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Zusammenfassung

Diese Arbeit behandelt eine Funktional-Differentialgleichung für die effektive Wirkung
von Quantenfeldtheorien, erstmals hergeleitet von Bryce de Witt. Das Ziel war es, diese
Gleichung, die einen alternativen Zugang zu Quantenfeldtheorien bietet, zu lösen. In
dieser Arbeit ist es gelungen, eine formale Lösung dieser Gleichung in Form einer Schleife-
nentwicklung zu finden. Die Lösung ist insofern formal als sie die nackten, also nicht
renormierten Parameter enthält. In diesem Zusammenhang werden weiters einige Prob-
leme diskutiert, die bei der Definition der Gleichung selbst auftreten. Glücklicherweise ist
Renormierung für gewisse Feldtheorien nicht erforderlich, die frei von Divergenzen sind,
wie etwa einige spezielle supersymmetrische Theorien. Die eingangs erwähnten Tech-
niken werden angewandt, um die effektive Wirkung des N = 1 Wess-Zumino-Modells
in zwei Dimensionen zu ermitteln. Das Ergebnis wurde bis zur 2-Schleifen-Ordnung,
also bis zur Ordnung ~2 überprüft. Der Versuch, diese Lösung auch auf die supersym-
metrische N = 4 Yang-Mills-Theorie anzuwenden, scheiterte in Ermangelung eines off-
shell-Superraum-Formalismus für dieses Modell, und es wurden lediglich einige mögliche
Lösungswege über den Lichtkegel-Superraum-Formalismus und seine Impulsraumdarstel-
lung diskutiert. Weiters wurde die de Witt-Gleichung auf die Liouville-Feldtheorie ange-
wandt, eine wichtige zweidimensionale konformale Feldtheorie, die in den letzten Jahren
trotz offener Probleme häufig diskutiert wurde. Einige dieser offenen Punkte wurden
mithilfe der de Witt-Gleichung analysiert. Mit der Schwinger-Dyson-Gleichung der null-
ten Mode, die äquivalent zur de Witt-Gleichung ist, war es möglich, die Polstruktur der
Korrelationsfunktionen der primären Operatoren dieser Theorie zu untersuchen. Die Ex-
istenz einer dualen Gleichung gibt weitere Aufschlüsse über die Struktur der Korrelations-
funktionen dieser Theorie von einer sehr unterschiedlichen Perspektive. Im Zuge dieser
Erörterungen werden einige relevante Konzepte eingeführt, die für die durchgeführten
Berechnungen und die Diskussion der Ergebnisse von Nutzen sind. Die Dissertation en-
det mit einer Interpretation der Resultate und einem Ausblick auf offene Fragen, die in
zukünftigen Arbeiten behandelt werden sollen.
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Abstract

In this work we looked at a functional differential equation, written down by Bryce De-
Witt, which is an equation for the Effective Action in Quantum Field Theory. The goal
was to solve this equation, which gives a different perspective to approach Quantum Field
Theory, than the usual path integral approach. In our work, we were able to write a for-
mal solution for this equation, in terms of a loop expansion. It is formal in the sense,
that all the parameters in the solution are bare parameters, and not renormalized ones.
In this context we also discussed some problem with defining the equation itself. Luck-
ily for some field theories, there is no need for renormalization, as they are completely
free of divergences. These are some special supersymmetric theories. We employed this
technique for writing down the Effective Action for the N = 1 Wess Zumino model in
2 dimensions, which is a finite model, and checked it to 2-Loops i.e. to order ~2. Then
we tried to employ this solution for N = 4 Super Yang Mills theory in 4 dimensions,
but due to lack of an off-shell superspace formalism for this model, we were not able
to do this, although we discussed some possible ways of doing this in Light Cone su-
perspace formalism, and its momentum representation. Next we used this equation to
study Liouville Field theory. This being a very important 2 dimensional conformal field
theory, which has been much studied in the past few years, although there are some open
points which are not yet understood. We employed this equation to analyze some of this
questions. Firstly we wrote down the zero mode Schwinger Dyson equation (equivalent
to the DeWitt equation). Then using this we were able to analyze the pole structure of
the correlation functions of primary operators in this theory. Arguing the existence of
another dual equation, we were able to shed some light on the structure of the correla-
tion functions in this theory, from a very different perspective. During the course of this,
we will introduce some relevant concepts, which will be useful in our discussion of the
calculations and results. In the end we conclude with discussion of the results and some
open questions, which we would like to address in the future.
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Chapter 1

Introduction

Quantum Field Theory is a very interesting subject. It came about, when physicists tried
to merge Quantum Mechanic with the theory of Special Relativity. Quantum Mechanics
was the theory which came about to describe the wave-particle dual nature of matter (and
light as a matter of fact). It probably began in the very beginning of the 19th century with
the work of some great minds, like Max Planck (black body radiation), Albert Einstein
(Photo electric effect), Niels Bohr (Hydrogen Atom) etc.. The mathematical frame work
for the quantum theory was set up by Heisenberg and Schrodinger as we all know. Then
Dirac wrote down his relativistic wave equation, which describes the electron and also the
canonical quantization scheme. Then it really took into action, as Feynman, Schwinger
and others constructed the Path Integral Formulation of quantum field theory, with the
help of which they where able to construct Quantum Electro Dynamics. After that many
people contributed to construct the Standard Model of particle physics which describes
the known world around us. A key ingredient of all this was that their were divergences in
quantum field theory, which made no sense. These divergences occurred while computing
scattering amplitudes of particle. Then the marvelous idea of Renormalization arrived.
Worked on by Gell Mann, Wilson, Gross, Politzer, Wilczek and others, they constructed
the frame work that we now are accustomed with. Then came Supersymmetry and other
ideas, and advances in the field kept on growing and growing. This short history of this
vast subject is really not justified, but the history itself is so vast that describing it in
proper way will take us very long. Instead we intend now to discuss the key concepts
that we utilize for our study. In this chapter we will give a brief introduction to these
key concepts, so that one can understand in words, what our goal is.

Quantizing a Classical System

As quantum mechanics is understood as a more fundamental theory of nature, the ques-
tion arises, if one is given a classical system, how does one construct a quantum theory out
of it. As we know a classical system is described by some variables, generally coordinates
(qi) and momenta (pi)or velocity (q̇i). From this variables one can construct the action
S, a functional of qi and q̇i, whose minimization gives the equations of motion, which
provides the dynamics of the system. The action itself is the time integral over a func-
tional L, called the Lagrangian of the system. In simple terms this is the kinetic energy
minus the potential energy of the system, while another known quantity the Hamilto-
nian H, is the kinetic energy plus the potential energy of the system. The Hamiltonian
itself is expressed as the Legendre transform of the Lagrangian as the variable describing
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Chapter 1. Introduction

the two functions are the (qi, q̇i) and (qi, pi) respectively. Now mathematical frame work
of classical mechanics tells us that the Hamiltonian can be expressed in terms of any
canonical variables, (Qi, Pi) which are related to the previous set (qi, pi) by a canonical
transformation. A canonical transformation is one which keeps the form of Hamilton’s
equations invariant. Nevertheless once this mathematical structure is set up, one more
or less has complete understanding of the classical system. The idea proposed by Dirac
for quantizing a system, is that one promotes, the canonical variables to operators (de-
noted byˆsymbol), and then the commutation relation between these operators is given
as follows:

[Q̂i, P̂i] = i~{Qi, Pi}P.B (1.1)

This is called the canonical quantization procedure. Now lets turn to the other per-
spective. We know that the classical system is described by the action S(qi). Feynman
pointed out that one can quantize a system, and calculate the transition amplitude be-
tween different quantum states of the system, by summing over all possible trajectories
with two fixed end points, weighted with the function exp[−iS(qi)/~]. More precisely for
a given quantum system, the transition amplitude between two states is formally given
by : ∫ qFi

qIi

Dqi exp[−
i

~
S(qi)] (1.2)

Where I and F denote the initial and final positions. This is the well known path integral
formulation. Generalizing to infinite number of coordinate variables, i.e. infinite degrees
of freedom, the above version is generalized to path integrals in quantum field theory.
There is another version of the path integral, which is the Hamiltonian formulation. In
fact it is more fundamental than the above version (Lagrangian formulation), and is
written as follows: ∫ qFi

qIi

DqiDpi exp[−
i

~
(

∫
dtH(qi, pi)− piq̇i)] (1.3)

where after integration with the pi’s we obtain (1.2). Now the most fundamental property
of the path integral is that it is invariant under the the change of integration variables
variable qi → qi + εi in functional space (εi being a constant in functional space). This
means that the measure of the path integral is invariant under the redefinition, Dqi →
D(qi+εi). This can also be understood from the fact that the path integral is analogous to
the Fourier transform, and that is invariant under translation of the integral measure. We
will discuss more about this later in Chapter 3. There is also one view point, which comes
about from the Schwinger action principle. It states that the variation of the transition
amplitude between two states is equal to the expectation value of the variation of the
action between these states. From this principle and after modifying the Lagrangian by
a source term, one obtains the Schwinger equation, which states the expectation value of
the equation of motion in presence of a source term vanishes. If one finds the solution to
this equation one can find all transition amplitudes in quantum field theory. The path
integral is actually the solution of this equation, represented as a Fourier transform in
functional space. This equation or a different version of it which we will call the DeWitt
equation is a functional differential equation of no known type. It is in general plagued
by singularities occurring from the expectation value of fields at the same point. Our
work was in general to understand the structure of the solution of this equation. We
were able to do that and in Chapter 4, we explicitly write down the formal solution. We
must emphasize here that the solution, is unrenormalized one, but it is interesting to see
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the structures in it nevertheless. More over the solution is an expansion in orders of ~,
which is equivalent to an expansion in loops. Although there is a general understanding
that the solution works, nevertheless it can only be checked order by order. We perform
this check for a specific model later on. We also emphasize the analogy of the path
integral in Euclidian signature to the Laplace transform and perform some examples in
zero dimension case (which is space of ordinary integrals) to give a flavour of the DeWitt
equation.

Using Supersymmetry

While there is problem of renormalization in common field theories, there are some special
ones where this is not required. This is where Supersymmetry comes in. Supersymmetry
is a special symmetry of a Lagrangian under consideration such that there exists a trans-
formation of the bosonic degrees of freedom to the fermionic ones, and vice versa, such
that the action is left invariant under it (more precisely the Lagrangian is left invariant
upto a total derivative). This symmetry has a very far reaching consequence. Firstly
in four dimensions, all the quadratic divergence in the theory is canceled. Secondly de-
pending on the dimension of the theory, and ”number of Supersymmetries” (there can be
one such transformation or many for a given theory, giving rise to minimal or extended
supersymmetry), the theory can be completely free of divergences and can be finite (i.e.
even the logarithmic divergences cancel in 4 dimensions). For example in 4 dimension
N = 4 supersymmetric Yang Mills Theory (a theory which has four independent super-
symmetry transformations, although they transform into one another by action of SU(4)
group element) is finite. Another example is N=1 Wess Zumino model, which has only
one supersymmetry and is finite in 2 dimensions. Thus in these theories, there is no
need of renormalization, as the expectation value of the fields occurring in the DeWitt
equation sum up to be finite in this case.

It is important to note that it is a bit subtle than what we pointed out. In fact for
theories with extended Supersymmetries there in general is no known way to construct a
covariant off-shell formalism with finite number of fields (on-shell means supersymmetry
transformations leave the action invariant upto equations of motion of the fields). This
means that the action is not supersymmetric off-shell. We will discuss this point in the
Chapter on Supersymmetry and also later in the Chapter on N = 4 Super Yang Mills.

Thus for some specific models the solution does not need any renormalization. We
discuss the solution in the context of N = 1 Wess Zumino model in 2 dimensions (using
superspace construction) in Chapter 6. Also here we explicitly check the solution upto
3rd order in ~. Next we give a general overview of N = 4 Super Yang Mills theory. In
particular the Light cone superfield formalism is discussed shortly. We intended to use
this construction to write down the Effective Action for this model. Unfortunately this
turned out to be very cumbersome and tedious. Formally speaking the solution holds
for this model, and by construction is finite (as in Light cone superspace all the Green’s
functions are finite), but to implement the solution practically is difficult, because of
non-local inverse derivatives appearing in the Light Cone formalism.

Here we want to point out that in superspace formalism, the measure of the path
integral is linear. This means that the Jacobian of the transformation of the path integral
measure under supersymmetry transformations, is identically one. This was shown in [40].
Although when there is no superspace representation of these theories, there could be a

11



Chapter 1. Introduction

functional determinant term i.e. an anomaly which arises from the non invariance of
the path integral measure. We will not deal with these anomalies while using translation
invariance of the measure to derive the DeWitt equation although this is a very important
point for on-shell supersymmetric field theories.

Conformal Field Theory

Next we turn our attention to some very special field theories specifically in 2 dimensions.
These are conformal field theories. They have the special property that under conformal
transformation the action remains invariant. A conformal transformation in the strict
sense is a transformation of the space time coordinates such that the angle of two arbitrary
curves intersecting at a point is preserved. The action of such a transformation on the
set of fields of the theory defines a conformal field theory. The Poincare’ symmetry
group is a sub group of the conformal symmetry group. More over just like there are
definite transformation laws for the correlation functions for a given symmetry of the
Lagrangian (like in non-Abelian gauge theories where the n-point functions have gauge
indices and transform under action of the gauge group, and also in the general case where
they transform under the action of the Poincare’ group), the transformation laws of he
correlation functions in a conformally invariant theory restricts their structure to a great
deal. More over we will discuss the constituents of a given particular CFT, namely the
primary fields, from which all other fields can be constructed, the energy momentum
tensor, which is a very important object, along with some other important concepts in
the Chapter on conformal field theory.

A very special Conformal Field Theory is Liouville Field Theory in 2 dimensions. It
is important from the point of view of String theory, as it comes up in the quantization
of strings in non-critical dimensions. Our interest in this theory is primarily from the
point of view of quantum field theory. the Liouville potential is of exponential type.
Hence for this case the DeWitt equation (or the equivalent Schwinger Dyson equation)
is of simple form. This makes the study of this theory comparatively simpler in contrast
to theories with other interaction terms. In our Chapter on this topic we will discuss
how we can obtain the three point correlation function for this model. More over we
will argue on the existence of another functional equation, which comes about due to
regularizing the interaction term. Form this dual DeWitt equation, we will obtain the
pole structure of the three point function, and shed some light on its uniqueness. This
technique developed in this work is pretty simple and interesting, and also useful for other
Liouville type theories. It would be worth while to investigate other theories in the same
way.

In the end we will give short concluding remarks on the results obtained during this
work and also discuss some open questions and future prospects.
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Chapter 2

The Effective Action

2.1 Motivation

Let us look at the problem of determining the vacuum expectation value of a quantum
field, which is to be determined as a function of the parameters of the Lagrangian. While
dealing with the problem at a classical level, we can minimize the potential energy to find
the expectation value of the field. But when dealing with the full quantum theory, the
classical value can be altered by loop corrections. Thus the motivation is to find a function
in the full quantum picture, whose minimum would give us the exact value of the vacuum
expectation value of the field. There is a analogous situation in statistical systems.
A quantum system can be viewed as a statistical one, with the quantum fluctuations
replaced by thermal ones. At zero temperature the thermodynamic ground state is the
state of lowest energy, but at non zero temperature it is that state which minimizes the
Gibbs free energy. Let us take the example of a magnetic system. The Helmholtz free
energy A(H) is defined as follows:

Z(H) = e−βA(H) =

∫
Ds exp

[
− β

∫
dx(H[s]−Hs(x))

]
(2.1)

where H is the external magnetic field, H[s] is the spin energy density and β = 1/kT .
Now we can find the magnetization of this system as follows:

− ∂A
∂H

∣∣∣∣
β=constant

= − 1

β

∂

∂H
log Z

=
1

Z

∫
dx

∫
Ds s(x)exp

[
− β

∫
dx(H[s]−Hs(x))

]
=

∫
dx〈s(x)〉 ≡ M

(2.2)

Now the Gibbs free energy of the system is defined by the Legendre transform as follows:

G = A+MH (2.3)

From this definition one obtains the following:

∂G

∂M
=

∂A

∂M
+M ∂H

∂M
+H

13



Chapter 2. The Effective Action

=
∂H

∂M
∂A

∂H
+M ∂H

∂M
+H

= H

(2.4)

Where β has been kept fixed. Now if H = 0, One can find the extremum of the Gibbs
free energy at the corresponding value of the magnetization M. We know that the
thermodynamically most stable state is the minimum of G(M). Thus, this function
gives a geometric picture of the preferred thermodynamic state, inclusive of all thermal
fluctuations. By analogy a similar quantity can be constructed in quantum field theory,
which we will discuss now.

2.2 Partition function and Effective action

The Euclidian path integral in D dimensional quantum field theory is defined as follows:

Z[J ] ≡ exp

[
− 1

~
W [J ]

]
≡
∫
Dφexp

[
− 1

~

(
S[φ] +

∫
dDxJ(x)φ(x)

)]
(2.5)

Where the measure Dφ is formally normalized to unity, that is Z[0] = 1. The path
integral is formally the sum over all field configurations and is the solution to the expec-
tation value of the operator equation of motion of a given theory. W [J ] is the generator
of connected Green’s function of the theory, which are the Greens function such that in
a diagramatic representation, cutting any line in the diagram does not make it fall into
two separate ones. The connected Green’s functions in the presence of a source J are
then given by

Wn(x1, ..., xn; J) ≡ 〈φ(x1) · · ·φ(x2)〉connected ≡ (−~)n−1 δnW [J ]

δJ(x1) · · · δJ(xn)
(2.6)

Setting the current J(x) to zero we obtain the full connected Greens function of the
theory, which are the scattering amplitudes which defines the scattering processes.The
classical field ϕ(x) is the vacuum expectation value of the quantum field φ(x) and is
defined as follows:

ϕ(x; J) =
δW [J ]

δJ(x)
(2.7)

Then effective action Γ is defined as the Legendre transform (in analogy to the Gibbs
free energy) of W [J ] as follows:

Γ[ϕ] = W [J ]−
∫
dDxJ(x)ϕ(x) (2.8)

Thus we can express J(x) as a functional of ϕ(x) through the inverse relationship:

δΓ[ϕ]

δϕ(x)
= −J(x;ϕ) (2.9)

We will assume in the following that the relation between J = J(x;ϕ) and ϕ(x; J) can
be freely inverted.Usually setting the right hand side to zero, and solving for a constant
field configuration we get the vacuum expectation value of the field. On the other hand
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2.2. Partition function and Effective action

if one chooses a constant field configuration ϕc, and evaluate Γ then one ends up with
the effective potential for the theory defined as follows:

Veff [ϕc] =
1

V
Γ[ϕc] (2.10)

Where Γ is divided by a infinite volume factor, V =
∫
dDx. Now in general from Γ we

define the one particle irreducible n-point correlation functions of the model (the proper
vertices of the theory) which are obtained by repeated functional derivative of Γ with
respect to ϕ(x) :

Γn(x1, ...., xn;ϕ) ≡ (−1)n

~
δnΓ[ϕ]

δϕ(x1) · · · δϕ(xn)
(2.11)

More over the Wns and the Γns are related with each other by relations of the following
form: ∫

dDyW2(x, y;ϕ)Γ2(y, z;ϕ) = δD(x− z) (2.12)

and

W3(x, y, z;ϕ) =

∫
dDu dDv dDwW2(x, u;ϕ)W2(y, v;ϕ)W2(z, w;ϕ)Γ3(u, v, w;ϕ) (2.13)

and so on for higher Wns which can be seen by repeated functional derivatives of the first
equation. It is to be noted that the J dependence of the Wns are replaced by ϕ using
the invertible relationships. The Effective action can also be expanded in powers of ~ as
follows:

Γ[ϕ] = Γ(0)[ϕ] + ~Γ(1)[ϕ] + ... (2.14)

where it is well known that Γ(0)[ϕ] = S[ϕ] is the classical action while higher order
introduce quantum corrections, the first order being the trace log term. Our motivation
is to find a more or less closed form for this expansion. To do this we will employ
a functional differential equation. We will discuss this equation in the next chapter.
There also exists different but analogous methods for calculating the effective action,
which one can find in [61]. There the effective action is treated as a loop expansion and
corresponds to every order in ~ expansion. There is also the background field formalism
which is employed in [61] for this purpose. The reader is encouraged to read through the
discussion on effective action in [61] for better understanding of the subject.1.

1For more rigorous study of the subject please see [1],[3],[13],[14],[31],[39],[61]
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Chapter 3

The DeWitt Equation

In 1965, B.DeWitt wrote down a functional equation for the Effective action in quan-
tum field theory [1]. This equation relates the functional derivative of the full quantum
effective action [ϕ] to the functional derivative of the classical action. It is interesting
in the sense that, while usual quantum field theory involves functional integration via
the path integral formalism, here the information is encoded into a functional differential
equation. In case the classical action is polynomial, this equation has only finite number
of terms, which assumes a relatively simple form. More over this equation can serve as
the generating functional for an infinite hierarchy of Schwinger-Dyson equations for the
theory concerned.

The main problem with this equation is that it is hard to define properly. Although
the path integral also faces similar problems, but there are established techniques such
as renormalized perturbation theory which solves this problems, while in this case there
are no such established techniques available. Most prominent of the problems is the fact
that it involves functional derivative at same point which gives rise to short distance
singularities which can not be renormalized using perturbative methods. So in some
sense proper definition of the equation already requires some knowledge of the solution.
So our approach will be to look for formal solution of this unrenormalized equation. It is
also important to point out that the equation is of no known type which makes it even
harder to solve.

3.1 Derivation of DeWitt Equation

Now we look at the formal definition of our main equation of interest, the DeWitt equa-
tion. The DeWitt equation is a functional differential equation for the effective action Γ
of a given model in quantum field theory. Starting from the path integral, we see that
the expectation value of a field functional Q[φ] in presence of a source J is defined in the
following way (we employ Euclidian signature) :

〈Q[φ]〉J := exp

(
1

~
W [J ]

)∫
DφQ[φ]exp

[
− 1

~
(
S[φ] +

∫
dDxJ(x)φ(x)

)]
(3.1)

This can be rewritten as follows:

〈Q[φ]〉J := exp

(
1

~
W [J ]

)
exp

(
− 1

~
W

[
J − ~

δ

δφ

])
Q[φ]

∣∣∣∣
φ=0

(3.2)

17



Chapter 3. The DeWitt Equation

Which is because of the following elementary identity:

f(x) = exp

(
x
∂

∂y

)
f(y)

∣∣∣∣
y=0

(3.3)

Which is just a Taylor series. Now upon expanding the expression for W [J − ~ δ
δφ

] we
obtain the following:

W

[
J − ~

δ

δφ

]
= W [J ]− ~

∫
dDx

δW [J ]

δJ(x)

δ

δφ(x)
+

−~
∞∑
n=2

1

n!

∫
dDx1 · · · dDxnWn(x1, ..., xn; J)

δ

δφ(x1)
· · · δ

δφ(xn)
(3.4)

Inserting the above expression and expressing J as a functional of ϕ, using the inversion
relation between them and once again using the elementary identity mentioned above we
obtain the following:

〈Q[φ]〉J [ϕ] =

∗
∗ exp

[
∞∑
n=2

1

n!

∫
dDx1 · · · dDxnWn

(
x1, ..., xn; J [ϕ]

) δ

δϕ(x1)
· · · δ

δϕ(xn)

]
∗
∗ Q[ϕ] (3.5)

where the symbol ∗∗ indicates that the functional differential operators act only on the
external factor Q[ϕ], but not on J [ϕ] in Wn. It is important here that the sum in the
exponent starts only at n = 2. Again there exists the identity, by DeWitt ,

δΓ[ϕ]

δϕ(x)
=

〈
δS[φ]

δφ(x)

〉
J=J [ϕ]

(3.6)

This is because of the formal identity of the path integral being invariant under translation
of the measure: ∫

Dφ δ

δφ(x)
exp

(
− 1

~
(S[φ] +

∫
dDxJ(x)φ(x))

)
= 0 (3.7)

Leading to the following expression,

−J [ϕ](x) =
δΓ[ϕ]

δϕ(x)
=

〈
δS[φ]

δφ(x)

〉
J=J [ϕ]

(3.8)

Now inserting the functional δS[ϕ]/δϕ(x) for Q[ϕ] we finally obtain the following equation
for the effective action, which is the DeWitt equation,

δΓ[ϕ]

δϕ(x)
=

∗
∗ exp

[
∞∑
n=2

1

n!

∫
dDx1 · · · dDxnWn

(
x1, ..., xn; J [ϕ]

) δ

δϕ(x1)
· · · δ

δϕ(xn)

]
∗
∗
δS[ϕ]

δϕ(x)
(3.9)

Observe that for polynomial actions S[φ] the functional differential operator reduces to
a finite number of terms upon expansion of the exponential.
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3.2. A simple example

3.2 A simple example

We start by looking at a concrete example, consider the classically conformal φ4 theory
with the action

S[φ] =

∫
dDx

(
1

2
∂µφ∂

µφ+
λ

4
φ4

)
(3.10)

Then the DeWitt equation can be written as follows:

δΓ[ϕ]

δϕ(x)
=
〈
−�φ(x) + λφ3(x)

〉
J=J [ϕ]

(3.11)

Which can be explicitly written as follows:

δΓ[ϕ]

δϕ(x)
= −�ϕ(x) + λϕ3(x) + 3λW2(x, x;ϕ)ϕ(x) + λW3(x, x, x;ϕ) (3.12)

Expressing W2 and W3 by means of (2.12) and (2.13) we see that all quantities in this
equation can be expressed in terms of Γ[ϕ] and its functional derivatives, so that the
above indeed becomes a functional differential equation for Γ[ϕ].

As they stand these equations, and in particular the basic functional equation (3.9),
are formal. Nevertheless, there is already one useful application: the equation (3.9) can
be used as a generating equation to derive the Schwinger-Dyson equations. With the
standard formula for the one-particle irreducible n-point functions

Γn(x1, · · · , xn) ≡ Γn(x1, · · · , xn;ϕ)|ϕ=0 (3.13)

The first of which can be seen for the case of our example as follows:

~Γ2(x, y) = (−� + 3λW2(x, x))δD(x− y)

−λ
∫
dDu dDv dDwW2(x, u)W2(x, v)W2(x,w)Γ4(u, v, w, y) (3.14)

3.3 Examples in Zero dimensions

To get a flavour of the DeWitt equation we look at Zero dimensional field theory, where
the path integral is an ordinary integral. Thus,

Z[j] =

∫
c

dx exj−S[x] (3.15)

Where the contour c is some contour such that the integrand has the same value at the
end points. In the path integral point of view this corresponds to choosing the end points
to be lying on the classical path or trajectory (which is always the case). As a first step
we can look at the Gamma function which is defined as follows for Re[s] > 0:

Γ[s] =

∫ ∞
0

dx xs−1e−t (3.16)
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Chapter 3. The DeWitt Equation

The above is defined as a Mellin transform whose measure dt/t is invariant under dilation
i.e. x→ ax. Under the following change of variables x = et, it can be defined as a Laplace
transform (two sided) :

Γ[s] =

∫ ∞
−∞

dt exp[ts− et] (3.17)

Now we can see that the integrand is zero at both the limits i.e. ∞ and −∞. It is easy
to see the resemblance with the path integral now. Moreover the above integral has a
translationaly invariant measure, i.e. dx→ d(x+ a). Hence we see the following identity
which can be directly seen by integration byparts also:∫ ∞

−∞
dt

d

dt
exp[ts− et] = 0

⇒ s

∫ ∞
−∞

dt exp[ts− et]−
∫ ∞
−∞

dt etexp[ts− et] = 0

⇒ sΓ[s]− Γ[s+ 1] = 0

⇒ Γ[s+ 1] = sΓ[s] (3.18)

Which is the functional equation for the Gamma function. This boils down to the property
of bilateral (two sided) Laplace transform relating a function f(t) with its derivative f ′(t),

L{f(t)} =

∫ ∞
−∞

e−stf(t) (3.19)

And thus,

L{f ′(t)} = sL{f(t)} (3.20)

It is straight forward to see the resemblance of the above equation to the DeWitt equation
or equivalently the Schwing Dyson equation for the path integral in Quantum Field
Theory. This is because the path integral itself is defined as a bilateral Laplace transform,
as the end points of the path lie on a classical trajectory. Let us look at another example
for this case. The Airy function has the following integral representation:

A(z) =
1

2π

∫ ∞
−∞

dt exp[i(zt+
t3

3
)] (3.21)

Under the translation invariance of the measure, one obtains:

1

2π

∫ ∞
−∞

dt
d

dt
exp[i(zt+

t3

3
)] = 0

⇒ 1

2π

∫ ∞
−∞

dt (z + t2)exp[i(zt+
t3

3
)] = 0

⇒ z
1

2π

∫ ∞
−∞

dt exp[i(zt+
t3

3
)]− d2

dz2

1

2π

∫ ∞
−∞

dt exp[i(zt+
t3

3
)]

⇒ zA(z)−A′′(z) = 0 (3.22)

Which is the differential equation for the Airy function. Thus we understand the basic
philosophy of this technique is to go from an integral representation of the function
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3.4. Equivalence of DeWitt equation and Schwinger Dyson equation

(e.g. Gamma function) or functional (e.g. Z[J]) to its differential equation or functional
differential equation respectively (of course one can run the argument the other way and
state that Γ[s] or Z[J] are the solution of the corresponding equations) . We will come
back to more zero dimensional field theory examples when we discuss the solution of
the DeWitt equation. It is important to note that while the equivalence is to a Laplace
transform while dealing with the Euclidian path integral, analogous equivalence is to the
Fourier transform while dealing with the Minkowski version of the path integral.

3.4 Equivalence of DeWitt equation and Schwinger

Dyson equation

If one starts with the formal identity of the translation invariance of the path integral
measure, one obtains (dropping ~ for simplicity) :∫

Dφ δ

δφ(x)
exp

[
−
(
S[φ] +

∫
dDxJ(x)φ(x)

)]
= 0∫

Dφ
(

δS

δφ(x)
+ J

)
exp

[
−
(
S[φ] +

∫
dDxJ(x)φ(x)

)]
= 0 (3.23)

Now as any pollynomial in φ(x) in the path integral can be replaced as follows:∫
Dφφp(x)exp

[
−
(
S[φ]+

∫
dDxJ(x)φ(x)

)]
≡
∫
Dφ
(
− δ

δJ(x)

)p
exp

[
−
(
S[φ]+

∫
dDxJ(x)φ(x)

)]
(3.24)

Thus eq (3.23) can be rewritten as follows:∫
Dφ
(

δS

δφ(x)

[
− δ

δJ(x)

]
+ J

)
exp

[
−
(
S[φ] +

∫
dDxJ(x)φ(x)

)]
= 0 (3.25)

Which is the Schwinger Dyson equation. The DeWitt equation is just the formulation of
the above object in terms of connected Green’s function of the theory. The point is just
that whether one wants to solve the theory in terms of the external source J (where ϕ
is a functional of J), or the classical field ϕ (where J is a functional of ϕ). In the first
case the Schwinger Dyson equation is used, while in the later case the DeWitt equation
is used. In either of the two cases we have a functional differential equation but with
different variables.

Another important thing to point out here is the Schwinger action principle. It states
that if there is a transition amplitude between two states φf at time tf and φi at time ti,
then the variation of this amplitude is given by:

δ〈φf tf |φiti〉 =

∫ ti

ti

d4x〈φf tf |δL|φiti〉 (3.26)

Where L is the Lagrangian density. This is an equivalent quantization scheme to the
path integral. Using this principle and then changing the Lagrangian in presence of a
source term slightly, i.e. we vary the source J(x) to J(x)+δJ(x), we obtain the following
:

δ

δJ(x)
〈φf tf |φiti〉 = 〈φf tf |φ̂(x)|φiti〉 (3.27)
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Chapter 3. The DeWitt Equation

It is important to note that one has a c-number operation in the L.H.S of this relation,
while one deals with an operator in the R.H.S. . Along with this there is the field equation
of motion, in the operator formalism obtained by variation of the action with respect to
φ :

δS

δφ(x)
+ J(x) = 0 (3.28)

Now the expectation value of this equation must vanish. Combining this with the action
principle, we have the Schwinger Dyson equation (as polynomial in φ can be replaced by
polynomial in− δ

δJ
by action principle):

〈φf tf |
δS

δφ(x)

[
− δ

δJ(x)

]
+ J(x)|φiti〉 = 0 (3.29)

The path integral corresponds to solving this equation by performing a Laplace transform
(or a Fourier transform in Minkowski space). Thus we see there exists two alternate view
points, one starting with the path integral and the other starting with the Schwinger
Dyson equation. We will use the later view point as a starting point in our later chapters.
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Chapter 4

Formal solution of DeWitt equation

Here we will give the formal solution of the DeWitt equation which is the unrenormalized
effective action functional and can be presented as follows (in 4 dimensions):

Γ[ϕ] = S[ϕ] +
~
2

∫
d4x log

[
δ2S[ϕ]

δϕ(x)δϕ(x)

]

−~ log

[
exp

(
~
2

∫
d4ud4v Gcl(u, v;ϕ)

δ2

δη(u)δη(v)

)
exp

(
−~−1Sint[ϕ, η]

) ∣∣∣∣
η=0

]
1PI

(4.1)

Where the subscript 1PI means that one-particle reducible diagrams are to be omitted
in the expansion, and where the logarith removes disconnected diagrams from inside the
brackets. The interaction part of the action is defined as follows:

Sint[ϕ, η] := S[ϕ+ η]− S[ϕ]−
∫
d4u η(u)

δS[ϕ+ η]

δϕ(u)

∣∣∣∣∣
η=0

−1

2

∫
d4ud4v η(u)η(v)

δ2S[ϕ+ η]

δϕ(u)δϕ(v)

∣∣∣∣∣
η=0

=
1

3!

δ3S

δϕ3
η3 +

1

4!

δ4S

δϕ4
η4 + · · · (4.2)

(where implicit integration is understood) And,∫
d4y Gcl(x, y;ϕ)

δ2S[ϕ]

δϕ(y)δϕ(z)
= δ(4)(x− z) (4.3)

The Sint introduces ϕ dependent vertices, but note that the ϕ dependence arises only
from 4-point vertices onwards. The functional Γ is to be calculated with the classical
field dependent Green’s function Gcl(x, y, ϕ). This solution matches with the structure,
discussed in [57] and also [57] (for φ4 theory).

4.1 Sketch of the Derivation

To look at how the solution works we start with another Zero dimensional field theory
example, namely λφ4, a system with finitely many degrees of freedom, in terms of which
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Chapter 4. Formal solution of DeWitt equation

the results described in the above section can be explicitly illustrated, and where we do
not have to worry about UV infinities. The action we look at is as follows:

S(x) =
1

2

n∑
i,j=1

xiAijxj +
λ

4

n∑
j=1

x4
j (4.4)

where Aij is a non-degenerate positive definite matrix. The generating function W (J) ≡
W (J1, . . . , Jn) for the ‘connected Green’s functions’ is then defined in analogy with par-
tition function as:

e−W (J) :=

∫
Rn
dx exp

[
− S(x)−

∑
j

xjJj
]

(4.5)

where the integration measure dx is normalized in such a way that W (0) = 0. The
generating function is easily seen to satisfy the differential equation∑

j

Aij
∂Z

∂Jj
+ λ

∂3Z

∂J3
i

− JiZ(J) = 0 (4.6)

or, in terms of W (J),

∑
j

Aij
∂W

∂Jj
+ λ

[
∂3W

∂J3
i

− 3
∂2W

∂J2
i

∂W

∂Ji
+

(
∂W

∂Ji

)3
]

= −Ji (4.7)

When expressed in terms of the effective action, this is the finite-dimensional analog
of the DeWitt equation (3.9), seen below. So in analogy with (2.7) let us define the
‘classical field’ by

ϕi(J) :=
∂W (J)

∂Ji
(4.8)

and introduce the ‘effective action’ Γ(ϕ) in the usual way by Legendre transformation
as described earlier. The DeWitt equation now reduces to a set of partial differential
equations:

∂Γ(ϕ)

∂ϕi
= exp

[∑
k≥2

1

k!

∑
j1,...,jk

Wj1··· jk(J)
∂

∂ϕj1
· · · ∂

∂ϕjk

]
∂S(ϕ)

∂ϕi
(4.9)

whereWj1···jk ≡ (−1)k−1∂j1 · · · ∂jkW , and we have relations analogous to (2.12) and (2.13),
that is,

∑
jWij(J)Γjk(ϕ(J)) = δik, and so on. We can now produce a formal solution of

(4.9), re-deriving a result that was essentially obtained by [8]. From the general definition
we directly obtain the following differential equation for Γ(ϕ)

exp

[
−Γ(ϕ) +

∑
j

ϕj
∂Γ(ϕ)

∂ϕj

]
=

∫
Rn
dx exp

[
−S(x) +

∑
j

xj
∂Γ(ϕ)

∂ϕj

]
(4.10)

24



4.1. Sketch of the Derivation

To evaluate the integral we split the ‘effective action’ into a ‘classical’ part S(ϕ) and
a ‘quantum’ part Γ̃(ϕ) according to

Γ(ϕ) =
1

2

N∑
i,j=1

ϕiAijϕj +
1

4
λ

N∑
j=1

ϕ4
j + Γ̃(ϕ) (4.11)

Shifting integration variables as xj → xj + ϕj in (4.10), a little algebra gives

exp
[
−Γ̃(ϕ)

]
=∫

Rn
dx exp

[
−1

2

∑
ij

xiG
−1
ij (ϕ)xj − λ

∑
j

x3
jϕj −

λ

4

∑
j

x4
j +

∑
xj
∂Γ̃(ϕ)

∂ϕj

]
(4.12)

with the classical ‘field-dependent’ Green’s function Gij(ϕ)∑
j

(
Aij + 3λδijϕ

2
j

)
Gjk(ϕ) = δik (4.13)

Performing the Gaussian integral, and using Wick’s theorem in the form

(2π)−n/2
∫
Rn
dnxf(x) exp

(
−1

2

n∑
i,j=1

Cijxixj

)
=

(detC)−1/2 exp

(
1

2

n∑
i,j=1

C−1
ij

∂

∂yi

∂

∂yj

)
f(y)

∣∣∣∣
y=0

(4.14)

the expression (4.12) can be re-written in the form

exp
[
−Γ̃(ϕ)

]
=

(
detGij(ϕ)

)1/2
exp

(
1

2

∑
i,j

Gij(ϕ)
∂

∂ηi

∂

∂ηj

)

exp

[
−λ
∑
j

ϕjη
3
j −

λ

4

∑
j

η4
j +

∑
j

ηj
∂Γ̃(ϕ)

∂ϕj

]
η=0

(4.15)

Let us pause to explain this formula. The determinant prefactor just produces the well
known semi-classical (one-loop) correction ∝ log

(
detGij(ϕ)

)
to the classical action. As

for the remaining terms, and ignoring the last term ∝ ηj∂Γ̃/∂ϕj, we would get the sum
over all connected vacuum diagrams with the field-dependent propagator Gij(ϕ) (as the
result of taking the logarithm on both sides). Although this last term would seem to
make the equation completely untractable, a little bit of thought shows that this is not
so. Because Γ̃(ϕ) contains only one-particle irreducible contributions, the effect of this
last term is precisely to remove the one-particle reducible diagrams from the expansion:
because this term is linear in η, it can couple to the rest of any diagram only via a single
line. In other words, the quantum effective action is nothing but the sum of the one-loop
correction and the sum over one-particle irreducible vacuum diagrams with at least two
loops and with the field-dependent Green’s function (4.3). This is the result derived in [8]
for the effective potential in quantum field theory.

25



Chapter 4. Formal solution of DeWitt equation

Now one can analogously write the equation for the Effective Action in D dimensional
field theory case. Starting from the partition function again and performing a background
field split, one obtains the equation for the effective action:

Γ[ϕ] = S[ϕ] +
~
2

∫
dDx log

[
δ2S[ϕ]

δϕ(x)δϕ(x)

]

−~ log

[
exp

(
~
2

∫
dDudDv Gcl(u, v;ϕ)

δ2

δη(u)δη(v)

)
exp

(
−1

~

(
Sint[ϕ, η]−

∫
dDxη(x)

δΓ̃[ϕ]

δϕ(x)

)∣∣∣∣
η=0

]
(4.16)

Where,

Γ̃[ϕ] = Γ[ϕ]− S[ϕ]

The last part is exactly what cancells all the One Particle Reducible diagrams. This
completes our sketch of the derivation of the solution of the DeWitt equation. In a later
chapter we will see an explicit example where the DeWitt equation is well defined and
the solution (also well defined) can be checked order by order in ~. The most important
thing here to note is that the solution is not perturbative in the coupling constant of the
theory but in orders of ~ which is a natural small parameter in the quantum theory.

However, a direct verification of (4.1) to all orders is cumbersome. We will therefore
postpone a discussion of this issue to the following chapters in terms of an example where
the DeWitt equation is well defined. Let us just note that in conjunction with the explicit
expression as a sum over ϕ(x)-dependent vacuum diagrams we can see directly from the
DeWitt equation (3.9) that Γ[ϕ] can only contain one-particle irreducible (1PI) diagrams:
the action of the first functional derivative δΓ[ϕ]/δϕ(x) in particular leads to the cutting
any one of the propagators in a diagram arising in the expansion (4.1). If we had a
diagram which is not 1PI then there would be at least one propagator which joins two
1PI subdiagrams. The action of the functional derivative on this diagram would thus
split the diagram in two parts at this propagator, leaving two disconnected diagrams.
But on the r.h.s. of the DeWitt equation we have only connected Green’s functions,
δnW [J ]/δJ(x1) · · · δJ(xn) . So there can be no disconnected diagrams on the r.h.s. of
(3.9) and thus we can only have 1PI diagrams contributing to Γ[ϕ], as expected.

The effective (Coleman-Weinberg) potential is obtained by specializing all formulas
to x-independent fields ϕ(x) = ϕ0 [4] and removing a formally infinite volume factor
∝
∫
dx. The main advantage of writing the effective potential as a sum over vacuum type

diagrams is the following: rather than having to do all the combinatorics with ‘antenna
diagrams’, one obtains the answer at each loop order ‘in one stroke’. In particular the
RG improved one-loop potential obtained by summing ladder bubble diagrams is directly
obtained. This was, in fact, the first application of this formula in [8] where the effective
potential was also determined to two loops for ϕ4 theory. As shown there the formalism
implies considerable simplifications in comparison with the textbook derivations of the
Coleman-Weinberg potential.

At the end of this section we write the solution (4.1) for the finite dimensional integral
with the action defined by (4.4), that is, the solutions to (4.9). In accordance with the
explanation after (4.1) we include only 1PI and connected diagrams in the expansion

Γ(ϕi) = S(ϕi) + Γ(1)(ϕi) + Γ(2)(ϕi) + Γ(3)(ϕi) + . . . (4.17)
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4.2. Convergence properties

where the indices denote the loop order. In this way we obtain

Γ(1)(ϕ) = − 1

2
ln det(Gij)

Γ(2)(ϕ) = −

[
−3λ

4

∑
i

G2
ii + 3λ2

∑
i,j

ϕiϕjG
3
ij

]

Γ(3)(ϕ) = −

[
3λ2

4

∑
i,j

G4
ij +

9λ2

4

∑
ij

GiiG
2
ijGjj (4.18)

−27λ3
∑
i,j,k

ϕiϕjGijG
2
ikG

2
jk − 27λ3

∑
i,j,k

ϕiϕjG
2
ijGikGjkGkk

+54λ4
∑
i,j,k,l

ϕiϕjϕkϕlGijGjkGklGliGikGjl

+81λ4
∑
i,j,k,l

ϕiϕjϕkϕlG
2
ijG

2
klGikGjl

]

4.2 Convergence properties

Now we go back to the zero dimensional analysis to to look at some of the convergence
properties of the solution. By construction, this series solution must satisfy the discrete
DeWitt equation (4.9), and this claim can in principle be checked order by order. Equally
important is the fact that the expansion, while being asymptotic, can have vastly better
convergence properties for non-vanishing ϕ than the usual perturbation expansion in
terms of the coupling constant λ. This is most easily seen by simplifying our zero-
dimensional field theory even further to an integral over one variable. In this case the
‘Green’s function’ (4.13) is simply G(ϕ) ≡ (1 + 3λϕ2)−1. For a given vacuum diagram
with I internal lines we have

I =
3

2
V3 + 2V4 (4.19)

where V3 and V4, respectively, denote the number of three- and four-point vertices in a
given diagram ; note that in any vacuum diagram, the number of three-point vertices is
even. The number of loops is equal to

L =
1

2
V3 + V4 + 1 (4.20)

Therefore an arbitrary vacuum diagram with L loops will be proportional to

λV4(λϕ)V3

(1 + 3λϕ2)I
≈ (λϕ4)1−L (4.21)

(for L = 1, the relevant parameter is log(1 + 3λϕ2)). In other words, the loop expansion
now coincides with an expansion in (λϕ4)−1: of course, this expansion should only be used
in the appropriate region in field space and the space of couplings, where λϕ4 is sufficiently
large. So we see that the series can converge well even for large λ provided the value of
the classical field ϕ is not too small (and different from zero)! We have checked this claim
by numerical integration of a non-trivial example, which we give bellow. The important
lesson, then, is that it is not simply the coupling constant λ (or its running analog λ(µ),
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Chapter 4. Formal solution of DeWitt equation

where µ is some renormalization scale) that governs the convergence properties of the
effective action functional, but that one should also consider the question of convergence
w.r.t. to the value of the field variables ϕj or ϕ(x) as well.

4.3 Numerical results

To illustrate the efficiency of the expansion (4.1) we present some numerical results for
the simple one-dimensional integral

exp(−W (J)) =

∫
dx√
2π

exp

[
−1

2
x2 − λ

4
x4 − xJ

]
(4.22)

in this section. To this aim, we go through the same steps as before, with the expansion
(4.17) and n = 1 in (4.18). The loop expansion here becomes

Σ(0)(ϕ) ≡ Scl(ϕ) =
ϕ2

2
+
λϕ4

4

Σ(1)(ϕ) = Scl −
1

2
ln(G)

Σ(2)(ϕ) = Σ(1) −
(
−3λ

4
G2 + 3λ2ϕ2G3

)
Σ(3)(ϕ) = Σ(2) −

(
3λ2

4
G4 +

9λ2

4
G4 − 27λ3ϕ2G5 − 27λ3ϕ2G5

+54λ4ϕ4G6 + 81λ4ϕ4G6
)

(4.23)

where G ≡ 1/(1 + 3λϕ2), and where we have defined Σ(i) ≡
∑

0≤j≤i Γ
(j). The results for

Γexact and Σ(i) for three exemplary values of λ and ϕ are given in the following table:

λ 1.0 1.0 100.0 200.0
ϕ 1.0 4.0 1.0 1.0

Γexact 1.4532 73.9458145683 28.353282939 53.6991599696
Scl 0.75 72.0 25.5 50.5

Σ(1) 1.4431 73.9459101483 28.353555132 53.6992974659

Σ(2) 1.4431 73.9458145253 28.353282864 53.6915996015

Σ(3) 1.4512 73.9458145667 28.353282912 53.6991599663

(4.24)

Evidently the approximation converges rapidly even for large values of λ !
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4.4 Iterative Procedure

In principle one could set up an iterative scheme to see that the above solution is the
one for the effective action. One starts by defining the effective action with an iterative
index:

δΓ(k)[ϕ]

δϕ(x)
=

∗
∗ exp

[
∞∑
n=2

1

n!

∫
dDx1 · · · dDxnW (k−1)

n

(
x1, ..., xn; J [ϕ]

) δ

δϕ(x1)
· · · δ

δϕ(xn)

]
∗
∗
δS[ϕ]

δϕ(x)

and also the following relation:∫
dDyW

(k−1)
2 (x, y;ϕ)Γ

(k−1)
2 (y, z;ϕ) = δD(x− z) (4.25)

and other similar relations analogous to (2.13). Where W ’s and Γ’s are defined as
earlier with index k . If one starts with the definition:

Γ
(0)
2 (y, z;ϕ) =

1

~
δ2S[ϕ]

δϕ(y)δϕ(z)
(4.26)

then by performing the iteration, one exactly obtains the solution discussed as earlier in
orders of ~. Thus one obtains,

δΓ[ϕ]

δϕ(x)
= lim

k→∞

δΓ(k)[ϕ]

δϕ(x)
(4.27)

Although in principle one obtains the derivative of the Effective Action in this case,
it is enough to define the correlation functions using this procedure. It is pointed out
here that we first realized the solution of the DeWitt equation using this procedure. A
similar construction of the effective action was done in [57], which also starts with a
functional differential equation, and can be identified to be the DeWitt equation. In [57],
one can also check the construction of the effective action for higher composite operators,
which is also important for the study of bound states. We also mention here that the
solution discussed here is for the bare and unrenormalized effective action. So the objects
associated are still divergent. But there are some theories which are finite, and so without
divergences. This is where we have to invoke supersymmetry which we will discuss in the
next chapter.

29



Chapter 4. Formal solution of DeWitt equation

30



Chapter 5

Brief Introduction to
Supersymmetry

Supersymmetry arose from the observation of physicists that the normal space time sym-
metries in a quantum field theory can be extended to accommodate a symmetry between
bosons and fermions, such that one transforms into another. These symmetry operations
transform different members of the multiplet of a model into each other. These trans-
formations are to be represented as linear operators acting on the vector space, which is
the representation space of the multiplet. This structure is formulated by writing down a
Lagrangian which transforms under these transformations upto a total derivative which
leaves the action invariant. Although there has been lack of experimental evidence in
this field, a lot of work has been devoted to construction of field theories which has these
symmetries, and study of these structures. The important fact in these studies is that the
normal concepts of quantum field theory allow for supersymmetry without any further
more assumptions. It was found that space-time and internal symmetries can only be
related by fermionic symmetry generators Q of spin 1/2 (called supersymmetry genera-
tors). So in the presence supersymmetry, multiplets contain particles of different spins.
Supersymmetry transformations are thus generated by quantum operators Q, which will
change fermions into bosons and vice versa:

Q |fermion〉 = |boson〉 ; Q |boson〉 = |fermion〉 (5.1)

Now which particular bosons and fermions are related by this symmetry to each other
by some Q, the total number of Q’s, and the transformation of other properties, depend
on the model under consideration. The Q’s change the statistics and so the spin of the
state. Spin is in some sense, a space time symmetry, as it is related to behaviour under
spatial rotations. Q’s also affect some of the internal quantum numbers of the states. It
is this interesting property of combining internal symmetry with space time behaviour
that makes supersymmetric theories a good candidate to study, in the attempt to unify
all the fundamental interactions.

There are some crucial properties of the supersymmetry generators Q. We will not
derive them but state them here. Firstly the Q’s are invariant under translations, meaning
the commutator of the Q’s with the energy operator E or the momentum operator P
is zero. Secondly the spectrum of the energy operator E (which is the Hamiltonian),
contains no negative eigen values in a theory with supersymmetry. If one denotes the
lowest energy state i.e. the vacuum as |0〉, this state will have zero energy, if Q and
Q† annihilate this state. Any state whose energy is not zero is not invariant under
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supersymmetry transformations. This means that there are N superpartner states (from
N supersymmetry generators Q), for every one particle state. The spin of these state
and its partner will differ by 1/2. So we have thirdly, each multiplet must contain at
least one boson and one fermion, whose spins differ by 1/2. A supermultiplet is defined
as a set of quantum states which can be transformed into one another by one or more
supersymmetry transformations. Now the translation invariance of Q implies that Q does
not change the energy and the momentum and so all states in a multiplet of unbroken
supersymmetry have the same mass. There has been no experimental evidence which
show elementary particles to be accompanied by superpartners with different spin, but
same masses. Thus if supersymmetry is to be present in nature, it can only be present as
a spontaneously broken symmetry. If that is the case, then the ground state will not be
invariant under all supersymmetric transformations, which is to say, Q|0〉 6= 0 for some
Q. This means from earlier discussion that, supersymmetry is spontaneously broken
if and only if the energy of the lowest lying state which is the vacuum is not exactly
zero. Although spontaneous symmetry breaking may lift the mass degeneracy of the
supermultiplet by giving different masses to different members, the multiplet structure
i.e. the fermionic and bosonic states remain the same. Thus we still need super partners
for the presence of supersymmetry. Theories with one spinorial generator is called N = 1
while theory with more number of spinorial charge Q, more specifically N number of them
is called N extended supersymmetry. The general understanding about supersymmetry is
that there exists extended supersymmetry at high energies, while at intermediate energies
there exists N = 1 supersymmetry, while at low energies there is no supersymmetry. The
last step is necessary to lift the mass degeneracy which is not seen in experiments.

One important point is that, any multiplet with extended supersymmetry will contain
particles with spin ≥ N/4. This means that spins ≥ 3/2 must be present for N > 4 in
4 dimensions. Renormalizable flat-space theories cannot accommodate spins ≥ 3/2. The
presence of fields with spin 3/2 requires the introduction of coupling constants with nega-
tive mass dimensions. This makes presence of such fields in the theory non-renormalizable.
There is also a bound for gravity theories, since gravity cannot couple consistently with
spins ≥ 5/2, the limit in this case is N = 8.

5.1 Algebra

1It was found by Coleman and Mandula that any group of bosonic symmetries of the
S-matrix in relativistic field theory is the direct product of the Poincare group with an
internal symmetry group. The bosonic generators are thus the four momenta Pµ and
the six Lorentz generators Mµν , plus a certain number of Hermitian internal symmetry
generators, Br. The algebra of the Poincare´ group is as follows:

[Pµ, Pν ] = 0 (5.2)

[Pµ,Mρσ] = i(ηµσPσ − ηµσPρ) (5.3)

[Mµν ,Mρσ] = i(ηνρMµσ − ηνσMµρ − ηµρMνσ + ηµσMνρ) (5.4)

Now for the internal symmetry group we have,

[Ta, Tb] = if cabTc (5.5)

1Here we discuss some basics definitions and constructions of superfields which will be used in our
later chapters. If the reader is familiar with the topic then he or she can directly move on to the next
chapter and for detailed study of the subject see [34],[35],[40],[41],[33].
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5.2. States in a Supersymmetric theory

While direct product of the two means that commutators of the Poincare generators and
the internal symmetry groups vanish, i.e.

[Ta, Pµ] = [Ta,Mµν ] = 0 (5.6)

Now all supersymmetry generators are fermionic, which is to say that they must change
the spin of a state by a half-odd amount and change the statistics of the state. In presence
of extra generators Qαi, (α = 1, 2), the above algebra is extended to the following:

[Qα,i, Pµ] = [Q̄i
α̇, Pµ] = 0 (5.7)

[Qαi,Mµν ] =
1

2
(σµν)

β
αQβi (5.8)

[Q̄i
α̇,Mµν ] = −1

2
Qi
β̇
(σ̄µν)

β̇
α̇ (5.9)

[Qαi, Tr] = (br)
j
iQαj (5.10)

[Q̄i
α̇, Tr] = −Q̄j

α̇(br)
i
j (5.11)

{Qαi, Q̄
j

β̇
} = 2δji (σ

µ)αβ̇Pµ (5.12)

{Qαi, Qβj} = 2εαβZij (5.13)

{Q̄i
α̇, Q̄

i
β̇
} = −2εα̇β̇Z

ij (5.14)

[Zij, Others] = 0

Where Zij is the Central Charge of the algebra, and is given by some linear combination
of the generators Trs as follows:

Zij = arijTr , arij = −arji , Zij = (Zij)
† , Zij = Zji (5.16)

and σµ = (I, σi), where σi are the Pauli matrices, and I is the 2 dimensional identity
matrix. Also analogously σ̄µ = (I,−σi). Also we use the following definitions of the two
indexed σ matrices,

σµν =
i

2
[γµ, γν ] , {γµ, γν} = 2ηµν (5.17)

where we use the following signature for ηµν ≡ (+,−,−,−) and γµ are the Dirac gamma
matrices. Now the supersymmetry transformations relate fermions to bosons. This is
because they are spin 1/2 operators and action of such an operator on a state changes
its spin. Now one can divide the representation space on which these generators act
into bosonic and fermionic sectors. The even elements of the algebra (i.e. the bosonic
generators Pµ,Mµν , Ta) map the subspaces into themselves, i.e. bosonic sector to bosonic
sectors and fermionic sector to fermionic. The odd elements which are the supersymmetry
generators, map the bosonic subspace to the fermionic subspace, and vice-versa.

Now the anticommutator relation {Q, Q̄} = 2σµPµ means that there must be a way
of going from one subspace to the other and and back, such that the net result is action
of the momentum operator Pµ on the original subspace. More over QQ̄ + Q̄Q which is
the double mapping, no dimensions are lost. From all these considerations, we get the
following rule : the fermionic and bosonic subspaces of the representation have the same
dimension or more specifically the same degrees of freedom.

5.2 States in a Supersymmetric theory

If there are N supersymmetry generator in a theory, then from the action of this gen-
erators on the states in the theory, one can find the spectrum of the theory. So for a
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massless theory we can count the number of states knowing that the generators change
the spin of the state by 1/2:

helicity: λ0 λ0 + 1/2 λ0 + 1 . . . λ0 +N/2
no. of states: CN

0 = 1 CN
1 = N CN

2 . . . CN
N = 1

Where CN
0 denote combinatorial coefficients. For example the counting for a massless

N = 4 theory will be as follows: starting from a helicity −1 state, we have 4 helicity
−1/2 state, 6 helicity 0 states, 4 helicity 1/2 state and 1 helicity 1 state. For massive
theories, the one particle states are described by the mass (m), the total spin (s) and the
spin projection along the z-axis (s3). The action of Q on a state with spin s will be a
linear combination of states with spins s+ 1/2 and s− 1/2. The counting is similar and
can be checked in any text book on supersymmetry.

5.3 Superfield

The Supersymmetry algebra can be viewed as a Lie algebra with anticommuting param-
eters. This motivates one to write down a group element for the purpose:

G(x, θ, θ̄) = ei[−xµP
µ+θQ+θ̄Q̄] (5.18)

Where xµ are the position coordinates, and θα, θ̄α̇ are anticommuting two component
Weyl spinors, i.e. θα, θ̄α̇ and α, α̇ take values 1, 2 (when we write product of these objects
without indices, a sum over the indices will be assumed). Product of two group elements
is then given as follows:

G(0, η, η̄)G(xµ, θ, θ̄) = G(xµ + iθσµη̄ − iησµθ̄, θ + η, θ̄ + η̄) (5.19)

This can be understood as a motion in the parameter space of the group. This motion is
generated by the differential operators Q and Q̄ :

ηQ+ η̄Q̄ = ηα
(

∂

∂θα
− iσµαα̇θ̄α̇∂µ

)
+ η̄α̇

(
∂

∂θ̄α̇
− iθασµ

αβ̇
εβ̇α̇∂µ

)
(5.20)

Now a superfield φ is a function of the complete superspace coordinate variables
(x, θ, θ̄), and can be understood as a power series expansion in the anticommuting vari-
ables θ and θ̄. For one pair of them we can write it as:

φ(x, θ, θ̄) = A(x)+θψ(x)+θ̄χ(x)+θθm(x)+θ̄θ̄n(x)+θσµθ̄vµ(x)+θθθ̄ω̄(x)+θ̄θ̄θλ(x)+θθθ̄θ̄d(x)
(5.21)

The higher powers of θ,θ̄ vanish. The transformation of this superfield under supersym-
metry is defined as follows:

δηφ(x, θ, θ̄) = (ηQ+ η̄Q̄)φ(x, θ, θ̄) = δηA(x) + θδηψ(x) + θ̄δηχ(x) + θθδηm(x)

+θ̄θ̄δηn(x) + θσµθ̄δηvµ(x) + θθθ̄δηω̄(x) + θ̄θ̄θδηλ(x) + θθθ̄θ̄δηd(x)

(5.22)

Where the transformation laws of the componenet fields can be obtained by matching
powers of θ and θ̄ on both sides. One can verify that the linear combination of superfield
is also a superfield and also product of superfields is also a superfield, which is because the
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Supersymmetry generators are linear differential operators. In general the representation
of the supersymmetry algebra in terms of the superfields are highly reducible. Thus
constraints are imposed on the superfield to eliminate some of the extra fields. For
example one can put the constraint, D̄φ = 0, where the D and D̄ are super covariant
derivatives defined as follows:

Dα =
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ (5.23)

D̄α̇ = − ∂

∂θ̄α̇
− iθασµαα̇∂µ (5.24)

The condition D̄α̇φ = 0 is called chiral superfield. Let us look at this example in more
detail to get a flavour of superfields. The given constraint is easy to solve in terms of
yµ = xµ + iθσµθ̄ and θ because,

D̄α̇(xµ + iθσµθ̄) = 0 , D̄α̇θ = 0 (5.25)

Thus the superfield φ can be expressed in these variables as follows:

φ(x, θ, θ̄) = A(y) +
√

2θψ(y) + θθF (y)

= A(x) + iθσµθ̄µA(x) +
1

4
θθθ̄θ̄�A(x)

+
√

2θψ(x)− i√
2
θθ∂µψ(x)σµθ̄ + θθF (x)

(5.26)

Where, A is a complex scalar, ψ a two component Weyl spinor, and F a complex auxiliary
field. Now the component fields here transform under supersymmetry as follows:

δηA(x) =
√

2ηψ(x)

δηψ(x) = i
√

2σµη̄∂µA(x) +
√

2ηF (x)

δηF (x) = i
√

2η̄σ̄µ∂µψ(x)

(5.27)

These transformations close as follows under two supersymmetric transformations:

(δηδξ − δξδη)A(x) = −2i(ησµξ̄ − ξσµη̄)∂µA(x)

(δηδξ − δξδη)ψ(x) = −2i(ησµξ̄ − ξσµη̄)∂µψ(x)

(δηδξ − δξδη)F (x) = −2i(ησµξ̄ − ξσµη̄)∂µF (x)

(5.28)

Similarly one can construct the antichiral superfield φ+ with the constraint Dαφ
+ = 0,

which can be expressed in the variables y+µ = xµ − iθσµθ̄ and θ̄, with the following
expansion:

φ+(x, θ, θ̄) = A∗(y+) +
√

2θ̄ψ̄(y+) + θ̄θ̄F ∗(y+) (5.29)

Where ∗ means complex conjugation. Now using these two fields one can construct the
action of the well known Wess Zumino Model in 4 dimensions as follows:∫
d4xd2θd2θ̄ φ+φ+

∫
d4xd2θ(

1

2
mφφ+

1

3
gφφφ+λφ)+

∫
d4xd2θ̄(

1

2
mφ+φ++

1

3
gφ+φ+φ++λφ+)

(5.30)
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Now in component form this can be written as follows after integration over θ variables,
(
∫
dθ θ = 1):∫
d4xA∗(x)�A(x)−iψ̄∂µσµψ+F ∗F+

[
m(AF−1

2
ψψ)+g(A2F−ψψA)+λF+c.c

]
(5.31)

Where c.c denote complex conjugation.

5.4 On-shell realization of Supersymmetry

The above action it is clear that the equations of motion for F and F ∗ is simply algebraic
and so they are called auxiliary fields. This means that they can be replaced in the
Lagrangian in terms of the physical fields A, ψ and their complex counter parts. The
on-shell action, after this replacement, is given as follows:

−iψ̄∂µσµψ+A∗�A− 1

2
mψψ− 1

2
mψ̄ψ̄−gψψA− ψ̄ψ̄A∗−(λ+mA∗+gA∗2)(λ+mA+gA2)

(5.32)
Now there is a genral statement that one has for supersymmetric field theories, where
auxiliary fields have been eliminated:

1. In these kind of theories, the supersymmetry transformations are non-linear in terms
of the fields, and so checking supersymmetry invariance is not easy in general. also
the number of bosonic fields and fermionic fields do not match.

2. The form of the supersymmetry transformations become model dependent. Al-
though the action as a whole is supersymmetric, the kinetic part, the mass term
and the interaction term are not invariant separately.

3. The supersymmetry algebra closes only on shell, which is to say they only close by
using equations of motion.

5.5 Extended Supersymmetry

From the algebra described above it is understood that one generally requires infinite
number of auxiliary fields to represent extended supersymmetry. This can be understood
as follows: In presence of the Central Charge (which is zero for N=1 case), the superfield
will be a function of (x, θi, θ̄i, z) where i are internal symmetry indices and z denotes a
set of bosonic variables that has to be added to realize the central charge and so a Taylor
series expansion in z does not terminate. As a example let us look at N=2 supersymmetric
theories. The group element in this case is the following:

G(x, θ, θ̄, ζ, ζ̄) = ei[−xµP
µ+θαi Q

i
α+θ̄iα̇Q̄

α̇
i ]ei[ζT

+++ζ̄T−−] (5.33)

Here T±± are the coset generators for SU(2)/U(1). These generators with the U(1)
generator T 0 form the SU(2) algebra:

[T++, T−−] = T 0 , [T 0, T±±] = ±2T±± , T±± = T 1 ± iT 2 , T 0 = 2T 3 (5.34)

The new coordinates ζ do not transform under translations and supertranslations. It is
interesting to note that the two new coordinates are even ones. Under supersymmetry ζ
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stays inert while under SU(2) θi, θ̄
i behave as isospinors and ζ transforms non-linearly.

Now there can be another choice of representation. The U(1) charge generator is repre-
sented on Qi by the matrix τ 3:

[T 0, Qi] = (τ 3)ijQ
j , [T±±, Qi] = (τ±±)ijQ

j (5.35)

Where,

τ 0 =

(
1 0
0 1

)
τ++ =

(
1 0
0 0

)
τ−− =

(
0 0
0 1

)
(5.36)

Now the supersymmetry charges can be redefined for convenience:

Q1
α ≡ Q+

α , Q2
α ≡ Q−α , Q̄1α̇ ≡ Q̄−α̇ , Q̄2α̇ ≡ −Q̄+

α̇ (5.37)

Then under action of the generator of the internal SU(2) symmetry, we have:

[T 0, Q+] = Q+ , [T 0, Q−] = −Q−,
[T++, Q+] = 0 , [T++, Q−] = Q+,

[T−−, Q+] = Q− , [T−−, Q−] = 0

(5.38)

and same for Q̄±, while the supersymmetry generators have the following algebra:

{Q+
α , Q̄

+
α} = {Q−α , Q̄−α̇} = 0

{Q+
α , Q̄

−
α̇} = −{Q−α , Q̄+

α̇} = 2σµαα̇Pµ

(5.39)

In this basis (called the analytic basis,[56]) one can analogously define the super covariant
derivatives :

D+
α =

∂

∂θ−α
, D−α = − ∂

∂+α
+ 2iθ̄−α̇σµαα̇∂µ (5.40)

and similar definitions for D̄±. From these super covariant derivatives we can construct
new superfields using constraints as follows:

D+
αφ = D̄+

α̇ φ̄ = 0 (5.41)

Notice that now the solution of this equation is in terms of the normal space time co-
ordinates, the anticommuting theta variables and the parameters of the internal SU(2)
symmetry (ζ, ζ̄). Thus an expansion of this field will have infinite number of terms in
the variables ζ, ζ̄, and this is precisely the reason why one has infinite number of aux-
iliary fields in extended supersymmetric theories. For higher supersymmetric theories,
like N = 3 and N = 4 it is even more complicated to find such a superspace description
(although for N = 3 such a space exists). Thus the problem of having an off-shell for-
mulation of these theories is really difficult and yet a subject of ongoing research (check
[56]).
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Figure 5.1: One loop contribution to self energy of scalar C

5.6 Cancellation of Divergences

It is interesting to point out one very fundamental property of supersymmetric theories
which is the cancellation of all quadratic divergences (in 4 dimension). To see this lets
go back to the Wess Zumino model in 4 dimensions with the Lagrangian:∫
d4xd2θd2θ̄ φ+φ+

∫
d4xd2θ(

1

2
mφφ+

1

3
gφφφ+λφ)+

∫
d4xd2θ̄(

1

2
mφ+φ++

1

3
gφ+φ+φ++λφ+)

(5.42)
Writing this down in terms of component field and integrating out the auxiliary field,
and also writing the complex scalar field (A) in terms of a scalar and pseudoscalar as
A = C+iD√

2
and writing a 4 spinor Ψ = (ψ, ψ̄), we have:∫
d4x

[
1

2
∂µC∂

µC − 1

2
m2C2 +

1

2
∂µD∂µD −

1

2
m2D2 +

1

2
Ψ̄(i/∂ −m)Ψ

−mg√
2
C(C2 +D2)− g2

4
(C4 +D4 + 2C2D2)− g√

2
Ψ̄(C − iDγ5)Ψ

]
(5.43)

The one loop contribution to the self energy of the scalar C can be computed from
the above diagrams (Shown in [43]). Let us write down the amplitude for the diagrams:

(I) = −ig
2

4
4.3

∫
d4p

(2π)4

i

p2 −m2
= 3g2

∫
d4p

(2π)4

1

p2 −m2

(II) = −ig
2

2
2

∫
d4p

(2π)4

i

p2 −m2
= g2

∫
d4p

(2π)4

1

p2 −m2
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(III) =

(
− img√

2

)2

3.2

∫
d4p

(2π)4

i

p2 −m2

i

(p− q)2 −m2

= 3g2m2

∫
d4p

(2π)4

1

(p2 −m2)((p− q)2 −m2)

(IV ) =

(
− img√

2

)2

2

∫
d4p

(2π)4

i

p2 −m2

i

(p− q)2 −m2

= g2m2

∫
d4p

(2π)4

1

(p2 −m2)((p− q)2 −m2)

(V ) = −
(
− ig√

2

)2

2

∫
d4p

(2π)4
Tr

{
i(/p+m)

p2 −m2

i(/p− /q +m)

(p− q)2 −m2

}
= −2g2

(∫
d4p

(2π)4

1

p2 −m2
+

∫
d4p

(2π)4

1

(p− q)2 −m2

+

∫
d4p

(2π)4

4m2 − q2

(p2 −m2)((p− q)2 −m2)

)
(5.44)

where q is the incoming momentum of the scalar field C. Adding the contributions, we
obtain the following:

2g2

{∫
d4p

(2π)4

1

p2 −m2
−
∫

d4p

(2π)4

1

(p− q)2 −m2
+

∫
d4p

(2π)4

q2 − 2m2

(p2 −m2)((p− q)2 −m2)

}
(5.45)

From the above it is clear that the quadratically divergent terms coming from the first
two terms cancel, while the last term ony contributes to a logarithmic diverence. This is
the most fascinating thing about supersymmetric theories, these theories are much well
behaved than normal quantum field theories, and for some special cases, which we will
discuss in our next chapter, the theories are completely finite i.e. even the logarithmic
divergent terms cancel.

5.7 Vector Superfield

Now let us look at how to construct a supersymmetric gauge theory. For that we need to
define a vector superfield. A vector superfield V satisfies the following reality condition:

V = V † (5.46)

This superfield can be understood as an expansion in the anti-commuting parameters θ
and θ̄ as follows:

V (x, θ, θ̄) = c(x) + iθχ(x)− iθ̄χ̄(x) +
1

2
θθ[m(x) + in(x)]− i

2
θ̄θ̄[m(x)− in(x)]− θσµθ̄vµ(x)

+iθθθ̄[λ̄+
i

2
σ̄µ∂µχ(x)]− iθ̄θ̄θ[λ(x) +

i

2
σµ∂mχ̄(x)] +

1

2
θθθ̄θ̄[d(x) +

1

2
�c(x)]

(5.47)

Where the component fileds c, d,m, n and vµ must be real. The supersymmetric general-
ization of a gauge transformation is given by:

V → V + φ+ φ+ (5.48)
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Where φ + φ+ is a Hermitian field and is a combination of a chiral and antichiral field.
This is given in component form as follows:

φ+ φ+ = A+ A∗ +
√

2(θψ + θ̄ψ̄) + θ + θ̄θ̄F ∗

+iθσµθ̄∂µ(A− A∗) +
i√
2
θθθ̄σ̄µ∂µψ

+
i√
2
θ̄θ̄θσµ∂µψ̄ +

1

2
θθθ̄θ̄�(A+ A∗) (5.49)

The component fields transform under this transformations as follows:

c→ c+ A+ A∗

χ→ χ− i
√

2ψ

m+ in→ m+ in− 2iF

vµ → vµ − i∂µ(A− A∗)
λ→ λ

D → D

(5.50)

There is a speciall gauge in which c, χ,m, n are zeores. Fixing this gauge breaks super-
symmetry, but still allows the usual gauge transformation vµ → vµ + ∂µa. In this guage
it is easy to calculate the powers of V ;

V = −θσµθ̄vµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄λ(x) +
1

2
θθθ̄θ̄d(x)

V 2 = −1

2
θθθ̄θ̄vµv

µ

V 3 = 0

(5.51)

This choice is called Wess-Zumino gauge. Now to construct the supersymmetric field
strength one observes:

Wα = −1

4
D̄D̄DαV

W̄α̇ = −1

4
DDD̄α̇V

(5.52)

These superfields are chiral and gauge invariant. Chirality condition follows:

D̄β̇Wα = 0

DβW̄α̇ = 0

(5.53)

And D̄φ = Dφ+ = 0 is used to prove gauge invariance:

Wα → −
1

4
D̄D̄Dα(V + φ+ φ+) = Wα −

1

4
D̄{D̄,Dα}φ = Wα (5.54)
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In chiral variables, y = x+ iθσθ̄ and y+ = x− iθσθ̄:

V = −θσµθ̄vµ(y) + iθθθ̄λ̄(y)− iθ̄θ̄θλ(y) +
1

2
θθθ̄θ̄[d(y)− i∂µvµ(y)]

= −θσµθ̄vµ(y+)− iθ̄θ̄θλ(y+) + iθθθ̄λ̄(y+) +
1

2
θθθ̄θ̄[d(y+) + i∂µv

µ(y+)]

(5.55)

While Wα, Wα̇ are given as follows:

Wα = −iλα(y) + [δβαd(y)− i

2
(σµσ̄ν)βα(∂µvν(y)− ∂νvµ(y))]θβ + θθσµαα̇∂µλ̄

α̇(y)

W̄α̇ = iλ̄α̇(y+) + [εα̇β̇d(y+) +
i

2
εα̇ρ̇(σ̄

µσ̄ν)ρ̇
β̇
(∂µvν(y

+)− ∂νvm(y+))]θ̄β̇ − εα̇β̇ θ̄θ̄σ̄
µβ̇α∂µλα(y+)

(5.56)

µ, ν are space time indices. It is clear that Wα, W̄α̇ are composed of gauge invariant fields
d, λα and vµν = ∂µvν − ∂νvµ. The fields Wα, W̄α̇, have the component fields λα and λ̄α̇,
as the lowest dimensions. since Wα is chiral, then the θθ component of WαWα is,

WαW
α|θθ = −2iλσµ∂µλ̄−

1

2
vµνvµν + d2 +

i

4
vµνvρηεµνρη (5.57)

Where εµνρη are totally antisymmetric in all its indices. A similar form exists for the
W̄α̇W̄

α̇. Using these two one can construct the action for a supersymmetric field theory
with vector super fields as follows:

L =
1

4
(WαWα̇|θθ + W̄α̇W̄

α̇|θ̄θ̄)

S =

∫
d4xL =

∫
d4x

[
1

2
d2 − 1

4
vµνvµν − iλσµ∂µλ̄

]
(5.58)

Of course this is an action for Abelian supersymmetric gauge fields only without interac-
tion. In general it is easy to generalize to non Abelian cases, simply by changing to the
corresponding field strength and replacing the the partial derivatives ∂µ with covariant
ones Dµ, and taking a trace over all the gauge indices. This is precisely what we would
get for N = 1 Super Yang Mills theory, with a non-Abelian gauge group.
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Chapter 6

N=1 Wess-Zumino model in D=2

The N = 1 Wess-Zumino model in two space-time dimensions is UV finite order by order
in perturbation theory (the generic non-supersymmetric theories having only logarithmic
divergences in two dimensions, which are removed by imposing supersymmetry). The
Euclidean version of the model can be written in terms of a single superfield Φ(z) with
superspace coordinate z ≡ (x, θ), where θ is a two-component (anti-commuting) Majorana
spinor with θ = θ∗. The superfield contains a real scalar A and a Majorana spinor ψ, as
well as the auxiliary field F :

Φ(x, θ) = A(x) + θ̄ψ(x) +
1

2
θ̄θF (x)

(6.1)

Also, the superfield is a real superfield, i.e. Φ = Φ†. For simplicity we restrict attention
to the following Lagrangian

L = −1

4
ΦD̄DΦ +

1

2
mΦ2 +

1

3
gΦ3 (6.2)

We could replace the last two terms by an arbitrary polynomial P (Φ) here, but this
would only make the formulas more cumbersome and not give any new insights. The
supercovariant derivative is defined by

Dα =
∂

∂θ̄α
+ (γµθ)α∂µ (6.3)

and,

D̄α = −CαβDβ (6.4)

where C is the charge conjugation matrix. And the matrices γµ are defined as follows:

γ0 =

(
0 1
1 0

)
γ1 =

(
1 0
0 −1

)
(6.5)

The Lagrangian in component form is as follows:

L =
1

2
A�A− 1

2
ψ̄γµ∂µψ +

1

2
F 2 +

1

2
m(2AF − ψ̄ψ) + g(A2F − Aψ̄ψ) (6.6)
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The above Lagrangian can be checked to be invariant under the following Supersymmetry
transformation upto total derivatives:

δA = εαδαA, δψβ = εαδαψβ, δF = εαδαF (6.7)

Where,

δαA = Cαβψβ = −ψ̄α, δαψβ = γµβα∂µA+ δαβF, δαF = γµ∂µψ (6.8)

Along with the closure of the supersymmetry algebra under two consecutive transforma-
tions on the fields:

[δξ, δη]A = [(η̄γµξ)− (ξ̄γµη)]∂µA (6.9)

[δξ, δη]ψβ = [(η̄γµξ)− (ξ̄γµη)]∂µψβ

[δξ, δη]F = [(η̄γµξ)− (ξ̄γµη)]∂µF

(6.10)

Writing out the DeWitt equation for the three fields A,ψ and F we get

δΓ[A,F, ψ]

δA(x)
= �A(x) +mF (x) + g

[
2A(x)F (x)− ¯ψ(x)ψ(x)

]
− g~

[
2

δ2W [J ]

δJA(x)δJF (x)
+ Tr

δ2W [J ]

δJψ(x)δJψ̄(x)

]
δΓ[A,F, ψ]

δψ̄(x)
= −/∂ψ(x)−mψ(x)− 2gA(x)ψ(x)− ~g

δ2W [J ]

δJA(x)δJψ(x)

δΓ[A,F, ψ]

δF (x)
= F (x) +mA(x) + gA2(x)− ~g

δ2W [J ]

δJA(x)δJA(x)
(6.11)

It can be noted that the DeWitt equation for the scalar A and the fermion ψ is finite,
while that for the auxiliary field F is not, and we have to provide a normal ordering
prescription for it to be well defined. Let us first look at the equation the scalar field A.
If we just look at the supersymmetric Ward identity:

−〈ψ̄α(x)ψβ(y)〉+ γµβα∂
y
µ〈A(x)A(y)〉+ δαβ〈A(x)F (y)〉 = 0 (6.12)

Taking the trace of the above one obtains,

−Tr[〈ψ̄(x)ψ(y)〉 − /∂〈A(x)A(y)〉] + 2〈A(x)F (y)〉 = 0 (6.13)

The second second term is odd under integration as it will contribute a factor of /p which
will be zero after integration, which will arise due to coincident points of the Green’s
function, and hence we find:

2
δ2W [J ]

δJA(x)δJF (x)
+ Tr

δ2W [J ]

δJψ(x)δJψ̄(x)
= 0 (6.14)

Which has to be true if supersymmetry is to be preserved and vacuum expectation value
of the fields is to be zero. We can try to also check this to first order, where:[

2
δ2W [J ]

δJA(x)δJF (x)
+ Tr

δ2W [J ]

δJψ(x)δJψ̄(x)

]∣∣∣∣
1loop
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= 2

∫
d2p

4π2

(
−m

p2 +m2

)
+ Tr

[∫
d2p′

4π2

(
(i/p′ +m)

p′2 +m2

)]

= 2

∫
d2p

4π2

(
−m

p2 +m2

)
+ 2

∫
d2p′

4π2

(
m

p′2 +m2

)
(6.15)

Which after proper regularization yields zero. Now we turn to the equation for the
fermion ψ, which can be seen to be finite, simply because, the Greens function at the
same point, between the scalar A and the fermion ψ is zero, i.e,

δ2W [J ]

δJA(x)δJψ(x)
= 0 (6.16)

But when we look at the equation for the auxillary field F , we see that it is not finite
simply because,

δ2W [J ]

δJA(x)δJA(x)

∣∣∣∣
1loop

≡
∫

d2p

4π2

(
1

p2 +m2

)
(6.17)

which is logarithmically divergent. Therefore the equation for the auxiliary filed has to
be made well defined. This can be removed by replacing the product A2(x) by the normal
ordered product

:A(x)A(y) : ≡ A(x)A(y)− A(x)A(y) (6.18)

and taking x → y afterwards. This singularity simply follows from the fact that if one
expresses the auxiliary field F in terms of the physical field A, the non-linear terms in
A must be rendered non-singular to make F itself well-defined as a quantum operator. 1

Consequently, the last component of the DeWitt equation must be replaced by

δΓ[A,F, ψ]

δF (x)
= F (x) +mA(x) + g :A2(x) : −~g δ2W [J ]

δJA(x)δJA(x)
(6.19)

and then all components of the DeWitt equation are free of singularities. In practice,
the above replacement simply means that in the formal solution as a sum over vacuum
diagrams there are no tadpole diagrams (these are anyway absent for a theory with only
cubic vertices as they would lead to non-1PI diagrams in Γ which cannot be).

6.1 Transformation of the DeWitt equation under

supersymmetry

It can be checked that the DeWitt equation transforms under supersymmetry as the
supercurrent, which can be seen as follows:

δε
δΓ

δA(x)
= −ε̄γµ∂µ

[
δΓ

δψ̄(x)

]
(6.20)

δε
δΓ

δψ̄(x)
= −εα

δΓ

δA(x)
− γµαβεβ∂µ

[
δΓ

δF (x)

]
(6.21)

1But note that, while : A2 : is well-defined as an operator, it is singular as a c-number, while the
converse is true for A2!
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δε
δΓ

δF (x)
= −ε̄β

δΓ

δψ̄β(x)
(6.22)

This is obvious as the L.H.S. of each of the equations form the components of a super-
current source term, which couples with the super field. This is natural as they should
be equal to the components of the supersymmetric source of the path integral.

6.2 On shell action and normal ordering

We can also integrate out the auxiliary field to write an on-shell action, which is as
follows:

−
[

1

2
(∂µA)2 +

1

2
(mA+ gA2)2 +

1

2
ψ̄γµ∂µψ +

1

2
(m+ 2gA)ψ̄ψ

]
(6.23)

If we look at the the interaction term and calculate the tadpole diagrams contributing to
the vacuum expectation value of the scalar field A, then we obtain the following:

−mgA3(x)|1loop → −
3g

m

∫
d2p

1

p2 +m2

−gAψ̄(x)ψ(x)|1loop → +
2g

m

∫
d2p

1

p2 +m2
(6.24)

Which do not cancel obviously. After normal ordering the interaction part of the La-
grangian becomes the following:

−gAψ̄ψ − 1

2
g2 : A2 :: A2 : −mgA : A2 : (6.25)

When one computes the expectation value of the scalar A analogous to case above, one
finds that it is zero to one loop. Thus one sees that after normal ordering the equation
for the auxiliary field F and then integrating it out, no divergence is introduced into
the theory. This is to point out that this theory can be made finite even in the on-shell
version. Another point to notice here is that the equation of motion for the auxiliary
field is quadratic in the the scalar A, which means while integrating out the field F we
unknowingly do add divergences. The procedure that we followed was we normal ordered
the equation of motion for the auxiliary field first and then replaced it algebraically, thus
introducing no divergence through the procedure. A similar check was performed for
N = 1 Wess Zumino model in 4 dimensions, where we normal ordered the equation of
motion of the auxiliary fields first before replacing it in the Lagrangian. This preserved
the property that all quadratic divergences in loop diagrams are canceled.

6.3 DeWitt equation in Superspace

All the three DeWitt equations can be conveniently recast into a superspace equation. A
similar normal ordering can be done in the superspace version of the Lagrangian and as
it is much more convenient to work in it we would stick to the superspace description.
So we have the functional derivative of the action as:

δS

δΦ
= −1

2
D̄DΦ +mΦ + gΦ2 (6.26)
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The arguments of the foregoing sections generalize directly to superspace. For the cubic
Lagrangian above the DeWitt equation (3.9) takes an especially simple form, namely

δΓ[Φ]

δΦ(z)
= :

δS[Φ]

δΦ(z)
: − ~g

δ2W [J ]

δJ(z)δJ(z)

∣∣∣∣
J=J [Φ]

(6.27)

or, more specifically

δΓ[Φ]

δΦ(z)
= −1

2
D̄DΦ(z) +mΦ(z) + g :Φ2(z) : −~g δ2W [J ]

δJ(z)δJ(z)

∣∣∣∣
J=J [Φ]

(6.28)

where z ≡ (xµ, θ) and J(z) is the ‘supersource field’ J(z) ≡ JF + θ̄Jψ + θ̄θJA. The normal
ordering is understood to be in the sense of the component expressions given above. In
the formal solution below this simply means that all tadpole diagrams are suppressed.

For the free superfield the superspace propagator is

G
(0)
2 (z − z′) = (6.29)

=
〈
0
∣∣T [(A(x) + θ̄ψ(x) +

1

2
θ̄θF (x))(A(x′) + θ̄′ψ(x′) +

1

2
θ̄′θ′F (x′))]

∣∣0〉
= exp

[
− 1

2
(θ̄ − θ̄′)(γµ∂µ +m)(θ − θ′)

]
4F (x− y) (6.30)

In analogy with (4.3) we define the classical Green’s function in superspace∫
dz′Gcl(z, z

′; Φ)
δ2S[Φ]

δΦ(z′)δΦ(z′′)
= δ(z − z′′) (6.31)

(where the fermionic part of the δ-function is defined in the usual way as δ(θ) = θ) so

that Gcl(z, z
′; Φ) = G

(0)
2 (z − z′) + · · · .

By construction the supersymmetric DeWitt equation (6.27) is well defined, and we
can therefore take over the formal solution given in the previous Chapter 4,

Γ[Φ] = S[Φ] +
~
2

∫
d4z ln

[
δ2S

δΦ(z)δΦ(z)

]

− ~ ln

[
exp

(
~
2
Gi,j

δ2

δΦ̃iδΦ̃j

)
exp

(
− S̃int

~

)∣∣∣∣
Φ̃=0

]
(6.32)

Where Gij is shorthand for Gcl(zi, zj; Φ) and S̃int = g
3
Φ̃3, and all the integrals are under-

stood to be in superspace. Now if we expand the series we have the following:[
1 +

∞∑
n=1

1

n!

(
~
2
Gi,j

δ2

δΦ̃iδΦ̃j

)n][
1 +

∞∑
m=1

1

m!

(
−S̃int
~

)m]∣∣∣∣
Φ̃=0

(6.33)

Because the dummy variable Φ̃ is put to 0, and the interaction is cubic, only terms
with the condition, 2n = 3m survive. Thus the first of this will be at two loops for
m = 2, n = 3. Evaluating the corresponding term we get[

1

3!

(
~
2
Gi,j

δ2

δΦ̃iδΦ̃j

)3][
1

2!

(
−S̃int
~

)2]
=

~g2

3

∫
z,w

G3
cl(z, w; Φ)
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At the next order (three loops) we have n = 6,m = 4, and[
1

6!

(
~
2
Gi,j

δ2

δΦ̃iδΦ̃j

)6][
1

4!

(
−S̃int
~

)4]

= ~2

[
2

3
g4

∫
u,v,w,z

Gcl(u, v; Φ)Gcl(u,w; Φ)Gcl(u, z; Φ)Gcl(v, w; Φ)Gcl(v, z; Φ)Gcl(w, z; Φ)

+g4

∫
u,v,w,z

G2
cl(u, v; Φ)G2

cl(w, z; Φ)Gcl(u,w; Φ)Gcl(v, z; Φ) +
1

2

(
g2

3

∫
z,w

G3
cl(z, w; Φ)

)2]
(6.34)

We recognize the last term as square of the term which we got for n = 3,m = 2 (two
loops), which is removed by taking log of the entire expression as these diagrams are not
connected. Hence summing up we get the following contribution to the effective action:

Γ = S +
~
2

∫
d4z ln

[
δ2S

δΦ(z)δΦ(z)

]
− ~2g2

3

∫
z,w

G3
cl(z, w; Φ)

−2

3
~3g4

∫
u,v,w,z

Gcl(u, v; Φ)Gcl(u,w; Φ)Gcl(u, z; Φ)Gcl(v, w; Φ)Gcl(v, z; Φ)Gcl(w, z; Φ)

−~3g4

∫
u,v,w,z

G2
cl(u, v; Φ)G2

cl(w, z; Φ)Gcl(u,w; Φ)Gcl(v, z; Φ) + (~4) (6.35)

To check this we first calculate the second functional derivative of Γ, which is, up to order
~2,

δ2Γ

δΦ(z1)δΦ(z2)
=

δ2S

δΦ(z1)δΦ(z2)
− 2~g2Gcl(z1, z2; Φ)Gcl(z1, z2; Φ)

−8~2g4

∫
z,w

Gcl(z, z2; Φ)Gcl(z2, z1; Φ)Gcl(z1, w; Φ)G2
cl(z, w; Φ)

−8~2g4

∫
z,w

Gcl(z, z1; Φ)Gcl(z1, w; Φ)Gcl(z, z2; Φ)Gcl(z2, w; Φ)Gcl(z, w; Φ)

(6.36)

Inverting the above we obtain the 2-point Green’s function up to order ~2,

− δ2W

δJ(z1)δJ(z2)
= Gcl(z1, z2; Φ) + 2~g2

∫
u,v

Gcl(z1, u; Φ)G2
cl(u, v; Φ)Gcl(v, z2; Φ)

+8h2g4

∫
u,v,z,w

[
Gcl(z1, u; Φ)Gcl(z, v; Φ)Gcl(v, u; Φ)Gcl(u,w; Φ)G2

cl(z, w; Φ)Gcl(v, z2; Φ)

+Gcl(z1, u; Φ)Gcl(z, u; Φ)Gcl(u,w; Φ)Gcl(z, v; Φ)Gcl(v, w; Φ)Gcl(z, w; Φ)Gcl(v, z2; Φ)

]
+4~2g4

∫
u,v,w,z

Gcl(z1, u; Φ)G2
cl(u, v; Φ)Gcl(v, w; Φ)G2

cl(w, z; Φ)Gcl(z, z2; Φ) (6.37)
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Figure 6.1: Diagrams contributing to Γ upto order ~3

Now putting this in the DeWitt equation from the R.H.S, we obtain:

δS

δΦ(z)
− ~g

δ2W

δJ(z)δJ(z)

=
δS

δΦ(z)
+ ~gGcl(z, z; Φ) + 2~2g3

∫
u,v

Gcl(z, u; Φ)G2
cl(u, v; Φ)Gcl(v, z; Φ)

+8h3g5

∫
u,v,z′,w

[
Gcl(z, u; Φ)Gcl(z

′, v; Φ)Gcl(v, u; Φ)Gcl(u,w; Φ)G2
cl(z

′, w; Φ)Gcl(v, z; Φ)

+Gcl(z, u; Φ)Gcl(z
′, u; Φ)Gcl(u,w; Φ)Gcl(z

′, v; Φ)Gcl(v, w; Φ)Gcl(z
′, w; Φ)Gcl(v, z; Φ)

]
+4~3g5

∫
u,v,w,z′

Gcl(z, u; Φ)G2
cl(u, v; Φ)Gcl(v, w; Φ)G2

cl(w, z
′; Φ)Gcl(z

′, z; Φ) (6.38)

This is exactly what we get from the l.h.s. by taking the first functional derivative of
Γ. The solution upto 3rd order in ~ can be represented graphicaly which is shown in the
above diagram.

Here the propagators are understood to be the Φ dependent classical propagator
Gcl(u, v; Φ). In principle one can go on like this and write down the solution in orders
of ~. The functional differential operator which acts on the interaction term to yield the
complete set of diagrams, can be used to construct an algebraic procedure of computing
higher loop oder corrections to the correlation functions of the theory. But after 4th order
the computation becomes cumbersome, and one would require to write some computer
codes to perform this. There are also many interesting aspects of this construction.
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Observe that the action of the functional differential operator :∫
d4u d4v Gcl(u, v; Φ)

δ

δΦ(u)

δ

δΦ(v)
(6.39)

The action of this on each of the Φ dependent diagrams adds one propagator to the
diagram, i.e. the loop number of the diagram changes. Thus there seems to be some
algebraic structure in this. Although we were not able to go into details of this structure
we intend to do so in some future work.
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Chapter 7

N=4 Super Yang Mills Theory

In 4 dimensions, there is a very interesting theory which is finite. This is N = 4 Supersym-
metric Yang Mills theory. It was obtained first by compactifying N = 1 Supersymmetric
Yang Mills theory from 10 dimensions to 4 dimensions. The theory has the maximal
amount of supersymmetry allowed for a rigid supersymmetric theory in 4 dimensions.
The symmetry generated by sixteen real supercharges (8 complex supercharges), has
been shown to be finite [12], and possessing a vanishing β function. The field content of
the theory, apart from the choice of the gauge group G, consists of 6 scalars, four Majo-
rana spinors and one vector field. All these fields are in the adjoint representation of the
gauge group G. Here it is important to point out that the propagators of the elementary
fields are ultraviolet divergent because of the choice of the Wess Zumino gauge. These
divergences are canceled once the contribution of the fields which are put to zero in the
Wess Zumino gauge are taken into account. Thus in Wess Zumino gauge, because of
these divergences one requires a wave function renormalization. But as is known, with-
out choosing the Wess Zumino gauge, the action in the component field form becomes
extremely cumbersome, and not very useful for practical computation. So we will start
by describing the action in on-shell component field formalism.

The Lagrangian for N=4 Super Yang Mills Theory in component field form is given
as follows:

L = Tr

[
−1

4
GµνG

µν − 1

2
(DAi)2 − 1

2
(DBi)

2

+
1

4
g2([Ai, Aj]

2 + [Bi, Bj]
2 + 2[Ai, Bj]

2)

−1

2
i λ̄Kγ

µDµλK +
1

2
gλ̄K [(αjKLAj + βjKLγ

5Bj), λl]

]
(7.1)

Where the indices K,L, run from 1 to 4, i and j indices from 1 to 3. Here Ai is a scalar,
Bi a pseudoscalar λk a Majorana spinor and Aµ a vector boson. Now The field strength
and the covariant derivative is defined as follows:

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] (7.2)

Dµλ = ∂µλ+ ig[Aµ, λ] (7.3)

The matrices α and β are defined as using:

{αi, αj} = {βi, βj} = −2δij (7.4)

[αi, βj] = 0 (7.5)
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Chapter 7. N=4 Super Yang Mills Theory

These are antisymmetric and real matrices, and is given by:

β1 =

(
0 iσ2

iσ2 0

)
β2 =

(
0 I
−I 0

)
β3 =

(
−iσ2 0

0 −iσ2

)
(7.6)

And

α1 =

(
0 σ1

σ1 0

)
α2 =

(
0 −σ3

σ3 0

)
α3

(
iσ2 0
0 iσ2

)
(7.7)

Using this Lagrangian, we can try to write the DeWitt equation and implement the solu-
tion, but unfortunately this Lagrangian is not off-shell, and hence the DeWitt equation
using this Lagrangian will not be finite. This can be intuitively understood as also from
the point fact that although the action is invariant under supersymmetry transformation,
the path integral measure is not, as the action is only invariant upto equations of motion,
while the measure is off-shell, in principle. As this theory is a theory with extended su-
persymmetry, therefore we need infinite number of auxiliary fields to account for off-shell
degrees of freedom.

7.1 Action from Dimensional compactification

The above Lagrangian was obtained by dimensional compactification from N=1 Super
Yang Mills theory in 10 dimensions to 4 dimensions by [44]. Here we give a brief descrip-
tion of this procedure. Th Lagrangian for the N=1 Super Yang Mills theory is given as
:

L = Tr(−1

4
GµνG

µν − 1

2
iλ̄Dµλ) (7.8)

Where the field strength and the covariant derivative have similar definitions as earlier
and the action is a 10 dimensional integral of the Lagrangian. More over we have λ, a 32
dimensional Majorana spinor and satisfies the following constraints:

λ∗ = λ (7.9)

γ11λ = λ (7.10)

Where γ11 is analogous to γ5 in 4 dimensions. Now one can check that the action is
invariant under the following transformations:

δAµ = −iε̄γµλ (7.11)

δλ = Gµνσ
µνε (7.12)

where

σµν =
1

4
[γµ, γν ] (7.13)

Where ε is a constant anti-commuting Majorana-Weyl spinor. We will not discuss this
invariance here but it involves using the Fierz transformation in 10-dimensions. Also
these transformations close on the fields using the equations of motion, as:

[δ1, δ2]λ = 2i(ε1γ
νε2)Dνλ (7.14)

[δ1, δ2]Aµ = 2i(ε1γ
νε2)DνGνµ (7.15)
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Now when one does dimensional reduction by compactification, it is assumed that the
extra 6 coordinates x3+i(i = 1, ..6) are compact. This is obtained by introducing a radii ri

for the coordinates, all fields being periodic in x3+i. When we drop the dependence of the
fields on the extra six coordinates and make the following identifications, we end up with
the four dimensional action which we discussed above. The A3+i(i = 1, 2, 3) are identified
with the pseudoscalars Bi and A6+i(i = 1, 2, 3) are identified with the scalar fields Ai.
Then we have the vector field Aµ(µ = 0, 1, 2, 3). Further, the Majorana-Weyl spinor λ
describes four Majorana spinors λK in four dimensions. Moreover the supersymmetry
transformation parameter ε describes also four Majorana spinor parameters εK . Thus
we obtain the action which contains one vector, three scalars, three pseudoscalars and
four Majorana fermions, which is invariant under supersymmetry transformation with an
internal symmetry index.

7.2 Light Cone Superspace Formalism

The problem concerning the absence of an off-shell formalism, can be worked around in
Light Cone Superspace formalism [12],[18] where only physical degrees of freedom are
manifest. On the light cone we haveAµBµ = AiBi+AlAl−A0B0, where we have denoted
the longitudinal direction as l, time direction as 0, and the rest of transverse directions
as i. Now from this one can define, A± = 2−1/2(A0 ± Al), A = 2−1/2(A1 + iA2). Now
in the light cone gauge one has the condition, A+a = 0 where we have put back the
gauge index a. Also A−a can be algebraically replaced in the Lagrangian. And so the
propagating degrees of freedom are : A(x) a complex field describing the vector degree of
freedom, 3 complex fields Cmn(x)(which is just linear combination of the scalar Ai and
pseudoscalar Bi introduced in the previous section. Explicitly 2−1/2(Ai+ iBi)) describing
6 scalar particles, and complex Grassmann fields χm(x) describing 4 spin 1/2 particles.
Now in this language the Lagrangian for the N=4 SUSY Yang Mills on the Light Cone
gauge is given as follow, using the Grassmann parameter θm and its complex conjugate
θ̄m:

L = 72[−φ̄a( �
∂+2

)φa +
4

3
gfabc[

1

∂+
φ̄aφb∂̄φc +

1

∂+
φaφ̄b∂φ̄c]

−g2fabcfade[
1

∂+
(φb∂+φc)

1

∂+
(φ̄d∂+φ̄e) +

1

2
φbφ̄cφdφ̄e]

(7.16)

Where the following super covariant derivative is introduced,

dm̃ = − ∂

∂θ̄m̃
− i√

2
θm̃∂+ d̄ñ =

∂

∂θñ
+

i√
2
θ̄ñ∂

+ (7.17)

The field φ and φ̄ are defined using the constraints:

dm̃φ = 0 φ̄ = 1
48

( d̄4

∂+2 )φ (7.18)

dm̃dñφ̄ =
1

2
εm̃ñp̃q̃d̄p̃d̄q̃φ (7.19)
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Chapter 7. N=4 Super Yang Mills Theory

Where the ”˜” indices correspond to internal SU(4) indices and the rest, the gauge
indices. For completeness purpose, we give the component field expansion of thesuperfield
φ below:

φ(x, θ, θ̄) =
1

∂+
A(y) + i

1

∂+
θm̃χ̄m̃(y) + i

1√
2
θm̃θñC̄m̃ñ(y)

+
1

6

√
2θm̃θñθp̃εm̃ñp̃q̃χ

q̃(y) +
1

12
θm̃θñθp̃θq̃εm̃ñp̃q̃∂

+Ā(y) (7.20)

where we have supressed the gauge index in the above field expansion and y = (x, x̄, x+, x−−
i2−1/2θm̃θ̄m̃). The supersymmetry transformations on the components are given as fol-
lows:

δAa = iεm̃χ̄am̃ (7.21)

δCm̃ña = −i(εm̃χña − εñχm̃a + εm̃ñp̃q̃ ε̄pχ̄
a
q) (7.22)

δχm̃a =
√

2εm̃∂+Āa +
√

2ε̄n∂
+Cm̃ña (7.23)

The functional derivative in the light cone superspace are defined:

δφa(x, θ, θ̄)

δφb(x′, θ′, θ̄′)
=

d4

(4!)2
δ4(x− x′)δ4(θ − θ′)δ4(θ̄ − θ̄′)δab (7.24)

and,
δφ̄a(x, θ, θ̄)

δφb(x′, θ′, θ̄′)
=

12d̄4d4

(4!)4
δ4(x− x′)δ4(θ − θ′)δ4(θ̄ − θ̄′)δab (7.25)

From this we can derive the DeWitt equation, which can be written in the following
representative form considering that it takes up the same form as earlier.:

δΓ

δϕo(x)
=

δS

δϕo(x)
− i~

2

∫∫
d12yd12zGmn

2 (y, z)
δ3S

δϕm(y)δϕn(z)δϕo(x)

−~2

6

∫∫∫
d12wd12yd12zGpmn

3 (w, y, z)
δ4S

δϕp(w)δϕm(y)δϕn(z)δϕo(x)
(7.26)

Where ϕ is the vacuum expectation value of φ and z = (x, θ, θ̄), and understood to be
the classical field with respect to which we solve for the effective action. Here the Greens
functions are defined using a chiral source which satisfy the constraint equations same as
φ, as follows:

Ga1..an
n (z1, .., zn) =

δnW [J ]

δJa1(z1)..δJan(zn)
(7.27)

Where W [J ] is defined as follows:

exp

[
i

~
W [J ]

]
=

∫
Dφa(z)exp

(
i

~

∫
d12z[L+

1

4
φa

d̄4

∂+4
Ja]

)
(7.28)

Using this it can be shown analogous to [12] that the DeWitt equation is finite. But the
actual equation is pretty cumbersome. The finiteness is shown by shifting the superco-
variant derivative d’s to the external leg. and performing the integration over the theta
functions, as any diagram can be written as a local function in the θ variables. By doing
so, in the end one obtains product of delta functions of these anticommuting θ variables,
which is zero.
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7.3. Momentum space representation

7.3 Momentum space representation

It is worth while to point out that the momentum space representation of the action
(discussed in [50]) could give a relatively easier technique at computing amplitudes in this
model. In momentum light cone space representation, the action for N=4 Supersymmetric
Yang Mills Theory can be written as follows:

S = 72

∫
d4θd4θ̄T r

[ ∫
d4p1

(2π)4
2 ˆ̄φ(−p1)

p2
1

p2
1−
φ̂(p1)

−8ig

3

∫
d4p1

(2π)4

d4p2

(2π)4

1

(p1− + p2−)

(
p̄2

ˆ̄φ(−p1 − p2)[φ̂(p1), φ̂(p2)] + p2φ̂(−p1 − p2)[ ˆ̄φ(p1), ˆ̄φ(p2)]

)
−2g2

∫
d4p1

(2π)4

d4p2

(2π)4

d4p3

(2π)4

(
(p1−.p2−)2

(p2− + p3−)2
[φ̂(−p1 − p2 − p3), φ̂(p1)][ ˆ̄φ(p2) ˆ̄φ(p3)]

−1

2
[φ̂(−p1 − p2 − p3), ˆ̄φ(p1)][φ̂(p2), ˆ̄φ(p3)]

)]
(7.29)

Where φ̂ is understood as the Fourier transform of the superfield φ (where p− → i∂+),
only with respect to the space-time coordinates. Using this action we can write down the
effective action for N=4 super Yang Mills as the following, as the effective action can be
formally understood as the sum of all vacuum energy diagrams with modified classical
propagators, it must be independent of representation, (whether in position space or
momentum space):

Γ[ϕ̂] = S[ϕ̂] +
i~
2

∫
d4p ln

[
δ2S[ϕ̂]

δϕ̂(−p)δϕ̂(p)

]
(7.30)

−i~ ln

[
exp

(
i~
2

∫
d4p1d

4p2G
ab
cl (p1, p2; ϕ̂)

δ2

δη̂a(p1)δη̂b(p2)

)
exp

(
i~−1Sint[ϕ̂, η̂]

) ∣∣∣∣
η=0

]
1PI

Where ϕ̂(p) is the Fourier transform of the classical field and the classical propagator,
Gcl is defined as follows:∫

d4p
δ2S

δϕ̂a(p1)δϕ̂b(p)
Gbc
cl (p, p2; ϕ̂) = δacδ(4)(p1 − p2)

and Sint is defined as follows:

8gfabc

3

∫
d4p1

(2π)4

d4p2

(2π)4

1

(p1− + p2−)

(
p̄2 ˆ̄ηc(−p1 − p2)η̂a(p1)η̂b(p2) + p2η̂

c(−p1 − p2)ˆ̄ηa(p1)ˆ̄ηb(p2)

)
+2g2fabcfefc

∫
d4p1

(2π)4

d4p2

(2π)4

d4p3

(2π)4

(
(p1−.p2−)2

(p2− + p3−)2

(
ϕ̂a(−p1 − p2 − p3)η̂b(p1)ˆ̄ηe(p2)ˆ̄ηf (p3)

+η̂a(−p1 − p2 − p3)ϕ̂b(p1)ˆ̄ηe(p2)ˆ̄ηf (p3) + η̂a(−p1 − p2 − p3)η̂b(p1) ˆ̄ϕe(p2)ˆ̄ηf (p3)

+η̂a(−p1 − p2 − p3)η̂b(p1)ˆ̄ηe(p2) ˆ̄ϕf (p3)

)
− 1

2

(
ϕ̂a(−p1 − p2 − p3)ˆ̄ηb(p1)η̂e(p2)ˆ̄ηf (p3)

+η̂a(−p1 − p2 − p3) ˆ̄ϕb(p1)η̂e(p2)ˆ̄ηf (p3) + η̂a(−p1 − p2 − p3)ˆ̄ηb(p1)ϕ̂e(p2)ˆ̄ηf (p3)

+η̂a(−p1 − p2 − p3)ˆ̄ηb(p1)η̂e(p2) ˆ̄ϕf (p3) + η̂a(−p1 − p2 − p3)ˆ̄ηb(p1)η̂e(p2)ˆ̄ηf (p3)

))
+2g2fabcfefc

∫
d4p1

(2π)4

d4p2

(2π)4

d4p3

(2π)4

(
(p1−.p2−)2

(p2− + p3−)2
η̂a(−p1 − p2 − p3)η̂b(p1)ˆ̄ηe(p2)ˆ̄ηf (p3)

)
(7.31)
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It is clear from the form of Sint that the terms cubic in η̂ produce the 3-point interaction
vertex and is background field i.e. ϕ̂ dependent, while the terms quartic in η form the
4-point interaction vertex. This interaction term is already very cumbersome to work
with. Nevertheless its easier than the position representation, and directly yields the
amplitudes.

We know that, the n-point amplitudes are just the n-point Green’s functions of the
theory, therefore we can calculate the amplitudes by the repeated functional derivative
on the following equation:

δ3W [J ]

δJa(p1δJ b(p2)δJ c(p3)
=∫

d4p′1d
4p′2d

4p′3
δ2W [J ]

δJa(p1)δJd(p′1)

δ2W [J ]

δJ b(p2)δJe(p′2)

δ2W [J ]

δJ c(p3)δJf (p′3)

δ3Γ[ϕ]

δϕ̂d(p′1)δϕ̂e(p′2)δϕ̂f (p′3)

(7.32)

Thus the n-point amplitudes are obtained by differentiating the above equation equa-
tion (n-3)-times and setting both the source J and the background field ϕ to zero. The
functional derivative of Γ with respect to J , is understood to be taken as follows:

δ

δJa(p)

δ3Γ[ϕ]

δϕ̂d(p′1)δϕ̂e(p′2)δϕ̂f (p′3)
=

∫
d4p′

δ2W [J ]

δJa(p)δJ c(p′)

δ4Γ[ϕ]

δϕ̂c(p′)δϕ̂d(p′1)δϕ̂e(p′2)δϕ̂f (p′3)
(7.33)

Thus the n-point amplitudes are then defined as follows:

A(p1, σ1; ...; pn, σn) =
δnW [J ]

δJσ1(p1)...δJσn(pn)

∣∣∣∣
J=0,ϕ̂=0

(7.34)

7.4 Outlook

Although we were not able to shed more light on this problem, we still were able to
understand many key concepts associated with it. Firstly absence of an off-shell for-
malism, hinders the use of this technique for N = 4 supersymmetric Yang Mills theory
and extended on-shell supersymmetric field theories in general. This can be understood
from the point of view, that while the supersymmetry transformations are on-shell, the
path integral itself is off-shell. This means that starting with an action which is only
on-shell supersymmetric, then while performing loop calculations, we will see that the
divergences coming from the bosonic and fermionic terms do not cancel. In supersym-
metric gauge theories, this on-shell choice of the action is due to the choice of the Wess
Zumino gauge, with out which the action automatically becomes extremely cumbersome.
Also another point in the discussion which we should mention is the that while using
the formal translation invariance of the measure to derive the DeWitt equation, it was
automatically assumed that the path integral measure is invariant under on-shell super-
symmetric transformation. It was shown in [40] that when there exists a superspace
representation of the full supersymmetry algebra, then the measure is invariant, as the
super symmetry transformations act linearly on all the component fields. On-shell the
supersymmetry transformations become non-linear, and hence the measure is not invari-
ant under it, and thus it is expected that the translation invariance of the measure has
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7.4. Outlook

to account for an anomalous term. It would be interesting to look into this in a bit more
detail, and see whether the anomalous term could give some insight into the on-shell
version of this theory.1

1For more recent developements please see [19],[20],[21].
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Chapter 8

Brief introduction to Conformal
Field Theory in 2 dimensions

The interest in conformal invariance in two dimensions started after the work of Belavin,
Polyakov, and Zamolodchikov [42]. These authors used the representation theory of
Virasoro algebra, developed earlier, and showed how to construct completely solvable
conformal field theories which are the so-called minimal models. A striking feature of
the work put forward by them was that, in these conformal field theories, the Lagrangian
or the Hamiltonian play a relatively minor role. The key idea is to try to solve for the
correlation functions of the theory with out perturbative methods based on a local action.
This is done only on criteria of self-consistency and symmetry. The interesting idea in
this approach is that the product of local quantum operators can always be expressed as a
linear combination of well-defined local operators. For example if we have two operators,
we have:

φi(x)φj(y) =
∑
k

Ck
ij(x− y)φk(y) (8.1)

Where Ck
ij(x − y) are coefficients and not operators. This is called an operator product

expansion which is a vital part in the study of conformal field theories. A conformal
field theory, as the name suggests is a theory which is invariant under conformal trans-
formations. These theories describe the critical behavior of systems at a second order
phase transition. The simple example is the Ising model in two dimensions, with spins
σi = ±1 on sites of a square lattice. The partition function is defined in this case as
Z =

∑
σ exp(−E/T ), where the energy E = −ε

∑
(ij) σiσj, where the sum is over nearest

neighbors on the lattice sites and ε a constant. The model has a high temperature disor-
der phase (i.e. where the expectation value 〈σ〉 = 0) and a low temperature ordered phase
(i.e. where the expectation value 〈σ〉 6= 0). Thus there is a phase transition, at which the
typical configuration have fluctuations on all length scales, so the theory which describes
this model at this critical point should be scale independent (or more generally conformal
invariant). Thus Conformal invariance (or scale invariance) is an important phenomenon
close to phase transition in physical systems. For more detailed background study of this
perspective the reader is urged to look at [63]. There one can look at calculation of critical
exponents using variational perturbation theory introduced in [61], and also to calculate
the same for the λ-transition of superfluid Helium [64], which matched the experimental
results to a high degree of accuracy. One must note that there is deep relation between
conformally invariant theories and nonconformally invariant physical systems close to
their critical point. As pointed out in [63], there are many thermodynamic quantities,
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which exhibit a power law with respect to the temperature close to criticality. For ex-
tensive study of this subject and systems close to criticality please refer to [63]. Also it
is pointed out that the effective action is an effective tool for describing strongly coupled
systems, and in the strong coupling limit the effective interaction changes the interaction
to an anomalous power,[63],[59]. The description of such a strongly coupled theory is
treated in [59], where the usual Gaussian random walk of the path integral is replaced by
Levy walks (please see [59] for more details). In three or higher dimensions, conformal
invariance does not give much more information than simple scale invariance. But in two
dimensions, the conformal algebra becomes infinite dimensional, and hence gives more
restrictions on the theory.1

Let us give a simple idea what we mean by a conformally invariant theory. Suppose
we start with the action of the following form:

S =

∫
dDxL(∂x, gµν(x), φ(x)) (8.2)

Where φ denote any field that might appear in the action, and we have specified the
metric which we have specified separately. General coordinate invariance implies that:

S = S ′ ≡
∫
dDx′ L(∂x′ , g

′
µν(x

′), φ′(x′)) (8.3)

Under a general coordinate transformation, x → x′, such that, xµ = fµ(x′ν), a general
tensor field of rank n will trnasform as :

φ′µ1,...µn(x′) =
∂f ν1

∂x′µ1
. . .

∂f νn

∂x′µn
φν1,...νn(f(x′)) (8.4)

Under this transformation a scalar function φ(x) will be left invariant, as φ′(x′) =
φ(f(x′)). Now if the transformation x → x′ is conformal, which is to say the metric
transforms by a Weyl factor gµν → Λ(x)gµν , then using this property,

S = S ′′ ≡
∫
dDx′ L(∂x′ , gµν(f(x′)), φ′(x′)) (8.5)

This is the conformal symmetry of the action. We point out here that the metric remains
unchanged, if we start with a flat space metric. It is then understood that the action of
such theories is unchanged if we integrate the same Lagrangian, which is now expressed
in terms of the new fields, over the new coordinates. Also this means that one can define
the conformal transformation for theories in flat space, that are not coupled to gravity,
and so one can start with an action in which no dynamical metric appears. This is the
essence of the conformal invariant theories. Now we go into more detailed mathematical
description of these theories, which will be required for our last chapter.

8.1 Transformation and Algebra

Now we discuss the transformations and the algebra of the generators of these transfor-
mations. A conformal transformation is a transformation of the coordinates such that it

1For more detailed reading please refer to [36],[42],[54],[55],[63].
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is an invertible map and it leaves the metric tensor invariant upto a scale. This is defined
as:

g′µν = Λ(x)gµν

The set of conformal transformations forms a group and the Poincare group forms a
subgroup, since the latter corresponds to the case Λ(x) = 1. The word conformal means
that the transformations do not change the angle between two arbitrary curves crossing
each other. A field theory which is invariant under such transformations (much the
same way as other symmetries) is called a conformal field theory. The globally well
defined conformal transformations which are also called the special conformal group are
the following:

(translation) x̄µ = xµ + aµ

(dilation) x̄µ = αxµ

(rigid rotation) x̄µ = Mµ
ν x

ν

(SCT) x̄µ =
xµ − bµ(xνxν)

1− 2(bνxν) + (bνbν)(xσxσ)
(8.6)

where aµ, bµ are vectors, Mµ
ν an element of Lorentz Group and α is a real constant. Now

the generators of the above transformations are the following:

(translation) Pµ = −i∂µ
(dilation) D = −ixµ∂µ

(rigid rotation) Lµν = i(xµ∂ν − xν∂µ)

(SCT) Kµ = −i[2xµxν∂ν − (xνxν)∂µ] (8.7)

where SCT stands for Special Conformal Transformations. These generators follow the
following algebra:

[D,Pµ] = iPµ

[D,Kµ] = −iKµ

[Kµ, Pν ] = 2i(ηµνD − Lµν)
[Kρ, Lµν ] = i(ηρµKν − ηρνKµ)

[Pρ, Lµν ] = i(ηρµPν − ηρνPµ)

[Lµν , Lρσ] = i(ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ)
(8.8)

Here we give some useful description and tools for the study of conformal field theory
in 2 dimensions only. Firstly let us start by the looking at a conformal map in this case.
Considering coordinates on the plane (x0, x1) and changing variables, xµ → wµ(x), the
contravariant metric tensor transforms as,

gµν →
(
∂wµ

∂xα

)(
∂wν

∂xβ

)
gαβ (8.9)

Because a conformal transformation is defined as when g′µν(w) ∝ gµν(z) this puts the
following condition on the Jacobian of transformation,(

∂w0

∂x0

)2

+

(
∂w0

∂x1

)2

=

(
∂w1

∂x0

)2

+

(
∂w1

∂x1

)2

(8.10)
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∂w0

∂x0

∂w1

∂x0
+
∂w0

∂x1

∂w1

∂x1
= 0 (8.11)

The above conditions are equivalent to the following:

∂w1

∂x0
=
∂w0

∂x1
,

∂w0

∂x0
= −∂w

1

∂x1
(8.12)

Which are the holomorphic Cauchy-Riemann equations. Also the conditions can be
written as antiholomorphic Cauchy-Riemann equations as follows:

∂w1

∂x0
= −∂w

0

∂x1
,

∂w0

∂x0
=
∂w1

∂x1
(8.13)

Thus we can use complex coordinates to represent these equations,

z = x0 + ix1, z̄ = x0 − ix1, ∂z =
1

2
(∂0 − i∂1), ∂z̄ =

1

2
(∂0 + i∂1) (8.14)

The inverse transformation can be written as follows:

x0 =
1

2
(z + z̄), x1 =

1

2i
(z − z̄), ∂0 = ∂z + ∂z̄, ∂1 = i(∂z − ∂z̄) (8.15)

In the holomorphic coordinates, the metric tensor for the flat case can be written as :

gµν =

(
0 1

2
1
2

0

)
(8.16)

Where the index µ takes value z, z̄. Also in this language we can write the conformal
transformation to be defined by the following condition:

∂z̄w(z, z̄) = 0 (8.17)

Which is just to say that it is a holomorphic map,

z → w(z) (8.18)

8.2 Primary Field

A primary field is defined as a field which under conformal map transforms as follows:

φ(z, z̄) =

(
∂w

∂z

)∆(
∂w̄

∂z̄

)∆̄

φ(w, w̄) (8.19)

Where ∆,∆̄ are called the holomorphic and antiholomorphic conformal dimensions of the
operator. Therefore, in a 2 dimensional conformal field theory, the correlation functions
of primary operators transform as follows.

〈φ1(z1, z̄1) . . . φn(zn, z̄n)〉 =
n∏
i=1

(
∂wi
∂zi

)∆i
(
∂w̄i
∂z̄i

)∆̄i

〈φ1(w1, w̄1) . . . φn(wn, w̄n)〉 (8.20)

This puts enough constraint on the structure of these functions. More over the holomor-
phic and anti-holomorphic conformal dimensions ∆, and ∆̄ are in general different for
fields with spins, but, here we will only consider spinless fields, so they turn out to be
the same in our case.
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8.3 2 and 3 point correlation functions

Global conformal symmetry (rotation, translation, dilation and special conformal trans-
formation) restricts the structure of the two and three point function (expectation value
with 2, 3 primary field) of spinless primary operators as follows:

〈φ1(z1, z̄1)φ2(z2, z̄2)〉 =
C12

|z1 − z2|2(∆1+∆2)
, ∆1 = ∆2 (8.21)

and,

〈φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)〉 =
C123

|z1 − z2|2γ3|z2 − z3|2γ1|z3 − z1|2γ2
, γ1 = ∆2+∆3−∆1, etc.

(8.22)
And C12, C123 are called structure constants, and are model dependent and also depend

on the primary fields present in the correlator. It is these functions which we need to
calculate to describe the theory. The structure of the higher point functions can not be
fixed by global conformal invariance. In general they are functions of cross ratios which
can for four points can be written as follows:

|z1 − z2||z3 − z4|
|z1 − z3||z2 − z4|

(8.23)

For n points there can be n(n− 3)/2 anharmonic ratios. This makes finding higher point
functions extremely difficult.

8.4 Energy Momentum Tensor

the energy momentum tensor is an important ingredient in conformal field theories. Clas-
sically it is defined as the variation of the action with respect to the metric tensor :

T µν = −2
δS

δgµν
(8.24)

For the case at hand, it is interesting to note that the energy momentum tensor is traceless
which can be seen as follows: Under scale transformation, the metric transforms as;

δgµν = εgµν (8.25)

and the action would correspondingly transform as:

δS =

∫
d2x

δS

δgµν
δgµν = −1

2

∫
d2x
√
gεT µµ (8.26)

Which must be zero in a conformal field theory as it is scale invariant. Therefore we have
the following :

T µµ = 0 (8.27)

Also we have another condition. When there is a continuous symmetry in a field theory
then we have a conserved current jµ which is to say that ∂µjµ = 0. For conformal field
theory we have the conserved current jµ = Tµνε

ν . For the special case of εµ = constant
we obtain the following:

∂µjµ = (∂µTµν)ε
ν = 0 ⇒ ∂µTµν = 0 (8.28)
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In the case of a curved world sheet this becomes ∇µT
µν = 0. On the other hand if one

has a general transformation εµ(x) then we get again T µµ = 0.When we write the energy
momentum tensor in holomorphic coordinates :

Tzz(z, z̄) =
1

2
(T00 − iT10) and Tz̄z̄(z, z̄) =

1

2
(T00 + iT10) (8.29)

While the condition (8.28) becomes :

∂z̄Tzz = 0 and ∂zTz̄z̄ = 0 (8.30)

While the tracelessness condition gives the following:

Tzz̄ = Tz̄z = 0 (8.31)

Thus the two non vanishing components of the energy momentum tensor are holomorphic
or antiholomorphic.

8.5 The Conformal Algebra

Coming back to our complex coordinates, and looking at a holomorphic transformation,
z 7→ w(z), we have:

ds2 = dzdz̄ 7→ ∂f

∂z

∂f̄

∂z̄
dzdz̄ (8.32)

A Laurent expansion around z = 0 for a general infinitesimal conformal transformation
can be written as,

z′ = z + ε(z) = z +
∑
n∈Z

εn(−z(n+1)) (8.33)

z̄′ = z̄ + ε̄(z̄) = z̄ +
∑
n∈Z

ε̄n(−z̄(n+1)) (8.34)

The generators corresponding to the transformations are:

ln = −zn+1∂z , l̄n = z̄n+1∂z̄ (8.35)

As n ∈ Z there are infinite number of generators, and they obey the following commuta-
tion relations:

[lm, ln] = (m− n)lm+n , [l̄m, l̄n] = (m− n)l̄m+n , [lm, l̄n] = 0 (8.36)

This is known as the Witt Algebra and is the classical counterpart of the well known
Virasoro Algebra. We present here a general discussion. Performing a Laurent expansion
of T (z) we have:

T (z) =
∑
n∈Z

z−n−2Ln where Ln =
1

2πi

∮
dzzn+1T (z) (8.37)

These modes satisfy the following commutation relation, which is the Virasoro Algebra,

[Lm, Lm] = (m− n)Lm+n +
c

12
(m3 −m)δm,−n (8.38)
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Where c is called the central charge of the algebra which commutes with all the generators
of the algebra. Given the central charge and the set of primary fields along with their
conformal dimensions, and a technique for getting higher point function from the lower
ones, one can define a conformal field theory completely. The method of obtaining the
higher point functions from the lower ones is called conformal bootstrap. For example
if one is given the 2- and 3-point function, then by using this method one can find the
4-point function. But in doing so one needs an extra structure called the conformal blocks
which are functions of the cross ratios mentioned above. If one can find these conformal
blocks then in principle one can write down any correlation function.

8.6 Conformal Ward Identities

The conformal Ward identities are obtained by variation of the correlation functions under
a conformal transformation. Now when we look at a correlation function of primary fields
and take an infinitesimal variation, we have the following:

z → z′ (8.39)

φ(z, z̄)→ φ′(z′, z̄′) (8.40)

and the infinitesimal variation

φ(z, z̄)→ φ(z, z̄) + δφ(z, z̄) (8.41)

Now for the expectation value of string of primary fields we have (assuming that the
measure is invariant under conformal transformation):

1

Z

∫
Dφφ′1(z1, z̄1) . . . φ′n(zn, z̄n)e−S[φ′]

=
1

Z

∫
Dφ (φ1(z1, z̄1) + δφ1(z1, z̄1)) . . . (φn(zn, z̄n) + δφn(zn, z̄n))e−S[φ]−δS[φ]

=
1

Z

∫
Dφφ1(z1, z̄1) . . . φn(zn, z̄n)e−S[φ] +

1

Z

∫
Dφ δφ1(z1, z̄1) . . . φn(zn, z̄n)e−S[φ] + . . .

+
1

Z

∫
Dφφ1(z1, z̄1) . . . δφn(zn, z̄n)e−S[φ] − 1

Z

∫
Dφφ1(z1, z̄1) . . . φn(zn, z̄n)δS[φ]e−S[φ]

(8.42)

Now as we have conformally invariant correlation functions, we obtain the following:

1

Z

∫
Dφ δφ1(z1, z̄1) . . . φn(zn, z̄n)e−S[φ] + · · ·+ 1

Z

∫
Dφφ1(z1, z̄1) . . . δφn(zn, z̄n)e−S[φ]

− 1

Z

∫
Dφφ1(z1, z̄1) . . . φn(zn, z̄n)δS[φ]e−S[φ] = 0 (8.43)

Now from the definition of the energy momentum tensor we have in holomorphic coordi-
nates:

δS =

∮
dsµενTµν (8.44)

µ, ν taking values z, z̄. Also for the infinitesimal variation of the primary field, we have
from 8.19 :
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δφ = φ′(z, z̄)− φ(z, z̄) = −(∆φ∂zε+ ε∂zφ)− (∆̄φ∂z̄ ε̄+ ε̄∂z̄φ) (8.45)

Putting these together and in holomorphic coordinates:

1

Z

∫
Dφ δφ1(z1, z̄1) . . . φn(zn, z̄n)e−S[φ] + · · ·+ 1

Z

∫
Dφφ1(z1, z̄1) . . . δφn(zn, z̄n)e−S[φ]

= − 1

2πi

∮
C

dz[ε(z)〈Tzz(z, z̄)φ1(z1, z̄1) . . . φn(zn, z̄n)〉+ ε̄(z̄)〈Tzz̄(z, z̄)φ1(z1, z̄1) . . . φn(zn, z̄n)〉]

+
1

2πi

∮
C

dz̄[ε̄(z̄)〈Tz̄z̄(z, z̄)φ1(z1, z̄1) . . . φn(zn, z̄n)〉+ ε(z)〈Tz̄z(z, z̄)φ1(z1, z̄1) . . . φn(zn, z̄n)〉]

(8.46)

We have introduced a factor of 1/2π for convenience, which changes the normalization of
the energy momentum tensor and the contour C encloses all the points z1, . . . , zn. This is
a general form of the Ward Identity which is valid also for expectation value of string of
fields which are not primary.Restricting to primary fields and looking at the holomorphic
part, we have the following:

− 1

Z

∫
Dφ 〈(∆1φ1(z1, z̄1)∂z1ε(z1) + ε(z1)∂z1φ(z1, z̄1)) . . . φn(zn, z̄n)e−S[φ] + . . .

− 1

Z

∫
Dφφ1(z1, z̄1) . . . (∆nφn(zn, z̄n)∂znε(zn) + ε(zn)∂znφ(zn, z̄n)e−S[φ]

= − 1

2πi

∮
C

dz ε(z)〈Tzz(z, z̄)φ1(z1, z̄1) . . . φn(zn, z̄n)〉 (8.47)

where we have used the tracelessness of the energy momentum tensor (T µµ = 1
2
(Tzz̄ +

Tz̄z) = 0). Thus (8.47) can be written as follows:

− 1

2πi

∮
C

dz ε(z)〈Tzz(z, z̄)X〉 = −
n∑
i=1

(∆i∂ziε(zi) + ε(zi)∂zi)〈X 〉

⇒ − 1

2πi

∮
C

dz ε(z)〈Tzz(z, z̄)X〉 = − 1

2πi

n∑
i=1

∮
C

dz ε(z)

(
∆i

(z − zi)2
+

1

z − zi
∂i

)
〈X 〉

(8.48)

where,

〈X 〉 =
1

Z

∫
Dφφ1(z1, z̄1) . . . φn(zn, z̄n)e−S[φ] (8.49)

and we have used the residue theorem to rewrite the R.H.S. . This is the more common
version of the Ward Identity. Here we will not do much more discussion on this topic, as
we will not require this for our next chapters. Now we will discuss about the Coloumb
Gas formalism, which we would require in the next chapter.

8.7 Coloumb Gas Formalism

It is interesting to note that the free bosonic field correlator 〈φ(zi, z̄i)φ(zj, z̄j)〉 = −ln|zi−
zj|2 resembles the electric potential energy of unit charges in 2 dimensions. So finding
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the correlator of n-fields, is like the potential energy of n-unit charges. This analogy gives
the name. The action for a free boson theory has the following action:

S =
1

4π

∫
d2x∂µφ∂

µφ (8.50)

It is a conformal field theory with central charge c = 1. The holomorphic energy momen-
tum tensor for this model is the follows:

T (z) = −∂zφ∂zφ (8.51)

In the quantum case the above expression is to be normal ordered. ∂φ is a primary field
with dimension 1. Now a vertex operator is defined as the exponential of the field φ:

Vα(z, z̄) = ei2αφ(z,z̄) (8.52)

The conformal dimension for this vertex operator is α2. The vertex operators are under-
stood to be normal ordered implicitly. Now the correlator of vertex operators is given
by:

〈Vα1(z1, z̄1) . . . Vαn(zn, z̄n)〉 =

∫
Dφ

n∏
i=1

ei2αiφ(zi,z̄i)exp

(
− 1

4π

∫
(∂µφ)2d2x

)
=
∏
i<j

|zi − zj|4αiαj

(8.53)

Which is because, 〈φ(zi, z̄i)φ(zj, z̄j)〉 = −ln|zi − zj|2. Moreover there is the neutrality
condition, which is :

n∑
i=1

αi = 0 (8.54)

This can be seen as follows: if we split φ(z, z̄) into a constant mode φ0 and a fluctuating
part φ̃(z, z̃), where they satisfy the following conditions:∫

dz dz̄φ0 =

∫
dz dz̄ φ(z, z̄) ,

∫
dz dz̄ φ̃(z, z̄) = 0 (8.55)

Now if one splits the path integral and only look at the zero mode part ( actually this
is a bit subtle, in flat space the possible zero mode is not only a constant but there are
eigen functions of the Laplacian with eigen value zero. On a sphere, there is no problem,
as the only zero mode possible is a constant and the flat case can be understood as a
limit of the result on the sphere), then we have:∫ ∞

−∞
Dφ0 e

i2
∑n
i=1 αi = δ(2

n∑
i=1

αi) (8.56)

Now the basic idea is to have a background charge in the system, this modifies the
conformal dimensions of the vertex operators and the central charge. We will now drop
the i in the definition of the vertex operators, just to make contact with the next chapter.
Now If we have the action:

S =
1

4π

∫
d2x
√
g[∂µφ(x)∂µφ(x) +QR(x)φ(x)] (8.57)
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Where R(x) is the scalar curvature of the surface which we consider. This can also
be thought as charge −Q at infinity (consider Q to be positive). Now the conformal
dimension of the vertex operators become: α(Q−α). More over in 2 dimensions we have
the Gauss-Bonnet theorem, which says that:

1

4π

∫
d2x
√
gR(x) = χ (8.58)

Where χ is the Euler character of the surface. For the sphere, χ = 2. Moreover, the
neutrality condition is transformed to the following:

n∑
i=1

αi = Q (8.59)

(This kind of Coulomb gas integrals are also important in Kosterlitz-Thouless Phase
Transition in Condensed Matter Physics). On the sphere there is no problem in deriving
the neutrality condition as the only zero mode on the sphere are constants. Now we
discuss a very important concept, which we will need in the next chapter, which is a
Screening Charge Operator . A screening charge operator, is conformal dimension zero
operator, introduction of which does not change the conformal properties of a correlator.
A local operator of conformal weight zero is an identity operator. In the above Coloumb
representation there are two such vertex operators, V0(z) and VQ(z), but they are identity
operators of the algebra (actually that is the case if are dealing with the minimal models,
but not for Liouville like theories, any ways we exclude these two operators). The other
possible choice are operators of the following type (writing in holomorphic coordinates
and only the z part) :

Q =

∮
C

dz V1(z) (8.60)

where the 1 in the subscript represents conformal dimension 1. To see that this nonlocal
operator, is conformally invariant, we note that under a conformal transformation (z →
w):

Q →
∮
dz V1(w)

dw

dz
= Q =

∮
dw V1(w) (8.61)

Of course the corresponding contour will also be changed. Now we will see how Q
commutes with all the Virasoro generators. For this we have to compute:

[Ln,Q] =

∮
dz [Ln, V1(z)]

=
1

2πi

∮
dw

∮
dz T (w)V1(z)

=
1

2πi

∮
dw

∮
dz zn+1

[
1× V1(z)

(w − z)2
+
∂V1(z)

w − z
+ reg

]
=

∮
dz[(n+ 1)znV1(z) + zn+1∂V1(z)]

=

∮
dz ∂(zn+1V1(z)) = 0

(8.62)

Where we have written 1× in the calculation just to formally show, that it is the conformal
dimension times the expression.Now there are two conformal weight zero operators we
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can use as we have a quadratic equation for the dimension α(Q− α) = 1. Let us denote
the roots as α+ and α−. Now from the sum of roots and product of roots of a quadratic
equation we have,

α+ + α− = Q , α+α− = 1 (8.63)

We represent the two screening charges depending on the α+ and α− as Q+ and Q−
respectively. In Minimal models (models with central charge less than 1), the screening
charge operators are used to modify the charge of the correlator. One has to note that in
Minimal models, there is only one operator for one conformal dimension. Any correlation
function which does not satisfy the neutrality condition can be modified by adding these
screening charges. Thus a correlator in a theory which can be described by the Coloumb
gas system (as Minimal models are) exists if it satisfies the modified neutrality condition
(as one can add screening charges to modify the naive neutrality condition, when it is
not satisfied):

n∑
i=1

αi + kα+ + lα− = Q (8.64)

where k and l are positive integrs, corresponding to integer insertion of the screening
charge operators, and the correlator is therefore:

〈Vα1(z1, z̄1) . . . Vαn(znz̄n)Qk+Ql−〉 (8.65)

We will not go any further in this topic, which in itself is a vast subject. For our later
chapter we only need the definition of the screening charge operators, and so we end our
discussion on general properties of conformal field theory here. In the next chapter we
will only use the form of the three point function described earlier and formal properties
of the screening charge operators for our analysis. It is important to note that as we
will be dealing with the explicit action of Liouville Field Theory, not much knowledge
is required of the operator formalism in conformal field theory, and only knowledge of
functional methods in quantum field theory will be sufficient.
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Chapter 9

Liouville Field Theory

Quantum Liouville field theory became a very important topic of study since it came
up in the quantization of non-critical strings in the work of Polyakov [24]. Since then
many people have tried to quantize this model. Liouville field theory being a conformal
field theory in 2 dimensions, has the infinite dimensional symmetry generated by the
Virasoro generators. Canonical quantization of this theory proved problematic and could
not yield the full two and three point functions which are essential for describing the
theory. An important break through happened when [16], [17], gave a proposal for the
three point function in Liouville field theory. Al though it was not obtained by directly
but by analytically continuing after obtaining it for a discrete set of points, it satisfied
all the properties required and also passed many stringent tests. Then [23] derived a set
of difference equations for the structure constants (which is the part left after fixing the
position dependent part by conformal invariance). One intriguing point about the pro-
posal is that it has dual set of poles, which can not be seen from the path integral. The
predicted poles are at negative integer values of the Liouville coupling constant b, while
the dual set are in the negative integer values of 1/b. Some authors have claimed that it
is due to presence of an extra exponential potential, that is introduced due to renormal-
ization. This dual potential produces the pole structure and also fixes the three point
function uniquely. Thus it is worth while to investigate this problem, as the complete
understanding has not been obtained.

Liouville field theory is a good candidate as, the potential is of quite simple form to
analyze with the technique discussed earlier. The DeWitt equation (or the Schwinger
Dyson equation) is of simple form in this case and so the equation at least seems to be
tractable. Now let us start by introducing the classical conformally invariant action in
the next section.

9.1 Classical Conformal Invariance

The classical action for conformal invariant Liouville theory 2 dimensions (We stick to
Euclidian metric for simplicity) is the following:

S =
1

4π

∫
d2x
√
ĝ[ĝµν∂µφ∂νφ+QcR̂φ(x) + 4πµe2bφ(x)] (9.1)

Where Qc = 1/b and R(x) is the scalar curvature term. Under change of the metric as:

ĝµν(x) = eσ(x)gµν(x) (9.2)
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Where g is another arbitrary fixed metric. We will see that this Weyl factor σ, can be
reabsorbed in a redefinition of φ. Now let us look at the term with scalar curvature term.
this transforms as follows: √

ĝR̂ =
√
g(R−∆σ) (9.3)

Thus the kinetic term and the curvature term put together we:

1

4π

∫
√
g[gµν∂µφ∂νφ+QcRφ+Qcg

µν∂µσ∂νφ]d2x (9.4)

where we have used,

−
∫
√
gφ(x)∆σd2x =

∫
√
ggµν∂µφ∂νσd

2x (9.5)

(the Laplace-Beltrami operator ∆ is w.r.t the metric gµν). Thus the transformed kinetic
term can be written as follows:

1

4π

∫
√
g

[
gµν∂µφ̂∂νφ̂+QcRφ̂−

Q2
c

2

(
Rσ +

1

2
gµν∂µσ∂νσ

)]
d2x (9.6)

where the Liouville field has been shifted as:

φ̂(x) = φ(x) +
Qc

2
σ(x) (9.7)

Thus we see that the action remains form invariant upto a boundary term (last term in
brackets). We will come back to this term shortly. Let us look ta the exponential term.
Firstly the contribution from the determinant of the metric:√

ĝ = eσ
√
g (9.8)

And next the contribution from the shift of the field:

e2bφ(x) = e−bQcσe2bφ̂(x) (9.9)

This means that for this term to be invariant we have: 1 − bQc = 0, which gives the
classical value of the back ground charge Qc = 1/b. Now we see that the action is
invariant upto a boundary term. A confromal transformation corresponds to the case
when (using holomorphic coordinates z = x0 + ix1)

σ = −log
∣∣∣∣∂w∂z

∣∣∣∣2 (9.10)

Under such a transformation the action is defined on an annulus Γ, of outer radius
R̃→∞, and inner radius 1/R̃→ 0, around the point point z = 0, given as:

S[φ] =
1

4π

∫
Γ

d2z[(∂aφ)2 + 4πµe2bφ] +
Qc

πR̃

∫
∂Γ

dlφ+ 2Q2logR̃ (9.11)

This condition is also called the background charge −Q at infinity. The Thus under con-
formal transformation (holomorphic coordinate transformations z → w(z)), the Liouville
field transforms as follows:

φ(w, w̄) = φ(z, z̄)− Qc

2
log

∣∣∣∣∂w∂z
∣∣∣∣2 (9.12)

Quantum mechanically the background charge Q becomes b + 1/b. We will discuss this
later when we will regularize the Schwinger Dyson equation.
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9.2 Classical Solution

If we restrict to flat space, then the Lagrangian for this theory is of the following form
(dropping the curvature term):

L =
1

2
∂µφ∂

µφ+ 2πµe2bφ(x) (9.13)

This gives the following equation of motion:

�φ(x)− 4πµbe2bφ(x) = 0 (9.14)

This equation has the following solution, which was first given by Joseph Liouville himself,
in terms of two arbitrary functions, F and G,

φ(x) =
1

2b
ln

[
F ′(z)G′(z̄)

[1− πµb2F (z)G(z̄)]2

]
(9.15)

Another important point is that the solution of the Liouville equation of motion can
be mapped to the solution of the Laplace equation i.e. the free field equation by a
transformation called the Backlund transformations which are given as follows:

2∂z(φ− φf ) =
√

2πµαe2b(φ+φf )

2∂z̄(φ+ φf ) =
√

2πµ
1

α
e2b(φ−φf )

(9.16)

where �φf = 0, and so is a free field and α is an arbitrary constant.

9.3 Energy Momentum Tensor, Primar Fields and

Central Charge

The holomorphic and anti-holomorphic energy momentum tensors for Liouville field the-
ory are given as :

T (z) = −(∂zφ)2 +Q∂2
zφ

T (z̄) = −(∂z̄φ)2 +Q∂2
z̄φ

(9.17)

The primary fields of Liouville field theory are the exponential vertex operators:

Vα = e2αφ(x) (9.18)

The conformal dimension of this operators are ∆α = α(Q − α), where the −α2 comes
from quantum correction. Under a conformal transformation (z → w(z)) theses primary
fields transform as:

e2αφ(z,z̄) =

(
∂w

∂z

)∆α
(
∂w̄

∂z̄

)∆α

2αφ(w,w̄) (9.19)
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From this definition one can find the scaling behaviour of correlator of any n-point func-
tion which is discussed in the earlier chapter. The central charge of the Liouville theory
is given in terms of the Liouville coupling parameter b as:

C = 1 + 6Q2 = 1 + 6

(
b+

1

b

)2

(9.20)

Using these one can write down the Ward identities as well, which are of the same form
as discussed. We will not require them for our later discussion so we will not mention
them here.

9.4 Correlation functions and Translation invariance

of measure

One can define the partition function for Liouvile Field Theory as follows:∫
[Dφ]e−S[φ]+

∫
d2x
√
gJ(x).φ(x) = Z[J ] (9.21)

And the correlation functions are defined as the partition function with delta function
insertions of the following type: J(x) =

∑
2αi(g(xi))

−1/2δ(2)(x− xi). And so

〈
n∏
i=1

e2αiφ(xi)〉 = Z[J ] (9.22)

On applying the translation invariance of the path integral measure we obtain the fol-
lowing: ∫

[Dφ]
δ

δφ(x)
e−S[φ]+J.φ = 0

⇒ Z[J ]J(x)−
〈

δS

δφ(x)

〉
= 0

⇒ J(x)Z[J ] = − 1

2π
∆
δZ[J ]

δJ(x)
+

1

4π
QR(x)Z[J ] + 2µbZ[Jx,b] (9.23)

Where ∆ is the Laplace-Beltrami operator and J(y)x,b is defined as follows:

J(y)x,b = J(y) +
2b√
g(x)

δ2(y − x) (9.24)

This is because,

〈e2bφ(x)〉J = Z

[
J +

δ

δφ

]
e2bφ(x)

∣∣∣∣
φ(x)=0

(9.25)

Now if we split up φ(x) = φ0 + φ̃(x) where φ0 is the zero mode of the Liouville field and
φ̃(x) is the fluctuating part such that,∫

d2x
√
g φ0 =

∫
d2x
√
g φ(x) ,

∫
d2x
√
g φ̃(x) = 0 (9.26)
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and again perform the translation invariance of the path integral measure with respect
to the zero mode only, we obtain the following:∫

[Dφ]
δ

δφ0

e−S[φ]+J.φ = 0

⇒
∫
d2x
√
g

[
J(x)− 1

4π
QR(x)

]
Z[J ] =

∫
d2x
√
g

[
2µbZ[Jx,b]

]
⇒ [2(

∑
i

αi −Q)]Z[J ] = 2µb

∫
d2x
√
gZ[Jx,b] (9.27)

Now for two insertions and after taking a flat space limit, (9.23) becomes :

(2α2δ
(2)(x− x2) + 2α3δ

(2)(x− x3)− 1

4π
QR(x))〈e2α2φ(x2)e2α3φ(x3)〉 =

− 1

2π
�〈φ(x)e2α2φ(x2)e2α3φ(x3)〉+ 2µb〈e2bφ(x)e2α2φ(x2)e2α3φ(x3)〉 (9.28)

Now dropping the terms on the L.H.S (which are contact terms in principle), we can
rewrite the equation as follows:

1

2π
�〈φ(x)e2α2φ(x2)e2α3φ(x3)〉 = 2µb〈e2bφ(x)e2α2φ(x2)e2α3φ(x3)〉

Now making the following identification:

φ(x) =

∫
[Dφ]φ(x)e−S[φ]+

∫
d2x
√
g(x)J(x)φ(x)∫

[Dφ]e−S[φ]+
∫
d2x
√
g(x)J(x)φ(x)

=

∫
[Dφ](1

2
∂αe

2αφ(x))|α=0e
−S[φ]+

∫
d2x
√
g(x)J(x)φ(x)∫

[Dφ]e−S[φ]+
∫
d2x
√
g(x)J(x)φ(x)

(9.30)

Which in our context we have:

φ(x) =
1

2

∂α〈e2αφ(x)e2α2φ(x2)e2α3φ(x3)〉|α=0

〈e2α2φ(x2)e2α3φ(x3)〉
(9.31)

Now putting things together,

1

4π
�∂α〈e2αφ(x)e2α2φ(x2)e2α3φ(x3)〉|α=0 = 2µb〈e2bφ(x)e2α2φ(x2)e2α3φ(x3)〉 (9.32)

Where the � is the Laplacian and is with respect to x coordinates. This is precisely the
equation which was used in [16] to check the proposal for three point function. This is
basically the expectation value of the equation of motion.

9.5 1st functional equation

Let us look at a generic n-point function, then the above equation will be as follows:

[
n∑
i=1

αi −Q]〈
n∏
i=1

e2αiφ(xi)〉 = µb

∫
d2x
√
g(x)〈

n∏
i=1

e2αiφ(xi)e2bφ(x)〉 (9.33)
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But the above is a recursive equation with a screening charge operator. Notice that the
conformal dimension of the non-local screening operator on the right is zero and so the
introduction of such an operator does not change the conformal structure. By setting
one of the α = b one obtains again:

[
n∑
i=1

αi + b−Q]〈
n∏
i=1

e2αiφ(xi)e2bφ(x)〉 = µb

∫
d2y
√
g(y)〈

n∏
i=1

e2αiφ(xi)e2bφ(x)e2bφ(y)〉 (9.34)

Replacing the above in the first equation, one again obtains:

[
n∑
i=1

αi −Q][
n∑
i=1

αi + b−Q]〈
n∏
i=1

e2αiφ(xi)〉

= (µb)2

∫
d2x
√
g(x)

∫
d2y
√
g(y)〈

n∏
i=1

e2αiφ(xi)e2bφ(x)e2bφ(y)〉 (9.35)

The above can be extended n-times, obtaining the following and denoting
∑n

i=1 αi = α̃,

〈
n∏
i=1

e2αiφ(xi)〉
m∏
j=0

(α̃ + jb−Q)

= (bµ)m+1

∫
· · ·
∫
〈
n∏
i=1

e2αiφ(xi)

m∏
j=0

e2bφ(yj)〉d2yj

√
g(yj) (9.36)

It is clear form the above structure that, the n-point functions are singular at α̃ = Q−mb,
which is also seen from the path integral. Moreover, the residues of the the n-point
function are directly seen to be exactly what one obtains from the path integral. We
also realize from here, that the correlator is related to arbitrary integer insertions of the
screening charge operator.

9.6 Equation for the Structure Constants

Now when ever α̃ = Q − mb, then one can choose the right hand side to be evaluated
with j insertions of the screening charge operator, such that it is a free field Coloumb gas
integral. To elaborate on the computation later, we present here some insights. Firstly
taking the ratio of eq 9.36, with m insertions and m− 1 of the screening charge operator,
gives the following:

(α̃−Q+mb)

∫
· · ·
∫
〈
n∏
i=1

e2αiφ(xi)

m−1∏
j=0

e2bφ(yj)〉d2yj

√
g(yj)

= µb

∫
· · ·
∫
〈
n∏
i=1

e2αiφ(xi)

m∏
j=0

e2bφ(yj)〉d2yj

√
g(yj) (9.37)
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Using the above we have:

〈
n∏
i=1

e2αiφ(xi)〉
m∏
j=0

(α̃ + jb−Q)

= (bµ)m(α̃−Q+mb)

∫
· · ·
∫
〈
n∏
i=1

e2αiφ(xi)

m−1∏
j=0

e2bφ(yj)〉d2yj

√
g(yj) (9.38)

Let us see what the functional integral on the right hand side actually looks like. From
the Liouville path integral after integrating over the zero mode, we have the following:∫

· · ·
∫
〈
n∏
i=1

e2αiφ(xi)

m−1∏
j=0

e2bφ(yj)〉= Γ

(
− (Q− α̃−mb)

b

)∫
dφ̃e−S0(φ̃) ×

n∏
i=1

e2αiφ̃(xi)

(∫
d2y
√
g(y)e2bφ̃(y)

)m(
µ

∫
d2x
√
g(x)e2bφ̃(x)

) (Q−α̃−mb)
b

(9.39)

Where S0(φ̃) is the free field action. When (α̃−Q+mb)→ 0, the R.H.S is what one gets
when we expand the Liouville path integral perturbatively in powers of the cosmological
constant. Also, when this constraint is satisfied, the R.H.S is a free field Coloumb Gas
integral, which can be evaluated. Writing down this in usual notations in literature,
and after some algebra we obtain the following relationship, when we restrict to three
insertions:

(m!)(−1)mbm(ε)C(α1, α2, α3)f(x1, x2, x3)

= bm(m!)(−1)mf(x1, x2, x3)Im(α1, α2, α3) (9.40)

Where, we have absorbed the powers of the µ in the definition of Im in accordance with
the literature which are just identified with the residues of the correlation function and
explicitly written as [27]:

Im =

(
−πµ
γ(−b2)

)m ∏m
j=1 γ(−jb2)∏m−1

k=0 [γ(2α1b+ kb2)γ(2α2b+ kb2)γ(2α3b+ kb2)]
(9.41)

and,

γ(x) =
Γ(x)

Γ(1− x)
(9.42)

And f(x1, x2, x3) is the position dependent part which turns out to be the same on both
sides (which is expected) and given by :

f(x1, x2, x3) = |x1 − x2|2(∆3−∆1−∆2)|x2 − x3|2(∆1−∆2−∆3)|x3 − x1|2(∆2−∆3−∆1) (9.43)

∆i being the conformal dimensions, and ε = (α̃+mb−Q)→ 0. Again a similar equation
holds for choice of parameters, (α1 + b, α2, α3), as:

((m− 1)!)(−1)m−1bm−1(ε)C(α1 + b, α2, α3)f ′(x1, x2, x3)

= bm−1((m− 1)!)(−1)m−1f ′(x1, x2, x3)Im−1(α1 + b, α2, α3) (9.44)
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Taking the ratio of the two equations, gives us the following functional equation for
the structure constant, which is valid for for the condition (α̃ +mb−Q) = 0,

C(α1 + b, α2, α3)

C(α1, α2, α3)
=
Im−1(α1 + b, α2, α3)

Im(α1, α2, α3)
(9.45)

Which explicitly can be written down as follows:

C(α1 + b, α2, α3)

C(α1, α2, α3)
=

−γ(−b2)

πµ

γ(b(2α1 + b))γ(2bα1)γ(b(α2 + α3 − α1 − b))
γ(b(α1 + α2 + α3 −Q))γ(b(α1 + α2 − α3))γ(b(α1 + α3 − α2))

(9.46)

9.7 2nd functional equation

But there exists two screening operators in the theory as there are two solutions to
the quadratic equation α(Q − α) = 1. A screening operator has conformal dimension
zero and so adding it to the correlation function maintains the conformal symmetry,
while modifying its net charge. Hence just like in Coloumb Gas Formalism, one has two
screening operator, the other being the following:∫

d2x
√
g(x)e

2
b
φ(x) (9.47)

Let us start by looking at the 2nd functional equation for this screening charge.
We will here first write down the functional equation and get the 2nd equation for the
structure constant analogously. If one has an equation of the following form:

(α̃−Q)〈
n∏
i=1

e2αi(xi)〉 = µ̃
1

b

∫
d2x
√
g(x)〈

n∏
i=1

e2αi(xi)e
2
b
φ(x)〉 (9.48)

Where µ̃ is some undetermined constant, which we will discuss later. One can perform
the same iterative scheme as earlier, and obtain the following:

〈
n∏
i=1

e2αiφ(xi)〉
m∏
j=0

(α̃ +
j

b
−Q) =

∫
· · ·
∫

(µ̃
1

b
)m+1〈

n∏
i=1

e2αiφ(xi)

m∏
j=0

e
2
b
φ(yj)〉d2yj

√
g(yj)

(9.49)

Again when one of the products on the L.H.S is zero, then we have a pole in the
correlator, and the right hand side is a Free Field Coloumb Gas Integral. Then we
can again write down the functional equation for the structure constants, which yield a
relation of the following type:

C(α1 + 1/b, α2, α3)

C(α1, α2, α3)
=
Ĩm−1(α1 + 1/b, α2, α3)

Ĩm(α1, α2, α3)
(9.50)

Where the residues Ĩ are the Free Field Coloumb Gas integrals computed with 1/b
insertions. This can be written down explicitly as follows:
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C(α1 + 1/b, α2, α3)

C(α1, α2, α3)
=

−γ(−b−2)

πµ̃

γ( (2α1+1/b)
b

)γ(2α1

b
)γ( (α2+α3−α1−1/b)

b
)

γ( (α1+α2+α3−Q)
b

)γ( (α1+α2−α3)
b

)γ( (α1+α3−α2)
b

)
(9.51)

9.8 DOZZ formula

Using the shift equations (9.46),(9.51), which is exactly the same obtained by [23] (ac-
tually only the first one was obtained, the second was assumed because of duality of the
degenerate fields −b/2 and −1/(2b)) , one can obtain the DOZZ formula for the 3-point
function (which for irrational values of b is unique) if one assumes that the shift equations
are valid in the entire parameter space. For completeness we present the formula here:

C(α1, α2, α3) =

[
πµγ(b2)b2−2b2

](Q−α̃)/b

×

Υ0Υ(2α1)Υ(2α2)Υ(2α3)

Υ(α1 + α2 + α3 −Q)Υ(α1 + α2 − α3)Υ(α2 + α3 − α1)Υ(α3 + α1 − α2)

(9.52)

Also µ̃ is identified as (πµγ(b2))b
−2
/(πγ(b−2)). Here it is to be pointed out that although

from this analysis the value of the ”dual cosmological constant” is not obtained, but it
is enough to get the pole structure of the correlation function out, and then the dual
cosmological constant can be fixed automatically as the R.H.S of the shift equations is
for the same function i.e the structure constant once one analytically continues. We will
later see that although the dual cosmological constant can not be fixed, its scaling with
respect to µ can be obtained. We here also define the Υ functions as follows:

logΥb(x) =

∫ ∞
0

dt

t

[
(Q/2− x)2e−t −

sinh2((Q/2− x) t
2
)

sinh tb
2
sinh t

2b

]
0 < Re(x) < Re(Q) (9.53)

Here Q = b+ 1/b and Υ0 = Υ′|x=0, prime denotes derivative with respect to x. From the
above definition we can find the functional equation for the Υ function:

Υb(Q− x) = Υb(x) (9.54)

Studying more properties, we find that it has simple zeros at x = 0 and x = Q. More
over there are shift equations which this function satisfies as follows:

Υb(x+ b) = γ(bx)b1−2bxΥb(x)

Υb(x+ 1/b) = γ(x/b)b
2x
b
−1Υb(x)

(9.55)

These shift relations are crucial for solving for the shift equations for the structure
constant. These equations also show that there are more simple zeros at x = −mb− n/b
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and x = (m′ + 1) + (n′ + 1)/b, where m,n,m′, n′ are non-negative integers. There is also
the inverse shift relations:

Υb(x− b) = γ(bx− b2)−1b2bx−1−2b2Υb(x)

Υb(x− 1/b) = γ(x/b− 1/b2)−1b1+ 2
b2
− 2x

b Υb(x)

(9.56)

It is also important to point out that for irrational values of b the three point function
is fixed uniquely if the shift equations are valid for the entire parameter space (actually
it is not yet clear whether we need information for the entire parameter space or only
these infinite set of planes, on which these equations principally hold is enough, and this
a problem we still are looking at). For rational values of b, there in principle could be
a function which is periodic in b and 1/b. And hence the structure constant may be
multiplied by a periodic function g(α̃ − Q), such that g(−mb − n/b) = 1 for integer
values of m and n to match with the values of the residues. We will later discuss some
implications of this.

9.9 Source of the 2nd functional equation

We start by looking at the path integral which after evaluation of the zero mode integral
is,

〈
n∏
i=1

e2αiφ(xi)〉 = Γ

(
− (Q− α̃)

b

)∫
dφ̃e−S0(φ̃)

n∏
i=1

e2αiφ̃(xi)
(
µ

∫
d2x
√
g(x)e2bφ̃(x)

) (Q−α̃)
b

(9.57)

If, (α̃ − Q) = −mb − 1/b then we can not evaluate the above integral because the
exponent of the interacting term is not an integer. We know though from free Coloumb
gas theory that there are screening operators which are of conformal dimension zero and
commute with all the Virasoro generators, of the theory, although having non zero charge.
Therefore adding a screening charge operator does not change the x-dependence of the
correlators, but changes the net charge. In Liouville theory, similar to free field Coloumb
Gas theory, we have two screening charges, as pointed out earlier. If we insert the second
screening charge in the correlator, then we obtain the following:∫

d2x〈
n∏
i=1

e2αiφ(xi)e
2
b
φ(x)〉 = Γ

(
− (Q− α̃− 1/b)

b

)∫
dφ̃e−S0(φ̃) ×

n∏
i=1

e2αiφ̃(xi)

(∫
d2y
√
g(y)e

2
b
φ̃(y)

)(
µ

∫
d2x
√
g(x)e2bφ̃(x)

) (Q−α̃−1/b)
b (9.58)

Now the exponent of the interaction term (µ dependent part) is an integer, and also the
Coloumb gas constraint is satisfied so the integral is calculable. But now the argument
of the Gamma function is a negative integer, and hence singular. This already gives us a
hint that there are also poles for 1/b as we saw for b. In free field Coloumb Gas theory,
one relates a correlator which does not satisfy the charge neutrality constraint to the
one which does, by addition of suitable no. of screening charges. Similarly one ask the
question how are the two correlators, with the screening charge and without the screening

80



9.9. Source of the 2nd functional equation

charge related in this case. Is it really analogous to the first functional equation for b, i.e
we look for the form of the functional equation, relating

∫
d2x
√
g(x)〈

∏n
i=1 e

2αiφ(xi)e
2
b
φ(x)〉

to 〈
∏n

i=1 e
2αiφ(xi)〉. But we already have a form for the functional equation which we will

now see. If we start with a bare action, and write down the Schwinger Dyson equation
for the zero mode part, then we obtain the following:

[
n∑
i=1

αi −QB]〈
n∏
i=1

e2αiφ(xi)〉 = µBb

∫
d2x
√
g(x)〈

n∏
i=1

e2αiφ(xi)e2bφ(x)〉 (9.59)

Where we have denoted the bare parameters with B. This is the expectation value of
the operator equation of motion, which can be directly obtained form the Schwinger
action principle. Without regularization and renormalization, there exists only the above
equation. This is also because the classical dimension of the exponential operators are
αQB, where QB = 1/b and hence there is only one non-local conformal weight zero
operator, and hence no background dependence coming from the

∫
d2x
√
ge2bφ(x) (if there

is no need for regularizing, or Weyl invariant regularization exists) , while the L. H.S
and R.H.S of the equation transform the same way under transformation of J(x). Now
when one regularizes the exponential operator in the integral on realizes, there is extra
background dependence coming from the regularization, as we are unable to regularize
in a Weyl invariant way. This is because of the extra Weyl factor coming from the
point splitting of the Green’s function at the same point, i.e.G(x, x+ dx) ≡ 1

2
ln(ds/L) +

1
4
ln(
√
g(x)), where ds is the infinitesimal geodesic separation and L sets the overall scale.

Thus we replace the bare Schwinger Dyson equation by a renormalized one.

[
n∑
i=1

αi −QR]〈
n∏
i=1

e2αiφ(xi)〉 = µR bβ

∫
d2x
√
g(x)〈

n∏
i=1

e2αiφ(xi)e2bβφ(x)〉 (9.60)

Where QR,µR and β are renormalization parameters. For the exponent to be background
independent, we have the following condition:

1−QRβb+ β2b2 = 0 (9.61)

or,

QR =
1

βb
+ βb (9.62)

Now there are two choices of β for which we have same QR = b+1/b,which are as follows:
β = 1, 1/b2 (we could have as well called bβ as bR, or renormalized b, it is to show that
for one choice, there is a classical screening equation counter part, while for the other
there is none). These choices just reflect that there are two exponential operators for
conformal weight 1. Hence we get two possible Schwinger Dyson equationns:

[α̃−Q]〈
n∏
i=1

e2αiφ(xi)〉 = µb

∫
d2x
√
g(x)〈

n∏
i=1

e2αiφ(xi)e2bφ(x)〉 (9.63)

[α̃−Q]〈
n∏
i=1

e2αiφ(xi)〉 = µ̃
1

b

∫
d2x
√
g(x)〈

n∏
i=1

e2αiφ(xi)e
2
b
φ(x)〉 (9.64)
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Thus we already see that we have an equation for the 2nd screening charge operator which
gives us the form of the relation we were looking for, which simply arises due regularizing
the exponential operator in the quantum theory. The cosmological constants µ and µ̃ are
renormalized according to choice of β. We know that as adding a correlator α changes
the scaling by α

b
, so the scaling for each choice will be µ, µ1/b2 , upto some dimensionless

constant. This can also be seen from the fact that after regularizing, the scaling term
in front of the exponential operator, will be of dimension [mass2]1+(bβ)2 . This means if
we start with µB having dimension [mass]2, then for each choice, after accounting for
regularization (which is normal ordering in fact), the scaling will be (µB)1+b2 ∼ µ and
(µB)1+1/b2 ∼ µ̃, which means µ̃ scales with exponent 1/b2 with respect to µ, which can
be directly seen from the effective potential analysis [48]. Using these two functional
equations, we get the two relationship for the structure constant as described earlier. It
is also important to note that while the L.H.S. are the same for the equations the R.H.S.
of the equation are different. This seems to make the duality between b and 1/b manifest.

9.10 Discussion

Having two functional equations, and adding the two, we obtain a third, namely:

[α̃−Q]2〈
n∏
i=1

e2αiφ(xi)〉 =

µb

∫
d2x
√
g(x)〈

n∏
i=1

e2αiφ(xi)e2bφ(x)〉+ µ̃
1

b

∫
d2x
√
g(x)〈

n∏
i=1

e2αiφ(xi)e
2
b
φ(x)〉

(9.65)

Which was used by [29] to prove the uniqueness of the 3-point correlation function. The
basic point of the above equation is that, the residues of the DOZZ formula can be recast
in the following form using the recursion relations for the Υ functions:

Im(ω) = −m!(−1)m(µωπ(ω2)2−Qωγ(ω2))m
Υ0

Υ′(−mω)

3∏
i=1

Υ(2αi)

Υ(α̃− αi)
(9.66)

Where ω = b, 1/b and µω = µ, µ̃ respectively. Thus if one wants to analytically continue
this expression then, it will be proportional to the DOZZ formula multiplied by an un-
known function g(α̃−Q). But this function should satisfy the following condition, which
is imposed by equation (9.65

g(α̃−Q+ b) + g(α̃−Q+ 1/b) = 2g(α̃−Q) (9.67)

For irrational values of b this can only be true if g(α̃ − Q) = constant, which was also
pointed out earlier. But then it was shown in [29], that this is the case for all values of
b, if the function g(α̃−Q) is a continious function of b and g(−nb−m/b) = 1 for integer
m,n(in fact only being continuous seems to be enough as there exists infinitely many
irrational numbers within a distance ε of a rational number) , fixing the DOZZ formula
uniquely.

It is important to point out that the Schwinger Dyson equation is obtained from
the Schwinger action principle, and the path integral can be understood as the solution
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of this functional equation. If on considers the bare Schwinger Dyson equation as the
fundamental equation which defines Liouville Field Theory, then one automatically gets
two solutions of the equation after regularization.

The other view is that as the residues calculated from the path integral is the one which
we obtain from a Coulumb gas system with integer insertions of one of the screening charge
operators, it is intuitive that when one analytically continues the three point function
from these points to the entire complex plane, one obtains, an extra set of poles precisely
at the points where α̃−Q = −n/b and the residue given by integrals of the same Coloumb
gas systems, with integer insertions of the other screening charge operator. In both of
this view point the second functional equation is fundamental in actually calculating the
three point function. Actually both view points are intertwined as the screening charge
operators are the ones which can be used as the regularized exponential interaction term
in the Lagrangian.

Another important point we would like to make here is that the screening charge
operators do not seem to be symmetric under the order of inserting them. Which is to
say that the addition of the screening charge with b followed by 1/b is not the same as 1/b
followed by b. This is also discussed in [45],[46],[47]. The two equations are non trivially
intertwined. If one assumes that the order of addition of the the Screening Charges does
not matter, then the equation after addition of the Screening Charge has to be completely
symmetrized. We will not discuss much about this here any more, but just state that one
can guess the totally symmetrized equation for addition of the Screening Charges after
some short algebra.
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Chapter 10

Conclusion

During this work, we were initially motivated at this alternative way of dealing with
Quantum field theory. Here the primary object is not the path integral but a functional
differential equation i.e. the DeWitt equation, (whose solution is obviously related to the
path integral) using which one could aim to construct some algebraic way of computing
correlation functions and Green’s functions. In our attempt we were partially successful.
We obtained a solution for our functional differential equation in a formal unrenormalized
form. Although so, it is useful to understand the structure behind it. The solution was
given in terms of ”classical” objects. In doing so we had to define the classical propagator
denoted Gcl(u, v; Φ) which is the inverse of the second derivative of the classical action and
the interaction term which is also defined analogously, as higher derivatives of the classical
action. These objects put together gives the solution as the sum over all One Particle
Irreducible vacuum energy diagrams with this modified propagator and the modified
vertices. The convergence properties of this solution is remarkable even for large values
of the coupling constant, as was evident in the numerical results obtained. It shows that
the ϕcl i.e. the classical field some how takes over the role of the renormalization scale.
This is a very interesting observation and needs to be investigated in more detail.

The application of this solution can be to investigate finite supersymmetric field the-
ories. As pointed out on the Chapter on the introduction on supersymmetry, there are
some filed theories which are finite and do not need renormalization. For this very special
field theories we can hope to impose these solution. As an example we constructed this
for N = 1 Wess Zumino model in 2 dimensions in superspace. We showed that the Equa-
tion is finite i.e. free of any divergences. Using N = 1 superspace, which is a convenient
way of looking at these theories, we wrote down the DeWitt equation in superspace and
then its solution. The solution was then checked to satisfy the DeWitt equation order by
order. Also a complete check is in principle difficult and cumbersome. This is because
the solution is an expansion in number of loops of a diagram and thus is technically an
infinite series. Nevertheless the procedure of how the solution works is clear once one
goes through the calculations.

Next we tried to discuss the DeWitt equation in the context of N = 4 super Yang mills
theory. As is well known that this is a finite theory in 4 dimensions and the subject of
much research. Unfortunately the finiteness was shown by gauge fixing the theory, i.e. in
Light cone gauge. In Light cone gauge only the physical degrees of freedom of the theory
survive. Thus in this construction one is left with a theory which is free of auxiliary
fields. The price that one has to pay is that the action becomes extremely complicated.
There are many nonlocal inverse derivative terms appearing in the action, which makes
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technical computation extremely difficult. This was our primary obstacle. Although we
had the action from which we could construct the DeWitt equation, which would be
manifestly finite, the resultant equation was extremely big and messy and almost useless
for all computational purposes. thus we were not successful in our goal to use the solution
for this specific model. Actually when we started out to work on this equation, the main
goal was to use this to understand the structure of the Effective action for N = 4 Super
Yang Mills theory. When we wrote down the DeWitt equation in covariant formalism,
we realized that it was not finite, i.e. the expectation value of the fields appearing in
the equation did not add upto a finite quantity. I was personally quite puzzled as I
was expecting this to be finite. Soon we realized that the lack of an off-shell formalism
for this model is the problem. Without the auxiliary fields, which in the loop diagrams
are necessary for accounting for the degrees of freedom such that the fermionic ones
exactly match the bosonic ones, the divergences which are due to loop contribution to
the tree order do not cancel. Thus there was no obvious way of constructing a covariant
finite DeWitt equation which would be easy to handle. So we moved on to some other
approaches such as the Light Cone Superspace formalism. Unfortunately as discussed
earlier, this was very cumbersome. Although one can implement the solution using this
formalism, it is not easy for computational purposes. This was the point when we started
looking at other possible uses of this equation.

This led us to Liouville Field Theory. Liouville Field Theory has been extensively
studied for more than 30 years now. It comes up in the quantization of bosonic string
theory models in non-critical dimensions. The Liouville field itself is the Weyl factor,
which one obtains while taking the conformal gauge on the world sheet metric of the
string [30],[24]. As this choice has to respect Weyl rescaling of the metric, to preserve
Weyl invariance, the integration measure has to be Weyl invariant. This is because the
measure itself is induced by the 2 dimensional metric [30]. This initially was a real problem
as the Weyl invariant measure was non-linear, while standard path integral is formulated
with a translation invariant measure. The way out was motivated by [49],[30],[38], where
they showed that this problem can be over come by introducing a functional determinant
while going from a Weyl invariant measure to a translationally invariant measure. This
functional determinant or the Jacobian was shown to be proportional to the original
bare action before renormalization. After this, the bare action was renormalized and
effective coupling and other parameters were introduced in the action. It must also be
pointed out that Weyl invariant quantization of a theory requires a Weyl invariant short
distance regulator, which is not known. This leads to a Weyl factor while regularizing
the exponential interaction, which directly comes from the contraction of the two point
function, yielding a factor of −α2 to the conformal weight of every vertex operator.

Thus after this was understood. One could use regular Quantum field theory tech-
niques to treat Liouville Theory. But this being a conformal field theory, the perturbative
expansion of the correlators made little sense. Later the proposal by [16],[17], came out
which gave an exact form for the three point function. As discussed earlier, although
the proposal for the three point function passed many stringent tests, there were some
open questions regarding the pole structure of the function. As pointed out, the three
point function in Liouville Filed Theory, has additional poles at the dual set of points
α̃−Q = −n/b in addition to the standard ones α̃−Q = −m/b, which are evident from the
path integral. This was intriguing and we wanted to know if we could use our technique
to get some insights into this.

Using the translation invariance of the path integral measure, we were able to obtain a
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functional equation for the correlation functions in Liouville theory. This equation relates
the n-point function to the (n+1)-point function. Restricting to the zero mode equation,
we were able to obtain a very simple relationship between these correlation functions.
From this equations we were able to find the equation for the structure constant, which
was obtained by [23]. Also the simple equation for the correlation functions have a dual,
simply because of the fact that it relates the correlation functions with and without a
Screening Charge operator insertion. A Screening Charge operator is a conformal weight
zero operator whose insertion in the correlator changes the charge without changing
the conformal properties of the correlator. It was observed that starting from the bare
unrenormalized action, if one writes down the Schwinger Dyson equation for the zero
mode part of the field φ and then regularizes the equation, there would be two distinct
choices for regularizing the exponential potential. These are precisely the two choices
for the screening charge operators corresponding to the each of the choices b and 1/b.
Thus having arrived at two distinct equations for the Screening Charges, we got the pole
structure of the correlation functions as predicted. More over once the structure constant
is analytically continued to all values for (α̃ − Q), the dual value of the cosmological
constant µ̃ is automatically obtained in terms of the cosmological constant µ. It was also
pointed out that if one starts from the Schwinger action principle as the fundamental
input of the theory, then one obtains after regularizing, two equations for the correlation
function, the DOZZ proposal being the unique solution to the two equations. It was also
pointed out that for rational values of b there could be in principle a periodic function
which can be present in the three point function. But using some results established in
this context, which uses the continuous dependence of this function on b, the proposal
can be fixed uniquely.

It is interesting to note that this procedure of relating correlation functions with and
without insertions of screening charge operators could be generalized to other theories
also. For this much more detailed work has to be done to understand the structure of
screening charge operators in other theories.

Outlook

We intend to finish this report with some ideas and open questions for prospective future
research. In that context let us list them down for completeness:

1. The relation of the expectation value of the field φ to the renormalization scale.
As pointed out in solution for the DeWitt equation, Γ is expressed in terms of the
ϕcl which is the vacuum expectation value of the quantum field. For some zero
dimensional models the convergence of this expansion was extremely well, and it
no longer required smallness of the coupling constant λ. In fact the convergence
depended on an effective coupling which was a function of ϕcl This is interesting
and could be studied in the context of quantum field theory.

2. From the structure of the solution Γ[ϕcl] it seems that there could be some algebraic
technique for computing higher loop corrections. This is because successive orders
in the loop diagrams can be obtained by action of a functional differential operator
as pointed out in the chapter on the formal solution to the DeWitt equation. We
actually looked a bit into this, and we found that apart from the symmetry factors,
the action of the functional differential operator on the set of graphs in n-loop
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indeed produces the set of graphs in (n+1)-loop. It would be worth while if one is
able to fix the symmetry factors for the graphs, then it could be an interesting way
of computing amplitudes for a theory.

3. The problem of the off-shell Effective action for N = 4 was our main goal when
we started this project. Unfortunately we were not able to solve this problem,
although some understanding was obtained. Whether there is a way of formulating
this theory in a more convenient way so that one could use the DeWitt equation to
study it is an open problem. It will be very interesting to understand more about
this, and also if the translation invariance of the measure which is used to derive
the DeWitt equation is the reason for the covariant formalism not working in this
case (existence of anomalies).

4. In the context of Conformal Field Theories, we examined Liouville theory with
this tool, and by obtaining two separate equations for the correlation functions
relating it to correlation functions with two distinct screening charge operators,
we obtained the DOZZ formula. It would be interesting to see if this method can
be generalized to other CFTs in general, where corresponding equations of the
correlation functions will be related to insertions of screening charge operators. For
example in Toda theories which are Liouville like theories with more number of
exponential operators.

5. Other interesting avenues could be to see if the DeWitt equation can be turned into
a renormalization flow equation by adding a regulator to the action, or to study
other finite models with this technique.
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