CHAPTER 10

Weak convergence

In this appendix, we will present a very convenient way to compute the adiabatic
limit. It is based on the concept of weak convergence. The structure behind
this concept is best understood by some theorems given in [13]. We will follow
the very instructive introduction of [13] and cite some of the theorems given
therein and of [121]. This empowers us to present the technique in application
to our two examples. The omitted proofs can be found in [13] and [121].

Let us consider a sequences {z.} of functions which are indexed by a sequence
{e} of real numbers. We are interested in the case that the latter converges to
zero, ¢ — 0. We assume that all functions x. are defined on some bounded
Lipschitz domain © C R?. Let us furthermore denote any partial derivative by
8j.17,j = 1,...,d.

Definition 10.1 (DEFINITION 1 IN [13]) A sequence {z} of L°°(§2) converges
weakly* to the limit xo € L>(Q), denoted as x. — xq, if and only if

/xe(t)¢(t)dt—>/xo(t)¢(t)dt as €—0
Q Q

for all test functions ¢ € L1(£2)

This definition is based on the fact that L°°(Q) is isometrically isomorphic to
the dual space of L'(Q) (see [96, Thm. 6.16)):

12(9) = (11(9))"

Weak* convergence is closely connected to an averaging of the rapid fluctuations
of x.. This is particularly expressed by the following theorem

Theorem 10.2 (LEMMA 1IN [13]) A sequence {z¢} of L°°(§)) converges weakly*
to a limit xog € L*>(Q), if and only if the following two properties hold:

1. the sequence is bounded in L (),

2. for every open rectangle I C Q the corresponding integral mean value
converges,
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The first theorem we state connects the uniform convergence of functions to the
weak™® convergence of their derivatives.

Theorem 10.3 (PRINCIPLE 1 IN [13]) Let {zc} be a sequence in C*() such
that x. — 0 in C(2). Then, if and only if the sequence {Ox.} is bounded in
L>(Q), there holds

Oz 50 in L=(9).
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One of the crucial differences between uniform convergence and weak* conver-
gence lies in the fact that nonlinear functionals are not weakly* sequentially
continuous. That means in general

ze~xo  #A flx) > flzo)

for a continuous nonlinear function f. Nevertheless, one obtains a convergence
result for the product of a weak* converging and a uniformly converging func-
tion.

Theorem 10.4 (PRINCIPLE 2 IN [13]) Let there be the convergences x. — o,

weakly* in L>°(Q), and y — yo, uniformly in C(Q2). Then, we obtain
Te ye = mo-yo in LZ(Q).

Now, Alaoglu’s theorem which states that a closed ball in L°°(€) is compact
with respect to the weak™topology.

Theorem 10.5 (PRINCIPLE 3 IN [13]) Let {z.} be a bounded sequence in the
space L (). Then, there is a subsequence {€'} and a function xo € L*>(Q),
such that

To = x9 in L(Q).
An upper bound for the weak* limit zg € L>°(€2) is given in next theorem.

Theorem 10.6 (cF. THM. V.1.9 IN [121] orR THM. 1.1 IN [30]) Let x. — x
for e — 0in L (). Then the following assertion holds

lzo|| < liminf ||z
e—0

Furthermore, by applying the extended Arzela-Ascoli theorem we derive some
convergence properties of x as well as its derivative.

Theorem 10.7 (PRINCIPLE 4 IN [13]) Let {z.} be a bounded sequence in the
space COY(Q) of uniformly Lipschitz continuous functions. Then, there is a
subsequence {€'} and a function xog € C%1(Q), such that

re —x9 in C(Q), Oz = 0zg in L>®(Q).
The partial derivatives Ox. and Oxg are classically defined almost everywhere.

A criterium for the overall convergence of a sequence when all convergence
subsequences converge to the same element is given in the next theorem.

Theorem 10.8 (PRINCIPLE 5 IN [13]) Let {x.} be a sequence in a sequentially
compact Hausdorff space $). If every convergent subsequence of {x.} converges
to one and the same element xg € 9, then the sequence converges itself,

Te — XQ-



