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Kurzfassung

Seit der Entdeckung einer Methode, einzelne atomare Lagen von Graphit zu isolieren, hat
sich Graphen, das weltweit erste zweidimensionale Material, in kürzester Zeit zu einem
vielversprechenden Kandidaten für zukünftige nanoelektronische Anwendungen entwickelt.
Die ungewöhnlichen elektronischen Eigenschaften dieses Materials beruhen auf einer quasi-
relativistischen Dispersion, die charakteristisch für die zugrundeliegende wabenförmige
Gitterstruktur von Kohlenstoffatomen ist. Diese Gitterstruktur zeigt sich zudem verant-
wortlich für einen zusätzlichen “Pseudospin”-Freiheitsgrad, der die Transporteigenschaften
von Elektronen in erheblichem Maße beeinflusst. In der vorliegenden Arbeit werden nun
einige dieser ungewöhnlichen Effekte im elektronischen Transportverhalten von Graphen
näher untersucht.

Auf besonderes Interesse stößt in der Nanoelektronik die Herstellung von sogenannten
“Quantenpunkten”, in welchen Elektronen auf kleinstem Raum eingesperrt werden. Ein
gängiges Verfahren beruht dabei auf einer geeigneten Platzierung von metallischen Kon-
takten, mit denen sich Elektronen elektrostatisch einsperren lassen. Die Anwendung einer
solchen Methode auf Graphen erweist sich jedoch als äußerst schwierig, in Anbetracht der
Tatsache, dass die Dispersionsrelation von Graphen keine Bandlücke aufweist. Vielmehr
erlaubt es der sogenannte “Klein-Tunneleffekt”, dass Elektronen in Graphen den Quan-
tenpunkt verlassen können, wenn sie senkrecht auf dessen Oberfläche treffen. Dasselbe
Argument gestattet jedoch elektrostatisches Einsperren für bestimmte Geometrien von
Quantenpunkten, welche einen senkrechten Ausfall ausschliessen. In dieser Arbeit werden
wir zeigen, dass sich Elektronen überraschenderweise zu einem gewissen Grad auch in all-
gemeinen Geometrien einsperren lassen. Wir können diesen Effekt mit der “Berry-Phase”
in Beziehung setzen, die aufgrund der Pseudospin-Struktur in Graphen auftritt, und Elek-
tronen an senkrechtem Einfall auf die Oberfläche hindert. In dieser Arbeit werden wir
diskutieren, wie Information über die mögliche Lokalisierung von Elektronen in Quanten-
punkten in Graphen in experimentell zugänglichen Größen wie elektrischem Leitwert oder
elektronischer Zustandsdichte erhalten werden kann.

Ein weiterer Teil dieser Arbeit behandelt Quanteninterferenzeffekte, welche im elektro-
nischen Transport von ungeordneten Systemen auftreten. Insbesondere betrachten wir
Systeme, in denen die Unordnung auf einer makroskopischen Skala variiert. Die elektroni-
sche Bewegung kann dann mittels klassischer Dynamik beschrieben werden, und folglich ist
eine semiklassische Berechnung der Quantentransporteigenschaften möglich. Als Beson-
derheit machen sich Welleneffekte in solchen Systemen erst nach einer gewissen Zeit, der
sogenannten Ehrenfestzeit bemerkbar. In dieser Arbeit werden wir den Einfluss der Ehren-
festzeit auf Quanteneffekte, welche von Elektron-Elektron-Wechselwirkungen herrühren,
in der elektrischen Leitfähigkeit von Halbleiterstrukturen untersuchen. Desweiteren unter-
suchen wir Quanteneffekte im elektrischen Transport von Graphen unter semiklassischen
Gesichtspunkten, wobei der Pseudospin in besonderer Weise berücksichtigt werden muss.
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Abstract

Since the discovery of a method to isolate single layers of graphite, graphene, the world’s
first two-dimensional material, has rapidly developed into a prospective candidate for
future nanoelectronic devices. Its remarkable electronic properties arise from a quasirel-
ativistic dispersion, that is connected to the honeycomb lattice of carbon atoms. Such
lattice structure is also responsible for an additional pseudospin degree of freedom, that
has crucial influence on the transport properties of electrons in graphene. The present
thesis takes a closer look on some of these unusual features in electronic transport in
graphene from a theoretical point of view.

Of particular interest in nanoelectronics is the fabrication of “quantum dots”, in which
electrons can be confined in a small region in space. A standard procedure for the fabri-
cation of quantum dots relies on the use of metallic gates, which allow to confine particles
electrostatically. Such procedure is however highly problematic in graphene, due to the
absence of a bandgap. More precisely, for graphene there is the effect of Klein tunnel-
ing, that allows the electrons to escape the dot, once they approach the surface under
normal incidence. The very same argument also implies that electrostatic confinement
is possible for certain shapes of the quantum dot, that exclude perpendicular incidence.
In this thesis, we will show that, surprisingly, some degree of confinement also remains
for the generic structure. We will relate such effect to the Berry phase, that arises due
to the graphene’s pseudospin structure, and prevents the electrons from strictly normal
incidence. We will discuss how information about possible confinement can be revealed in
experimental relevant quantities, such as conductance and density of states.

Another part of the thesis deals with quantum interference effects in the electronic
transport of disordered systems. Specifically, we consider systems, that are subject to
a smooth or macroscopic disorder, where the electronic motion is governed by classical
dynamics, and therefore permit a semiclassical study of quantum transport. In such
systems, the Ehrenfest time appears as an additional timescale, which essentially serves as
a short-time threshold, below which wave effects are not operative. In this thesis, we will
adress the effect of such Ehrenfest time on quantum effects in the electrical conductivity of
semiconductor structures, that are induced by electron-electron interactions. Furthermore,
we will study quantum corrections to transport in graphene from a semiclassical point of
view, where additionally the effect of the pseudospin needs to be incorporated.
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1. Introduction

Since its first successful isolation in 2004, graphene has evolved in a truly unique fashion
to a prospective material for future nanodevices, stimulating intense research activity
throughout many branches of solid-state physics. Graphene is the name for a single layer
of graphite and consists of carbon atoms that are arranged in a two-dimensional honeycomb
lattice. While the first calculation of the bandstructure of this material dates back to 1947
[Wall 47], graphene remained for a long time a subject of purely academic interest – and
no one aimed for an experimental realization of graphene, as the Mermin-Wagner theorem
predicts strictly two-dimensional crystals to be unstable. It thus came as a surprise, when
Geim and Novoselov reported to be able to isolate this material [Novo 04], which, together
with its astonishing properties, created tremendous attraction by physicists, such that the
discovery has been finally awarded with the Nobel prize in 2010.

A great part of the interest in graphene relies on its unique electronic properties, that
stem from the peculiar bandstructure of the hexagonal carbon lattice. Valence and con-
duction band touch each other at two points in the Brillouin zone, around which the
spectrum has a conical shape. This in turn means that electrons effectively behave as
ultra-relativistic particles as they move through the carbon lattice, however with a veloc-
ity that is about 300 times smaller than the speed of light. The analogy with relativistic
theory extends even beyond the linear dispersion, as the low-energy description of electrons
in graphene is governed by the (2+1) dimensional Dirac equation for massless particles,
where the spin degree of freedom is mimicked by the possibility to sit on either of the
two carbon sublattices, termed as pseudospin. The Dirac equation aligns the pseudospin
of the electrons with their direction of motion, assigning a chirality to the particles. The
additional presence of the real spin together with the two Fermi points in the Brilloin zone
(valleys) implies that graphene owns four copies of a Dirac cone.

The unusual electronic properties of graphene can be revealed in transport experiments.
A typical setup includes a graphene nanoflake placed on an insulating substrate and con-
nected to metallic source and drain contacts. In addition, metallic gates below or above
the sample can be used to tune the chemical potential of the graphene structure, inducing
a finite carrier density of electrons or holes. While the graphene samples itself can be
produced in very high quality, the insulating substrate is typically prone to charged impu-
rities, which may crucially influence the transport abilities of the nanostructure. We also
mention that there is a class of alternative transport setups, which deal with freestanding
(suspended) graphene.

Transport properties are highly peculiar in graphene, when the chemical potential is
tuned to the Dirac point, where conductance and valence band touch. On the one hand,
there are no carriers available, that mediate electric transport, as the density of states
vanishes, which points towards an insulating behavior. On the other hand, a small carrier
concentration would barely scatter off impurities, as the available phase space of final
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1. Introduction

electronic states reduces to zero, which would support a well-conducting behavior. The
determination of the conductivity at the Dirac point is therefore quite subtle and requires a
careful consideration. For a clean short-and-wide graphene sheet, theoretical studies find a
finite value for the conductivity at the charge neutrality point of 4e2/πh [Frad 86, Ludw 94,
Zieg 98, Shon 98, Twor 06, Pere 06, Kats 06a]. Experiments conducted on ultraballistic
samples find a value close to that prediction, while most experiments point to somewhat
larger values, which are attributed to disorder. Such disorder-enhanced conduction was
confirmed by numerical studies [Bard 07, Nomu 07].1 Intuitively, one may argue that
disorder creates regions with a finite electron or hole concentration, which leads to an
increase of the conductivity. On the other hand, disorder also magnifies the number of
scattering events, so that a careful consideration of the problem is needed, to decide which
effect is dominant. The intriguing feature of disorder-enhanced conductivity can be also
related to the presence of a “topological term” in a field-theoretical description, that
prevents the system from Anderson localization [Ostr 07].

The electronic properties of graphene are also strongly influenced by the existence of
the pseudospin and the associated chiral nature of the electronic excitations in graphene.
A striking manifestation is the absence of backscattering in quantum scattering processes,
which is related to the phenomenon of Klein tunneling [Chei 06, Kats 06b]. Another
hallmark is an unusual quantization of the Landau levels for graphene that is placed in
a magnetic field. The origin of this effect lies in an additional phase that the electronic
wavefunction accumulates due to chirality: Since pseudospin and orbital degree of freedoms
are locked, the pseudospin winds once around its axis when the electron performs a circular
motion in the magnetic field, and thereby picks up a Berry phase of π. The Berry phase
is in turn responsible for the formation of a Landau level at zero energy - a unique feature
for relativistic particles in a magnetic field. The unusual Landau level quantization can be
observed in a Hall measurement, where the series of quantum Hall plateaus is shifted by
1/2 as compared to the standard one.2 The measurement of this halfinteger quantization
series provided the first direct confirmation of the relativistic nature of charge carriers in
graphene [Novo 05, Zhan 05].

Even a decade after the first successful realization of graphene, there is still enourmous
interest in unraveling the fascinating properties of this material or “graphene-related ma-
terials” such as topological insulators or Weyl semimetals, that are also strongly influenced
by the appearence of a Dirac cone. The present thesis covers various aspects of quantum
transport in graphene near the Dirac point. In the first part of the thesis, we investigate
the possibility to confine electrons in graphene with the help of metallic gates in a narrow
region in space, a “quantum dot”. In order to define a quantum dot structure, it is es-
sential to be able to exclude the electrons from entering the region outside of the dot. In
semiconductor nanostructures, it is a well-established method to shape quantum dots with
the help of gate potentials that tune the Fermi level in the bandgap outside the quantum
dot. For graphene however, there is no bandgap and hence it should be impossible to
fabricate quantum dots by gating. On the other hand, one may argue that the charge

1To be precise, this statement is valid for disorder that is smooth on the scale of the lattice constant,
such that it does not couple the two valleys.

2The Hall conductance measured in units of the conductance quantum remains integer though, as
graphene exhibits two Dirac cones.
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1.1. Gate-defined quantum dots in graphene

carrier concentration tends to zero in regions, where the chemical potential is tuned to the
Dirac point, which would favor the possibility of electrostatic confinement. These contro-
versial viewpoints illustrate that the question, whether it is possible to confine electrons
in graphene with metal gates has a nontrivial answer and deserves a careful considera-
tion. In this thesis, we will explore under what circumstances electrostatic confinement in
graphene is possible.

While the physics of graphene is highly unusual when the Fermi level lies at the Dirac
point, its electronic properties resemble those of a metal, when graphene is doped away
from the Dirac point, but certain features of the Dirac spectrum remain, related to the
presence of the pseudospin. For weakly disordered metallic systems, it is well-known
that the wave nature of electrons and the associated quantum interference effects leads
to a number of manifestations in quantum transport, such as weak localization, universal
conductance fluctuations, and interaction corrections. If the impurities have a range com-
parable to the Fermi wavelength of the electrons, the scattering process of the electrons
off the impurities is quantum-diffractive, while for impurities with a range much larger
than the Fermi wavelength, the scattering process can be viewed classical-deterministic.
In the latter regime a description of quantum transport based on classical trajectories is
amenable. This regime is distinguished from the short-range impurities by the appearence
of an additional timescale, the Ehrenfest time, which essentially serves as a short-time
threshold for the occurrence of quantum corrections. In this thesis, we investigate the
effect of such Ehrenfest time on the interaction correction to the conductance, which will
discuss first for conventional semiconductor structures. We further apply semiclassical
methods to study quantum corrections in graphene. Here, the pseudospin structure enters
as an additional feature, which influences the results of the quantum corrections. Besides
being able to cope with a finite Ehrenfest time, the semiclassical treatment also provides
an intuitive approach to address quantum corrections in electric transport.

In the following, we give an overview over the projects covered in this thesis.

1.1. Gate-defined quantum dots in graphene

The possibility to confine electrons in a small region in space plays a central role in
the design of future nanoelectronic devices. If the electronic motion is limited in all three
spatial directions, one speaks of a “quantum dot”. The energy levels which the electron can
occupy are discrete, and the system can be viewed as an “artificial atom”. Nanosystems
which offer the possibility to individually adress and manipulate single electrons open a
way to store and process quantum information.

One way to realize such quantum dots is based on semiconductor heterostructures.
For instance, GaAs/AlGaAs-heterostructures have been used to confine electrons in a
two-dimensional layer. With the help of additional metal gates, it is possible to locally
adjust the chemical potential. By tuning the chemical potential in the bandgap of the
semiconductor, one creates regions that electrons cannot penetrate, which finally allows
for confinement in all three spatial directions.

In view of the two-dimensional nature of graphene, it is tempting to adopt this idea
to build graphene quantum dots. There is one big obstacle however — graphene has no

3



1. Introduction

Figure 1.1.: Klein tunneling in graphene. Left: Transition from doped to undoped
graphene sheet: electrons that hit the surface at perpendicular incidence will
be transmitted, while away from normal incidence they will be reflected. Mid-
dle: A circular quantum dot allows for trajetories that avoid normal incidence
on the surface. Right: In a chaotic quantum dot, sooner or later a particle
will hit the surface at normal incidence and exit the dot.

bandgap, and thus it is not possible to create “forbidden regions” for the electrons. On
the other hand, in a region where the chemical potential is tuned to zero, the charge
carrier concentration is zero, which supports the possibility to confine electrons. The two
complementary viewpoints suggest that a careful analysis is needed to solve this problem.
A promising approach involves the phenomenon of Klein tunneling: Hereto, we consider
an interface between a region with finite carrier concentration and a region with zero
carrier concentration. As the density of states is vanishing in the undoped region, an
electron that approaches the interface from the doped side will be typically reflected back.
The only exception occurs at normal incidence, where the electron is transmitted with
unit probability. The latter effect of course is highly problematic for possible electrostatic
confinement in graphene, but it does not mean the end of the story.

In a recent article, Bardarson et al. [Bard 09] suggested that the answer to the question,
if it is possible to confine electrons with the help of metal gates, depends very sensitively
on the geometry of the quantum dot: A disc-shaped quantum dot is an example of an
integrable quantum dot, for which perpendicular incidence at the surface is excluded for
most of the trajectories. Hence, such a structure should support confined states in the
quantum dot. On the contrary, for a geometry whose classical dynamics is chaotic, such
as a stadium-shaped geometry, trajectories sooner or later approach the surface at normal
incidence, and the particle can exit the dot, see Fig. 1.1.

To test this prediction based on classical considerations, Bardarson et al. supported their
work with a numerical analysis of a circular or stadium-shaped quantum dot surrounded
by a sheet of undoped graphene, that is attached to source and drain contacts. The
formation of bound states is revealed as resonances in the two-terminal conductance as
a function of the dot’s gate voltage. Bardarson et al. found sharp resonances for the
disc-shaped geometry, while for the chaotic geometry only broad resonances were found,
corresponding to states that have a short lifetime, which supports the classical expectation
on a heuristic level.
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1.1. Gate-defined quantum dots in graphene

The difference between integrable and chaotic geometry becomes most pronounced in
the limit of small dot sizes in comparison to the distance between dot and leads, where
the resonances become isolated. Due to numerical limitations however, the regime of
isolated resonances was not accessible in Ref. [Bard 09], which prevented the authors
from a closer investigation of the degree of confinement. In the mean time, Titov et
al. proposed an extension of the so-called matrix Green function method to two-terminal
transport in graphene [Tito 10]. With the help of this formalism, Titov et al. were able
to determine the two-terminal conductance for graphene containing a circular quantum
dot fully analytically. Inspired by this big success, we are lead to the question, if this
formalism could be used to get a better understanding of the resonant structures of a
chaotic quantum dot.

This question is indeed the origin of the study presented in Chapter 3, where we will
introduce a combined analytical-numerical approach, built on the matrix Green function
method, that allows for a detailed study of the resonances of a quantum dot of arbitrary
geometry. We show, that the limit of isolated resonances can be reached very efficiently
with this method, and we are able to determine the lineshape and the characteristics of
the resonances, which carry signatures of the underlying chaotic geometry. We also show,
that upon decreasing the ratio of dot size vs. distance to the contacts, the resonances cor-
responding to the regular geometry become much sharper as compared to the resonances
of a chaotic quantum dot, which allows for a quantitative measure to distinguish such
geometries. Quite remarkably, the amplitude of the resonances saturates at a finite value
close to the conductance quantum.

1.1.1. The role of the Berry phase

Although the results of Chapter 3 allow for a quantitative understanding of the resonances
of a chaotic quantum dot, a great puzzle remains: Why do the resonant features for
a chaotic structure not disappear, even if the coupling between dot and leads shrinks
to zero? A solution to the discrepancy between classical argumentation and quantum-
mechnical calculation is presented in Chapter 4.

The classical reasoning presented above neglects one crucial aspect of charge carriers
in graphene: As the electrons move in the quantum dot, the pseudospin adjusts to be
aligned with the direction of motion. The transport of spin is accompanied with the
accumulation of a quantum-mechanical phase of the electronic wave function, the Berry
phase. Upon completion of a single circular motion, the pseudospin winds once around its
axis, resulting in a Berry phase of π, which is also responsible for the unusual Landau level
quantization, as discussed before. The reason, why the Berry phase crucially influences the
possibility to confine electrons, becomes evident when considering the angular momentum
of the electron: For graphene, orbital angular momentum and pseudospin are strongly
coupled, so that only their combination is a good quantum number, which is quantized
in half-integer multiples of ~. Thus, there is no state with zero angular momentum,
that corresponds to the situation where an electron approaches the surface under normal
incidence, and hence a residual confinement remains even for an arbitrary geometry of the
dot.

In order to support these arguments, we consider an alternative setup, where we include

5



1. Introduction

a flux tube in the quantum dot, that carries half a flux quantum. Electrons encircling this
flux tube pick up an Aharonov-Bohm phase of π, that is precisely cancelling the effect of
the Berry phase. We show, that after insertion of the flux tube, the kinematical angular
momentum, relevant for classical considerations, takes on integer values, and in particular
allows for a state with zero kinematical angular momentum. We show, that this state does
indeed not allow for confinement by means of gate potentials.

A numerical simulation of the two-terminal transport upon inclusion of the π–flux then
shows the desired significant difference discriminating integrable and chaotic geometries:
For the circular dot, we find sharp resonances that persist in the limit of small coupling to
the leads, whereas for the chaotic structure, resonances are present only for intermediate
coupling, while they disappear, as the coupling goes to zero.

Besides transport measurements, valuable means to gain insight to nanoscale systems are
measurements of the density of states, either locally by scanning tunneling spectroscopy,
or globally, by quantum capacitive measurements. In Chapter 4, we will also discuss the
signatures of confinement in graphene quantum dots in the density of states, where the
existence of discrete electronic levels of the quantum dot are revealed as additional peaks in
the density of states. We choose a setup, where the quantum dot surrounded by undoped
graphene is attached to a circular lead. We will show, that such setup allows to access
the relevant limit of weakly coupled very efficiently, and discuss how information about
possible confinement can be extracted from an analysis of the density of states.

1.2. Semiclassical theory of quantum transport

In 1900, Paul Drude suggested a simple model to explain transport in metals [Drud 00],
where he assumed that electrons behave as classical particles between successive collisions
in the solid. Although treating electrons on a classical level may seem a very crude
simplification, it turns out that many features of electric transport in nanosystems are
successfully described with the help of a Boltzmann equation, which essentially is based
on the same idea as the Drude model (see, e.g. [Ramm 98]). Despite the big significance
of the Boltzmann theory for transport, we emphasize that there are also a number of
phenomena in electric transport through metals, that cannot be described by treating
electrons as classical particles, but rely on the wave nature of electrons and quantum
interference effects.

A prominent example of such signatures of quantum effects in electric transport is weak
localization, which results in a reduction of the conductivity compared to its classical
value [Ande 79, Gork 79]. An intuitive explanation for this effect is based on electronic
trajectories through the solid – quantum effects arise in this picture from interference
between different trajectories [Chak 86]: We are interested in the regime of dilute disorder,
where the separation between impurities is much larger than the Fermi wavelength, that
describes the typical extent of an electronic wave packet. In this limit, the interference
between different trajectories is typically accompanied by a large phase factor, which gets
washed out upon taking the ensemble average over disorder. This observation explains
the success of a description in terms of classical particles. On the other hand, there
are interference terms that survive the disorder average and contribute to the ensemble-

6



1.2. Semiclassical theory of quantum transport

Figure 1.2.: Trajectory-based explanations for the different contributions to conductiv-
ity of a disordered metal: Left: Drude conductivity: trajectories are paired.
Middle: Weak localization: trajectories contain a loop that is traversed in
opposite directions. Right: Interaction correction: trajectories interfere upon
scattering at the impurity/Friedel oscillations of the electron density.

averaged electrical conductivity. Such terms rely on the constructive interference of time-
reversed trajectories, which result in an enhanced probability for the electron to return to
a place it had already visited before. This effect in turn is responsible for a reduction of the
conductivity, the weak localization correction (see Fig. 1.2).3 Although weak localization
is typically of small magnitude, it can be observed, as the application of a magnetic
field destroys the interference, and restores the classical value of the conductivity, which
therefore confirms the relevance of quantum effects in electric transport.

Besides weak localization, the quantum behavior of electrons manifests itself also in the
universal conductance fluctuations [Alts 85a, Lee 85], anomalously large sample-to-sample
fluctuations of the conductivity. In the presence of interaction, the value of the conduc-
tivity is additionally influenced by the Altshuler-Aronov correction [Alts 79, Alts 85b].
There exists an intuitive explanation also for the latter effect based on classical trajec-
tories [Rudi 97, Zala 01]: When an impurity is placed in the solid, the charge density
profile of the electrons arranges in an oscillatory fashion around the impurity, known as
Friedel oscillations. In the interacting system, electrons may therefore not only scatter at
the impurity itself but also at the Friedel oscillations created by the other electrons. The
associated quantum interference is responsible for the Altshuler-Aronov correction to the
conductivity (see Fig. 1.2).

Although classical trajectories have been used quite successful to understand the quan-
tum corrections to transport in a weakly disordered system on a qualitative level, we
remark that a quantitative description of those effects, that is solely based on classical
trajectories, is a delicate task. The reason for this is, that the size of an impurity in
typical situations is of the same order as the Fermi wavelength, that sets the extension of
the electronic wave packet. Hence, the electronic wave packet will be scattered by the im-
purity in all directions, and a description, where the electron is following a single classical
trajectory is invalidated after the first scattering event.

Recent advances in modern nanofabrication techniques however allow for the realization
of systems with artificial “large scale impurities”, where the electronic motion is governed

3The effect is called weak localization, as it describes the onset of Anderson localization (or strong
localization), which names the effect that a metal can turn to an insulator for sufficiently strong
disorder.

7



1. Introduction

Figure 1.3.: Trajectories that contribute to weak localization in antidot arrays. Compared
to the case of short-range disorder, they differ by a Lyapunov region (indi-
cated in blue), where the pairing between trajectories is interchanged. The
Lyapunov region is associated with a finite time, the Ehrenfest time τE.

by classical dynamics. Such systems consist of high-mobility semiconductor structures
with an additional array of antidots that is superimposed [Rouk 89, Enss 90]. The high
quality of the semiconductor sample ensures, that electrons move ballistically between
successive reflections off the antidots. Because the size of the antidots is much larger
than the size of the electron wave packet, the antidots can be seen as “classical disorder”,
and a classical description is sufficient for the scattering processes. It is an interesting
question, if quantum effects such as weak localization are also observed in these classical
systems. For the configurations of trajectories responsible for the weak localization, as
shown in Fig. 1.2, it is crucial that impurity scattering is diffractive, as it allows the
two trajectories to “split” and traverse a loop in opposite direction. For an array of
irregularly placed antidots, the classical dynamics is chaotic, and two nearby trajectories
separate exponentially in time, with a rate given by the Lyapunov coefficient. It is the
chaotic dynamics, that allows two initially close trajectories to split up and pair with the
time-reversed partner, see Fig. 1.3. Thus, weak localization also occurs in antidot arrays,
however the “diffraction” of trajectories takes a finite time, set by the so-called Ehrenfest
time τE, that enters as an additional timescale in the problem [Alei 96]. If the Ehrenfest
time is large (in comparison to the dwell time of the electrons in the system), one finds
that the weak localization correction gets strongly suppressed, being completely absent
in the strictly classical limit of infinite Ehrenfest time [Alei 96, Adag 03, Brou 07]. One
may conjecture a similar suppression for all quantum effects in transport through antidot
arrays. Quite surprisingly, it turns out, that the universal conductance fluctuations remain
finite even in the strict classical limit [Twor 04, Jacq 04, Brou 06, Brou 07].
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1.2. Semiclassical theory of quantum transport

1.2.1. Semiclassical theory of the interaction correction

In Chapter 5, we study the interaction correction to the conductivity of systems where the
electronic motion follows classically chaotic dynamics. Of particular interest is the effect
of a finite Ehrenfest time in such systems. A first study of this problem has been carried
out by Brouwer and Kupferschmidt [Brou 08], who investigated interaction corrections
in a ballistic double quantum dot, where particles scatter only at the boundary of the
quantum dot. The double quantum dot constitutes the simplest setup with non-zero
interaction corrections, and is characterized by a long-range interaction, that is constant
within each dot. It was found, that the interaction correction gets stongly suppressed,
when the Ehrenfest time exceeds the dwell time or inverse temperature.

In this thesis, we considerably extend this study and construct the semiclassical theory
of the interaction correction with arbitrary (short-range or long-range) interaction, and
for a generic geometry. In particular, our study allows to treat the experimentally relevant
example of antidot arrays.

The semiclassical approximation amounts to replace electronic propagators as a summa-
tion over all possible classical paths, that connect two points in space. Without interaction,
the conductivity is expressed as a twofold sum over classical trajectories. For the inter-
action correction to the conductivity, one needs to sum over four classical trajectories.
The challenge is to identify the configurations of trajectories that remain after disorder
average, and to calculate their contribution.

Our results show a strong suppression of the interaction corrections for Ehrenfest times
larger than dwell time or inverse temperature, confirming the findings of [Brou 08] also for
the generic case. The sensitivity to temperature is special to the interaction correction,
which has its origin in virtual processes that transfer energies larger than temperature.
For the realistic case of Coulomb interaction, one has a competition between Hartree and
Fock type contribution to the interaction correction (note that the Hartree contribution
is absent for the double quantum dot). Interestingly, we will show, that this competition
can lead to a sign change of the interaction correction as a function of Ehrenfest time.

1.2.2. Semiclassical theory of quantum corrections in graphene

While semiclassical methods are successfully applied for the calculation of quantum cor-
rections in semiconductor structures with classical disorder, it is a natural task to extend
these methods to describe quantum corrections to transport in graphene samples, which
will be the goal of Chapter 6. The applicability of semiclassical methods is restricted to
systems with “macroscopic disorder”, such as antidot arrays, where the disorder is smooth
on the scale of the size of an electronic wavepacket. Besides antidot arrays, such regime
can be reached in graphene samples that are placed on a substrate with high dielectric
constant, such that impurities from the substrate are strongly screened, and electrons in
graphene traverse a smooth disorder potential. Additionally, we require the Fermi level
to lie well above or below the Dirac point, so that the electronic wavelength is sufficiently
small. (We assume the Fermi level close enough to the Dirac point however, that the
approximation of the linear dispersion is still valid).

The properties of graphene that is doped away from the Dirac point resemble more
and more those of a metal, as the density of states is finite. However, some graphene-
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1. Introduction

specific physics remains also in this regime. The reason for this lies in the pseudospin
degree of freedom, that is strongly coupled to orbital degrees of freedom. The presence of
the pseudospin also calls for an extension of the semiclassical methods typically applied
in systems where the spin degree of freedom plays no role. A semiclassical propagator
for graphene has been derived by Carmier and Ullmo [Carm 08]. A crucial observation
is that during the electronic propagation the pseudospin can be reconstructed along the
classical trajectories, where it remains aligned with the momentum. Associated with the
transport of the pseudospin along the trajectory is an additional phase in the semiclassical
propagator, which equals the Berry phase known from spin transport.

In the past, semiclassical methods have been used to describe the effect of a finite Ehren-
fest time for quantum effects in transport such as weak localization, Altshuler-Aronov cor-
rection and dephasing in conventional metals, where the spin degree of freedom is unim-
portant. On the other hand, the quantum corrections have been derived for graphene
subject to “quantum disorder”, where the Ehrenfest time is zero. In this thesis, we will
extend those works, and derive the quantum corrections to transport in graphene from a
semiclassical point of view, being able to include the effect of a finite Ehrenfest time. Spe-
cial attention is payed to the existence of the pseudospin, that is responsible for a change
from weak localization to weak antilocalization in graphene, i.e. the conductivity is en-
hanced compared to its classical value, and furthermore affects the effective interaction
strength that enters the interaction-induced corrections in graphene.

1.3. Outline of the thesis

We now outline the structure of this thesis. In Chapter 2 we introduce the reader to
graphene and its special properties. Turning to the results of this thesis, we consider
the possibility of electrostatic confinement in graphene, where we investigate the role
of geometry (regular vs. chaotic) in Chapter 3. We then explore the role of the Berry
phase for possible confinement in Chapter 4. In Chapter 5, we turn to the semiclassical
theory of quantum transport, where we study the effect of a finite Ehrenfest time for the
interaction correction. In Chapter 6, we consider the quantum corrections in graphene
from a semiclassical point of view. We conclude our results and draw an outline for
possible future research directions in Chapter 7.
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2. Electronic properties of graphene

In this chapter, we give an introduction to the electronic properties of graphene. At the
heart of all peculiar properties of graphene is the quasirelativistic bandstructure, implying
that electrons that move in the two-dimensional carbon lattice behave as relativistic par-
ticles, although with an effective speed of light that is about 300 times smaller than the
real speed of light. The analogy to relativistic quantum dynamics extends even beyond
the linear spectrum, as the low-energy description for electrons in graphene is governed by
the massless Dirac equation in 2+1 dimensions, where the “spin” degrees of freedom arise
from the sublattice structure of the honeycomb lattice. The remarkable bandstructure of
graphene will be introduced in Sec. 2.1.

The quasirelativistic bandstructure leads to many surprising and unconventional effects.
As an illustration, we discuss the unusual Landau level quantization, that occurs when
graphene is placed in a magnetic field (Sec. 2.2), and the implications on quantum tunnel-
ing (Sec. 2.3). Finally, we will show how to calculate the electric conductance for a clean
graphene sample (Sec. 2.4). In this chapter, we only cover a narrow selection of the in-
teresting electronic properties of graphene. We therefore refer the reader to the literature
for a more comprehensive overview [Geim 07, Cast 09, Geim 09, Been 08, Das 11].

2.1. The bandstructure of graphene

Graphene is the name given to a two-dimensional material made out of carbon atoms,
that are arranged in a hexagonal lattice (see Fig. 2.1). The binding between the carbon
atoms is due to the sp2–hybridization between one s-orbital and two p-orbitals, which
form a σ-bond that binds the carbon atoms at a distance of a = 1.42Å, and determines
the unique mechanical properties. The remaining pz-orbital is pointing perpendicular to
the graphene plane. The electrons from these orbitals form a π-band, in turn responsible
for the electronic properties of graphene. Since each carbon atom contributes one electron
to the π-band, this π-band is half-filled for pristine graphene.

The first calculation of the bandstructure of graphene dates back to [Wall 47]. As
the pz-orbitals of different atoms are only weakly overlapping, a description in terms of
the “tight-binding approximation” is appropriate, where terms of the Hamiltonian, which
couple electrons that are more than one atom apart, are neglected. The crucial aspect of
the honeycomb lattice is, that it does not satisfy the requirements for a Bravais lattice,
but it rather consists of two sublattices A and B, as depicted in Fig. 2.1. We therefore
make the following ansatz for the Bloch wavefunction

Ψk(r) = ψA(k)
∑
RA

eikRAφ(r−RA) + ψB(k)
∑
RB

eikRBφ(r−RB), (2.1)
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2. Electronic properties of graphene

Figure 2.1.: The graphene honeycomb lattice is built from two triangular sublattices A
(blue) and B (red).

where the summation extends over the lattice vectors of sublattice A/B, and φ(r) denotes
the wavefunction of the pz-orbital, which is symmetric under rotation around the z-axis.
The ansatz involves the two coefficients ψA/B(k), which describe the amplitude of an
electron to occupy sublattice A or B. After multiplication of the Schrödinger equation
for the Bloch state, HΨk(r) = εkΨk(r), by φ(r − RA) (φ(r − RB)) and subsequent
integration over the position r, we can reformulate the problem as an equation for the
coefficients ψA,B(k). After some calculation, one obtains1(

0 t
∑

i e
−ikδi

t
∑

i e
ikδi 0

)(
ψA(k)
ψB(k)

)
= εk

(
ψA(k)
ψB(k)

)
. (2.2)

The lattice Hamiltonian H contributes only the single parameter

t =

∫
drφ(r−RA)Hφ(r−RA + δ1) (2.3)

to the tight-binding description, where RA is an arbitrarily chosen lattice vector of sub-
lattice A, while the lattice structure enters in the summation of the three vectors δ1 =
(−a, 0), δ2 = (a/2,

√
3a/2), and δ3 = (a/2,−

√
3a/2) that connect neighboring atoms, see

Fig. 2.1.
In the notation of Eq. (2.2), the coefficients ψA/B, that describe the occupation of the

different sublattices, are arranged to a spinor. Since this structure is completely unrelated
to the physical spin, one terms it pseudospin. From Eq. (2.2), we directly obtain the
dispersion of the two tight-binding bands,

εk = ±t

∣∣∣∣∣∑
i

eikδi

∣∣∣∣∣ , (2.4)

which is shown in Fig. 2.2.

1For the calculation, we neglected overlap-integrals consisting of orbitals that are more than one atom
apart. Furthermore, we used the fact that the Hamiltonian shares the symmetry of the underlying
lattice, and redefined the zero of energy.

12



2.1. The bandstructure of graphene

Figure 2.2.: Bandstructure of graphene: Valence and conduction band touch each other
at the corners of the Brillouin zone. Around the touching points, the spetrum
has a conical shape.

Quite remarkably, unlike in conventional two-dimensional systems, the set of k-values
which correspond to zero energy does not form a Fermi line, but rather consists of isolated
Fermi points. These Fermi points are located at the corners of the hexagonal Brillouin
zone of the reciprocal lattice. There are two inequivalent corners of the Brillouin zone,
located at

K± = ± 2π

3
√

3a

( √
3

1

)
. (2.5)

These points are also called Dirac points, for reasons that we will discuss now.
The low-energy physics of graphene is happening close to the Dirac points, i.e. at

wavevectors K± + k, with |k| � |K±| (Note that we redefine k to be counted from
the Dirac point henceforth). If we linearize in k around the Dirac point K+, we find∑

i

ei(K++k)δi ' 3a

2
eiφ(kx + iky), (2.6)

with some phase φ, that can be absorbed by a redefinition of the amplitudes ψA/B. We
hence obtain for the effective low-energy description

H

(
ψA
ψB

)
= ε

(
ψA
ψB

)
, H = ~v

(
0 kx − iky

kx + iky 0

)
≡ ~vk · σ, (2.7)

where the velocity v = 3at/2~ ≈ 106m/s, and σ = (σx, σy) names the Pauli matrices,
that act on pseudospin (i.e. sublattice) space. The low-energy description of graphene is
therefore equivalent to the massless Dirac equation in 2 + 1 dimensions, with an effective
speed of light, that is roughly 300 times smaller than the real speed of light. The spectrum
around the Dirac points is linear,

εs,k = s~v|k|. (2.8)

Here, s = ±1 refers to the conduction and valence band, respectively. A similar description
applies for electrons located close to the Dirac point K−. We remark, that a full description
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2. Electronic properties of graphene

of the low energy physics takes into account electrons that reside close to either of the
two Dirac points. Potential disorder may in principle allow for scattering of the electrons
between the two cones, however only if it transfers a momentum of the order of |K±|. In
this thesis, we only consider disorder that is smooth on the scale of the lattice constant,
such that a description in terms of a single Dirac cone is sufficient.

We now list some properties of the Dirac equation, that are important for later use.
The plane-wave solutions of the Dirac equation read

ψs,k =
1√
2V

eikr
(

1
seiθk

)
, (2.9)

where V is the area of the sample, and θk is the direction of the wavevector. The plane-
wave solutions are eigenstates of the helicity operator,

h =
k · σ
|k|

, (2.10)

with eigenvalues +1 (−1) for electrons in the conduction (valence) band. This means, that
the pseudospin is strongly coupled to the orbital degrees of freedom, as it points in the
same (opposite) direction as the momentum of the particle, a property which is termed
chirality.

Electrons described by the Dirac Hamiltonian satisfy a continuity equation

∂tρ+∇ · j = 0 (2.11)

where the probability density ρ and the associated current j are given by

ρ = ψ†ψ, j = vψ†σψ. (2.12)

We remark that the velocity operator in graphene reads v = vσ, and does not depend on
momentum, unlike for a parabolic dispersion.

In contrast to conventional two-dimensional systems, the density of states (per spin and
valley) has a linear dependence on energy,

ν(ε) =
|ε|

2π(~v)2
. (2.13)

In particular, the density of states vanishes, as the system is tuned to the Dirac point.

2.2. Graphene in a magnetic field

As a first demonstration of the unconventional properties of graphene that root in the
peculiar bandstructure, we consider the effect of a constant magnetic field. It is well
known, that a strong magnetic field applied to a two-dimensional electron gas gives rise to
well-defined quantized energies, the so-called Landau levels [Land 77], that are observed
in magnetotransport experiments. We will see that the series of Landau levels in graphene
differs crucially from the one observed in conventional semiconductor heterostructures.
The standard calculation of the Landau levels proceeds by adding the vector potential
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2.2. Graphene in a magnetic field

A for a constant magnetic field to the Hamiltonian and solve the quantum-mechanical
problem by mapping it to a harmonic oscillator. We here take an alternative approach
and use semiclassical arguments to determine the Landau levels, in the spirit of [Carm 08].

As a warmup, and to get confident with the semiclassical description, we start with
the calculation of the Landau levels for a conventional two-dimensional electron gas with
parabolic dispersion. The classical Hamilton function reads

H(p, r) =
(p + eA(r))2

2m
, (2.14)

where e is the electron charge, and m is the effective mass. One proceeds by deriving the
equations of motion,

ṙ =
∂H

∂p
, ṗ = −∂H

∂r
(2.15)

which yield the familiar Lorentz force

mr̈ = −eṙ×B, (2.16)

with the magnetic field B = ∇ × A. The classical velocity is related to the canonical
momentum as

ṙ =
1

m
(p + eA) . (2.17)

The solution of these classical equations describes a cyclotronic motion of the electrons,

r = r0 +

(
R cosωct
R sinωct

)
, (2.18)

where the radius and the frequency are given by

ωc =
eB

m
, E =

1

2
mω2

cR
2. (2.19)

Next, we now employ semiclassical quantization conditions,2∮
pdr = h

(
n+

1

2

)
, (2.20)

where the contour integral extends over a single classical orbit, whose duration we denote
by T = 2π/ωc. We proceed by manipulating the left-hand side of this equation,∮

pdr =

∮
(p + eA)ṙdt− e

∮
Adr = 2ET − eBπR2 = E

2π

ωc
(2.21)

where we used Stokes’ theorem as well as Eq. (2.19). Indeed, we find the familiar Landau
level quantization for a two-dimensional electron gas with parabolic dispersion.

E = ~ωc
(
n+

1

2

)
. (2.22)

2The shift by 1
2

in the quantization condition is related to a so-called Maslov index, that appears in
semiclassical theories, when the trajectories have caustics (turning points) [Gutz 90, Carm 08].
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2. Electronic properties of graphene

Let us now turn to the Landau levels for graphene. The calculation has to be modified,
as the spectrum is now linear,

H(p, r) = v |p + eA(r)| , (2.23)

where, for simplicity, we consider electrons from the conduction band. The velocity is no
longer related to the magnitude of the momentum, but rather only to its direction, with
a fixed magnitude v,

ṙ = v
p + eA

|p + eA|
=
v2

E
(p + eA) . (2.24)

The Lorentz force equation now reads

v2

E
r̈ = −eṙ×B. (2.25)

The equations of motion in graphene are hence obtained from the non-relativistic ones,
if one replaces the mass using the famous relation E = mc2, where the speed of light is
replaced by v.

Like in the non-relativistic case, electrons perform cyclotronic motion in a magnetic
field, but the radius and the frequency are now fixed by the equations

ωc =
v2eB

E
, v = Rωc. (2.26)

Sofar we only considered the effect of the relativistic dispersion. For an accurate descrip-
tion of the Landau levels however, we also have to reconcile the effect of the pseudospin.
As discussed in the previous section, electrons in graphene behave as chiral particles, and
they take their pseudospin with them during their motion, pointing along the momen-
tum. As the electron performs a cyclotronic motion, the pseudospin winds once around
its axis. It is known from the quantummechanical theory of angular momentum, that a
2π-rotation of a spin leads to a π-phaseshift in the wavefunction, that has to be included
in the quantization condition, i.e. the action integral equals now an integer multiple of
the Planck constant ∮

pdr = nh. (2.27)

When we evaluate the left-hand side of this equation, we now obtain∮
pdr =

∮
(p + eA)ṙdt− e

∮
Adr = ET − eBπR2 =

πE2

v2eB
. (2.28)

We then find for the quantized energies

E = ±
√

2n~v2eB, (2.29)

where we included the ± in the final result, in order to account for conduction and valence
band. One would expect, that classical arguments supply us with good results at high
energies. Quite remarkably, we obtain the correct quantum result for all the Landau levels.
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2.2. Graphene in a magnetic field

Figure 2.3.: Measurement of the Hall conductivity σxy and the transversal resistivity ρxx
for a graphene sample exposed to a magnetic field of 14T . The plateaus of
the Hall conductivity demonstrate the half-integer quantization of the Landau
levels in graphene. (Figure taken from [Novo 05].)

In fact, this can be understood, as the problem maps to that of a harmonic oscillator, a
special kind of situation, where semiclassical quantization turns out to be exact.

Notably, we find the existence of a Landau level at zero energy in graphene, which
appears as a consequence of the modified quantization condition (2.27) that arises due to
the Berry phase. Thus, the existence of this zero-energy Landau level is intimately linked
to the chiral nature of charge carriers in graphene. The Landau levels can be probed
experimentally in a Hall bar measurement. For strong magnetic fields, the transverse
conductance σxy as a function of energy (or density) shows plateaus with quantized values
of e2/h times the number of filled Landau levels. The existence of a Landau level at zero
energy is special in that respect, as it is shared by valence and conduction band. In fact,
this leads to quantized values of the transverse conductance at half-integer steps,

σxy = 4
e2

h

(
n+

1

2

)
, (2.30)

where a factor 4 accounts for spin and valley degeneracy, so that the transverse con-
ductance is an integer multiple of e2/h. The experimental verification of this half-integer
quantization directly proved the relativistic nature of charge carriers in graphene [Novo 05,
Zhan 05], see Fig. 2.3. Quite remarkably, due to the high mobility of the graphene samples,
the quantum Hall effect in graphene can be observed at room temperature.
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2. Electronic properties of graphene

Figure 2.4.: Left: Schematic picture of a Dirac particle moving in a rectangular potential
Right: Perfect transmission at normal incidence: The plot shows the Dirac
spectrum for ky = 0, which consists of two branches for right- and leftmoving
states (red and blue). The dotted line indicates the Fermi level. Black arrows
indicate the direction of the pseudospin, which points parallel (antiparallel) to
the momentum in the conduction (valence band). The spinor of a rightmoving
electron matches perfect the spinor of a rightmoving hole, so the electron is
perfectly transmitted through the hole-doped region.

2.3. Klein tunneling

A striking manifestation of the wavenature of quantum particles is the effect, that quan-
tum particles can penetrate classical forbidden areas, known as quantum tunneling. The
transmission probability for this process decays exponentially with increasing height V0

of the potential barrier. In 1929, Oskar Klein studied quantum tunneling for relativis-
tic particles, and surprisingly found that the tunneling probability becomes large again,
once the potential height exceeds the electron’s rest mass, V0 > 2mc2. This at first sight
counterintuitive seeming effect can be explained with the fact that the Dirac equation
allows for solutions at negative energies. Thus, while the barrier constitutes a forbidden
region for positive energy states (electrons), it allows for the existence of negative energy
states (positrons). Although Klein tunneling is a striking feature of relativistic quantum
electrodynamic, it is of little practicle relevance for electrons, as the preparation of such
potential step requires gigantic electric fields. Relativistic quantum tunneling however has
important consequences for the electronic properties of graphene.

We now discuss scattering processes in graphene in a rectangular potential barrier, where
we follow [Cast 09]. To be specific, we consider a potential barrier of height V0 present in
the strip 0 < x < L. The incident particle has energy E and approaches the barrier from
the left under the angle φ. In the region I, left from the barrier, the wavefunction can be
written as a sum of incident and reflected plane wave (see Eq. (2.9))

ψI(r) =
1√
2

(
1
seiφ

)
ei(kxx+kyy) + r

1√
2

(
1

sei(π−φ)

)
ei(−kxx+kyy) (2.31)

where s = sgn(E), kF = E/s~v, kx = kF cosφ, and ky = kF sinφ. For the reflected part
(which contains the coefficient r), we note that the barrier inverts kx but conserves ky,
such that the propagation angle becomes φr = π − φ.

18



2.3. Klein tunneling

In the barrier region (II), the wavefunction is of the form

ψII(r) = a
1√
2

(
1

s′eiφ
′

)
ei(k

′
xx+kyy) + b

1√
2

(
1

s′ei(π−φ
′)

)
ei(−k

′
xx+kyy) (2.32)

with s′ = sgn(E−V0). Again, the barrier does not alter the y-component of the momentum
– the x-component is then fixed by the dispersion,

E − V0 = s′~v
√
k′x

2 + k2
y, (2.33)

and the angle of propagation is given by φ′ = arctan ky/k
′
x. (We assume here, that the

parameters are tuned in such a way, that the incident state can propagate through the
barrier, i.e. Eq. (2.33) can be solved for real k′x. The opposite case will be discussed later
on).

Finally, in the region right of the barrier (III), the wavefunction reads

ψIII(r) = t
1√
2

(
1
seiφ

)
ei(kxx+kyy). (2.34)

The four coefficients r, a, b, t need to be determined from matching conditions. As the
Dirac equation is linear in the momentum operator, the wavefunction needs to be contin-
uous at the potential steps at x = 0 and x = L, but no restriction on the derivative of the
wavefunction is imposed (unlike for non-relativistic particles with parabolic dispersion).
However, as we have to match both components of the spinor at the interfaces, we obtain
four equations that determine all the coefficients. We are interested in the transmission,
which is found to be [Cast 09]

T = |t|2 =
cos2 φ′ cos2 φ

cos2 k′xL cos2 φ′ cos2 φ+ sin2 k′xL(1− ss′ sinφ sinφ′)2
. (2.35)

We note, that k′x also has a dependence on the angle φ. The angle-dependence of the
transmission is illustrated in Fig. 2.5

We now investigate, for which parameters the barrier becomes fully transparent, i.e.
T = 1. We see, that this is the case, whenever k′xL = nπ, with integer n. This condition
precisely accounts for resonant scattering, as the phase that a particle accumulates, while
it traverses the barrier forth and back, is a multiple of 2π. Such resonant scattering is well-
known also from non-relativistic scattering processes. On the other hand, we find perfect
transmission also for normal incidence (φ = φ′ = 0) independent of length and height of
the potential barrier. Such effect is in striking contrast to what one is experienced from
non-relativistic scattering processes. Indeed, the perfect transmission at normal incidence
is a direct consequence of the chiral nature of charge carriers: Incident and reflected wave
have opposite pseudospin for normal incidence; the potential barrier however conserves
spin, hence no particle can be reflected. We remark, that this effect holds true even if
the charge carriers in the barrier are of hole-type, while they are of electron-type outside
the barrier. In this case, a normally incident electron is propagating as a hole within the
barrier with 100 % efficiency, see also Fig. 2.4
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2. Electronic properties of graphene

Figure 2.5.: Transmission T of the rectangular barrier as a function of the incident angle φ.
Left: Rectangular barrier is hole-doped while the outside regions are electron-
doped, with the same carrier concentration (V0 = 2E). Perfect transmission is
observed at normal incidence, and – depending on the parameters – at certain
finite angles, the latter corresponding to resonant tunneling (blue solid curve:
kFL = 1, red dashed curve: kFL = 5). Right: Barrier is tuned to the Dirac
point (V0 = E). Perfect transmission is always observed at normal incidence,
but the transmission rapidly goes to zero away from normal incidence, as the
length of the barrier is increased (blue solid curve: kFL = 1, red dashed curve:
kFL = 2, green dotted curve: kFL = 10).

For the discussion sofar, we assumed a situation where the incident state can propagate
through the barrier. Now we also want to illustrate the opposite case. For simplicity, we
consider the extreme case V0 = E, which tunes the barrier region at the Dirac point. Then,
Eq. (2.33) allows for propagating states (real k′x) only for normal incidence. Otherwise,
the dispersion relation can only be satisfied for imaginary k′x = ±iky. The states in the
barrier region are hence evanescent waves, ψ±(r) = χ±e

±kyx+ikyy, where the spinors χ±
are determined by the Dirac equation at zero energy, σ ·∇ψ±(r) = 0. We then find, that
the wavefunction in the barrier region is

ψII(r) = a

(
1
0

)
e(kyx+ikyy) + b

(
0
1

)
e(−kyx+ikyy). (2.36)

We then obtain for the transmission through the barrier

T =
2 cos2 φ

cos 2φ+ cosh 2kyL
=

2 cos2 φ

cos 2φ+ cosh (2kFL sinφ)
. (2.37)

Again, we find perfect transmission at normal incidence, as a consequence of the chiral-
ity of the charge carriers. The transmission however quickly drops to zero away from
perpendicular incidence for long barriers, see Fig. 2.5.

2.4. Transport in clean graphene

Finally, we also want to study electric transport in clean graphene. To this end, we first
introduce the Landauer-Büttiker formalism and then apply it to transport in graphene.
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2.4. Transport in clean graphene

2.4.1. Landauer-Büttiker formalism

Transport in mesoscopic system is successfully described with the Landauer-Büttiker for-
malism. We consider a sample that is connected to two electron reservoirs, denoted left
(L) and right (R). The Landauer formula links the conductance of the sample to its scat-
tering matrix, more precisely to the information how well the sample allows for electrons
to be transmitted from one lead to the other. We here briefly sketch the main ideas of the
Landauer formula und refer to the literature for a detailed derivation (e.g. [Datt 95]).

We first consider the case of a perfect one-dimensional conductor. Left and right lead
are kept at different chemical potentials, µL and µR. The occupation probability for the
electrons of the lead to be in a state at a certain energy is given by the Fermi-Dirac
distribution, which reads at zero temperature

fi(ε) =

{
1, ε < µi

0, ε > µi
, (2.38)

for i = L,R. For a perfect conductor, where electrons are not backscattered, all right-
moving (left-moving) electrons in the conductor originate from the left (right) lead, con-
stituting a current

I =

∫ ∞
0

dk

2π
evkfL(εk) +

∫ 0

−∞

dk

2π
evkfR(εk), (2.39)

where k labels the wavenumber of the one-dimensional quantum states, and εk and vk is
the associated velocity. Upon using vk = 1

~
dεk
dk , we rewrite this expression as

I = e

∫
dε

2π~
[fL(ε)− fR(ε)] =

e

h
(µL − µR), (2.40)

where we made use of the xplicit distribution function Eq. (2.38). With the definition of
the voltage V = (µL − µR)/e, we find for the conductance of a perfect one-dimensional
conductor G0 = I/V ,

G0 =
e2

h
, (2.41)

which we refer to as “conductance quantum” and whose reciprocal value corresponds to
a resistance of 25.8 kΩ. We note that the conductance for the perfect one-dimensional
conductor results from the net charge transport of electrons impringing from left and right
lead. When the conductor is not perfect, electrons might be scattered back to the leads.
It is then only the fraction T of electrons transmitted from on lead to the other, that
contributes to the current

G =
e2

h
T. (2.42)

While the discussion so far applied for a strictly one-dimensional systems, it may be
easily generalized to higher dimensions, where the states in the leads are characterized
by an additional quantum number n resulting from the wavefunction for the transverse
coordinates. These transverse degrees of freedom are also referred to as modes or channels,
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2. Electronic properties of graphene

and for the Landauer conductance, one needs to sum the transmission from all the channels
in the left lead to all the channels in the right lead,

G =
e2

h

∑
nm

|tnm|2 =
e2

h
Tr(tt†). (2.43)

Here tnm is the transmission amplitude for a particle starting from mode m in the left
lead to end up in the mode n in the right lead, while t denotes the corresponding matrix.

2.4.2. Conductance of a clean graphene sample

With the help of the Landauer-Büttiker formalism, we are now in the position to calculate
the conductance of a clean graphene sheet, following the calculation presented in [Twor 06].
Our setup consists of a rectangular graphene sample of dimensions L ×W , which is in
contact to metallic leads at x = 0 and x = L, which strongly dope the graphene region
under it. The Hamiltonian reads

H = vp · σ + V (x) (2.44)

where V (x) models the potential induced by the leads

V (x) =

{
VL, x < 0 or x > L

0, 0 < x < L
(2.45)

In principle, electronic transport in graphene nanonibbons can be very sensitive to the
boundary conditions, i.e. if the edges are of armchair or zigzag type. We here avoid
these issues by considering a very wide sample W � L, so that boundary effects do not
influence the value of the conductance. We then can choose periodic boundary conditions,
for which the calculation is most simple: As the system is translationally invariant in the
y-direction, the wavefunctions are of the form

Ψn(x, y) = ψn(x)
1√
W
eiqny (2.46)

with the quantized transverse momenta

qn = n
2π

W
(2.47)

where n is an integer number. We then solve the Dirac equation for each transverse mode
in each of the three regions left lead (L), central region (C) and right lead (R). For the
scattering state of a particle impringing from the left lead, we write

ψ(L)
n (x) = χn,kLe

ikLx + rnχn,−kLe
−ikLx

ψ(C)
n (x) = αnχn,−ke

ikx + βnχn,−ke
−ikx

ψ(R)
n (x) = tnχn,kLe

ikLx, (2.48)

22



2.4. Transport in clean graphene

with coefficients rn, tn, αn, βn Here, the wavenumbers k and kL are found from the rela-
tivistic dispersion

k =
√

(ε/~v)2 − q2
n (2.49)

kL =

√(
ε− VL

~v

)2

− q2
n, (2.50)

where ε denotes the energy of the electrons in graphene. The wavenumber k in the sample
may be real or imaginary, discriminating oscillatory and evanescent modes. In the leads,
we only account for propagating modes. The spinor structure of the solution reads

χn,k =
1√
2

(
1

szn,k

)
, zn,k =

k + iqn√
k2 + q2

n

(2.51)

where s = ± refers to conduction/valence band. This expression for the spinor is valid for
both real and imaginary k. For real k, we have zn,k = eiθ, where θ is the polar angle of the
wavevector (k, qn), which gives the well-known expression from Eq. (2.9). We consider the
limit of highly doped leads, VL → −∞, so that the spinors in the leads have a particular
simple form

χn,±kL =
1√
2

(
1
±1

)
. (2.52)

We can easily interpret these results, as for fixed qn and VL → −∞ the electrons are
mainly moving in the x-direction in the leads, and thus the spinors are eigenstates of the
σx Pauli matrix.

The next step is to connect the wavefunctions at the lead-sample interfaces x = 0 and
x = L. As discussed in the previous Section, we demand the wavefunction to be continuous
at the interfaces, but we pose no restriction on the derivative. One then obtains for the
transmission

Tn = |tn|2 =

∣∣∣∣∣ k

k cos kL+ i
√
k2 + q2

n sin kL

∣∣∣∣∣
2

. (2.53)

Having determined the transmission for each channel, we can calculate the Landauer
conductance

G = 4
e2

h

∑
n

Tn, (2.54)

where a factor 4 accounts for the spin and valley degeneracy in graphene. In the short-
and-wide limit W � L, the summation over transverse momenta can be replaced by an
integration ∑

n

→ W

2π

∫
dq (2.55)

The conductance for a short-and-wide sample as a function of energy is shown in Fig.
2.6. If we tune the energy of the charge carriers in the sample to zero, transport is mediated
by evanescent modes,

Tn =
1

cosh2 qnL
. (2.56)
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2. Electronic properties of graphene

Figure 2.6.: Conductance of an undoped graphene sheet, as a function of energy.

Nevertheless, the conductivity acquires a finite value,

G =
4

π

e2

h

W

L
⇔ σ =

4

π

e2

h
. (2.57)

As one increases the energy in the sample, more and more modes can propagate through
the sample, and the conductance increases roughly linear with energy.
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3. Resonant scattering in graphene with a
gate-defined chaotic quantum dot

The successful production of high-quality nanoflakes together with the strictly two-dimen-
sional nature of the material have made graphene to a promising candidate for future
nanoelectronic devices. Of particular interest is the realization of quantum dots, where
electrons are confined locally in a narrow region of the graphene sample. A well-established
experimental route in the fabrication of quantum dots utilizes metallic gates nearby the
sample, that repel electrons from regions outside the quantum dot. Such procedure how-
ever is problematic for graphene, in view of the Klein tunneling, that allows the electrons
to escape the quantum dot, as we discussed in the previous chapter.

Recently, Bardarson, Titov and Brouwer argued that there is an exception to this state-
ment, and for geometries, for which the Dirac equation is separable, confinement with the
help of metal gates should be possible [Bard 09]. Their study was supplemented by a nu-
merical simulation of transport, where the graphene sheet containing the quantum dot, is
attached to source and drain contacts. The interesting limit, where the dot is only weakly
coupled to the leads, was however not accessible with the applied numerical method. The
purpose of this chapter is to study the geometry-dependence of gate-defined quantum dots
in graphene, where we gain new insights by applying a recently developed method from
Ref. [Tito 10].

This chapter is structured as follows: After an introduction, we briefly summarize the
main findings of [Bard 09] in Section 3.2. In Section 3.3, we then explain how the method
of [Tito 10] can be used to study gate-defined quantum dots of arbitrary geometries in
graphene. Our results are presented in Section 3.4. We conclude in section 3.5. The Secs.
3.1, 3.3 – 3.5 of this chapter are based on the publication [Schn 11].

3.1. Introduction

There are two commonly used routes in the fabrication of quantum dots, which create a
spatial confinement of the electrons. One way is to mechanically carve out nanostructures
(“etched quantum dots”). The other possibility relies on metallic gates, which can create
forbidden regions for the electrons, when the Fermi level is shifted in the bandgap of the
nanosystem. Due to the absence of a bandgap in graphene, experimentalists pursue the
first possibility for the fabrication of graphene quantum dots [Bunc 05, Pono 08, Stam 08,
Schn 09, Gutt 12, Jaco 12].

In a recent article [Bard 09], Bardarson, Titov and Brouwer showed that the common
assertion, that it is not possible to confine electrons in graphene with metal gates, can
be circumvented in certain cases. In their article, they considered a quantum dot that is
surrounded by undoped graphene. As the density of states vanishes, when the Fermi level
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3. Resonant scattering in graphene with a gate-defined chaotic quantum dot

is tuned to the Dirac point, such scenario comes closest to the “formation of a bandgap”
in graphene. We learned in the previous chapter, that Klein tunneling opens a way to
penetrate the surrounding. However, Klein tunneling is only effective when the electron
hits the surface of the quantum dot at perpendicular incidence, while the transmission
probability quickly drops to zero away from perpendicular incidence. The authors of
Ref. [Bard 09] therefore argued, that confinement should be possible in graphene, when
the geometry is such, that the Dirac equation is separable, and the associated classical
motion is integrable. An example for such a geometry is a disc-shaped dot with a uniform
potential inside the disc. Generic classical trajectories in this geometry will never hit the
surface at perpendicular incidence, which renders Klein tunneling ineffective. On the other
hand, in a geometry with classical chaotic dynamics, every electron eventually the surface
at perpendicular incidence, and the quantum dot lacks confinement (see also Fig. 1.1 of
Chapter 1).

To further investigate this reasoning based on classical arguments, the authors of Ref.
[Bard 09] numerically simulated the two-terminal transport, when the quantum dot sur-
rounded by undoped graphene is attached to source and drain contacts, see Fig. 3.1.
Bound states of the quantum dot are then revealed as resonances in the two-terminal
conductance. For a circular geometry, the authors indeed found a series of sharp reso-
nances, corresponding to well-confined quantum states, while for a stadium geometry, the
resonances are typically broader, indicating a lack of confinement. The difference between
integrable quantum dots and non-integrable quantum dots becomes most pronounced in
the limit that the distance L between the two metallic contacts becomes large, in compar-
ison to the size of the quantum dot. However, a detailed investigation of this limit was
not possible in Ref. [Bard 09] because of limitations of the numerical approach required
to study the non-integrable case.

In the mean time, the problem of gate-defined quantum dots in graphene has been
revisited by Titov, Ostrovsky, Gornyi, Schuessler, and Mirlin [Tito 10]. These authors
adapted the matrix Green function method, originally developed by Nazarov in the context
of mesoscopic superconductivity [Naza 94], to two-terminal transport in graphene. One
of their main results is a relation between the two-terminal conductance of a rectangular
graphene sheet containing an arbitrary “scatterer” and the scatterer’s T -matrix. A gate-
defined quantum dot is a special case of such a scatterer. Using this method, Titov et
al. were able to give an analytic expression for the conductance of an otherwise undoped
graphene sheet with a disc-shaped quantum dot, reproducing the numerically obtained
conductance of Bardarson et al. [Bard 09].

In this chapter, we want to find out what information the matrix Green function method
makes available if we consider undoped graphene with a non-separable quantum dot. This
requires a numerical calculation of the T matrix, since no analytical results are available
for a quantum dot for which the Dirac equation is not separable. We here show that the
numerical evaluation of the T matrix can be done very efficiently and that the remaining
steps in the matrix Green function formalism can still be carried out analytically. In
particular, once the T matrix of the quantum dot is known, the L dependence of the
conductance resonances can be found without additional numerical effort. This allows us
to obtain information about the constitution of the resonances deep into the regime in
which resonances are separated, which could not be addressed with the generic numerical
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3.2. Electrostatic confinement in a gate-defined graphene quantum dot

Figure 3.1.: Geometry of the two-terminal transport setup: A rectangular sample of
graphene of dimensions L×W , that contains a quantum dot of size R.

algorithm used in Ref. [Bard 09]. We apply the formalism to a stadium-shaped quantum
dot. Our main result is that the resonance lineshapes are described by the Fano resonance
formula in the case of the stadium-shaped (i.e., non-separable) quantum dot, while they
are Breit-Wigner resonances for the disc-shaped dot.

3.2. Electrostatic confinement in a gate-defined graphene
quantum dot

Before we enter the presentation of our results, we give a brief summary of the main
findings of Ref. [Bard 09], in order to keep the thesis self-contained.

3.2.1. Bound states of a circular quantum dot

We start by considering a circular quantum dot in a graphene sheet. For this situation,
an analytic calculation of the resonant levels is possible. We thus study the Hamiltonian

H = vp · σ + V (r), (3.1)

where the gate potential V (r) accounts for the circular quantum dot of radius R,

V (r) =

{
−~vV0, r < R

0, r > R,
(3.2)

The constant V0 has the dimension of inverse length and we choose V0 > 0, so that the
quantum dot is electron doped. Although the potential V (r) is steplike in our description,
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3. Resonant scattering in graphene with a gate-defined chaotic quantum dot

we remark, that this step is required to be smooth on the scale of the lattice constant, so
that a description in terms of a single Dirac point is justified.

The radial symmetry of the problem facilitates a solution in polar coordinates (r, θ), for
which the kinetic part of the Hamiltonian is found to be

vp · σ = −i~v
(

0 ∂−
∂+ 0

)
, (3.3)

with the operators

∂± = e±iθ
(
∂r ±

i

r
∂θ

)
. (3.4)

The radial symmetry furthermore suggests to look for common eigenstates of the Hamilto-
nian and the angular momentum operator. As the kinetic part strongly couples orbital and
pseudospin degrees of freedom, neither orbital angular momentum, nor pseudospin alone
is conserved. What is conserved however, is the total angular momentum jz = lz + ~

2σz.
We therefore seek for eigenstates of the form

ψm(r) = eimθ

(
e−i

θ
2ϕm,+(r)

ei
θ
2ϕm,−(r)

)
(3.5)

which are eigenstates of the total angular momentum jzψm = m~ψm, with half-integer
quantum number m.

Inside the dot, for r < R, the Dirac equation yields the following coupled equations for
the radial wave functions ϕm,±,(

∂r − (m− 1
2)1
r

)
ϕm,+(r) = iV0ϕm,−(r),(

∂r + (m+ 1
2)1
r

)
ϕm,−(r) = iV0ϕm,+(r). (3.6)

The solution of these equations read

ϕm,+(r) = J|m−1/2|(V0r)

ϕm,−(r) = isgn(m)J|m+1/2|(V0r), (3.7)

where Jn(x) is the Bessel function of n-th order. We here required the solution to be
regular at the origin.

Outside the dot, the gate potential is zero, and the equations for ϕm,± decouple. Here,
the radial wave functions behave as a power law

ϕm,+(r) = a+r
m−1/2, ϕm,−(r) = a−r

−m−1/2, (3.8)

with coefficients a±. We require that the wave function must not diverge for r → ∞,
which gives the constraint a+ = 0 (m > 0) or a− = 0 (m < 0). From continuity of the
wavefunction at r = R, we then obtain the resonance condition

J|m|−1/2(V0R) = 0, (3.9)
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i.e. we expect resonances, when the parameter V0R is tuned to be a root of a Bessel
function. Outside the dot, one component of the spinor wavefunction is zero, while the
other is decaying as

ψ ∝ r−(|m|+1/2). (3.10)

Interestingly, for |m| = 1/2 we find a marginally non-normalizable state.
To sum up, the bound states of a disc-shaped quantum dot have been calculated, which

are classified by their angular momentum. We know at which parameters resonances are
expected, and how the wavefunction of a resonant state is decaying outside the dot.

3.2.2. Resonances in a two-terminal conductance setup

For the further studies, Bardarson et al. investigated numerically two-terminal transport
of a quantum dot surrounded by undoped graphene and attached to source and drain
contacts. In Fig. 3.2, we display their results for the conductance as a function of the
dot’s gate voltage, for a circular quantum dot, an example for a classical regular structure,
and a stadium quantum dot, a prototypical example for a classical chaotic geometry. The
analysis of the conductance can be used to detect the bound states of the quantum dot,
which show up as resonant features.

For the circular quantum dot of size R, one finds that the position of the resonances in
the conductance agree with roots of the integer Bessel functions, in line with the theoretical
prediction, Eq. (3.9). The resonances have a definite angular momentum. Their finite

width Γ can be estimated as Γ ∼ |ψ(L)|2L
|ψ(R)|2R , where ψ denotes the wavefunction outside the

dot, Eq. (3.10), and L is the distance between the leads. From this estimate, we conclude,
that the width of the resonances scales as

Γ ∝ (R/L)2|m|. (3.11)

Such behaviour was confirmed by the studies of [Bard 09] (data not shown here). Reso-
nances belonging to the lowest possible angular momentum, |m| = 1

2 , gives rise to broad
resonances, Γ ∝ (R/L), while bound states from higher angular momenta give rise to much
sharper resonances. The figures also show, that the resonances for the chaotic structure
are typically much broader than for the regular structure, indicating a weaker confinement.
For the specific parameters of the simulation in Ref. [Bard 09] however, the resonances are
still overlapping. Due to numerical limitations, it was not possible to access the regime
of well-seperated resonances and to carry out a detailed study of the resonances of the
chaotic dot. This task will be completed in the remaining part of this chapter.

3.3. Model and method

We now describe, how to utilize the matrix Green function formalism in order to study
transport in graphene with a gate-defined quantum dot. In addition to the calculation
of the bound states of the circular dot in the previous section, our system is attached to
source and drain contacts. The setup thus consists of a rectangular sample of graphene of
length L and width W � L, described by the Hamiltonian

H = −i~vσ ·∇ + U(x) + V (r). (3.12)
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3. Resonant scattering in graphene with a gate-defined chaotic quantum dot

Figure 3.2.: Two-terminal conductance of an undoped graphene sheet containing an elec-
trostatically gated region (quantum dot). Upper panel: Circular quantum
dot; positions of the resonances agree with the theoretical prediction (indi-
cated with arrows, parameters: R/L = 0.2, W/L = 6). Lower panel: Stadium
quantum dot (parameters: R/L = 0.2,W/L = 6, 2a/R =

√
3.) [Figures

adopted from [Bard 09].]

The potential V (r) defines the quantum dot. It takes a constant value V (r) = −~vV0

inside the quantum dot, and V (r) = 0 outside the dot. The potential U(x) accounts for
the metallic leads and is set to be U(x)→ −∞ for x < 0 and x > L, whereas U(x) = 0 for
0 < x < L, so that the graphene sheet is tuned to the Dirac point in the region of interest.

In order to calculate the two-terminal conductance of the system, we apply Nazarov’s
matrix Green function formalism [Naza 94], which has been adapted to graphene by Titov
et al. [Tito 10]. Below, we summarize the essential elements of this method. Central
object is a 4× 4 matrix Green function Ǧ with matrix structure in the pseudospin space
[corresponding to the Pauli matrices σx and σy in the Dirac equation (3.12)] and the
“retarded-advanced” (RA) space. The matrix Green function is defined by the equation(

ε−H + i0 −~vσxζδ(x)
−~vσxζδ(x− L) ε−H − i0

)
Ǧ(r, r′) = δ(r− r′), (3.13)

where ε is the quasiparticle energy (set to zero in the remainder of the calculation), and
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3.3. Model and method

ζ is an additional parameter. Following Ref. [Tito 10], we define the generating function
F(φ) as

F(φ) = Tr ln Ǧ−1
∣∣
ζ=sin(φ/2)

, (3.14)

where the trace operation includes summation over RA and pseudospin indices, as well
as integration over spatial coordinates. The generating function F contains information
about the full counting statistics of two-terminal transport through the system [Naza 94].
Here, we restrict our discussion to the two-terminal conductance G, which is obtained
from F through the equality

G = −2g0
∂2F
∂φ2

∣∣∣∣
φ=0

, (3.15)

where g0 = 4e2/h is the conductance quantum in graphene.
Denoting the matrix Green function for the graphene sheet without quantum dot (V =

0) as Ǧ0, and writing F0 = Tr ln Ǧ−1
0 , we rewrite Eq. (3.13) as

δF = F − F0

= Tr ln(1− V Ǧ0). (3.16)

The matrix Green function Ǧ0 for the clean system (without dot) has been calculated
analytically in Ref. [Tito 10]. The explicit expression is rather lengthy and can be found
in Appendix A.1. Substituting the explicit expression for Ǧ0 into Equation (3.15) then
gives

G =
g0W

πL
+ δG, δG = −2g0

∂2δF
∂φ2

∣∣∣∣
φ=0

, (3.17)

where the first term corresponds to the conductivity of clean graphene [Ludw 94, Zieg 98,
Pere 06, Twor 06] and the second term gives the correction from the presence of the
quantum dot, which is the focus of our calculation.

The calculation of Ref. [Tito 10] proceeds by expressing δF in terms of the T matrix of
the quantum dot. Hereto, one introduces the Green function g for zero-energy quasipar-
ticles in an infinite sample (i.e., with V = U = 0),

g(r, r′) = − i

2π~v
σ · (r− r′)

|r− r′|2
, (3.18)

as well as the function
Ǧreg = Ǧ0 − g, (3.19)

which, being a difference of two Green functions, is regular if the spatial arguments coin-
cide. With the standard Born series for the T matrix [Mess 61],

T = (1− V g)−1V, (3.20)

one finds [Tito 10]
δF = Tr ln(1− TǦreg), (3.21)

up to terms that do not depend on the counting field φ. Equation (3.21) is the basis for
our further investigations.
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3. Resonant scattering in graphene with a gate-defined chaotic quantum dot

We will consider the limit that the size of the quantum dot is small in comparison to
the length L. In that case, it is advantageous to expand Ǧreg around the position r0 of
the center of the quantum dot. After a short algebraic manipulation, which is carried out
in Appendix A.1, one finds that one may replace the operators T and Ǧreg in Eq. (3.21)
by matrices with elements Tµν and Gµνreg, with µ, ν = 0, 1, 2, . . . and

Gµνreg =
∂µ

∂xµ
∂ν

∂x′ν
Ǧreg(r, r′)

∣∣∣∣
r=r′=r0

, (3.22)

Tµν =
1

µ!ν!

∫
d2rd2r′[(x− x0)− iσz(y − y0)]µ

×T (r, r′)[(x′ − x0) + iσz(y
′ − y0)]ν . (3.23)

Note that each element Gµνreg is a 4 × 4-matrix with non-trivial operation on pseudospin
and RA degrees of freedom, whereas Tµν acts in pseudospin space only and leaves the RA
space untouched. With this replacement, the trace in Eq. (3.21) is taken over the matrix
indices µ or ν, the pseudospin degrees of freedom, and the RA degrees of freedom.

Essentially, the matrix Tµν is the T matrix in a partial-wave expansion. In graphene,
the partial wave expansion involves waves of angular momentum σ(µ+ 1/2), with σ = ±1
a pseudospin index and µ = 0, 1, 2, . . . the index of the matrix Tµν . The corresponding
basis functions ψk,µ,σ(r) are defined at a finite energy ε = ~vk only, where, for definiteness,
we choose k > 0. They are the solutions of the Dirac equation Hψk,µ,σ(r) = εψk,µ,σ(r) in
the absence of the potentials U and V . With the matrix notation Ψkµ = (ψk,µ,+1, ψk,µ,−1),
one has

Ψkµ(r) =

√
k

4π

(
eiµθJµ(kr) ie−i(µ+1)θJµ+1(kr)

iei(µ+1)θJµ+1(kr) e−iµθJµ(kr)

)
, (3.24)

where Jν is a Bessel function and we used polar coordinates (r, θ). Denoting the T matrix
in the partial-wave basis by Tµν(k), one then finds that

Tµν = lim
k→0

2µ+ν+2π

kµ+ν+1
Tµν(k), (3.25)

where we again refer to appendix A.1 for details. In our discussion below, we will refer to
the mode indices µ, ν = 0, 1, 2, . . . as s, p, d, . . . .

It remains to describe a method to calculate the T -matrix Tµν(k) for a specific quantum
dot potential V (r). This is done through by first relating T to the scattering matrix Sµν(k)
in the partial-wave basis,

Sµν(k) = δµν − 2πiTµν(k). (3.26)

The scattering matrix Sµν(k) relates the coefficients of incoming (−) and outgoing (+)
parts of the basis functions (3.24) at energy ε = ~vk. Again using the shorthand notation

Ψ
(±)
kµ = (ψ

(±)
k,µ,+1, ψ

(±)
k,µ,−1), these are

Ψ
(±)
kµ (r) =

√
k

4π

(
eiµθH

(±)
µ (kr) ie−i(µ+1)θH

(±)
µ+1(kr)

iei(µ+1)θH
(±)
µ+1(kr) e−iµθH

(±)
µ (kr)

)
, (3.27)
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3.3. Model and method

where the H
(±)
µ = Jµ ± iYµ are Hankel functions of the first (+) and second kind (−),

respectively. The scattering matrix Sµν(k) is then defined through the asymptotic form of
the solution of the Dirac equation Hψk(r) = ~vkψk(r) for r →∞, which takes the general
form

ψk(r) =
∑
µ

(
Ψ

(+)
kµ (r)akµ + Ψ

(−)
kµ (r)bkµ

)
, (3.28)

with, in 2× 2 matrix notation,

akµ =
∑
ν

Sµν(k)bkν . (3.29)

To find Sµν(k), we employ a variation of a method commonly applied to rectangular
strips of disordered graphene [Bard 07]. Hereto, we divide the graphene sheet in circular
slices aj−1 < r < aj , j = 1, . . . , N , with a0 = 0 and aN so large that V (r) = 0 for r > aN .
We then obtain the scattering matrix S(k) by solving two auxiliary scattering problems
first.

In the first auxiliary problem, we set the potential V to zero everywhere, except in the
circular slice aj−1 < r < aj . In this case, the wavefunctions can be expanded in incoming
and outgoing partial waves for r < aj−1 as well as for r > aj . The general solution of the
Dirac equation in the regions r < aj−1 and r > aj can be characterized by means of two
reflection matrices ρj and ρ′j and two transmission matrices τj and τ ′j , such that ρ relates
the coefficients of outgoing partial waves on the exterior to the coefficients of incoming
partial waves on the exterior etc. If δa = aj − aj−1 is sufficiently small, these matrices
can be calculated in the first-order Born approximation. Writing ρµν = δρµν , ρ′µν = δρ′µν ,
τµν = δµν + δτµν , and τ ′µν = δµν + δτ ′µν , this calculation gives

δρµν = − iπ

2~v

∫
aj−1<r<aj

drΨ
(+)
kµ (r)†U(r)Ψ

(−)
kν (r),

δτµν = − iπ

2~v

∫
aj−1<r<aj

drΨ
(−)
kµ (r)†U(r)Ψ

(−)
kν (r),

δρ′µν = − iπ

2~v

∫
aj−1<r<aj

drΨ
(−)
kµ (r)†U(r)Ψ

(+)
kν (r),

δτ ′µν = − iπ

2~v

∫
aj−1<r<aj

drΨ
(+)
kµ (r)†U(r)Ψ

(+)
kν (r),

up to corrections of higher order in δa.
In the second auxiliary problem, we set V to zero for r > aj only. Defining Sj(k) to be

the scattering matrix for this situation, we obtain the recursion relation

Sj(k) = ρj + τ ′j(1− Sj−1(k)ρ′j)
−1Sj−1(k)τj . (3.30)

Together with the initial condition S0 = 1 and the equality SN = S this leads to the
desired solution.

Unitarity implies the relations δρ′j = −δρ†j , δτj = −δτ †j , and δτ ′j = −δτ ′†j . Consistent
with the Born approximation, we may rewrite the recursion relation (3.30) as

Sj(k) = Sj−1(k)[1 + iδhj ], (3.31)
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3. Resonant scattering in graphene with a gate-defined chaotic quantum dot

where

iδhj = S†j−1(k)δρj + δρ′jSj−1(k)

+ S†j−1(k)δτ ′jSj−1(k) + δτj (3.32)

is a hermitian matrix.
Although this concludes our formal description of the method, there are a few issues

regarding the numerical implementation that we also need to discuss:
(i) — For the final result, we have to take the low-k limit of the scattering matrix S(k),

which, at first sight, may be problematic because the Hankel functions appearing in the
Born approximation for the matrices δρ, δρ′, δτ , and δτ ′ diverge in this limit. However,
this problem can easily be circumvented by shifting the potential V (r) → V (r) + ~vk′
for r < aN , while at the same time increasing the quasiparticle energy according to
k → k + k′. This means that we transfer contributions between the free propagation
and the perturbation. We then solve the scattering problem inside the disc starting from
“free” Dirac fermions with energy ~v(k + k′), which remains finite in the limit k → 0.
The wavefunction outside the disc, where free electrons have momentum k, can be found
by matching to the wave function inside the disc, and contains the information of the
scattering matrix we need.

For the low-k-expansion of the scattering matrix, we then find an expression of the form

Sµν(k) = δµν + S′µν(k′)kµ+ν+1 +O(kµ+ν+2), (3.33)

where S′(k′) depends on aN , k′, and the scattering matrix SN (k′) obtained for the modified
problem where we have replaced k by k′ + k and safely can take the limit k → 0. A
detailed derivation is given in Appendix A.2. Note, that the expansion in Eq. (3.33) gives
us precisely that order in k, that we need in order to obtain the matrix Tµν in Eq. (3.25).

The wavenumber k′ of the quasiparticles can be chosen arbitrarily, and we have verified
that the result of our calculations do not depend on the choice of k′. However, one
may exploit this freedom for a wise choose of k′. It should be not too small, because
otherwise the Hankel functions in the spherical incoming and outgoing waves become too
large, indicating the fact that particles are repelled from the origin and therefore the Born
approximation looses its applicability. On the other hand, if the wave vector k′ is chosen
too large, the effective potential V +~k′v gets large, too, and the thickness δa of the slices
has to be decreased.

(ii) — It is sufficient to choose the radius a0 of the first slice such, that V (r) is uniform
for r < a0. For this situation an exact solution is available.

(iii) — In order to guarantee numerical stability during multiplication of scattering
matrices, we change Eq. (3.31) to

Sj(k) = Sj−1(k)

(
1 + i

δhj
2

)(
1− iδhj

2

)−1

, (3.34)

which is valid up to corrections beyond the accuracy of Born approximation, but ensures
that the scattering matrices remain unitary at all times.

(iv) — In the calculation of the scattering matrix, we keep a total of M modes. After
the calculation of the full scattering matrix S, we then further truncate the scattering
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3.4. Two-terminal conductance with stadium-shaped quantum dot

Figure 3.3.: Conductance versus gate voltage V0 for an undoped graphene sheet with a
gate-defined stadium-shaped quantum dot. The parameters of the numerical
calculation are 2a/R =

√
3 and L/R = 5. The curves correspond to the

numerical calculation using the method of Sec. 3.3, with contributions to the
T matrix up to d-wave (blue, solid), and to a direct numerical solution of the
Dirac equation (red, points; data taken from Ref. [Bard 09]).

matrix upon calculation of the determinant in Eq. (3.21), keeping matrix elements Sµν

with µ, ν = 0, 1, ...,M ′ only. Keeping a large number of modes M in the calculation of
the scattering matrix is important in order to properly resolve the dynamics inside the
quantum dot. The number of modes M ′ required for the calculation of the conductance
depends on the ratio of the size L of the graphene sheet and the size of the quantum dot,
and can be kept small if this ratio is large. The numerical calculation of the conductance
has converged, when the result does no longer change upon increasing M , M ′ or N . For
the results of the conductance shown here, we kept channels up to d-wave (M ′ = 2) only,
which we found to be sufficient for the parameters chosen in our calculation.

3.4. Two-terminal conductance with stadium-shaped quantum
dot

3.4.1. Two-terminal conductance

As a nontrivial application of the formalism laid out in the previous Section, we have
calculated the two-terminal conductance of a stadium-shaped quantum dot in an otherwise
undoped graphene steet. The quantum dot is placed halfway between the contacts. It is
characterized by the radius R of the circular pieces and the length 2a of the linear segment.
The gate voltage V (r) = −~vV0 for r inside the quantum dot, and V (r) = 0 otherwise. In
our calculations, we have included contributions up to d-wave in the T matrix, whereas
as many modes were used for the calculation of the scattering matrix S as were necessary
to reach convergence. (See the discussion at the end of the previous section.)

In Fig. 3.3, we show the two-terminal conductance as a function of the gate voltage V0.
The conductance exhibits several resonances due to the formation of quasi-bound states
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3. Resonant scattering in graphene with a gate-defined chaotic quantum dot

in the stadium. The parameters for the data in this figure are chosen to be the same as
in Ref. [Bard 09], so that the results can be compared. The excellent agreement between
both curves concerns the position as well as the shape of the resonances. We attribute
small deviations in the resonance heights to corrections from higher angular momentum
that were not taken into account in the calculations. Such corrections disappear upon
increasing the ratio of system size vs. dot size L/R (see discussion below).

The effect of inclusion of successive angular momentum channels in the T matrix (while
keeping essentially all angular momentum channels in the calculation of the scattering
matrix S) is illustrated in Fig. 3.4, where, in the upper panel, we show a close-up of
the data of Fig. 3.3 with one, two, and three angular momentum channels included in
the final step of the calculation (i.e. with truncation at M ′ = 0, 1, 2). This figure clearly
demonstrates that each resonance has contributions from more than one angular mode,
as is to be expected for a chaotic quantum dot. In particular, we find that all resonances
have a non-vanishing s-wave contribution, so that the resonance position can be extracted
from the s-wave channel solely. For the data shown in Fig. 3.3, one needs to include the p-
wave contribution in order to obtain the correct resonance shape. The effect of the d-wave
contribution is small, which we find remarkable, because the ratio of dot size 2(R + a)
versus contact size L is ≈ 0.75, which is not small in comparison to unity. The lower panel
of Fig. 3.4 shows conductance data for M ′ = 0, 1, 2, showing that the convergence with
respect to M ′ quickly improves upon increasing L/R.

We conclude, that most information about the resonances that is relevant for transport
at large or moderately large L/R is encoded in the contributions from small angular
momentum, and is therefore stored in a small set of parameters. That fact is a strong
indication of the power of the method employed here, in comparison to a direct simulation
of the Dirac equation.

3.4.2. Lineshape

The main advantage of the present method over the direct numerical solution of the Dirac
equation is that it allows one to extend the conductance calculations to the regime L� R:
The complete dependence on the length L is encoded on the Green function Ǧreg, which
is known analytically. It is only in the regime L � R that resonances are well separated
and can be characterized individually. The calculations of Ref. [Bard 09], on the other
hand, were limited to the regime L ≤ 5R, where resonances were still strongly overlapping.
(Reference [Bard 09] also considered the case L ≈ 8R for W = L. However, in that case
the conductance is strongly influenced by the finite width W of the graphene sheet.)

In Fig. 3.5 we show how the first and second resonance behaves upon increasing the
contact size L at fixed dot size R. The plots illustrate that the resonance width shrinks,
while the height saturates. The asymmetry of the line shape disappears in the limit
L/R → ∞, consistent with the expectation that s-wave scattering dominates if L � R.
Similar behaviour is found for the other resonances.

In order to quantitatively analyze the lineshapes, we note that each resonance is char-
acterized by a divergence of the T matrix. With a suitable parameterization of these
divergencies an explicit expression for the resonance lineshape can be obtained. Hereto
we introduce the dimensionless variable ε = V0R. Then, close to a divergence at ε̃0, the
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3.4. Two-terminal conductance with stadium-shaped quantum dot

Figure 3.4.: First four conductance resonances: The conductance has been calculated
using Eq. (3.21) with the T matrix truncated after the s-wave (blue, dashed),
p-wave (red, dotted), and d-wave angular-momentum channel (green, solid),
corresponding to M ′ = 0, 1, 2, respectively. In the upper panel, we set L/R =
5, while in the lower panel, L/R = 10. The ratio a/R remains the same as in
Fig. 3.3.

divergent part of Tµν is of the form

Tµν(ε) ' Rµν

ε− ε̃0
, (3.35)

where the matrix Rµν contains the information about the resonance shape. The matrix
elements Rµν are related by hermiticity, Rµν = (Rνµ)† and time-reversal symmetry, Rµν =
σy(R

νµ)Tσy. Moreover, for the specific problem we consider here, inversion symmetry and
reflection symmetry impose further constraints on R, which allow us to parameterize the
matrix as

R =

 lsσ0 ilspσx lsdσ0

−ilspσx lpσ0 ilpdσx
lsdσ0 −ilpdσx ldσ0

 , (3.36)

where σ0 is the 2× 2 unit matrix. Due to Kramers degeneracy, R can be decomposed into
two identical submatrices, which, for a generic resonance, are of unit rank. (In a chaotic
quantum dot level repulsion ensures that this condition is always fulfilled.) This gives the
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3. Resonant scattering in graphene with a gate-defined chaotic quantum dot

Figure 3.5.: Dependence of the first and second resonance on the ratio of dot size versus
system size R/L.

additional constraints

l2sp = lslp, l2sd = lsld, l2pd = lpld (3.37)

on the parameters in Eq. (3.36). Note, that ls , lp, and ld have the dimension of a length,
length3, and length5, respectively.

Substituting Eq. (3.36) into Eq. (3.21) and making use of the condition (3.37), we find
that the line shapes are described by the Fano resonance formula [Fano 61]

G = Gnr
|2(ε− ε0) + qΓ|2

4(ε− ε0)2 + Γ2
(3.38)

Here, Gnr is the non-resonant conductance, Γ is the resonance width, ε0 is the resonance
position, and q is the complex “Fano parameter”. After subtracting the background
conductance Gnr, we rewrite Eq. (3.38) as

δG = g0
β + 4α(ε− ε0)

4(ε− ε0)2 + Γ2
, (3.39)

where β = (Gnr/g0)(|q|2 − 1)Γ2 and α = (Gnr/g0)Re q. For α = 0 the resonance has a
Breit-Wigner shape; Non-zero α is responsible for an asymmetry in the lineshape. When
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3.4. Two-terminal conductance with stadium-shaped quantum dot

we express the resonance parameters through the entries of R, we also use σsp = sign(lsp)
etc., which is not fixed by Eq. (3.37):

ε0 = ε̃0 +
π
√
lslpσsp

24L2
−

7π3
√
lpldσpd

960L4
, (3.40)

Γ =

∣∣∣∣ ls2L
+
π2lp
8L3

+
π2
√
lsldσsd

4L3
+

5π4ld
32L5

∣∣∣∣ , (3.41)

β =
2l2s
π2L2

+
2lpls
3L4

+
8
√
l3s ldσsd
3L4

+
19l2pπ

2

72L6
,

+
481ldlsπ

2

180L6
+

17lp
√
lsldσsdπ

2

18L6
+

61ldlpπ
4

90L8
,

+
251
√
lsl3dσsdπ

4

180L8
+

13549l2dπ
6

28800L10
(3.42)

α = −
2
√
lslpσsp

πL2
+
π
√
lpldσpd

2L4
. (3.43)

Note, that the shift ε0− ε̃0 of the resonance position, as well as the asymmetry α is absent,
if the resonance consists of a single angular momentum component only.

Now consider the situation, where we fix the product V0R of the gate voltage quantum
dot and the quantum dot size — i.e., we look at a fixed resonance — and increase the length
L of the graphene sheet. Then, as long as ls 6= 0, at sufficiently large L, the conductance
will be determined by its s-wave contribution, so that the resonance line shape reduces to
the Breit-Wigner form. In this limit, the height for δG approaches the constant universal
value 8g0/π

2, and the width scales as Γ = ls/2L, as was found previously by Titov et al.
[Tito 10].

3.4.3. Comparison Disc - Stadium

We now summarize the main qualitative difference in the conductance resonances for
stadium-shaped quantum dots, which have been considered numerically here and in Ref.
[Bard 09], and disc-shaped dots, which were considered analytically in Ref. [Tito 10] and
numerically in Ref. [Bard 09]. The main difference, which is illustrated in Fig. 3.4, is that
generic resonances for the stadium dot have contributions from more than one angular
momentum channel. This means that the resonance lineshape changes from a Fano shape
for moderate ratios L/R to a Breit-Wigner lineshape for large L/R, as seen in Fig. 3.5.
In the limit L/R → ∞ of isolated resonances, the height of the conductance resonances
takes the universal value 8g0/π

2, whereas the width of all resonances scales proportional
to R/L. Though we considered a stadium-shaped dot only, we believe, that the features
found here are generic and shared by all chaotic dots.

This is to be contrasted to the situation of a circular quantum dot, where different
angular momentum channels do not mix, and the resonances are of pure type (s-wave,
p-wave,. . . ). The resonance lineshape is always of Breit-Wigner form and approaches
a constant height upon taking the limit L/R → ∞. The asymptotic resonance height
depends on the angular momentum channel, with a height 8g0/π

2 for s-wave resonances
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3. Resonant scattering in graphene with a gate-defined chaotic quantum dot

(l = 0) and . 2g0 for higher angular-momentum channels (l ≥ 1). The resonance width
depends on the angular momentum channel, Γ ∝ (R/L)2l+1.

We close this comparison with a comment on the results of Ref. [Bard 09]. There it
was found that the resonance height of the chaotic dot goes to zero upon taking the
limit of large L/R. This observation referred to a setup with aspect ratio W/L = 1 and
periodic boundary conditions along the transverse direction. For aspect ratio W � L,
only the mode with zero transverse momentum substantially contributes to transport
[Twor 06]. Therefore, s-wave scattering does not affect the conductance, resulting the
observed suppressed height of s-wave conductance resonances. We verified that the same
phenomenon occurs in our calculations, by evaluating the regularized Green function Ǧreg

for finite width. This explains, why the resonances in Ref. [Bard 09] completely disappear
in the limit of large L/R, while in our investigation for aspect ratio W � L the height of
the resonances remains finite.

3.5. Conclusion

In this chapter, we investigated the resonances of the conductance of a graphene sheet with
a chaotic quantum dot. Using a numerical implementation of the matrix Green function
method of Ref. [Tito 10], we were able to study the behaviour of the resonances in the
limit of well-separated resonances. This essential limit could not be reached in the original
treatment of the problem [Bard 09].

As was proposed in Ref. [Bard 09], the resonances of the chaotic dot behave significantly
different compared to the case when the gated region is circular. While the circular geom-
etry does not allow for mode mixing, so that all resonances are Breit-Wigner resonances
with a well-defined angular momentum, in the stadium dot, due to its non-integrable
dynamics, all resonances have contributions from all scattering channels. The presence
of mixed angular-momentum modes is responsible for an asymmetry of the line shape,
described by the Fano resonance formula. In the limit of very well separated resonances,
corresponding to the limit in which the size R of the quantum dot is much smaller than the
distance L between the metallic contacts, for the chaotic quantum dot all resonances are
dominated by the lowest (s-wave) angular momentum component, and recover the Breit-
Wigner form. In contrast, for the disc-shaped dot, parametrically narrower resonances for
higher angular momentum channels ( p-wave, d-wave, etc.) persist in the limit of large
L/R. This establishes a clear signature that distinguishes regular and chaotic dynamics
of gate-defined quantum dots from the conductance resonances.
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4. The role of the Berry phase for
electrostatic confinement in graphene

In the previous chapter, we studied the two-terminal conductance of a gate-defined quan-
tum dot surrounded by undoped graphene, which is attached to source and drain contacts.
We learned, how the lineshape of the resonant features of the conductance reveals infor-
mation about the constitution of the resonant level of the quantum dot and about the
degree of confinement. The resonances of a regular and a chaotic dot are distinguished
in the limit of small coupling between dot and leads, where the resonances of a chaotic
dot become narrower in a linear dependence on the ratio dot size vs. distance to the leads
R/L upon decreasing the coupling to the leads, while a regular dot has resonant levels
that become narrower in a higher power in R/L, indicating a better confinement. Re-
markably, the resonant structures for the chaotic dot remain at a finite height close to the
conductance quantum even for arbitrarily small coupling between dot and leads.

It remains to find an explanation, why the resonances of the chaotic dot persist even for
weak coupling, which seems to contradict the naive classical expectation. We will resolve
this issue in the present chapter. The classical arguments invoked to predict the kind of
structures that should support confinement did not take into account one crucial aspect for
graphene: The Berry phase, that the electronic wavefunction accumulates in the presence
of the graphene pseudospin. As the latter is strongly linked to the particle’s momentum,
upon a circular motion the pseudospin winds once around its axis, accumulating a Berry
phase of π. Such Berry phase is of great importance, as a consequence also the electron’s
angular momentum is quantized in half-integer multiples of ~, and thus the lowest possible
angular momentum is ~/2.

In the present chapter, we investigate how the Berry phase affects the formation of
resonant levels in a gate-defined quantum dot in graphene. To isolate the effect of the
Berry phase, we introduce a flux tube to the system, that contains precisely half a flux
quantum. Electrons encircling the flux tube collect an Aharonov-Bohm phase of π, pre-
cisely cancelling the effect of the Berry phase. The kinematic angular momentum, which
is relevant for the classical considerations, is shifted to integer values in the presence of
the π-flux, and therefore allows for a state with zero angular momentum. This state is
shown to be unable to accommodate bound states. As a consequence we find that chaotic
dots cannot support resonant states in the presence of π-flux, and bound states therefore
appear solely in regular structures. Thus, we can identify the Berry phase as the cause of
the discrepancy between classical expectation and the quantum-mechanical outcome.

Besides measuring the conductance, experimental probes of the density of states provide
a valuable tool in the study of nanosystems. In this chapter, we will further discuss,
how information about resonant states in a gate-defined quantum dot in graphene can be
obtained from evaluations of the density of states. We will explore the role of geometry and
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the Berry phase on electrostatic confinement also with an alternative approach considering
the density of states, which allows for a very efficient study of the limit of dots that are
weakly coupled to the leads.

The present chapter is arranged as follows: In Sec. 4.1, we revisit the calculation from
the previous chapter for the resonant levels of a disc-shaped quantum dot in the presence
of a π-flux, and show the emergence of a channel that cannot bind resonant states. We
then study the two-terminal conductance for a regular and a chaotic shaped quantum dot
in the presence of a flux tube in Sec. 4.2. We turn to a calculation for the density of
states in Sec. 4.3. Here, we start with a calculation of the density of states for a circular
quantum dot, which can be done analytically, and compare the findings with the density
of states for a chaotic dot in Sec. 4.4. We contrast the situation with the inclusion of a
π-flux in Sec. 4.5. We conclude our results in Sec. 4.6.

The present chapter is based on the publications [Hein 13] (Sec. 4.1, 4.2 & 4.6 ) and
[Schn 14a] (Sec. 4.3–4.6). The results of Secs. 4.1 & 4.2 also appear in the diploma thesis
of Julia Heinl, that was written under my co-supervision in the AG Brouwer at FU Berlin.

4.1. Bound states of a circular quantum dot with a π-flux

We return to the problem of a circular quantum dot as discussed in Sec. 3.2.1 in the
previous chapter, where we now include a magnetic flux tube. The Hamiltonian, that we
consider, thus reads

H = v(p + eA) · σ + V (r), (4.1)

with the gate potential V (r) for a circular dot of radius R

V (r) =

{
−~vV0, r < R

0, r > R.
(4.2)

The vector potential corresponding to the magnetic flux line is

A(r) =
h

e

Φ

2πr
êθ, (4.3)

where êθ is the unit vector for the azimuthal angle, and Φ is the magnetic flux measured
in units of the flux quantum h/e. For our study, we consider the cases Φ = 0 (no flux
tube) or Φ = 1/2 (flux tube containing half a flux quantum). We remark, that we assume,
that the spatial extension of the flux line is large in comparison to the lattice constant,
such that it does not couple the two valleys. On the other hand, the flux line is required
to be much smaller than the dot size, hence Eq. (4.3) is the appropriate description for
the vector potential.

In polar coordinates, the kinetic part of the Hamiltonian then reads

v(p + eA) · σ = −i~v
(

0 D−
D+ 0

)
, (4.4)

where we defined the operators

D± = e±iθ
(
∂r ±

i

r
∂θ ∓

Φ

r

)
. (4.5)
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With our choice of the vector potential, the Hamiltonian is invariant under rotation,
hence we can look for eigenstates of the total angular momentum jz = lz + ~

2σz. They
have the form

ψm(r) = eimθ

(
e−i

θ
2ϕm,+(r)

ei
θ
2ϕm,−(r)

)
, (4.6)

where m = ±1/2, ±3/2, . . . . Inside the dot, for r < R, the radial wave functions ϕm,±
are determined by the coupled equations(

∂r − (m− 1
2)1
r −

1
rΦ
)
ϕm,+(r) = iV0ϕm,−(r),(

∂r + (m+ 1
2)1
r + 1

rΦ
)
ϕm,−(r) = iV0ϕm,+(r). (4.7)

Outside the dot the equations decouple, and the radial wave functions show a power law
behavior

ϕm,+(r) = a+r
m−1/2+Φ, ϕm,−(r) = a−r

−m−1/2−Φ, (4.8)

with coefficients a±.
We note, that the results obtained sofar agree with the calculation for the bound states

of a circular dot without flux tube, upon replacing Φ = 0. Now we consider a disc-shaped
quantum dot with a flux tube carrying half a flux quantum (Φ = 1/2) — a “π-flux” — at
its center. The results take a form similar to those without flux tube if we consider the
kinematical orbital angular momentum,

lz,kin = [r× (p + eA)]z, (4.9)

instead of the canonical angular momentum. With the inclusion of a π-flux, we then
find lz,kin = lz + ~

2 . The wavefunctions from Eq. (4.6) are then eigenstates of jz,kin with
eigenvalue µ~, where µ = m+1/2, i.e. the kinematical angular momentum takes on integer
values. For µ 6= 0 the calculation for the bound states proceeds in the same way as without
flux, and we find that the resonance condition is given by

J|µ|−1/2(V0R) = 0. (4.10)

Thus, bound states appear now at roots of half-integer Bessel functions. Outside the dot,
the wavefunction decays proportional to r−(|µ|+1/2). We conclude that, if the dot and
the surrounding undoped graphene layer are contacted to source and drain reservoirs, the
width Γ of the resonances in the two-terminal conductance scales as

Γ ∝
(
R

L

)2|µ|
. (4.11)

The state with zero kinematical angular momentum (µ = 0) however is special: First
of all, inside the dot, the wavefunction is of the form

ψ(r) = b1

(
e−iθJ1/2(V0r)

iY1/2(V0r)

)
+ b2

(
e−iθY1/2(V0r)

−iJ1/2(V0r)

)
. (4.12)

Recalling that the half-integer Bessel functions take the simple form J1/2(x) =
√

2/πx sinx,

and Y1/2(x) = −
√

2/πx cosx, we see that ψ(r) diverges as 1/
√
V0r at the origin, and that
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4. The role of the Berry phase for electrostatic confinement in graphene

there is no non-trivial choice of coefficients b1 and b2 which removes this divergence. The
root of this singular behavior lies in the vector potential, which is singular upon approach-
ing the origin. The problem can be cured by regularizing the vector potential. One
possibility is to let the flux Φ have an r-dependence, such that Φ = 0 for r < ρ and
Φ = 1/2 for r > ρ, i.e., the flux is not located at the origin, but on a circle of radius
ρ. Obviously, the problem is now well-defined at the origin, and we can take the solution
from the case without flux tube,

ψ(r) = c

(
e−iθJ1(V0r)
−iJ0(V0r)

)
, (4.13)

where c is a complex constant. We then match the wavefunctions from Eq. (4.13) and
Eq. (4.12) at r = ρ. Upon taking ρ → 0, we get b2 = 0 as a condition for Eq. (4.12).
The boundary condition at the origin ensures, that there is precisely one solution for zero
angular momentum.

The µ = 0 state is also special outside the dot, where the wavefunction is proportional
to 1√

r
in both components. Thus it has the same decay as a free circular wave in two di-

mensions and, hence, it does not allow for the formation of a bound state. This conclusion
is independent of the choice of the regularization of the wavefunction near r = 0.

Summarizing: Without flux tube, the bound states are labeled by the angular momen-
tum quantum number m, which takes half-integer values. For |m| = 1/2 one has a “quasi-
bound state”, because the corresponding wavefunction is marginally non-normalizable.
With a π flux tube, the bound states are labeled by the kinematic angular momentum
quantum number µ, which takes integer values. There is no bound state for µ = 0.

4.2. Two-terminal conductance

We now attach metallic source and drain contacts to the undoped graphene layer that
surrounds the quantum dot. Schematically, this setup has been shown in Fig. 3.1. We
then calculate the two-terminal conductance, where bound states of the dot show up as
resonant features as a function of the gate voltage V0.

The contacts are included by the addition of an additional potential Uleads with [Twor 06]

Uleads =

{
0 if −L/2 < x < L/2,
∞ if x < −L/2 or x > L/2.

(4.14)

We apply periodic boundary conditions in the y direction, with period W . For the vector
potential A we take a different gauge than in Sec. 4.1,

A(r) =
hΦ

e
δ(x)ex ×

{
0 if 0 < y < W/2,
1 if −W/2 < y < 0,

(4.15)

where ex is the unit vector in the x direction. With this choice of the vector potential
there are two flux tubes: one, at y = 0, located in the quantum dot, and one, at y = W/2,
located outside the quantum dot. The second flux tube is necessary to implement the
periodic boundary conditions. It does not affect the conductance resonances in the limit
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4.2. Two-terminal conductance

Figure 4.1.: Two-terminal conductance of a graphene sheet containing a disc-shaped quan-
tum dot without (left) and with (right) π-flux tube. Model parameters are
R/L = 0.2 and W/L = 6. Without flux tube, resonances have definite angu-
lar momentum, with quantum number |m| indicated at each resonance [data
taken from Ref. [Bard 09]]. Without flux tube, resonances are labeled by the
kinematic angular momentum quantum number |µ|. No resonance is found
for µ = 0.

that the sample width W is much larger than the distance L between source and drain
contacts.

The numerical calculation of the two-terminal conductance follows the method of Ref.
[Bard 07]. Details specific to the presence of the flux tube are discussed in Appendix B.1.
The conductance can be written as

G = G0 + δG, G0 =
4e2

πh

W

L
, (4.16)

where G0 refers to the conductance of an undoped graphene sheet in the absence of a
quantum dot [Twor 06]. We now compare results for the conductance change δG for
quantum dots with and without flux tube. We give results for a disc-shaped quantum
dot, as a prototype of a quantum dot with integrable dynamics, and a stadium-shaped
quantum dot, the prototype of a dot with chaotic dynamics.

4.2.1. Disc-shaped dot

The two-terminal conductance for the case of a disc-shaped quantum dot without and
with flux tube is shown in Fig. 4.1 (we repeat the figure for the case without flux tube
here, which was already shown in Fig. 3.2 in the previous chapter, so that the reader can
easily compare both situations). The figure shows pronounced resonances as a function of
the gate voltage V0, with positions that agree with the ones calculated Sec. 3.2.1 and Sec.
4.1. Without flux tube, the resonances are labeled by the quantum number |m| = 1/2,
3/2, 5/2, . . . . Their width scales ∝ (R/L)2|m| as the coupling to the leads is decreased
(data not shown), as discussed in Sec. 4.1. With flux tube, the resonances are labeled
by the kinematic angular momentum quantum number |µ| = 1, 2, 3, . . . . There are no
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4. The role of the Berry phase for electrostatic confinement in graphene

Figure 4.2.: First two resonances for a disc-shaped quantum dot with π-flux tube, for differ-
ent coupling strengths to the leads. Calculations are performed for W/L = 8
and various R/L, as indicated in the figure. The second resonance is shown
enlarged in the inset.

resonances for µ = 0. Upon decreasing the coupling to the leads, the resonances become
narrower but retain their height, see Fig. 4.2, and the scaling of the resonance width with
the ratio R/L is consistent with Eq. (4.11) (data not shown).

4.2.2. Stadium-shaped dot

As a prototypical example of a chaotic quantum dot, we consider a stadium-shaped quan-
tum dot. Here the potential V (r) = −~vV0 for positions r inside the stadium and V (r) = 0
otherwise. Without magnetic flux, the two-terminal conductance shows resonances, which,
in the limit of small R/L, all behave as the |m| = 1/2-type resonances of the disc-shaped
dot, i.e., their height remains finite, whereas the resonance width scales proportional to
R/L, as discussed in the previous chapter. The numerical data shown in the left panels of
Figs. 4.3 and 4.4 clearly reveal these resonances, although the asymptotic scaling of the
resonance width and resonance height with R/L is somewhat obscured by transient con-
tributions for moderate R/L that originate from higher-angular-momentum contributions
to the resonances, as mentioned in the previous chapter.

The conductance trace for a stadium-shaped quantum dot with a flux tube carrying
half a flux quantum is shown in the right panels of Figs. 4.3 and 4.4. In order to break
inversion symmetry, the stadium is placed asymmetrically with respect to the flux tube,
see the inset of Fig. 4.3. The differences with the case of the disc-shaped quantum dot and
with the case without a flux tube are significant. We find that the conductance depends
on the gate voltage V0 for finite R/L, but the widths of the “resonances” is independent of
the coupling to the leads, which is set by the ratio R/L, whereas the height decreases upon
decreasing R/L. This agrees with the expectation that, since all states in the stadium have
a µ = 0 component, a stadium dot should not support any (quasi)bound states. While for
intermediate values of R/L contributions from higher angular momentum channels still
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4.2. Two-terminal conductance

Figure 4.3.: Two-terminal conductance of a graphene sheet containing a stadium-shaped
quantum dot without (left) and with (right) a π-flux. Parameters for the
calculation are R/L = 0.2, W/L = 12, a/R =

√
3/2, d = 2a/3. The figure for

the case wihout flux tube has been also presented in Fig. 3.3.

Figure 4.4.: Behavior of the first three quasi resonances of the stadium-shaped quantum
dot without (left) and with (right) π-flux upon changing the coupling to the
leads R/L. The other parameters are the same as in Fig. 4.3.

give rise to broad “quasi-resonances”, in the limit R/L → 0, only the µ = 0 channel is
relevant, and the conductance becomes featureless as a function of V0.

We remark that, if the flux tube would be placed exactly in the middle of the stadium,
inversion symmetry would split the resonances into two groups, resulting from even and
odd µ. The “even” resonances have a finite µ = 0 component and disappear upon taking
the limit R/L → 0. The “odd” resonances survive in this limit, with a finite resonance
height and a resonance width Γ ∝ (R/L)2 (data not shown). We also note, that for a
disc-shaped dot with a flux tube located away from the center, integrability is broken, and
the resulting conductance has features that are characteristic for a chaotic dot (data not
shown).
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4. The role of the Berry phase for electrostatic confinement in graphene

4.3. Density of states

While the previous studies were focused on the signatures of confinement in the two-
terminal conductance, we now want to extend and complement these studies by investi-
gating how information about confinement is revealed in the density of states or, equiv-
alently, the quantum capacitance of the quantum dot. Density of states measurements
provide a valuable experimental technique in the study of nanosystems, and have been
also widely used in the context of graphene. One way to gain information is by local
probes such as scanning tunneling spectroscopy or scanable single-electron transistors,
that give access to the local density of states or the local compressibility of the system,
see, e.g., Refs. [Ishi 07, Li 07, Mart 08]. Other works also employ capacitive measure-
ments, that extend to the analysis of the total compressibilty of the system, see, e.g.
Refs. [Gian 09, Xia 09, Dros 10, Pono 10, Stol 11]. Similar to the study of two-terminal
conductance, where the resonant tunneling between dot and leads opens an additional
conducting channel and leads to a resonant feature, for the density of states, the presence
of well-quantized states in the quantum dot leads to an additional peak structure.

A second motivation to study the density of states, rather than the two-terminal con-
ductance, is of a more technical nature: The theoretical formalism to compute the two-
terminal conductance is quite involved, and is not easily adapted to include the π flux tube
that was used to bring out the role of the Berry phase. For this reason, the study of the
previous Section performed a direct numerical simulation of the quantum dot structure,
which does not allow one to go to the limit of very narrow resonances. On the other hand,
measurement of the density of states involves only one contact (in addition to the electro-
static gate) and can be described theoretically without breaking the rotational symmetry.
As we show below, this allows for a considerable simplification of the analysis, making it
possible to reach the narrow-resonance limit with a π flux line, too.

The setup that we study consists of a gate-defined quantum dot surrounded by undoped
graphene, and connected to a ring-shaped metallic contact at distance L from the center
of the quantum dot, shown schematically in Fig. 4.5b. An unambiguous identification of
bound states requires the limit of large L, in which the dot is well separated from the
metallic contact. It is for this limit that the method presented in this chapter proves to be
particularly effective. Although the rotational symmetry of the leads is chosen primarily
for technical reasons, we note that it has no consequence for the qualitative L-dependence
of the resonances (which can be seen, e.g., by comparing the results of the remainder of
this chapter with that of Ch. 3), but also that ring-shaped contacts for graphene can be
fabricated in principle [Boot 08], whereas local gating of suspended graphene has also been
demonstrated recently [Grus 13, Rick 13].

4.4. Graphene quantum dot

Our setup consists of a gate-defined graphene quantum dot, surrounded by an intrinsic
graphene layer, which is connected to a ring-shaped metallic contact. The electronic
wavefunction satisfies the two-dimensional Dirac equation

Hψε = εψε, H = vp · σ + V (r), (4.17)
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4.4. Graphene quantum dot

Figure 4.5.: The setup: A quantum dot (yellow) surrounded by undoped graphene, that
is attached to a circular lead (blue) at distance L from the origin. We also
investigate the situation with the presence of a magnetic flux tube (red), that
contains half a flux quantum.

where ε is the energy of the quasiparticle. We take the gate potential to be of the form

V (r) =


−~vV0, r ∈ R
−~vV∞, r > L,

0, else,

(4.18)

where, for definiteness, we choose the parameters V0 and V∞ to be positive, such that
dot and lead region are electron-doped. The region R denotes the area of the dot. For
a circular dot R consists of all coordinates r with r < R, R being the dot radius. The
ring-shaped metallic contact for r > L is modelled by taking the limit V∞ → ∞. While
our choice of a piecewise uniform potential considerably simplifies the calculations, it
is not necessary for the existence of bound states [Down 11, Mkhi 12], and our general
conclusions will remain valid in the more general case of a central potential V (r).

Scattering states can be defined in the ring-shaped ideal contact, see Eq. (4.23) below.
In order to calculate the density of states, we use the relation between the local density of
states ν(r, ε) and the derivative of the scattering matrix S(ε) with respect to the potential
V (r) at position r [Lang 61, Butt 93, Butt 94],

ν(r, ε) = − 1

2πi
trS† δS

δV (r)
. (4.19)

The total density of states of the dot is then obtained by integration over the region

49
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r < L,1

νdot(ε) = − 1

2πi

∫
r<L

drtrS† δS
δV (r)

. (4.20)

The density of states νdot is defined as the density of states per spin and valley. The
expression (4.20) is related to the Wigner-Smith time delay [Wign 55, Smit 60]. It is
also related to the dot’s capacitance [Butt 00], which can be measured from the current
response to an alternating bias on the ring-shaped metallic contact, at fixed value of the
gate voltage V0.

The calculation of the density of states νdot at zero energy as a function of the dot po-
tential V0 requires to solve the Dirac equation (4.17) at small, but finite energy ε. Dealing
with a finite energy also in the region between dot and lead goes beyond previous studies
that adressed the two-terminal conductance, see [Bard 09, Tito 10] and the previous part
of this thesis.

4.4.1. Circular quantum dot

We begin our discussion with a circular quantum dot, where the region R equals a disc of
radius R centered at the origin. In this case the angular momentum jz = (r× p)z + ~

2σz
is conserved, and the solutions of the Dirac equation (4.17) can be labeled by the angular
momentum m~, where m is half-integer as a consequence of the pseudospin degree of
freedom for graphene. Writing Hamiltonian (4.17) in polar coordinates (see also Sec.
3.2.1),

H = −i~v
(

0 ∂−
∂+ 0

)
+ V (r), (4.21)

with the operators

∂± = e±iθ
(
∂r ± i1

r∂θ
)
, (4.22)

we solve the Dirac equation Hψε = εψε in the three regions 0 < r < R, R < r < L
and r > L in which the potential V is constant. In each region, we obtain two linearly
independent solutions,

ψ
(±)
k,m(r) = eimθ

√
k

8v

(
e−iθ/2H

(±)
|m−1/2|(kr)

i sgn(m)eiθ/2H
(±)
|m+1/2|(kr)

)
, (4.23)

which describe incoming (−) or outgoing (+) circular waves of wavenumber k = (ε−V )/~v
in the conduction band, normalized to unit flux. (Without loss of generality we assume
that the energy ε is positive; We checked that our final results remain valid for negative ε.)

Further, the H
(±)
n are Hankel functions of the first (+) and second kind (−), respectively.

The Hankel functions are related to the Bessel (Neumann) function Jn (Yn) as H
(±)
n =

Jn ± iYn.

1The functional derivative δS/δV (r′) can be obtained by changing the potential V (r) by v0δ(r− r′) and
taking the derivative of the scattering matrix with respect to v0. In practice, for the calculation of the
density of states integrated over a certain region, one shifts the potential V (r) by a constant v0 within
the specific region, and takes the derivative of the scattering matrix with respect to v0.
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4.4. Graphene quantum dot

The precise value of the wavenumber k is different for the three regions in which the
solutions (4.23) apply. For r < R one has k ≡ k0 = ε/~v + V0; for R < r < L one has
k = ε/~v, and for r > L one has k ≡ k∞ = ε/~v + V∞. For r > L the wavefunction can
be written as a linear combination of the two solutions of Eq. (4.23),

ψε,m(r) = am(ε)ψ
(−)
k∞,m

(r) + bm(ε)ψ
(+)
k∞,m

(r). (4.24)

The coefficients am(ε) and bm(ε) can be determined using continuity of the wavefunction
at r = L and r = R, as well as regularity at r = 0. They define the scattering matrix
Smn(ε) = Sm(ε)δm,n through the relation

bm(ε) = Sm(ε)am(ε). (4.25)

The scattering matrix S is then used to calculate the density of states, see Eq. (4.20).
To simplify the further analysis, we consider the limit of a highly doped lead k∞L� 1.

In this regime, we make use the asymptotic behavior of the Hankel functions for large

arguments, H
(±)
n (x) ≈ (2/πx)1/2e±i(x−n

π
2
−π

4
) for the wavefunction in the lead region r > L.

The smallness of the energy ε furthermore allows to expand in the wavenumber k in the
region R < r < L corresponding to the undoped layer separating the quantum dot from
the lead. One then finds

Sm(ε) = e−2ik∞L+i|m|π
[
S(0)
m + kLS(1)

m +O(ε2)
]
, (4.26)

where k is the wavenumber in the region R < r < L,

S(0)
m =

L2|m| + iJmR2|m|

L2|m| − iJmR2|m| , (4.27)

and

S(1)
m =− 2i

2|m| − 1
S(0)
m +

8i|m|L4|m| + 2i[(2|m|+ 1)J 2
m − (2|m| − 1)]R2|m|+1L2|m|−1

(4|m|2 − 1)(L2|m| − iJmR2|m|)2

(4.28)

if |m| 6= 1/2, whereas

S(1)
±1/2 =

i(L2 −R2) + 2iJ 2
1
2

R2 log(L/R)

(L− iJ 1
2
R)2

. (4.29)

In Eqs. (4.27)–(4.29) we used the abbreviation

Jm =
J|m|+1/2(k0R)

J|m|−1/2(k0R)
. (4.30)

We now use Eq. (4.20) to calculate the density of states νdot at zero energy,

νdot =
1

2πi~v
∑
m

S(0)∗
m

[
∂S(0)

m

∂V0
+ LS(1)

m

]
. (4.31)
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The first term in Eq. (4.31) represents the integral of the local density of states inside the
quantum dot region r < R; the second term is the integral of the local density of states in
the undoped layer that separates the dot and the metallic contact.

Let us now analyse the density of states as a function of the gate voltage V0. In the limit
R� L (weak coupling to the ring-shaped contact), the DOS exhibits isolated resonances
at gate voltages V0 = V ′0 satisfying the condition

J|m|−1/2(V ′0R) = 0. (4.32)

Close to resonance, we have that Jm ≈ −1/[R(V0 − V ′0)], and the density of states has
a Lorentzian dependence on V0. For a generic resonance with |m| 6= 1/2 the zero-energy
density of states has the form

νdot =
4R|m|

π~v(2|m| − 1)

Γ

4R2(V0 − V ′0)2 + Γ2
, (4.33)

where the dimensionless resonance width is given by

Γ = 2(R/L)2|m|. (4.34)

Resonances are well separated if R � L. In the lowest angular momentum channel
|m| = 1/2 the expression for the density of states reads

νdot =
2R

π~v

(
1 + log

L

R

)
Γ

4R2(V0 − V ′0)2 + Γ2
, (4.35)

with Γ = 2R/L. We remark that the position of the resonances, as well as the scaling of
the width agree with the results for the two-terminal conductance, where L is the distance
between source and drain.

We note, that the resonant part of νdot that comes from the first term in Eq. (4.31) inte-
grates to 1/~v, when integrated over V0, corresponding to a 2π shift of the scattering phase
upon tuning V0 through a resonance. The second term in Eq. (4.31) gives an additional
contribution to the density of states, whose weight decays for higher angular momentum.
Remarkably, in the lowest angular momentum channel, this additional contribution has a
large factor log(L/R) factor in the prefactor. We relate the presence of this large factor to
the fact, that the bound states of the lowest angular momentum have only a slow decay
∝ 1/r, such that the wavefunction is marginally non-normalizable, see Sec. 3.2.1.

We show a plot of the density of states for a circular quantum dot as a function of
the gate voltage in Fig. 4.6. As discussed, the DOS exhibits resonant peaks, that can be
labelled according to their angular momentum channel, and the position is given by Eq.
4.32. The higher the angular momentum, the sharper the resonances, consistent with the
scaling of the width Eq. (4.34).

4.4.2. Chaotic quantum dot

We now extend our analysis to a quantum dot of arbitrary geometry. For the generic
situation, the scattering matrix is no longer diagonal in the angular momentum basis and
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4.4. Graphene quantum dot

Figure 4.6.: Density of states for a circular quantum dot. Resonances are labelled accord-
ing to their angular momentum |m| (R/L = 0.2).

an analytical solution is no longer available. We pursue a numerical approach for the
calculation of the scattering matrix instead.

Our numerical method follows the calculation of the scattering matrix in Ch. 3. The
problem is broken up into thin circular slices, for which the scattering effect is weak and
may be captured in Born approximation. The scattering matrix of the full system is then
obtained by subsequent concatenation of the scattering matrices of the slices. A difference
with Ch. 3 is that we have to calculate the scattering matrix at a finite energy or potential
in order to evaluate Eq. (4.20). Since the quantum dot has a finite size, the numerical
evaluation is necessary up to a distance R̃ away from the origin only. (For the geometry
shown in Fig. 4.7, one has R̃ = R + a). For R̃ < r < L the analytical calculations
outlined above can be used. We refer to Appendix B.2 for further details of the numerical
implementation.

As a prototypical example of a chaotic dot, we now investigate the density of states for
a stadium-shaped quantum dot. In Fig. 4.7, we show the result of a calculation of the
density of states as a function of the gate voltage V0. We find a series of resonances of
similar width. The width is comparable to that of the broadest resonances for the circular
dot, in agreement with the general expectation that confinement is suppressed in chaotic
dots.

To further analyze the situation, we zoom in on the first resonance and investigate its
dependence on the strength of the dot-lead coupling R/L, see Fig. 4.8. We extract height
and width of the resonance by fitting to a Lorentzian,

νdot =
2RA
~πv

Γ

4R2(V0 − V ′0)2 + Γ2
, (4.36)

where V ′0 is the resonance position. For the chaotic structure, we expect the resonant states
to be composed as a mixture of all angular momentum channels. In the limit of large L/R
we expect that the lowest possible angular momentum channel |m| = 1

2 is dominant. The
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Figure 4.7.: Density of states for a stadium quantum dot. (R/L = 0.2, 2a/R =
√

3.)

behavior of the resonances should then resemble those of a |m| = 1
2–resonance of a circular

dot, i.e., we expect width and amplitude to scale as

Γ = a
R

L
, (4.37)

A = b+ c log
L

R
, (4.38)

with coefficients a, b, and c of order unity. The numerical study indeed verifies this
assertion, as can be seen from the inset of Fig. 4.8. We further checked, that the other
resonances of Fig. 4.7 show the same behavior for sufficiently small values of R/L, although
the onset of the asymptotic small-R/L behavior and the precise values of the numerical
coefficients a, b, and c vary from resonance to resonance. We attribute these variations to
the different constitutions of the resonances, indicating the relative weigth of the |m| = 1

2
channel for a certain resonance in comparison to higher angular-momentum channels. We
further verified, that the position of the resonances agrees with the ones obtained in a
calculation of the conductance (Ch. 3).

To summarize: For a regular quantum dot, we find signatures of well-confined states,
that become very sharp in the limit of weak coupling between dot and lead, as well as
broad resonances with a width scaling ∝ R/L upon changing the coupling to the lead.
For the chaotic dot, we observe such “broad” resonances only. The results for the density
of states are consistent with the results for a two-terminal conductance setup.

4.5. Effect of a π-flux

The difference between regular and chaotic quantum dots in graphene becomes much more
pronounced, when we introduce a magnetic flux carrying half a flux quantum. Electrons
encircling this flux tube acquire an Aharonov-Bohm phase of π, which cancels the Berry
phase that the electronic wavefunction collects via the pseudospin upon performing a
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Figure 4.8.: Density of states for the first resonance, as well as resonance height A and
width Γ (insets) of the stadium dot for various values of the ratio R/L.
(2a/R =

√
3.)

circular motion. The magnetic flux shifts the kinematic angular momentum to integer
values, allowing for a state that cannot be confined by gate potentials.

We now analyse the density of states for a graphene quantum dot in the presence of
such π-flux. For this, we add the vector potential

A(r) =
~
e

1

2r
êθ. (4.39)

Inclusion of A(r) into the Dirac equation amounts to making the replacement ∂± → D±
in Eq. (4.21), with (see also Sec. 4.1)

D± = e±iθ
(
∂r ± i1

r∂θ ∓
1
2r

)
. (4.40)

We further introduce the kinematic angular momentum,

jz,kin = [r× (p + eA)]z + ~
2σz (4.41)

For the π-flux (4.39), the kinematic angular momentum is related to the canonical angular
momentum as jz,kin = jz + ~/2, and therefore is quantized in integer multiples of ~. We
now consider the effect of a π-flux line on the density of states in a circular and chaotic
quantum dot separately.

4.5.1. Circular dot

For the circular dot the flux line is positioned in the origin, so that rotational symmetry is
preserved. The calculation for the density of states proceeds in an analogous way as in the
case without flux line. The presence of the flux modifies the basis wavefunctions (4.23).
We label the new basis states by the integer index of the kinematic angular momentum µ,

jz,kinψ
(±)
k,µ = µ~ψ(±)

k,µ . (4.42)
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For non-zero µ, the basis states now read

ψ
(±)
k,µ (r) =

√
k

8v

(
ei(µ−1)θH

(±)
|µ−1/2|(kr)

i sgn(µ)eiµθH
(±)
|µ+1/2|(kr)

)
, (4.43)

while for zero kinematic angular momentum, we find

ψ
(±)
k,0 (r) =

e±ikr√
4πrv

(
±e−iθ

1

)
. (4.44)

The state with zero kinematic angular momentum needs to be discussed separately, and
will be responsible for the crucial difference caused by the magnetic flux. Let us discuss
the states with non-zero kinematic angular momentum first, where the magnetic flux only
leads to slight modifications. Indeed, one finds that the results of Eqs. (4.27)-(4.28) remain
valid, provided the half-integer index m is replaced by the integer index µ, which labels
kinematic angular momentum. In particular, resonances in the density of states now
appear at roots of half-integer Bessel function J|µ|−1/2(V0R) = 0, and the resonance width

is Γ = 2(R/L)2|µ|.
For the case µ = 0 regularity of the wavefunction at the origin is not sufficient to deter-

mine the scattering matrix S0(ε). This problem can be cured by a suitable regularization
of the flux line. Taking a flux line of extended diameter we find the condition that the
upper component of the wavefunction has to vanish at the origin (see Sec. 4.1). With this
regularization the calculation of the scattering matrix S0(ε) is straightforward and has the
result

S0 = e−2i(k∞−k0)Re−2i(k∞−k)(L−R), (4.45)

where k = ε/~v and k0 = ε/~v+V0. This scattering matrix gives a constant, non-resonant
contribution to the density of states, which will be disregarded in the considerations that
follow because it is independent of the gate voltage V0.

We show the density of states for a circular quantum dot in the presence of a flux
tube in Fig. 4.9. It contains resonances originating from non-zero angular momentum
channels. The position and the width of such resonances has been discussed above. The
zero-angular momentum channel has no V0-dependent contribution to the density of states.
Our findings are consistent with a simulation of the two-terminal transport, concerning
the position and the scaling of the width upon changing R/L of the resonances (Sec. 4.2)
although the regime of small R/L could not be accessed there.

4.5.2. Chaotic Dot

The numerical method described in Sec. 4.4.2 and the appendix can be easily carried over
to the case with the π-flux, by taking the wave functions Eqs. (4.43) and (4.44) instead of
Eq. (4.23). One has to pay attention to the boundary condition at the origin for the zero
angular momentum channel, as discussed above.

We show the result of a calculation of the density of states of a stadium-shaped quantum
dot in the presence of a flux tube in Fig. 4.10, as a function of the dot’s potential. The
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4.5. Effect of a π-flux

Figure 4.9.: Density of states for a circular quantum dot in the presence of a flux tube.
Resonances are labelled according to their kinematic angular momentum |µ|.
(R/L = 0.2.)

flux tube is placed off-center in order to lift a twofold rotation symmetry. We observe a
density of states with broad peaks, the peak widths typically being much larger than for the
circular dot (compare with Fig. 4.9). The analysis can be made quantitative by considering
a specific “peak” as a function of R/L, see Fig. 4.11. Remarkably, the density of states
saturates in the limit R/L→ 0 that corresponds to a weak coupling between the quantum
dot and the ring-shaped metallic contact. This behavior is a qualitative difference with
the case of a circular dot and clearly distinguishes resonances of a chaotic dot with flux
from those of a regular dot or the situation without flux. We explain this feature by the
special role of the zero angular momentum channel, that becomes dominant decay channel
in the limit of small R/L. As this channel is not capable of binding (or backscattering)
states, the density of states becomes insensitive of the distance L to the metallic contact.
The transient behavior for R/L of order unity is attributed to the contribution from finite-
angular-momentum channels to the resonance width, which gradually disappears if R/L
becomes small.

For the specific resonance shown in Fig. 4.11, the saturation of the density of states
takes place only for very small dot sizes. On the other hand, the absence of a bound
state may also be inferred from an analysis of the width of the resonance-like feature as
a function of R/L. Obtaining the width Γ from a Lorentzian fit, the inset of Fig. 4.11
shows that Γ approaches a finite value as R/L goes to zero, with a leading correction
∝ (R/L)2, which we attribute to a contribution from the angular momentum channel
|µ| = 1. Such behaviour is in stark contrast to the scenario without flux tube, where the
width goes to zero in the limit R/L → 0. We verified the same qualitative behavior for
the other resonance-like features shown in Fig. 4.10, where the value of R/L, at which the
width saturates, varies considerably for different resonances, expressing the variations of
the relative contribution in the channel of zero angular momentum. We also found rough
agreement in the positions of the resonances with the ones obtained in the calculation
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4. The role of the Berry phase for electrostatic confinement in graphene

Figure 4.10.: Density of states for a stadium-shaped quantum dot in the presence of a
π-flux tube. The flux is shifted from the center of the stadium in order to
break inversion symmetry und obtain a truly chaotic structure, see also Sec.
4.2. (R/L = 0.2, 2a/R =

√
3, d = 2a/3.)

of the conductance (Sec. 4.2), although no precise comparison is possible here, since the
resonances cannot be made arbitrarily narrow upon making the dot smaller. We note,
that our calculation of the density of states allows us to access for much smaller values
of R/L as compared to the numerical study of the two-terminal conductance in Sec. 4.2,
including access to the regime, where the lineshape of the density of states saturates.

4.6. Conclusion

In this Chapter we investigated the observation of Chapter 3, that the two-terminal con-
ductance of a generic gate-defined graphene quantum dot shows resonances in the limit of
a weak coupling to the leads, in spite of the naive expectation that electrons can not be
confined in such a quantum dot because of Klein tunneling. We attribute this observation
to the Berry phase in graphene, which quantizes angular momenta to half-integer values.
With half-integer angular momenta, strict perpendicular incidence — the condition for
Klein tunneling with unit probability — does not occur. As a consequence, conductance
resonances exist in both integrable and chaotic geometries. The only difference between
the two cases is a quantitative one: it concerns the scaling of the resonance widths with
the coupling to the leads.

The Berry phase can be cancelled against an Aharonov-Bohm phase, when a flux tube
containing half a flux quantum is introduced to the system. With a magnetic flux tube,
we showed that the relevant angular momentum, the kinematical angular momentum, is
quantized to integer values. In this case a state with zero angular momentum is possible.
Such a state can not form a bound state or give rise to a conductance resonance. We
showed this by an explicit calculation for the disc-shaped quantum dot in Sec. 4.1, and
using numerical calculations for disc-shaped and stadium-shaped quantum dots in Sec.

58



4.6. Conclusion

Figure 4.11.: Density of states for the first “resonance” and the corresponding resonance
width (inset) of the stadium dot for various values of the ratio R/L. Both
height and width of the feature saturate in the limit R/L → 0. (2a/R =√

3, d = 2a/3.)

4.2. Once the Aharonov-Bohm phase from the π-flux tube cancels the Berry phase, the
results of the full quantum theory are consistent with the simple classical expectations.
With a π-flux, there is a stark qualitative difference between conductance resonance for
integrable and non-integrable quantum dots: Whereas sharp conductance resonances for
the case of an integrable quantum dot continue to exist, in the limit of weak lead-dot
coupling the conductance becomes featureless for a generic non-integrable quantum dot.

We further explored the density of states as an alternative signature of confinement in
this chapter. As we have shown, the calculation of the density of states is significantly
easier than the calculation of the two terminal conductance, which allows us to extend
the analysis to quantum dots with a flux line (in order to highlight the role of the Berry
phase associated with the graphene pseudospin) and to access the regime of well isolated
resonances, which requires the limit that the metallic contacts are far away from the
quantum dot. This limit could not be reached in numerical simulations of the two-terminal
transport.

The strong influence of the geometry on the capability of the quantum dot to confine
states can also be deduced from our calculation of the density of states. While both
regular and chaotic dot have resonant signatures in the density of states, the scaling
of the width of these features with the (linear) size L of the undoped graphene layer
separating the dot and the metallic contacts allows to discern the geometries: While for
the chaotic dot, all resonances have a width scaling proprotional to 1/L, indicating a weak
confinement, for the regular dot, most of the resonances have a width that vanishes faster
upon increasing L, indicating well-confined states. The difference between chaotic and
integrable geometries becomes much more pronounced, when a flux tube carrying half a
flux quantum is introduced to the system. In this case, in the limit of large L the lineshape
for the density of states for the chaotic dot saturates — corresponding to a “resonance
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4. The role of the Berry phase for electrostatic confinement in graphene

width” that is independent of L. Such behavior signals the absence of confined states, in
contrast to the case of a disc-shaped dot, that continues to show sharp resonances after a
flux tube has been inserted.

The analysis carried out in this chapter considered the density of states integrated
over the dot and the surrounding undoped graphene sheet. On the other hand, scanning
tunneling microscope experiments measure a local density of states for the region covered
by the tunneling tip. The formalism that we developed here can easily be extended to
this kind of measurement setup. As far as a qualitative analysis of peak widths and peak
positions goes, however, we expect no difference between the local density of states and
the integrated density of states that was studied here.
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5. Semiclassical theory of the interaction
correction to the conductance of antidot
arrays

The wave nature of electrons manifests itself in a number of signatures in the electric trans-
port of disordered metals, such as weak localization, universal conductance fluctuations, or
interaction-induced effects like the Altshuler-Aronov correction to the conductivity. The
qualitative effect of these features is successfully explained on a semiclassical level, based
on classical electronic trajectories through the solid, while the quantitative analysis is typ-
ically reserved to powerful field-theoretical methods, such as diagrammatic perturbation
theory. In recent years however, semiclassical methods have been enormously improved,
such that also a quantitative description of these quantum effects in transport is possi-
ble nowadays. The semiclassical description differs from a field-theoretical description by
the appearence of an additional timescale — the so-called Ehrenfest time, which sets a
minimal time below which wave effects are not operative.

Noninteracting effects as weak localization and universal conductance fluctuations have
been intensively studied by semiclassical methods in past years. This chapter aims at
a semiclassical description for the interaction correction to the electrical conductivity.
Subsequent to an introduction, we develop the semiclassical theory for the interaction
correction of a generic conductor in Sec. 5.2. We then illustrate the effects in quasi-one
and two-dimensional antidot arrays, which represent experimentally relevant examples of
systems that require a semiclassical approach (Sec. 5.3). We conclude our results in Sec.
5.4.

The content of this chapter is based on the publication [Schn 13].

5.1. Introduction

Electronic transport in weakly disordered metals is successfully described by the Boltz-
mann theory, in which electrons are treated as effectively classical particles moving freely
between scattering events. The wave nature of electrons gives rise to a number of correc-
tions to transport properties, such as the weak localization correction [Ande 79, Gork 79],
the Altshuler-Aronov interaction correction [Alts 79, Alts 85b], or the universal conduc-
tance fluctuations [Alts 85a, Lee 85]. Weak localization results from the constructive in-
terference of electrons propagating along time-reversed paths [Chak 86]. The physical
intuition behind the interaction correction is constructive interference of electron trajec-
tories which are scattered on impurities and Friedel oscillations of the electron density
[Rudi 97, Zala 01]. These quantum corrections become increasingly important as the
temperature is lowered, the effective dimensionality of the sample is reduced, or as the
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5. Semiclassical theory of the interaction correction to the conductance of antidot arrays

disorder level is increased. They have a distinctive and universal dependence on external
parameters, such as temperature or magnetic field, which makes them identifiable in exper-
iments. In particular, the two quantum corrections to the conductivity, weak localization
and the Altshuler-Aronov correction, can be distinguished by application of a magnetic
field, since weak localization is suppressed by already a very small magnetic field, whereas
the Altshuler-Aronov correction is not.

A “classical analog” of a disordered metal is realized in high-mobility semiconductor
structures with randomly placed large antidots [Rouk 89, Enss 90]. The absence of im-
purities ensures that electrons move ballistically between reflections off the antidots. The
reason why these systems are referred to as classical is that the size of the antidots a is
much larger than the Fermi wavelength λF. As a result, not only the electron’s motion
through the two-dimensional electron gas, but also the reflection off an antidot is de-
scribed by classical mechanics. (In contrast, in a disordered metal, the size of impurities
is comparable to λF, so that the scattering event is strongly diffractive.) For an irregular
arrangement of antidots, the classical dynamics is chaotic. Nearby trajectories separate
exponentially in time, the exponential separation being characterized by the Lyapunov
coefficient λ. The chaotic dynamics is essential for the existence of quantum corrections
in this system, as it magnifies the quantum uncertainty of even a minimal wavepacket up
to classical dimensions within the short time

τE =
1

λ
ln(a/λF), (5.1)

thus transforming the classical dynamics into quantum-diffractive dynamics on time scales
larger than τE [Alei 96]. The time τE is known as the “Ehrenfest time”.

Since wave effects are not operative for times shorter than τE — electrons essentially
move along classical trajectories up to the Ehrenfest time —, the Ehrenfest time serves
as a short-time threshold for the duration of the trajectories contributing to the quantum
corrections in an antidot array. For weak localization, it was found that the correction
to the conductivity is exponentially suppressed if τE is larger than the dwell time τD, the
typical time to be transmitted through the system, or the dephasing time τφ [Alei 96,
Adag 03, Brou 07, Tian 07]. In contrast, other quantum corrections, such as the universal
conductance fluctuations, remain finite if τE � τD [Twor 04, Jacq 04, Brou 06, Brou 07].

The goal of this chapter is to present a theory of the Ehrenfest-time-dependence of
the Altshuler-Aronov correction δGAA. The analysis presented here significantly extends
a previous calculation by Kupferschmidt and Brouwer [Brou 08], which studied the τE

dependence of the interaction correction to the conductance of a ballistic double quantum
dot and found that δGAA is strongly suppressed if τE exceeds the dwell time τD or the
inverse temperature ~/T . The double quantum dot studied in Ref. [Brou 08] is the simplest
system with nonzero Altshuler-Aronov correction to the conductance, and is characterized
by a long-range interaction, which is spatially homogeneous within each dot. The theory
presented here is valid for both short-range and long-range interactions and can be applied
to any geometry in which the classical electron dynamics is chaotic — although we will
focus our discussion on the case of an antidot array. For the general case considered
here we confirm the suppression of δGAA for τE � min(τD, ~/T ) and we calculate the
precise functional dependence of δGAA on τD and T for finite Ehrenfest time. The explicit
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dependence on temperature is characteristic for the interaction correction, which has its
origin in virtual processes with an energy transfer larger than temperature.

Our calculation makes use of a semiclassical formalism that starts from the saddle-point
approximation around classical trajectories for the single-particle Green function. In this
way, the conductance in the absence of electron-electron interactions is written as a double
sum over classical trajectories that connect source and drain reservoirs [Jala 90, Bara 93].
Weak localization and other quantum corrections to the conductance then follow from
special configurations of trajectories, in which the two trajectories in the summation are
piecewise paired, and proceed through “crossings” at points where the pairing is changed
[Rich 02, Mull 07]. In the language of diagrammatic perturbation theory, segments where
the trajectories are paired correspond to diffusons or cooperons, whereas the crossings cor-
respond to Hikami boxes. The application to interacting electrons requires a modification
of the formalism, which will be described in detail below.

Our analysis applies to a “ballistic” conductor, where the label “ballistic” is meant to
specify that the electrons move along well-defined classical trajectories. In the literature,
“ballistic” sometimes refers to a different limit, and several calculations of the interaction
correction to the conductance have been reported for such “ballistic limits”. Whereas
the original work of Altshuler and Aronov [Alts 79] addressed a disordered metal with
short-range scatterers in the diffusive regime Tτ � 1, the theory was generalized to ac-
count for the effects of higher temperatures Tτ & 1, a regime referred to as “ballistic”
[Gold 86, Das 99, Zala 01]. The case of a smooth disorder potential, in which scatter-
ing is predominantly forward, was considered in Ref. [Gorn 04]. Another type of system,
where interaction corrections appear, are networks of capacitively coupled ballistic quan-
tum dots [Belo 03, Golu 04, Kupf 08], where, however, Ehrenfest-time-related phenomena
can be neglected as long as τE is much smaller than the dwell time in a single quantum
dot. Interactions also affect the conductance through their effect on the weak localization
correction (dephasing). Semiclassical studies of the effect of interaction-induced dephas-
ing on weak localization can be found in Refs. [Yevt 00, Tian 07, Peti 07, Whit 08], for
electronic systems and in Ref. [Hart 12] for bosonic matter waves.

5.2. Semiclassical theory of the interaction correction

In this section we present the semiclassical description of the interaction corrections for
a conductor with a well-defined chaotic classical electron dynamics. We first review the
expressions for the interaction corrections to the conductance in terms of the single-particle
Green function, and then apply the semiclassical approximation methods, taking into
account the finite Ehrenfest time.

5.2.1. Skeleton diagrams for the conductance

For definiteness, we consider a two-dimensional ballistic conductor, such as a ballistic
electron gas with an antidot array, in contact with reservoirs at x = 0 and x = L, see Fig.
5.1. Without interactions, we can calculate the conductance G from the Kubo formula
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5. Semiclassical theory of the interaction correction to the conductance of antidot arrays

Figure 5.1.: Schematic picture of the system under consideration: A ballistic conductor,
attached to ideal leads at x = 0 and x = L. In the semiclassical calculation of
the conductance, one retarded and one advanced Green function are attached
to a current vertex located at the interface with the leads. In a semiclassical
picture, these Green functions are associated with “retarded” and “advanced”
classical trajectories (solid and dashed in the figure), both of which must point
into the conductor (1). A current vertex combined with two Green functions
of the same kind is not possible for the calculation of the conductance: af-
ter pairing, we have trajectories that go straight into the leads (2). On the
contrary, for a calculation of the conductivity, the current vertex can be any-
where inside the conductor, and pairing of retarded and advanced trajectories
is possible also if two Green functions of the same kind are attached to one
current vertex (3 and 4).

[Akke 07],

G =
e2~
π

∫
dy

∫
dy′
∫
dξ

(
−∂f(ξ)

∂ξ

)[
v̂xGR(r, r′; ξ)v̂x′GA(r′, r; ξ)

]
x′=0
x=L

, (5.2)

where f(ξ) = 1/(exp(ξ/T ) + 1) denotes the Fermi function,

v̂x =
~

2mi

(−→
∂x −

←−
∂x

)
(5.3)

is the velocity operator, and GR(r, r′; ξ) and GA(r, r′; ξ) is the retarded and advanced
single-particle Green function, respectively. Retarded and advanced Green functions are
related as

GA(r′, r; ξ) = GR(r, r′; ξ)∗. (5.4)

To leading (first) order in the interaction strength, the interaction correction δGAA is
obtained by replacing GR(r, r′; ξ) by GR(r, r′; ξ)+δGR

F (r, r′; ξ)+δGR
H(r, r′; ξ) and expanding
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5.2. Semiclassical theory of the interaction correction

Figure 5.2.: Hartree (upper) and Fock (lower) diagrams: solid (dashed) lines represent re-
tarded (advanced) Green functions, the wiggly line represents the interaction.
Each diagram has a counterpart with retarded and advanced Green functions
interchanged.

to first order in the interaction U [Alei 99, Zala 01, Brou 08], where

δGR
F (r, r′; ξ) =

∫
dω

4πi

∫
dr1dr2 tanh

(
ω − ξ

2T

)
GR(r, r1; ξ)GR(r2, r

′; ξ)

× {UA(r1, r2;ω)GR(r1, r2; ξ − ω)− UR(r1, r2;ω)GA(r1, r2; ξ − ω)},
(5.5)

δGR
H(r, r′; ξ) = −2

∫
dω

4πi

∫
dr1dr2 tanh

(
ω − ξ

2T

)
GR(r, r1; ξ)GR(r1, r

′; ξ)

× {UA(r1, r2; 0)GR(r2, r2; ξ − ω)− UR(r1, r2; 0)GA(r2, r2; ξ − ω)},
(5.6)

and with similar expressions for the advanced functions δGA
F (r′, r; ξ) and δGA

H(r′, r; ξ). In
these expressions, UR(r1, r2;ω) and UA(r1, r2;ω) are the retarded and advanced interac-
tion kernels, respectively. The interaction is taken to be zero in the leads, for x < 0 and
x > L. Such a structure represents the change of the single-particle Green function due to
scattering off Friedel oscillations of the density matrix ρ(r1, r2) (Fock) or the density ρ(r2)
(Hartree) [Zala 01]. The resulting contributions to δGAA are represented diagrammatically
as in Fig. 5.2.

We would like to emphasize that we kept here only those diagrams for which one re-
tarded and one advanced Green function are connected to each current vertex. These are
the relevant diagrams for the calculation of the conductance. This is in contrast to the
calculation of the interaction correction to the conductivity δσAA, where diagrams with
two Green functions of the same kind attached to the current vertex play an important
role [Alts 79]. (The conductivity σ is expressed in a similar way as Eq. (5.2), but contains
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integrals over the x-coordinates as well, rather than fixing them to the contacts at x = 0
and x = L). Although the structure of the calculation for conductance or conductivity
considerably differs, the final results for these quantities are related by a geometrical factor
only. In two dimensions, for a rectangular sample, one has G = σWL , where W is the width
of the system.

The difference between the conductance calculation and the conductivity calculation is
readily seen in the semiclassical language. In that language, Green functions are associated
with classical trajectories, and only terms in which “retarded” and “advanced” trajectories
are paired contribute. (For more details, see below). Since the leads are assumed to be
free of disorder and without electron-electron interactions, both the retarded and the
advanced trajectories at the positions r and r′ in Eq. (5.2) must point into the conductor
if the conductance is calculated. On the other hand, for a current vertex in the system’s
interior, pairing of advanced and retarded trajectories is still possible even if two Green
functions of the same kind are attached to the current vertex, see Fig. 5.1.

The fact that different diagrams are needed for the calculation of conductance and
conductivity is well known, the same is true for the Drude conductance and conductance
fluctuations of a disordered metal (see Ref. [Kane 88]). For instance, for the calculation
of the Drude conductivity σ0 in a metal with short-ranged disorder there is no need to
dress the diagram with an impurity ladder, while for the classical conductance G0, the
diagram dressed with an impurity ladder, i.e., a diffuson, is most relevant. For the Drude
conductivity one might argue that the distance between the current vertices is of the order
of the mean free path, since the two Green functions decay on this scale. The diffuson in
turn is long-ranged, and hence needed to describe propagation from one lead to the other,
as required for the conductance.

We also note that the calculation of the conductance as it is outlined here is similar to
the calculation of the density-density correlation functions [Fink 83, Cast 84]. A subtle
point in this regard is the existence of additional corrections in the calculation of the
density-density correlation function, namely vertex corrections and the so-called wave-
function renormalization. In the description developed below, both of them appear to
vanish. For the density-density correlation function, in turn, vertex corrections and the
wave function renormalization cancel each other, so that these corrections do not lead to
a net change of the result in either case.

5.2.2. Semiclassical theory

The conductance G depends on the precise locations of antidots, the system boundary,
and on the Fermi energy. We now employ a semiclassical analysis in order to identify those
contributions to the conductance that remain after an average over the Fermi energy.

Starting point is the semiclassical expression of the Green function GR(r, r′; ξ) as a sum
over classical trajectories α from r′ to r at energy ξ [Gutz 90],

GR(r, r′; ξ) =
2π

(2πi~)3/2

∑
α

Aαe
iSα/~. (5.7)

Here, Sα(r, r′; ξ) is the classical action corresponding to the trajectory α, which has the
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properties
∂Sα
∂r

= pα,
∂Sα
∂r′

= −p′α, (5.8)

and
∂Sα
∂ξ

= τα, (5.9)

where pα and p′α denotes the momentum at the end and beginning of α, respectively,
and τα is the duration of the trajectory. The stability amplitude Aα is given by Aα =√
|det(Dα)|, with

Dα =

(
∂2Sα
∂r′∂r

∂2Sα
∂r′∂ξ

∂2Sα
∂ξ∂r

∂2Sα
∂ξ2

)
. (5.10)

The semiclassical Green function further contains an additional phase-shift, the so-called
Maslov index [Gutz 90], which we omitted because it does not play a role in our con-
siderations. The semiclassical expression for advanced Green function follows from Eq.
(5.4).

Using the semiclassical Green function (5.7) we express the interaction correction δGAA

as a fourfold sum over classical trajectories. We refer to these trajectories as “retarded” or
“advanced”, depending on the type of the Green function that they originate from. The
summation over classical trajectories can be simplified for a system with chaotic classical
dynamics: In this case, the classical trajectory and hence the classical action depend very
sensitively on the initial conditions. On the other hand, in the semiclassical limit ~ → 0
only configurations of trajectories with sum of the actions of the “retarded” trajectories
systematically equal to the sum of the actions of the “advanced” trajectories up to a
difference ∆S of the order of ~ contribute substantially to the conductance. This occurs
only if the “retarded” and “advanced” trajectories are piecewise paired, whereby they can
exchange “partners” only at a “small-angle encounter” [Rich 02], at which two pairs meet
to within a phase-space distance of order ~1/2.

For the remaining summation over trajectories, we use a sum rule that expresses the
summation over trajectories α between positions r′ and r and at energy ξ in terms of an
integral over the trajectory’s duration t, the initial and final momenta p′ and p, as well
as a “trajectory density” ρξ(X

′ → X; t) between the phase-space points X′ = (r′,p′) and
X = (r,p) [Arga 95, Arga 96],∑

α:r′→r;ξ

A2
αf(p′α,pα, τα) =

∫ ∞
0

dt

∫
dp′ξ

∫
dpξρξ(X

′ → X; t)f(p′,p, t), (5.11)

see App. C.1.1 for details. Here f is an arbitrary function. The initial point in phase space
X′ = (r′,p′), together with the Hamilton function H uniquely determines the classical
trajectory, and after a time t this trajectory has reached the phase space point X(t) =
(r(r′,p′; t),p(r′,p′, t)). The trajectory density

ρ(X′ → X; t) = δ[X−X(t)] (5.12)

= δ[r− r(r′,p′; t)]δ[p− p(r′,p′; t)]

selects then only those phase space points which are connected by a trajectory of duration
t. At fixed energy ξ, the momentum integrations are restricted to the energy shell, dpξ =
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Figure 5.3.: Configuration of trajectories relevant for the first diagram to the Fock
contribution.

dpδ(ξ−H(p, r)), and for the trajectory density we may factor out the part which ensures
energy conservation,

ρ(X′ → X; t) = ρξ(X
′ → X; t)δ[H(X)−H(X′)]. (5.13)

The factor A2
α provides the Jacobian for this transformation.

Following the procedure outlined so far, we obtain an expression in terms of trajectory
densities which, strictly speaking, is a sum of δ-functions. We then replace the exact
trajectory density ρξ by a coarse-grained smooth density ρ [Smil 92, Arga 93]. The coarse
graining takes place with respect to small fluctuations of the initial and final phase space
points and/or the positions of the scattering discs or the system’s boundaries. In the
regime λτD � 1, where the chaotic dynamics has fully developed, the classical dynamics
is essentially stochastic, which justifies the coarse graining procedure. The coarse-grained
trajectory density

ρξ(X
′ → X; t) = P (X,X′; t) (5.14)

can be identified with the probability density P (X,X′; t) that a particle originating at the
phase space point X′ = (r′,p) is found at the phase space point X = (r,p) after a time
t. (Since we are interested in the regime where temperature is much smaller than Fermi
energy, we drop the dependence of the classical propagators on ξ.) For the case of antidot
arrays, this probability density is described by a diffusion equation.

The Drude conductance is obtained by keeping only pairs of classical trajectories that
connect source and drain reservoirs. Following the steps described above, we find

G0 =
e2

2π2~2

∫ ∞
0

dt

∫
dydy′

∫
dpξdp

′
ξ

[
vxP (X,X′; t)v′x

]
x′=0
x=L

(5.15)

We now turn to the semiclassical calculation for the interaction correction.

5.2.3. Fock contribution

We start with the Fock contribution to δGAA, which is given by the two lower diagrams
in Fig. 5.2, together with their counterparts, which are obtained by interchanging the
retarded and advanced Green functions. We first consider the conductance correction
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5.2. Semiclassical theory of the interaction correction

δGF,1
AA from the lower left diagram and its counterpart, which reads

δGF,1
AA = −e

2~
π

∫
dξ

(
−∂f(ξ)

∂ξ

)∫
dω

2π
tanh

(
ω − ξ

2T

)
Im

{∫
dr1dr2U

R(r1, r2;ω)

×
∫
dy

∫
dy′
[
v̂xGR(r, r′; ξ)v̂x′GA(r′, r2; ξ)GA(r2, r1; ξ − ω)GA(r1, r; ξ)

]
x′=0
x=L

}
.

(5.16)

After insertion of the semiclassical expression Eq. (5.7) for the Green functions, we obtain
a sum over one retarded and three advanced trajectories. In the semiclassical limit, a
convolution of Green functions is customarily calculated using the stationary phase ap-
proximation. For this one first needs to determine the configurations of trajectories which
make the total action stationary. This results in a factor ∝ eiSst , where Sst is obtained by
inserting the stationary configuration into the total action. Integration over quadratic fluc-
tuations around the stationary configurations then renders the prefactor. In the present
case the convolution of Green functions is accompanied by the interaction propagator. One
might expect, that the interaction propagator affects the stationary trajectories, such that
they no longer connect to a single classical trajectory, as in the case without interaction.
However for the calculation of the conductance, we need to pair the advanced trajectories
with the retarded one, see Fig. 5.3. Hence, performing the integration over r1 and r2 in
Eq. (5.16) within stationary phase approximation, we only take into account stationary
configurations that connect to a single classical trajectory. The detailed calculation is
carried out in Appendix C.1.2 and has the result∫

dr1dr2GA(r′, r2; ξ)GA(r2, r1; ξ − ω)GA(r1, r; ξ)UR(r1, r2;ω)

=− 1

~2

2π

(−2πi~)3/2

∑
α:r′→r;ξ

Aαe
−iSα/~

∫ τα

0
dt

∫ t

0
dt′UR(rα(t), rα(t′);ω)eiω(t−t′)/~, (5.17)

where rα(t) is the coordinate of trajectory α after time t. The integration over time reflects
the freedom to choose r1 and r2 anywhere along the trajectory α; the factor eiω(t−t′)/~

takes into account the action difference at different energies, Sα(ξ−ω) = Sα(ξ)−ωτα (for
ω � ξ). With Xα(t) = (rα(t),pα(t)) we may rewrite

UR(rα(t), rα(t′);ω) =

∫
dX1dX2ρξ(X

′
α → X1; t)ρξ(X

′
α → X2; t′)UR(r1, r2;ω), (5.18)

where dX = drdpξ is an integration over phase-space points on the energy shell, and
X′α = Xα(0) is the initial phase-space point of trajectory α.

After inserting Eqs. (5.17) and (5.18) into Eq. (5.16), and upon applying the semiclassi-
cal approximation to the retarded Green function as well, the interaction correction δGF,1

AA

is expressed as a double sum over trajectories α and β running from r′ to r. Only diagonal
terms with α = β are systematically nonzero, so that we only keep these. Again making
use of the sum rule (Eq. (5.11)) we express δGF,1

AA as an integral over the two intermediate
phase space points X1 and X2. Before the exact trajectory densities can be replaced by
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5. Semiclassical theory of the interaction correction to the conductance of antidot arrays

their coarse-grained versions, we split the classical trajectories into uncorrelated segments
using the equality ∫ ∞

0
dt

∫ t

0
dt′ρξ(X0 → X1; t)ρξ(X0 → X2; t′)

=

∫ ∞
0

dt1ρξ(X0 → X2; t1)

∫ ∞
0

dt2ρξ(X2 → X1; t2). (5.19)

After coarse-graining, the expression for δGF,1
AA involves the probability densities P (X1 →

X2; t) for the chaotic classical motion. The expression can be further simplified by intro-
ducing

Pin(X) =

∫
dy′
∫
dp′ξ

∫ ∞
0

dt
[
v′xP (r′,p′ → X; t)

]
x′=0

,

Pout(X) =

∫
dy

∫
dpξ

∫ ∞
0

dt [P (X→ r,p; t)vx]x=L , (5.20)

which express the probability that a trajectory at phase space point X entered at the left
contact or exits at the right contact, respectively. Using the equality∫

dξ

(
−∂f(ξ)

∂ξ

)
tanh

(
ω − ξ

2T

)
=

∂

∂ω

(
ω coth

ω

2T

)
(5.21)

we finally obtain

δGF,1
AA =

e2

4π3~4

∫
dω

∂

∂ω

(
ω coth

ω

2T

)
Im

{∫
dX1dX2U

R(r1, r2;ω)K1(X1,X2;ω)

}
,

(5.22)

where we singled out the part containing classical propagators,

K1(X1,X2;ω) =

∫ ∞
0

dtPout(X1)P (X1,X2; t)eiωt/~Pin(X2). (5.23)

We now consider the interaction correction δGF,2
AA that corresponds to the lower right

diagram of Fig. 5.2 and its counterpart obtained by switching retarded and advanced
labels,

δGF,2
AA = −e

2~
π

∫
dξ

(
−∂f(ξ)

∂ξ

)∫
dω

2π
tanh

(
ω − ξ

2T

)
Im

{∫
dr1dr2U

R(r1, r2, ω)

×
∫
dy

∫
dy′
[
v̂xGR(r, r1; ξ)GA(r1, r2; ξ − ω)GR(r2, r

′; ξ)v̂x′GA(r′, r; ξ)
]
x′=0
x=L

}
.

(5.24)

Insertion of the semiclassical expression for the Green functions leads to a fourfold sum over
two retarded trajectories (from r′ to r2 and from r1 to r), and two advanced trajectories
(from r′ to r and from r1 to r2).
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5.2. Semiclassical theory of the interaction correction

Figure 5.4.: Configurations of trajectories relevant for the second diagram to the Fock
contribution. Encounter regions are indicated in blue; here the motion of all
four trajectories is correlated.

Because of the specific requirements for the start and end points of the trajectories,
it is not possible, to pair the trajectories one by one for their entire duration. Instead,
the trajectories need to undergo a “small-angle encounter”, in which all four trajectories
are close together in phase space for at least part of their length [Rich 02]. The four
possible configurations of trajectories are shown in Fig. 5.4, where we take into account
the possibilities that none, one, or both points r1 and r2 lie inside the encounter region.
Their contributions to δGAA will be denoted δGF,2a

AA –δGF,2d
AA , see Fig. 5.4.

The summation over classical trajectories with a small-angle encounter follows the pro-
cedure outlined in Refs. [Mull 07, Brou 07]. We refer the reader to appendix C.1.3 for
details, and proceed with the results of that calculation. All four contributions to δGAA

have the same form as the contribution from the first diagram, see Eq. (5.22), but with
different expressions for the function K(X1,X2;ω). For the contributions 2a–2d these
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5. Semiclassical theory of the interaction correction to the conductance of antidot arrays

expressions read

K2a = −
∫
dXdX′Pin(X)P (X,X1;ω)P (X2,X

′;ω)Pout(X
′)

× ∂

∂τE

[
P (X′,X; τE)eiωτE/~

]
, (5.25)

K2b = −
∫
dXPin(X)P (X,X1;ω)Pout(X2)P (X2,X; τE)eiωτE/~, (5.26)

K2c = −
∫
dX′Pin(X1)P (X2,X

′;ω)Pout(X
′)P (X′,X1; τE)eiωτE/~, (5.27)

K2d = −
∫ τE

0
dtPin(X1)P (X2,X1; t)eiωt/~Pout(X2). (5.28)

Here P (X,X′;ω) is the Fourier transform of P (X,X′; t),

P (X,X′;ω) =

∫ ∞
0

dtP (X,X′; t)eiωt/~. (5.29)

Taken together, Eqs. (5.22), (5.23), (5.25), (5.26), (5.27), and (5.28) determine the general
result for the Fock contribution to δGAA for finite Ehrenfest time, expressed in terms of
classical propagators.

Let us briefly discuss the effect of the Ehrenfest time: Interestingly, the contribution
K1 does not involve a crossing and therefore shows no dependence on the Ehrenfest time.
However, it is cancelled by the contribution K2d, if the travel time between X1 and X2

is shorter than the Ehrenfest time. Thus, adding all contributions together, we indeed
find, that effectively only trajectories with a duration longer than the Ehrenfest time are
responsible for the interaction correction.

5.2.4. Hartree contribution

The Hartree contribution to the Altshuler-Aronov correction is given by the two upper
diagrams in Fig. 5.2. Proceeding as in the case of the Fock contribution, each Green
function is written as a sum over classical trajectories, which must then be piecewise
paired in order to give a nonvanishing contribution to the interaction correction to the
conductance. The resulting configurations of classical trajectories are shown schematically
in Fig. 5.5. The trajectory configurations of Fig. 5.5 are in one-to-one correspondence to
those of Figs. 5.3 and 5.4 for the Fock contribution to δGAA: The diagram of Fig. 5.5a
corresponds to that of Fig. 5.3, whereas the diagrams of Fig. 5.5b–e correspond to those
of Fig. 5.4a–d.

Unlike the Fock diagrams, all diagrams for the Hartree correction involve a finite-angle
crossing of the trajectories, in addition to the small-angle encounter of Figs. 5.5b–e. An-
other important difference is that the action difference ∆S for the Hartree case depends
on the two positions r1 and r2 associated with the interaction vertex. Denoting the mo-
menta involved in the finite-angle crossing of the trajectories by p1 and p2, see Fig. 5.5,
the action difference contributes an additional oscillating phase factor ei(r1−r2)·(p1−p2)/~.
(No fast oscillating phase factors are associated with the integration over r1 and r2 for
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5.2. Semiclassical theory of the interaction correction

Figure 5.5.: Configurations of classical trajectories that give the Hartree contribution to
the interaction correction δGAA. The configurations in parts b–e contain a
small-angle encounter, indicated in blue. All five configurations also contain
a crossing of the classical trajectories. The momenta associated with the
crossing are denoted p1 and p2.
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5. Semiclassical theory of the interaction correction to the conductance of antidot arrays

the Fock diagrams.) For chaotic classical motion, the directions of the momenta p1 and
p2 are random and uncorrelated, while the magnitude |p1| = |p2| = pF is fixed by energy
conservation. As a result, only a short-range component of the interaction contributes
to the Hartree correction, and one finds the same expression for δGAA as for the Fock
contribution, with the replacement [Alts 79]

UR(r1 − r2;ω)→ −2δ(r1 − r2)

〈∫
dreir·(p1−p2)/~UR(r;ω = 0)

〉
p1,p2

, (5.30)

where the brackets 〈. . .〉 indicate an average over the momenta p1 and p2 with |p1| =
|p2| = pF. In case of a short-range interaction U(r1, r2) ∝ δ(r1− r2), one verifies that this
replacement rule leads to δGH

AA = −2δGF
AA, in agreement with Eqs. (5.5) and (5.6).

Intuitively, the interaction correction associated with the trajectory configurations of
Fig. 5.5 can be interpreted as the interference of electrons that follow a classical trajectory
connecting source and drain contacts, and electrons that additionally scatter from Friedel
oscillations [Rudi 97, Zala 01, Alei 99]. In the configuration of Fig. 5.5a the trajectory that
contains the scattering from the Friedel oscillation is shorter than that of the reference
trajectory, whereas it is longer in the configurations of Figs. 5.5b–e. The phase difference
between the scattered trajectory and the reference trajectory is precisely compensated
by the phase of the Friedel oscillation [Alei 99]. A similar interpretation applies to the
Fock contribution, although here the scattering is from Friedel oscillations of the density
matrix, not of the electron density itself.

5.2.5. Coulomb interaction

For the Coulomb interaction UC(r1, r2) = e2/|r1 − r2|, due to the long-range nature, it
is never sufficient to deal with the first order in perturbation theory only, and effects
of dynamical screening have to be included. Hence it is not sufficient to consider only
diagrams with a single bare interaction line as in Fig. 5.2; instead one has to sum up
a ladder of diagrams within the Random Phase Approximation (RPA). This analysis is
explained in Refs. [Fink 83, Alts 83, Zala 01, Gorn 04] and it can be carried over to the
semiclassical formalism without significant modifications.

For the purpose of including higher order interaction contributions, the separation into
Hartree and Fock contributions is no longer meaningful. Instead, it is favorable to decom-
pose the interaction into singlet and triplet channels. Hereto, we consider the interaction
amplitude of a scattering process, where two particles with initial momenta p1 (p2) and
spin α (γ) interact and depart with final momenta p1 + q (p2 − q) and spin β (δ). Since
in the semiclassical theory of transport only paired trajectories are relevant, we may re-
strict our analysis to the case |q| � pF . The classification into singlet (j = 0) and triplet
part (j = 1) then amounts to separating the interaction amplitude according to its spin
structure as

Uαβγδ = U (j=0)δαβδγδ + U (j=1)
∑
i

σiαβσ
i
γδ, (5.31)

where σi represents the Pauli-matrices (i = x, y, z). To lowest order, the interaction
amplitude consists of the scattering processes shown in Fig. 5.6. Here, in the left process
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5.3. Interaction correction for antidot arrays

the interaction transfers a small momentum q. Such small-angle scattering appears in the
Fock contribution to the interaction correction. The spin structure of this process belongs
to the singlet channel. The right process allows for large-angle scattering, which appears
in the Hartree contribution to the interaction correction. This process has to be split into
singlet and triplet contribution, so that we end up with

U
(j=0)
0 (q) = UC(q)− 1

2
〈UC(p1 − p2)〉|p1|=|p2|=pF , (5.32)

U
(j=1)
0 (q) = −1

2
〈UC(p1 − p2)〉|p1|=|p2|=pF . (5.33)

Here we anticipated, that for a diffusive system we may average over the directions of the
momenta of the electrons. To include screening, one then sums up the RPA-series in each
channel,

U (j)(q, ω) = U
(j)
0 (q)− U (j)

0 (q)Π(q, ω)U (j)(q, ω) (5.34)

where the disorder-averaged polarization operator Π is diagonal in spin space (note, that
the disorder average of the polarization operator does not involve a crossing, and therefore
has no τE-dependence).

The discussion so far is valid for weak interaction (i.e. interaction parameter rs � 1).
For stronger interactions, one should also include Fermi liquid effects. Then the structure
of the screened interaction remains the same, but the bare interaction is now expressed in
terms of Fermi-liquid parameters F ρ,σ0 ,

U
(j=0)
0 (q) = UC(q) +

1

2ν
F ρ0 , U

(j=1)
0 (q) =

1

2ν
F σ0 . (5.35)

Let’s turn back to the Altshuler-Aronov correction. Applying the preceding analysis, we
find that Coulomb interaction is properly included, if we calculate the Fock-type diagrams
as in Fig. 5.2, where the interaction is replaced by the effective interaction

U(r1, r2;ω) = U (j=0)(r1, r2;ω) + 3U (j=1)(r1, r2;ω), (5.36)

where the factor 3 comes from the spin summation and accounts for the multiplicity of
the triplet channel. The precise relation between U(r1, r2;ω) and U(q;ω) follows from the
solution of the diffusion equation and will be clarified in the next section (see Eq. (5.59)).

5.3. Interaction correction for antidot arrays

In the preceding Section, we developed the semiclassical theory of the interaction correction
to the conductance, where we expressed our final results in terms of the classical propagator
P (X,X′, t). The explicit expression of this classical propagator is determined by the
geometry of the system under consideration. In semiclassical studies, two prototypical
geometries are mainly investigated: ballistic quantum dots, where the classical chaotic
motion results from reflections at the boundary of the dot, and antidot arrays, where the
placement of artificial macroscopic scatterers leads to a chaotic dynamics. For a single
ballistic quantum dot, the interaction correction vanishes. The simplest example of a
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5. Semiclassical theory of the interaction correction to the conductance of antidot arrays

Figure 5.6.: Lowest order scattering processes of two particles with initial momenta p1

(p2) and spin α (γ), and final momenta p1 + q (p2 − q) and spin β (δ).
Since the interaction conserves spin, the left process is proportional to δαβδγδ
and belongs to the singlet channel, while the right process has the structure
δαδδβγ = 1

2(δαβδγδ +
∑

i σ
i
αβσ

i
γδ) and therefore splits into singlet and triplet

contribution.

geometry with a non-zero interaction correction is hence a double quantum dot, which
was studied in Ref. [Brou 08]. We will first show, how the results of the previous Section
are connected to the results of this reference. The remaining part of this section is then
devoted to the interaction correction for antidot arrays, which has not been theoretically
studied so far.

5.3.1. Double dot

We consider a double dot system, where two identical dots are connected by a ballistic
contact of conductance Gc. The first (second) dot is connected to the left (right) reservoir
by a ballistic contact of conductance Gd. The level density (i.e. the density of states times
the dot’s area) for each dot is N per spin. Within each dot, the phase space is explored
uniformly during the chaotic motion. Hence we might replace the integration over phase
space by a sum over the dots, ∫

dX =
∑
i

Ωi, (5.37)

where we weigh with the available phase space volume Ω1 = Ω2 = (2π~)2N of each dot.
The classical propagators are replaced by

P (X← X′; t) =
1

Ωj
P (j ← i; t). (5.38)

The probability P (j ← i; t) to be in dot j after a time t, when the particle initially started
in dot i, is then calculated from the master equation

∂tP (j ← i; t) = −
∑
m

γjmP (m← i; t), (5.39)

where the rate matrix γ has the form

γ =

(
γL + γ12 −γ12

−γ12 γR + γ12

)
. (5.40)
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Here, γ12 = Gc/2Ne
2 is the rate for transitions between the dots, and γL = γR = Gd/2Ne

2

is the rate for escape to the left and right lead. The solution to Eq. (5.39) reads

P (j ← i; t) =
(
e−γt

)
ji
. (5.41)

The probability Pin (Pout), that a particle in dot i has entered via the left contact (leaves
the system via the right contact) is given by

Pin(i) = γL
(
γ−1

)
1i
, Pout(i) = γR

(
γ−1

)
2i
. (5.42)

The bare interaction of the double dot system can be described by a capacitive coupling
of the dots

U0 =
e2

C
, C =

(
C0 + Cc −Cc
−Cc C0 + Cc

)
, (5.43)

where C0 describes the coupling of each dot to an external gate, and Cc is the cross-
capacitance between the dots. For the inclusion of screening, we make use of the polar-
ization operator

Πij(ω) = 2N
(
δij + iω

~ P (j ← i;ω)
)
, (5.44)

from which we obtain the dynamically screened interaction as

U−1(ω) = U−1
0 + Π(ω). (5.45)

For the frequencies of interest one may neglect the first term in this equation, and one
obtains

Uij(ω) = 1
2N

(
1− iω

~ γ
−1
)
ij
. (5.46)

Using the expressions of this paragraph and the Eqs. (5.22), (5.23), (5.25), (5.26), (5.27),
and (5.28) from the last section, one obtains, after some algebra, the result from Ref.
[Brou 08],

δGAA = − e2

2π~
GdG

2
c

(
τD−e

−τE/τD+ + τD+e
−τE/τD−

)
(Gd + 2Gc)3

× Im

∫
dω

~
eiωτE/~∂ω

(
ω coth ω

2T

)
(1− iωτD+/~)(1− iωτD−/~)

. (5.47)

Here, τD+ = 2Ne2/Gd and τD− = 2Ne2/(Gd + 2Gc) are the characteristic dwell times of
the double dot system (they refer to relaxtion of (anti)symmetric charge configurations).
For zero Ehrenfest time, one recovers the results known from Random Matrix Theory,
while for large Ehrenfest times, δGAA is suppressed as e−τE/τD±−2πτET/~ (for more details,
see Ref. [Brou 08], where the stated results are too large by a factor of two). We note, that
the Hartree contribution is zero in this case, due to the long-range nature of interaction.

5.3.2. Antidot arrays

In the following, we now apply the theory developed in Section 5.2 to quasi one-dimensional
and two-dimensional antidot arrays. The antidot arrays consist of a ballistic electron gas
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5. Semiclassical theory of the interaction correction to the conductance of antidot arrays

with randomly placed disc-shaped scatterers of size much larger than the Fermi wavelength.
The classical dynamics in such an antidot array is chaotic, and diffusive on length scales
much larger than the disc size a or the distance between discs. In particular, since the
Ehrenfest time τE = λ−1 ln(a/λF)� λ−1 because of the large logarithm, and since λ−1 is
comparable to the transport time τ , the diffusive dynamics applies for timescales down to
τE.

A diffusively moving particle quickly loses its memory about the direction of motion,
so that the classical propagators P (X,X′; t) depend on the positions r and r′ associated
with the phase space points X and X′ only. This leads to significant simplifications of the
general semiclassical expressions for the interaction correction δGAA. In order to evaluate
δGAA in this limit, we start by expressing the integration over momentum at fixed energy
as an integration over the corresponding angle φ,

dpξ = (2π~)2ν
dφ

2π
, (5.48)

where ν is the density of states per spin. We then find

P (X,X′; t) =
1

(2π~)2ν
P (r, r′; t), (5.49)

where P (r→ r′; t) depends on the positions only and satisfies a diffusion equation,

(∂t −D∆r)P (r, r′; t) = δ(t)δ(r− r′), (5.50)

with diffusion coefficient D. For a rectangular sample of dimension L ×W , coupled to
ideal leads at x = 0 and x = L and with insulating boundaries at y = 0 and y = W , the
solution of Eq. (5.50) reads

P (r, r′; t) = θ(t)
∑
q

ψq(r)ψq(r′)e−Dq2t, (5.51)

with the function

ψq(r) =

√
4

LW
sin(qxx)×

{
1/
√

2 if qy = 0,

cos(qyy) if qy 6= 0.
(5.52)

The sum over q runs over qx = nπ
L with n = 1, 2, ... and qy = mπ

W with m = 0, 1, .... We
also use the Fourier-transformed diffusion propagator,

P (r, r′;ω) =
∑
q

ψq(r)ψq(r′)

Dq2 − iω/~
. (5.53)

Finally, the probabilities Pin(r) and Pout(r) that a trajectory originating at position r exits
the sample on the left or on the right, respectively, are

Pout(r) =
x

L
, Pin(r) =

L− x
L

, (5.54)
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which may be derived from the diffusive flux

jx(r, r′; t) = −D∂xP (r, r′; t), (5.55)

at position r and time t, for a particle starting from r′ at time t = 0. The Drude conduc-
tance (Eq. (5.15)) is then expressed as

G0 =
e2

2π2~2

∫
dy

∫
dpξ [−D∂xPin(x)]x=L (5.56)

which gives the familiar result

G0 = 2e2νD
W

L
. (5.57)

Let us now turn to the interaction. For the inclusion of screening effects we need the
polarization operator, which, for the low frequencies at which the electron dynamics is
effectively diffusive, can be expressed through the diffusion propagator,

Π(r, r′;ω) = 2ν
[
δ(r− r′) + iω

~ P (r, r′;ω)
]
, (5.58)

Using Eqs. (5.34), (5.35), (5.36), we then find, that the effective interaction can be written
as

UR(r1, r2;ω) =
∑
q

ψq(r)ψq(r′)UR(q, ω) (5.59)

where UR(q, ω) = UR,(j=0)(q;ω) + 3UR,(j=1)(q;ω) is given by

UR,(j=0)(q;ω) =
1

2ν

Dq2 − iω/~
Dq2

(5.60)

UR,(j=1)(q;ω) =
F σ0
2ν

Dq2 − iω/~
Dq2(1 + F σ0 )− iω/~

(5.61)

in the singlet and triplet channel, respectively. Due to the divergence of the bare Coulomb
interaction at small momenta, the interaction in the singlet channel is set by the polariza-
tion operator solely. In the triplet channel, the interaction depends on the zero angular
harmonic of F σ, which is the only free parameter controlling the interaction strength.

For the further calculations, it is convenient to make use of the diffusion equation, to
write

∂

∂τE
[P (r, r′; τE)eiωτE/~] =

(
D∆ +

iω

~

)
P (r, r′; τE)eiωτE/~. (5.62)

With the help of additional spatial integrations over delta functions, which we then replace
using Eq. (5.53), the interaction correction to the conductance then takes the form

δGAA =
νe2

π~2

∫
dω∂ω

(
ω coth

ω

2T

)
Im

{∫
dr1dr2U

R(r1, r2;ω)K(r1, r2;ω)

}
, (5.63)
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where the function K(r1, r2;ω) reads

K(r1, r2;ω) =

∫
drdr′Pin(r)Pout(r

′)

×
{
DωP (r, r1;ω)D′ωP (r2, r

′;ω)

∫ ∞
τE

dtP (r′, r; t)eiωt/~

− P (r, r1;ω)P (r2, r
′;ω)DωP (r′, r; τE)eiωτE/~

+DωP (r, r1;ω)P (r2, r
′;ω)P (r′, r; τE)eiωτE/~

+P (r, r1;ω)D′ωP (r2, r
′;ω)P (r′, r; τE)eiωτE/~

}
, (5.64)

with the short-hand notations Dω = (D∆r+iω/~) and D′ω = (D∆r′+iω/~). The technical
advantage of the structure of Eq. (5.64) is that each term contains the same diffusive
propagators. Performing several partial integrations, using ∆Pin(r) = ∆Pout(r) = 0,
∇Pin(r) = −∇Pout(r) = − 1

Lex, as well as Dω
∫∞
τE
dtP (r′, r; t)eiωt/~ = −P (r′, r; τE)eiωτE/~,

we are able to simplify the expression and finally obtain

K(r1, r2;ω) =− 4D2

L2

∫
drdr′P (r, r1;ω)P (r2, r

′;ω)∂x∂x′

∫ ∞
τE

dtP (r′, r; t)eiωt/~. (5.65)

Together, Eq. (5.63) and (5.65) represent the main result for the interaction correction in
antidot arrays. For zero Ehrenfest time, the time integral of Eq. (5.65) equals P (r′, r;ω)
and one recovers the results for quantum impurities, obtained by standard diagrammatic
perturbation theory (see Ref. [Alts 84], where the symbol F of this reference equals F/2 =
−F σ0 /(1 + F σ0 ) and the reference misses a factor two for the triplet contribution). If the
Ehrenfest time is finite, it poses a short-time threshold and only electrons with a travel
time larger than τE contribute to the interaction correction. We now discuss Ehrenfest-
time dependence of δGAA in detail for a quasi-1d and a 2d antidot array.

5.3.3. Quasi-one dimensional antidot array

For a quasi-1d antidot array (width W much smaller than length L), we may simplify the
diffusion propagator by taking only the diffusion mode with zero transverse momentum
into account. After insertion of the diffusion propagators and the interaction into Eqs.
(5.63) and (5.65), and using the residue technique for the ω-integration, we find

δGAA =− e2

h

∞∑
m=1

∞∑
n=1

e
−n τE

τT e
−m2 τE

τD

[
n
τEτD

τ2
T

gm(nτD/τT )− n
τ2

D

τ2
T

g′m(nτD/τT )

]
, (5.66)

where the time τT = ~/2πT is the inverse temperature, τD = L2/Dπ2 is the diffusion time,
and the function gm(x) is expressed as

gm(x) =
128

π4

∞∑
k=1

c2
km

1

(k2 + x)(m2 + x)

{
1

k2
+

3F σ0
k2(1 + F σ0 ) + x

}
, (5.67)
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with

ckm =

{
km/(k2 −m2) if k +m odd,

0 else.
(5.68)

The summation over k in Eq. (5.67) can be written in a closed form (see Eq. (C.31) in
the appendix). We will now discuss the dependence of δGAA on temperature, system size
and Ehrenfest time several limiting cases.

• τD � τT , τE

We first consider the limit τD → ∞ corresponding to a large antidot array. In this
case, the Ehrenfest-time dependence of the interaction correction δGAA is determined
by the ratio τE/τT . For τE/τT � 1 one finds the result

δGAA = −e
2

h

√
τT
τD

3ζ(3
2)

π

[
1 + 3

2 + F σ0 − 2
√

1 + F σ0
F σ0

]
, (5.69)

independent of τE and known from diagrammatic perturbation theory. Here ζ(3/2) ≈
2.61238 is the Riemann zeta function (see Appendix C.2 for details). On the other
hand, for large Ehrenfest times or, equivalently, higher temperatures, τE/τT � 1,
the interaction correction δGAA acquires an exponential dependence on temperature
∝ e−2πTτE/~,

δGAA = −e
2

h

4

π3/2

√
τE

τD
e
− τE
τT , (5.70)

independent of F σ0 . The crossover between these two limiting cases is shown in Fig.
5.7 for different values of the Fermi-Liquid interaction constant F σ0 .

We emphasize the influence of the interaction constant in the triplet channel F σ0 :
While for small values of F σ0 , δGAA is always negative and monotonously decaying
as temperature is increased, a more interesting behaviour is observed at large inter-
action strength: At small Ehrenfest time and F σ0 < −3

4 the contribution from the
triplet channel dominates and gives rise to a positive sign of the interaction correc-
tion. On the contrary, if the Ehrenfest time is large, the prefactor of the exponential
behaviour shows no dependence on F σ0 to leading order in τT

τE
and is therefore al-

ways negative. Hence, at sufficiently large interaction strengths, one observes a sign
change of the interaction correction, as the temperature is varied.

• τT � τD, τE

In the limit of zero temperature δGAA is a function of the ratio τE/τD only (we again
refer to Appendix C.2 for details). At zero Ehrenfest time, we have

δGAA = −e
2

h

∞∑
m=1

∫ ∞
0

dxgm(x), (5.71)

with gm(x) defined in Eq. (5.67). For small F σ0 , we have δGAA ≈ −(e2/h)(0.74 +
F σ0 ). In this parameter range the singlet contribution is dominant, which leads
to a negative sign of the interaction correction, and to a monotonous decay as a
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Figure 5.7.: Interaction correction to the conductance of a quasi-one dimensional antidot
array in the large-system-size regime τD � τT , τE.

function of τE
τD

. At larger F σ0 the triplet contribution competes with the singlet
contribution, resulting in a sign change of the interaction correction for sufficiently
strong interactions, starting at F σ0 ≈ −0.5. For τE � τD, we find an exponential
dependence of δGAA on τE

τD

δGAA = −e
2

h

(
1 +

3F σ0
1 + F σ0

)
16(5π2 − 48)

3π4

τD

τE
e
− τE
τD . (5.72)

The crossover between the limits τE � τD and τE � τD is shown in Fig. 5.8 for
several representative values of F σ0 .

• τE � τD, τT Finally, in the “classical” limit of large Ehrenfest times, we have

δGAA = −e
2

h
τEτD
τ2T

e
− τE
τT e
− τE
τD g1( τDτT ), (5.73)

where g1 is defined in Eq. (5.67). In this parameter regime the interaction correction
has the characteristic exponential suppression δGAA ∝ e−2πTτE/~−τE/τD .

5.3.4. Large 2d system

We will now consider a two-dimensional antidot array of dimensions L ×W , where we
restrict ourselves to the limit of large system size, τD � τE, τT . In the large-size limit,
the relevant quantity is the conductivity σ = GL/W (although we here write results for
the conductivity, we formally calculate the conductance and multiply with the geometrical
factor L/W , see also the discussion in Sec. 5.2.1). We may then express Eqs. (5.63) and
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Figure 5.8.: Interaction correction to the conductance of a quasi-one dimensional antidot
array in the low-temperature regime τT � τD, τE.

(5.65) in momentum space,

δσAA =− 4νe2D

π~2

∫
dω∂ω

(
ω coth

ω

2T

)
Im

{∫
d2q

(2π)2
UR(q;ω)

Dq2
xe
iωτEe−Dq2τE

(Dq2 − iω/~)3

}
.

(5.74)

In the limit of zero Ehrenfest time, this expression simplifies to the well-known result of
diagrammatic perturbation theory [Alei 99, Zala 01]. The full Ehrenfest-time dependence
is shown in Fig. 5.9. For τE � τT , we have the asymptotic behavior

δσAA = − e
2

πh

[
1 + 3

(
1− ln(1 + F σ0 )

F σ0

)]
ln
τT
τE
, (5.75)

which coincides with the well-known expression of quantum impurities, where the role of
the elastic scattering time as a short-time cutoff is taken over by the Ehrenfest time. In
the opposite limit τE � τT , we obtain an exponential dependence on temperature,

δσAA = − e
2

πh
e
− τE
τT . (5.76)

As in the one-dimensional situation, at small F σ0 the singlet contribution dominates the
interaction correction, while at larger F σ0 the triplet contribution competes, and a sign
change of the interaction correction as a function of τE

τT
is observed if F σ0 . −0.45.

5.4. Conclusion

In this chapter, we considered the effect of a finite Ehrenfest time on the interaction
correction of a conductor in which the motion of the electrons is described by chaotic
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Figure 5.9.: Interaction correction to the conductivity σ of a two-dimensional antidot array
for various values of the interaction strength F σ0 in the triplet channel.

classical dynamics. Using semiclassical theory of transport, we derived an expression for
the interaction correction containing only the interaction propagator and coarse-grained
classical propagators of the electronic motion. We confirm the result of Ref. [Brou 08],
obtained for a double ballistic quantum dot, that the Ehrenfest time enters as a short-
time threshold for the interaction correction. In other words, the minimal time it takes to
traverse system for trajectories responsible for the interaction corrections is the Ehrenfest
time.

As a specific and experimentally relevant example we applied the formalism to antidot
arrays, where the coarse-grained classical dynamics follows a diffusion equation. At zero
Ehrenfest time, we recovered the well known results of the diagrammatic perturbation
theory for a disordered metal [Alts 79]. If the Ehrenfest time is large, we found that the
interaction correction is exponentially suppressed ∝ e−τE/τDe−2πTτE/~. While the factor
e−τE/τD is also present for weak localization, the suppression with temperature is specific
to the interaction correction. Unlike the dwell time τD, which governs the Ehrenfest-time
dependence of weak localization, temperature is a variable that can be easily controlled
experimentally without changing the classical dynamics, making the interaction correc-
tion a promising experimental signature of the Ehrenfest-time dependence of quantum
transport. (We note that weak localization depends on temperature implicitly via its
dependence on the dephasing time. However, an independent measurement of the dephas-
ing time that enters into the expression for the Ehrenfest-time dependence of the weak
localization correction is problematic [Tian 07].)

A particular signature of the underlying classical motion is a sign change of the inter-
action corrections for strong enough interactions. Associated with this sign change is a
non-monotonous temperature dependence of the interaction correction, in the tempera-
ture range T ∼ ~/τE. As long as only the Fock contribution is considered, the sign of the
interaction correction is negative. If the Hartree contribution — more precisely, the triplet
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channel of interaction — is added, there is a competition between Hartree and Fock-type
corrections, and the sign of the total interaction correction at small Ehrenfest time may
change as a function of the interaction strength. For large Ehrenfest time, the Fock con-
tribution always dominates, so that the sign of the interaction correction is independent
on the interaction strength in that limit.

As mentioned above, the sign change of the interaction corrections for systems with
small Ehrenfest times requires a rather strong interaction in the triplet channel. In
particular, in 2d systems the threshold was estimated to be F σ0 . −0.45, where F σ0 is
the corresponding Fermi liquid constant, whereas in quasi one-dimensional systems the
condition reads F σ0 . −0.75. Let us focus on 2d systems with Coulomb interaction,
for which the condition is less restrictive. Both numerical and experimental results for
F σ0 are available in the literature. In general, F σ0 is a function of the gas parameter
rs =

√
2e2/ε~vF , where ε is the static dielectric constant and vF the Fermi velocity. To

get an estimate for typical values of rs to be expected in antidot array experiments, we
take vF ≈ 3× 105m/s, which was reported in Ref. [Yevt 00] for antidot arrays fabricated
from GaAs/ AlGaAs heterostructures. Together with the dielectric constant for GaAs
ε ≈ 13 we obtain rs ≈ 0.8. In Ref. [Mink 06] the constant F σ0 for a given gas parameter
rs was extracted from experimental data using the results for the interaction corrections
to conductivity [Alts 85b, Fink 90, Zala 01, Gorn 04]. For systems with rs ≈ 1, typical
values of F σ0 were found to be of the order of −0.35. This seems consistent with numerical
results obtained in Ref. [Kwon 94], were systems with moderately large rs were analyzed.
For the maximal value of rs = 5 considered in this chapter, the Fermi liquid constant de-
creased further down to F σ0 = −0.5. Considerably larger negative values up to F σ0 ≈ −0.7
were inferred for systems with rs ≈ 22 in Ref. [Noh 03]. We take this as evidence that
2d systems with sufficiently strong triplet channel interactions are realizable, provided the
additional antidot structure may be superimposed. Relevant values of the gas parameter
rs are likely in the range of rs ≈ 3− 5.
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6. Quantum corrections to transport in
graphene: a semiclassical analysis

In this chapter, we apply semiclassical methods in order to calculate quantum correc-
tions to transport in graphene. Compared to the calculations presented in the previous
chapter, in graphene we have to incorporate additionally the effect of the pseudospin,
which is strongly linked to the orbital motion, and influences the results for the quantum
corrections. This chapter provides an overview over semiclassical calculations of weak
(anti)localization, and interaction-induced effects as the Altshuler-Aronov correction and
dephasing. While for quantum disorder, the results are already known from diagrammatic
perturbation theory, the semiclassical calculations provide an alternative, more intuitive
approach, and allow to discuss the effect of a finite Ehrenfest time, relevant for graphene
subject to a smooth disorder potential.

After an introduction, we will introduce the semiclassical propagator for graphene in
Sec. 6.2. We will further discuss, how the important quantities diffusion coefficient and
Lyapunov coefficient are derived from the classical chaotic dynamics (Sec. 6.3). To set
the stage, we calculate the Drude conductance in Sec. 6.4, before we turn to the quantum
corrections. Here, we will investigate the effect of weak (anti)localization (Sec. 6.5), and
interaction-induced effects as Altshuler-Aronov correction (Sec. 6.6), and dephasing (Sec.
6.7). We conclude our results in Sec. 6.8.

The content of this chapter is based on the publication [Schn 14b].

6.1. Introduction

Electric properties of graphene are highly unusual, when the Fermi level is tuned to the
Dirac point. When graphene is doped away from the Dirac point, its physical properties
resemble those of a metal, but certain intriguing features from the Dirac spectrum remain.
The reason for this lies in the “pseudospin” degree of freedom, which is connected to
the two-atom basis of the two-dimensional honeycomb lattice. Sufficiently close to the
Dirac point, where the electronic dispersion is still linear, the direction of the pseudospin
is aligned with the momentum. This helicity of charge carriers strongly influences the
electronic properties. Two important consequences are the absence of backscattering at a
potential barrier (Klein tunneling) [Chei 06, Kats 06b] and the half-integral quantum Hall
effect [Novo 05, Zhan 05], as discussed earlier in this thesis.

Away from the Dirac point, the conductivity of graphene can be split in the usual fash-
ion into Drude conductivity and quantum corrections, as known from conventional metals.
Soon after the initial experiments on graphene, the theory of quantum corrections in dis-
ordered metals was extended to graphene [Khve 06, McCa 06, Morp 06, Alei 06, Altl 06,
Kozi 10, Jobs 12]. Of particular interest was the potential valley-mixing effect of short
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range disorder (correlation length ξ � λF), which leads to a transition between weak
localization and weak antilocalization [Khve 06, McCa 06, Morp 06, Alei 06] and strongly
affects the magnitude of the Altshuler-Aronov correction [Kozi 10, Joua 11, Jobs 12]. Such
transitions were also observed experimentally [Moro 06, Tikh 08, Ki 08, Tikh 09, Cao 10,
Kozi 10, Chen 10, Joua 11, Lara 11, Jobs 12]. In the present chapter, we consider the
quantum corrections to the conductivity of graphene in the presence of a long-range im-
purity potential, which is smooth on the scale of the Fermi wavelength λF. Such a smooth
random potential does not mix the valleys, but instead leads to a number of modifications
of the quantum corrections because of its smoothness: In this situation, electrons follow
well-defined classical trajectories, where the random potential ensures that the classical
dynamics is chaotic. As discussed in the previous chapter, an important role in this regime
is taken by the Ehrenfest time

τE =
1

λ
ln(Lc/λF), (6.1)

where λ is the Lyapunov coefficient of the classical chaotic motion, and Lc is a classical
reference distance (for the antidot arrays discussed in the previous chapter, Lc could be
identified with the size of the antidots a). It is known, how the Ehrenfest time influ-
ences the quantum corrections for conventional electron gases, see Refs. [Alei 96, Yevt 00,
Brou 07, Altl 07] and the previous chapter. The goal of the present chapter is to extend
and collect those results for the case of graphene.

The trajectory-based semiclassical calculation of quantum corrections to the conductiv-
ity of graphene differs from the same calculation for conventional metals by the additional
pseudospin structure. The problem of extending the semiclassical formalism to systems
with a spinor degree of freedom, such as metals with spin-orbit coupling or Dirac Hamil-
tonians, has received considerable attention in the literature [Rubi 63, Litt 91, Litt 92,
Bolt 98, Bolt 99, Zait 05a, Zait 05b, Silv 07]. The application of the formalism to the
case of graphene by Carmier and Ullmo [Carm 08] will serve as a starting point for our
calculation. A key element in the trajectory-based approaches is that the pseudospin can
be reconstructed along the trajectories, where it remains aligned with the momentum.
Associated with the transport of the pseudospin along the trajectory is an additional
phase in the semiclassical propagator, which can be identified as the Berry phase. One
example where this phase plays an important role is the semiclassical calculation of the
Landau levels, where the electrons acquire a Berry phase of π during the cyclotron motion,
ultimately leading to the half-integral quantum Hall effect, see Sec. 2.2.

The semiclassical theory presented here is specifically aimed at the leading order quan-
tum corrections (weak localization and Altshuler-Aronov correction, as well as the effect of
dephasing on weak localization) for graphene in a smooth random potential. Typical sys-
tems to which the trajectory-based semiclassical method has been applied in the literature
are quantum billiards, ultraballistic systems, where particles scatter only at the boundary
of the sample, or antidot arrays, high mobility two-dimensional electron gases with artifi-
cially superimposed antidots, that act as classical scatterers [Rouk 89, Enss 90, Yevt 00].
While for standard semiconductor structures, quantum billiards can be shaped by means
of gate potentials, such procedure is problematic for graphene, as it is a gapless mate-
rial. Quantum billiards in graphene can be realized in etched structures, where the edges
are atomically sharp [Pono 08, Schn 09, Mori 09, Gutt 09]. The scattering on such edges
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then depends on the precise atomic configuration, and deserves a careful consideration
[Wurm 11a, Wurm 11b]. The same applies to antidot arrays in graphene [Erom 09], but
also here, the boundaries of the antidots are so sharp, that they lead to scattering between
the valleys. Such atomically sharp boundaries invalidate a description that is solely based
on classical trajectories, although for sufficiently well-defined boundaries a theoretical de-
scription involving coupled valleys is possible [Wurm 11a, Wurm 11b]. Such a limitation
does not exist for the effect of an impurity potential where charged impurities in the sub-
strate are the main source of disorder, and the graphene sheet is embedded in an insulating
medium with a high dielectric constant, such as HfO2 [Jang 08, Pono 09, Newa 12]. In
this case, the high dielectric constant ensures that the screening length is larger than λF

at sufficiently high doping. Hence, the potential has a correlation length ξ � λF and
classical paths are well-defined objects.

6.2. Semiclassical Green function

In this chapter, we consider graphene subject to a smooth disorder potential V (r) that
does not couple the valleys. In the vicinity of the Dirac point, electrons are described by
the Hamiltonian

H = vFp · σ + V (r)− µ, (6.2)

where vF is the Fermi velocity, µ is the chemical potential, and σ = (σx, σy) are as usual
the Pauli matrices for the pseudospin degree of freedom. The eigenvalues of the kinetic
energy term vFp · σ are K± = ±vF|p|. We will be interested in the case of electron-
doped graphene for which the chemical potential µ is larger than the potential V (r). In
this case we may restrict our attention to the conduction band and set K = vF|p|. The
corresponding eigenspinor of the kinetic energy is

|χ(p)〉 =
1√
2

(
1
eiφp

)
, (6.3)

where the angle φp denotes the direction of the momentum p, see also Eq. (2.9).
Starting point for our semiclassical analysis of transport is the semiclassical expression

for the retarded Green function GR(r, r′; ε) at energy ε derived by Carmier and Ullmo
[Carm 08],

GR(r, r′; ε) =
2π

(2πi~)3/2

∑
α:r′→r;ε

Aαe
iSα/~+iγα |χ(pα)〉〈χ(p′α)|, (6.4)

where summation is over all classical trajectories α that connect the points r and r′, Sα
is the classical action of the trajectory, Aα the stability amplitude (as introduced in the
previous chapter in Sec. 5.2.2), γα an additional phase shift to be defined below, and p′α
and pα are the initial and final momenta of the trajectory α, respectively. Equation (6.4)
generalizes the corresponding expression for a system without spin or pseudospin degrees
of freedom [Gutz 90]. (In that case the projection factor |χ(pα)〉〈χ(p′α)| and the phase
shift γα are absent, see also Eq. (5.7)). The classical trajectories are determined by the
classical Hamilton function

Hcl(p, r) = vF|p|+ V (r)− µ. (6.5)
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Finally, the phase shift γα contains the Berry phase

γα = −1

2

∫ τα

0
dt
dφpα(t)

dt
= −1

2

(
φpα − φp′α + 2πn

)
, (6.6)

where in the second equality we chose the initial and final angles to be 0 ≤ φp′α , φpα ≤ 2π
and add 2πn, n being integer, to account for the phase winding along the path α. We
have not included the phase corresponding to the Maslov index [Gutz 90], which can be
disregarded for the calculation of transport.

In the next Sections we also need the advanced Green function, which follows from the
relation

GA(r′, r; ε) =
[
GR(r, r′; ε)

]†
. (6.7)

6.3. Diffusion coefficient and Lyapunov coefficient for a
Gaussian random potential

For a random disorder potential V (r), the classical dynamics, that is derived from the
Hamilton function Eq. (6.5), behaves in a chaotic manner. Following Refs. [Bard 07,
Adam 09], we consider a random Gaussian potential with the correlation function

〈V (r)V (r′)〉 = K0
(~vF)2

2πξ2
e−|r−r

′|2/2ξ2 , (6.8)

where ξ is the correlation length, and K0 is the dimensionless strength of the potential.
The random potential of Eq. (6.8) has been used to describe the impurity potential in
experiments [Tan 07, Adam 08]. On spatial scales much longer than the correlation length,
the electronic motion becomes diffusive, with a diffusion coefficient D that we will calculate
in the following. Furthermore, two initially nearby classical trajectories will separate
exponentially in time due to to chaotic motion, at a rate given by the Lyapunov coefficient
λ, whose value will be also calculated in the following for the Gaussian random potential.

6.3.1. Diffusion constant

In order to determine the diffusion coefficient, we start by considering a particle that moves
in the x-direction at time t = 0 and consider how the direction of motion changes under
the influence of the potential V (r). Following the classical dynamics, the angle φ(t), at
which the electron propagates at time t is given by

φ(t) = − 1

~kF

∫ t

0
dt′∂yV (r(t′)), (6.9)

where kF is the Fermi wavenumber. This equation is valid for times t short enough,
such that |φ(t)| � 1, so that the motion of the electron is mainly along the x-direction,
r(t) = vFtex. We then find for the mean quadratic deflection

〈φ(t)2〉 =
1

(~kFvF)2

∫ vFt

0
dxdx′〈∂yV (x, 0)∂yV (x′, 0)〉. (6.10)
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Using the correlation function Eq. (6.8), this gives

〈φ(t)2〉 =
K0vFt

ξ3k2
F

√
2π
, (6.11)

provided t is much longer than the “correlation time” tξ = ξ/vF. Our derivation required
the time t to be short enough such that the deflection is small. Such time interval exists,
as long as K0 � (kFξ)

2, which is a condition that can be met if the disorder is smooth on
the scale of the Fermi wavelength (kFξ � 1).

Equation (6.11) describes a linear-in-time increase of the quadratic deflection, a charac-
teristic property of the diffusive motion for the angle φ. Continuing the diffusive process
beyond small angles, the validity of this equation can be extended to all times longer than
the correlation time tξ. Further, extending the result to arbitrary starting times and arbi-
trary directions in the beginning of the propagation, we conclude that the angle difference
φ(t)− φ(t′) has a Gaussian distribution with zero mean and with variance

〈
[
φ(t)− φ(t′)

]2〉 =
K0vF

ξ3k2
F

√
2π
|t− t′|. (6.12)

Now we can calculate the electron’s mean square displacement. Since

r(t)− r(0) = vF

∫ t

0
dt′[ex cosφ(t′) + ey sinφ(t′)], (6.13)

the mean square displacement is given by

〈
|r(t)− r(0)|2

〉
= v2

F

∫ t

0
dt′dt′′

〈
cos[φ(t′)− φ(t′′)]

〉
. (6.14)

The average can be performed using the Gaussian distribution of φ(t′) − φ(t′′) and one
finds, in the long-time limit,

〈[r(t)− r(0)]2〉 = 4D|t|, (6.15)

where the diffusion constant D is given by

D =
ξ3k2

FvF

√
2π

K0
. (6.16)

The diffusion constant of Eq. (6.16) corresponds to a transport mean free path

ltr = τtrvF =
2ξ3k2

F

√
2π

K0
, (6.17)

which is parametrically larger than the correlation length ξ in the limit kFξ � 1 of a
smooth potential.
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6.3.2. Lyapunov coefficient

We now calculate the Lyapunov coefficient λ for the Gaussian-correlated disorder potential
V (r), specified by Eq. (6.8). Our result agrees with that of Aleiner and Larkin [Alei 96],
using a different method.

We consider two trajectories that are initially close in phase space, and investigate their
divergence as they evolve in time. We use ∆r⊥ and ∆p⊥ to denote the position and
momentum differences in the direction perpendicular to the propagation direction. From
the classical equation of motion,

ṙ = vFep, ṗ = −∇V, (6.18)

with ep the unit vector in the direction of the momentum p, we find that the differences
∆r⊥ and ∆p⊥ evolve in time as

∂∆r⊥
∂t

= vF
∆p⊥
pF

,
∂∆p⊥
∂t

= −∂
2V (t)

∂r2
⊥

∆r⊥, (6.19)

where V (t) is shorthand notation for V (r(t)). Upon integrating the evolution equations
for an infinitesimal time interval δt the solution may be cast in the form of a transfer
matrix equation, which we write as(

∆r⊥(t+δt)
ξ

∆p⊥(t+δt)
zpF

)
=M(t+ δt, t)

(
∆r⊥(t)

ξ
∆p⊥(t)
zpF

)
, (6.20)

where z2 =
√
K0/kFξ � 1 and the transfer matrix M(t, t+ δt) reads

M(t+ δt, t) = ezH(t)δt, H(t) =

(
0 vF/ξ
f(t) 0

)
, (6.21)

with

f(t) = − ξ

z2pF

∂V (t)

∂r2
⊥

(6.22)

a stochastic function that contains all information on the random potential. The function
f has zero mean, and its fluctuations in a time interval ∆t long in comparison to the
correlation time tξ = ξ/vF are〈∫ ∆t

0
dtdt′f(t)f(t′)

〉
=

3√
2π

vF∆t

ξ
. (6.23)

(The condition ∆t� tξ is consistent with the smallness of the parameter z.)
Sofar we have calculated the transfer matrix for an infinitesimal time interval δt. The

result can be easily extended to calculate the transfer matrix for time intervals of arbitrary
duration, via successive multiplication of transfer matrices valid for the infinitesimal seg-
ments. This results in a stochastic evolution of the transfer matrix, which can be analyzed
using an explicit parameterization of the transfer matrix,

M(t+ ∆t, t) = eiϕσ2elσ3eiφσ2 , (6.24)
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6.3. Diffusion coefficient and Lyapunov coefficient for a Gaussian random potential

where σ2 and σ3 are the Pauli matrices. The exponential divergence of the trajectories
follows from the radial parameter l,

λ = lim
∆t→∞

l

∆t
. (6.25)

For the calculation of l it is sufficient to consider the matrix product MTM, which has
eigenvalues e±2l and no longer depends on the angular variable ϕ. The time-evolution of
the remaining parameters l and φ is given by a Langevin-type process which, for large l,
reads

δl =
z

2

vFδt

ξ
sin 2φ+

z

2
sin 2φ

∫ δt

0
dt′f(t′)− z2

2
cos 2φ sin2 φ

∫ δt

0
dt′dt′′f(t′)f(t′′),

δ cotφ =z

∫ δt

0
dt′f(t′)− z vFδt

ξ
cot2 φ, (6.26)

where terms of higher order than δt are neglected.

It is helpful to introduce the variable y via

y = (2π)1/6z−1/3(2/3)1/3 cotφ. (6.27)

After averaging over fluctuations of f , we find that mean and variance of the change δy
in an infinitesimal time interval δt read

〈δy〉 = −(3/2)1/3(2π)−1/6z4/3y2 vFδt

ξ
,

〈(δy)2〉 = 22/331/3(2π)−1/6z4/3 vFδt

ξ
. (6.28)

The parameter y acquires a stationary probability distribution Ps(y), which satisfies the
equation [Kamp 07]

1

2

〈(δy)2〉
δt

∂Ps

∂y
− 〈δy〉

δt
Ps = c′, (6.29)

where c′ is a numerical constant. Using Eq. (6.28), we obtain

∂Ps

∂y
+ y2Ps = c′. (6.30)

The only normalized solution of this equation occurs for 1/c′ = 3−5/621/3Γ(1/6)
√
π ≈ 4.976

and reads

Ps(y) = c′
∫ y

−∞
dy′e(y′3−y3)/3. (6.31)

Keeping leading terms in the parameter z only, we find that the average

〈δl〉 =

(
3z4

2
√

2π

)1/3

y
vFδt

ξ
. (6.32)
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6. Quantum corrections to transport in graphene: a semiclassical analysis

Since the angular variable y evolves statistically independent from the radial variable l for
large l, we may average y with the help of the stationary distribution (6.31), for which we
find

β =

∫ ∞
−∞

dyyPs(y) =
(3/2)1/3√π

Γ(1/6)
≈ 0.365. (6.33)

From the definition (6.25) we then obtain the Lyapunov coefficient

λ = β
vF
ξ

(
3K0

2
√

2π(kF ξ)2

)1/3

=
β

τtr

(
ltr
√

3

ξ

)2/3

, (6.34)

where, in the second equality, we inserted the transport mean free time and the mean free
path of Eq. (6.17). This result agrees with the Lyapunov exponent calculated by Aleiner
and Larkin [Alei 96]. (One has to identify the short-length cut-off a of Ref. [Alei 96] with
ξ/
√

3, see the text below Eq. (A3) of Ref. [Alei 96].)

6.4. Drude conductance

We now turn to the calculation of the conductivity. Hereto, we consider a rectangular
sample of graphene of dimensions L ×W , calculate its conductance G, and obtain the
conductivity σ from the relation G = σW/L. The conductance G is calculated from the
Kubo formula

G =
e2dg~

2π

∫
dy

∫
dy′
∫
dε

(
−∂f(ε)

∂ε

)
Tr
[
v̂xGR(r, r′; ε)v̂′xGA(r′, r; ε)

]
x′=0
x=L

, (6.35)

where f(ε) = 1/(eε/T + 1) is the Fermi function and dg = 4 denotes the degeneracy due
to spin and valley. Further, the velocity operator for graphene reads

v̂x = vFσx (6.36)

and the trace indicates a summation over pseudospin indices.
For a semiclassical calculation of the conductance, we insert the semiclassical Green

function (6.4) into the Kubo formula, so that G is expressed as a double sum over tra-
jectories α and β. Restricting the summation to diagonal terms α = β, the so-called
diagonal approximation, then gives the Drude conductance. For α = β the semiclassical
approximation Eq. (6.35) contains matrix elements of the form

〈χ(pα)|v̂x|χ(pα)〉 = vF cosφpα = vx, (6.37)

with vx = ∂Hcl/∂px. Apart from the factor dg, the resulting expression is the same as in
the case of a standard two-dimensional electron gas, see Eq. (5.15)

G0 = dg
e2

(2π~)2

∫
dy

∫
dy′
∫
dε

(
−∂f(ε)

∂ε

) ∑
α:(0,y′)→(L,y)

A2
αv
′
xvx, (6.38)

with the initial (final) classical velocity v′x (vx).
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The remaining summation over trajectories α can be transformed to an integral over ini-
tial and final momentum and the duration of the trajectories, where the integrand contains
a trajectory density, that is expressed as a δ-function and selects the classical trajectories
that connect source and drain contact. Performing the disorder average replaces the exact
trajectory density by a classical propagator that is a smooth function which is a smooth
function of initial and final phase space coordinates as well as time. On spatial scales
much longer than the correlation length ξ, this classical propagator describes a diffusive
motion. This procedure works out in precisely the same way as discussed in the previous
chapter in Sec. 5.2.2 and Sec. 5.3.2, and we do not repeat it at this point.

We proceed with the result for the Drude conductivity σ0 = G0L/W , where we then
obtain the standard expression

σ0 = dge
2νD, (6.39)

where the factor dg = 4 accounts for the degeneracy for spin and valley. Importantly,
pseudospin does not enter as an additional degeneracy, since it is locked to the momentum.
Taking the expression for the diffusion coefficient for the Gaussian random potential, Eq.
(6.16), as well as the density of states at graphene, ν = kF/2π~vF, one obtains

σ0 =
4e2

h

(kFξ)
3

K0

√
2π. (6.40)

The same result was obtained in a quantum-mechanical calculation using the Boltzmann
equation in Ref. [Adam 09].

6.5. Weak antilocalization

Deviations from the Drude conductance are termed quantum corrections. Without inter-
actions and for conventional metals, the leading correction to the classical conductance
results in a small reduction of the conductance, and is called “weak localization”, since it
describes the onset of Anderson localization. In graphene, the Berry phase is responsible
for a different sign of this quantum correction, which gives rise to an enhanced conduc-
tance (when effects of intervalley scattering and trigonal warping are neglected), and is
therefore called weak antilocalization [Khve 06, McCa 06, Morp 06, Tikh 08, Tikh 09]. In
the following, we will show how the weak antilocalization is derived in the semiclassical
formalism, and discuss the effect of a finite Ehrenfest time. Again, we will give explicit
results for the case of a smooth random Gaussian-correlated potential.

In the semiclassical framework, weak (anti)localization results from configurations of
retarded and advanced trajectories α and β as shown in Fig. 6.1. The trajectories can
be divided into four segments: The entrance and exit segments, where the trajectories
α and β are correlated or “paired” — i.e., the difference between the two trajectories is
sufficiently small, that the chaotic classical dynamics can be linearized on that scale —,
the loop segment, where the trajectory α is paired with the time-reversed of trajectory
β, and the encounter region (or Lyapunov region), where trajectories α and β as well as
their time-reversed are correlated. At the beginning of their first passage through the
encounter region, the trajectories α and β are located within a Fermi wavelength λF.
Due to the chaotic motion, this phase-space distance increases exponentially along the
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6. Quantum corrections to transport in graphene: a semiclassical analysis

Figure 6.1.: Configurations of trajectories α and β responsible for the weak antilocaliza-
tion. We represent trajectories corresponding to retarded (advanced) Green
functions as solid (dashed) lines. The trajectories consist of entrance/exit seg-
ment, a loop segment of variable duration t, and an encounter region, which
allows for “pair switching” of the trajectories (indicated in blue). When trajec-
tories are paired together, their allowed spatial separation is set by the Fermi
wavelength λF. During the encounter region, this separation gets magnified
to a classical size Lc beyond which the trajectories develop in an uncorrelated
manner. The encounter is shown enlarged in the figure, in reality all four
segments of trajectories within the encounter remain very close together, on
a submacroscopic scale in phase space.

encounter region as d(t) = λFe
λt, where λ is the Lyapunov coefficient characteristic of the

chaotic motion. For the random Gaussian potential (6.8), the Lyapunov exponent is given
by Eq. (6.34). At the end of the encounter region, the distance has reached a classical
size Lc, beyond which classical motion is considered uncorrelated — i.e., the classical
dynamics can no longer be linearized. For the smooth random potential (6.8), we may
identify Lc ' ξ. The duration of the encounter is set by the Ehrenfest time

τE = λ−1 ln(Lc/λF). (6.41)

Our final results can be expressed in terms of Ehrenfest time only, which depends loga-
rithmically on Lc, so that a more precise definition of the cutoff Lc is not needed.

For the calculation of the weak localization, one starts from the Kubo formula, Eq.
(6.35), inserts the semiclassical expressions for the Green function, and then restricts the
summation to configurations of trajectories as explained in the previous paragraph. As
long as the duration of the encounter region is τE or larger, the trajectories α and β acquire
an action difference ∆S . ~ [Alei 96, Rich 02].

For graphene, we also have to keep track on the influence of the pseudospin, which
has two effects: First, the spinor structure of the semiclassical Green function changes
the velocity operator to the classical velocity, in the same way as before for the Drude
conductance, see Eq. (6.37). Second, since the trajectories are no longer equal, we have to
pay attention to the Berry phase collected along the trajectories α and β. At this stage,
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we can write

δGWAL =
e2dg

(2π~)2

∫
dy

∫
dy′
∫
dε

(
−∂f(ε)

∂ε

)
×

∑
α,β:(0,y′)→(L,y)

A2
αv
′
xvxe

i(Sα−Sβ)/~ei(γα−γβ), (6.42)

where the summation is restricted to the configurations of trajectories shown in Fig. 6.1,
for which we have Aα = Aβ.

The difference of the Berry phase ∆γ = γα − γβ, is collected in the loop segment only.
(In the encounter region, the trajectories α and β differ on a sub-macroscopic scale only,
which adds a negligible contribution to the Berry phase difference.) Since the momenta
of trajectory α are opposite in the beginning and the end of the loop segment, we have
from Eq. (6.6)

γα,Loop = π

(
n+

1

2

)
, (6.43)

with integer n depending on the total winding of the momentum along the trajectory. Since
the Berry phase is expressed as integral along the trajectory, the Berry phase collected by
trajectory β along the loop is just γβ,Loop = −γα,Loop. Hence, we find

ei∆γ = −1 (6.44)

for all configurations of trajectories contributing to the quantum correction. This minus
sign is responsible for the change from weak localization (in conventional two-dimensional
electron gases without spin-orbit coupling) to weak antilocalization.

The remaining calculation then proceeds as in the standard case, and we find [Brou 07]

δGWAL =− dg
e2

2π~

∫
drdr′Pin(r)Pout(r)∂τEP (r′, r; τE)

×
∫
dtP (r′, r′; t) (6.45)

where P (r′, r′; t) is the diffusion propagator, see Eq. (5.51), and Pin(r) and Pout(r) are
defined in Eq. (5.54) in the previous chapter. For the further evaluation of Eq. (6.45), we
can use the diffusion equation (5.50) to write

∂τEP (r′, r; τE) = D∆rP (r′, r; τE) (6.46)

and perform two partial integrations on r. Making use of the explicit form of Pin(r) and
Pout(r), we arrive at

δGWAL =
e2dg

2π~
2D

L2

∫
drdr′P (r′, r; τE)

∫ ∞
τtr

dtP (r′, r′; t) (6.47)

In two dimensions, the time integral in this equation is divergent for small times, and the
appropriate cutoff is set by the transport time τtr, below which the diffusive approximation

97



6. Quantum corrections to transport in graphene: a semiclassical analysis

Figure 6.2.: At finite Ehrenfest time, weak antilocalization is suppressed by an additional
factor h(τE/τD)

breaks down. In the limit of large aspect ratio W/L, and small τtr/τD, where τD = L2/Dπ2

is the dwell time, we then find (see Appendix D.1)

δσWAL =
e2dg

4π2~
ln(τD/τtr)h(τE/τD), (6.48)

where the function h(x) is defined as

h(x) =
8

π2

∞∑
n=1
n odd

1

n2
e−n

2x. (6.49)

It has the asymptotic behavior

h(x) =

{
1− 4

π3/2

√
x, x� 1

8
π2 e
−x, x� 1.

(6.50)

At zero Ehrenfest time, h(0) = 1 and we arrive at the well-known result for weak antilo-
calization of a symplectic metal [Hika 80]. At finite Ehrenfest time, our calculation results
in a suppression of the weak antilocalization by the additional factor h(τE/τD), shown
in Fig. 6.2. (The same multiplicative factor h(τE/τD) describes the suppression of weak
localization or weak antilocalization in a conventional two-dimensional electron gas. We
are not aware of a calculation of the function h in this context.)

6.6. Altshuler-Aronov correction

We now turn to the effects of interactions on the conductivity. Interactions modify the con-
ductivity in two physically distinct ways. First, interactions cause the so-called Altshuler-
Aronov correction [Alts 79, Zala 01], which has its origin in the interference of elastic scat-
tering off impurities and off Friedel oscillations of the electron density around an impurity.
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6.6. Altshuler-Aronov correction

Second, inelastic electron-electron scattering is responsible for a loss of phase coherence or
“dephasing”, which sets an upper limit on the time at which weak (anti)localization can
occur.

6.6.1. Lowest-order interaction correction

The semiclassical treatment of interaction corrections proceeds via two steps. First, one
considers a specific random potential and includes interactions to first order diagrammatic
perturbation theory. Such procedure is rather standard, and results in expressions in terms
of Green functions G(r, r′; ε) for the given disorder realization. The second step is to take
the disorder average, where we employ the semiclassical framework. Hereto, we insert the
semiclassical expressions for the Green functions and identify the relevant configurations
of trajectories that contribute to the interaction corrections. Our results take into account
the effects of a finite Ehrenfest time.

The calculation for the Altshuler-Aronov correction in graphene proceeds similar to the
one for conventional metals presented in the previous chapter. Special attention has to be
paid at the pseudospin structure. As before, explicit expressions for the Altshuler-Aronov
conductance correction δGAA are obtained from Eq. (6.35) upon replacing the retarded
Green function GR(r, r′; ε) by GR(r, r′; ε) + δGR,F(r, r′; ε) + δGR,H(r, r′; ε), and a similar
replacement for the advanced Green function GA(r, r′; ε), keeping terms to first order in
the interaction only. The functions δGR,F(r, r′; ε) and δGR,H(r, r′; ε) are Fock and Hartree
corrections to the single-particle Green function, respectively,

δGR,F
αβ (r, r′; ε) =

∑
γδ

∫
dω

4πi

∫
dr1dr2 tanh

(
ω − ε

2T

)
GR
αγ(r, r1; ε)GR

δβ(r2, r
′; ε)

× {UA(r1, r2;ω)GR
γδ(r1, r2; ε− ω)− UR(r1, r2;ω)GA

γδ(r1, r2; ε− ω)},
(6.51)

δGR,H
αβ (r, r′; ε) =− dg

∑
γδ

∫
dω

4πi

∫
dr1dr2 tanh

(
ω − ε

2T

)
GR
αγ(r, r1; ε)GR

γβ(r1, r
′; ε)

× {UA(r1, r2; 0)GR
δδ(r2, r2; ε− ω)− UR(r1, r2; 0)GA

δδ(r2, r2; ε− ω)}.
(6.52)

In these expressions we wrote the pseudospin indices explicitly. We further allow for a
frequency dependence of the interaction propagator UR(r1, r2;ω) to include the effect of
dynamical screening. To first order in interaction we also obtain additional corrections to
the conductance which are contributing to dephasing. These will be discussed in the next
section.

Insertion of the semiclassical Green functions leads to a sum over four trajectories. Sys-
tematic contributions to δGAA are obtained only if trajectories originating from retarded
and advanced Green functions are paired up or if they undergo a small-angle encounter,
as discussed in the previous chapter. We summarize the configurations of trajectories
that are in line with these requirements for the Fock contribution to δGAA, as found in
the previous chapter, in Fig. 6.3. Here, configuration (a) originates from a term with
three advanced Green functions and one retarded Green function. In this case, the three
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Figure 6.3.: Configurations of trajectories that contribute to the Fock contribution to the
Altshuler-Aronov correction. “Retarded” and “advanced” trajectories are rep-
resented by solid and dashed lines, respectively. Encounter regions are indi-
cated in blue.

“advanced” trajectories must join to a single trajectory that can be paired up with the
“retarded” trajectory. Configurations (b)-(e) correspond to a term with two retarded and
two advanced trajectories. In this situation, due to the specific requirements on start and
end point of the Green functions, the trajectories cannot be paired one by one, instead
the four trajectories undergo a small-angle encounter. The subdivision into configurations
(b)-(e) reflects the possibilities to have none, one or both interaction points within the en-
counter region. For each one of the configurations shown in Fig. 6.3, there is a counterpart
for which the role of retarded and advanced trajectories is interchanged.

In close analogy to the calculation for conventional electron gases, carried out in the
previous chapter, we find, for a random potential with Gaussian correlations as in Eq.
(6.8),

δGF
AA =

dgνe
2

2π~2

∫
dω

∂

∂ω

(
ω coth

ω

2T

)∫
dr1dr2

× Im
{
UR(r1, r2;ω)K(r1, r2;ω)〈ΣF(p1,p2)〉p1,p2

}
, (6.53)

with the kernel K(r1, r2;ω), that contains the classical propagators, remains the same as
for a conventional electron gas, derived in the previous chapter (Eq. (5.65)).

The spinor structure of the semiclassical Green function contributes the factor ΣF(p1,p2),
which is not present in the calculation for the conventional two-dimensional electron gas.
As explained in Fig. 6.4, it depends on the overlap of pseudospinors of the two trajectories
at the interaction points. For the diffusive motion, only the quantity averaged over mo-
menta p1 and p2 with |p1| = |p2| = pF is relevant. For the Fock contribution, momentum
does not change at the interaction points, see Fig. 6.3, and the spinors at the interaction
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6.6. Altshuler-Aronov correction

Figure 6.4.: For graphene, the pseudospin structure contributes additional factors associ-
ated with the interaction vertex. In our notation, the retarded Green function
GR(r2, r1) is associated with trajectories running from r1 to r2, while the ad-
vanced Green function GA(r2, r1) is associated with trajectories running from
r2 to r1. This amounts to the following possibilities: If the interaction vertex
is associated with two Green functions of the same kind, then one trajectory
is pointing towards the vertex, while the other one is pointing away. For an
interaction vertex associated with one retarded and one advanced Green func-
tion, both trajectories either point towards or away from the vertex. In the
figure, we show four possibilities that result in a factor 〈χ(p)|χ(p′)〉, with the
associated labelling of momenta.

points combine to a factor

ΣF(p1,p2) = 〈χ(p1)|χ(p1)〉〈χ(p2)|χ(p2)〉 = 1. (6.54)

Thus, up to the degeneracy dg, the result for the Fock contribution remains unchanged
as compared to the conventional metal. The spinor structure will however influence the
Hartree contribution δGH

AA, as we now show.

The relevant trajectory configurations for the Hartree correction remain the same as
in the previous chapter, and are shown again in Fig. 6.5. There is a one-to-one corre-
spondence between the trajectory configurations for the Fock and Hartree contributions.
The important thing however is that, unlike for the Fock contribution, the configurations
for the Hartree contribution involve a finite-angle crossing at momenta p1 and p2, which
has two important consequences: First, it leads to an additional difference in the classical
actions of the trajectories, resulting in the fast-oscillating factor ei(p1−p2)(r1−r2)/~. Such
factor also enforces the interaction points r1 and r2 to remain close together on a scale of
the Fermi wavelength. Since the function K(r1, r2;ω) is built from classical propagators
that are smooth on the scale of Fermi wavelength, we can identify r1 = r2 for this function.
This effect was present also for the conventional metals. Second, the spinor structure from
the interaction vertices now results in the nontrivial factor

ΣH(p1,p2) = 〈χ(p1)|χ(p2)〉〈χ(p2)|χ(p1)〉 = cos2

(
φp1 − φp2

2

)
. (6.55)

This result indeed reflects the chiral nature of the charge carriers, leading to a suppression
of backward scattering processes.
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Figure 6.5.: Configurations of trajectories that contribute to the Hartree contribution to
the Altshuler-Aronov correction. There is a one-to-one correspondence be-
tween the configurations for the Hartree and the Fock contribution, Fig. 6.3.

Combining everything, the Hartree contribution can be obtained from the Fock contri-
bution by the replacement

UR(r1, r2;ω)→ −dgδ(r1 − r2)〈U(p1 − p2;ω = 0)ΣH(p1,p2)〉p1,p2 (6.56)

where the factor dg comes from the existence of a closed trajectory-loop in the configura-
tions of Fig. 6.5, and with the Fourier-transformed interaction

UR(q;ω) =

∫
dreiqr/~UR(r;ω). (6.57)

For a short-range potential U(r1 − r2) ∝ δ(r1 − r2), we then find δGH
AA = −(dg/2)δGF

AA:
The spin and valley degeneracies enhance the Hartree contribution by an extra factor
dg = 4 compared to the Fock contribution, while chirality reduces it by a factor two
[Kozi 10, Jobs 12].

Substituting the explicit expressions for the diffusion propagators, the final result for
the interaction correction to the conductivity reads

δσAA = −dge
2νD

π~2

∫
dω

∂

∂ω

(
ω coth

ω

2T

)
Im

{∫
d2q

(2π)2
UR(q;ω)

Dq2eiωτEe−Dq2τE

(Dq2 − iω/~)3

}
,

(6.58)
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6.6. Altshuler-Aronov correction

Figure 6.6.: Altshuler-Aronov correction as a function of TτE2π/~. Different curves cor-
respond to different values of the interaction parameter F σ0 .

with the effective interaction kernel

UR(q;ω) = UR(q, ω)− dg〈UR(p1 − p2; 0)ΣH(p1,p2)〉p1,p2 . (6.59)

6.6.2. Coulomb interaction

The Coulomb interaction, UC(r1, r2) = e2/|r1 − r2| is long-ranged, and screening effects
need to be incorporated into the results of the previous section. Similar to the case of
normal metals, the structure for the result for the interaction correction remains similar,
but the effective interaction kernel needs to be modified. The calculation proceeds anal-
ogous to the one presented in Sec. 5.2.5, but we have to keep track on the chiral nature
of particles as well as the valley degrees of freedom. The combination of spin and valley
degrees of freedom result in a total number of dg × dg = 16 channels for two-particle
scattering processes. The long-range nature of the Coulomb interaction affects only the
total singlet channel, while the remaining d2

g − 1 channels are determined by an effective
Fermi liquid parameter F σ0 (which we assume to be the same in all non-singlet channels).
The value of F σ0 is also influenced by the chiral nature of the quasiparticles in graphene,
as will be discussed below. For Coulomb interaction, the effectice interaction kernel for
graphene then reads

UR(q;ω) =
1

dgν

~Dq2 − iω
~Dq2

+ (d2
g − 1)

F σ0 (~Dq2 − iω)

dgν[~Dq2(1 + F σ0 )− iω]
, (6.60)

which generalizes Eqs. (5.36), (5.60), and (5.61) that were obtained for normal metals.

We plot the Altshuler-Aronov correction for various values of the interaction constant
F σ0 in Fig. 6.6. For small Ehrenfest time, one finds

δσAA = − e
2

πh

[
1 + c

(
1− ln(1 + F σ0 )

F σ0

)]
ln

~
2πTτE

, (6.61)
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with c = d2
g−1. Such an expression is well-known from diagrammatic perturbation theory

[Alts 85b], where in our case, the Ehrenfest time takes over the role of the elastic scattering
time as a short-time cutoff. The graphene-specific physics enters the result in two ways
[Kozi 10, Jobs 12]: First, the constant c = d2

g − 1 is 15 for graphene with only smooth
disorder, in contrast to c = 3 for conventional metals without valley degeneracy. Second,
chirality affects the interaction constant F σ0 , as will be explained in more detail below.
For small values of F σ0 , the singlet contribution is dominant in Eq. (6.61), giving rise to a
negative correction to the conductance. On the other hand, for graphene, for F σ0 . −0.12,
the non-singlet channels render the interaction correction positive.

For large Ehrenfest time, we find an exponential suppression

δσAA = − e
2

πh
e−2πTτE/~ (6.62)

where the prefactor of the exponential is determined by the singlet channel only to leading
order in ~/TτE, hence at large Ehrenfest times, δGAA is negative and has a universal
behavior.

A striking consequence of this asymptotics is a sign-change of the interaction correction
as a function of Ehrenfest time, provided the Fermi-liquid-type interactions in the non-
singlet channels are strong enough. For graphene (c = 15) this sign change already takes
place at F σ0 . −0.12, in contrast to a conventional metal (c = 3) where the sign change is
observed for F σ0 . −0.45. On the other hand, the values for F σ0 are typically somewhat
smaller in graphene, as can be seen using Thomas-Fermi approximation [Kozi 10, Jobs 12].
For conventional metals, one has

F σ0 = −ν〈 2πe2
?

|p1 − p2|+ κ
〉p1,p2 , (6.63)

where e? is the charge screened by the substrate, and κ = 2×2πνe2
? is the inverse screening

length resulting from the metal electrons (a factor 2 accounts for spin). We then find

F σ0 = −ν
∫ π

0

dθ

π

2πe2
?

2kF sin θ
2 + 4πνe2

?

= −
∫ π

0

dθ

π

α

2 sin θ
2 + 2α

, (6.64)

where θ is the angle between the directions of momenta p1 and p2. We further used
kF = 2πν~vF, as well as the “effective fine structure constant” α = e2

?/~vF. The gas
parameter rs is related to α as rs =

√
2α. For a value rs ≈ 1 we obtain F σ0 ≈ −0.28 as a

typical size for the Fermi liquid parameter.
For graphene, this calculation needs to be modified in two respects. First, the inverse

screening length is twice larger, due to the valley degree of freedom. Second, chirality con-
tributes the additional factor ΣH(p1,p2) = cos2(θ/2). Both effects reduce the interaction
in the non-singlet channel,

F σ0 = −
∫ π

0

dθ

π

α cos2 θ
2

2 sin θ
2 + 4α

, (6.65)

so that now for rs ≈ 1 we find F σ0 ≈ −0.1, which is close to the transition point for a
sign-change as function of Ehrenfest time. The measurements of Ref. [Kozi 10, Joua 11,
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Jobs 12] report F σ0 in a range between −0.05 and −0.15. However, we note that our
theory requires graphene with a smooth disorder potential, but no other perturbations,
as a necessary condition for the value c = 15 in Eq. (6.61), since there are 16 diffusion
channels. Trigonal warping or ripples, while not invalidating the semiclassical analysis,
reduce the number of diffusive channels to 8, resulting in a prefactor c = 7. In case of strong
intervalley scattering, only four diffusion modes are present resulting in a prefactor c = 3
(see Ref. [Kech 08, Khar 08]) — although in that case the conditions for the semiclassical
analysis are no longer valid. The aforementioned experiments on interaction corrections
report to be in a regime where c = 3 or c = 7.

6.7. Dephasing

We now turn to the second type of interaction correction, responsible for the dephasing.
The way of calculating the dephasing in this section follows that of Ref. [Alts 82]. An
alternative discussion based on perturbation theory, similar to that of the previous Section,
is given in the appendix.

Because of the interactions, the electrons are subject to a time-dependent potential
V (r, t). This potential affects the phase that electrons accumulate while propagating
through the sample. These phase fluctuations can be included into the classical action
Sα of the trajectory α as it appears in the semiclassical expression (6.4) for the Green
function by the substitution

Sα → Sα + δSα(t), (6.66)

where the correction δSα(t) depends on the time t at which the electron exits the sample.
The shift reads [Alts 82, Altl 07]

δSα(t) =

∫ t

t−τα
dt′V [rα(t′), t′], (6.67)

where τα is the duration of the trajectory α.
Such a shift of the classical actions does not affect the Drude conductivity, because

the actions from the “retarded” and “advanced” trajectories cancel. It does, however,
affect the weak antilocalization correction. Equation (6.42) acquires an additional factor
ei(δSα(t)−δSβ(t)) which, when averaged over the time t, reduces the contribution from the
trajectory pair α, β by a factor〈

ei(δSα(t)−δSβ(t))/~
〉
t

= e−(1/2~2)〈(δSα(t)−δSβ(t))2〉t . (6.68)

The time average can be calculated using the quantum fluctuation-dissipation theorem,

〈V (r, t)V (r′, t′)〉 =

∫
d2qdω

(2π)3

ω

2T sinh2(ω/2T )
eiq·(r−r

′)−iω(t−t′)ImUR(q, ω),

which gives

1

2
〈((δSα(t)− δSβ(t))2〉t =

∫ τα

0
dt1

∫ t1

0
dt2

∫
d2qdω

(2π)3

ω

2T sinh2(ω/2T )
ImUR(q, ω)

× Re
[
e−iω(t1−t2)

(
eiq·rα(t1) − eiq·rβ(t1)

)(
e−iq·rα(t2) − e−iq·rβ(t2)

)]
. (6.69)
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(Note that τα = τβ for the trajectory pairs that contribute to weak antilocalization.)
One immediately concludes that for the trajectories α and β that contribute to the weak
antilocalization correction δGWAL only points rα or rβ in the loop or encounter segments
of Fig. 6.1 contribute to 〈((δSα(t)− δSβ(t))2〉t.

To find an explicit expression for the dephasing correction in the limit of weak dephasing,
we expand the correction factor (6.68) to lowest order in the interaction UR(q, ω) and
calculate the leading interaction correction δGdeph to the weak antilocalization correction
δGWAL. We consider contributions from positions rα,β(t1) and rα,β(t2) in the loop and
encounter regions separately.

The calculation for the dephasing in the loop segment is very similar to the one carried
out in standard diagrammatic perturbation theory. The discussion below closely follows
that of Ref. [Marq 07]. With both positions rα,β(t1,2) in the loop region, see Fig. 6.7, we
find that dephasing in the loop segment leads to the replacement P (r′, r′; t)→ P (r′, r′; t)+
δP (r′, r′; t) for the loop propagator in Eq. (6.47), with

δP (r′, r′; t) =− 4

~2

∫
dq

(2π)2

∫
dω

2π

ω ImUR(q;ω)

2T sinh2(ω/2T )

×
∫ t

0
dt1

∫ min(t1,t−t1)

0
dt2 cos[ω(t1 − t2)/~]

× [Pq(t2, t1 − t2, t− t1)− Pq(t2, t− t1 − t2, t1)] , (6.70)

where

Pq(τ1, τ2, τ3) =

∫
dr1dr2 cos[q · (r1 − r2)]P (r′, r2, τ3)P (r2, r1, τ2)P (r1, r

′, τ1). (6.71)

Inserting the diffusion propagator P (q, τ) = e−Dq
2τ , one finds

Pq(τ1, τ2, τ3) = P (r′, r′; t)e−Dq
2τ2(1−τ2/t), (6.72)

with t = τ1+τ2+τ3. After insertion of the interaction (6.60) and evaluation of the integrals
over time, frequency, and momentum in Eq. (6.70) (see Appendix D.3), one finds

δP (r′, r′; t)

P (r′, r′; t)
= −αtT

~g0
ln
tT

~
, (6.73)

with the dimensionless conductance g0 = 2π~dgνD, and the constant

α = 1 + (d2
g − 1)

(F σ0 )2

(1 + F σ0 ) (2 + F σ0 )
. (6.74)

This result signifies that at large times the loop propagator gets suppressed by in-
teractions. Here we calculated the leading order correction, describing the onset of an
exponential suppression. (In fact, in two dimensions the decay is not purely exponential
[Marq 07], but contains an additional logarithm e−at ln t, as can be seen from Eq. (6.73)).
We estimate the dephasing rate as the time when the leading correction becomes unity,
i.e.,

1

τ loop
ϕ

' αT

g0~
ln
g0

α
. (6.75)
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Figure 6.7.: Dephasing in the loop segment: for the calculation of the lowest-order in-
teraction correction the propagation around the loop is split into three seg-
ments r′ → r1 (duration τ1), r1 → r2 (duration τ2), and r2 → r′ (duration
τ3). For our figure, the trajectories α (solid) and β (dashed) are travelled
in clockwise and counterclockwise direction, respectively. The left diagram
represents the contribution from the term proportional to eiq·rα(t1)−iq·rα(t2)

in Eq. (6.69); the right diagram represents the contribution from the term
proportional eiq·rβ(t1)−iq·rα(t2). The remaining two contributions, from terms
proportional to eiq·rα(t1)−iq·rβ(t2) and eiq·rβ(t1)−iq·rβ(t2) are not shown. The
figures have been drawn for the case that 0 < t2 < min(t1, t − t1), which is
the domain of integration in Eq. (6.70).

The leading logarithmic dependence in this expression agrees with that obtained in Ref.
[Naro 02] for a standard two-dimensional electron gas (dg = 2).

We now turn to the encounter region, where dephasing leads to an additional suppres-
sion of weak antilocalization, if the typical time for the encounter passage, the Ehrenfest
time τE, is sufficiently long. As discussed before, dephasing is ineffective, as long as the
trajectories coincide. Within the encounter region, the trajectories α and β are separated
by a small distance, which does not exceed the classical correlation scale Lc. Dephasing
then only plays a role for interaction that transfers a momentum larger than inverse mean
free path, and therefore can resolve such small distance [Altl 07, Peti 07, Whit 08]. On
the other hand, for low temperatures Tτ � 1 one has ωτ � 1. In this limit, the imaginary
part of the screened interaction reads [Zala 01]

ImUR(q;ω) = − βω

qdg~νvF
, (6.76)

where ν = kF/2π~vF is the density of states and we abbreviated

β = 1 + (d2
g − 1)

(F σ0 )2

(1 + F σ0 )2 . (6.77)

Note that ImUR(q;ω) is proportional to q−1, which is different from the dependence
ImUR(q;ω) ∝ q−2 of the diffusive limit. This difference will result a different T -dependence
of the dephasing rate in comparison to the loop contribution [Altl 07].

We proceed by the integration over ω, which can be done explicitly using the known ω
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dependence of ImUR(q;ω) [Marq 07],∫
dω

2π

ω2e−iω(t1−t2)/~

2T sinh2(ω/2T )
= 2πT 2w[πT (t1 − t2)/~]. (6.78)

Here the function w(x) = (x cothx − 1)/ sinh2 x is peaked around x = 0, normalized∫∞
−∞ dxw(x) = 1, and w(0) = 1/3. Hence, the times t1 and t2 need to be close together

on the scale of inverse temperature. On the other hand, dephasing sets in on times
much larger than T−1, as we will show below. In the following, we therefore may assume
that |t1 − t2| � τE, when we consider encounters that are long enough to be affected by
dephasing. (In fact, the calculation below will show that the main contribution stems from
time differences |t1 − t2| much smaller than the elastic mean free time.) In particular this
amounts to consider the effect of interaction during the first and second passage through
the encounter separately, since they are separated by a loop of long duration. The same
observation also allows us to neglect contributions where t1 is in the encounter, whereas t2
is in the loop or vice versa. We therefore focus on the first passage through the encounter
region, where the trajectories α and β are separated by a distance d(t) = rβ(t) − rα(t),
with the magnitude

d(t) ' λF eλt, (6.79)

where t is varying form 0 to τE. We can use this to rewrite the last two factors of Eq.
(6.69) as

(eiq·rα(t1) − eiq·rβ(t1))(e−iq·rα(t2) − e−iq·rβ(t2))

= 4eiq·[r̄(t1)−r̄(t2)] sin[q · d(t1)/2] sin[q · d(t2)/2], (6.80)

where r̄(t) = [rα(t) + rβ(t)]/2 represents a trajectory intermediate between α and β.
After performing the average over disorder configurations, we find that inclusion of the

leading-order dephasing correction amounts to the replacement P (r′, r; τE)→ P (r′, r; τE)+
2δP (r′, r; τE) in Eq. (6.47), where the factor two accounts for the two passages through
the encounter region, with

δP (r′, r; τE) =− 8πT 2β

~3vFdgν

∫
d2q

(2π)2

1

q

∫ τE

0
dt1

∫ t1

0
dt2w(πT (t1 − t2)/~)

× Penc
q (t1, t2, τE − t1 − t2) sin[q · d(t1)/2] sin[q · d(t2)/2] (6.81)

and

Penc
q (t1, t2, τE − t1 − t2) =

∫
dr1dr2 cos[q · (r1 − r2)]

× P (r′, r2, τE − t1)P (r2, r1, t1 − t2)P (r1, r, t2), (6.82)

see Fig. 6.8. Because of the smallness of |t1 − t2|, the propagator P (r2, r1, t1 − t2) is the
ballistic propagator, whereas the propagators P (r′, r2, τE−t1) and P (r1, r, t2) can be taken
in the diffusion approximation. We change the integration variables to the mean time t̄
and the difference time t = t1− t2. Again using the smallness of |t1− t2|, we replace d(t1)
and d(t2) by d(t̄). We neglect correlations between d(t̄) and the direction of the velocity
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Figure 6.8.: Dephasing in the encounter segment: For the calculation, the encounter is
split into three segments r′ → r1 (duration τ1 = t2), r1 → r2 (duration
τ2 = t1 − t2), and r2 → r′ (duration τ3 = τE − t2). Only configurations in
which |t1 − t2| � τE contribute to the interaction correction δGdeph. In the
middle segment, the distance between the trajectories α and β is d(t̄) = λFe

λt̄,
where t̄ = (t1 + t2)/2. The figure has been drawn for the case 0 < t2 < t1,
which is the domain of integration in Eq. (6.81)

at time t̄. Using P (r1, r, t2) ' P (r2, r, t1), again because of the smallness of |t1 − t2|, we
find

Penc
q (t1, t2, τE − t1 − t2) ' P (r′, r; τE)J0(vFq|t|), (6.83)

where we inserted the Fourier transform of the ballistic propagator. Since the integration
over t converges for |t| ∼ 1/vFq, the argument of the function w may be set to zero in Eq.
(6.81). Finally, the angular average over the direction of d(t̄) gives a factor 1− J0(qd(t̄)),
so that we find

δP (r′, r; τE) = − 4πT 2β

3~3v2
Fdgν

P (r′, r; τE)

∫
d2q

(2π)2

1

q2

∫ τE

0
dt̄ [1− J0 (qd(t̄))] , (6.84)

We cut off the logarithmic divergence of the q integration at large q at λ−1
F , which gives

δP (r′, r; τE) = − 2T 2β

3~3v2
Fdgν

P (r′, r; τE)

∫ τE

0
dt̄ ln

d(t̄)

λF
.

The remaining time-integration is easily evaluated with the help of Eqs. (6.79), (6.41),
and we obtain ∫ τE

0
dt̄ ln

d(t̄)

λF
=
τE

2
ln
Lc

λF
. (6.85)

Hence, our the final result reads

δP (r′, r; τE)

P (r′, r, τE)
= − T 2βτE

3~3v2
Fdgν

ln
Lc

λF
. (6.86)

One may identify the right-hand side of Eq. (6.86) with τE/τ
enc
ϕ , where τ enc

ϕ is an effective
dephasing time for the encounter region. With this identification, Eq. (6.86) describes
the onset of an exponential suppression of the weak localization ∝ e−2τE/τ

enc
ϕ at large

Ehrenfest times. Note that the time τ enc
ϕ is twice the dephasing time τball

ϕ that one finds
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from dephasing in the loop region in the ballistic regime [Naro 02], consistent with the
theory of Ref. [Altl 07]. [To compare with Ref. [Naro 02], take the energy-dependent
dephasing time τϕ(ε) from Eqs. (18) and (19a) of Ref. [Naro 02] in the limit Tτ � ~ and
calculate (τball

ϕ )−1 =
∫
dε (−∂f/∂ε) τϕ(ε)−1 with, for a conventional metal, dg = 2. The

low-momentum cut-off in Ref. [Naro 02] is the inverse mean free path, whereas it is the
classical correlation length Lc in our case. The two lengths need not be equal, see Eq.
(6.17).]

6.8. Conclusion

In this chapter we have presented a trajectory-based semiclassical theory of the quan-
tum corrections to transport in graphene in the presence of a random potential that is
smooth on the scale of the Fermi wavelength. A prominent role is played by the Ehrenfest
time, which serves as a short-time threshold for the appearance of quantum interference
effects. The Ehrenfest time also plays an important role for electrons in a conventional
two-dimensional electron gas (with quadratic dispersion) if they are subject to a smooth
random potential.

Compared to the conventional case, charge carriers in graphene have an additional
pseudospin degree of freedom and they have an additional valley degeneracy, which leads
to a few subtle modifications of the quantum corrections with respect to the conventional
case. The pseudospin vector always points along the direction of motion, reflecting the
chiral nature of the charge carriers in graphene. The evolution of the pseudospin along the
trajectory is associated with a Berry phase of the spin transport, that additionally enters
the semiclassical Green function. This Berry phase is responsible for a sign change in
the weak localization correction, giving antilocalization behavior. The presence of a finite
Ehrenfest time reduces the magnitude of this correction, but with a multiplicative factor
that is the same for weak localization and weak antilocalization. We also considered the
suppression of weak (anti)localization from dephasing at finite temperatures, and identified
there, too, the role of the Ehrenfest time.

For the interaction correction there are two important differences with the case of the
conventional two-dimensional electron gas: The Hartree-type processes (or, more precisely,
interaction non-singlet channels) contain an additional angular dependence, as a result of
chirality. Moreover, importance of screening is changed, because of the presence of the
valley degeneracy. A finite Ehrenfest time suppresses the Altshuler-Aronov correction,
in a similar way as for conventional metals, but unlike for weak (anti)localization the
suppression is not simply a multiplicative factor. Interestingly, the interaction correction
may undergo a sign change as a function of Ehrenfest time, for sufficiently strong inter-
action in the non-singlet channels. For graphene, the interaction strength at which this
sign change takes place is smaller than in conventional electron gases, which may place it
within experimental reach, as discussed in Sec. 6.6.
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Graphene has stimulated a great deal of attraction in solid state physics in recent years. Its
special electronic properties arise from a quasi-relativistic dispersion, that is characteristic
for the honeycomb lattice formed by the atoms of a single layer of graphite. The relativistic
nature of the electronic excitations in graphene gives rise to series of unconventional effects,
that are observed in studies of the transport properties of graphene. In this thesis, we
discussed various aspects of such unusual features in the electronic properties of graphene,
and their relation to the peculiar bandstructure.

One part of the thesis discussed the possibility of electrostatic confinement in graphene.
While it is common, to restrict the electronic motion to a quantum dot with the help pf
metallic gates in semiconductor structures, such procedure is problematic in graphene, due
to the absence of a bandgap. The best option to create quantum dots in graphene consists
of a doped region that is surrounded by an an undoped graphene structure, where the
Fermi level lies at the Dirac point. Although the density of states vanishes in the region
outside of the dot, Klein tunneling opens a way to exit the dot, as electrons approaching
the surface of the dot under normal incidence will be transmitted with unit probability. On
the other hand, electrons that hit the surface away from normal incidence will be reflected
back and remain inside the dot. Such angle-specific scattering suggests, that electrostatic
confinement should be possible for certain geometries, that exclude normal incidence.

One way to obtain information about possible confinement in graphene, is to attach the
quantum dot surrounded by undoped graphene to source and drain contacts and study
the two-terminal conductance. The spatial restriction of electronic motion gives rise to
discrete levels of the quantum dot, that are observed as resonances in the conductance. The
structure of the resonances, as well as their behavior upon changing the coupling between
dot and leads contains information about the nature of the electronic bound state and the
degree of confinement. As prototypical examples, we studied a circular quantum dot with
integrable classical dynamics, that should support bound states according to the arguments
given above, and a stadium-shaped quantum dot, which should lack confinement in view
of the classical chaotic motion.

Previous numerical studies indeed found sharp resonances for a circular graphene quan-
tum dot, that correspond to well-confined states, while for the chaotic structure the res-
onances are typically broad. Further improvement has been made by linking the conduc-
tance to the scattering matrix of the quantum dot, which allows for an analytic solution
for the circular quantum dot. In this thesis, we extended this machinery, in order to be
able to calculate the conductance of a quantum dot of generic shape from its scattering
matrix. In this way, we have been able to extract information about the structure of the
bound states from the lineshape of the resonant features in the conductance. Moreover, we
could easily scale to the important limit of weak coupling between dot and leads, for which
the resonances become isolated. Here, we could make the distinction between features of
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a regular and a chaotic dot shape rigorous, since the width of the resonances is shrinking
linearly in the ratio of dot size vs. distance to the leads for a chaotic dot upon weakening
the coupling to the leads, while the regular dot contains resonances that shrink at a higher
power, and therefore possess a higher degree of confinement.

Remarkably, the resonances for the chaotic structure persist at a finite height close to the
conductance quantum even in the limit of arbitrarily small coupling to the leads. In this
thesis, we identified the Berry phase, that occurs in graphene from the pseudospin which
indicates the sublattice structure, as the origin of such effect. Upon a circular motion of the
electron, the pseudospin winds once around its axis, being responsible for an accumulation
of a phase of π in the electronic wavefunction. The Berry phase is also responsible for a
quantization of the angular momentum to half-integer multiples of ~. We could isolate the
significance of such phase on possible confinement in graphene by adding an additional
flux tube to the system, which contains half a flux quantum. Electrons encircling such
flux tube acquire an Aharonov-Bohm phase of π, which is precisely cancelling the effect of
a Berry phase. For this situation, the kinematic angular momentum, which is relevant for
the classical argumentation, is shifted to integer values, where the state with zero angular
momentum cannot be confined by means of gate potentials. Such state hence corresponds
to normal incidence on the surface, where Klein tunneling prohibits confinement. Indeed
we found a clear distinction between regular and chaotic shapes of the dot in the presence
of the flux tube, where bound states are now only found in regular structures.

An alternative route to access information about the degree of confinement in different
quantum dots is to investigate the density of states, that can also be inferred from the
scattering matrix of the quantum dot. We showed, that such type of calculation pro-
vides an effective method to gain information about resonant levels of the dot, and we
discussed in this thesis, how the different scenarios of quantum dots in graphene give rise
to discernable features in the density of states.

To sum up, we have been able to derive a conclusive picture about which effects in-
fluence the electrostatic confinement in graphene. We remark, that the question if it is
possible to confine electrons in graphene with metallic gates could not be answered a priori
based on intuition, but demanded a careful study that revealed some surprising insights
in the unusual Dirac physics in graphene. We believe, that the methods developed within
this thesis in this context, offer valuable tools for the study of related problems. As an
example, we would like to mention a possible charge trapping when the graphene sheet
is deformed, for example externally with a scanning tunneling microscope tip. Electrons
moving through the deformed graphene layer are affected by an effective magnetic field,
that maybe able to localize the electrons. Another direction would be to drive the system
out of equilibrium by changing the gate voltage of the quantum dot (or the height of
the deformation of the graphene sheet) in time. Nonequilibrium phenomena are typically
accompanied by rich physical effects, therefore it might be worth to extend the methods
developed in this thesis and include a time-dependence.

In this thesis, we further employed semiclassical methods in order to study quantum
effects in transport in disordered metals. The wave nature of electrons is confirmed by a
number of features in electronic transport, such as weak localization, or the interaction
correction to the conductivity. For a system where the disorder is changing on a scale
much larger than the Fermi wavelength, which describes the typical extension of an elec-
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tronic wavepacket, the electronic motion is governed by classical dynamics. The essence
of semiclassical methods in quantum transport is to calculate quantum effects to the con-
ductivity based on classical trajectories through the conductor – quantum effects arise
from the interference of different trajectories. The semiclassical limit is characterized by
the appearence of an additional timescale, the Ehrenfest time, not present for short-range
quantum disorder, which essentially serves as a short-time threshold for the occurence of
interference effects.

One of the projects of this thesis contained the semiclassical analysis of the interaction
correction to the conductance. Our study extended a previous investigation that derived
a semiclassical theory for the interaction correction of a ballistic double quantum dot, the
simplest system for which interaction corrections can occur. The study presented in this
thesis is capable to treat a generic type of conductor that gives rise to classical electronic
dynamics and allows for both short and long range type of interaction. In particular, we
address the interaction correction to the conductance of antidot arrays, an experimentally
relevant example for a system where electrons are following classical trajectories. We find
that the Ehrenfest time is acting as a short-time threshold for the occurrence of the in-
teraction correction, and consequently the interaction correction is strongly suppressed,
once the Ehrenfest time exceeds the dwell time or inverse temperature. The sensitivity
to temperature is special to the interaction correction, and maybe of importance for ex-
perimental studies, where temperature provides a well-adjustable quantity. For Coulomb
interaction, there is a competition between Hartree and Fock type contributions to the
conductance, which come with opposite sign. This competition may lead to a sign change
of the interaction correction, as one varies Ehrenfest time, if the interaction is strong
enough.

We further studied quantum corrections to transport in graphene in this thesis, based on
semiclassical approximations. For the semiclassical limit to hold true, we require graphene
that is doped away from the Dirac point, and subject to a smooth disorder potential,
which may occur in graphene samples that are placed on a substrate with high dielectric
constant. The semiclassical theory for graphene differs from the theory for conventional
metals by the existence of the pseudospin, which modifies the semiclassical propagator for
the electrons, such that it contains information also about the transport of the pseudospin.
In this thesis, we discussed weak localization, and the interaction corrections, specifically
the Altshuler-Aronov correction and dephasing, for graphene from a semiclassical point of
view, based on classical trajectories. For weak localization, the Berry phase associated with
the pseudospin is responsible for a change from weak localization to weak antilocalization.
We also discussed quantitatively, how such effect is suppressed by a finite Ehrenfest time.
For the interaction correction, the pseudospin together with the additional valley degree
of freedom is influencing the magnitude of the interaction correction. Interestingly, the
sign change as a function of Ehrenfest time mentioned before appears within experimental
reach for graphene.

Summarizing, in this thesis we further extended the range of applicability of semiclassical
methods for the calculation of quantum transport. The usage of semiclassical methods
provides several advances, it combines the highly intuitive language based on classical
trajectories together with a powerful quantitative method to calculate the magnitude of
the quantum corrections, and it can deal with the appearence of the Ehrenfest time in
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7. Conclusion

systems with smooth “classical” disorder. We are optimistic that the developments of
this thesis are useful for a further extension of the semiclassical methods to other areas in
quantum transport, for instance in superconducting systems.
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A. Appendix to Chapter 3

A.1. Matrix Green Function

In this appendix, we give explicit expressions for some of the matrix Green function
appearing in Sec. 3.3. We follow the supplementary material of Ref. [Tito 10], but our
results for the d-wave channel go beyond that reference.

Using Pauli matrices τx, τy, and τz for the retarded-advanced (RA) degree of freedom,
and with τ0 for the 2 × 2 unit matrix in the RA grading, the explicit expression for the
matrix Green function Ǧ0 is

Ǧ0(x, x′; y) =
1

4~vL
V̌ (x)Λ̌Λ̌τ Λ̌σΛ̌V̌ −1(x′) (A.1)

with Λ̌ =

(
1 0
0 0

)
⊗ σz +

(
0 0
0 1

)
⊗ σ0 and

Λ̌τ =

(
i cosh(φy/2L) sinh(φy/2L)
sinh(φy/2L) −i cosh(φy/2L)

)
⊗ σ0, (A.2)

Λ̌σ = τ0 ⊗

(
1

sin[π(x+x′+iy)/2L]
1

sin[π(x−x′+iy)/2L]
1

sin[π(x−x′−iy)/2L
1

sin[π(x+x′−iy)/2L

)
, (A.3)

V̌ (x) =

(
sin φ(L−x)

2L cos φ(L−x)
2L

i cos φx2L i sin φx
2L

)
⊗ σ0. (A.4)

Ths s-wave contribution of the regularized Green function can be found as

Ǧssreg(x0) = lim
x′→x0
y→0

[Ǧ0(x0, x
′; y)− g(x0 − x′, y)]

=
i

4~vL
V̌ (x0)

(
1

sin(πx0/L) −σxφ/π
σxφ/π − 1

sin(πx0/L)

)
V̌ −1(x0) (A.5)

Contributions from higher angular momentum modes are obtained by keeping higher terms
of the Taylor series. Therefore, we write the regularized Green function as

Ǧreg(r, r′) =
∑
µ,ν

1

µ!

1

ν!
[(r− r0)

−→
∇ ]µǦreg(r0, r0)[

←−
∇ ′(r′ − r0)]ν (A.6)

Here,
−→
∇ acts to the right, on the first argument of the Green function, and

←−
∇ ′ acts to the

left, on the second argument of the Green function. We can simplify this expression by
using the equations of motion of the regularized Green function,

− iσ
−→
∇Ǧreg = 0, Ǧreg(−i

←−
∇ ′σ) = 0 (A.7)
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from which immediately follows, that

∂yǦreg(r, r′) = iσz∂xǦreg(r, r′), ∂y′Ǧreg(r, r′) = ∂x′Ǧreg(r, r′)(−iσz). (A.8)

This enables us to rewrite Eq. (A.6) as

Ǧreg(r, r′) =
∑
µ,ν

1
µ! [(x− x0) + iσz(y − y0)]µǦµνreg

1
ν! [(x

′ − x0)− iσz(y′ − y0)]ν , (A.9)

with

Ǧµνreg = ∂µx∂
ν
x′Ǧreg(r0, r0). (A.10)

We now give the explicit expressions for Ǧµνreg up to d-wave order. In order to keep the
expressions short, we focus on the case, where the dot is placed in the middle of the sample
(x0 = L/2),

Ǧsp/psreg =
i

8~vL2
V̌ (x0)

(
±π2−3φ2

6π σx −φ
−φ ±π2−3φ2

6π σx

)
V̌ −1(x0),

Ǧppreg =
i

16~vL3
(π2 − φ2)V̌ (x0)

(
1 φ

3πσx
− φ

3πσx −1

)
V̌ −1(x0),

Ǧsd/dsreg =
i

16~vL3
(π2 − φ2)V̌ (x0)

(
1 − φ

3πσx
φ
3πσx −1

)
V̌ −1(x0),

Ǧpd/dpreg =
i

32~vL4
V̌ (x0)

(
∓7π4−30π2φ2+15φ4

60π σx φ(−3π2 + φ2)

φ(−3π2 + φ2) ∓7π4−30π2φ2+15φ4

60π σx

)
V̌ −1(x0),

Ǧddreg =
i

64~vL5
V̌ (x0)

(
5π4 − 6π2φ2 + φ4 φ−7π4+10π2φ2−3φ4

15π σx

−φ−7π4+10π2φ2−3φ4

15π σx −(5π4 − 6π2φ2 + φ4)

)
V̌ −1(x0).

The element Ǧssreg is given by Eq. (A.5). Since V̌ (x0) has no matrix structure in pseudospin
space, it commutes with the T -matrix, and therefore does not play a role for the generating
function.

Upon inserting (A.9) into the generating function (Eq. (3.21)), we find

δF = ln det[1−TǦreg], (A.11)

where Ǧreg is a (infinite) matrix with entries Gµνreg (µ,ν = 0, 1, ...) and the matrix T
contains the elements Tµν

Tµν =

∫
d2rd2r′ 1

µ! [(x− x0)− iσz(y − y0)]µT (r, r′) 1
ν! [(x

′ − x0) + iσz(y
′ − y0)]ν . (A.12)

This is Eq. (3.23) of the main text. In the limit that the size R of the quantum dot is
much smaller than L, this expansion is convergent, and it is a good approximation to limit
the number of angular momentum “channels” involved in the expansion. In the simplest
case, one takes into account the s-wave contribution µ = ν = 0 only. This limit was
considered in Ref. [Tito 10]. The accuracy can be improved by including contributions
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from higher angular momentum. The expressions derived above allow one to go up to the
d-wave contribution.

In order to relate the object Tµν of Eqs. (3.23) or (A.12) to the T matrix in the partial-
wave expansion, it is instructive to compare the plane-wave and circular-wave basis sets
of eigenstates of the free Dirac Hamiltonian H0 = −iσ∇. The plane wave basis consists
of eigenstates, which are labeled by their wavevector k = (k cos θk, k sin θk),

ψk(r) =
eikr√

2

(
1
eiθk

)
. (A.13)

Here and below, we restrict ourselves to positive energy solutions (conduction band) only.
In the implementation, this can be achieved by choosing the gate potential of the dot to
be negative. The circular-wave states are combined eigenstates of the Hamiltonian and
the total angular momentum Lz + 1

2σz, and are therefore labeled by their wavenumber k
and their half-integer angular momentum quantum number m,

ψkm(r) =

√
k

4π
eimθ

 e−i
θ
2J|m− 1

2 |(kr)

ei
θ
2 isgn(m)J|m+ 1

2 |(kr)

. (A.14)

Here, Jν is the Bessel function of ν-th order. The 2 × 2 matrix Ψkµ of the main text is
related to the ψkm as Ψkµ = (ψk,µ+1/2, iψk,−µ−1/2). The basis change between plane waves
and circular waves is expressed through the equation

ψk(r) =

√
2π

k

∑
m

i|m−
1
2
|e−i(m−

1
2

)θkψkm(r). (A.15)

For the scattering problem in the infinite graphene sheet, we place the center of the
quantum dot at the origin. We may express the T -matrix in the plane-wave basis through
the T -matrix in real space as

T (k,k′) =
1

2

∫
d2rd2r′(1 e−iθk)T (r, r′)

(
1

eiθ
′
k

)
× exp[ik(x′ cos θ′k + y′ sin θ′k − x cos θk − y sin θk)]. (A.16)

On the other hand, the same matrix elements can be also written in spherical wave basis,

T (k,k′) =
2π

k

∑
nm

(−i)|n−
1
2
|i|m−

1
2
|ei(n−

1
2

)θke−i(m−
1
2

)θ′kTnm(k) (A.17)

The partial-wave T matrices Tmn introduced here and Tµν of the main text are related as

Tµν =

(
Tµ+1/2,ν+1/2 iTµ+1/2,−ν−1/2

−iT−µ−1/2,ν+1/2 T−µ−1/2,−ν−1/2

)
. (A.18)

Comparing Eqs. (A.16) and (A.17), we obtain a relation between the T -matrix in spherical
wave basis and the T -matrix in real space. For example, for the s-wave channel we find

2π

k

(
T 1

2
, 1
2
(k) iT 1

2
,− 1

2
(k)

−iT− 1
2
, 1
2
(k) T− 1

2
,− 1

2
(k)

)
=

1

2

∫
d2rd2r′T (r, r′) +O(k), (A.19)
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so that

T 00 = lim
k→0

4π

k

(
T 1

2
, 1
2
(k) iT 1

2
,− 1

2
(k)

−iT− 1
2
, 1
2
(k) T− 1

2
,− 1

2
(k)

)
= lim

k→0

4π

k
T00(k), (A.20)

where, in the last equation, we used the 2 × 2 matrix notation with integer indices used
in the main text. The remaining identities in Eq. (3.25) follow similarly.

A.2. Low-k-Limit of Scattering matrix

In this appendix, we present the details how to determine the low-k limit of the scattering
matrix. As explained in the main text, we modify the scattering problem, such that we
solve the scattering problem for particles with wavenumber k1 = k + k′ in the potential
U ′ = U +~k′v. We then need to relate the scattering matrix S′ for this problem, in which
U ′ is set to zero outside a certain cut-off radius a to the scattering matrix S for the original
problem, in which U , not U ′ is set to zero for r > a.

In order to relate these two scattering matrices, we need to calculate the scattering
matrix of a potential step, in which the potential is zero for r > a and equal to u = ~k′v
for r < a. Hereto, we expand the wavefunctions for r < a and r > a in terms of incoming
and outgoing circular waves with wavenumber k′ + k and k, respectively,

ψa−(r) =
∑
m

(L+
mψk+k′,m,+(r) + L−mψk+k′,m,−(r)),

ψa+(r) =
∑
m

(R+
mψk,m,+(r) +R−mψk,m,−(r)), (A.21)

where the scattering states ψk,m,± are obtained from the basis states ψkm in Eq. (A.14)
by the replacement J(kr) → H±(kr). The coefficients R±m and L±m are related through
the transfer matrix T , (

R+
m

R−m

)
= Tm(k, k + k′, a)

(
L+
m

L−m

)
, (A.22)

which is easily calculated from continuity of the wave function at r = a,

Tm(k, k + k′, a) =
πa

4i
T̃m(k, k + k′, a)

√
k(k + k′), (A.23)

where the 2× 2 matrix T̃m(k, k + k′, a) has entries

T̃m(k, k + k′, a)11 = H
(−)

|m|+ 1
2

(ka)H
(+)

|m|− 1
2

(ka+ k′a)−H(−)

|m|− 1
2

(ka)H
(+)

|m|+ 1
2

(ka+ k′a),

T̃m(k, k + k′, a)12 = H
(−)

|m|+ 1
2

(ka)H
(−)

|m|− 1
2

(ka+ k′a)−H(−)

|m|− 1
2

(ka)H
(−)

|m|+ 1
2

(ka+ k′a).

(A.24)

The other entries are given by the relations T̃m(k, k + k′, a)21 = −T̃m(k, k + k′, a)∗12,
T̃m(k, k + k′, a0)22 = −T̃m(k, k + k′, a)∗11. The transfer matrix is converted into reflec-
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tion/transmission coefficients using the standard relations

ρ = T12(T22)−1,

τ = (T22)−1,

τ ′ = T11 − T12(T22)−1T21,

ρ′ = −(T22)−1T21. (A.25)

Upon taking the limit k → 0, we find

ρm = 1 +
iπa2|m|

[(|m| − 1
2)!]222|m|−1

H
(−)

|m|+ 1
2

(k′a)

H
(−)

|m|− 1
2

(k′a)
k2|m| +O(k2|m|+1),

τm = τ ′m =
1

(|m| − 1
2)!2|m|−

3
2

a|m|−
1
2

√
k′

1

H
(−)

|m|− 1
2

(k′a)
k|m| +O(k|m|+1),

ρ′m = −
H

(+)

|m|− 1
2

(k′a)

H
(−)

|m|− 1
2

(k′a)
+O(k). (A.26)

We can now relate the scattering matrices S′ for particles with energy k′ in the potential
U ′ = U + ~k′v and U ′ = 0 for r > a to the scattering matrix S for particles with energy
k in the potential U , with U = 0 for r > a,

S = ρ+ τ ′(1− S′ρ′)−1S′τ. (A.27)

Inserting the above expansions, we get an expression of the form

Snm(k) = δnm + S(1)
nm k

|n|+|m| +O(k|n|+|m|+1), (A.28)

coinciding with Eq. (3.33) in the main text. The coefficient S(1) depends on a, k′ and S′.
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B.1. Numerical simulation of the two-terminal transport

The numerical approach for the two-terminal transport in the presence of a π-flux follows
Ref. [Bard 07]. The potential V (r) is replaced by a potential

∑
n Vn(y)δ(x − xn) that is

nonzero at N discrete values −L/2 = x0 < x1 < x2 < . . . < xN−1 < xN = L/2 of the x
coordinate, with

Vn(y) =

∫ (xn+xn+1)/2

(xn−1+xn)/2
dxV (x, y), n = 1, 2, . . . , N − 1.

Between the discrete points the wavefunction is solved from the free Dirac equation. This
solution takes its simplest form after Fourier transform with respect to the transverse
coordinate y, because the free Dirac equation does not couple different transverse modes.
These solutions are then matched by applying the appropriate boundary conditions at
the discrete points x = xj , j = 1, 2, . . . , N . A numerically stable method to implement
this program is to express both the solution of the free Dirac equation and the matching
conditions at the discrete points x = xj in terms of scattering matrices. The scattering
matrix of the entire sample is then obtained from convolution of the scattering matrices
of the 2N − 1 individual components. The result of the calculation is the transmission
matrix t, which is related to the two-terminal conductance via the Landauer formula,

G =
4e2

h
tr tt†, (B.1)

where the trace is taken of the transverse Fourier modes. The number of “slices” N and
the number of transverse modes M must be chosen large enough, that the conductance G
no longer depends on N and M .

The vector potential (4.15) corresponds to the boundary condition

lim
x↑0

ψ(x, y) = − lim
x↓0

ψ(x, y) for −W/2 < y < 0, (B.2)

whereas ψ(x, y) is continuous at x = 0 for 0 < y < W/2. In the approach described above,
this boundary condition is expressed in terms of a scattering matrix relating incoming and
outgoing waves at x ↑ 0 and x ↓ 0. This scattering matrix has no reflective part, whereas
the transmission matrix is

tmn =

{
0 if m− n even,
−4i/[(km − kn)W ] if m− n odd,

(B.3)

where the integers m and n label the transverse modes and kn = 2πn/W . This transmis-
sion matrix has the special properties that t = t† and t2 = 1.
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In order to ensure numerical stability, unitarity must be preserved while restricting to
a finite number of transverse modes M . For the transmission matrix (B.3) this can be
achieved using the following trick: One first builds the hermitian matrix h = i(eiφ −
t)/(t + eiφ) = cotφ − t/ sinφ out of the transmission matrix, where φ is a phase that
can be chosen arbitrarily, then truncates h, which can be done straightforwardly without
compromising hermiticity, and then uses the inverse relation t = eiφ(1 + ih)/(1 − ih)
to obtain a finite-dimensional transmission matrix. In our numerical calculation we set
φ = π/2. We verified that the elements of the resulting finite-dimensional transmission
matrix approach the elements of the exact transmission matrix (B.3) in the limit that the
number of transverse mode M →∞.

B.2. Numerical simulation of the density of states

In this appendix, we provide details concerning the numerical calculation of the density
of states out of the scattering matrix for a gate-defined dot or arbitrary shape. We first
choose a disc of radius R that fully covers the quantum dot. Inside this disc, i.e., for
r < R, the scattering matrix needs to be determined numerically; outside the disc the
Dirac equation can be solved analytically, see Sec. 4.4.1.

For r < R we rewrite the Dirac equation as

[vFp · σ + U(r)]ψ = ~vFkrefψ, (B.4)

where kref is a reference wavenumber that can in principle be chosen arbitrarily and the
potential U(r) is defined as

U(r) = V (r)− ε+ ~vFkref . (B.5)

We regard Eq. (B.4) as a scattering problem of an electron with wavenumber kref on the
potential U(r). For the solution of this scattering problem, we divide the disc of radius R
in N circular slices ri < |r| < ri+1, where 0 ≡ r0 < r1 < r2 < . . . < rN−1 < rN ≡ R. We
first calculate the scattering matrix S(i) of the ith slice, which is defined for a scattering
problem for which the potential U(r) is set to zero everywhere except for ri−1 < r < ri.
The scattering matrix S(i) is defined with respect to flux-normalized scattering states
defined for r < ri−1 and r > ri, taken at wavenumber kref . If we choose the slices thin
enough, a treatment of the scattering problem in the Born approximation is sufficient.
The wavenumber kref should be chosen large enough, that these scattering states are well
defined. A too small value of kref disturbs the numerical procedure, since the Hankel
function are divergent at small arguments. On the other hand, too large values for kref

require a finer slicing. After the calculation of the scattering matrices S(i) for the individual
slices, concatenation of those yields the full scattering matrix SR(ε) for the potential U(r)
inside the the disc of radius R. This procedure is very similar to the calculation in Ch. 3

For the further calculation, we only need the scattering matrix at small energies. We
thus expand

SR(ε) = S
(0)
R + S

(1)
R ε+O(ε2), (B.6)

where the matrices S
(0)
R and S

(1)
R are obtained from the numerics by setting the energy ε

in the potential U(r) (Eq. (B.5)) first to zero, and then to a very small value.
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To calculate the density of states, we need the full scattering matrix S, that relates in-
and outgoing states in the metallic lead, i.e. we still need to account for the undoped
graphene region R < r < L. Since the problem is circularly symmetric outside the disc
of radius R, one can establish an explicit connection between S and SR. For r > L the
wavefunction for an electron incident in angular momentum channel m has the form

ψε(r) = ψ
(−)
k∞,m

(r) +
∑
n

Snm(ε)ψ
(+)
k∞,n

(r), (B.7)

which defines the scattering matrix Snm in the general case that angular momentum is
not conserved. For R < r < L we may expand the solution of the Dirac equation as

ψε(r) =
∑
n

[
anmψ

(−)
k,n (r) + bnmψ

(+)
k,n (r)

]
, (B.8)

with k = ε/~vF, whereas for the limit r ↑ R the wavefunction may be written as

ψε(r) =
∑
n

cnm

[
ψ

(−)
kref ,n

(r) +
∑
p

SR,pn(ε)ψ
(+)
kref ,p

(r)

]
, (B.9)

with the scattering matrix SR(ε) as defined above. By imposing continuity of the wave-
function at r = R and r = L, we can eliminate the coefficients anm, bnm and cnm and
express S(ε) in terms of SR(ε). This program can be carried out analytically, including the
expansion in k relevant for the application of Eq. (4.31) of the main text. The resulting
equations can be obtained in a straightforward manner, but they are too lengthy to be
reported here.

We checked that our results do not depend on the choice of R and kref that were
introduced into the numerical procedure as auxiliary parameters.
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C.1. Details of the semiclassical calculation

C.1.1. Sum rule

Here we show how to derive the sum rule Eq. (5.11). We start by noticing that

A2
α =

∣∣∣∣∣det

(
∂2Sα
∂r′∂r

∂2Sα
∂r′∂ξ

∂2Sα
∂ξ∂r

∂2Sα
∂ξ∂ξ

)∣∣∣∣∣ =

∣∣∣∣∣det

(
∂p′α
∂r

∂p′α
∂ξ

∂τα
∂r

∂τα
∂ξ

)∣∣∣∣∣ . (C.1)

Hence we may write∑
α:r′→r;ξ

A2
αf(p′α,pα, τα)

=

∫ ∞
0

dt

∫
dp′

∑
α:r′→r;ξ

δ(t− τα)δ(p′ − p′α)f(p′,pα, t)

∣∣∣∣∣det

(
∂r
∂p′

∂ξ
∂p′

∂r
∂t

∂ξ
∂t

)∣∣∣∣∣
−1

. (C.2)

The determinant serves as a Jacobian for the transformation (t,p′)→ (ξ, r),

∑
α:r′→r;ξ

δ(t− τα)δ(p′ − p′α)f(p′,pα, t)

∣∣∣∣∣det

(
∂r
∂p′

∂ξ
∂p′

∂r
∂t

∂ξ
∂t

)∣∣∣∣∣
−1

=δ[ξ −H(r,p(r′,p′; t))]δ[r− r(r′,p′; t)]f [p′,p(r′,p′; t), t], (C.3)

where (r(r′,p′; t),p(r′,p′; t)) is the phase space point that a trajectory originating from
(r′,p′) reaches after time t. After insertion of

∫
dpδ(p − p(r′,p′; t)) we finally arrive at

Eq. (5.11).

C.1.2. Convolution rule

In this appendix we derive the convolution rule∫
dr1dr2GA(r′, r2; ξ)GA(r2, r1; ξ − ω)GA(r1, r; ξ)f(r1 − r2)

=− 1

~2

2π

(−2πi~)3/2

∑
α:r′→r;ξ

Aαe
−iSα/~

∫ τα

0
dt

∫ t

0
dt′f(rα(t)− rα(t′))eiω(t−t′)/~, (C.4)

where f(r) is an arbitrary function. (Here we omitted contributions from stationary
configurations of trajectories, that cannot be connected to a single trajectory. For the
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calculation of the interaction correction, such contributions drop out upon pairing with
the retarded trajectory.)

To this end, we first prove an auxiliary identity for the stability amplitudes. Hereto we
consider a trajectory α that connects r′ with r. Further, let r1 be a point on trajectory
α, and α′ (α′′) be the part of trajectory α connecting r′ with r1 (r1 with r). The stability
amplitude Aα can be then written as [Gutz 90]

A2
α =

1

v2
F

∣∣∣∣∂2Sα(r, r′)

∂r⊥∂r
′
⊥

∣∣∣∣ =
1

v2
F

∣∣∣∣∂p′⊥α∂r⊥

∣∣∣∣ , p′⊥α(r, r′) = −∂Sα(r, r′)

∂r′⊥
, (C.5)

where vF is the Fermi velocity and r⊥ (r′⊥) denote displacements perpendicular to the
trajectory α. The last equation implicitly defines r⊥α(r′⊥, p

′
⊥). We then introduce

Bα = −
(
∂r⊥α
∂p′⊥α

)
r′⊥

, Bα′ = −
(
∂r⊥1α′

∂p′⊥α′

)
r′⊥

, Bα′′ = −
(
∂r⊥α′′

∂p⊥1α′′

)
r⊥1

, (C.6)

such that A2
α = v−2

F

∣∣B−1
α

∣∣, A2
α′ = v−2

F

∣∣B−1
α′

∣∣, A2
α′′ = v−2

F

∣∣B−1
α′′

∣∣. Then the following identity
holds:

Bα = Bα′Bα′′

(
∂2Sα′(r1, r

′)

∂r2
⊥1

+
∂2Sα′′(r, r1)

∂r2
⊥1

)
. (C.7)

For the proof of Eq. (C.7), we note that Bα measures the change of the final coordinate
of α induced by a small change of the initial momentum. When we consider α to be
composed by α′ and α′′, a small change of the initial momentum leads to a change of the
intermediate coordinate and momentum, which results in a change of the final coordinate,(

∂r⊥α
∂p′⊥α

)
r′⊥

=

(
∂r⊥α′′

∂p⊥1α′′

)
r⊥1

(
∂p⊥1α′

∂p′⊥α′

)
r′⊥

+

(
∂r⊥α′′

∂r⊥1α′′

)
p⊥1

(
∂r⊥1α′

∂p′⊥α′

)
r′⊥

=

(
∂r⊥α′′

∂p⊥1α′′

)
r⊥1

(
∂r⊥1α′

∂p′⊥α′

)
r′⊥

[(
∂p′⊥α′

∂r⊥1α′

)
r′⊥

(
∂p⊥1α′

∂p′⊥α′

)
r′⊥

+

(
∂r⊥α′′

∂r⊥1α′′

)
p⊥1

(
∂p⊥1α′′

∂r⊥α′′

)
r⊥1

]

=

(
∂r⊥α′′

∂p⊥1α′′

)
r⊥1

(
∂r⊥1α′

∂p′⊥α′

)
r′⊥

[(
∂p⊥1α′

∂r⊥1α′

)
r′⊥

−
(
∂p⊥1α′′

∂r⊥1α′′

)
r⊥

]
(C.8)

The last line yields Eq. (C.7).
In a similar fashion, one verifies that

Bα′ = BαBα′′

(
∂2Sα′′(r, r1)

∂r2
⊥

− ∂2Sα(r, r′)

∂r2
⊥

)
. (C.9)

The identity we need for the derivation of the convolution rule (C.4) involves the parti-
tioning of a single trajectory α into three trajectories α′ (r′ → r1), α′′ (r1 → r2) and α′′′

(r2 → r). In this case, we have

Bα = Bα′Bα′′Bα′′′

[(
∂2Sα′
∂r2
⊥1

+
∂2Sα′′
∂r2
⊥1

)(
∂2Sα′′
∂r2
⊥2

+
∂2Sα′′′
∂r2
⊥2

)
−
(

∂2Sα′′
∂r⊥1∂r⊥2

)2
]
. (C.10)
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To see this, one introduces the trajectory α̃ as connection of α and α′ and makes use of
Eqs. (C.7) and (C.9).

We now turn to the proof of the convolution rule (C.4). Hereto, we define

K(r, r′;ω) =

∫
dr1dr2δ(r1 − r2 − a)GA(r′, r2; ξ)GA(r2, r1; ξ − ω)GA(r1, r; ξ), (C.11)

where a is arbitrary, but fixed. With the abbreviation r̃1 = r1 − a we write

K(r, r′;ω) =

∫
dr1GA(r′, r̃1; ξ)GA(r̃1, r1; ξ − ω)GA(r1, r; ξ). (C.12)

We then insert the semiclassical expressions for the Green functions which expresses the
former equation as a sum over trajectories α′ (from r′ to r̃1), α′′ (from r̃1 to r1), and α′′′

(from r1 to r).
The integration over r1 is carried out within stationary phase approximation. Here we

only take into account stationary phase configurations, where α′, α′′ and α′′′ are connected
to a single trajectory. Other configurations play no role for the calculation of the conduc-
tance, since the three advanced trajectories are paired with a single retarded trajectory.
Hence the convolution K may be written as a sum over trajectories α connecting r′ with

r and a sum over points r
(0)
1 , for which α first passes through r̃

(0)
1 = r

(0)
1 − a and then

through r
(0)
1 . Deviations ∆r1 = (∆x1,∆y1) from r

(0)
1 may be parametrized as

∆r⊥1 = − sin(θ)∆x1 + cos(θ)∆y1

∆r̃⊥1 = − sin(θ̃)∆x1 + cos(θ̃)∆y1 (C.13)

where θ (θ̃) is the angle of the momentum of trajectory α at r
(0)
1 (r̃

(0)
1 ), and in turns

∆r⊥1 (∆r̃⊥1) represent perpendicular displacements of trajectory α at r
(0)
1 (r̃

(0)
1 ). We

then expand the sum of the actions of trajectories α′, α′′ and α′′′ up to second order in
∆r1:

Sα′(r̃1, r
′; ξ) + Sα′′(r1, r̃1; ξ − ω) + Sα′′′(r, r1; ξ) = Sα(r, r′; ξ)− ωτ + ∆S(∆r1), (C.14)

where τ is the duration of α between r̃
(0)
1 and r

(0)
1 , and ∆S(∆r1) is given by

∆S(∆r1) =
1

2

[
∂2Sα′(r̃

(0)
1 , r′)

∂r̃2
⊥1

+
∂2Sα′′(r

(0)
1 , r̃

(0)
1 )

∂r̃2
⊥1

]
∆r̃2
⊥1

+
1

2

[
∂2Sα′′(r

(0)
1 , r̃

(0)
1 )

∂r2
⊥1

+
∂2Sα′′′(r, r

(0)
1 )

∂r2
⊥1

]
∆r2
⊥1

+

[
∂2Sα′′(r

(0)
1 , r̃

(0)
1 )

∂r̃⊥1∂r⊥1

]
∆r⊥1∆r̃⊥1, (C.15)

where as a consequence of energy conservation only perpendicular displacements need to
be considered. The integration over ∆r1 can then be accomplished and using Eq. (C.10)
we get

K(r, r′;ω) =

(
2π

(2πi~)3/2

)3

(2πi~)
∑

α:r′→r;ξ

∑
{r(0)1 }

1

v2
F

1

| sin(θ − θ̃)|
Aαe

−i(Sα−ωτ)/~

129



C. Appendix to Chapter 5

where the factor | sin(θ− θ̃)|−1 originates from the Jacobian of the transformation (C.13).
(A possible phase shift from taking the squareroot of Eq. (C.10) is needed to restore the
correct Maslov index. For our calculation however, the Maslov index plays no role and we
drop it in our expressions.)

On the other hand, we have∫ τα

0
dt

∫ t

0
dt′δ(2)(rα(t)− rα(t′)− a) =

∑
{r(0)1 }

1

v2
F

1

| sin(θ − θ̃)|
.

With that, we finally obtain

K(r, r′, ω) = − 1

~2

2π

(2πi~)3/2

∑
α:r′→r;ξ

Aαe
−iSα/~

∫ τα

0
dt

∫ t

0
dt′δ(2)(rα(t)− rα(t′)− a)eiω(t−t′).

(C.16)
Multiplying with f(a) and integrating over a then yields Eq. (C.4).

C.1.3. Summation over classical trajectories involving a small-angle encounter

The summation over classical trajectories with a small-angle encounter as given in Fig. 5.4
is performed using the procedure of Refs. [Mull 07, Brou 07]. We here outline the main
points of this calculation.

The four trajectories α (from r′ to r2), β (from r1 to r), γ (from r′ to r), and δ (from
r1 to r2) are piecewise paired as shown in Fig. C.1. We start by noting that the choice of
the retarded trajectories α and β fully specifies the advanced trajectories γ and δ, since
the linearized chaotic dynamics allows for precisely one unique solution of a trajectory
that satisfies the initial and final conditions required for the pairing shown in Fig. C.1.
Moreover, the products of the stability amplitudes are equal, AαAβ = AγAδ, so that the
product of four Green functions required for the calculation of δGAA can be written as

GR(r, r1; ξ)GA(r1, r2, ξ − ω)GR(r2, r
′; ξ)GA(r′, r; ξ)

=
1

2π~3

∑
α:r′→r2;ξ

∑
β:r1→r;ξ

A2
αA

2
βe
i∆S/~eiωτδ/~,

(C.17)

where ∆S is the action difference Sα + Sβ − Sγ − Sδ. The summation over trajectories α
and β is restricted to those trajectories that undergo (at least) one small-angle encounter.

The action difference ∆S has two contributions: One contribution from the length
difference of the retarded trajectories α and β vs. the advanced trajectories γ and δ, and
one contribution from the different energy ξ − ω associated with the trajectory δ. The
former contribution has been calculated in Refs. [Ture 03, Speh 03] and equals seue; the
latter contribution equals ωτδ, where τδ is the duration of the trajectory δ. Note that
the product seue is independent of the position of the phase space point Xe along the
encounter.

The trajectories α and β are enumerated by first picking a phase space point Xe on the
trajectory α. The Poincaré surface of section at this point may be parameterized with
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C.1. Details of the semiclassical calculation

stable and unstable phase space coordinates, which are denoted se and ue respectively.
Moving the Poincaré surface of section along the trajectory, the unstable (stable) coordi-
nate grows (shrinks) as e±λt, where λ is the Lyapunov coefficient. We choose the origin of
the coordinate system such that the trajectory α pierces the Poincaré surface of section at
coordinates (se, ue) = (0, 0). The point Xe is part of an encounter formed by trajectories α
and β, if β passes through the Poincaré surface of section at phase-space distance |se| < c
and |ue| < c, where c is a cutoff scale, below which the chaotic classical motion can be
linearized. (One can always simultaneously rescale the coordinates s and u, such that the
cut-off scale is the same for both coordinates.) The cut-off scale c enters the final results
in the combination ln(c2/~) only, so that the precise value of c is unimportant, as long as
c represents a scale characteristic of the classical dynamics. One verifies that the choice
of the phase space point Xe on the trajectory α and of the phase space coordinates for
the trajectory β also specify the two remaining trajectories γ and δ. Indeed, since γ is
paired with α before the encounter, and with β after the encounter, it pierces through
the Poincaré surface of section at the same unstable coordinate as β and the same stable
coordinate as α. Similar considerations apply to the trajectory δ. The summation over
trajectories α and β is then written as∑

α:r′→r2;ξ

∑
β:r1→r;ξ

A2
αA

2
β . . . =

∫
dpξdp

′
ξdp1,ξdp2,ξ

∫
dXe

∫ c

−c
dsedue

×
∫ ∞

0
dτα

∫ ∞
0

dτβ

∫ τα

0
dtα

∫ τβ

0
dtβ

1

tenc

× ρξ(r′,p′ → Xe; τα − tα)ρξ(Xe → r2,p2; tα)

× ρξ(r1,p1 → X∗e ; tβ)ρξ(X
∗
e → r,p; τβ − tβ) . . . , (C.18)

where X∗e is the phase space point located at phase-space displacement (se, ue) from X
and the dots indicate an arbitrary function of the end-point coordinates of the trajectories
α and β. The time tenc denotes the duration of the encounter. The factor tenc in the
denominator accounts for the fact, that Xe can be chosen anywhere along the encounter.
The ends of the encounter are determined by the condition that max(|s|, |u|) = c, or that
one of the trajectories involved ends, whichever occurs first. Since the phase space coor-
dinates s and u decreases/increase exponentially upon proceeding along the trajectories
α and β, with a rate given by the Lyapunov exponent λ, one finds that tenc is given by
the expression

tenc = min[λ−1 ln(c/|se|), tβ] + min[λ−1 ln(c/|ue|), tα]. (C.19)

The four different scenarios, depending on whether tβ and tα are larger or smaller than
λ−1 ln(c/|se|) and λ−1 ln(c/|ue|), respectively, correspond to the four contributions to

δGF,2a
AA –δGF,2d

AA to δGF,2
AA. The same situation also occurs in the calculation of the shot

noise, see Ref. [Whit 06, Brou 06].
The next step in the calculation is to replace the exact trajectory densities ρξ by the

coarse-grained ones. In order to account for correlations inside the encounter, we intro-
duce phase space points X and X′ at the beginning and end of the encounter — if the
phase-space points X1 and X2 associated with the interaction position are not inside the
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Figure C.1.: Schematic drawing of an encounter, formed by the trajectories α, β, γ, and
δ, with timescales and phase-space points as described in the main text.

encounter. Outside the encounter region we may replace the product of the exact trajec-
tory densities by the product of the classical propagators, whereas inside the encounter
only a single classical propagator remains. After coarse graining the classical propagators
are insensitive to small phase-space difference between Xe and X∗e , so that we may replace
X∗e by Xe. As a result, the integration over se and ue and the integration over Xe can be
performed separately. The integration over Xe can be performed using a convolution rule
for the classical propagators,∫

dXeP (X2,Xe; t2)P (Xe,X1; t1) = P (X2,X1; t1 + t2). (C.20)

The contribution δGF,2a
AA is then expressed as Eq. (5.22) with K1 replaced by

K2a(X1,X2;ω) =−
∫
dXdX′Pin(X)P (X,X1;ω)P (X2,X

′;ω)Pout(X
′)

× 1

2π~

∫ c

−c
dsduP (X′,X; tenc)e

iωtenc/~ e
isu/~

tenc
, (C.21)

where P (X,X′;ω) is the Fourier transform of P (X,X′; t), see Eq. (5.29). The encounter
time for this contribution is given by tenc = λ−1 ln(c2/|su|). In order to perform the
integration over the phase-space coordinate s and u we make use of the integral identity

1

2π~

∫ c

−c
dsdu

eisu/~

tenc
f(tenc) =

∂

∂τE
f(τE), (C.22)

which holds for an arbitrary function f(t) which is a slow function of its argument on the
time scale λ−1. In this equation, the Ehrenfest time is defined as

τE = λ−1 ln(c2/~). (C.23)
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One notes that this definition is consistent with Eq. (5.1) of the main text, since c2 is
a classical action characteristic of the classical motion, which can also be expressed as
c2 = pFa, where a is a length scale characteristic of the classical motion. The equivalence
to Eq. (5.1) then follows since pF = 2π~/λF. With the equality (C.22) the result (5.25) of
the main text follows immediately.

To prove Eq. (C.22), one makes use of the identity

2

π

∫ e−λt

0
dx

sinx

x
= θ(−t), (C.24)

where the Heaviside step function θ(t) is broadened on the scale λ−1. Taking derivatives
on each side, we obtain

2λ

π
sin
(
e−λt

)
= δ(t), (C.25)

2λ2

π
e−λ(t) cos

(
e−λt

)
= − ∂

∂t
δ(t). (C.26)

These equations can be applied to the left hand side of Eq. (C.22) after writing the
integration in terms of positive s and u and after a variable change that uses tenc and
v = s/c as the integration variables,

1

2π~

∫ c

−c
dsdu

eisu/~

ts + tu
f(ts + tu) =

2

π

∫ ∞
0

dtenc

∫ 1

e−λtenc
dv
λe−λ(tenc−τE)

v

cos(e−λ(tenc−τE))

tenc
f(tenc)

=
2λ2

π

∫ ∞
0

dtence
−λ(tenc−τE) cos(e−λ(tenc−τE))f(tenc)

=
∂

∂τE
f(τE), (C.27)

where we used Eq. (C.26) in the last line.

For the contribution δGF,2b
AA , the encounter is bounded to the right by the phase space

point X2 of the interaction. In this case, the encounter time is given by tenc = λ−1 ln(c/|s|)+
tα, where tα can take values between zero and λ−1 ln(c/|u|). The expression for δGF,2b

AA is
again of the form (5.22), with K1 replaced by

K2b(X1,X2;ω) =−
∫
dXPin(X)P (X,X1;ω)Pout(X2)

1

2π~

×
∫ c

−c
dsdu

∫ λ−1 ln(c/|u|)

0
dtαP (X2,X; tenc)e

iωtenc/~ e
isu/~

tenc
. (C.28)

The integration over s and u in Eq. (C.28) is done with the help of the identity

1

2π~

∫ c

−c
dsdu

∫ λ−1 ln(c/|u|)u

0
dtα

eisu/~

tenc
f(tenc) = f(τE), (C.29)

which is proven by first performing the integrations over s and u, and then using the
identity (C.25). The final result is Eq. (5.26) of the main text. The derivation of Eq.
(5.27) of the main text is similar.
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Finally, for the fourth and last contribution δGF,2d
AA , the encounter is bounded by both

phase space points X1 and X2 of the interaction vertices. The encounter time is here
given by tenc = tα + tβ, where tα and tβ vary between 0 and λ−1 ln(c/|u|) and between 0

and λ−1 ln(c/|s|), respectively. The expression for δGF,2d
AA takes the form (5.22), with K1

replaced by

K2d(X1,X2;ω) =−
∫
dXPin(X1)Pout(X2)

1

2π~

∫ c

−c
dsdu

×
∫ λ−1 ln(c/|s|)

0
dtβ

∫ λ−1 ln(c/|u|)

0
dtαP (X2,X; tenc)e

iω(tenc)/~ e
isu/~

tenc
.

(C.30)

The integrations over s and u can be performed with the help of Eq. (C.24) and yield Eq.
(5.28) of the main text.

C.2. Details of the discussion

In this appendix we add some technical details to the discussion of Sec. 5.3. The function
gm(x) of Eq. (5.67) can be cast in the following closed analytic expression

gm(x) =
8

π2 (m2 + x)2 +
32m2a tanhs

(
aπ
√
x

2

)
π3
√
x (m2 + x) (m2 + ax)2

∣∣∣∣∣∣
a=1

a→0

+
24F σ0 m

2

π2 (m2 + x)2 ((1 + F σ0 )m2 + x)

−
96b3/2m2 tanhs

(
π
√
x

2
√
b

)
π3
√
x (m2 + x) (bm2 + x)2

∣∣∣∣∣∣
b=1+Fσ0

b=1

, (C.31)

where s = ±1 for m even (odd). In the regime τD � τT , τE, we may write this as

gm(nτD/τT ) =
8

π2

τ2
T

τ2
D

1

(m2 τT
τD

+ n)2

[
1 +

3F σ0
m2 τT

τD
(1 + F σ0 ) + n

](
1 +O(

√
τT
τD

)
)
, (C.32)

where terms with an additional factor
√
τT /τD ∝ 1

L correspond to finite size corrections
and will be neglected.

After replacing the summation over m in Eq. (5.66) by an integration, we obtain

δGAA = −4e2

πh

√
τT
τD

∞∑
n=1

e
−n τE

τT n

(
τE

τT

)5/2 [
f1(n τEτT )− f ′1(n τEτT )

]
, (C.33)

with

f1(x) =

∫ ∞
0

dz
1√
z

1

(z + x)2

[
1 +

3F σ0 z

z(1 + F σ0 ) + x

]
e−z. (C.34)
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Apart from the prefactor
√
τT /τD, the interaction correction δGAA is a function of the

ratio τE/τT only. The limiting behavior for small and large ratios τE/τT is given in the
main text.

For the case τT � τE, τD, we replace the summation over n in Eq. (5.66) by an integration
and find

δGAA = −e
2

h

∞∑
m=1

e
−m2 τE

τD

∫ ∞
0

dx(1 + τE
τD
x)gm(x)e

−x τEτD . (C.35)

This is a function of the ratio τE/τD only.
For the case of a large two-dimensional antidot array we use the residue technique to

perform the ω integration of Eq. (5.74), and obtain

δGAA = −e
2

h

W

L

1

π

∞∑
n=1

e
−n τE

τT n
τ2

E

τ2
T

[
f2

(
n τEτT

)
− f ′2

(
n τEτT

)]
, (C.36)

with

f2(x) =

∫ ∞
0

dz
1

(z + x)2

[
1 +

3F σ0 z

z(1 + F σ0 ) + x

]
e−z. (C.37)
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D.1. Weak antilocalization

Here we present some details of the calculation to the weak antilocalization. We start from
Eq. (6.47) and insert the diffusion propagators Eq. (5.51). After performing the spatial
integrals, we find

δGWAL =
e2dg

2π~
64

π4

∞∑
n=1
n odd

∞∑
l=1

∞∑
k=0

e
−(l2+k2/r2)

τtr
τD

l2 + k2/r2

l2e
−n2 τE

τD

n2(4l2 − n2)
(D.1)

where τD = L2/Dπ2 is the dwell time, and r = W/L is the aspect ratio. For large aspect
ratios r, the summation over k can be replaced by an integration,

∞∑
k=0

1

l2 + k2/r2
e
−(k2/r2)

τtr
τD ≈ r

∫ ∞
0

dx
1

l2 + x2
e
−x2 τtr

τD = r
π

2l
+O

(√
τtr
τD

)
. (D.2)

We are interested in leading terms in the small parameter τtr/τD only, for which one finds

δGWAL =
e2dg

2π~
W

L

32

π3

∞∑
n=1
n odd

∞∑
l=1

l e
−n2 τE

τD e
−l2 τtr

τD

n2(4l2 − n2)
(D.3)

In the limit of small τtr/τD, the behavior of the summand for large l is relevant. We then
may simplify the summation over n as follows: The main contributions arise for n ≈ 0
and n ≈ 2l, where the summand has poles. If l is large, the poles are well separated, and
the dominant contribution comes from the pole at n ≈ 0,

∞∑
n=1
n odd

1

n2(4l2 − n2)
e
−n2 τE

τD ≈ 1

4l2

∞∑
n=1
n odd

1

n2
e
−n2 τE

τD , (D.4)

which results in the expression

δGWAL = g
e2

2π~
W

L

8

π3

∞∑
n=1
n odd

1

n2
e
−n2 τE

τD

∞∑
l

1

l
e
−l2 τtr

τD . (D.5)

For small l, this expression is not accurate, hence this summation has a lower cutoff, which
is not relevant for small τtr/τD, however, where the l-summation results in ln

√
τD/τtr.

Hence, we find Eq. (6.48) from the main text.
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D.2. Dephasing: Perturbation theory

An alternative derivation of the dephasing correction to weak antilocalization can be ob-
tained directly from perturbation theory in the interaction. Following Ref. [Alei 99], to
leading order in interaction, one finds two corrections to the conductance. The first one
of these corresponds to the Altshuler-Aronov correction and was considered in Sec. 6.6.
The second correction reads

δGdeph =− dg
e2~
2π

∫
dy

∫
dy′
∫
dε

(
−∂f(ε)

∂ε

)∫
dω

2π

[
coth

( ω
2T

)
− tanh

(
ω − ε

2T

)]
×
∫
dr1dr2Im

[
UR(r1, r2;ω)

]
× tr

[
v̂xGR(r, r1; ε)GR(r1, r2; ε− ω)GR(r2, r

′; ε)v̂′xGA(r′, r; ε)

+ v̂xGR(r, r′; ε)v̂′xGA(r′, r2; ε)GA(r2, r1; ε− ω)GA(r1, r; ε)

+v̂xGR(r, r1; ε)GR(r1, r
′; ε− ω)v̂′xGA(r′, r2; ε− ω)GA(r2, r; ε)

]
x′=0
x=L

. (D.6)

The calculation proceeds by inserting the semiclassical expressions for the Green functions
and identify the relevant configurations of trajectories. Only configurations where “ad-
vanced” and “retarded” trajectories are paired up (where we also allow for small angle
encounters or pairing of time-reversed trajectories) contribute systematically to the con-
ductance. For the first term inside the trace in Eq. (D.6), this is only possible, if the three
“retarded” trajectories join together to a single trajectory connecting the points r′ with r,
that can be paired up with the advanced trajectory. In the semiclassical approximation,
we then evaluate the integration over r1 and r2 within stationary phase approximation,
where we keep only stationary configurations that join to a single trajectory. The result
of such a calculation is∫

dr1dr2GR(r, r1; ε)GR(r1, r2; ε− ω)GR(r2, r
′; ε)Im

[
UR(r1, r2;ω)

]
=− 1

~2

2π

(2πi~)3/2

∑
α:r′→r;ε

Aαe
iSα/~|χ(pα)〉〈χ(p′α)|eiγα

×
∫ τα

0
dt

∫ t

0
dt′Im

[
UR(rα(t), rα(t′);ω)

]
e−iω(t−t′)/~, (D.7)

We here restrict ourselves to explain, how the structure of this result can be understood,
and refer to Appendix C.1.2 for the detailed calculation. The first step is to identify points
r1 and r2, which make the total phase of the integrand stationary. Such configurations
are obtained, whenever there exists a single classical trajectory α the connects the points
r′ and r via r2 and r1. Since the position of the intermediate points can be anywhere
along the trajectory α, the summation over stationary configurations of the intermediate
points is expressed a summation over trajectories α as well as two time integrations along
the trajectory α. The Green function connecting the intermediate points is taken at a
different energy, resulting in the additional factor e−iω(t−t′)/~, as follows from Eq. (5.9).
Furthermore, the actions of the three subpaths sum up to the action Sα of the joined path.
Similarly, the individual Berry phases for the subpaths combine to the Berry phase of the
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joined path γα, as the Berry phase is expressed as integral along the trajectory. Since
the momenta are smoothly connected at the intermediate points, the intermediate spinors
match together, and only the spinors at the endpoints remain in the final expression.
The second step in the evaluation of the integral is to integrate over quadratic fluctuations
around the stationary configurations. This, in turns, renders the proper stability amplitude
Aα and the prefactor, see Appendix C.1.2.

Similar considerations apply to the second and third term of the trace of Eq. (D.6).
Therefore, we can write Eq. (D.6) as a sum over one “retarded” trajectory α and one
“advanced” trajectory β, connecting source and drain. Since only paired trajectories are
of relevance, we may simplify Aα = Aβ and τα = τβ. Since the only dependence on the
propagation energy ε is in the factor between square brackets on the first line of Eq. (D.6),
we may perform the integration over ε and find∫

dε

(
−∂f(ε)

∂ε

)[
coth

( ω
2T

)
− tanh

(
ω − ε

2T

)]
=

ω
2T

sinh2 ω
2T

. (D.8)

Inserting the Fourier transformed interaction we then obtain

δGdeph =
e2dg

(2π~)2

∫
dy

∫
dy′
∑
α,β

A2
αv
′
xvxe

i(Sα−Sβ)ei(γα−γβ)

×
∫
dω

2π

ω
2T

sinh2 ω
2T

∫
dq

(2π)2
ImUR(q;ω)

1

2~2

∫ τα

0
dt1dt2e

−iω(t1−t2)/~

×
[
eiq[rα(t1)−rα(t2)] + eiq[rβ(t1)−rβ(t2)] − eiq[rα(t1)−rβ(t2)] − eiq[rβ(t1)−rα(t2)]

]
,

(D.9)

which is consistent with the expressions of Sec. 6.7.

D.3. Dephasing: Loop segment

In this appendix we add some details to the calculation of the dephasing for the loop
segment. The imaginary part of the screened interaction in the diffusive limit, Eq. (6.60),
evaluates to

ImUR(q, ω) =ImUR,s(q, ω) + (d2
g − 1)ImUR,t(q, ω), (D.10)

with

ImUR,s(q, ω) =− 1

dg~ν
ω

Dq2
,

ImUR,t(q, ω) =− 1

dg~ν
(F σ0 )2ωDq2

(1 + F σ0 )2(Dq2)2 + (ω/~)2
. (D.11)

Accordingly, we split Eq. (6.70) as

δP (r′, r′; t) = δP s(r′, r′; t) + (d2
g − 1)δP t(r′, r′; t) (D.12)
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Using Eq. (6.72), we are lead to the temporal integral

I(ω,q, t) =

∫ t

0
dt1dt2e

−iω(t1−t2)/~
[
e−Dq

2τ2(1−τ2/t) − e−Dq2τ̄2(1−τ̄2/t)
]
, (D.13)

where τ2 = |t1 − t2| and τ̄2 = |t− t1 − t2|. We evaluate this integral in the long-time limit
t� max(~/ω, 1/Dq2) (which is sufficient for the present analysis),

I(ω,q, t) ' 2t
Dq2

(Dq2)2 + (ω/~)2
, (D.14)

i.e., we find a linear-in-t behavior.
For the q-integration we consider the non-singlet part of the interaction first,∫

dq

(2π)2

Dq2 ImUR,t(q, ω)

(Dq2)2 + (ω/~)2
= − π~(F σ0 )2

4g0(1 + F σ0 )(2 + F σ0 )
.

Here we introduced the dimensionless conductance g0 = 2π~dgνD. Our expression now
reads

δP t(r′, r′; t) = − πt

2g0~
(F σ0 )2

(1 + F σ0 )(2 + F σ0 )

∫
dω

2π
F
( ω

2T

)
. (D.15)

For small ω/T , we may expand the function F(x) ≈ 1/x, which gives a logarithmic
divergent ω-integral. This integral should be cut at high energies by temperature, and at
small energies by ~/t, where Eq. (D.14) ceases to be valid. So we find

δP t(r′, r′; t) = − (F σ0 )2

(1 + F σ0 )(2 + F σ0 )

Tt

g0~
ln
Tt

~
. (D.16)

The result for the singlet channel can be obtained from the latter equation by formally
sending F σ0 →∞.
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