Quasicrystal Surfaces: Morphology, Phase Transitions, and Epitaxy

Katharina Jennifer Franke

A dissertation submitted for the degree of Doctor of Natural Science at the Department of Physics of the Free University Berlin

October 2003

First referee: Second referee: Date of defense: Prof. Dr. K. H. Rieder Prof. Dr. K. Horn 17th December 2003

Abstract

Quasicrystals exhibit long-range order despite a lack of periodicity. The availability of mm-size single grain samples provides the unique opportunity to experimentally study and reconsider basic concepts developed for periodic crystals. The main contribution of this thesis are findings on the morphological characteristics and their relation to structural phase transitions and epitaxial growth on quasicrystals.

The tenfold (00001)-, the twofold (10000)-, and the twofold (001 $\overline{1}0$)-surfaces of decagonal Al-Ni-Co are investigated by low-energy electron microscopy in a temperature range from 30-850 °C. The in-situ observation of structural and morphological changes constitutes the first high temperature investigations of quasicrystal surfaces. At temperatures above 650 °C the atomic terraces are several micrometers wide, while at low temperatures a rough morphology is found on all three surfaces. This transformation is linked to a structural bulk phase transition which involves a strong material transport between bulk and surface. On the twofold Al-Ni-Co(001 $\overline{1}0$) surface this phase transition coincides with a transformation from the flat to a faceted morphology at low temperatures. At 730 °C a surface phase transition on the (10000)-surface is revealed by a significant change in work function of the terminating terraces. These observations in combination with the behavior of the twofold (001 $\overline{1}0$)- and tenfold (00001)-surface at this temperature can be related to another bulk structural phase transition.

Epitaxial growth on quasicrystal surfaces is studied by helium and electron diffraction. The formation of long sought-after single element quasicrystalline films has been accomplished by Sb and Bi deposition on both the tenfold surface of d-Al-Ni-Co and the fivefold surface of i-Al-Pd-Mn. A periodic adsorbate structure on the tenfold surface of Al-Ni-Co has been found by As deposition and annealing at $550 \,^{\circ}$ C. The resulting structure comprises strained AlAs(111) islands on Al-Ni-Co($10\overline{2}\overline{2}4$) facets. The atomic structure at the interface is characterized by the matching of the distorted AlAs(111) unit cells with the main periodic average structure of the substrate. The comparison of diffraction patterns of the interface layers yields a new criterion for generalizing epitactic growth to quasicrystalline materials.

Zusammenfassung

Quasikristalle zeichnen sich durch eine langreichweitige Ordnung bei fehlender Periodizität aus. Sie bieten die einzigartige Möglichkeit, Konzepte, die für periodische Kristalle entwickelt worden sind, unter einem neuen Aspekt zu betrachten und experimentell zu untersuchen. Die Schwerpunkte dieser Arbeit liegen zum einen auf der Charakterisierung der Morphologie von Quasikristalloberflächen im Zusammenhang mit strukturellen Phasenübergängen und zum anderen auf der Untersuchung epitaktischen Wachstums auf Quasikristalloberflächen.

Die zehnzählige (00001)-, die zweizählige (10000)- und die zweizählige (00110)-Oberfläche von dekagonalem Al-Ni-Co wurden mittels niederenergetischer Elektronenmikroskopie in einem Temperaturbereich von 30-850 °C untersucht. Diese in-situ Beobachtung von strukturellen und morphologischen Veränderungen stellt die erste Untersuchung an Quasikristalloberflächen bei hohen Temperaturen dar. Oberhalb von 650 °C ist die Oberfläche durch Terrassen von einigen Mikrometern Breite gekennzeichnet, während bei niedrigeren Temperaturen eine rauhe Morphologie auf allen drei Probenorientierungen zu finden ist. Diese Änderung geht mit einem Materialtransport zwischen Oberfläche und Volumen einher und beruht auf einem strukturellen Volumenphasenübergang. Auf der zweizähligen Al-Ni-Co(00110) Oberfläche findet neben dem Übergang von glatter zu rauher Morphologie auch eine Facettierung statt. Anhand einer deutlichen Änderung der Austrittsarbeit der Terrassen auf der (10000)-Fläche läßt sich ein weiterer Phasenübergang bei 730 °C identifizieren. Diese Beobachtung kann ebenfalls in Zusammenhang mit einem strukturellen Volumenphasenübergang gebracht werden.

Das epitaktische Wachstum auf Quasikristallen wurde mittels Heliumstreuung und Elektronenbeugung untersucht. Erstmals konnte ein quasikristalliner Film aus einem einzigen Element hergestellt werden. Dies gelang für Antimon and Wismut, die bei geeigneter Präparation sowohl auf der zehnzähligen Al-Ni-Co als auch auf der fünfzähligen Al-Pd-Mn Oberfläche eine epitaktische, quasikristalline Monolage ausbilden. Im Gegensatz dazu wurden durch Aufdampfen von Arsen auf die zehnzählige Al-Ni-Co Fläche und Ausheilen bei 550 °C Inseln mit periodischer atomarer Struktur erzeugt. Die Oberfläche besteht aus einem AlAs(111) Film, der auf Al-Ni-Co($10\overline{2}\overline{2}4$) Facetten aufgewachsen ist. Die atomare Struktur an der Grenzfläche ist durch eine Anpassung des Adsorbatgitters an die periodisch gemittelte Struktur der quasikristallinen Fläche gekennzeichnet. Anhand eines Vergleiches der Beugungsbilder von den Grenzflächenlagen läßt sich ein allgemeines Kriterium für epitaktisches Wachstum auf Materialien mit langreichweitiger Ordnung herleiten.

Contents

A	Abstract 5						
Zι	ısam	menfassung	7				
\mathbf{Li}	List of Abbreviations 13						
1	Intr	oduction	15				
2	Bas	ic Principles of Quasicrystallography	19				
	2.1	Forbidden Symmetries in Periodic Systems	19				
	2.2	The Fibonacci Sequence	20				
		2.2.1 Quasiperiodicity Generated from Higher Dimensional Space	21				
		2.2.2 The Diffraction Pattern of the Fibonacci Sequence	23				
	2.3	The two-dimensional Penrose Tiling	25				
	2.4	The Structure Factor in Quasiperiodic Systems	27				
2.5 Phasons		Phasons	27				
		Approximants	29				
	2.7 Decagonal Quasicrystals		29				
		2.7.1 Atomic Structure	31				
		2.7.2 Indexing of Decagonal Quasicrystals	31				
2.8 Icos		Icosahedral Quasicrystals	32				
		2.8.1 Indexing of Icosahedral Quasicrystals	34				
3	Experimental Techniques						
	3.1	Elastic Scattering Theory	37				
		3.1.1 Low Energy Electron Diffraction	38				
		3.1.2 Helium Atom Scattering	38				
		3.1.3 Kinematic Approximation	39				

3.2 Helium Atom Scattering (HAS)		Heliun	n Atom Scattering (HAS)	41
		3.2.1	Beam Generation	42
		3.2.2	Scattering Geometry	42
		3.2.3	Transfer Width	44
		3.2.4	Diffuse Scattering of Adsorbates	46
	3.3	Spot-I	Profile Analyzing Low-Energy Electron Diffraction (SPA-LEED)	47
		3.3.1	Scattering Geometry	47
		3.3.2	Spot Profile Analysis	47
		3.3.3	Representation of SPA-LEED Images in ${\bf k}\text{-space}$	48
	3.4	Low E	Cnergy Electron Microscopy	49
		3.4.1	LEEM Instrumentation	49
		3.4.2	Imaging with LEEM	50
		3.4.3	Contrast Mechanisms	52
	3.5	Sampl	e Preparation	54
1	Мо	mbolo	gy and Phase Transitions of the d Al Ni Co Surfaces	55
4	Morphology and Phase Transitions of the d-Al-Ni-Co Surfaces			
	7.1	1 1 1	Diffraction Patterns of the type I S1 and Basic Ni Modification	58
		419	Tiling Types and Ordering	50
		413	Atomic Clusters in the Decagonal Modifications	61
		414	Periodicity along the Tenfold [00001]-Axis	61
	42	LEEM	Investigations of the d-Al-Ni-Co Surfaces	63
4.3 Temperature Dependent Merphology of d Al Ni Co		erature Dependent Morphology of d-Al-Ni-Co	64	
	1.0	431	Morphology of the Twofold (10000)-Surface	64
		432	Morphology of the Tenfold (00001)-Surface	67
		433	Morphology of the Twofold $(001\overline{1}0)$ -Surface	69
		434	The Faceting Process on the Twofold $(001\overline{1}0)$ -Surface	71
		4.3.5	Facet Structure	75
	4.4	The P	hase Transition between the Modifications Type I and S1	76
		4.4.1	Facet Formation on Quasicrystal Surfaces	76
		4.4.2	The Effect of Structural Changes on the Faceting Transition	78
		4.4.3	(10000)-Surface Termination	81
		4.4.4	Low Temperature Equilibrium Morphology	82
	4.5	The P	The phase Transition S1 \leftrightarrow Basic Ni	82
		4.5.1	The Phase Transition on the (10000)-Surface	83
		4.5.2	Observations on Al-Ni-Co $(001\overline{1}0)$.	91

		4.5.3 S1 \leftrightarrow Basic Ni on the Tenfold (00001)-Surface $\ldots \ldots \ldots \ldots \ldots \ldots$	91		
	4.6	4.6 Surface Phase Transitions			
	4.7	Conclusions and Outlook	92		
5 Quasicrystalline Epitaxial Single-Element Films			95		
	5.1	Adsorption Process	96		
		5.1.1 Coverage Determination	97		
	5.2	Thermal Stability	102		
	5.3	Structure of the Monolayer Coverage	103		
		5.3.1 Sb/Bi Monolayers on i-Al-Pd-Mn(100000)	103		
		5.3.2 Sb/Bi Monolayers on d-Al-Ni-Co(00001)	106		
		5.3.3 Corrugation of the Monolayers	107		
		5.3.4 Atomic Structure of the Monolayers	109		
		5.3.5 Quality of the Quasicrystalline Sb and Bi Films	111		
	5.4	Coverage beyond the Monolayer	111		
	5.5	Conclusions	111		
6	Epi	taxy of a Periodic Adsorbate Structure on d-Al-Ni-Co	113		
	6.1	Facet Preparation and Temperature Dependence	114		
	6.2	Facet Orientation	116		
6.3 Atomic Structure		Atomic Structure	121		
	6.4	Interface Structure	124		
		6.4.1 A General Interface Model	125		
		6.4.2 One-Dimensional Example of Epitaxy between Periodic and Quasicrys-			
		talline Materials	126		
		6.4.3 Periodic Average Structure of d-Al-Ni-Co	128		
	6.5	Facet Size	133		
	6.6	Conclusions	134		
7	Sun	nmary and Outlook	137		
Bi	ibliog	graphy	141		
\mathbf{Li}	st of	Figures	147		
т;	st of	Tables	150		
Acknowledgment 153					

Curriculum Vitae	155
Publications	157

List of Abbreviations

d-Al-Ni-Co	decagonal Al-Ni-Co
HAS	Helium Atom Scattering
i-Al-Pd-Mn	icosahedral Al-Pd-Mn
LEED	Low-Energy Electron Diffraction
LEEM	Low-Energy Electron Microscopy
MEM	Mirror Electron Microscopy
SPA-LEED	Spot-Profile Analyzing Low-Energy Electron Diffraction
TEM	Transmission Electron Microscopy
UHV	Ultra-High Vacuum
XPS	X-Ray Photoemission Spectroscopy