Chapter 10

Weak convergence

In this appendix, we will present a very convenient way to compute the adiabatic limit. It is based on the concept of weak convergence. The structure behind this concept is best understood by some theorems given in [13]. We will follow the very instructive introduction of [13] and cite some of the theorems given therein and of [121]. This empowers us to present the technique in application to our two examples. The omitted proofs can be found in [13] and [121].

Let us consider a sequences $\{x_{\epsilon}\}$ of functions which are indexed by a sequence $\{\epsilon\}$ of real numbers. We are interested in the case that the latter converges to zero, $\epsilon \to 0$. We assume that all functions x_{ϵ} are defined on some bounded Lipschitz domain $\Omega \subset \mathbb{R}^d$. Let us furthermore denote any partial derivative by $\partial_j x, j = 1, \ldots, d$.

Definition 10.1 (DEFINITION 1 IN [13]) A sequence $\{x_{\epsilon}\}$ of $L^{\infty}(\Omega)$ converges weakly* to the limit $x_0 \in L^{\infty}(\Omega)$, denoted as $x_{\epsilon} \stackrel{*}{\rightharpoonup} x_0$, if and only if

$$\int_{\Omega} x_{\epsilon}(t)\phi(t)dt \to \int_{\Omega} x_{0}(t)\phi(t)dt \quad as \quad \epsilon \to 0$$

for all test functions $\phi \in L^1(\Omega)$

This definition is based on the fact that $L^{\infty}(\Omega)$ is isometrically isomorphic to the dual space of $L^{1}(\Omega)$ (see [96, Thm. 6.16]):

$$L^{\infty}(\Omega) = \left(L^{1}(\Omega)\right)^{*}.$$

Weak* convergence is closely connected to an averaging of the rapid fluctuations of x_{ϵ} . This is particularly expressed by the following theorem

Theorem 10.2 (LEMMA 1 IN [13]) A sequence $\{x_{\epsilon}\}$ of $L^{\infty}(\Omega)$ converges weakly* to a limit $x_0 \in L^{\infty}(\Omega)$, if and only if the following two properties hold:

- 1. the sequence is bounded in $L^{\infty}(\Omega)$,
- 2. for every open rectangle $I \subset \Omega$ the corresponding integral mean value converges,

$$\frac{1}{|I|}\int_I x_\epsilon(t)dt \to \frac{1}{|I|}\int_I x_0(t)dt.$$

The first theorem we state connects the uniform convergence of functions to the weak* convergence of their derivatives.

Theorem 10.3 (PRINCIPLE 1 IN [13]) Let $\{x_{\epsilon}\}$ be a sequence in $C^{1}(\bar{\Omega})$ such that $x_{\epsilon} \to 0$ in $C(\bar{\Omega})$. Then, if and only if the sequence $\{\partial x_{\epsilon}\}$ is bounded in $L^{\infty}(\Omega)$, there holds

$$\partial x_{\epsilon} \stackrel{*}{\rightharpoonup} 0$$
 in $L^{\infty}(\Omega)$.

One of the crucial differences between uniform convergence and weak* convergence lies in the fact that nonlinear functionals are not weakly* sequentially continuous. That means in general

$$x_{\epsilon} \stackrel{*}{\rightharpoonup} x_0 \qquad \not\Rightarrow \qquad f(x_{\epsilon}) \stackrel{*}{\rightharpoonup} f(x_0)$$

for a continuous nonlinear function f. Nevertheless, one obtains a convergence result for the product of a weak* converging and a uniformly converging function.

Theorem 10.4 (PRINCIPLE 2 IN [13]) Let there be the convergences $x_{\epsilon} \stackrel{*}{\rightharpoonup} x_0$, weakly* in $L^{\infty}(\Omega)$, and $y_{\epsilon} \rightarrow y_0$, uniformly in $C(\bar{\Omega})$. Then, we obtain

$$x_{\epsilon} \cdot y_{\epsilon} \stackrel{*}{\rightharpoonup} x_0 \cdot y_0 \quad in \quad L^{\infty}(\Omega).$$

Now, Alaoglu's theorem which states that a closed ball in $L^{\infty}(\Omega)$ is compact with respect to the weak*-topology.

Theorem 10.5 (PRINCIPLE 3 IN [13]) Let $\{x_{\epsilon}\}$ be a bounded sequence in the space $L^{\infty}(\Omega)$. Then, there is a subsequence $\{\epsilon'\}$ and a function $x_0 \in L^{\infty}(\Omega)$, such that

$$x_{\epsilon'} \stackrel{*}{\rightharpoonup} x_0$$
 in $L^{\infty}(\Omega)$.

An upper bound for the weak* limit $x_0 \in L^{\infty}(\Omega)$ is given in next theorem.

Theorem 10.6 (CF. THM. V.1.9 IN [121] OR THM. 1.1 IN [30]) Let $x_{\epsilon} \stackrel{*}{\rightharpoonup} x_0$ for $\epsilon \to 0$ in $L^{\infty}(\Omega)$. Then the following assertion holds

$$||x_0|| \le \liminf_{\epsilon \to 0} ||x_\epsilon||.$$

Furthermore, by applying the $extended\ Arzelà-Ascoli\ theorem$ we derive some convergence properties of x as well as its derivative.

Theorem 10.7 (PRINCIPLE 4 IN [13]) Let $\{x_{\epsilon}\}$ be a bounded sequence in the space $C^{0,1}(\bar{\Omega})$ of uniformly Lipschitz continuous functions. Then, there is a subsequence $\{\epsilon'\}$ and a function $x_0 \in C^{0,1}(\bar{\Omega})$, such that

$$x_{\epsilon'} \to x_0$$
 in $C(\bar{\Omega})$, $\partial x_{\epsilon'} \stackrel{*}{\rightharpoonup} \partial x_0$ in $L^{\infty}(\Omega)$.

The partial derivatives ∂x_{ϵ} and ∂x_{0} are classically defined almost everywhere.

A criterium for the overall convergence of a sequence when all convergence subsequences converge to the same element is given in the next theorem.

Theorem 10.8 (PRINCIPLE 5 IN [13]) Let $\{x_{\epsilon}\}$ be a sequence in a sequentially compact Hausdorff space \mathfrak{H} . If every convergent subsequence of $\{x_{\epsilon}\}$ converges to one and the same element $x_0 \in \mathfrak{H}$, then the sequence converges itself,

$$x_{\epsilon} \to x_0$$
.