
Chapter 10

Weak convergence

In this appendix, we will present a very convenient way to compute the adiabatic
limit. It is based on the concept of weak convergence. The structure behind
this concept is best understood by some theorems given in [13]. We will follow
the very instructive introduction of [13] and cite some of the theorems given
therein and of [121]. This empowers us to present the technique in application
to our two examples. The omitted proofs can be found in [13] and [121].

Let us consider a sequences {xε} of functions which are indexed by a sequence
{ε} of real numbers. We are interested in the case that the latter converges to
zero, ε → 0 . We assume that all functions xε are defined on some bounded
Lipschitz domain Ω ⊂ Rd. Let us furthermore denote any partial derivative by
∂jx, j = 1, . . . , d.

Definition 10.1 (Definition 1 in [13]) A sequence {xε} of L∞(Ω) converges

weakly* to the limit x0 ∈ L∞(Ω), denoted as xε
∗
⇀ x0, if and only if

∫

Ω

xε(t)φ(t)dt→
∫

Ω

x0(t)φ(t)dt as ε→ 0

for all test functions φ ∈ L1(Ω)

This definition is based on the fact that L∞(Ω) is isometrically isomorphic to
the dual space of L1(Ω) (see [96, Thm. 6.16]):

L∞(Ω) =
(
L1(Ω)

)∗
.

Weak* convergence is closely connected to an averaging of the rapid fluctuations
of xε. This is particularly expressed by the following theorem

Theorem 10.2 (Lemma 1 in [13]) A sequence {xε} of L∞(Ω) converges weakly*
to a limit x0 ∈ L∞(Ω), if and only if the following two properties hold:

1. the sequence is bounded in L∞(Ω),

2. for every open rectangle I ⊂ Ω the corresponding integral mean value
converges,

1

|I|

∫

I

xε(t)dt→
1

|I|

∫

I

x0(t)dt.

The first theorem we state connects the uniform convergence of functions to the
weak* convergence of their derivatives.

Theorem 10.3 (Principle 1 in [13]) Let {xε} be a sequence in C1(Ω̄) such
that xε → 0 in C(Ω̄). Then, if and only if the sequence {∂xε} is bounded in
L∞(Ω), there holds

∂xε
∗
⇀ 0 in L∞(Ω).
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One of the crucial differences between uniform convergence and weak* conver-
gence lies in the fact that nonlinear functionals are not weakly* sequentially
continuous. That means in general

xε
∗
⇀ x0 6⇒ f(xε)

∗
⇀ f(x0)

for a continuous nonlinear function f . Nevertheless, one obtains a convergence
result for the product of a weak* converging and a uniformly converging func-
tion.

Theorem 10.4 (Principle 2 in [13]) Let there be the convergences xε
∗
⇀ x0,

weakly* in L∞(Ω), and yε → y0, uniformly in C(Ω̄). Then, we obtain

xε · yε ∗
⇀ x0 · y0 in L∞(Ω).

Now, Alaoglu’s theorem which states that a closed ball in L∞(Ω) is compact
with respect to the weak*–topology.

Theorem 10.5 (Principle 3 in [13]) Let {xε} be a bounded sequence in the
space L∞(Ω). Then, there is a subsequence {ε′} and a function x0 ∈ L∞(Ω),
such that

xε′
∗
⇀ x0 in L∞(Ω).

An upper bound for the weak* limit x0 ∈ L∞(Ω) is given in next theorem.

Theorem 10.6 (cf. Thm. V.1.9 in [121] or Thm. 1.1 in [30]) Let xε
∗
⇀ x0

for ε→ 0 in L∞(Ω). Then the following assertion holds

‖x0‖ ≤ lim inf
ε→0

‖xε‖.

Furthermore, by applying the extended Arzelà-Ascoli theorem we derive some
convergence properties of x as well as its derivative.

Theorem 10.7 (Principle 4 in [13]) Let {xε} be a bounded sequence in the
space C0,1(Ω̄) of uniformly Lipschitz continuous functions. Then, there is a
subsequence {ε′} and a function x0 ∈ C0,1(Ω̄), such that

xε′ → x0 in C(Ω̄), ∂xε′
∗
⇀ ∂x0 in L∞(Ω).

The partial derivatives ∂xε and ∂x0 are classically defined almost everywhere.

A criterium for the overall convergence of a sequence when all convergence
subsequences converge to the same element is given in the next theorem.

Theorem 10.8 (Principle 5 in [13]) Let {xε} be a sequence in a sequentially
compact Hausdorff space H. If every convergent subsequence of {xε} converges
to one and the same element x0 ∈ H, then the sequence converges itself,

xε → x0.


