
Chapter 3

Dirichlet Problems for Homogeneous PDEs

In this chapter, we mainly consider some Dirichlet boundary value problems

for polyharmonic functions and poly-analytic-harmonic functions in the unit disc.

As a preliminary, we begin with the classic result of the Dirichlet problem for

analytic functions.

3.1 Dirichlet Problem for Analytic Functions

In the theory of BVPs for analytic functions, the Dirichlet boundary value

problem is one of the classical BVPs. It is expressed as follows.

Dirichlet boundary value problem Find a function w ∈ H1(D) such that

w = γ on ∂D,

where γ ∈ C(D) is a given complex function.

The following theorem is well-known and can be found in many places [4,

22, 26]. The proof here is due to Begehr [4] with some modification.

Theorem E. The Dirichlet problem is solvable if and only if for |z| < 1,

1

2πi

∫

∂D
γ(τ)

z

τ − z

dτ

τ
= 0. (3.1)

Then the solution is uniquely given by the Cauchy integral

w(z) =
1

2πi

∫

∂D

γ(τ)

τ − z
dτ, z ∈ D. (3.2)

Proof. For (3.1) to be necessary, suppose that w is the solution of the Dirichlet

problem. Then w can be expressed as (3.2) which is analytic in D and has

continuous boundary values

lim
z→τ, |z|<1

w(z) = γ(τ) (3.3)
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for all τ ∈ ∂D.

Define

w∗(z) = w
(1

z

)
, z ∈ C\∂D,

then w∗ ∈ H1(C\∂D) follows from (3.2). Since

w
(1

z

)
= − 1

2πi

∫

∂D
γ(τ)

z

τ − z

dτ

τ
,

therefore

w(z)− w
(1

z

)
=

1

2πi

∫

∂D
γ(τ)

( τ

τ − z
+

τ

τ − z
− 1

)dτ

τ
.

So from the above equality and the properties of the Poisson kernel, for τ ∈ ∂D,

lim
z→τ,|z|<1

[ w(z)− w∗(z) ] = γ(τ) (3.4)

follows. (3.3) and (3.4) show that limz→τ, |z|<1 w∗(z) = 0. By the maximum

principle for analytic functions, w∗(z) = 0 for all |z| < 1. Therefore

1

2πi

∫

∂D
γ(τ)

z

τ − z

dτ

τ
= −w

(1

z

)
= −w∗(z) = 0, |z| < 1.

For the sufficiency, by (3.1) and (3.2),

w(z) =
1

2πi

∫

∂D
γ(τ)

( τ

τ − z
+

z

τ − z

)dτ

τ
(3.5)

=
1

2πi

∫

∂D
γ(τ)

( τ

τ − z
+

τ

τ − z
− 1

)dτ

τ
, (3.6)

therefore

lim
z→τ, |z|<1

w(z) = γ(τ)

follows from the properties of the Poisson kernel.

Remark 9. From the above proof, we find that the existence limz→τ, |z|<1 w(z)

implies the existence of limz→τ, |z|<1 w∗(z). Since w(z) = [w∗]∗(z) = w∗
(

1
z

)
, |z| >

1, then the existence limz→τ, |z|<1 w(z) implies the existence of limz→τ, |z|>1 w(z).
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For antianalytic functions, we similarly consider the following Dirichlet bound-

ary value problem.

Associated Dirichlet boundary value problem Find a function w ∈ H1(D)

such that

w = γ on ∂D,

where γ ∈ C(∂D) is a given complex function.

By the above theorem, we have

Corollary 6. The associated Dirichlet problem is solvable if and only if for |z| <
1,

1

2πi

∫

∂D
γ(τ)

z

τ − z

dτ

τ
= 0.

Then the solution is uniquely given by

w(z) = − 1

2πi

∫

∂D

γ(τ)

τ − z
dτ , z ∈ D.

Proof. Since ∂zw = ∂zw, then w ∈ H1(D) implies w ∈ H1(D). So it easily follows

from Theorem E.

3.2 Dirichlet Problem for Polyharmonic Functions

In the present section, we considered a Dirichlet problem for polyharmonic

functions which is also called polyharmonic Dirichlet problem (PHD problem) as

follows.

Polyharmonic Dirichlet Problem Find a function w ∈ HarCn (D) satisfying

the Dirichlet type boundary conditions

[(∂z∂z)
jw]+(t) = γj(t), t ∈ ∂D, 0 ≤ j < n, (3.7)

where γj ∈ C(∂D) which denotes the set of all complex continuous functions on

∂D for 0 ≤ j < n.

With the higher order Poisson kernels, the above PHD problem is uniquely

solvable. To do so, we need the following lemmas, one of which is about another

property of the higher order Poisson kernels.

43



Lemma 7. Let Ω1 be a domain and Ω2 be a compact set in the complex plane,

Ω1∩Ω2 = ∅, g(z, ξ) is a continuous function defined in Ω1×Ω2 such that g(z, ξ) ∈
H1(Ω1) as a function of z with fixed ξ ∈ Ω2. For any fixed z0 ∈ Ω1, take Dz0,R =

{z : 0 < |z − z0| < R} ⊂ Ω1 and define

Fz(z0, ξ) =
g(z, ξ)− g(z0, ξ)

z − z0

, ξ ∈ Ω2 (3.8)

and

Gz(z0, ξ) =
g(z, ξ)− g(z0, ξ)

z − z0

, ξ ∈ Ω2 (3.9)

with fixed z ∈ Dz0,R/2. Then Fz(z0, ·), Gz(z0, ·) ∈ L(Ω2).

Proof. Since g(z, ξ) ∈ H1(Ω1) with respect to z for fixed ξ ∈ Ω2, by Cauchy

integral formula, for fixed ξ ∈ Ω2,

g(z0, ξ) =
1

2πi

∫

|ζ−z0|=R

g(ζ, ξ)

ζ − z0

dζ

and

g(z, ξ) =
1

2πi

∫

|ζ−z0|=R

g(ζ, ξ)

ζ − z
dζ.

Thus

Fz(z0, ξ) =
1

2πi

∫

|ζ−z0|=R

g(ζ, ξ)

(ζ − z)(ζ − z0)
dζ.

So
∫

Ω2

|Fz(z0, ξ)|dν(ξ) =

∫

Ω2

∣∣∣ 1

2πi

∫

|ζ−z0|=R

g(ζ, ξ)

(ζ − z)(ζ − z0)
dζ

∣∣∣dν(ξ)

≤ 1

2πi

∫

|ζ−z0|=R

|g̃(ζ)|
|(ζ − z)|

dζ

ζ − z0

≤ 2 sup |g̃(ζ)|
R

,

where ν is the Lebegue measure on Ω2, g̃(ζ) =
∫

Ω2
|g(ζ, ξ)|dν(ξ) is bounded on

{ζ : |ζ − z0| = R} since g(z, ξ) ∈ C(Ω1 × Ω2) and Ω2 is compact. That is to say

Fz(z0, ·) ∈ L(Ω2). Note that

Gz(z0, ξ) =
z − z0

z − z0

Fz(z0, ξ),

therefore Gz(z0, ·) ∈ L(Ω2).
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Lemma 8 (Differentiability of Integral). Let { gn(z, τ) }∞n=1 be the sequence of

higher order Poisson kernels, then for any γ ∈ C(∂D),

(∂z∂z)
[ 1

2πi

∫

∂D
γ(τ)gn(z, τ)

dτ

τ

]
=

1

2πi

∫

∂D
γ(τ)gn−1(z, τ)

dτ

τ
, n = 2, 3, . . . .

(3.10)

Proof. For any fixed z ∈ D, arbitrarily choose a sequence {zl} such that zl 6= z

for any l and zl → z as l →∞. Define

Zl(z, τ) =
gn(zl, τ)− gn(z, τ)

zl − z

for fixed l. Obviously, Zl(z, τ) ∈ C(∂D) ⊂ L(D) with respect to τ and

lim
l→∞

Zl(z, τ) = ∂zgn(z, τ).

In addition, by the decomposition (2.18) of gn(z, τ) and the last lemma with

Ω1 = D and Ω2 = ∂D, it is easy to see that Zl(z, ·) ∈ L(∂D). Note the continuity

of ∂zgn(z, τ), by the dominated convergence theorem,

lim
l→∞

1

zl − z

[ 1

2πi

∫

∂D
γ(τ)gn(z, τ)

dτ

τ
− 1

2πi

∫

∂D
γ(τ)gn(z, τ)

dτ

τ

]

= lim
l→∞

1

2πi

∫

∂D
γ(τ)

gn(zl, τ)− gn(z, τ)

zl − z

dτ

τ

= lim
l→∞

1

2πi

∫

∂D
γ(τ)Zl(z, τ)

dτ

τ

=
1

2πi

∫

∂D
γ(τ)∂zgn(z, τ)

dτ

τ
.

Because of the arbitrariness of {zl}, therefore in view of the Heine principle

∂z

[ 1

2πi

∫

∂D
γ(τ)gn(z, τ)

dτ

τ

]
=

1

2πi

∫

∂D
γ(τ)∂zgn(z, τ)

dτ

τ
.

Further, similarly define

Hl(z, τ) =
∂zgn(zl, τ)− ∂zgn(z, τ)

zl − z
,

again by (2.18), Lemma 7, the dominated convergence theorem and the Heine

principle,

∂z

[ 1

2πi

∫

∂D
γ(τ)∂zgn(z, τ)

dτ

τ

]
=

1

2πi

∫

∂D
γ(τ)∂z[∂zgn(z, τ)]

dτ

τ
.
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So (3.10) follows from the last two equalities and the induction property of the

higher order Poisson kernels.

Lemma 9. If ϕ ∈ H1(D) and ∂ϕ
∂z
∈ C(D), then ϕ ∈ C(D).

Proof. It immediately follows from

ϕ(z) =

∫ z

0

∂ϕ

∂z
(ζ)dζ − ϕ(0), z ∈ D.

Theorem 10. The PHD problem (3.7) is solvable and its unique solution is

w(z) =
n∑

k=1

1

2πi

∫

∂D
γk−1(τ)gk(z, τ)

dτ

τ
, z ∈ D, (3.11)

where gk(z, τ) (1 ≤ k ≤ n) is the kth order Poisson kernel given by (2.39).

Proof. At first, we show that (3.11) is a solution. By Lemma 8 and the induction

property of the higher order Poisson kernels, using the operators (∂z∂z)
j, j =

1, 2, . . . , n− 1 to act on two sides of (3.11), we get

(∂z∂z)
jw(z) =

n∑

k=j+1

1

2πi

∫

∂D
γk−1(τ)gk−j(z, τ)

dτ

τ
. (3.12)

Thus

[∂z∂z)
jw]+(t) = γj(t), t ∈ D, 0 ≤ j < n

follows from (3.12) and the other properties of the higher order Poisson kernels,

i.e., (3.11) is a solution.

Next, we turn to the uniqueness of (3.11). To do so, we must show that

(3.7) only has zero as its solution when all γj = 0 on ∂D. It is enough to consider

w ∈ Harn(D) for this case. Since w ∈ Harn(D), by Theorem B, there exist some

functions wj ∈ Hj
1,0(D), j = 0, 1, . . . , n− 1 such that

w(z) = 2<
{ n−1∑

j=0

zjwj(z)
}
, z ∈ D. (3.13)
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Applying the operators (∂z∂z)
j, j = 1, 2, . . . , n − 1 to both sides of (3.13), we

have

(∂z∂z)
jw(z) = 2<

{ n−1∑

k=j

k!

(k − j)!
zk−j∂j

zwk(z)
}
, z ∈ D. (3.14)

By (3.14), Lemma 9 and the boundary value conditions of (3.7) with γj = 0,

<[∂j
zwj(t)] = 0, t ∈ ∂D, 0 ≤ j ≤ n− 1.

So it is easy to get wj ∈ Πj
1,0(D) from the last equality and then w = 0.

Remark 10. In [9], Begehr, Du and Wang only considered the PHD problem

(3.7) with Hölder continuous boundary conditions not continuous boundary con-

ditions. So it happens since they solve the problem by reflection method which

transfers the problem to the classical Riemann jump problems for analytic func-

tions. However, the Hölder continuity is necessary for the latter considering the

singular integrals on the unit circle. In [14], to solve the same problem when

n = 3, Begehr and Wang used a new approach which transfers the problem to

the classical Schwarz problem for analytic functions in the unit disc. So the

Hölder continuity is weaken to the condition of continuity. In fact, in view of the

above proof, with continuous boundary conditions discussed in the last theorem,

the unique solvability of PHD problem (3.7) obviously follows from the properties

of the higher order Poisson kernels gn(z, τ) by induction.

3.3 Dirichlet Problems for Poly-analytic-harmonic

Functions

In this section, three kinds of Dirichlet type boundary value problems for

poly-analytic-harmonic functions in Mm,n(D) are given.

One of which is of the form: find a function L(z) ∈ Mm,n(D) (m > n)

satisfying the boundary conditions

[(∂z∂z)
jL]+(t) = γj(t), 0 ≤ j < n and [∂n+k

z ∂n
z L]+(t) = σk(t), 0 ≤ k < m− n,

(3.15)

where t ∈ ∂D, γj, σk ∈ C(∂D) for 0 ≤ j < n, 0 ≤ k < m− n.

By the harmonic decomposition theorem, we have
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Theorem 11. Set

A(t) =




n! (n + 1)!t · · · (m−2)!
(m−n−2)!

tm−n−2 (m−1)!
(m−n−1)!

tm−n−1

0 (n + 1)! · · · (m−2)!
(m−n−3)!

tm−n−3 (m−1)!
(m−n−2)!

tm−n−2

...
...

. . .
...

...

0 0 · · · (m− 2)! (m− 1)!t

0 0 · · · 0 (m− 1)!




, (3.16)

a(t) =




σ0(t)

σ1(t)
...

σm−n−2(t)

σm−n−1(t)




, (3.17)

Ξl(z) =
1

n!(n + 1)! · · · (m− 1)!

1

2πi

∫

∂D

det(Al(τ))

τ − z
dτ, (3.18)

and

ϕ̃l(z) =

∫ z

0

∫ ζn−1

0

· · ·
∫ ζ1

0

Ξl(ζ)dζdζ1 · · · dζn−1 + πl(z), (3.19)

where t ∈ ∂D, πl ∈ Πn−1, the matrix Al(t) is given by replacing the lth column

of A(t) by a(t), 0 ≤ l ≤ m− n− 1. Then

L(z) =
n∑

k=1

1

2πi

∫

∂D
gk(z, τ)

[
γk−1(τ)

−
m−n−1∑

l=0

(n + l)!

(n + l − k + 1)!
τn+l−k+1∂k−1

z ϕ̃l(τ)
]dτ

τ

+ zn

m−n−1∑

l=0

zlϕ̃l(z) (3.20)

are all solutions of the problem (3.15) if and only if

1

2πi

∫

∂D

z det Al(τ)

τ − z

dτ

τ
= 0, z ∈ D, 0 ≤ l ≤ m− n− 1, (3.21)

where gk(z, τ) (1 ≤ k ≤ n) are the former n higher order Poisson kernels.
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Proof. By Theorem C, since L ∈ Mm,n(D) (m > n), then

L(z) = 2<
{ n−1∑

k=0

zkϕk(z)
}

+ 2i<
{ n−1∑

k=0

zkϕ̂k(z)
}

+ zn

m−n−1∑

l=0

zlϕ̃l(z), z ∈ D,

where ϕk, ϕ̂k ∈ Hk
1,0(D) and ϕ̃l ∈ H1(D). So

(∂n+k
z ∂n

z )L(z) =
m−n−1∑

l=k

(n + l)!

(l − k)!
zl−k∂n

z ϕ̃l(z), z ∈ D, 0 ≤ k ≤ m− n− 1.

Note that from (3.15), by Lemma 9, it follows that [∂j
zϕ̃l]

+(t) exists for all

0 ≤ j ≤ n, 0 ≤ l ≤ m− n− 1, t ∈ ∂D. Therefore,

m−n−1∑

l=k

(n + l)!

(l − k)!
tl−k[∂n

z ϕ̃l]+(t) = σk(t), t ∈ ∂D, 0 ≤ k ≤ m− n− 1. (3.22)

Set

X(t) =




[∂n
z ϕ̃0]+(t)

[∂n
z ϕ̃1]+(t)

...

[∂n
z ϕ̃m−n−2]+(t)

[∂n
z ϕ̃m−n−1]+(t)




, a(t) =




σ0(t)

σ1(t)
...

σm−n−2(t)

σm−n−1(t)




and

A(t) =




n! (n + 1)!t · · · (m−2)!
(m−n−2)!

tm−n−2 (m−1)!
(m−n−1)!

tm−n−1

0 (n + 1)! · · · (m−2)!
(m−n−3)!

tm−n−3 (m−1)!
(m−n−2)!

tm−n−2

...
...

. . .
...

...

0 0 · · · (m− 2)! (m− 1)!t

0 0 · · · 0 (m− 1)!




,

then (3.22) becomes

A(t)X(t) = a(t).

By Cramer rule, we get

[∂n
z ϕ̃l]

+(t) =
det(Al(t))

n!(n + 1)! · · · (m− 1)!
, (3.23)
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where the matrix Al(t) is given by replacing the lth column of A(t) by a(t),

0 ≤ l ≤ m− n− 1. Let

Ξl(z) =
1

n!(n + 1)! · · · (m− 1)!

1

2πi

∫

∂D

det(Al(τ))

τ − z
dτ,

then

ϕ̃l(z) =

∫ z

0

∫ ζn−1

0

· · ·
∫ ζ1

0

Ξl(ζ)dζdζ1 · · · dζn−1 + πl(z),

where πl ∈ Πn−1, 0 ≤ l ≤ m− n− 1.

Let

L̃(z) = zn

m−n−1∑

l=0

zlϕ̃l(z),

then L− L̃ ∈ HarCn (D) and

[(∂z∂z)
j(L−L̃)]+(t) = γj(t)−

m−n−1∑

l=0

(n + l)!

(n + l − j)!
tn+l−j∂j

zϕ̃l(t), t ∈ ∂D, 0 ≤ j < n.

So, from the last section,

L(z)− L̃(z) =
n∑

k=1

1

2πi

∫

∂D
gk(z, τ)

[
γk−1(τ)

−
m−n−1∑

l=0

(n + l)!

(n + l − k + 1)!
τn+l−k+1∂k−1

z ϕ̃l(τ)
]dτ

τ
,

where gk(z, τ) (1 ≤ k ≤ n) are the higher order Poisson kernels. Therefore,

L(z) =
n∑

k=1

1

2πi

∫

∂D
gk(z, τ)

[
γk−1(τ)

−
m−n−1∑

l=0

(n + l)!

(n + l − k + 1)!
τn+l−k+1∂k−1

z ϕ̃l(τ)
]dτ

τ
+ L̃(z). (3.24)

Note that by (3.23) and Theorem E, we know that (3.24) are all solutions of

(3.15) if and only if

1

2πi

∫

∂D

z det Al(τ)

τ − z

dτ

τ
= 0, z ∈ D, 0 ≤ l ≤ m− n− 1.
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The second Dirichlet problem is to find a function R(z) ∈ Mm,n(D) (m < n)

satisfying the boundary conditions

[(∂z∂z)
jR]+(t) = ρj(t), 0 ≤ j < m and [∂m

z ∂m+k
z R]+(t) = %k(t), 0 ≤ k < n−m,

(3.25)

where t ∈ ∂D, ρj, %k ∈ C(∂D) for 0 ≤ j < m, 0 ≤ k < n−m.

Similarly, by the harmonic decomposition theorem, we have

Theorem 12. Set

A′(t) =




m! (m + 1)!t · · · (n−2)!
(n−m−2)!

t
n−m−2 (n−1)!

(n−m−1)!
t
n−m−1

0 (m + 1)! · · · (n−2)!
(n−m−3)!

t
n−m−3 (n−1)!

(n−m−2)!
t
n−m−2

...
...

. . .
...

...

0 0 · · · (n− 2)! (n− 1)!t

0 0 · · · 0 (n− 1)!




, (3.26)

a′(t) =




%0(t)

%1(t)
...

%m−n−2(t)

%m−n−1(t)




, (3.27)

Ξ′l(z) =
1

m!(m + 1)! · · · (n− 1)!

1

2πi

∫

∂D

det(A′
l(τ))

τ − z
dτ, (3.28)

and

ψ̃l(z) =

∫ z

0

∫ ζm−1

0

· · ·
∫ ζ1

0

Ξ′l(ζ)dζdζ1 · · · dζm−1 + π′l(z), (3.29)

where t ∈ ∂D, π′l ∈ Πm−1, the matrix A′
l(t) is given by replacing the lth column

of A′(t) by a′(t), 0 ≤ l ≤ n−m− 1. Then

R(z) =
m∑

k=1

1

2πi

∫

∂D
gk(z, τ)

[
ρk−1(τ)

−
n−m−1∑

l=0

(m + l)!

(m + l − k + 1)!
τm+l−k+1∂k−1

z ψ̃l(τ)
]dτ

τ

+ zm

n−m−1∑

l=0

zlψ̃l(z) (3.30)
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are all solutions of the problem (3.25) if and only if

1

2πi

∫

∂D

z det A′
l(τ)

τ − z

dτ

τ
= 0, z ∈ D, 0 ≤ l ≤ n−m− 1, (3.31)

where gk(z, τ) (1 ≤ k ≤ m) are the former m higher order Poisson kernels.

Proof. By Theorem C, since R ∈ Mm,n(D) (m < n), then

R(z) = 2<
{ m−1∑

k=0

zkψk(z)
}

+ 2i<
{ m−1∑

k=0

zkψ̂k(z)
}

+ zm

n−m−1∑

l=0

zlψ̃l(z), z ∈ D,

where ψk, ψ̂k ∈ Hk
1,0(D) and ψ̃l ∈ H1(D). So

(∂m
z ∂m+k

z )R(z) =
n−m−1∑

l=k

(m + l)!

(l − k)!
zl−k∂m

z ψ̃l(z), z ∈ D, 0 ≤ k ≤ n−m− 1.

Note that from (3.25), by Lemma 9, it follows that [∂j
zψ̃l]

+(t) exists for all

0 ≤ j ≤ m, 0 ≤ l ≤ n−m− 1, t ∈ ∂D. Therefore,

n−m−1∑

l=k

(m + l)!

(l − k)!
t
l−k

[∂m
z ψ̃l]

+(t) = %k(t), t ∈ ∂D, 0 ≤ k ≤ n−m− 1. (3.32)

Set

X ′(t) =




[∂m
z ψ̃0]

+(t)

[∂m
z ψ̃1]

+(t)
...

[∂m
z ψ̃n−m−2]

+(t)

[∂m
z ψ̃n−m−1]

+(t)




, a′(t) =




%0(t)

%1(t)
...

%n−m−2(t)

%n−m−1(t)




and

A′(t) =




m! (m + 1)!t · · · (n−2)!
(n−m−2)!

t
n−m−2 (n−1)!

(n−m−1)!
t
n−m−1

0 (m + 1)! · · · (n−2)!
(n−m−3)!

t
n−m−3 (n−1)!

(n−m−2)!
t
n−m−2

...
...

. . .
...

...

0 0 · · · (n− 2)! (n− 1)!t

0 0 · · · 0 (n− 1)!




,

then (3.32) becomes

A′(t)X ′(t) = a′(t).
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By Cramer rule, we get

[∂m
z ψ̃l]

+(t) =
det(A′

l(t))

m!(m + 1)! · · · (n− 1)!
, (3.33)

where the matrix A′
l(t) is given by replacing the lth column of A′(t) by a′(t),

0 ≤ l ≤ n−m− 1. Let

Ξ′l(z) =
1

m!(m + 1)! · · · (n− 1)!

1

2πi

∫

∂D

det(A′
l(τ))

τ − z
dτ,

then

ψ̃l(z) =

∫ z

0

∫ ζm−1

0

· · ·
∫ ζ1

0

Ξ′l(ζ)dζdζ1 · · · dζm−1 + π′l(z),

where π′l ∈ Πm−1, 0 ≤ l ≤ n−m− 1.

Let

R̃(z) = zm

n−m−1∑

l=0

zlψ̃l(z),

then R− R̃ ∈ HarCm(D) and

[(∂z∂z)
j(R−R̃)]+(t) = ρj(t)−

n−m−1∑

l=0

(m + l)!

(m + l − j)!
t
m+l−j

∂j
zψ̃l(t), t ∈ ∂D, 0 ≤ j < m.

So, from the last section,

R(z)− R̃(z) =
m∑

k=1

1

2πi

∫

∂D
gk(z, τ)

[
γk−1(τ)

−
n−m−1∑

l=0

(m + l)!

(m + l − k + 1)!
τm+l−k+1∂k−1

z ψ̃l(τ)
]dτ

τ
,

where gk(z, τ) (1 ≤ k ≤ m) are the higher order Poisson kernels. Therefore,

R(z) =
m∑

k=1

1

2πi

∫

∂D
gk(z, τ)

[
ρk−1(τ)

−
n−m−1∑

l=0

(m + l)!

(m + l − k + 1)!
τm+l−k+1∂k−1

z ψ̃l(τ)
]dτ

τ
+ R̃(z). (3.34)

Note that by (3.33) and Theorem E, we know that (3.34) are all solutions of

(3.25) if and only if

1

2πi

∫

∂D

z det A′
l(τ)

τ − z

dτ

τ
= 0, z ∈ D, 0 ≤ l ≤ n−m− 1.
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The third Dirichlet problem is to find a function N(z) ∈ Mm,n(D) which

fulfills the boundary conditions

[(∂m
z ∂j

z)N ]+(t) = χj(t), 0 ≤ j < n and [∂k
z ∂n

z N ]+(t) = λk(t), 0 ≤ k < m,

(3.35)

where t ∈ ∂D, χj, λk ∈ C(∂D) for 0 ≤ j < n, 0 ≤ k < m.

By the canonical decomposition theorem, we have

Theorem 13. Set

B(t) =




1 t t
2 · · · t

n−1

0 1 2t · · · (n− 1)t
n−2

...
...

. . .
...

...

0 0 · · · (n− 2)! (n− 1)!t

0 0 · · · 0 (n− 1)!




, (3.36)

C(t) =




1 t t2 · · · tm−1

0 1 2t · · · (m− 1)tm−2

...
...

. . .
...

...

0 0 · · · (m− 2)! (m− 1)!t

0 0 · · · 0 (m− 1)!




, (3.37)

b(t) =




χ0(t)

χ1(t)
...

χn−1(t)




, c(t) =




λ0(t)

λ1(t)
...

λm−1(t)




(3.38)

and

Θp(z) =
1

1!2! · · · (n− 1)!

1

2πi

∫

∂D

det Bp(τ)

τ − z
dτ, (3.39)

Λq(z) =
1

1!2! · · · (m− 1)!

1

2πi

∫

∂D

det Cq(τ)

τ − z
dτ, (3.40)

as well as

µp(z) =

∫ z

0

∫ ζm−1

0

· · ·
∫ ζ1

0

Θp(ζ)dζdζ1 · · · dζm−1 + κp(z), (3.41)
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νq(z) =

∫ z

0

∫ ζn−1

0

· · ·
∫ ζ1

0

Λq(ζ)dζdζ1 · · · dζn−1 + ξq(z), (3.42)

where t ∈ ∂D, κp ∈ Πm−1, ξq ∈ Πn−1, the matrices Bp(t), Cq(t) are respectively

given by replacing the pth, qth column by b(t), c(t), 0 ≤ p ≤ n−1, 0 ≤ q ≤ m−1.

Then

N(z) =
n−1∑
p=0

zpµp(z) +
m−1∑
q=0

zqνq(z) (3.43)

are all solutions of the problem (3.35) if and only if

1

2πi

∫

∂D

zdet Bp(τ)

τ − z

dτ

τ
= 0, 0 ≤ p ≤ n− 1 (3.44)

and
1

2πi

∫

∂D

z det Cq(τ)

τ − z

dτ

τ
= 0, 0 ≤ q ≤ m− 1, (3.45)

in which z ∈ D.

Proof. By Theorem D, we have the canonical decomposition

N(z) =
n−1∑
p=0

zpµp(z) +
m−1∑
q=0

zqνq(z),

where µp, νq ∈ H1(D), 0 ≤ p < n, 0 ≤ q < m. Note that by (3.35), we have

n−1∑
p=j

p!

(p− j)!
t
p−j

[∂m
z µp]

+(t) = χj(t), 0 ≤ j < n (3.46)

and
m−1∑

q=k

q!

(q − k)!
tq−k[∂n

z νq]+(t) = λk(t), 0 ≤ k < m. (3.47)

Set

b(t) =




χ0(t)

χ1(t)
...

χn−1(t)




, c(t) =




λ0(t)

λ1(t)
...

λm−1(t)
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and

Y (t) =




[∂m
z µ0]

+(t)

[∂m
z µ1]

+(t)
...

[∂m
z µn−1]

+(t)




, Z(t) =




[∂n
z ν0]+(t)

[∂n
z ν1]+(t)

...

[∂n
z νm−1]+(t)




as well as

B(t) =




1 t t
2 · · · t

n−1

0 1 2t · · · (n− 1)t
n−2

...
...

. . .
...

...

0 0 · · · (n− 2)! (n− 1)!t

0 0 · · · 0 (n− 1)!




and

C(t) =




1 t t2 · · · tm−1

0 1 2t · · · (m− 1)tm−2

...
...

. . .
...

...

0 0 · · · (m− 2)! (m− 1)!t

0 0 · · · 0 (m− 1)!




,

then (3.46) and (3.47) become

B(t)Y (t) = b(t), C(t)Z(t) = c(t).

So

[∂m
z µp]

+(t) =
det Bp(t)

1!2! · · · (n− 1)!
, [∂n

z νq]
+(t) =

det Cq(t)

1!2! · · · (m− 1)!
, (3.48)

where Bp(t), Cq(t) have the same meanings as Al(t) in (3.23).

Let

Θp(z) =
1

1!2! · · · (n− 1)!

1

2πi

∫

∂D

det Bp(τ)

τ − z

dτ

τ

and

Λq(z) =
1

1!2! · · · (m− 1)!

1

2πi

∫

∂D

det Cq(τ)

τ − z

dτ

τ
,

then

µp(z) =

∫ z

0

∫ ζm−1

0

· · ·
∫ ζ1

0

Θp(ζ)dζdζ1 · · · dζm−1 + κp(z), (3.49)
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νq(z) =

∫ z

0

∫ ζn−1

0

· · ·
∫ ζ1

0

Λq(ζ)dζdζ1 · · · dζn−1 + ξq(z), (3.50)

where κp ∈ Πm−1, ξq ∈ Πn−1. Note that by (3.48) and Theorem E, substituting

(3.49) and (3.50) into (3.43), we get all solutions (3.43) of the boundary value

problem (3.35) if and only if

1

2πi

∫

∂D

zdet Bp(τ)

τ − z

dτ

τ
= 0, 0 ≤ p ≤ n− 1

and
1

2πi

∫

∂D

z det Cq(τ)

τ − z

dτ

τ
= 0, 0 ≤ q ≤ m− 1,

in which z ∈ D.
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