lemmati-

zation would attempt to return either see or saw depending on whether the use of

the token was as a verb or a noun.”18

Stemming

Stemming is the process of reducing a given morphological word form so that the

word is represented by its stem. A stem is the basic morphological form of a given

word. The resulting stem of the word is depending on the particular definition of

stems in the particular stemming function. As for the stemming of our documents

we apply the GermanAnalyzer from Apache Lucene. An example to a stemmed

word from the test documents is shown below.

word: stem:

getragen getrag

vergleichweise vergleichwei

übetroffen ubertroff

Lemmatizing

Lemmatization is the lexicographical reduction of a word so that the given word

is represented by its lemma. A lemma is the basic linguistic form of a given

word. As in many cases of natural language processing, the available libraries are

16http://lucene.apache.org/core/, online accessed 10-Jan-2012
17http://lucene.apache.org/core/old_versioned_docs/versions/3_0_1/api/all/org/

apache/lucene/analysis/de/GermanAnalyzer.html, online accessed 10-Jan-2012
18http://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.

html online accessed 10-Jan-2012

http://lucene.apache.org/core/
http://lucene.apache.org/core/old_versioned_docs/versions/3_0_1/api/all/org/apache/lucene/analysis/de/GermanAnalyzer.html
http://lucene.apache.org/core/old_versioned_docs/versions/3_0_1/api/all/org/apache/lucene/analysis/de/GermanAnalyzer.html
http://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
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easier to apply and more sophisticated for English than for the German language.

Standford Lematizer19 is a very good tool for lemmatizing texts in English. We

experimented with another library: LanguageTool20 for German. LanguageTool

is meant to be used for orthographical text correction but it can be extended

very easily into a lemmatizer for the German language. However, our procedure

is not efficient enough to be applied for document analysis on the fly. Applying

the lemmatizer to 200 documents takes a few minutes and therefore we focus

mainly on stemming. An example of a lemmatized word from the test documents

is shown below.

word: lemma:

machte machen

The complete result of LanguageTool for machte\:

machen/VER:1:SIN:KJ2:SFT

machen/VER:1:SIN:PRT:SFT

machen/VER:3:SIN:KJ2:SFT

machen/VER:3:SIN:PRT:SFT

12.3.2 Named entity recognition

When it comes to information extraction, we concentrated on named-entity recog-

nition to extract text elements. Different types of entities can be recognized in the

given text. We focus mainly on organizations, locations, and persons. For that

we have used the Stanford Named Entity Tagger21 to identify entities from the

text body, abstract and title. As the corpus is in German, we used the German

Named Entity Recognition22 with the Huge German Corpus-generalized classi-

fier23. The results are grouped in four categories: location, person, organization

and miscellaneous. Below is an example of recognized entities in one of the test

documents:

nerorganization = "Audi RS 4",SEAT,"Volkswagen AG",

"Volkswagen Konzerns",Jetta,"Passat Variant",

"Volkswagen Cabriolet-Coupés Eos",

WKN,IAA,Audi,DAX,DGAP,

"Volkswagen Konzern"

19https://github.com/larsmans/lucene-stanford-lemmatizer, gesichtet am 23.02.2012
20http://extensions.services.openoffice.org/project/languagetool, online accessed

23-Feb-2012
21http://nlp.stanford.edu/software/CRF-NER.shtml, 30.04.2012
22http://www.nlpado.de/~sebastian/software/ner_german.shtml, 30.04.2012
23http://www.ims.uni-stuttgart.de/~pado/hgc_175M_600.ser.gz, online accessed 20-Jan-

2012

https://github.com/larsmans/lucene-stanford-lemmatizer
http://extensions.services.openoffice.org/project/languagetool
http://nlp.stanford.edu/software/CRF-NER.shtml
http://www.nlpado.de/~sebastian/software/ner_german.shtml
http://www.ims.uni-stuttgart.de/~pado/hgc_175M_600.ser.gz
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nerlocation = Hannover,Antwerpen,Hamburg,Frankfurt,

London,Wolfsburg,Wien,Luxemburg,EUR,

USA,Berlin-Bremen,Stuttgart,Tokio,

Deutschland,Golf,China,Westeuropa,

"Wolfsburg Deutschland"

nerperson = "Dow Jones"

As presented in the example above, the recognition of entities is quite good, at

least in the case of locations. However, there are still some errors in the results

of NER-method: many car names are recognized as organizations, and the Dow

Jones, which is actually a stock index, is recognized as a person.

12.3.3 Part of speech tagging

In Chapter 7 we discussed the importance of verbs and adjectives in textual trend

mining. In order to get an overview of the different POS-words, in particular

nouns, verbs and adjectives, we used the Stanford Log-linear Part-Of-Speech

Tagger24 (POS) along with the STTS (Stuttgart-Tübingen-TagSet) tagset25 to

extract the POS-words from the text body. An example of a POS-tree of one of

the test documents follows. Figure 12.3 shows a visualization of a POS-tree part

erlöst Millionenbetrag

teilte

erwartet

Konzern

weiter

mit

wird

Jahresende

dreistelligen

der

Closing

zu

einen

Das

m

Figure 12.3: POS-tree. Source author.

from a test document. The sentence at the bottom of the figure: “Das Closing

wird zum Jahresende erwartet” (EN: The closing is expected at the end of the

year.) is splitted into the particular part-of-speech untities, a verb erwartet, the

auxiliary verb wird, the substantive Closing, the article Das, and the preposition

zu with the declined ending m, and the corresponding part of the adverbial phrase

Jahresende.
24http://nlp.stanford.edu/software/tagger.shtml, online accessed 20-Feb-2012
25http://www.ims.uni-stuttgart.de/projekte/CQPDemos/Bundestag/help-tagset.html,

online accessed 20-Jan-2012

http://nlp.stanford.edu/software/tagger.shtml
http://www.ims.uni-stuttgart.de/projekte/CQPDemos/Bundestag/help-tagset.html
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12.3.4 Final Format

The resulting data is an almost spam free German text corpus ready to use,

providing relevant additional information as described above. Listing 12.2 shows

the resulting XML format and sample data. Some of the metatags can remain

empty.

Listing 12.2: Sample XML file

1 <Document>

2 <Meta>

3 <ID>2</ID>

4 <BaseURL>http://www.finanzen.net/</BaseURL>

5 <URI>

6 http://www.finanzen.net/nachricht/DAX

7 am Mittag Positive Entwicklung bei geringen

8 Umsaetzen Volkswagen im Fokus 360739

9 </URI>

10 <Keywords>Börse, Ad−hoc, Marktberichte, Pressemitteilungen, [...]</Keywords>

11 <Copyright>SmartHouse Media GmbH</Copyright>

12 <Author />

13 <Email />

14 <Title source=”head”>DAX am Mittag: Positive Entwicklung bei geringen Umsä

tzen, Volkswagen im Fokus | Nachrichten |</Title>

15 <CreationDate>2008−03−20 18:45:23</CreationDate>

16 <LastModifiedDate>2008−03−20 18:45:23</LastModifiedDate>

17 <FirstVisitDate>2008−03−20 18:45:23</FirstVisitDate>

18 <LastVisitDate>2008−03−20 18:45:23</LastVisitDate>

19 </Meta>

20 <Title>DAX am Mittag: Positive Entwicklung bei geringen Umsätzen, Volkswagen

im Fokus | Nachrichten |</Title>

21 <Abstract>DAX am Mittag: Positive Entwicklung bei geringen Umsätzen,

Volkswagen im Fokus | Nachrichten | Aktienkurs | 750000 | | DE0007500001</

Abstract>

22 <Body>

23 Die deutschen Standardwerte entwickeln sich zum Mittag hin beinahe ausnahmslos

positiv und vergrößern ihre Gewinne aus den frühen Handelsstunden zusehends.

[...]

24 </Body>

25 <Date>2005−12−27 00:21:36</Date>

26 <NER>

27 <Location>Europas</Location>

28 <Person>Georg Kofler, Bernd Pischetsrieder, Axel Springer, [...]</Person>

29 <Organisation>DAX, VW, Siemens, Hypo Real Estate, EADS, [...]</Organisation

>

30 <Miscellaneous>deutschen, kanadischen, Fußball−Bundesliga, TV−Rechte, [...]</

Miscellaneous>
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31 </NER>

32 <POS>

33 <Noun>Standardwerte, Mittag, Gewinne, Handelsstunden, [...]</Noun>

34 <Verb>entwickeln, vergrößern, gewinnt, markiert, [...]</Verb>

35 <Adjective>deutschen, ausnahmslos, positiv, frühen, [...]</Adjective>

36 </POS>

37 <StemmedBody>deutsch standardwert entwickeln positiv [...]</StemmedBody>

38 </Document>

12.3.5 Vizualization

In order to understand different test results and to have an overview of the corpus

and its parts, we visualize the documents by using the timeline widget from Simile

Widgets26.

Timeline

Figure 12.4: Simile timeline

DB GUI

As for the interpretation of different test results or the justification of errors, the

GUI of the data bank was especially helpful in the beginning.

26http://www.simile-widgets.org/timeline/, online accessed 10-Jan-2012

http://www.simile-widgets.org/timeline/
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Figure 12.5: GUI for PostgreSQL

12.4 Resulting corpus

The resulting corpus contains general business news and DAX specific news in

German. The average size of the articles is 2000 characters. 98% of the corpus is

spam free. Documents are UTF8 encoded, timestamped, stored as XML files.In

Table 12.1 the general statistic about the main part of our test corpus is presented.

Table 12.2 shows the number of documents per month and week. The Figures

Year Month Number of documents

2007 9 1125

2007 10 3951

2007 11 3290

2007 12 4316

2008 1 2263

2008 2 94

2008 3 3203

2008 4 11647

2008 5 5663

Table 12.1: General statistics: number of files per month

12.6 and 12.7 visualize the distribution of files (the xml-based web documents,

timestamped after the creation date) per month and per week respectively.
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Year Month Week Number of documents

2007 9 35 1

2007 9 36 16

2007 9 37 39

2007 9 38 316

2007 9 39 753

2007 10 40 704

2007 10 41 730

2007 10 42 999

2007 10 43 1063

2007 10 44 455

2007 11 44 141

2007 11 45 689

2007 11 46 796

2007 11 47 881

2007 11 48 783

2007 12 1 82

2007 12 48 8

2007 12 49 861

2007 12 50 1162

2007 12 51 1568

2007 12 52 635

2008 1 1 546

2008 1 2 522

2008 1 3 564

2008 1 4 614

2008 1 5 17

2008 2 5 5

2008 2 6 13

2008 2 7 18

2008 2 8 28

2008 2 9 30

2008 3 9 5

2008 3 10 60

2008 3 11 68

2008 3 12 722

2008 3 13 1809

2008 3 14 539

2008 4 14 2146

2008 4 15 2217

2008 4 16 2595

2008 4 17 2928

2008 4 18 1761

2008 5 18 871

2008 5 19 1934

2008 5 20 1920

2008 5 21 938

Table 12.2: Statistics for month - week- day number of files
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Figure 12.6: Distribution of corpus size (per month)

Figure 12.7: Distribution of corpus size (per week).
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13
Results

“If there are facts that constitute the basis for science then those

facts come in the form of experimental results” [Chalmers, 1999]

Chapter 13 contains the evaluation of research presented in this thesis. The

description of the experiments and their results allows for a deeper understanding

of advantages and limits in trend mining, in particular in the knowledge-based

trend mining approach. Before presenting and discussing the actual results of this

research, we start with the general introduction into the main evaluation frame,

explaining why we choose to follow goal-free experimental evaluation, how this

quantitative research fit into the overall scientific method, and which influence

does the use case take on this evaluation. In the beginning of the Section 13.2,

we define the overall frame of the experiments and set up goals for presenting

results.

13.1 General introduction into evaluation

An exact and accurate evaluation frame seems to be a difficult problem if one

does not dive into the theory and philosophy of science. Simply because a

question about what does the scientific evaluation actually mean raises as first.

Nevertheless, after diving into the philosophy of science, the creation of an

satisfiable evaluation frame may appear even more difficult, however its obstacles

become more understandable.

Linked to the question of scientific evaluation, it immediately appears that

the existence of scientific method is necessery for the evaluation. And the first

step of the method is to pose a scientific question for which one proposes a

falsifiable hypothesis (p. 59–103, [Chalmers, 1999]) that in turn is the first step of

scientific evaluation. The main scientific question of this thesis, stated in Chapter

121



122 Chapter 13. Results

2, sounds: Can a knowledge-based trend model help us in understanding trends?

Our hypothesis is that it can and we propose the trend template as the basis for

a knowledge-based trend model. The experiments with the implementations of

the trend template should either prove or disprove this hypothesis.

[Dodig-Crnkovic, 2002] sketches the general scientific method showing the steps

from the first: posing the scientific question to the last: obtaining consistency

for the formulated hypothesis which is a tentative answer for the posed question.

[Dodig-Crnkovic, 2002] and [Chalmers, 1999] investigate science, its methods and

theory, discuss scientific method and scientific evaluation extensively and show

([Chalmers, 1999]) the meanders of the evaluation idea itself.

In Chapter3 we sketch the overall method applied while conducting this

research. The 4th and 5th step of this method, called experiment and data, are

the evaluation part of this research.

[Chalmers, 1999] devotes one chapter on the matter of experiment in which

the author states: “Not just facts, but relevant facts” are leading to the science.

“(...) it should perhaps be somewhat obvious that if there are facts that constitute

the basis for science, then those facts come in form of experimental results rather

than any old observable facts.” Whereas experiment is a strong instrument in

science, it does not always allow for a proof or disproof of scientific hypothesis

[Chalmers, 1999]. As for the computer science “There are plenty of computer

science theories that haven’t been tested. For instance, functional programming,

object-oriented programming, and formal methods are all thought to improve

programmer productivity, program quality, or both. It is surprising that none

of these obviously important claims have ever been tested in a systematic way,

even though they are all 30 years old (...)”.1. In the context of any research

in computer science there is another problem with the experiment about which

[Chalmers, 1999] is writing– the general statement on experiment relates to the

general view of science.

Regarding computer science it is worth mentioning that there are different opin-

ions on classification of computer science as a science. As written by [Tichy, 1998]

“A major difference to traditional sciences is that information is neither energy

nor matter.” However, [Tichy, 1998] states “The fact that in the field of computer

science the subject of inquiry is information rather than matter or energy makes

no difference to the applicability of the traditional scientific method. In order to

understand the nature of information processes, computer scientists must observe

phenomena, formulate explanations and theories, and test them.”

[Dodig-Crnkovic, 2002] shows that computer science lies on the boarder be-

tween science and engineering (or technology). Accordingly, methods applied in

science as well in engineering apply either to computer science. The scientific

1as for 2012, functional programming, object-oriented programming, and formal methods
are now over 40 years old
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method applied for this research as presented in Chapter 3 is a general method and

through its generality can be adopted to natural science as well as to engineering.

Evaluating through experimentation in computer science is, despite the general

assumption that evaluation in computer science is somehow obvious, not always

possible and very often not feasible. This problem of the scientific evaluation

in computer science is widely discussed by [Tichy et al., 1995]. The authors con-

clude that there are several research projects that cannot claim in-depth scientific

proof. However, the requirement for the in-depth scientific proof may be somehow

out-dated or not always relevant regarding the research in computer science.

Computer science – being a mix from science and engineering, strongly de-

pending on technology development and strongly influencing this development – is

changing rapidly. The theory and the philosophy of science that lie at its ground

do not seem to change. Therefore, while formulating the evaluation frame for a

given research in computer science – beside the knowledge about the scientific

evaluation within a scientific frame – it is important to focus on the following

issues:

• a given research idea within its respective research field

• a given use case

• the available test data

• and the potential users (if applicable)

13.1.1 Possible evaluation directions

The research idea of this thesis concentrates in general on trend mining, which,

located in the IR, DM, and TDM research (see Chapter 5), is itself identified

through this thesis as a research field. The particular use case of the trend mining

is connected to the test data, which is the German stock exchange news in our

case. And we do not rely on a particular user group.

Before describing the setting for the experiments of this thesis, we should

consider the fact that a deep going evaluation can have more dimensions. For

example, it can concentrate on specific parts of a given model or algorithm.

Within the trend mining this work proposes a trend template as the base for

knowledge-based trend mining, from which two different implementations are

shown – trend ontology and trend indication. The evaluation could take different

directions by focusing on:

• theoretical correctness and consistency of the trend template

• the performance of the model (trend ontology and trend indication) on test

data
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• user satisfaction with the model results

• model’s persistence in different use cases

• model’s performance in different use cases

• model’s ability for making its results interpretable

Taking one of the evaluation direction is helpful for setting the experiment’s criteria.

But, before we decide on a specific direction, we should consider another relevant

evaluation issues – evaluation approaches and evaluation methods, explained in

the following sections, 13.1.2 and 13.1.3. We describe these methods with regard

to a general evaluation idea for the trend mining.

13.1.2 Possible evaluation approaches

There are different possible approaches for an evaluation. The most relevant for

the trend mining are described as follows.

Goal-free evaluation

In some cases of evaluation it is useful to set up a set of criteria upon which

different approaches can be tested against the test data and therefore can be

compared by their results while focusing on discovering new aspects. This is

called a goal-free evaluation. As described in [Scriven, 1991], “The value of a

goal-free evaluation does not lie in picking up what everyone already knows but

in noticing something that everyone else has overlooked, or in producing a novel

overall perspective.”

Quantitative evaluation

A quantitative evaluation approach is focused more on measuring of the achieved

results. Applying the quantitative evaluation approach means to conduct the

systematic measurements. The systematic measure and evaluation of the created

model is conducted in order to test a given hypothesis.

A hypothesis – the testable, the null, and the fallacy

There is no scientific proof without a testable hypothesis. The main charac-

teristic on which science in general is based, is the falsifiability. There can be

no “real” science without falsifiable statements [Chalmers, 1999]. “There is an

important characteristic of a scientific theory or hypothesis that differentiates

it from, for example, a religious belief: a scientific theory must be ’falsifiable’

”[Dodig-Crnkovic, 2002].
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In statistical testing the alternative hypothesis is the assumed statement. This

so called alternative hypothesis has to be proven against the null hypothesis. A

null hypothesis is the hypothesis that actually has to be disproved by proving

the alternative hypothesis. In our case the null hypothesis says that there

will be no difference in the results of clustering, topic modeling, and trend

template based algorithm related to our experiment frame. While testing a given

hypothesis, one should be aware of so-called fallacy. “A formal fallacy is a wrong

formal construction of an argument. An informal fallacy is a wrong inference or

reasoning.”[Dodig-Crnkovic, 2002]

13.1.3 Relevant evaluation methods

Regarding the research relevant for trend mining (see Chapter 5), different eval-

uation methods from the respective research directions can be considered as

applicable for trend mining. In the following subsections, we show the main

evaluation ways from TDT, IR, and the DM research.

TDT evaluation frame

TDT research proposes an evaluation cycle consisting of five steps: task definition,

system design, system building, system testing, system refinement. Every TDT

task is being evaluated as a detection task. As listed in Section 5.2.2 there are

five tasks on which the TDT research builds. The most relevant for trend mining

in general is the topic detection task.

A TDT system “is presented with input data and a hypothesis about data,

and the system’s task is to decide whether the hypothesis about this data is true”.

TDT research calls it a trial. “If the hypothesis is true, the trial is called a target;

if not, the trial is called a non-target trial.” Normalized detection cost function

is applied as the function alongside with detection error trade-off (DET) curves

for evaluating the TDT. “ Since TDT evaluations use many topics, the global

assessment of system performance is accomplished by averaging both the detection

cost function and DET curves across topics.” The single detection cost function

is defined as follows:

CDet = (CMiss ∗ PMiss ∗ PTarget + CFa ∗ PFa(1− PTarget)) (13.1)

whereas PMiss and PFa are defined as follows:

PMiss = #MissedDetections/#Targets

PFa = #FalseAlarms/#Non− Targets

More detailed description can be found in [Allan, 2002], p. 23. The TDT evalua-

tion approach can be generally applied in trend mining if a given trend mining

method focuses in particular more on a trend discovery than on a trend interpre-

tation.
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(Web) IR- evaluation techniques

Web information retrieval evaluation regards mainly the problem of web search. In

order to evaluate web search, different techniques can be used. TREC [NIST, 2013]

helps in defining the evaluation steps, some other relevant are described in

[Göker and Davies, 2009] (p. 93–97).

The main and general basic formula used in the IR evaluation is the precision

and recall method:

P =
TP

TP + FP
(13.2)

R =
TP

TP + FN
(13.3)

The evaluation of a trend mining approach (in case of a learning model) can

be based on the evaluation of the model performance which can be conducted

using cross-validation and measured in general by the recall and precision values.

For the cross-validation, the document corpus is divided in i folders and the

validation process is repeated i times whereas in every i-step of the validation the
1
i part of the document corpus is used as a test set while the rest i−1

i stacks are

used for building the learning model. If D is the set of documents, |D| is the to-

tal number of documents in the set, the precision and recall value can be defined by:

recall =
|D|trendindicating−and−retrieved

|D|trendindicating
(13.4)

precision =
|D|trendindicating−and−retrieved

|D|retrieved

Evaluation in data mining

In general, DM offers different measures for different problems and the particular

evaluation depends on the particular problem. Among others, the well known

measures as the t-test (p. 370-371 in [Han and Kamber, 2006]), f-measure and

ROC curves (p. 172 in [Witten and Eibe, 2005]). More measure methods can be

found in the statistical data analysis, e.g. [Fahrmeir et al., 2007].

13.1.4 Basic metrics

The following basic metrics can be applied for determining thresholds of the

different weighting functions. In particular, the arithmetic mean and the median

can be applied for defining threshold values of outliers.
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Arithmetic mean

Regarding the arithmetic mean given by:

x̄ =
1

n
(x1 + . . .+ xn) =

1

n

n∑
i=1

xi (13.5)

we can extract the arithmetic mean values for the outliers in small corpus as follows:

Median

Given that a median is defined by:

xmed =

x(n+1
2

) if n is odd

1
2(x(n/2) + x(n/2+1)) if n is even

(13.6)

Absolute error

Also, for the numeric prediction, the relative absolute error measure can be

applied:
|p1 − a1|+ . . .+ |pn − an|
|a1 − a|+ . . .+ |an − a|

(13.7)

with:

a =
1

n

∑
i

ai

p1, p2, . . . pn mean the predicted value for the test instances and a1, a2, . . . an the

actual values.

The formulas above give only an insight into the possible measure ways that

are applicable for trend mining. The final evaluation always depends on the final

model.

13.2 Experimental evaluation

From Section 13.1, we learn that based on our scientific method, the experimental

evaluation is relevant for our research, and that we should focus on the use case

and the test data in our particular case. Our particular use case is the financial

market, the German stock exchange (DAX). Our test data are web news about

the DAX in German language. We identified two algorithms as mainly relevant

for trend mining, the k-means clustering method and the LDA-based topic models.

And we want to test them together with our knowledge-based approach on the test

corpus. Section 13.1.1 lists the possibilities for the experiment’s directions, from

which we decide to focus on models’ ability to simplify the results’ interpretability.
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Section 13.1.2 describes the different approaches from which we take the goal-free

experimental evaluation. Below we describe our evaluation frame.

13.2.1 Evaluation frame

experimental
frame

input output

1. text corpus

2. models:
- LDA topic model
- k-Means clustering
- trend ontology

3. weighting functions

1. trends:
- topics over time
- topic fields description

2. filled trend template

3. trend probability estimation

Figure 13.1: Experimental frame

In general, we aim at testing the different possibilities that the particular algo-

rithms bring for trend mining. Based on the given algorithms, we propose to

summarize the possible analysis:

1. NLP-based document analysis: using NLP (see Chapter 12), we can derive

some simple information about the corpus.

2. probabilistic approach: applying LDA topic models, we can extract topics

for the given time window and predict the upcoming topics

3. statistical analysis: applying the k-Means clustering we can derive topic

clusters

4. combination of probabilistic and statistical approach: applying the k-Means

method with the LDA topic models, we can derive upcoming topic clusters
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5. knowledge-based ontology approach: applying trend ontology we can con-

struct the topic fields for the topics from the test corpus

6. knowledge-based statistical approach: applying trend indication functions,

we can extract the triggers for the document corpus

Obviously, much more combination and experiments are possible, however we

focus in general on the results’ interpretability while searching for the methods’

features that contribute to the interpretability, and their features which contribute

to the prediction. In Figure 13.1 we sketch the experimental frame that shows

on the left side the input – algorithms and the test corpus, and on the right side

the expected output – trends in forms of topics over time, topics interpretation,

the filled trend template and the trend estimation. Some of the experiments

conducted that build our experimental frame in the center of the Figure 13.1, are

described in the following. Further experimentation will be the subject of future

work.

13.3 Experiments conducted

In the following, we report chosen parts of our experiments conducted during

this thesis. All of the experiments were performed using the tremit, our trend

mining tool, which we briefly describe in A. The experiments presented here give

an insight into the possible ways how to proceed with the trend mining relevant

analysis of a given document corpus. They provide an interesting overview of

the particular raw results that one gets from the state of the art trend mining

algorithms by applying the methods to the (pre-processed) test corpus.

13.3.1 Corpus

For the experiments, we used different parts of the corpus, applying the algorithms

mainly on two corpus parts which we call the small corpus, consisting of 5,012 web

documents mainly reporting on particular DAX companies, and the big corpus,

consisting of 35,549 web documents about the general developments on DAX. We

conducted the experiments on different text parts of the documents, testing the

methods on documents’ title, its keywords, the abstract and the body content

(see also the listing 12.2 in 12.3.4 ). In some cases, when the given document part

was not in the corpus or many documents were described by the same document

part (e.g. the same keywords), the number of documents tested varied (e.g. often

it was possible only to test about 4,696 documents reporting on particular DAX

companies).
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Figure 13.2: Number of different NERs per Week.

13.3.2 NLP on the corpus

From the different NLP techniques (see their description in Chapter 12) applied

on the test corpus, we show in the Figure 13.2 to 13.6 the distribution of the

recognized named entities in the time window: 31st week of 2007 to 21st week of

2008. Figure 13.2 visualizes the number of named entities per week. The red part

of the graph relates to the recognized named entities (NERs) that are the names

of different organizations mentioned in the news. We see that the number of the

NERs relating to the organizations’ names is bigger than the number of NERs

describing persons (yellow), locations (green), and the miscellaneous NERs (blue).

However, it varies over the weeks. Figure 13.3 presents the NERs in percentages,

wherein the distribution is more clearly. The ’empty’ NERs weeks refer to our

missing articles in the corpus (see Figure 12.7 in Chapter 12). Figures 13.4 and

13.5 show the distribution of the NERs per day. What we can follow from all these

figures is that the analyzed news are reporting mostly on organizations, followed

by the locations and persons. Furthermore, the number of the particular NERs per

week (organization, location, person NERs) varies more than the number of the

same NERs per day, which looks as equal amount of information on organizations,

locations, persons, and the miscellaneous NERs.
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Figure 13.3: Percentage of NERs per week.

Figure 13.4: Number of NERs per day.
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Figure 13.5: Percentage of NERs per day.

Figure 13.6: Number of NERs in April 2008.
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13.3.3 Trend indication

The trend indication method as presented in Chapter 10 contains several steps

based on the particular weighting functions. In the following we focus on the

interestingness and the outliers values.

Interestingness

In Table 13.1, the summary of the interestingness values per month in the corpus

is presented. Below, we summarize the most interesting words from the beginning

of our time window (September 2007) and from the end (May 2008).

Terms Low.val. High.val. Diff.val. Days

September 2217 4.51E-04 0.101534 72 8

October 2518 3.97E-4 0.140191 90 13

November 2368 4.22E-04 0.140625 86 9

December 2607 3.84E-04 0.133154 80 5

January 1992 5.02E-04 0.149022 72 3

February 1757 5.69E-04 0.06716 46 6

March 3507 2.85E-04 0.098945 93 9

April 2746 3.62E-04 0.122101 87 2

May 2395 4.8E-04 0.13737 80 2

Table 13.1: Interestingness values: summary

The most interesting terms from the test corpus in September 2007 according to

the function output are presented below (21 highest scored terms):

organisch 4.512635379061372E-4 24 Sep 2007 22:00:00 GMT

filial 9.025270758122744E-4 18 Sep 2007 22:00:00 GMT

gebrach 0.0018050541516245488 23 Sep 2007 22:00:00 GMT

dresd 9.025270758122744E-4 23 Sep 2007 22:00:00 GMT

int 0.0013537906137184115 17 Sep 2007 22:00:00 GMT

abgeschloss 9.025270758122744E-4 23 Sep 2007 22:00:00 GMT

ins 9.025270758122744E-4 19 Sep 2007 22:00:00 GMT

jobgarantie 4.512635379061372E-4 23 Sep 2007 22:00:00 GMT

edelsteinvorkomm 4.512635379061372E-4 23 Sep 2007 22:00:00 GMT

veroffentlich 0.002256317689530686 18 Sep 2007 22:00:00 GMT

inn 0.0013537906137184115 23 Sep 2007 22:00:00 GMT

diamantbohrprogramm 4.512635379061372E-4 23 Sep 2007 22:00:00 GMT

verlier 9.025270758122744E-4 17 Sep 2007 22:00:00 GMT

san 9.025270758122744E-4 24 Sep 2007 22:00:00 GMT

bedeu 0.002707581227436823 17 Sep 2007 22:00:00 GMT

ing 0.004061371841155234 23 Sep 2007 22:00:00 GMT

visio 9.025270758122744E-4 18 Sep 2007 22:00:00 GMT
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sal 0.0013537906137184115 29 Sep 2007 22:00:00 GMT

nord 0.002256317689530686 18 Sep 2007 22:00:00 GMT

ind 4.512635379061372E-4 18 Sep 2007 22:00:00 GMT

inc 0.007671480144404332 17 Sep 2007 22:00:00 GMT

The most interesting terms from the test corpus in May 2008 according to the

function output are presented below (21 highest scored terms):

haltensw 4.175365344467641E-4 3 May 2008 22:00:00 GMT

einig 0.0016701461377870565 3 May 2008 22:00:00 GMT

insb 4.175365344467641E-4 30 Apr 2008 22:00:00 GMT

anlageurteil 4.175365344467641E-4 30 Apr 2008 22:00:00 GMT

bestatig 0.01837160751565762 30 Apr 2008 22:00:00 GMT

seak 4.175365344467641E-4 30 Apr 2008 22:00:00 GMT

konjunkturunabhangig 4.175365344467641E-4 30 Apr 2008 22:00:00 GMT

handel 0.0037578288100208767 30 Apr 2008 22:00:00 GMT

vorfeld 4.175365344467641E-4 3 May 2008 22:00:00 GMT

fertigstellung 4.175365344467641E-4 30 Apr 2008 22:00:00 GMT

wohl 4.175365344467641E-4 30 Apr 2008 22:00:00 GMT

uberschatt 4.175365344467641E-4 3 May 2008 22:00:00 GMT

kalliwoda 0.0025052192066805845 3 May 2008 22:00:00 GMT

bank 0.009603340292275574 30 Apr 2008 22:00:00 GMT

colorado 4.175365344467641E-4 3 May 2008 22:00:00 GMT

mess 4.175365344467641E-4 30 Apr 2008 22:00:00 GMT

research 0.01837160751565762 30 Apr 2008 22:00:00 GMT

guidanc 0.0029227557411273487 30 Apr 2008 22:00:00 GMT

cbs 0.0029227557411273487 30 Apr 2008 22:00:00 GMT

empfiehl 0.003340292275574113 3 May 2008 22:00:00 GMT

int 0.006680584551148226 30 Apr 2008 22:00:00 GMT

Since we experiment with the stemmed corpus, the output appears also stemmed.

However, a back-stemming is possible.

Outliers

In Table 13.2, the summary of the outliers values per month in the corpus is

presented. Below, we summarize the most interesting words from the beginning

of our time window (September 2007) and from the end (May 2008).

The most outlying terms from the test corpus in September 2007 according to the

function output are presented below (21 highest scored terms):

usd 72.22016172500157 17 Sep 2007 22:00:00 GMT

onvista 73.09600066456208 23 Sep 2007 22:00:00 GMT

nutrisyst 73.09600066456208 17 Sep 2007 22:00:00 GMT
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Terms Low.val. High.val. Diff.val. Days

September 226 1.385988 144.8752 526 8

October 2518 2.235465 222.7522 573 13

November 2358 2.838428 268.5888 556 9

December 2606 2.235465 198.8269 553 5

January 1991 2.080743 145.6746 525 3

February 1757 0.021026 194.2567 402 6

March 3507 2.078982 192.0817 630 9

April 2749 3.148583 221.3823 581 2

May 2384 2.713265 163.2804 535 2

Table 13.2: Outlier values: summary

sich 73.43245210287166 17 Sep 2007 22:00:00 GMT

allianx 73.82259990069717 18 Sep 2007 22:00:00 GMT

jahr 73.91827059992292 17 Sep 2007 22:00:00 GMT

commerzbank 80.333315608422 23 Sep 2007 22:00:00 GMT

bank 80.68549091335093 17 Sep 2007 22:00:00 GMT

den 84.34413901525676 17 Sep 2007 22:00:00 GMT

mrd 84.84496256129766 17 Sep 2007 22:00:00 GMT

mio 93.92502430125977 17 Sep 2007 22:00:00 GMT

abn 93.98361640900661 17 Sep 2007 22:00:00 GMT

amro 93.98361640900661 17 Sep 2007 22:00:00 GMT

eur 95.70093254178073 17 Sep 2007 22:00:00 GMT

tru 106.32145551209031 23 Sep 2007 22:00:00 GMT

gem 106.32145551209031 23 Sep 2007 22:00:00 GMT

north 106.32145551209031 23 Sep 2007 22:00:00 GMT

web 107.13498820102258 23 Sep 2007 22:00:00 GMT

gerry 107.13498820102258 23 Sep 2007 22:00:00 GMT

deutsch 109.40934625794432 17 Sep 2007 22:00:00 GMT

euro 144.87519080947405 17 Sep 2007 22:00:00 GMT

The most outlying terms from the test corpus in May 2008 according to the

function output are presented below (21 highest scored terms):

funkwerk 79.74109163406773 3 May 2008 22:00:00 GMT

den 80.72939020031718 30 Apr 2008 22:00:00 GMT

euro 81.39055663453598 30 Apr 2008 22:00:00 GMT

chemie 84.67486078710405 30 Apr 2008 22:00:00 GMT

unvera 85.86711063094654 30 Apr 2008 22:00:00 GMT

york 86.19351058928687 30 Apr 2008 22:00:00 GMT

upda 86.83673208391096 30 Apr 2008 22:00:00 GMT

angehob 86.95852142700998 30 Apr 2008 22:00:00 GMT



136 Chapter 13. Results

Figure 13.7: The most interesting values of term EUR.

palmol 93.03127357307902 30 Apr 2008 22:00:00 GMT

hab 95.53175471267494 30 Apr 2008 22:00:00 GMT

wack 97.06663000555179 30 Apr 2008 22:00:00 GMT

quartal 106.6943988580011 30 Apr 2008 22:00:00 GMT

citigroup 112.65798292066195 30 Apr 2008 22:00:00 GMT

eur 116.32613352061279 30 Apr 2008 22:00:00 GMT

mio 116.73538734585144 30 Apr 2008 22:00:00 GMT

erst 121.05107972402328 30 Apr 2008 22:00:00 GMT

freseniu 123.16867520451093 30 Apr 2008 22:00:00 GMT

gfk 124.99081956785967 30 Apr 2008 22:00:00 GMT

lehma 127.27165593304996 30 Apr 2008 22:00:00 GMT

broth 144.83483676980154 30 Apr 2008 22:00:00 GMT

usd 163.28036563913398 30 Apr 2008 22:00:00 GMT

For the two outliers, EUR and USD, we checked their interestingness values over

the time window. Figure 13.7 presents the curve for the monthly interestingness

value of EUR, and Figure 13.8 for the USD.

What we can follow from the brief presentation of the trend indication method’s

result is that applying the interestingness value, we can extract the terms that

are potentially relevant for the trend. Applying the outliers weighting function it

is possible to recognize the potential triggers for a trend. In particular, the terms:

USD, and Lehman Brothers that appeared to be the most outlying in April and
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Figure 13.8: The most interesting values of term USD.

Figure 13.9: The most interesting values of term China.
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Figure 13.10: The most interesting values of term Lehman.

May 2008, were indeed significant in German business news few months before

the Lehman Brothers insolvency (in September 2008) was announced. Figure

13.10 illustrates the interestingness for Lehman. Similar to the USD, Lehman

appears to be on-topic in the last quarter 2007. Combining the respective most

outlying terms with the most interesting once can bring some more insights into

the particular emerging topics in the test corpus. Regarding the curves presented

in Figures 13.7 and 13.8, we can follow that the analyzed news are more related

to the EUR than to the USD (EUR’s interestingness value lies above the USD’s

value) however, both terms are significantly important in the test corpus.

13.3.4 Trend ontology

Based on the trend ontology as described in Chapter 9, we tested the corpus

particularly with regard to extracting information about the companies mentioned

in it. In the following, we present the examples of the topic fields for three terms:

Germany, Google, and Citigroup that were recognized as relevant topics according

to our trend ontology.

trendonto:#Germany (9137) has Topic

trendonto:#Financial : 1142

trendonto:#buy : 1003

trendonto:#MachineBuildingIndustry : 650



13.3. Experiments conducted 139

trendonto:#Share : 606

trendonto:#StockPrice : 562

trendonto:#Up : 520

trendonto:#Industry : 510

trendonto:#Investment : 468

trendonto:#Supplier : 422

trendonto:#AutomobilIndustry : 414

The terms at the top of the examples are the main concepts that are recognized

as topics. Depending on their structure, the sub-concepts derived based on the

ontology, are additionally presented with their frequency values. Regarding the

concept Citigroup, based on the simple ontology test, we can follow that this

concept is a topic with the structure that contains the following terms (that are

also ontology concepts themselves): USA, service, bank, broker, buy, Germany,

sell. The values provided with the concepts describe their weight in the document

corpus – the higher the value, the stronger the appearance in the corpus and the

probability that the given concept is an emerging topic.

trendonto:#Google (154) has Topic

trendonto:#USA : 40

trendonto:#Service : 40

trendonto:#InformationTechnologies : 40

trendonto:#Stock : 16

trendonto:#Hold : 6

trendonto:#Share : 6

trendonto:#Up : 4

trendonto:#StrongUp : 2

Additional to the topic fields we focused on the buy and sell signals for the

respective companies. These are the terms up, hold, sell which express the

respective stock recommendation contained in the news.

trendonto:#Citigroup (344) has Topic

trendonto:#USA : 62

trendonto:#ServiceProvider : 54

trendonto:#Bank : 42

trendonto:#Broker : 42

trendonto:#Buy : 36

trendonto:#Germany : 14

trendonto:#Sell : 10

The term China was one of the outliers appearing throughout the time window.

The curve based on its interestingness value is shown in Figure 13.9. It looks like

developing in the opposite direction to the USD curve in the beginning of the
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time window – the more web news are about China the less are talking about

USD. From 2008 January it appears that China is the frequent term in the news

about DAX and USD is off-topic. Below we present the topic structure for the

terms China and USA.

trendonto:#China (152) has Topic structure:

trendonto:#ServiceProvider : 20

trendonto:#Up : 16

trendonto:#FederalBond : 12

trendonto:#MAN : 10

trendonto:#DowJones : 10

trendonto:#hold : 8

trendonto:#Share : 8

trendonto:#Hongkong : 6

trendonto:#Company : 6

trendonto:#AutomobileIndustry : 6

trendonto:#Industry : 4

trendonto:#EU : 4

trendonto:#Crisis : 2

trendonto:#Asia : 2

trendonto:#Strong_Down : 2

trendonto:#USA (339) has Topic structure:

trendonto:#Share : 58

trendonto:#Down : 28

trendonto:#Up : 18

trendonto:#Company : 16

trendonto:#Kurs : 16

trendonto:#FederalBond : 16

trendonto:#InformationTechnologies : 16

trendonto:#_Neutral : 10

trendonto:#Light : 10

trendonto:#Euro : 8

trendonto:#AutomobileIndustry : 8

trendonto:#Pharma : 8

trendonto:#MAN : 6

trendonto:#Bank : 6

trendonto:#EU : 6

trendonto:#Volkswagen : 5

trendonto:#Crisis : 4
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trendonto:#Commerzbank : 4

For the evaluation purposes regarding usefulness and practicability the trend

ontology has been filled with two independent corpora of stock market specific

documents. They contain over 5,000 and 16,000 documents respectively (sub-

sequently first and second corpus) in German language. The documents of the

first corpus are share and market analyses by professional stock market analysts,

the second a more general corpus consists of financial blog entries. Several basic

questions have been identified as relevant for trends in general and specifically

stock market trends.

13.3.5 Topic models

We tried out different settings for testing the topic models. In order to have more

overview of the document corpus, we included also tests with several documents

that were time-stamped with the dates earlier than the main test corpus, e.g.

2005. Figure 13.11 shows a timeline with a snippet of topics from 2006 and 2007

presented on it. The topics, represented by single terms, are grouped together.

The red marked topics are the new topics in the corpus, and the blue marked

topics are the topics that repeat over the corpus. The topics: dax, deutlich,

mittag, nachricht, neu, schluss, spitz, volkswagen are the repeating topics in 2007

and topics: allianz, nachricht, network, nokia, plan, tabelle, tochter, zahl are the

emerging once in 2007. The timeline snippet presented in Figure 13.11 is based

on the tests with 4,696 documents from DAX, using the two-years time window

and the time slice of one month. The number of topics2 is 10 per year and 3 per

month. We mainly analyzed the documents’ titles in this experiment.

Figure 13.11: Timeline 2006 to 2007 – a snippet

2this is one of the parameter in the implementation
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Figure 13.12 presents the prediction of the possible upcoming topics based on the

results calculated by the topic modeling experiment presented above. We applied

a similarity function to derive the potential upcoming topics. The Figure 13.12

shows the resulting similar topics, grouped together according to their similarity.

Figure 13.12: Topics in 2006 and 2007 – a snippet

In Figure 13.13, a part of the timeline with topics from the corpus in 2005

and 2007 is presented. Important seems the content of the topics that starts to

appear in November 2007. There are predictions of upcoming topics: emfi, gold,

heute, hongkong, jahr, london, peking, prozent, rohstoff. However, the results of

the topic model are particular topics listed in the groups that are difficult to

interpret without any further information.

Figure 13.14 shows grouped similar topics from 2007 and 2008. This analysis

was in particular based on the keywords-based description of the web documents.

We can see, that the certain keywords: aktie, aktiencheck, isin are repeating and

therefore make a reliable prediction even more difficult.

13.3.6 K-means clustering

The k-means clustering method has been tested on 35,804 documents analyzing

the document’s title and the document’s body. Different numbers of cluster were

chosen and the number of 100 clusters and 100 keywords per vector were helpful

in achieving informative results. The following cluster summarization shows
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Figure 13.13: Timeline – a snippet with topics in November 2007

exemplary the results of document’s description keywords and abstracts clustering.

The results are interesting but less useful, since many keywords are not informative

regarding the potential trends.

Year 2005, size: 66

0 archiv letzt podcast blog bull imagelooop

1 meiersonline.d startseit qype.com meiersworld.d fotos lieblingscafé

2 blog rss navigation eintrag itun frankfurt

Year 2006, size: 106

0 bull archiv letzt eintrag erweitert shoppero

1 blog meiersonline.d rss startseit weblog meiersworld.d

2 feed navigation lieblingscafé qype.com itun podcast

Year 2007, size: 12763

0 borsego.d punkt nachricht heut gegenub erwartet

1 aktull verschied themenbereich nachricht euro log

2 isin akti wkn usd analyst aktiencheck

Year 2008, size: 22869
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Figure 13.14: Topics September 2007 to May 2008 – a snippet

0 new deutsch erst dollar quartal unternehm

1 aktull verschied themenbereich nachricht bull com

2 aktiencheck isin wkn akti analyst unverandert

More informative cluster structure can be achieved by clustering the documents

according to the document’s specific description keywords. Below we present the

selected clusters from the analysis on the general news corpus from September

2007 to May 2008.

Cluster 1

aktie börsenbrief daytrading devise empfehlen indiz kauf kostenlos

Cluster 52

rohstoff finanz bank buy verkauf kauf usd analyst bau

Cluster 61

deutschland halt devise bank buy neu dienstleist akkumulieren

Cluster 78
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Figure 13.15: Clustering documents 2007 to 2008 – ThemeRiver visualization

Figure 13.16: Topics from clustering 2007-2008

usa software neutral outperform buy overweight market internet

The different clusters can be interpreted as belonging to the general topics.

However, it is difficult to understand the topics without further information

about the particular terms identified as cluster components. In Figure 13.15 we

illustrate the clustering results from another experiment by using the ThemeRiver

[Havre et al., 2002] visualization tool. A visualization tool is very helpful for

interpreting the potential trends.

13.4 Summary

From NER’s distribution in the corpus, we can derive the information about the

potential topics contained in the documents of the test corpus. This information
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is only about whether the news are reporting more on organizations or locations

or persons.

Applying the trend-indication weighting functions such as outliers or interest-

ingness we can extract the information about the potential trend triggers. These

are particular terms that, classified into the groups by their respective values,

belong to a general emerging topic. Additionally, we can observe how they vary in

the corpus over time regarding their interestingness values. More possibilities are

given by applying a combination of the different weighting functions, in particular

the additional information about the terms and their trend-indication values.

Applying the trend ontology to the test corpus we can derive the topic

structures for the topics appearing in the given time window. The topic structure,

consisting of fields of concepts that are mentioned in the news similar frequently,

gives us information about the particular topics. Additionally, the concepts’ values

enhance the information about the topic structures.

Applying topic models to the test corpus we can extract topics that describe

the documents and, based on the topics in the corpus, predict the upcoming

topics. Applying similarity functions to the topic model’s results, we can derive the

information about which topic groups belong together and, based on it, enhance

the prediction of the potential trends. The topics are described by words and

does not contain any further information.

Applying the k-means clustering method to the test corpus, we can extract the

information about the topics cluster over the time. With additional visualization

tool, we can illustrate how the clusters are changing over time. The summarization

of the two general features is given in the Table 13.3. Our methods offer a good

interpretability and the possibility of prediction. The LDA topic models are good

at prediction but they lack in interpretation possibility. The k-means method is

interpretable, however the possibility for the interpretation is weak.

Interpretability Predictivity

Trend-indication +X +X
Trend ontology +X -X
LDA topic model +X
k-means clustering -X

Table 13.3: Summary of the algorithms’ features
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Outlook

This chapter summarizes the thesis. It gives an overview of the research done,

describes what the research was about and names the critical aspects of the research

results presented in this thesis. It ends with a summary of the issues that are left

to be the subject of future work.

14.1 Summary

This thesis is devoted to trend mining. It sought a precise definition for trend

mining, and asked whether a knowledge-based approach for mining trends is useful

for the problem of mining trends in texts. Based on the relevant work, the goal of

this research was to define trend mining mainly focusing on texts, to summarize

research relevant for trend mining, to offer the theoretical frame, to look for a

general trend model and to propose a knowledge-based approach for trend mining.

These goals have been fulfilled and at the end of this thesis two main aspects

are summarized in 14.1.1 and 14.1.2. The end of one project is always a good

opportunity for beginning another research project, particularly because there is

a possibility to learn from the critical aspects of the most recent research. And

based on the answers to the questions asked in the beginning, almost always new

questions emerge at the end.

In 14.2 we show the limits and summarize the critical issues of this research

and in 14.3 we discuss the possible future work on trend mining.

14.1.1 Trend mining as a research field

Trend mining is a research field in its initial stage, existing in several different

approaches distributed among the information retrieval, data mining and temporal

data mining research. Trend mining can evolve into a separate research field.

The first half of this thesis was focused on the methods and approaches from the

147
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related research, on the definitions of a trend and trend mining. It showed how

approaches from information retrieval can be adopted for mining trends in texts.

The dimensions of time and knowledge are important for the analysis of many

kinds of texts and data with a temporal aspect (and whenever a trend in the data

progresses over time is relevant). Trend mining, in this thesis based on text and

data, can be understood in a broader context, including multimedia and video

data. Obviously, trend mining in texts requires different methods than trend

mining in the real valued data or in the video analysis. However, the methods are

based on similar assumptions about trends. Developing more research on trend

mining could bring more interesting insights into the possibilities that trend mining

methods bring for different use cases. In particular, we see two possible main

directions for how to sustain the trend mining research – one is multidisciplinary,

and the other is the engineering direction. As for the multidisciplinary direction,

it would be interesting to combine more insights from sociology and financial data

analysis as a basis for trend mining algorithms. To continue the research in the

engineering direction would mean to focus on practical solutions for the different

particular use cases, and different particular data sets.

In Section 4.2.3 we proposed a definition of a trend in the context of this

research. When extending the scope of the trend mining, we should consider also

an extended understanding of what a trend is. In general, to mine a trend means

to observe patterns of changes that are based on certain variables (e.g. people,

numbers, words, images) and which lead to a general change – the emerging trend

– in the system which is depending on these variables.

14.1.2 Knowledge-based approaches to trend mining

Basically, our approach assumes that mining trends with knowledge incorporates

the expectation that we are looking for the trend’s trigger and the trigger’s context,

and that we can relate them both, concluding the trend’s amplitude within a

given time window, all of this will help us in understanding the trend (in texts).

The proposed trend template shows a formalization of this idea, and the trend

ontology and trend indication methods show its possible implementation. From

the experimental part of this research we see what advantages this approach

brings for the interpretation of the trend mining results. On the other hand, we

can clearly see that the probabilistic topic modeling can be successfully applied

for finding out different topics emerging in different time periods over a text

corpus, thus for finding the trends. A combination of the knowledge-based and

probability-based approaches could be very useful for trend mining. It would be

interesting to find out how much a priori knowledge is good and useful for the

task of mining trends while experimenting with different use cases.
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14.2 Critical aspects

In general, we identify the following critical aspects of our research:

1. One critical aspect is the problem of the so called “ex-post” model versus

the so called “real-time” model. An ex-post model for mining trends relies

on a data set from the past, that is processed offline. This model does not

contain any time restriction, can be performed offline at any time and serves

as the ex-post analysis of a trend. A knowledge-based approach is, if based

on the ontology, always somehow related to an ex-post model in which we

learn from the historical data – an ontology has to be created offline and,

once created, it represents the “old” knowledge. However, it is possible

to adjust this approach for a real-time analysis (see also our discussion in

Section 7.2).

2. Another critical factor is the amount of data that can be mined for trends.

We tested our approach on a rather small data set, consisting of at most

40,000 web documents. Most of the test sets used for the trend mining tests

are rather small (to our best knowledge, the largest test sets are less than

50,000 web documents). Going from the small into the “big data” would

increase the requirements on the algorithms’ performance and complexity. In

our research we didn’t put a high expectation on decreasing the complexity of

our algorithms. It would be interesting to develop more implementations of

the trend template and to apply them to available big data sets while focusing

on the best possible complexity classes of the implemented algorithms (if

there are any public big data sets available for tests).

3. Directly connected to the data set size, the problem of amplified trends

as well as the emergence of parallel trends arises, which is another critical

issue of trend mining. In particular, when we mine trends in test sets

from different sources or if the test sets are based on social network data,

most probably the phenomenon of trend amplification and parallel trends

will occur. On the one hand, it is then possible to mine several different

trends in one data set. On the other hand, some less important trends may

be amplified through the users or sources just repeating particular news.

Considering the aspects of amplified trends, or parallel trends could enhance

the knowledge-based trend mining approach.

4. The distinction between the parallel trends and the identification of the

amplified trends is possible by taking users’ feedback into the evaluation of

trend mining methods. The evaluation of trend mining research has been

described in [Kontostathis et al., 2003] as critical. In this thesis, we offer an

experimental evaluation, creating the use case based goal free experimental
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setting. However, user feedback on trend mining results would definitely

enhance the evaluation process.

The last issue that should be mentioned here, sentiments vs. trends, is not

really critical, but it could become so if there is no clarity about the difference

between sentiment mining and trend mining. Often, the expectation for trend

mining is the same as on for sentiment mining. This is problematic. Sentiment

mining is about mining the emotional value (e.g. positive or negative customer

feedback) of statements. Trend mining is about mining the emerging topics from

texts. Sentiment mining could be used in order to understand trends, but mining

sentiments is not equal to mining trends. The use case of mining trends in market

research that we describe in 11.1.2 is suitable for both, sentiment mining and

trend mining.

14.3 Future work

We close this thesis with several different ideas for extending our research. In the

following we summarize the main future work issues:

1. It would be interesting to work on a combination of methods from mathe-

matical trend analysis and from common techniques of the chart analysis

for financial markets data into the text-based trend mining. These could be

the regression methods or different trend test methods, i.e. Mann-Kendall

trend test, seasonal Kendall test, Spearman’s rho test [Yue et al., 2002] Holt-

Winter’s method [Chatfield, 1978]. These methods, developed explicitly for

the real valued time series, could be applied in trend mining.

2. In general, when combining more methods from applied statistics, it would

be useful to extend the research on trend mining focusing more on the time

series analysis – one possibility of trend analysis in web documents is to create

time series from texts and to apply the methods for correlation of the time

series, i.e. Box-Pierce test and similar methods [Makridakis et al., 1998]

measuring skewness, kurtosis, self-similarity (as discussed in Section 4.1).

Regarding the text based time series, the most challenging problem is the

selection of web document’s attributes on which the time series can be

constructed.

3. Different extensions to the idea of the trend template are possible, such as

by combining it with a decision tree algorithm or probability based methods.

It would be helpful to develop more trend template implementations and to

test them.

4. Our test tool presented in Appendix A is still under development and we are

currently adjusting it in order to enable more flexibility in testing different



14.3. Future work 151

test corpora. It would be valuable to focus on other use cases and trend

mining scenarios in order to develop reliable validation techniques for the

different tests.

5. It would be helpful to extend the review of the relevant publications, tools

and algorithms in trend mining that are currently under development. This

would allow for a better understanding of the trend in trend mining research.

Looking at the critical aspects of our research as listed in Section 14.2, every

single critical issue can be incorporated in the future work issue.

0List of URLs referred to in this thesis and shortened with service TinyURL.com
(accessed on 23-Jul-2013):

1 https://www.facebook.com/Rockhampton.CQ.Floods as http://tinyurl.com/on2k3lj, p. 27

2 http://www.daviddlewis.com/resources/testcollections/reuters21578/ as http://tinyurl.com/len8xc2,
p. 36

3 http://www.godmode-trader.de/artikel/us-dollar-vorsicht-euro,690942 as http://tinyurl.com/
mnx83ea, p.108

4 http://www.nytimes.com/2008/03/17/business/17fed.html?_r=2& as http://tinyurl.com/k3xb3lm, p. 108

5 http://video.mit.edu/watch/discovering-the-scientific-method-mit-engineering-k-12-video-pilot-8073/
as http://tinyurl.com/nmwhwlt, p. 157
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tremit: the Trend Mining Tool

The idea of a trend mining tool emerged during this thesis. The main reason

for creating our tool is the need for a tool with which new algorithms can be tested

and in which state-of-the-art algorithms can be integrated easily. The trend mining

tool – tremit – presented here is aimed to be a sandbox for every researcher, data

scientist and developer interested in trend mining on web documents. It is under

ongoing development and it implements the approaches presented in this thesis

offering a simple GUI as well as easily extendible interfaces.

Tool description

This is the short version of the tremit description1.

Goal

The primary goal of our trend mining tool is to have a flexible and extendible tool

for mining trends primarily in a web document corpus. The secondary goal is to

develop a general trend mining tool with several different built-in functionalities

and tests with use cases on different data sets. Figure A.1 shows the GUI of

tremit.

Functionality

The main functional requirements on the trend mining tool are listed as follows:

1The detailed description including explanation of the demo-software https://sites.google.
com/site/tremitool/ to appear
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Figure A.1: tremit - GUI

1. Processing of data: this function allows for the different processing techniques

on the web documents, including the common NLP analysis and simple text

mining.

2. Calculation of a trend: under this function we summarize topic modeling

and the documents’ weighting functions that allow for calculating emerging

topic areas.

3. Linking of knowledge: knowledge linking is the functionality that allows for

the extending given parts of documents into graphs, provided the ontology

concepts.

4. Generating of the trend model: this function allows for the generating of

a model, such as a trend ontology or a clustering method, which can be

applied on further data sets in order to calculate a trend.

Moreover, the following functionalities are included:

1. selecting of trend features

2. learning trend features

3. creating trend descriptions

4. extracting topics

5. deriving topic clusters

The tool contains the following help functions:

1. parsing

2. storage

3. calculation of best time window
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4. visualization

5. read/write ontology

6. extract knowledge

Algorithms

The following algorithms are implemented in the tremit:

• topic models based on LDA (adjusted implementation)

• k-means clustering combined with topic models (adjusted implementation)

• trend ontology

• trend indication method

Data

As a test corpus, a chosen part of the corpus described in Chapter 12 is included

in the tool.

Language

The demo tool has been developed with a GUI and results’ representation primarily

in German (test web documents are in German). An English version is under

development.

Architecture

The general architecture shows the main functionality of tremit. The functionality

is covered by several components that are described in the following.

Components

Based on the general architecture of tremit, we describe the components of the

tool corresponding to the respective functionality as presented above.

1. Data processing: Data processing consists of the following components:

• parser component

• db component
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• store
• best time window
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Figure A.1: Architecture

The general architecture shows the main functionality of TreMiT. The
functionality is covered by severla components that are described in the following
Section.

XML
XML
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Input

Output

RSSXHTML

Ready to use time-based trend graph of knowledge

.xhtml.dot.csv.rdf.arff

Figure A.2: Architecture

It is merged in the packages: tremit.dataprocessing.parser and tremit.processing.db.

The main classes of data processing are visualized in Figure A.3.

2. Trend calculation: Trend calculation unites all functions needed for

trend estimation and consists of the following components:

• indication calculator

• features extractor

Packages: tremit.trendcalculation.indication and tremit.trendcalculation.features.

The main classes of trend calculation are visualized in Figure A.4.

3. Knowledge linking:

• trend ontology reader

• trend ontology writer
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• trend ontology learner

• knowledge extractor

• knowledge connector

• help: ontology analyzer

Packages: tremit.linking.knowledge and tremit.linking.ontology. The main classes

of trend calculation are visualized in Figure A.5.

4. Model generator:

• topic models converter

• k-means clustering converter

• help: topic models analyzer

• help: cluster analyzer

Packages: tremit.modelgenerator.cluster tremit.modelgenerator.topic. The main

classes of trend calculation are visualized in Figure A.6.

Additionally a visualization package tremit.viz contains all extraction classes

and methods for graph creation. Furthermore a helper package tremit.analyzer.*

contains the helpful components for analysis of ontology and analysis of generated

models. The package tremit.user.* provides interfaces for functionalities that are

dependent on users.

Operation mode

Tremit is a a tool with three modes of operation:

• command line

• GUI

• Java API (later)
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Figure A.3: Main classes in tremit.dataprocessing.*

Figure A.4: Main classes in tremit.trendcalculation.*
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Figure A.5: Main classes in tremit.linking.*

Figure A.6: Main classes in tremit.modelgenerator.*
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B
Zusammenfassung und

Kurzlebenslauf

(§7 Abs. 6 – Promotionsordnung des Fachbereichs Mathematik und Informatik der Freien

Universität Berlin, Stand 2007)

Zusammenfassung

Ein Trend im Kontext des Information Retrievals (IR) ist ein Themengebiet, das

über einen Zeitraum an Nutzwert und Interesse gewinnt, wie z. B. das allgemeine

Thema Finanzkrise im Zeitraum 2008-2012 oder Arabischer Frühling im Zeitraum

2010-2011.

Es gibt Verfahren, verankert in Bereichen des Data Minings, Text Minings und des

Maschinellen Lernens, die zur Lösung des Problems der Trenderkennung in Texten

herangezogen werden. Zu den oft verwendeten gehören die probabilistischen Topic

Models sowie verschiedene Clusteringverfahren.

Die Schwachstellen der existierenden Forschung über automatische Trenderken-

nung in Texten liegen in:

1. inkonsistenten Definitionen des Trends

2. fehlendem wissenschaftlichen Ansatz des Trend Mining

3. fehlendem Bezug zum expliziten Wissen und damit schlechter Interpretier-

barkeit der Ergebnisse

Der wissenschaftliche Beitrag dieser Arbeit besteht in dem Vorschlag, die Forschung

zur automatischen Trenderkennung aus der Sicht des Trend Mining zu betrachten,

dessen Definition in dieser Arbeit vorgeschlagen wird.
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Als Lösung für das Problem der schlechten Interpretierbarkeit der Ergebnisse

von gängigen Trenderkennungsalgorithmen wird trend template vorgeschlagen,

das ein wissensbasierter Ansatz für trend mining ist. Ausgehend von diesem trend

template werden zwei Implementierungsrichtungen gezeigt: die Trendontologie

und das Trend-Indication-Verfahren.

Die Trendontologie funktioniert nach dem Prinzip eines A-priori-Modells und

ermöglicht die Entdeckung einer Trendstruktur in dem Webdokumentenkorpus.

Tests mit diesem Verfahren auf dem Testkorpus zeigen, dass Trenderkennung

mit einem A-priori-Modell unter Einbezug von explizitem Wissen, zu qualitativ

besseren Ergebnissen, vor allem in Hinsicht auf die Interpretierbarkeit, führt.

Das Trend-Indication-Verfahren baut auf den zeitbasierten Gewichtungsfunk-

tionen auf und konzentriert sich auf die Selektion der Trend Features aus den

Webdokumenten. Mithilfe dieses Verfahren wird die Dimension der zu unter-

suchenden Daten im Hinblick auf die Trenderkennung sinnvoll reduziert und somit

nur die zeitrelevante Information aus den Texten für weitere Analysen bereit-

gestellt. Die Tests mit diesem Verfahren zeigen, dass zeitrelevante Trendbegriffe

alleine durch geeignete Gewichtungsfunktionen gut aufgedeckt werden.

Beide Methoden werden in dem tremit (TREnd MIning Tool), das für diese

Arbeit entwickelte Testtool, implementiert und auf dem Testkorpus getestet. Der

Testkorpus besteht aus 35.635 Wirtschaftsnachrichten und 4.696 DAX-Berichten

des deutschsprachigen Webs aus dem Zeitraum September 2007 bis April 2008. Die

Ergebnisse werden mit den Ergebnissen der gängigen Verfahren – LDA-basiertem

Topic Model und k-means Clustering – auf dem gleichen Korpus verglichen und

im Experimentierteil der Arbeit diskutiert und evaluiert.
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Kurzlebenslauf

Der Lebenslauf ist in der Online-Version aus Datenschutzgründen nicht enthalten.
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