
Chapter 1

Introduction

In the classical theory of complex analysis, it is well known that harmonic

functions are intimately connected with analytic functions. That is, for any real

harmonic function, one can find an analytic function such that the harmonic

function becomes its real part. In other words, any real harmonic function can

be decomposed as a sum of an analytic function and its conjugate function which

is an antianalytic function. The idea is simple but subtle and important because

it constructs a bridge linking the two kinds of functions so that they can be

mutually applied. In fact, the mutual applications are successfully realized in

the classical theory of one complex variable. In this dissertation, one can find

that the idea is valid for the generalized analogues of harmonic functions which

are called polyharmonic functions. Of course, analytic functions should also be

generalized. It is fortunate that some generalized analogues for analytic functions

have already been introduced by contribution from many mathematicians (see

[3, 29] and references there).

Usually, analytic functions are defined by Cauchy-Riemann operator ∂z =
1
2
( ∂

∂x
+ i ∂

∂y
) and harmonic functions are defined by Laplace operator ∆ = 4∂z∂z,

where ∂z = 1
2
( ∂

∂x
− i ∂

∂y
) is the adjoint operator of the Cauchy-Riemann operator

[27]. Different generalizations for Cauchy-Riemann operator yielded many gen-

eralized analogues such as generalized analytic functions, polyanalytic functions

and metaanalytic functions etc. [3, 29]. Especially, polyanalytic functions are

defined by operators ∂n
z (n ≥ 2). By iterating the Laplace operator, one can

define the so-called polyharmonic functions by operators ∆n (n ≥ 2) [1, 3]. The

simplest polyharmonic functions are biharmonic functions which are defined as

∆2u(= ∆∆u) = 0 in some domain. Historically, many investigations for the ex-

tension of harmonic functions are about biharmonic functions. Of course, there
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are also a lot of works on n-analytic and on n-harmonic functions. We mainly

refer readers to two of them: the preeminent work [23] given by Goursat and

Vekua’s excellent paper [30] about the Dirichlet problem for biharmonic func-

tions, which only expresses the author’s interest. In [23], Goursat obtained his

decomposition theorem of biharmonic functions which indicates that the idea

stated in the beginning of this chapter is valid for biharmonic functions. Using

Goursat’s decomposition formula, in [30], Vekua developed one method to con-

struct an approximative solution of the biharmonic Dirichlet problem in a simply

connected domain with a simple closed Jordan curve satisfying the Ljapunov con-

dition as its boundary.

Since complex analysis is closely related to mathematical physics, the the-

ory of boundary value problems (simply, BVPs) in complex analysis were abun-

dantly developed. Especially, the theory of boundary value problems for analytic

functions is an important branch of function theory. Many mathematicians con-

tributed to this field such as B. Riemann, D. Hilbert, N. I. Muskhelishvili, F. D.

Gakhov, I. N. Vekua and their students. The initial investigations are due to B.

Riemann and D. Hilbert. Deep developments were given by the BVPs school of

the former Soviet Union. Except for analytic functions, the investigations were

also devoted to particular partial differential equations, for example, the Bitsadze

equation, elliptic partial differential equations with analytic coefficients and so

on. There are many different types of BVPs which are called Riemann, Hilbert,

Dirichlet, Schwarz, Neumann, Robin boundary value problems. Among them, the

Riemann boundary value problem and the Hilbert boundary value problem are in

the center of interest. The Dirichlet boundary value problem is connected to the

Riemann boundary value problem. In this dissertation, we mainly are concerned

with the Dirichlet boundary value problem. The Schwarz problem is the simplest

form of the Hilbert problem. The Neumann problem is related the Dirichlet prob-

lem. The Robin problem is contacted to the Dirichlet problem and the Neumann

problem. In addition, for some special cases, e.g. the unit disc or the half plane,

the Hilbert problem can be transformed to the Riemann problem. To extend

the classical theory of BVPs, in recent time, a large number of investigations on

various boundary value problems for polyanalytic functions, metaanalytic func-
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tions have widely been published, refer to papers [12, 17, 18, 20, 31, 32] and

references there. However, the investigations on Dirichlet problems for polyhar-

monic functions just appeared in recent two years [9, 13]. All of these works are

based on two kinds of methods: one is called iterating method by making use of

the so-called poly-Cauchy operator [12, 17], the other is called reflection method

in terms of Schwarz symmetric extension principle and decomposition theorems

for polyanalytic functions and polyharmonic functions due to Begehr, Du and

Wang [9, 17]. In [17], Du and Wang established a beautiful decomposition theo-

rem for polyanalytic functions such that BVPs for polyanalytic functions can be

easily transformed to BVPs for analytic functions while the theory of the latter

is completely developed [22, 25, 26]. Further, in [9], Begehr, Du and Wang also

obtained a decomposition theorem for polyharmonic functions by the decomposi-

tion theorem for polyanalytic functions. In deed, these decomposition theorems

have appeared in the book [3] of Balk in some implicit forms. Just using the

decomposition theorem, in [9], Begehr, Du and Wang studied the Dirichlet prob-

lem for polyharmonic functions in the unit disc by the reflection method. They

found that the problem is uniquely solvable and the solution is closely connected

with a sequence of kernel functions with some elegant properties. However, ex-

plicit expressions for all kernel functions are not yet attained although the kernel

functions exist and satisfy certain inductive relations.

In Chapter 2, we develop a new decomposition theorem for polyharmonic

functions which is an extension of Goursat decomposition theorem for biharmonic

functions. With a view to the usual decomposition for harmonic functions, our

decomposition theorem for polyharmonic functions is more natural than the one

established by Begehr, Du and Wang. By our decomposition theorem, we give a

unified expression for the kernel functions appearing in [9] which are expressed in

terms of some vertical sums with nice structure. Since they are polyharmonic ana-

logues of the classical Poisson kernel, we call them higher order Poisson kernels.

The higher order Poisson kernels play an important role to solve the Dirichlet

problem for polyharmonic functions (simply, PHD problem).

The main subject of this dissertation is to study some Dirichlet boundary

value problems for higher order complex partial differential equations in the unit

3



disc. It is contained in Chapter 3 and Chapter 4.

For homogeneous equations, we begin with review the Dirichlet problem for

analytic functions. Then we consider the PHD problem in the unit disc and

finally discuss three kinds of Dirichlet problems for homogeneous mixed-partial

differential equations. The key tools are the decompositions for polyanalytic,

polyharmonic as well as poly-analytic-harmonic functions which are given in

Chapter 2. These are the themes of Chapter 3. For inhomogeneous equations,

the corresponding problems have only been little investigated [14, 24], and it is

the purpose of Chapter 4 to obtain some results in this direction. In [14], since

the explicit expressions of the higher order Poisson kernels are unknown, in fact,

Begehr and Wang only solved a Dirichlet problem for inhomogeneous triharmonic

equations in the unit disc although the general solution for the polyharmonic case

is indicated by a final remark. In [24], Kumar and Prakash consider the same

equations appearing in this dissertation with different boundary value conditions

using another method. In Chapter 4, we first apply the differentiability of the

higher order Pompeiu operators introduced by Begehr and Hile [12] to get special

solutions for the inhomogeneous equations. Further, we use the known results

of Dirichlet problems for the homogeneous equations [9, 19] due to the higher

order Poisson kernels [19] which are obtained by the decompositions of polyan-

alytic functions and polyharmonic functions, and the continuity of the higher

order Pompeiu operators. Combining the special solutions and the homogeneous

solutions, we obtain the solutions of Dirichlet problems for the inhomogeneous

equations under some suitable conditions of solvability. It is a new view to solve

Dirichlet problems for inhomogeneous equations which is different from the usual

method depending on the higher order Green functions [7] whose explicit expres-

sions are unknown except for some lower orders up to now. It is more interesting

that the view appearing here to solve a Dirichlet problem for inhomogeneous

higher order complex partial differential equations is similar to the one usually

used in linear algebra to solve an inhomogeneous system of linear equations.

In what follows, the main analytic branch of log z is always chosen in the

complex plane cut along the negative real axis with log 1 = 0.
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