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Abstract

The field of plasmonics studies the interaction between electromagnetic fields and free
electrons in a metall, which enhance the optical near-field in the vicinity of the metal. For
metallic nanostructures, the enhanced near-field is confined to a small volume called a
plasmonic hotspot. Light scattering and absorption in a hotspot increases by several orders
of magnitude. In this thesis I study the inelastic light scattering of graphene and carbon
nanotubes subject to an enhanced near-field by Raman spectroscopy. First, I introduce
and verify the concept of strained graphene as a local probe for plasmon-enhanced Raman
scattering. Second, I probe the coupling of carbon nanotubes to the enhanced optical
near-field in a plasmonic hotspot. To achieve the required interface, I suggest the directed
dielectrophoretic deposition of nanotubes onto metallic nanostructures as a new method
to couple nanotubes to plasmonic hotspots.

A graphene-covered nanodimer was probed by Raman spectroscopy. The high intensity
electromagnetic near-field at the plasmonic hotspot in the dimer gap enhanced the Raman
signal by a factor of thousand. The enhancement occurred for strained graphene. Strain
shifts the graphene phonon frequency; vibrations at the plasmonic hotspot differ in energy
from vibrations originating from other areas and acts as a local probe for enhancement.
We verified the Raman enhancement by the combination of spatially resolved, polarization
and excitation energy dependent measurements. As these parameters do not affect the
Raman signal of graphene, we proved that the experiment probed the Raman process
caused by the enhanced optical near-field.

For carbon nanotubes in the gap of a plasmonic dimer we observed Raman signal
enhancements of the order 103 − 104. Following the approach developed using graphene,
we addressed the extrinsic plasmonic and the intrinsic nanotube optical response inde-
pendently by varying excitation energy and polarization. We showed that (i) the Raman
enhancement scales with the projection of light polarization on the tube axis and that
(ii) carbon nanotube Raman features arise from fully symmetric vibrations, even in the
presence of a high intensity near-field. Raman modes that require light polarizations
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perpendicular to the nanotube axis were impossible to observe. This settled a long
standing debate in the literature on the symmetry of the experimentally observed phonon
modes. The placement of the carbon nanotubes in the gap of plasmonic dimers was
achieved by directed dielectrophoretic assembly, which we suggest as a new method to
achieve nanotube-nanoplasmonic interfaces.
The methodologies and approaches that I developed in this thesis to couple graphene

and carbon nanotubes with plasmonic structures provide a powerful and flexible tool to
study the fundamentals of plasmon-enhanced Raman scattering.
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1 | Introduction

The interaction between light and matter on the nanoscale is of key interest in science
and technology. It allows exploring the fundamental physical principles and is necessary
to implement nanoscale phenomena into technology. One aspect of particular interest is
nanoscale optical coupling. It describes the excitation transfer by light from one object,
the source, to another object, the probe. Nanoscale implies that (i) the dimensions of both
objects are small enough to influence their physical properties and that (ii) the interaction
occurs on length scales of the order of nanometers. According to this definition, many
different combinations of physical systems and observation techniques, the eye, realize
nanoscale optical coupling. In this thesis I describe how plasmonic nanostructures transfer
optical excitations to graphene and carbon nanotubes as studied by Raman scattering.
These low-dimensional carbon-based solid state systems are advantageous compared to
molecules, which are traditionally used to realize nanoscale optical coupling.

Plasmonic nanostructures are tiny metallic particles that absorb light by a collective
electron excitation called the localized surface plasmon resonance (LSPR) [1]. This
excitation is then transferred in the immediate vicinity of the particle and creates a
small volume where the electromagnetic near-field is enhanced. If two metallic particles
are placed in close proximity, the light excites a collective surface plasmon resonance of
dipolar nature. The gap between the two particles harbors even more intense light fields.

a
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Igate

drain!
(Pd)

source!
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a b
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Figure 1.1 Thesis in a nutshell: A
metallic nanostructure (source) trans-
fers its optical excitation to graphene
or carbon nanotubes (probes) by light.
The interaction is monitored by Ra-
man spectroscopy (eye).
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1. Introduction

It is referred to as a plasmonic hotspot and represents the source. Light absorption and
scattering of a probe, a molecule for instance, placed in a hotspot increases by orders of
magnitude due to strong optical coupling.

Raman scattering, the inelastic scattering of light by vibrations, is a prime spectroscopic
technique to study processes at plasmonic hotspots. It is non-destructive, yields plenty
of structural information, and characterizes molecules and solid state systems. The
combined effect of enhancement of Raman scattering in plasmonic hotspots due to their
high intensity near-field is therefore a very powerful tool. The challenge lies in constructing
and controlling an interface so that their interaction at the plasmonic hotspot can be
reliably measured.

The enhancement of molecular Raman signatures was first observed on roughened
metallic surfaces [2, 3], subsequently coined surface enhanced Raman scattering (SERS).
The enhancement originated mainly from small gaps or pockets forming plasmonic
hotspots [4, 5]. Optical coupling occurred for molecules within those pockets. The signal
was overlaid by the pristine Raman signals of molecules on the surface. Progress was
made by replacing the roughened surface with single nanoparticles or nanoparticle clusters
with a spacing of several µm, much larger than the spatial resolution of the optical
setup of 500nm or higher [6]. This introduced the ability to tune the localized surface
plasmon resonance by the size of the nanoparticles and allowed one to monitor single
plasmonic hotspots in randomly formed nanoparticle agglomerates, eventually enabling
single-molecule detection [7, 8].

Progress in nanofabrication techniques such as optical lithography and particularly
electron beam lithography allows to precisely tailor the size, shape, and arrangement
of nanostructures. These attributes in return define the spectral position of the LSPR
and the location of the plasmonic hotspot. To take into account the increased level of
control provided by lithographically fabricated structures, one typically uses the term
plasmon-enhanced Raman scattering (PERS). With the high degree of control afforded
by modern lithographic processing, one can study the effect of the arrangement of source
and probe. For a pair of closely spaced gold nanodiscs, for instance, the near-field is
localized in the center of the gap between them. Even nanometers away from the center
of the hotspot, the near-field enhancement, which serves as an approximate measure for
the optical coupling, drops by several orders of magnitude [9]. For dimer structures in
general, the plasmonic excitation is primarily of dipolar nature and the light in the gap is
polarized along the dimer axis. The relative orientation of a molecule and its dipole to
the light polarization affects the optical coupling to the plasmonic structure and must be
accounted for. Despite recent progress such as the immobilization of small structures at a
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hotspot [10], the exact orientation and position of a single molecular probe inside a single
plasmonic hotspot remained impossible to control experimentally [9, 11].

In addition to the enhancement by optical near-fields commonly referred to as elec-
tromagnetic enhancement, there is an additional effect called chemical enhancement for
molecules chemisorbed on plasmonic structures [12]. The metal modifies the properties
of a molecule such that its optical resonance and Raman polarizability may change and
can be mistaken as resulting from optical coupling. Furthermore, the role of the intrinsic
molecular resonance and its relation to the external plasmonic resonance is not completely
understood. There is evidence, for instance, that plasmonic enhancement of Raman
scattering for single molecules occurs for an excitation at the intrinsic molecular - and
not the plasmonic - resonance only [13].

Graphene, the two-dimensional crystal formed by hexagons of carbon atoms (Sec. 2.1),
combines several properties that make it an almost ideal probe for plasmon-enhanced
Raman scattering [14]. Graphene absorbs 2.3% of the light for wavelengths in the visible
and near-infrared part of the electromagnetic spectrum [15]. The Raman cross section
of graphene is intrinsically constant in this frequency domain, which coincides with the
typical spectral window of surface plasmon resonances of gold and silver. Here graphene
is commonly referred to as a non-resonant Raman scatterer: Changes in the Raman
intensity directly probe the coupling of graphene to the plasmonic nanostructures. The
interdependence between the resonances of source and probe is lifted. From a conceptional
point of view, graphene possesses an additional advantage. Being a two-dimensional
crystal, graphene is treated within the solid state formalism (of inelastic light scattering).
It provides a vast set of physical models - e.g. a continuous electronic band structure and
dispersive phonons - for the description of plasmon-enhanced Raman scattering [16, 17],
which are not available for molecules.

In the following I will discuss further advantages that are associated with the use of
graphene in PERS. The interface between graphene and plasmonic nanostructures is
realized by placing one top of the other. This has been realized with plasmonic structures
both either beneath and on top of graphene [17, 18]. The necessary fabrication and transfer
techniques are well established and ensure high-quality, defect-free graphene sheets in
large sizes (hundreds of µm). The two-dimensional nature of graphene guarantees the
interface with the enhanced near-field for both stacking orders. The membrane is subject
to coupling with both the very center of the hotspot as well as nearby areas of lower
intensity. Graphene serves as a spatial integrator or detector of the near-field with the
Raman signal as a read-out. The issue of orientation is also solved as the Raman signal
intensity of graphene is independent of the polarization, as long as the latter is in plane
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1. Introduction

with the graphene sheet [19]. Graphene is chemically inert, so the contact with plasmonic
structure and/or the underlying substrate does not modify its electronic structure and the
non-resonant character of its Raman response persists. Graphene’s extended geometry,
however, also comes with a drawback: Plasmon-enhanced Raman scattering at the
plasmonic hotspot is always accompanied by conventional Raman scattering from the
vicinity of the structure. These two contributions to the overall scattering intensity
differ only in signal intensity, which may mask subtle aspects of the interaction between
graphene and the plasmonic structure.

I suggested to use locally strained graphene as a new nanoscale probe for studying
optical coupling by plasmon-enhanced Raman scattering of graphene [20, 21]. Graphene
was placed on top of spatially isolated plasmonic structures fabricated on a flat surface.
The strong adhesion of graphene to the surface of the surrounding substrate induced
tensile strains in the graphene segments on and around the nanostructure. Strain shifts
the graphene phonon frequency; as a result vibrations at the hotspot differ in energy from
vibrations originating from other areas. In our experiments we achieved tensile strains of
around 1%. The corresponding shifts of ∼ 25 cm−1 for the G-mode and ∼ 95 cm−1 for the
2D-mode of graphene can clearly be identified in a spectrum. For graphene on a nanodisc
dimer, we observed a thousandfold enhancement of the Raman signal. Spatially resolved
Raman measurements showed that the enhanced signals originated exclusively from the
dimer gap, which acted as a point-like source of enhancement. Rotating the polarization of
the excitation resulted in a 20-fold drop in the enhancement and in a spatial broadening of
the enhanced signals. This reflected the polarization induced transition from the coupled
to the uncoupled regime of the plasmonic dimer; both nanodiscs acted as two independent
and spatially separated sources of much weaker enhancement as compared to the coupled
case. No enhancement occurred for an excitation energy off the plasmonic resonances for
both polarizations, confirming the nature of the enhancement. We extended our approach
to structures of different shape and composition; all of them showed the same behavior.
Enhanced Raman signals originating from graphene-covered hotspots are always identified
by their frequency. This observation confirmed the universal validity of the approach I
developed in this thesis. Strained graphene energetically distinguishes Raman signatures
from plasmonic hotspots which cannot be spatially resolved due to the diffraction limit.
The plasmonic structure that generates the hotspot simultaneously generates its own
probe, while the Raman scattering cross section remains unchanged. Our probe is an
unprecedented and new way to study the interaction between graphene and the plasmonic
near-field, especially the fundamentals of plasmon-enhanced Raman scattering.

Single walled carbon nanotubes are the one-dimensional siblings of graphene. They
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can be thought of as rolled up sheets of graphene with diameters from a few nanometers
down to several Angstrom, and lengths up to centimeters [22, 23]. They are considered
the prime example of a one-dimensional solid state model system. Quantum confinement
along the circumference of the nanotube leads to strongly structured, resonant optical
spectra that span the electromagnetic spectrum from the infrared to the ultraviolet. The
shape anisotropy of nanotubes directly translates into anisotropic optical polarizability.
The tubes absorb and emit light polarized parallel to their axis, while both processes are
suppressed in the perpendicular case. Similar to molecules, nanotubes can be regarded as
dipolar near-field probes. Due to their one-dimensional nature, however, the orientation
of a carbon nanotube with respect to a plasmonic hotspot can be readily obtained
experimentally. A nanotube placed in a hotspot such as the gap a plasmonic dimer
therefore allows one to study true nanoscale optical coupling by investigating the interplay
between the resonances and relative dipole orientations. The tremendous challenge is
constructing the interface: A nanoscale object like a tube has to be placed inside a gap
only a few tens of nanometers in width.

I proposed and implemented an assembly and characterization scheme to realize optical
coupling between carbon nanotubes and plasmonic hotspots [24, 25]. Nanotubes were
deposited by dielectrophoresis [26, 27] on top of prefabricated plasmonic antennas on a
single device level. The strongest optical coupling was observed for nanotubes placed
in the gap of a dimer, where the near-field in the gap enhanced the Raman signatures
by a factor 103. I was able to show that carbon nanotubes perpetuate their highly
anisotropic polarization dependence even in the presence of this high intensity near-field.
The interaction between the near-field and the CNT depends on the relative orientation
of light polarization and tube axis. Carbon nanotubes at different orientations relative to
the near-field polarization exhibit varying degrees of optical coupling as seen by PERS.
The nanoplasmonic-nanotube interface developed in this thesis allows to individually
address the resonant optical response of dimer and carbon nanotube and their interplay
by the choice of excitation energy and polarization. Furthermore, all the building blocks
are tunable. The resonance of the plasmonic nanostructure can be tuned by its shape
and size. Dielectrophoresis, on the other hand, allows one to deposit carbon nanotube
material with preselected optical transition energies [28, 29].

Coupling nanotubes to plasmonic structures will provide insight into the physics of
highly correlated electron systems. The optical transitions of CNTs are dominated by
excitons with strong binding energies (∼ 1 eV) [30, 31]. Depending on the microscopic
structure, nanotubes may be either of metallic or semiconducting type. In particular
the latter were successfully implemented as nanoscale photodetectors and photovoltaic
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1. Introduction

devices [32, 33]. The assembly scheme developed in this thesis holds great promise to
boost the performance of these devices by integrating them with plasmonic structures.

Such strategies are also sought after for graphene, which is regarded as a prime material
for photodetectors. Particularly beneficial are its fast response time and broad frequency
range operation [34–36]. The responsivity of graphene based photodetectors, however,
is limited by the absorption of graphene. The absorption (2.3%) is very strong for a
monolayer structure but too low for photo detection. A promising strategy to increase
the absorption in graphene is interfacing it with plasmonic structures [34, 37]. Processes
relevant for photocurrent generation, e.g. the controversially discussed doping of graphene
by hot electrons [18, 38, 39] from the metal, may be probed by strained graphene.

The body of this thesis begins with an introduction to the structural and optical prop-
erties of graphene (Sec. 2.1), carbon nanotubes (Sec. 2.2), and plasmonic nanostructures
(Sec. 2.2). I will then briefly introduce the basics of Raman scattering (Sec. 3.1), focussing
on the excitation energy dependence of Raman scattering in solid state systems. The
phonons and Raman response of graphene is presented in Sec. 3.2. Similar to their
structural and optical properties, the Raman scattering response of carbon nanotubes,
presented in Sec. 3.3, is closely related to graphene. The chapter ends with a brief
discussion of plasmon-enhanced Raman scattering. My contribution to the publications
forming this thesis is provided in Sec. 4, followed by Sec. 5 that connects the publications.
Concluding remarks and an outlook of ongoing and future projects round up this thesis
in Sec. 6.
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2 | Nanostructures

2.1. Graphene

Since its discovery by Geim and Novoselov [40], graphene has attracted enormous interest
both for its fundamental physics and its potential for applications [41–43]. It is a
model system for two-dimensional materials and its ballistic transport [44] at room
temperature makes graphene a prime material for transistors and interconnects. This
property, in combination with its constant and frequency independent optical absorption,
motivates the use of graphene in optoelectronic applications such as broadband, ultra
fast photodetectors [45].

Graphene is a flat sheet of carbon. The atoms are arranged in a hexagonal structure as
shown in Fig. 2.1(a). Each carbon atom forms a covalent sp2 bond with its three nearest
neighbors. The orbital of the fourth valence electron is oriented perpendicular to the
graphene plane and forms bands of delocalized electrons. These (π-)bands are responsible
for the electronic and optical properties of graphene.

The lattice vectors a1 and a2 form the unit cell of graphene shown in Fig. 2.1(b). The

white-atom defocus parameter. Although the sample holder
was maintained at room temperature, the observed region
might have been heated by the electron beam. Figure 3 shows
examples starting with the unperturbed lattice, the defect
structure, and then again the ideal lattice after the defect has
disappeared. An isolated Stone-Wales (SW) defect was
found during one exposure (1 s) of the sequence and relaxed
to the unperturbed lattice in the next exposure (4 s later)
(Figure 3a-d). Defects consisting of multiple five- and
seven-membered rings of carbon atoms spontaneously ap-
peared and remained stable for up to 20 s. Remarkably, all
defect configurations relax to the unperturbed graphene lattice
and contain the same number of pentagons and heptagons
in an arrangement that does not involve a dislocation or
disclination. In addition, Figure 3e and f shows a recon-
structed vacancy configuration involving a pentagon, which
also returned to the unperturbed lattice after a few seconds.
In this case, the missing carbon atom must have been

replaced, from a mobile adsorbate, via surface diffusion on
the graphene sheet.

Pentagon-heptagon (5-7) defects, in particular the
Stone-Wales defect,24 are proposed to play a key role in
the formation and transformation of sp-2 bonded carbon
nanostructures.25 It is customarily assumed that, after forma-
tion of SW defects, pentagon-heptagon pairs separate,
thereby inducing dislocations and curvature. These defects
are involved in the coalescence of fullerenes and nano-
tubes,25,26 and their mobility is relevant for the plastic
response of carbon nanotubes under strain.27 In our case of
the (almost22) planar graphene membrane, however, the
separation of pentagon-heptagon pairs is clearly not the
favored pathway: In all cases we have observed, the multiple
5-7 defects relax to the original unperturbed lattice. This
contrasts findings from highly curved graphene structures
where the introduction of dislocations in the electron beam9

and the motion of pentagons and heptagons10 has been

Figure 2. (a) Direct image of a single-layer graphene membrane (atoms appear white). (b) Contrast profile along the dotted line in panel
a (solid) along with a simulated profile (dashed). The experimental contrast is a factor of 2 smaller: Panel c shows the same experimental
profile with the simulated contrast scaled down by a factor of 2. (d and e) Step from a monolayer (upper part) to a bilayer (lower part of
the image), showing the unique appearance of the monolayer. Panel e shows the same image with an overlay of the graphene lattice (red)
and the second layer (blue), offset in the Bernal (AB) stacking of graphite. In the bilayer region, white dots appear where two carbon atoms
align in the projection. (f) Numerical diffractogram, calculated from an image of the bilayer region. The outermost peaks, one of them
indicated by the arrow, correspond to a resolution of 1.06 Å. The scale bars are 2 Å.

3584 Nano Lett., Vol. 8, No. 11, 2008

a b c

a1

a2

Γ

K

K′

M
ky

kx

Figure 2.1. (a) Transmission electron microscope image of graphene’s hexagonal structure.
(b) Crystallographic structure of graphene with the lattice vectors a1 and a2, which span
the unit cell. Atoms belonging to different sublattices are marked with different colors.
(c) Brillouin zone of graphene with the high-symmetry points Γ, K, M and K ′ and high
symmetry lines (blue). The scale bar in (a) is 0.5Å and the picture is taken from [46].
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2. Nanostructures

unit cell contains two carbon atoms which are separated by acc = 1.422Å. Typically, the
crystallographic structure of graphene is described by assigning the atoms in the unit cell
to two superimposed sublattices [47] indicated by colors in Fig. 2.1(b). The Brillouin zone
of graphene is of hexagonal shape as shown in Fig. 2.1(c), with the Γ point at the zone
center. The high symmetry points K and K ′ are located at the corners of the Brillouin
zone, and the M -point in-between them.

2.1.1. Bandstructure and optical properties

A simple nearest neighbor tight-binding approximation [47, 48] adequately describes the
band structures of graphene and the results in the dispersion relation

E±(kx, ky) = ±γ0

√

1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2
, (2.1)

for the (π∗-)conduction band and (π-)valence band of graphene, where γ0 denotes the
nearest neighbor overlap integral and a = |a1| = |a2| =

√
3acc = 0.246nm. The band

structure of graphene calculated from Eqn. (2.1) is shown in Fig. 2.2(a). Valence and
conduction band meet at three K and three K ′ points which are connected by red lines in
Fig. 2.2(a). K and K ′ are inequivalent as they cannot be transformed into each other by a
reciprocal lattice vector. These crossing points are called Dirac or charge neutrality points;
for pristine and undoped graphene, the valence band is completely filled with electrons
and the conduction band is completely empty. The Fermi energy is located exactly at the
Dirac points. As a consequence, graphene is commonly described as a semimetal with a
continuous but vanishing electronic density of states at the charge neutrality points.

The band structure described above gives rise to most of the peculiar properties
of graphene. For energies close the Fermi energy, the electronic dispersion relation
is approximately linear as indicated in Fig. 2.2(b). The electrons behave like mass-
less Fermions and follow the Dirac-equation. Close to K(K ′), they are composed of
contributions from both sublattices, which is typically implemented by two component
wave functions in the form of spinors and referred to as pseudo spin or chirality. This
parameter interconnects electrons and holes of opposite momentum as they belong to the
same sublattice [41].

Despite being only one atom thick, graphene absorbs 2.3% of light. The absorption
is constant over a large range of photon energies from the near infrared to the visible
as indicated in Fig. 2.2(c). This behavior originates from the two-dimensional nature
and the gapless electronic spectrum of graphene and is independent of any material
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2.1. Graphene

a b c

that in the right panel is the E2
þ mode at 1,600 cm21. In contrast to

the Raman signals of bundled SWNTs deposited on a flat glass
substrate (Fig. 2c), well-resolved single peaks are observed for the
SWNT in the nanogap, allowing the successful detection of a
SERS spectrum originating from an individual SWNT18,19. The
strong enhancement at the nanogap makes it possible to easily
detect the Raman signal of isolated SWNTs, even for perpendicular
polarization. The Raman intensity of a SWNT for light polarized
perpendicular to the tube axis is very weak and unclear with an
unenhanced EM field. With the very intense EM field, however,
the Raman intensity in the nanogap is enhanced by a factor of at
least !1 × 102 in comparison with that of bundled SWNTs
on glass. This strong enhancement makes it possible to easily
detect the Raman signal of isolated SWNTs, even with
perpendicular polarization.

The relationship between the optical transitions and chiral vector
of an isolated SWNT can be represented using a Kataura plot20.
Figure 3 shows Kataura plots for the Dn¼ 0 (Fig. 3a), Dn¼+1
(Fig. 3b) and Dn ¼+2 (Fig. 3c) transitions. Along the horizontal
dashed line (indicating an incident-field energy of 1.58 eV), the
observed RBM frequencies excited by light polarized parallel and
perpendicular to the tube axis are marked by black and red
circles, respectively. The green symbols denote the calculated
exciton energies, and other coloured symbols denote the observed
exciton energies21,22. Quasi-dark22 and bright excitons23 of the
E12

S (E21
S ) transition are also shown in Fig. 3b. The electronic

transitions cannot always be specified using a Kataura plot
because some ES(M)

nvnc
transitions provide similar excitation energies.

However, the electronic transitions can be determined from the
spectral profile of the G-band.

We focus on the SERS spectra around vRBM ≈ 160 cm21. Some
SERS signals, as shown in the upper spectrum of Fig. 4, exhibit a
Breit–Wigner–Fano lineshape, which is characteristic of metallic
SWNTs24. Furthermore, the peaks of the E2 mode are not present,
indicating that the incident polarization is parallel to the tube axis
where the allowed transitions are those satisfying Dn¼ 0.
Therefore, the corresponding resonant excitation can be assigned

to the E11
M transition by referring to Fig. 3a. It is remarkable that

several SWNTs exhibit very sharp E2-mode peaks; one example is
shown in the lower spectrum of Fig. 4. This feature indicates that
the excitation-field polarization is perpendicular to the axis of a
semiconducting SWNT. According to the conventional selection
rules, the Dn¼+1 transitions are allowed in this case. However,
the RBM frequency relevant to the E12

S (E21
S ) transition with

1.58 eV is spectrally far from vRBM ≈ 160 cm21 (Fig. 3b).
Although the E13

S and E31
S transitions satisfy Dn¼+1 and are ener-

getically close, the corresponding SERS and photoluminescence
excitation spectra would not be detectable via the E13

S (E31
S ) excitons

(Supplementary Section S3).
As a remaining possibility for the optical electronic transition

explaining the E2-mode peaks, we consider the transitions forbidden
by conventional selection rules. The selection rules are broken when
the incident field has a significantly high gradient. Such a break-
down has been theoretically demonstrated for single-molecule exci-
tations in a nanogap8,9 and has recently been simulated for excitons
in a metal-tipped nanorod10,11. However, to date, no experimental
confirmation has been reported. Here, the SERS spectrum in ques-
tion is found to occur via the resonant E14

S (E41
S ) (Dn ¼+2) tran-

sitions according to the energetic considerations in Fig. 3c. These
transitions, indicated by the red arrows in Fig. 1, are optically forbid-
den by conventional selection rules. This would therefore constitute
the first observation of selection-rule breakdown.

To confirm selection-rule breakdown in the present study, we
calculated the absorption spectra of a semiconducting (15, 7)
SWNT lying in the nanogap of a metallic nanodimer, as shown in
Fig. 5a. We used the newly developed extended discrete dipole
approximation (EDDA) method, which demonstrates the micro-
scopic spatial interplay between the electric field and molecular
wavefunctions (‘Theoretical method’). As seen in Fig. 5a, the
absorption spectra of the SWNT in the presence of the nanogap
are quite different from those in its absence. Both bright and
quasi-dark states for the E12

S (E21
S ) (Dn ¼+1) transitions increase

by a factor of !1 × 102, thereby explaining the signal enhancement
in the present experiment. Here, we should note that the E14

S (E41
S )
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Figure 2 | Enhancement in Raman intensity for an SWNT in a nanogap. a, Left: SEM images of well-defined gold nanodimers. Right: illustration of an SWNT
lying in the nanogap of a dimer and the enhanced field polarization. b, SERS spectra showing the RBM mode (left: vRBM¼ 239 cm21) and G-band (right:
E2 mode at v¼ 1,600 and 1,531 cm21) of an isolated (9, 5) SWNT in the nanogap. The applied-field polarization is parallel to the long axis of the nanodimer
(u ¼08). c, Typical resonant Raman scattering spectrum of bundled SWNTs dispersed on flat glass.
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surface plasmons decays very rapidly from the NP surface.
Accordingly, the Raman signal is only enhanced for mol-
ecules in the range of just a few nanometers from the particle
surface. Assuming that only a few % of the CNT within the
diffraction limited laser spot !d"500 nm# is enhanced by
the NP, the local enhancement would be two to three om’s,
consistent with theory.19

Raman spectra acquired from another SWCNT, deco-
rated with a small agglomeration of gold NPs, are presented
in Fig. 2. Using the plot of Kataura et al. from Refs. 16 and
17, the measured RBM position !RBM=221 cm−1 and
"exc=568 nm, this SWCNT is assigned to the metallic !13,1#
tube. The broadened G line displayed by this nanotube is
indicative of a BWF resonance, and consistent with a metal-
lic character. The effective Raman intensity increase is found
to be approximately three om’s upon particle decoration. Several other SWCNTs decorated by NP agglomerates of

similar size yielded enhancement factors between one and
four om’s, independently of the electronic properties of the
tubes. This observation is in accordance with the existence of
enhanced electromagnetic fields inside cavities formed be-
tween NPs with a separation of the order of a few
nanometers.20 For instance, from electromagnetic theories it
is predicted that the enhancement in the center of particle
dimers with an interparticle distance of just a few nanom-
eters can be several om’s higher than at the surface of indi-
vidual particles, albeit they are also very sensitive to the
geometry of the aggregate.19

The number and arrangement of the NPs on the tubes
exerted a profound influence on the Raman response, as ap-
parent from Fig. 3, which plots the polarization angle depen-
dence of RBM and G line !maximum intensity component at
1590 cm−1# for the SWCNTs of Figs. 1 and 2. It is notewor-
thy that the other components of the G line !at 1570 and
1550 cm−1# showed similar behavior as the 1590 cm−1 com-
ponent. We first address NT1 that bears an isolated NP. The
data gained in !V-# configuration $Figs. 3!a# and 3!b#% pro-
vide evidence that the tube absorbs most strongly when the
polarization vector of the incoming light is parallel to the
tube axis, independent of the presence of the NP. This finding

FIG. 1. Raman spectra recorded at two positions !circles# along a SWCNT
!NT1#. !a# Comparison between the spectra taken on the bare tube !solid
line# and over a gold particle deposited onto the tube !dashed line# reveals
an enhancement of the G line and RBM by a factor of &4. Substrate peaks
are labeled by *. !b# Magnified spectra in the RBM range. !c# AFM image
of the investigated tube. The location of the nanotube has been highlighted
by a dashed line. !d# Raman G-line image of the particle-decorated tube
segment.

FIG. 2. !a# Raman spectra of a second SWCNT !NT2#, acquired on a bare
tube section !solid line# and above an agglomeration of several gold NPs
!dashed line#. Substrate peaks are labeled by *. In the enhanced spectrum,
the G line and RBM !b# appear with two om’s increased intensity. !c# AFM
image of the nanotube with a scanning electron microscopy inset of the
agglomeration. The nanotube is highlighted by a dashed line. !d# G-line
Raman image used to localize the CNT’s bare and modified regions.

FIG. 3. !Color# Normalized polarization dependence of the RBM and G-line
intensity measured on NT1 and NT2. For NT1, the bare tube !black !# is
compared with a section modified by a single gold NP !red !#. The NT2
spectra were acquired above two different gold NP agglomerations !green "
and blue !# on the nanotube, which differ in the geometrical arrangement of
the particles. For NT1 !black and red#, the solid lines are fits to the depen-
dencies expected by theory, whereas for NT2 !green and blue# a straight
connection of the data points is presented, since there is no model available.

173109-2 Assmus et al. Appl. Phys. Lett. 90, 173109 !2007"
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of the Supporting Information). From an organometallic chemi-
cal point of view, it is possible to form rather stable d-π
complexes of PdCl2 with the sidewalls of carbon nanotubes
when exposing SWCNTs in the solution of Na2PdCl4.40-42 As
shown in Figure 4b, after being immersed in 5 mM Na2PdCl4
solution for 2 min, PdCl2 nanoparticles with a uniform size of
6.8 ( 1.8 nm and a high density of over 30 NPs/µmSWCNT
were chemically adsorbed on SWCNTs. The nanoparticles were
then reduced by H2 to Pd with a smaller size of 5.7 ( 1.8 nm
and a lower density of about 25 NPs/µm SWCNT. The Pd
nanoparticles were used as the seeds for further gold deposition,
resulting in gold nanoparticles with a size of 54.7 ( 8.5 nm

and a high density of about 12 NPs/µm SWCNT (Figure 4c
and d). The average interparticle distance of the adjacent gold
nanoparticles was smaller than 30 nm, which was smaller than
the size of nanoparticles. Here, ∼85% of the nanoparticles were
deposited on SWCNTs. It is not as high as that in the gold-
seeded process; however, it is still satisfying. The size and
density of the deposited particles could also be well controlled
(Figures S4, S5, and S6 in the Supporting Information). For
example, when the adsorption time in the seed deposition step
was adjusted from 1 to 3 min, the size of the gold nanoparticles
decreased from 88 ( 35 to 32 ( 11 nm, while the density of
gold nanoparticles increased from 3 to 13 NPs/µm SWCNT,
and thus the average interparticle distance decreased from 245
to 42 nm.

3. In Situ SERS Measurement of Every Individual SWCNT
on Substrates. As shown above, gold nanoparticles with well-
controlled size and small interparticle distance can be decorated
uniformly on all SWCNTs with our methods. The nanoparticles

(40) King, R. B., Ed. Encyclopedia of Inorganic Chemistry; John Wiley
& Sons: West Sussex, 1994; Vol. 6.

(41) Simonov, P. A.; Troitskii, S. Y.; Likholobov, V. A. Kinet. Catal. 2000,
41, 255–269.

(42) Simonov, P. A.; Romanenko, A. V.; Prosvirin, I. P.; Moroz, E. M.;
Boronin, A. I.; Chuvilin, A. L.; Likholobov, V. A. Carbon 1997, 35,
73–82.

Figure 3. SEM images of the high-density SWCNT arrays on quartz (a) before and (b) after gold decoration based on gold seeds via repeating both the gold
seed deposition process and the seeded growth process several times. Inset of (b) is the magnified image.

Figure 4. AFM topographical images of (a) the as-grown high-density SWCNT arrays on quartz and (b) the PdCl2/SWCNT composites. (c) AFM topographical
image and (d) SEM image of the gold/SWCNT composites obtained by seeded growth based on palladium seeds. Inset in (d) is the magnified image.
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that in the right panel is the E2
þ mode at 1,600 cm21. In contrast to

the Raman signals of bundled SWNTs deposited on a flat glass
substrate (Fig. 2c), well-resolved single peaks are observed for the
SWNT in the nanogap, allowing the successful detection of a
SERS spectrum originating from an individual SWNT18,19. The
strong enhancement at the nanogap makes it possible to easily
detect the Raman signal of isolated SWNTs, even for perpendicular
polarization. The Raman intensity of a SWNT for light polarized
perpendicular to the tube axis is very weak and unclear with an
unenhanced EM field. With the very intense EM field, however,
the Raman intensity in the nanogap is enhanced by a factor of at
least !1 × 102 in comparison with that of bundled SWNTs
on glass. This strong enhancement makes it possible to easily
detect the Raman signal of isolated SWNTs, even with
perpendicular polarization.

The relationship between the optical transitions and chiral vector
of an isolated SWNT can be represented using a Kataura plot20.
Figure 3 shows Kataura plots for the Dn¼ 0 (Fig. 3a), Dn¼+1
(Fig. 3b) and Dn ¼+2 (Fig. 3c) transitions. Along the horizontal
dashed line (indicating an incident-field energy of 1.58 eV), the
observed RBM frequencies excited by light polarized parallel and
perpendicular to the tube axis are marked by black and red
circles, respectively. The green symbols denote the calculated
exciton energies, and other coloured symbols denote the observed
exciton energies21,22. Quasi-dark22 and bright excitons23 of the
E12

S (E21
S ) transition are also shown in Fig. 3b. The electronic

transitions cannot always be specified using a Kataura plot
because some ES(M)

nvnc
transitions provide similar excitation energies.

However, the electronic transitions can be determined from the
spectral profile of the G-band.

We focus on the SERS spectra around vRBM ≈ 160 cm21. Some
SERS signals, as shown in the upper spectrum of Fig. 4, exhibit a
Breit–Wigner–Fano lineshape, which is characteristic of metallic
SWNTs24. Furthermore, the peaks of the E2 mode are not present,
indicating that the incident polarization is parallel to the tube axis
where the allowed transitions are those satisfying Dn¼ 0.
Therefore, the corresponding resonant excitation can be assigned

to the E11
M transition by referring to Fig. 3a. It is remarkable that

several SWNTs exhibit very sharp E2-mode peaks; one example is
shown in the lower spectrum of Fig. 4. This feature indicates that
the excitation-field polarization is perpendicular to the axis of a
semiconducting SWNT. According to the conventional selection
rules, the Dn¼+1 transitions are allowed in this case. However,
the RBM frequency relevant to the E12

S (E21
S ) transition with

1.58 eV is spectrally far from vRBM ≈ 160 cm21 (Fig. 3b).
Although the E13

S and E31
S transitions satisfy Dn¼+1 and are ener-

getically close, the corresponding SERS and photoluminescence
excitation spectra would not be detectable via the E13

S (E31
S ) excitons

(Supplementary Section S3).
As a remaining possibility for the optical electronic transition

explaining the E2-mode peaks, we consider the transitions forbidden
by conventional selection rules. The selection rules are broken when
the incident field has a significantly high gradient. Such a break-
down has been theoretically demonstrated for single-molecule exci-
tations in a nanogap8,9 and has recently been simulated for excitons
in a metal-tipped nanorod10,11. However, to date, no experimental
confirmation has been reported. Here, the SERS spectrum in ques-
tion is found to occur via the resonant E14

S (E41
S ) (Dn ¼+2) tran-

sitions according to the energetic considerations in Fig. 3c. These
transitions, indicated by the red arrows in Fig. 1, are optically forbid-
den by conventional selection rules. This would therefore constitute
the first observation of selection-rule breakdown.

To confirm selection-rule breakdown in the present study, we
calculated the absorption spectra of a semiconducting (15, 7)
SWNT lying in the nanogap of a metallic nanodimer, as shown in
Fig. 5a. We used the newly developed extended discrete dipole
approximation (EDDA) method, which demonstrates the micro-
scopic spatial interplay between the electric field and molecular
wavefunctions (‘Theoretical method’). As seen in Fig. 5a, the
absorption spectra of the SWNT in the presence of the nanogap
are quite different from those in its absence. Both bright and
quasi-dark states for the E12

S (E21
S ) (Dn ¼+1) transitions increase

by a factor of !1 × 102, thereby explaining the signal enhancement
in the present experiment. Here, we should note that the E14

S (E41
S )
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Figure 2 | Enhancement in Raman intensity for an SWNT in a nanogap. a, Left: SEM images of well-defined gold nanodimers. Right: illustration of an SWNT
lying in the nanogap of a dimer and the enhanced field polarization. b, SERS spectra showing the RBM mode (left: vRBM¼ 239 cm21) and G-band (right:
E2 mode at v¼ 1,600 and 1,531 cm21) of an isolated (9, 5) SWNT in the nanogap. The applied-field polarization is parallel to the long axis of the nanodimer
(u ¼08). c, Typical resonant Raman scattering spectrum of bundled SWNTs dispersed on flat glass.
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Figure S1. 50 Pm aperture partially covered by graphene and its bilayer. This is the 
original photograph from Fig. 1A, as seen directly in transmitted white light in an 
optical microscope. No contrast enhancement or image manipulation has been used.  
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Figure S2. Transmittance spectrum of graphene over a range of photon energies E from near-infrared to 
violet. The blue open circles show the data obtained using the standard spectroscopy for a uniform 
membrane that completely covered a 30 Pm aperture. For comparison, we show the spectrum measured 
using an optical microscope (red squares). The red line indicates the opacity of SD. Inset: Dynamic 
conductivity G of graphene for visible wavelengths  (symbols) recalculated from the measured T. The 
green curves in both main figure and inset show the expected theoretical dependences, in which G varies 
between 1.01 and 1.04 of G0{ e2/4= for this frequency range. The red line and the gray area indicate the 

statistical average for our measurements and their standard error, respectively: G/G0 =1.01 r0.04. 
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Figure 2.2. (a) Bandstructure of graphene calculated from Eqn. (2.1). The high symmetry
points Γ, K, K ′ and M are indicated as dots. The Dirac points are connected by red
lines, which correspond to the Fermi energy of undoped graphene. In the vicinity of the
K(K ′) points as in (b), the electron dispersion is approximately linear. The red arrows in
(b) indicated constant light absorption for a wide range of frequencies. (c) Experimental
white light transmission of a suspended graphene layer measured by Nair et al. [15].

parameters [15]. It can be discussed qualitatively in a straight forward manner, which I
will briefly outline following Reference [49].

According to Fermi’s Golden rule the absorption probability P of a photon with
frequency ω and field E per unit time is

P =
2π

~
|M |2N(ε) (2.2)

where M is the matrix element for the interaction between light and Dirac fermions and
N(ε) is the electronic density of states at the final state with ε = ~ω/2, see Fig. 2.2(b).
In the vicinity of K(K ′) - here the term vicinity refers to photon energies well within the

9



2. Nanostructures

visible spectrum - N is a linear function of ε can be expressed in terms of ω as

N(~ω/2) =
ω

π~v2F
. (2.3)

with the Fermi velocity of graphene vF . The square of the matrix element M is given as

|M |2 =
e2v2F
8ω2

|E|2, (2.4)

where e is the charge of the electron. Inserting Eqns. (2.3) and (2.4) in Eqn. (2.2) yields
the absorption probability per unit time

P =
2π

~
e2v2F
8ω2

|E|2 ω

π~v2F
=

e2

4~ω
|E|2. (2.5)

It is remarkable to note that P is independent of the only quantity related the material,
the Fermi velocity vF . The absorption coefficient η is given by the ratio of the absorbed
energy Wa = P~ω and the incident photon flux Wi = c |E|2/(4π) as

η =
Wa

Wi
=
πe2

~c
≈ 2.3% , (2.6)

which is universal. The most intuitive description and summary of Eq. (2.6) is probably
that both the electron-photon coupling matrix elements and the density of states cancel
out upon calculation the absorption probability.

10



2.2. Carbon nanotubes

2.2. Carbon nanotubes

Carbon nanotubes are hollow cylinders of rolled up graphene or few-layer graphene
sheets. They were first discovered in the form of multi-walled tubes by Iijima [50], and
shortly after in their single-walled form [51, 52]. With diameters on the order of one
to few nanometers and lengths up to centimeters [23], single-walled carbon nanotubes
are described as quasi one-dimensional solid state systems [22]. Quantum confinement
effects along the circumference govern the nanotube’s properties; every way of rolling up
a graphene sheet into a carbon nanotube implements a unique microscopic structure with
a unique set of electronic and optical properties. Nanotubes of comparable diameters may
be metallic or semiconducting with varying band gap energies. Combined with ballistic
electron transport at room temperature [53, 54], high conductivity [55], and mechanical
stability [56], nanotubes represent a versatile material for a broad range of applications. I
will introduce the basic properties of carbon nanotubes, followed by a more detailed focus
on their optical properties relevant for my work presented in this thesis.

The chiral vector c uniquely specifies the microscopic structure of a carbon nanotube.
It is expressed as a linear combination of the two graphene lattice vectors a1 and a2 as

c = n1a1 + n2a2, (2.7)

where n1 and n2 take integer values only and n1 ≥ n2. Rolling up the graphene sheet
along c as shown in Fig. 2.3 (a-c) forms the corresponding nanotube. A particular
nanotube type is then specified by the pair (n1, n2) and is referred to as the tube’s
chirality. Carbon nanotubes whose chiral vectors are parallel the two distinct graphene

white-atom defocus parameter. Although the sample holder
was maintained at room temperature, the observed region
might have been heated by the electron beam. Figure 3 shows
examples starting with the unperturbed lattice, the defect
structure, and then again the ideal lattice after the defect has
disappeared. An isolated Stone-Wales (SW) defect was
found during one exposure (1 s) of the sequence and relaxed
to the unperturbed lattice in the next exposure (4 s later)
(Figure 3a-d). Defects consisting of multiple five- and
seven-membered rings of carbon atoms spontaneously ap-
peared and remained stable for up to 20 s. Remarkably, all
defect configurations relax to the unperturbed graphene lattice
and contain the same number of pentagons and heptagons
in an arrangement that does not involve a dislocation or
disclination. In addition, Figure 3e and f shows a recon-
structed vacancy configuration involving a pentagon, which
also returned to the unperturbed lattice after a few seconds.
In this case, the missing carbon atom must have been

replaced, from a mobile adsorbate, via surface diffusion on
the graphene sheet.

Pentagon-heptagon (5-7) defects, in particular the
Stone-Wales defect,24 are proposed to play a key role in
the formation and transformation of sp-2 bonded carbon
nanostructures.25 It is customarily assumed that, after forma-
tion of SW defects, pentagon-heptagon pairs separate,
thereby inducing dislocations and curvature. These defects
are involved in the coalescence of fullerenes and nano-
tubes,25,26 and their mobility is relevant for the plastic
response of carbon nanotubes under strain.27 In our case of
the (almost22) planar graphene membrane, however, the
separation of pentagon-heptagon pairs is clearly not the
favored pathway: In all cases we have observed, the multiple
5-7 defects relax to the original unperturbed lattice. This
contrasts findings from highly curved graphene structures
where the introduction of dislocations in the electron beam9

and the motion of pentagons and heptagons10 has been

Figure 2. (a) Direct image of a single-layer graphene membrane (atoms appear white). (b) Contrast profile along the dotted line in panel
a (solid) along with a simulated profile (dashed). The experimental contrast is a factor of 2 smaller: Panel c shows the same experimental
profile with the simulated contrast scaled down by a factor of 2. (d and e) Step from a monolayer (upper part) to a bilayer (lower part of
the image), showing the unique appearance of the monolayer. Panel e shows the same image with an overlay of the graphene lattice (red)
and the second layer (blue), offset in the Bernal (AB) stacking of graphite. In the bilayer region, white dots appear where two carbon atoms
align in the projection. (f) Numerical diffractogram, calculated from an image of the bilayer region. The outermost peaks, one of them
indicated by the arrow, correspond to a resolution of 1.06 Å. The scale bars are 2 Å.

3584 Nano Lett., Vol. 8, No. 11, 2008
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Figure S1. 50 Pm aperture partially covered by graphene and its bilayer. This is the 
original photograph from Fig. 1A, as seen directly in transmitted white light in an 
optical microscope. No contrast enhancement or image manipulation has been used.  
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Figure S2. Transmittance spectrum of graphene over a range of photon energies E from near-infrared to 
violet. The blue open circles show the data obtained using the standard spectroscopy for a uniform 
membrane that completely covered a 30 Pm aperture. For comparison, we show the spectrum measured 
using an optical microscope (red squares). The red line indicates the opacity of SD. Inset: Dynamic 
conductivity G of graphene for visible wavelengths  (symbols) recalculated from the measured T. The 
green curves in both main figure and inset show the expected theoretical dependences, in which G varies 
between 1.01 and 1.04 of G0{ e2/4= for this frequency range. The red line and the gray area indicate the 

statistical average for our measurements and their standard error, respectively: G/G0 =1.01 r0.04. 
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118 Christian Thomsen and Stephanie Reich

Fig. 1. Carbon nanotubes are tiny graphene cylinders. A strip is cut out of
graphene (a) and then rolled up (b) to form a seamless cylinder (c). The chi-
ral vector c = 10(a1 + a2) in (a) forms the circumference of the (10,10) nanotube
in (c). Along the nanotube axis the unit cell is repeated periodically, i.e., a nanotube
is a one-dimensional periodic system. The segment shown in (c) contains 13 unit
cells along the nanotube axis. The inset in (a) shows the graphene lattice and the
graphene unit cell vectors a1 and a2 on an enlarged scale

Before discussing the growth, we introduce the basic concepts and param-
eters that determine the properties of carbon nanotubes. As can be seen in
Fig. 1a the cutting of graphene fixes the so-called chiral or roll-up vector c.
This vector goes around the circumference of the final tube in Fig. 1c. There
are two parameters that control the microscopic structure of a nanotube,
its diameter and its chiral angle or twist along the axis. Both are specified
completely by c, which is normally given in terms of the graphene lattice
vectors a1 and a2 (see inset of Fig. 1a)

c = n1a1 + n2a2 . (1)

(n1, n2) are called the chiral index of a tube or, briefly, the chirality. A tube is
characterized by (n1, n2). In Fig. 1c we show as an example the (10,10) nano-
tube.

The diameter of a tube is related to the chiral vector by

d =
|c|
π

=
a0

π

√
n2

1 + n1n2 + n2
2 , (2)

where a0 = 2.460 Å is the graphene lattice constant [32–35]. For small tubes
(d < 0.8 nm) the diameter is predicted to deviate from the geometrical diame-
ter of a graphene cylinder in (2). Moreover, ab-initio calculations show that d
becomes a function of the chiral angle below 0.8 nm [36]. Deviations from (2)
are below 2 % for tube diameters d ≥ 5 Å [36]. Note also that sometimes differ-
ent lattice constants are used to calculate d. A popular value is a0 = 2.494 Å
obtained from a carbon–carbon distance aCC = a0/

√
3 = 1.44 Å; this value

Raman Scattering in Carbon Nanotubes 119

Fig. 2. Three carbon nanotubes with diameters around 0.8 nm: (a) (6,6) armchair,
(b) (8,4) chiral tube and (c) (10,0) zigzag nanotube. The gray hexagons indicate
the helix around the nanotube

for aCC was most likely taken from fullerenes that have a larger carbon–
carbon spacing than graphite and carbon nanotubes [37].

The second important parameter for carbon nanotubes is the chiral an-
gle Θ, which is the angle between a1 and the chiral vector (see Fig. 1a). The
chiral angle specifies the arrangement of the graphene hexagons on the wall
of the tube. This is illustrated in Fig. 2, where we show three single-walled
nanotubes with similar diameters but very different microscopic structure
due to different chiral angles. Θ is related to the chiral index by

Θ = arccos

[
n1 + n2/2√

n2
1 + n1n2 + n2

2

]
,

or

= 30◦ − arctan

[
1√
3

n1 − n2

n1 + n2

]
. (3)

The chiral angle is allowed to vary between 0◦ ≤ Θ ≤ 30◦; all other ranges
of Θ are equivalent to this interval because of the hexagonal symmetry of
graphene (see Fig. 1a). A chiral angle of 0◦ and 30◦ corresponds to tubes with
a particular high symmetry, as we discuss later. They are called zigzag (Θ =
0◦) and armchair tubes (Θ = 30◦).

The chiral vector not only determines the tube diameter and chiral an-
gle, but all other structural parameters including the length of the unit cell
and the number of carbon atoms in the unit cell. A compilation of these
parameters can be found in Table 1.

A very useful illustration for the chiral vectors is to draw all possible
nanotubes of a given diameter range onto a graphene lattice as in Fig. 3.
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Fig. 1. Carbon nanotubes are tiny graphene cylinders. A strip is cut out of
graphene (a) and then rolled up (b) to form a seamless cylinder (c). The chi-
ral vector c = 10(a1 + a2) in (a) forms the circumference of the (10,10) nanotube
in (c). Along the nanotube axis the unit cell is repeated periodically, i.e., a nanotube
is a one-dimensional periodic system. The segment shown in (c) contains 13 unit
cells along the nanotube axis. The inset in (a) shows the graphene lattice and the
graphene unit cell vectors a1 and a2 on an enlarged scale

Before discussing the growth, we introduce the basic concepts and param-
eters that determine the properties of carbon nanotubes. As can be seen in
Fig. 1a the cutting of graphene fixes the so-called chiral or roll-up vector c.
This vector goes around the circumference of the final tube in Fig. 1c. There
are two parameters that control the microscopic structure of a nanotube,
its diameter and its chiral angle or twist along the axis. Both are specified
completely by c, which is normally given in terms of the graphene lattice
vectors a1 and a2 (see inset of Fig. 1a)

c = n1a1 + n2a2 . (1)

(n1, n2) are called the chiral index of a tube or, briefly, the chirality. A tube is
characterized by (n1, n2). In Fig. 1c we show as an example the (10,10) nano-
tube.

The diameter of a tube is related to the chiral vector by

d =
|c|
π

=
a0
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√
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1 + n1n2 + n2
2 , (2)

where a0 = 2.460 Å is the graphene lattice constant [32–35]. For small tubes
(d < 0.8 nm) the diameter is predicted to deviate from the geometrical diame-
ter of a graphene cylinder in (2). Moreover, ab-initio calculations show that d
becomes a function of the chiral angle below 0.8 nm [36]. Deviations from (2)
are below 2 % for tube diameters d ≥ 5 Å [36]. Note also that sometimes differ-
ent lattice constants are used to calculate d. A popular value is a0 = 2.494 Å
obtained from a carbon–carbon distance aCC = a0/

√
3 = 1.44 Å; this value
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for aCC was most likely taken from fullerenes that have a larger carbon–
carbon spacing than graphite and carbon nanotubes [37].

The second important parameter for carbon nanotubes is the chiral an-
gle Θ, which is the angle between a1 and the chiral vector (see Fig. 1a). The
chiral angle specifies the arrangement of the graphene hexagons on the wall
of the tube. This is illustrated in Fig. 2, where we show three single-walled
nanotubes with similar diameters but very different microscopic structure
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The chiral angle is allowed to vary between 0◦ ≤ Θ ≤ 30◦; all other ranges
of Θ are equivalent to this interval because of the hexagonal symmetry of
graphene (see Fig. 1a). A chiral angle of 0◦ and 30◦ corresponds to tubes with
a particular high symmetry, as we discuss later. They are called zigzag (Θ =
0◦) and armchair tubes (Θ = 30◦).

The chiral vector not only determines the tube diameter and chiral an-
gle, but all other structural parameters including the length of the unit cell
and the number of carbon atoms in the unit cell. A compilation of these
parameters can be found in Table 1.

A very useful illustration for the chiral vectors is to draw all possible
nanotubes of a given diameter range onto a graphene lattice as in Fig. 3.
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helical structure. ! ere are some exceptions to this, including nonhelical 
nanotubes, zigzag nanotubes with η = 0 and armchair tubes with η = π/6. 
Other helical tubes are called chiral nanotubes. Because the stability is 
mainly determined by their thickness or circumference, the direction of 
L for grown nanotubes is distributed almost uniformly.

The wave function satisfies the periodic boundary condition 
ψ(r + L) = ψ(r) in a carbon nanotube. This shows that the wave vector 
k satisfying the condition exp[ik⋅(r + L)] = exp(ik⋅r) is allowed in 
the first Brillouin zone of graphene. The condition can be rewritten 
as exp(ik⋅L) = 1, which gives straight lines perpendicular to L with 
neighboring distances 2π/L (Figure 3). When these lines pass through 
the K and K' points, that is, exp(iK⋅L) = 1 or exp(iK '⋅L) = 1 with K 
and K ' being the wave vector of the K and K' point, respectively, there 
is no gap at the Fermi level and the nanotube becomes metallic. In 
other cases, the nanotube becomes a semiconductor with a gap near 
the Fermi level.

Explicit calculations show that exp(iK⋅L) = exp(2πiν/3) and 
exp(iK '⋅L) = exp(–2πiν/3), where the integer ν is 0 or ±1 depending 
on na and nb. As a result, metallic (ν = 0) and semiconducting (ν = ±1) 
nanotubes appear at a ratio of one to two with varying L. In a 
semiconducting nanotube, the straight line closest to the K or K' point 
gives the conduction and valence bands. Because the spacing between 
neighboring lines is 2π/L and the energy is a linear function of the 
wave vector near the K and K' points, the energy gap is proportional 
to the inverse of the diameter d = L/π. The important feature is that 
there can be both metallic and semiconducting nanotubes with similar 
diameter and therefore one of the tough challenges lies in achieving 
the selective growth of semiconducting and metallic nanotubes or their 
separation after growth. 

Graphene as a metal 

Graphene has often been called a zero-gap semiconductor because 
the density of states is given by D(E) = |E|/2πħ2v2, which vanishes 
at E = 0 (Figure 2). This naming is quite inappropriate, however. 
A more appropriate name becomes clear when we consider the 
conductivity of graphene. 

The conductivity is usually given by the Einstein relation 
σ0 = gvgse2D*D(EF) in terms of the diffusion coefficient D*, where gv = 2 
is the valley degeneracy corresponding to the presence of the K and 
K' points and gs = 2 is the spin degeneracy. Let τ be the relaxation time 
due to impurity scattering. Then, the diffusion coefficient is given by 
D* ≈ v2τ. We have τ–1 ≈ (2π/ħ)ni⟨ui

2⟩EFD(EF), where ni is the impurity 
density, ui is the matrix element of the impurity potential between 
initial and final states, and ⟨...⟩EF denotes the average at the Fermi 

level. As a result, independent of the density of states, the conductivity 
becomes σ0 = gvgse2/2π2ħW, where W = ni⟨ui

2⟩EF/4π2ħ2v2 is a dimensionless 
parameter characterizing the strength of impurity scattering. Strictly 
speaking, the relaxation time determining the conductivity is 
different from the simple scattering time, but the difference is not so 
important here. 

! e above shows that the conductivity is independent of the Fermi 
energy and the carrier concentration as long as the possible dependence 
of scattering strength W on EF or ns is neglected. Therefore, graphene 
should strictly be regarded as a metal rather than a semiconductor.

At EF = 0, where D(EF) = 0, however, this description can become 
inappropriate. In fact, potential fl uctuations due to impurities make the 
density of states at EF = 0 nonzero. ! eoretical calculations including this 
level-broadening eff ect performed prior to experiments showed that the 
conductivity takes a universal value of σmin = gvgse2/2π2ħ at EF = 0 [31]. 
Figure 4 shows examples of calculated density of states and conductivity. 
In graphene with weak disorder, that is, W ≪ 1, the conductivity drops 
to σmin from σ0 in a very narrow energy range close to E = 0. Similar 
calculations performed for the conductivity in magnetic fi elds predicted 
that the Hall conductivity, in particular, is quantized into (4e2/h)(j + 1/2) 
with integer j, corresponding to the half-integer quantum Hall eff ect [8].

Experimentally, the minimum conductivity has been shown to be 
nearly independent of samples [6], although the absolute value seems 
to be 3–4 times larger than the theoretical predictions. In the vicinity 
of zero energy, because of the weak screening effect due to the small 
density of states and the small kinetic energy of electrons, the eff ective 
scattering strength can be substantial and system inhomogeneity can also 
be signifi cant. Some reports have shown that the minimum conductivity 
varies from sample to sample [32]. ! is problem regarding the minimum 
conductivity remains an important subject to be understood in the future. 

Another important difference lies in the dependence of the 
conductivity on electron concentration. The theory predicts that 
the conductivity in pure graphene should be independent of the 
electron concentration, dropping to σmin in the extreme vicinity of zero 
energy over a singularly narrow region. Experimentally, however, the 
conductivity is nearly proportional to the electron concentration, as if 
there is an eff ective mobility independent of the electron concentration. 
Part of the reason for this lies in the fact that the scattering strength W is 
large at EF ≈ 0 (typically W ≈ 0.1), as mentioned above. Another reason is 
that the eff ective strength of dominant scatterers depends on the electron 
concentration according to W ∝ |ns|–1, and the Boltzmann conductivity 
becomes proportional to the electron concentration. 

Typical examples of such scatterers causing ns dependence are 
charged impurities. Charged centers localized in SiO2 are known to 
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Fig. 20. Band structure of a (10,10) armchair nanotube with diameter d = 1.4 nm.
(a) Ab-initio calculation; (b) nearest-neighbor tight-binding calculation with γ0 =
−2.7 eV [(16) with n = 10]; (c) third-nearest neighbors tight-binding calculation.
The dashed lines denote ab-initio calculated energies of the band extrema. The
agreement of the energies in (a) and (c) is excellent. From [6]

where m is an integer running from −(q/2 − 1) to q/2 [81]; see Table 1 for q,
n and R as a function of n1 and n2.

The quantum number m is very useful to index bands and phonon
branches and to derive selection rules, e.g., for Raman scattering, infrared
vibronic and optical electronic absorption [20, 81, 83, 87]. The m = 0 elec-
tronic bands and phonon branches always contain the graphene Γ point (see
Fig. 19b); m = q/2 (= n for achiral tubes) is the M point of graphene
for kz = 0 [9]. These two bands are nondegenerate for any quasiparticle and
any nanotube. In achiral tubes, all other bands are twofold degenerate in
chiral tubes, none, see [20, 85, 86] for a discussion and examples.

4.2 Electronic Band Structure

Figures 20 and 21 show the electronic band structure of a (10,10) and
(19,0) nanotube, respectively. Parts (a) in both figures are from first-principles
calculations, while parts (b) were obtained with (16) and (15), and parts (c)
are the results of the extended tight-binding model using up to third neigh-
bors [6]. For all practical purposes, the extended tight-binding model is in-
distinguishable from the ab-initio calculations. The simple nearest-neighbors
tight-binding scheme works reasonably well. There are certain systematics in
Figs. 20 and 21 about which we will not comment in detail. For example,
the band extrema are at the Γ point in the (19,0) tube, but at 2π/3a in the
(10,10) tube. General rules for the overall shape of the band structure and
the position of the band extrema as a function of n1 and n2 can be found
in [20].
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Fig. 2. Three carbon nanotubes with diameters around 0.8 nm: (a) (6,6) armchair,
(b) (8,4) chiral tube and (c) (10,0) zigzag nanotube. The gray hexagons indicate
the helix around the nanotube

for aCC was most likely taken from fullerenes that have a larger carbon–
carbon spacing than graphite and carbon nanotubes [37].

The second important parameter for carbon nanotubes is the chiral an-
gle Θ, which is the angle between a1 and the chiral vector (see Fig. 1a). The
chiral angle specifies the arrangement of the graphene hexagons on the wall
of the tube. This is illustrated in Fig. 2, where we show three single-walled
nanotubes with similar diameters but very different microscopic structure
due to different chiral angles. Θ is related to the chiral index by

Θ = arccos

[
n1 + n2/2√

n2
1 + n1n2 + n2

2

]
,

or

= 30◦ − arctan

[
1√
3

n1 − n2

n1 + n2

]
. (3)

The chiral angle is allowed to vary between 0◦ ≤ Θ ≤ 30◦; all other ranges
of Θ are equivalent to this interval because of the hexagonal symmetry of
graphene (see Fig. 1a). A chiral angle of 0◦ and 30◦ corresponds to tubes with
a particular high symmetry, as we discuss later. They are called zigzag (Θ =
0◦) and armchair tubes (Θ = 30◦).

The chiral vector not only determines the tube diameter and chiral an-
gle, but all other structural parameters including the length of the unit cell
and the number of carbon atoms in the unit cell. A compilation of these
parameters can be found in Table 1.

A very useful illustration for the chiral vectors is to draw all possible
nanotubes of a given diameter range onto a graphene lattice as in Fig. 3.

Figure 2.3. (a) The linear combination of the graphene lattice vectors a1 and a2 form
the circumference c = 10a1 + 10a2 of a (10,10) nanotube. The circumference and the
minimum translational period (not shown) define the graphene rectangle which is rolled
up in (b) to form the nanotube in (c). The helix around a chiral (8,4), a zigzag (10,0),
and a armchair (6,6) tube is shown in (d). From Ref. [57].
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2. Nanostructures

edges are either called armchair (n, n) or zigzag (n, 0) tubes. All other nanotubes are
called chiral nanotubes. Examples of the three types are shown in Fig. 2.3 (d), where the
helix of each the nanotubes is shown in grey. The chiral vector defines the diameter d of
a carbon nanotube as

d =
|c|
π

=

√
3 acc
π

√
n21 + n1n2 + n22, (2.8)

and its chiral angle Θ between c and the zigzag direction as

Θ = arccos

(
c · a1

|c| · |a1|

)
= arccos

(
n1 + n2/2√
n21 + n1n2 + n22

)
. (2.9)

Both the diameter and the chiral angle provide a very useful and intuitive way to illustrate
the electronic properties of nanotubes and their dependence on the chirality, as I will
discuss in the following.

2.2.1. Band structure

Within the zone-folding approach, a nanotube is regarded as an infinitely long cylin-
der. The electronic wave functions along the tube axis are Bloch functions as in three-
dimensional solids and contribute a continuous component kz to the reciprocal vector
k. Along the circumference of the nanotube, however, the electronic wave functions are
quantized fulfilling

c · k = 2πm, with m ∈ N. (2.10)

As a result, the allowed electronic wave vectors of carbon nanotubes are quantized with
respect to the circumference of the tube and continuous along the axis. We can directly
obtain the electronic structure of a nanotube by mapping the allowed states of carbon
nanotubes on the electronic band structure of graphene. Within the reciprocal lattice
vector space of graphene, the Brillouin zone of nanotubes consists of parallel lines as
shown in Fig. 2.4(a) and (b). The separation of the lines depends via |c| inversely on
the diameter of the nanotube. The orientation of the lines corresponds to the chiral
angle. If the K(K ′) points of graphene are among the allowed electronic states such as in
Fig. 2.4(a), a nanotube is metallic; otherwise it is semiconducting as in Fig. 2.4(b). In
terms of chirality, a nanotube is metallic [58, 59] if

(n1 − n2)mod 3 = 0, (2.11)

and semiconducting otherwise. Within the zone-folding approximation, the electronic
energies of graphene along the lines of the allowed wave vectors build up the electronic
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2.2. Carbon nanotubes

white-atom defocus parameter. Although the sample holder
was maintained at room temperature, the observed region
might have been heated by the electron beam. Figure 3 shows
examples starting with the unperturbed lattice, the defect
structure, and then again the ideal lattice after the defect has
disappeared. An isolated Stone-Wales (SW) defect was
found during one exposure (1 s) of the sequence and relaxed
to the unperturbed lattice in the next exposure (4 s later)
(Figure 3a-d). Defects consisting of multiple five- and
seven-membered rings of carbon atoms spontaneously ap-
peared and remained stable for up to 20 s. Remarkably, all
defect configurations relax to the unperturbed graphene lattice
and contain the same number of pentagons and heptagons
in an arrangement that does not involve a dislocation or
disclination. In addition, Figure 3e and f shows a recon-
structed vacancy configuration involving a pentagon, which
also returned to the unperturbed lattice after a few seconds.
In this case, the missing carbon atom must have been

replaced, from a mobile adsorbate, via surface diffusion on
the graphene sheet.

Pentagon-heptagon (5-7) defects, in particular the
Stone-Wales defect,24 are proposed to play a key role in
the formation and transformation of sp-2 bonded carbon
nanostructures.25 It is customarily assumed that, after forma-
tion of SW defects, pentagon-heptagon pairs separate,
thereby inducing dislocations and curvature. These defects
are involved in the coalescence of fullerenes and nano-
tubes,25,26 and their mobility is relevant for the plastic
response of carbon nanotubes under strain.27 In our case of
the (almost22) planar graphene membrane, however, the
separation of pentagon-heptagon pairs is clearly not the
favored pathway: In all cases we have observed, the multiple
5-7 defects relax to the original unperturbed lattice. This
contrasts findings from highly curved graphene structures
where the introduction of dislocations in the electron beam9

and the motion of pentagons and heptagons10 has been

Figure 2. (a) Direct image of a single-layer graphene membrane (atoms appear white). (b) Contrast profile along the dotted line in panel
a (solid) along with a simulated profile (dashed). The experimental contrast is a factor of 2 smaller: Panel c shows the same experimental
profile with the simulated contrast scaled down by a factor of 2. (d and e) Step from a monolayer (upper part) to a bilayer (lower part of
the image), showing the unique appearance of the monolayer. Panel e shows the same image with an overlay of the graphene lattice (red)
and the second layer (blue), offset in the Bernal (AB) stacking of graphite. In the bilayer region, white dots appear where two carbon atoms
align in the projection. (f) Numerical diffractogram, calculated from an image of the bilayer region. The outermost peaks, one of them
indicated by the arrow, correspond to a resolution of 1.06 Å. The scale bars are 2 Å.
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Figure S1. 50 Pm aperture partially covered by graphene and its bilayer. This is the 
original photograph from Fig. 1A, as seen directly in transmitted white light in an 
optical microscope. No contrast enhancement or image manipulation has been used.  
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Figure S2. Transmittance spectrum of graphene over a range of photon energies E from near-infrared to 
violet. The blue open circles show the data obtained using the standard spectroscopy for a uniform 
membrane that completely covered a 30 Pm aperture. For comparison, we show the spectrum measured 
using an optical microscope (red squares). The red line indicates the opacity of SD. Inset: Dynamic 
conductivity G of graphene for visible wavelengths  (symbols) recalculated from the measured T. The 
green curves in both main figure and inset show the expected theoretical dependences, in which G varies 
between 1.01 and 1.04 of G0{ e2/4= for this frequency range. The red line and the gray area indicate the 

statistical average for our measurements and their standard error, respectively: G/G0 =1.01 r0.04. 
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Fig. 1. Carbon nanotubes are tiny graphene cylinders. A strip is cut out of
graphene (a) and then rolled up (b) to form a seamless cylinder (c). The chi-
ral vector c = 10(a1 + a2) in (a) forms the circumference of the (10,10) nanotube
in (c). Along the nanotube axis the unit cell is repeated periodically, i.e., a nanotube
is a one-dimensional periodic system. The segment shown in (c) contains 13 unit
cells along the nanotube axis. The inset in (a) shows the graphene lattice and the
graphene unit cell vectors a1 and a2 on an enlarged scale

Before discussing the growth, we introduce the basic concepts and param-
eters that determine the properties of carbon nanotubes. As can be seen in
Fig. 1a the cutting of graphene fixes the so-called chiral or roll-up vector c.
This vector goes around the circumference of the final tube in Fig. 1c. There
are two parameters that control the microscopic structure of a nanotube,
its diameter and its chiral angle or twist along the axis. Both are specified
completely by c, which is normally given in terms of the graphene lattice
vectors a1 and a2 (see inset of Fig. 1a)

c = n1a1 + n2a2 . (1)

(n1, n2) are called the chiral index of a tube or, briefly, the chirality. A tube is
characterized by (n1, n2). In Fig. 1c we show as an example the (10,10) nano-
tube.

The diameter of a tube is related to the chiral vector by

d =
|c|
π

=
a0

π

√
n2

1 + n1n2 + n2
2 , (2)

where a0 = 2.460 Å is the graphene lattice constant [32–35]. For small tubes
(d < 0.8 nm) the diameter is predicted to deviate from the geometrical diame-
ter of a graphene cylinder in (2). Moreover, ab-initio calculations show that d
becomes a function of the chiral angle below 0.8 nm [36]. Deviations from (2)
are below 2 % for tube diameters d ≥ 5 Å [36]. Note also that sometimes differ-
ent lattice constants are used to calculate d. A popular value is a0 = 2.494 Å
obtained from a carbon–carbon distance aCC = a0/

√
3 = 1.44 Å; this value
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Fig. 2. Three carbon nanotubes with diameters around 0.8 nm: (a) (6,6) armchair,
(b) (8,4) chiral tube and (c) (10,0) zigzag nanotube. The gray hexagons indicate
the helix around the nanotube

for aCC was most likely taken from fullerenes that have a larger carbon–
carbon spacing than graphite and carbon nanotubes [37].

The second important parameter for carbon nanotubes is the chiral an-
gle Θ, which is the angle between a1 and the chiral vector (see Fig. 1a). The
chiral angle specifies the arrangement of the graphene hexagons on the wall
of the tube. This is illustrated in Fig. 2, where we show three single-walled
nanotubes with similar diameters but very different microscopic structure
due to different chiral angles. Θ is related to the chiral index by

Θ = arccos

[
n1 + n2/2√

n2
1 + n1n2 + n2

2

]
,

or

= 30◦ − arctan

[
1√
3

n1 − n2

n1 + n2

]
. (3)

The chiral angle is allowed to vary between 0◦ ≤ Θ ≤ 30◦; all other ranges
of Θ are equivalent to this interval because of the hexagonal symmetry of
graphene (see Fig. 1a). A chiral angle of 0◦ and 30◦ corresponds to tubes with
a particular high symmetry, as we discuss later. They are called zigzag (Θ =
0◦) and armchair tubes (Θ = 30◦).

The chiral vector not only determines the tube diameter and chiral an-
gle, but all other structural parameters including the length of the unit cell
and the number of carbon atoms in the unit cell. A compilation of these
parameters can be found in Table 1.

A very useful illustration for the chiral vectors is to draw all possible
nanotubes of a given diameter range onto a graphene lattice as in Fig. 3.
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are below 2 % for tube diameters d ≥ 5 Å [36]. Note also that sometimes differ-
ent lattice constants are used to calculate d. A popular value is a0 = 2.494 Å
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graphene (see Fig. 1a). A chiral angle of 0◦ and 30◦ corresponds to tubes with
a particular high symmetry, as we discuss later. They are called zigzag (Θ =
0◦) and armchair tubes (Θ = 30◦).

The chiral vector not only determines the tube diameter and chiral an-
gle, but all other structural parameters including the length of the unit cell
and the number of carbon atoms in the unit cell. A compilation of these
parameters can be found in Table 1.
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helical structure. ! ere are some exceptions to this, including nonhelical 
nanotubes, zigzag nanotubes with η = 0 and armchair tubes with η = π/6. 
Other helical tubes are called chiral nanotubes. Because the stability is 
mainly determined by their thickness or circumference, the direction of 
L for grown nanotubes is distributed almost uniformly.

The wave function satisfies the periodic boundary condition 
ψ(r + L) = ψ(r) in a carbon nanotube. This shows that the wave vector 
k satisfying the condition exp[ik⋅(r + L)] = exp(ik⋅r) is allowed in 
the first Brillouin zone of graphene. The condition can be rewritten 
as exp(ik⋅L) = 1, which gives straight lines perpendicular to L with 
neighboring distances 2π/L (Figure 3). When these lines pass through 
the K and K' points, that is, exp(iK⋅L) = 1 or exp(iK '⋅L) = 1 with K 
and K ' being the wave vector of the K and K' point, respectively, there 
is no gap at the Fermi level and the nanotube becomes metallic. In 
other cases, the nanotube becomes a semiconductor with a gap near 
the Fermi level.

Explicit calculations show that exp(iK⋅L) = exp(2πiν/3) and 
exp(iK '⋅L) = exp(–2πiν/3), where the integer ν is 0 or ±1 depending 
on na and nb. As a result, metallic (ν = 0) and semiconducting (ν = ±1) 
nanotubes appear at a ratio of one to two with varying L. In a 
semiconducting nanotube, the straight line closest to the K or K' point 
gives the conduction and valence bands. Because the spacing between 
neighboring lines is 2π/L and the energy is a linear function of the 
wave vector near the K and K' points, the energy gap is proportional 
to the inverse of the diameter d = L/π. The important feature is that 
there can be both metallic and semiconducting nanotubes with similar 
diameter and therefore one of the tough challenges lies in achieving 
the selective growth of semiconducting and metallic nanotubes or their 
separation after growth. 

Graphene as a metal 

Graphene has often been called a zero-gap semiconductor because 
the density of states is given by D(E) = |E|/2πħ2v2, which vanishes 
at E = 0 (Figure 2). This naming is quite inappropriate, however. 
A more appropriate name becomes clear when we consider the 
conductivity of graphene. 

The conductivity is usually given by the Einstein relation 
σ0 = gvgse2D*D(EF) in terms of the diffusion coefficient D*, where gv = 2 
is the valley degeneracy corresponding to the presence of the K and 
K' points and gs = 2 is the spin degeneracy. Let τ be the relaxation time 
due to impurity scattering. Then, the diffusion coefficient is given by 
D* ≈ v2τ. We have τ–1 ≈ (2π/ħ)ni⟨ui

2⟩EFD(EF), where ni is the impurity 
density, ui is the matrix element of the impurity potential between 
initial and final states, and ⟨...⟩EF denotes the average at the Fermi 

level. As a result, independent of the density of states, the conductivity 
becomes σ0 = gvgse2/2π2ħW, where W = ni⟨ui

2⟩EF/4π2ħ2v2 is a dimensionless 
parameter characterizing the strength of impurity scattering. Strictly 
speaking, the relaxation time determining the conductivity is 
different from the simple scattering time, but the difference is not so 
important here. 

! e above shows that the conductivity is independent of the Fermi 
energy and the carrier concentration as long as the possible dependence 
of scattering strength W on EF or ns is neglected. Therefore, graphene 
should strictly be regarded as a metal rather than a semiconductor.

At EF = 0, where D(EF) = 0, however, this description can become 
inappropriate. In fact, potential fl uctuations due to impurities make the 
density of states at EF = 0 nonzero. ! eoretical calculations including this 
level-broadening eff ect performed prior to experiments showed that the 
conductivity takes a universal value of σmin = gvgse2/2π2ħ at EF = 0 [31]. 
Figure 4 shows examples of calculated density of states and conductivity. 
In graphene with weak disorder, that is, W ≪ 1, the conductivity drops 
to σmin from σ0 in a very narrow energy range close to E = 0. Similar 
calculations performed for the conductivity in magnetic fi elds predicted 
that the Hall conductivity, in particular, is quantized into (4e2/h)(j + 1/2) 
with integer j, corresponding to the half-integer quantum Hall eff ect [8].

Experimentally, the minimum conductivity has been shown to be 
nearly independent of samples [6], although the absolute value seems 
to be 3–4 times larger than the theoretical predictions. In the vicinity 
of zero energy, because of the weak screening effect due to the small 
density of states and the small kinetic energy of electrons, the eff ective 
scattering strength can be substantial and system inhomogeneity can also 
be signifi cant. Some reports have shown that the minimum conductivity 
varies from sample to sample [32]. ! is problem regarding the minimum 
conductivity remains an important subject to be understood in the future. 

Another important difference lies in the dependence of the 
conductivity on electron concentration. The theory predicts that 
the conductivity in pure graphene should be independent of the 
electron concentration, dropping to σmin in the extreme vicinity of zero 
energy over a singularly narrow region. Experimentally, however, the 
conductivity is nearly proportional to the electron concentration, as if 
there is an eff ective mobility independent of the electron concentration. 
Part of the reason for this lies in the fact that the scattering strength W is 
large at EF ≈ 0 (typically W ≈ 0.1), as mentioned above. Another reason is 
that the eff ective strength of dominant scatterers depends on the electron 
concentration according to W ∝ |ns|–1, and the Boltzmann conductivity 
becomes proportional to the electron concentration. 

Typical examples of such scatterers causing ns dependence are 
charged impurities. Charged centers localized in SiO2 are known to 
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Fig. 20. Band structure of a (10,10) armchair nanotube with diameter d = 1.4 nm.
(a) Ab-initio calculation; (b) nearest-neighbor tight-binding calculation with γ0 =
−2.7 eV [(16) with n = 10]; (c) third-nearest neighbors tight-binding calculation.
The dashed lines denote ab-initio calculated energies of the band extrema. The
agreement of the energies in (a) and (c) is excellent. From [6]

where m is an integer running from −(q/2 − 1) to q/2 [81]; see Table 1 for q,
n and R as a function of n1 and n2.

The quantum number m is very useful to index bands and phonon
branches and to derive selection rules, e.g., for Raman scattering, infrared
vibronic and optical electronic absorption [20, 81, 83, 87]. The m = 0 elec-
tronic bands and phonon branches always contain the graphene Γ point (see
Fig. 19b); m = q/2 (= n for achiral tubes) is the M point of graphene
for kz = 0 [9]. These two bands are nondegenerate for any quasiparticle and
any nanotube. In achiral tubes, all other bands are twofold degenerate in
chiral tubes, none, see [20, 85, 86] for a discussion and examples.

4.2 Electronic Band Structure

Figures 20 and 21 show the electronic band structure of a (10,10) and
(19,0) nanotube, respectively. Parts (a) in both figures are from first-principles
calculations, while parts (b) were obtained with (16) and (15), and parts (c)
are the results of the extended tight-binding model using up to third neigh-
bors [6]. For all practical purposes, the extended tight-binding model is in-
distinguishable from the ab-initio calculations. The simple nearest-neighbors
tight-binding scheme works reasonably well. There are certain systematics in
Figs. 20 and 21 about which we will not comment in detail. For example,
the band extrema are at the Γ point in the (19,0) tube, but at 2π/3a in the
(10,10) tube. General rules for the overall shape of the band structure and
the position of the band extrema as a function of n1 and n2 can be found
in [20].
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Fig. 2. Three carbon nanotubes with diameters around 0.8 nm: (a) (6,6) armchair,
(b) (8,4) chiral tube and (c) (10,0) zigzag nanotube. The gray hexagons indicate
the helix around the nanotube

for aCC was most likely taken from fullerenes that have a larger carbon–
carbon spacing than graphite and carbon nanotubes [37].

The second important parameter for carbon nanotubes is the chiral an-
gle Θ, which is the angle between a1 and the chiral vector (see Fig. 1a). The
chiral angle specifies the arrangement of the graphene hexagons on the wall
of the tube. This is illustrated in Fig. 2, where we show three single-walled
nanotubes with similar diameters but very different microscopic structure
due to different chiral angles. Θ is related to the chiral index by

Θ = arccos

[
n1 + n2/2√

n2
1 + n1n2 + n2

2

]
,

or

= 30◦ − arctan

[
1√
3

n1 − n2

n1 + n2

]
. (3)

The chiral angle is allowed to vary between 0◦ ≤ Θ ≤ 30◦; all other ranges
of Θ are equivalent to this interval because of the hexagonal symmetry of
graphene (see Fig. 1a). A chiral angle of 0◦ and 30◦ corresponds to tubes with
a particular high symmetry, as we discuss later. They are called zigzag (Θ =
0◦) and armchair tubes (Θ = 30◦).

The chiral vector not only determines the tube diameter and chiral an-
gle, but all other structural parameters including the length of the unit cell
and the number of carbon atoms in the unit cell. A compilation of these
parameters can be found in Table 1.

A very useful illustration for the chiral vectors is to draw all possible
nanotubes of a given diameter range onto a graphene lattice as in Fig. 3.

m=±10
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Figure 2.4. Energy contours of graphene overlaid with the allowed electronic states of a
metallic (a) and semiconducting (b) carbon nanotube. Each line corresponds to a different
quasi angular momentum m. (c) Band structure of the (10,10) nanotubes calculated
ab-initio assigned with the corresponding m. Panels (a) and (b) are taken from [60].
Panel (c) is adapted from Ref. [48].

band structure of nanotubes. As an example, the band structure of a metallic (10, 10)

tube is depicted in Fig. 2.4(b). Each conduction and valence subband of the tube belongs
to a different quantum number m, also called quasi-angular momentum. Every nanotube
chirality corresponds to a unique set of subbands.

2.2.2. Optical properties

Due to their one-dimensional nature, carbon nanotubes are optically anisotropic. The
interaction with light polarized perpendicular to the tube axis is strongly suppressed by
depolarization [61–64], also referred to as the antenna effect. Nanotubes predominantly
absorb and emit light polarized along the their axis, which requires ∆m = 0 [65]. Optical
transitions in CNTs therefore occur only between states which are associated with subbands
of equal quasi-angular momentum.

The energetic separation of the band maxima and minima of the same m in Fig. 2.4(c),
in the following labeled Eii, are systematically connected to the microscopic structure of
the corresponding nanotube. Typically, they are plotted versus the nanotube diameter
in a so called Kataura plot [66], which is shown in Fig. 2.5(a). The Eii follow a general
1/d behavior which is easily understood within the zone-folding picture. The smaller
the diameter of the nanotubes, the further away from the K(K ′) points the electronic
bands are located. In the energy range relevant for optical transitions, the equi-energy
contours of the Dirac cones are not radially symmetric any more, see Fig. 2.4 (a,b) around
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of a few hundred femtoseconds, making 
them suitable for ultrafast pulse generation. 
They typically have a ratio of the modulation 
depth to the non-saturable loss of around 
1 (refs 22,23), which is slightly better than 
that of CNT-SAs. Compared to SESAMs 
and CNT-SAs, graphene has the major 
advantage of intrinsic wideband operation, 
which can extend from the ultraviolet to 
the far-infrared region, owing to the linear 
energy dispersion relation of graphene 
(Box 1)21. Graphene SAs have been used 
to produce pulses from 0.8 μm (ref. 22) to 
2.9 μm (ref. 24). Such broadband operation 
does not imply that the performance of 
graphene SAs is wavelength independent; 
the saturation fluence of graphene SAs is 
lower at longer wavelengths (for example, 
66 μJ cm−2 at 800 nm (ref. 22), compared 
with 14 μJ cm−2 at 1,500 nm (ref. 23)). 
This wavelength dependence of the 
saturation fluence generally favours the 
use of graphene SAs in the mid-infrared 
region. Another challenge for graphene 
SAs is the low modulation depth of single-
layer graphene; it is typically around 1% 
(refs 22,23), which is too low for ultrafast 
fibre lasers. However, the modulation 
depth of graphene SAs can be improved by 
stacking multiple single layers of graphene, 
but this also increases the saturation 
fluence21. The characteristics of graphene 
SAs can be further engineered by, for 
example, modulating its optical absorption 
by electrical gating25, providing a combined 
active and passive modulation function.

In conclusion, the key benefits of CNT-
SAs and graphene SAs, namely broadband 
operation and simple, cost-effective 
fabrication and integration, outweigh their 
relatively high losses.

Current trends
Since their recent introduction, the 
performances of CNT-SAs and graphene 
SAs have steadily improved, and their 
unique features have resulted in the 
development of various novel mode-
locked fibre lasers. However, to confirm 
the suitability of these SAs for future 
applications, it is necessary to demonstrate 
that they can handle higher optical powers 
and shorter pulse durations, and that they 
can provide saturable absorption over a 
wider wavelength range (from the ultraviolet 
to the mid-infrared region). Below, we 
consider the specific requirements for SAs 
and approaches that are being considered to 
enable CNT-SAs and graphene SAs to meet 
these requirements.

Output power: Most early studies produced 
few-milliwatt soliton pulses by employing 
erbium-doped fibres as the gain medium 

and operating fibre lasers in the anomalous 
dispersion regime at 1.55 μm (see ref. 13 
and references therein). In such soliton 
fibre lasers, mode locking relies on the 
balance between dispersion and self-phase 
modulation. In the past few years, the 
focus has shifted towards the generation 
of dissipative solitons and similaritons 
to overcome the limits imposed by 
conservative soliton propagation. In these 
fibre lasers, in addition to the nonlinearity 
and dispersion, the cavity gain and losses 
need to be carefully balanced. These lasers 
generally produce highly chirped pulses 
and require spectral filtering to compensate 

for the dispersion26. The use of these novel 
regimes has resulted in a rapid increase 
in the pulse energies directly achievable 
from a fibre oscillator26. Most of the 
work in this area has relied on nonlinear 
polarization evolution for mode locking. 
However, most nonlinear polarization 
evolution devices employ free-space 
optics and non-polarization-maintaining 
fibres. For practical applications and 
environmental stability, all-polarization-
maintaining, all-fibre lasers27 are desirable. 
Certainly, there are significant advantages 
of using CNT-SAs and graphene SAs in 
these new mode-locking regimes28: not 

Graphene is a monolayer of hexagonally 
arranged carbon atoms, and is the 
building block for graphitic materials 
of every other dimensionality. Its 
energy–momentum relation is linear at 
low energy near the six corners of the 
two-dimensional hexagonal Brillouin 
zone (Fig. B1a). Graphene can absorb 
~2.3% of white light, despite being 
only a single atom thick (~0.3 nm). The 
optical absorption of few-layer graphene 
is proportional to the number of layers. 
Interband excitation in graphene by 
ultrafast optical pulses produces a non-
equilibrium carrier population in the 
valence and conduction bands. Saturable 
absorption is observed as a consequence 
of Pauli blocking. Ultrafast responses 
down to 100 fs can be observed by 
different relaxation channels in time-
resolved experiments21. The linear 
dispersion of the Dirac electrons ensures 
that, for any excitation, there will always 
be an electron–hole pair in resonance21. 
Thus, graphene is an ultrafast and ultra-
wideband SA material for ultrafast 
pulse generation.

CNTs are rolled-up graphene sheets 
that form seamless cylinders. Their 
electronic properties depend on their 
diameter and chirality (that is, the 
twist angle along the tube axis). The 
density of states of single-walled CNTs 
is dominated by a series of characteristic 
van Hove singularities because of the 
one-dimensional nature of the electronic 
bands. Saturable absorption occurs when 
strong excitation depletes the electron 
population of the valence band and 
enhances the electron occupation of 
the conduction band. Semiconducting 
CNTs have very fast recovery times that 
are of the order of picoseconds. CNT 
bundles, with the naturally occurring 

semiconducting to metallic ratio, exhibit 
even faster dynamics (sub-picosecond) 
because of excited states relaxing through 
the metallic tubes. To a first-order 
approximation, the bandgap of CNTs, 
which is directly related to their optical 
absorption peak positions, varies inversely 
with their diameter. Therefore, broadband 
operation is possible by using CNTs with a 
broad diameter distribution.

The fabrication methods of CNT-SAs 
and graphene SAs can be categorized into 
two classes: dry processing and solution 
processing. Dry processing typically 
involves directly incorporating free-
standing, as-grown CNTs or mechanically 
exfoliated graphene into the optical 
system. Solution processing generally 
entails dispersing CNTs or graphene into 
various solvents to either spray coat a 
substrate or embed the CNTs or graphene 
in a host polymer. In general, solution-
processing methods offer a simple, scalable 
and cost-effective approach to fabricate 
and integrate various CNT-SAs and 
graphene SAs.

Box 1: Graphene and carbon nanotubes
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and of energy against electronic density of states 
(DOS) of a semiconducting nanotube (b).
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Fig. 26. (a) Kataura plot: transition energies of semiconducting (filled symbols) and
metallic (open) nanotubes as a function of tube diameter. They were calculated from
the van-Hove singularities in the joint density of states within the third-order tight-
binding approximation [6]. (b) Expanded view of the Kataura plot highlighting the
systematics in (a). The optical transition energies are roughly proportional to 1/d
for semiconducting (black) and metallic nanotubes (gray). The V-shaped curves
connect points from selected branches in (b), β = 22, 23 and 24; see text for details.
We indicate whether the ν = −1 or the +1 family is below or above the 1/d trend.
Squares (circles) are transitions of zigzag (armchair) nanotubes

ducting) state. Thus, the absorption should show peaks corresponding to
the transitions from the van-Hove singularity of the first valence band v1 to
the singularity of the first conduction band c1 at an energy E11, followed
by v2 → c2 at E22 and so forth (see Fig. 25). The absorption spectrum is of-
ten further approximated by considering only the van-Hove-related transition
energies Eii [167, 168]. Plotting them as a function of diameter one obtains
the so-called Kataura plot, which we discuss in the next section.

The band-to-band transition picture was believed to be correct for al-
most ten years and most interpretations of the Raman and optical spectra
relied on it. This view changed fundamentally after Bachilo et al. [60] mea-
sured photoluminescence and absorption from isolated nanotubes, followed
by resonant Raman experiments on similar samples by Telg et al. [63] and
Fantini et al. [64]: The experimental data could only be understood on the
basis of excitonic transitions. Therefore, the literature has to be viewed with
care because many studies relied on the band-to-band description.

E11 E22

E11

E22

a a

the substrate !Fig. 1" and is given by the ratio of substrate
thickness to twice the radius of curvature. The spectra are
fitted with lorentzians and Fig. 3 plots the resulting trends for
the G and 2D peaks. Note that Figs. 3!a" and 3!b" are a
combination of over 80 measurements on two samples,
strained in two different experimental setups, and include a
loading, unloading, and final loading cycle. Within the spec-
trometer resolution, we find no difference on prehistory and,
for a single sample and cycle, the strain dependence is
smooth. Linear fits using all the data yield !!G+ /!"#
−10.8 cm−1 /%, !!G− /!"#−31.7 cm−1 /%, !!2D /!"#
−64 cm−1 /%, and !!2D! /!"#−35 cm−1 /%, where we call
G+ and G− the higher and lower G subbands, by analogy
with nanotubes.33,34

B. Secular equation and Grüneisen parameters

The observed behavior can be explained by considering
the effect of uniaxial strain on the optical modes responsible
for the G, D, and D! peaks, respectively. The Grüneisen
parameter for the doubly degenerate in-plane Raman-active
E2g phonon, #E2g

, is6

#E2g
= −

1

!E2g

0

!!E2g

h

!"h
, !1"

where "h="ll+"tt is the hydrostatic component of the applied
uniaxial strain, l is the longitudinal direction, parallel to the
strain, and t is the direction transverse to it; !E2g

0 is the G
peak position at zero strain. The shear deformation potential
$E2g

is defined as35,36

$E2g
=

1

!E2g

0

!!E2g

s

!"s
, !2"

where "s="ll−"tt is the shear component of the strain.
Under uniaxial strain, the solution of the secular equation

for the E2g mode is35–38

%!E2g

& = %!E2g

h &
1
2

%!E2g

s

= − !E2g

0 #E2g
!"ll + "tt" &

1
2

$E2g
!E2g

0 !"ll − "tt" , !3"

where %!E2g

h is the shift resulting from the hydrostatic com-
ponent of the strain, and %!E2g

s is the mode splitting due to
the shear component of the strain. %!G+=%!E2g

+ and %!G−

=%!E2g

− are the shifts of the G+ and G− peaks relative to zero
strain.

It is important to note that the resulting phonon eigenvec-
tors are orthogonal:35–38 the E2g

+ is perpendicular to the ap-
plied strain !and thus experiencing smaller softening" and the
E2g

− parallel to it. This is analogous to the effect of curvature
on the G peak of carbon nanotubes. The G peak splitting in
nanotubes is the combined result of electron confinement and
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FIG. 2. !Color online" !a" G and !b" 2D peaks as a function of
uniaxial strain. The spectra are measured with incident light polar-
ized along the strain direction, collecting the scattered light with no
analyzer. Note that the doubly degenerate G peak splits in two
subbands G+ and G−, while this does not happen for the 2D peak.
The strains, ranging from 0 to #0.8%, are indicated on the right
side of the spectra.

1550

1555

1560

1565

1570

1575

1580

1585

1590

1595
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

P
o

s(
G

+
,G

- )(
cm

-1
)

A

∂ωG
+/∂ε ~ - 10.8 cm-1/%

∂ωG
-/∂ε ~ - 31.7 cm-1/%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

2600

2610

2620

2630

2640

2650

2660

2670

2680

2690

2700

P
o

s(
2

D
)

(c
m

-1
)

Strain(%)

B

∂ω2D/∂ε ~ - 64cm-1/%
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uniaxial strain in graphene,20,24 which report much smaller
!! /!", implying much smaller Grüneisen parameter. It is
difficult to see how the Grüneisen parameter of graphene
should be much smaller than that measured in plane for
graphite. Moreover, no G peak splitting was observed for
uniaxial strain,20,24 again in contrast with both our observa-
tion and general expectations.

We now consider the singly degenerate modes corre-
sponding to the D and D! peaks. The D peak is a breathing
mode similar to the TO A1g phonon at K.47 For pure A1g
symmetry and small strains, the uniaxial shift #!A1g

is given
only by the hydrostatic component of the stress

#!A1g
= − !A1g

0 $A1g
!"tt + "ll" . !7"

On the other hand, the D! phonon has E symmetry47 and we
could expect in principle splitting and a relation similar to
Eq. !4". However, experimentally this peak is very weak and
we cannot resolve any splitting in the strain range we have
considered. Thus, for small strains, we write for both Raman
peaks

#!2D;2D! = − !2D;2D!
0 $D;D!!1 − %"" . !8"

Combining our data with Eq. !8", we get $D#3.55 and
$D!#1.61. For free-hanging graphene, these give !!2D /!"
#−83 cm−1 /% and !!2D! /!"#−45 cm−1 /%. In the case of
graphene under biaxial strain, "ll="tt=" and #!2D,2D!=
−2!2D;2D!

0 $D;D!". Thus, using our fitted Grüneisen param-
eters, the expected 2D and 2D! variation as a function of
biaxial strain are !!2D /!"#−191 cm−1 /% and !!2D! /!"#
−104 cm−1 /%.

To the best of our knowledge, no data exist for the 2D- or
2D!-peak dependence in graphite as a function of uniaxial
strain. However, Ref. 44 measured !!2D /!&ll
#6.4 cm−1 /GPa for PAN carbon fibers. This scales to
!!2D /!"#−70 cm−1 /% in graphene, in agreement with our
predicted uniaxial trend, when using the in-plane Poisson’s
ratio of graphite to compare with fibers. For graphite under
hydrostatic pressure, Ref. 48 reported !!2D /!&h
#12.3 cm−1 /GPa and !!2D! /!&h#9 cm−1 /GPa. This cor-
responds to an in-plane biaxial strain '= !Sll+Slt"&h. From
1 / !Sll+Slt"#1 /1250 GPa,40 we get !!2D /!"#
−154 cm−1 /%, $2D=2.84, !!2D! /!"#−113 cm−1 /%, and
$2D!=1.74, in broad agreement with our predictions for bi-
axial strain.

Finally, we note that, in all cases, the 2D peak is ex-
tremely sensitive to strain. With a typical spectrometer reso-
lution of #2 cm−1, a remarkable sensitivity of #0.01% and
0.03% can be achieved for biaxial and uniaxial strains, re-
spectively. We also note that a combined analysis of G and
2D FWHM and shifts should allow to distinguish between
effects of strain, doping, or disorder.9–11

C. First-principles calculations

To further understand our findings, we perform first-
principles calculations on free-standing graphene, for small
strains up to #1%, to compare with experiments. The effects
on electron and phonon bands of larger strains will be re-

ported elsewhere. We use density-functional theory and
density-functional perturbation theory49 as implemented in
the PWSCF package of the QUANTUM-ESPRESSO distribution,50

within the local-density approximation, with norm-
conserving pseudopotentials51 and a plane-wave expansion
up to 55 Ry cutoff. The Brillouin zone is sampled on a 42
(42(1 Monkhorst-Pack mesh with a cold smearing in the
electronic occupations of 0.02 Ry. We use the equilibrium
lattice parameter a=2.43 Å and an interlayer spacing of
15 Å. We apply the strain in different directions. For each
direction and strain, we determine the structure with the low-
est total energy by varying the size of the unit cell in the
direction perpendicular to the strain. At zero strain, !G0
=1603.7 cm−1, !D0

=1326 cm−1, and %=0.15. Figure 4 plots
the resulting G+ /G− eigenvectors. These are perpendicular to
each other with the G− eigenvector oriented along the strain
direction as expected. For small strains, we find !!G− /!"#
−34 cm−1 /% and !!G+ /!"#−17 cm−1 /%, independent on
the strain direction, as expected from symmetry. We also get
$E2g

=1.87 and )E2g
=0.92, in excellent agreement with our

measured parameters. Note that in order to compare the cal-
culated trends for G+ and G− with our measurements, we
need to insert the theoretical parameters in Eq. !4" together
with the substrate Poisson’s ratio. This gives !!G− /!"#
−30 cm−1 /% and !!G+ /!"#−10.3 cm−1 /%, in excellent
agreement with the fits in Fig. 3!a". We also calculate the
biaxial strain variation for the G peak. We find !!G /!"#
−58 cm−1 /% and $E2g

=1.8, again in excellent agreement
with the biaxial values based on our experimental Grüneisen
parameter.

We then calculate the uniaxial and biaxial strain variation
for the 2D peak. We find !!2D /!"#−60 cm−1% for
uniaxial, and !!2D /!"#−144 cm−1 /% for biaxial and $D
#2.7 for both. These are in excellent agreement with the
results of hydrostatic pressure experiments on graphite, and
in broad agreement with our experimental data for uniaxial
strain !and the consequent biaxial predictions", being
#25 /% smaller. It is important to consider that, while for the
Raman-active G mode we are probing the same center-zone
phonon when measuring the Raman spectrum on a strained
sample, the Raman D and D! peaks are zone-boundary
phonons activated by double resonance. Any change in the
double-resonance condition during the strain experiments

FIG. 4. !Color online" Eigenvectors of G+ and G− modes deter-
mined by density-functional perturbation theory. These are perpen-
dicular to each other, with G− polarized along the strain axis, as
expected.
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uniaxial strain in graphene,20,24 which report much smaller
!! /!", implying much smaller Grüneisen parameter. It is
difficult to see how the Grüneisen parameter of graphene
should be much smaller than that measured in plane for
graphite. Moreover, no G peak splitting was observed for
uniaxial strain,20,24 again in contrast with both our observa-
tion and general expectations.

We now consider the singly degenerate modes corre-
sponding to the D and D! peaks. The D peak is a breathing
mode similar to the TO A1g phonon at K.47 For pure A1g
symmetry and small strains, the uniaxial shift #!A1g

is given
only by the hydrostatic component of the stress

#!A1g
= − !A1g

0 $A1g
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On the other hand, the D! phonon has E symmetry47 and we
could expect in principle splitting and a relation similar to
Eq. !4". However, experimentally this peak is very weak and
we cannot resolve any splitting in the strain range we have
considered. Thus, for small strains, we write for both Raman
peaks

#!2D;2D! = − !2D;2D!
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Combining our data with Eq. !8", we get $D#3.55 and
$D!#1.61. For free-hanging graphene, these give !!2D /!"
#−83 cm−1 /% and !!2D! /!"#−45 cm−1 /%. In the case of
graphene under biaxial strain, "ll="tt=" and #!2D,2D!=
−2!2D;2D!

0 $D;D!". Thus, using our fitted Grüneisen param-
eters, the expected 2D and 2D! variation as a function of
biaxial strain are !!2D /!"#−191 cm−1 /% and !!2D! /!"#
−104 cm−1 /%.

To the best of our knowledge, no data exist for the 2D- or
2D!-peak dependence in graphite as a function of uniaxial
strain. However, Ref. 44 measured !!2D /!&ll
#6.4 cm−1 /GPa for PAN carbon fibers. This scales to
!!2D /!"#−70 cm−1 /% in graphene, in agreement with our
predicted uniaxial trend, when using the in-plane Poisson’s
ratio of graphite to compare with fibers. For graphite under
hydrostatic pressure, Ref. 48 reported !!2D /!&h
#12.3 cm−1 /GPa and !!2D! /!&h#9 cm−1 /GPa. This cor-
responds to an in-plane biaxial strain '= !Sll+Slt"&h. From
1 / !Sll+Slt"#1 /1250 GPa,40 we get !!2D /!"#
−154 cm−1 /%, $2D=2.84, !!2D! /!"#−113 cm−1 /%, and
$2D!=1.74, in broad agreement with our predictions for bi-
axial strain.

Finally, we note that, in all cases, the 2D peak is ex-
tremely sensitive to strain. With a typical spectrometer reso-
lution of #2 cm−1, a remarkable sensitivity of #0.01% and
0.03% can be achieved for biaxial and uniaxial strains, re-
spectively. We also note that a combined analysis of G and
2D FWHM and shifts should allow to distinguish between
effects of strain, doping, or disorder.9–11

C. First-principles calculations

To further understand our findings, we perform first-
principles calculations on free-standing graphene, for small
strains up to #1%, to compare with experiments. The effects
on electron and phonon bands of larger strains will be re-

ported elsewhere. We use density-functional theory and
density-functional perturbation theory49 as implemented in
the PWSCF package of the QUANTUM-ESPRESSO distribution,50

within the local-density approximation, with norm-
conserving pseudopotentials51 and a plane-wave expansion
up to 55 Ry cutoff. The Brillouin zone is sampled on a 42
(42(1 Monkhorst-Pack mesh with a cold smearing in the
electronic occupations of 0.02 Ry. We use the equilibrium
lattice parameter a=2.43 Å and an interlayer spacing of
15 Å. We apply the strain in different directions. For each
direction and strain, we determine the structure with the low-
est total energy by varying the size of the unit cell in the
direction perpendicular to the strain. At zero strain, !G0
=1603.7 cm−1, !D0

=1326 cm−1, and %=0.15. Figure 4 plots
the resulting G+ /G− eigenvectors. These are perpendicular to
each other with the G− eigenvector oriented along the strain
direction as expected. For small strains, we find !!G− /!"#
−34 cm−1 /% and !!G+ /!"#−17 cm−1 /%, independent on
the strain direction, as expected from symmetry. We also get
$E2g

=1.87 and )E2g
=0.92, in excellent agreement with our

measured parameters. Note that in order to compare the cal-
culated trends for G+ and G− with our measurements, we
need to insert the theoretical parameters in Eq. !4" together
with the substrate Poisson’s ratio. This gives !!G− /!"#
−30 cm−1 /% and !!G+ /!"#−10.3 cm−1 /%, in excellent
agreement with the fits in Fig. 3!a". We also calculate the
biaxial strain variation for the G peak. We find !!G /!"#
−58 cm−1 /% and $E2g

=1.8, again in excellent agreement
with the biaxial values based on our experimental Grüneisen
parameter.

We then calculate the uniaxial and biaxial strain variation
for the 2D peak. We find !!2D /!"#−60 cm−1% for
uniaxial, and !!2D /!"#−144 cm−1 /% for biaxial and $D
#2.7 for both. These are in excellent agreement with the
results of hydrostatic pressure experiments on graphite, and
in broad agreement with our experimental data for uniaxial
strain !and the consequent biaxial predictions", being
#25 /% smaller. It is important to consider that, while for the
Raman-active G mode we are probing the same center-zone
phonon when measuring the Raman spectrum on a strained
sample, the Raman D and D! peaks are zone-boundary
phonons activated by double resonance. Any change in the
double-resonance condition during the strain experiments

FIG. 4. !Color online" Eigenvectors of G+ and G− modes deter-
mined by density-functional perturbation theory. These are perpen-
dicular to each other, with G− polarized along the strain axis, as
expected.
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Figure 5.7. Scattering spectra of single silver nanoparticles of different shapes obtained in
dark-field configuration. Reprinted with permission from [Mock et al., 2002a]. Copyright 2002,
American Institute of Physics.

Figure 5.8. Optical dark field images together with SEM images of individual gold nanopar-
ticles (a) and corresponding scattering spectra (b) for an incident light polarization along the
long particle axis. Lines are experimental data, and circles cross sections calculated using the
empirical formula (5.24). Reprinted with permission from [Kuwata et al., 2003]. Copyright
2003, American Institute of Physics.

et al., 1998] and the direct imaging of multipolar fields [Hohenau et al., 2005a],
as well as the dispersion relation of gold nanorods [Imura et al., 2005]. More
details of typical setups can be found in chapter 10 on spectroscopy.

rupole mode,27,51 and cannot be explained by the dipolar
interaction model.

The shift in the plasmon extinction maximum is plotted
against the interparticle edge-to-edge separation gap for the
parallel polarization in Figure 3a. Note that the plasmon
maximum for s ) 212 nm (particles spaced enough to assume

minimal coupling) has been used as the reference for
calculation of the shift. Because these spectra are from an
ensemble of particle pairs rather than single particle pairs,
the data point for s ) 2 nm was not included due to the
significant dispersion in the lithographic fabrication of such
a small gap. The plot of the plasmon shift versus the

Figure 1. Representative SEM image of the array of nanodisc pairs used in the present study, having an interparticle edge-to-edge separation
gap of 12 nm, showing the homogeneity of the sample. The inset shows a magnified image of a single nanodisc pair clearly showing the
interparticle gap. Each nanodisc has a diameter of 88 nm and thickness of 25 nm. Images of arrays with other interparticle gaps are not
shown.

Figure 2. (a,c) Microabsorption and (b,d) DDA-simulated extinction efficiency spectra of Au nanodisc pairs for varying interparticle
separation gap for incident light polarization direction (a,b) parallel and (c,d) perpendicular to the interparticle axis.
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Figure 1
Schematic diagrams illustrating (a) a surface plasmon polariton (or propagating plasmon) and
(b) a localized surface plasmon.

provided a fundamental understanding of how plasmons are influenced by local struc-
ture and environment, they also suggested the usefulness of plasmons as a sensing
modality. Today, plasmon spectroscopy enjoys a reputation as an ultrasensitive method
for detecting molecules of both biological and chemical interest, in addition to its con-
tinued role in enabling surface-enhanced spectroscopic methods, including SERS,
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provided a fundamental understanding of how plasmons are influenced by local struc-
ture and environment, they also suggested the usefulness of plasmons as a sensing
modality. Today, plasmon spectroscopy enjoys a reputation as an ultrasensitive method
for detecting molecules of both biological and chemical interest, in addition to its con-
tinued role in enabling surface-enhanced spectroscopic methods, including SERS,
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Fig. 29. (a) Schematic dispersion of the first eh11 and second eh22 subband ex-
citons. Q is the exciton wavevector defined as the center-of-mass wavevector of
electron and hole. hν indicates the dispersion of photons. Absorption occurs at
the crossing of the photonic and excitonic dispersion with a wavevector Qabs ≈ 0.
After [134]. (b) Calculated absorption spectra neglecting electron–hole interaction
(band-to-band transitions), ε = ∞ top panel, and for decreasing screening, middle
and bottom panels. The shift in the main transition indicates the exciton bind-
ing energy as a function of ε. With decreasing screening, more spectral weight is
transfered to the exciton. After [160]

electrons and holes in the ith subband (see Fig. 29a). The combined electron–
hole wavevector Q = ke + kh has to be equal to the wavevector of the
photon, Q ≈ 0 (ke and kh are the wavevectors of the electron and the hole,
respectively).

Figure 29b shows how the optical absorption spectrum changes when
electron–hole interaction is considered. The results were obtained for a (19,0)
tube using a tight-binding model to solve the Bethe–Salpeter equation, a two-
particle equation, which includes electron–hole interaction [160]. The charac-
teristic 1/

√
E absorption predicted for band-to-band transitions (top panel

and Fig. 25) changes into a δ-function when the spectral weight is transferred
from the electron–hole continuum to the excitons. ε is the dielectric function
of the medium surrounding the tube.

The two peaks in the three panels of Fig. 29b originate from transitions
between the first two pairs of valence and conduction bands in the top panel
and from exciting the first and second subband exciton in the middle and
lower panels. The shift in the peak position gives the exciton binding energies
for two dielectric constants ε of the medium surrounding the tube.

From what we discussed up to now, one would expect the experimen-
tal optical transitions to be lower in energy than predicted from the single-
particle picture, because of the large exciton binding energies. Instead, pho-
toluminescence and Raman spectroscopy found a blueshift of the transitions
by some 100 meV when compared to a single-particle theory [44, 45, 60, 61,
63, 64, 68]. The origin of this shift is the increase of the bandgap due to
electron–electron interactions [10,174]. As shown in Fig. 30, electron–electron

b

excitonic 
absorption

Figure 2.5. (a) Kataura plot of the optical transition energies plotted versus the diameter
for semiconducting (closed dots) and metallic (open dots) carbon nanotubes. (b) Optical
absorption in the excitonic picture occurs at the exciton wavevector Q ≈ 0. The excitonic
states ehii are commonly labelled as Eii as it the case in (a). Panels (a) and (b) are
adapted from Refs. [57] and [68], respectively.

the K and K ′ points. They are influenced by the trigonal symmetry of the underlying
graphene Brillouin zone, also referred trigonal warping [67]. Therefore, the Eii of a carbon
nanotube systematically deviate from the 1/d behavior depending on the chiral angle as
shown in Fig. 2.5(a).

The optical excitations in carbon nanotubes arise from excitons [30, 31]. Owing to their
reduced dimensionality and inefficient dielectric screening, the exciton binding energy
Eb in nanotubes is huge (∼ 1 eV in vacuum, ∼ 0.4 eV for surfactant coated tubes [57]),
compared to bulk semiconductors (few meV). As a result, excitons are present at room
temperature (kbT ≈ 25meV� Eb), and the oscillator strength of the optical transitions in
CNTs is transferred entirely from band-to-band to excitonic transitions. Light absorption
is described as the transition of an exciton from its ground state to the excited states
eh11, eh22, shown in Fig. 2.5(b). The labeling indicates the connection to E11, E22 as
introduced before. The systematic dependencies of the optical transitions on diameter
and chiral angle as given in the Kataura plot in Fig. 2.5(a) remain valid for excitons.

Surprisingly, the excitonic transitions are blue-shifted compared to band-to-band
transitions. Intuitively one would expect a redshift due to the excitonic binding energy.
This is due to electron-electron interactions, which overcompensate the redshift caused by
electron-hole interactions [69]. The transition occurs at ehii for the exciton wavevector
Q ≈ 0, which combines electrons and holes of opposite momentum.
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2.3. Plasmonic nanostructures

The excitonic nature of the optical transitions in CNTs has several important con-
sequences; they affect the radiative lifetimes and make the tubes’ optical transitions
susceptible to changes in the environment [57, 70]. The description of resonant Raman
scattering in carbon nanotubes changes as well, as described in Sec. 3.1. In some cases,
however, treating the optical transitions of carbon nanotubes within the band-to-band
picture is sufficient.

2.3. Plasmonic nanostructures

A plasmon is a collective oscillation of free electrons in the bulk of a metal. It can be
thought of as a spatial oscillation of the electrons against the ion cores. The frequency of
the plasmon is given by

ωp =

√
ne2

ε0m
, (2.12)

with the electron density n, the charge e and mass m of the electron, and the vacuum
permittivity ε0. At the surface of a metal light may excite surface plasmons1, which can
be regarded as propagating surface charge fluctuations, Fig. 2.6(a). For tiny metallic
particles of sub-wavelength dimensions, schematically depicted in Fig. 2.6(b), these charge
fluctuations are localized and termed localized surface plasmon resonances (LSPR). They
give rise to strong optical responses of resonant nature, which stretch from the infrared
to the visible region of the electromagnetic spectrum. In the following I introduce the
basic principles of LSPRs and how they give rise to near-field enhancement. Coupling
between neighboring particles will be discussed for two closely spaced gold nanodiscs as
they represent the primary plasmonic nanostructure investigated in this thesis.

2.3.1. Localized surface plasmon resonances

The complex dielectric function ε(ω) of a metal describes its response to light of frequency
ω and is given by

ε(ω) = ε∞(ω)− ωp

ω2 + iγω
, (2.13)

where γ is the electron collision frequency in the bulk. The second term of Eq. (2.13)
corresponds to the free electron response of the metal as described by the Drude model.
For higher frequencies, inter band transitions from the valence to the conduction band
contribute to the optical response and are taken into account by ε∞.

1The excitation of a propagating surface plasmon requires phase matching, e.g. by using a prism in the
Kretschmann configuration, see e.g. Ref. [1].
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2. Nanostructures
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of a few hundred femtoseconds, making 
them suitable for ultrafast pulse generation. 
They typically have a ratio of the modulation 
depth to the non-saturable loss of around 
1 (refs 22,23), which is slightly better than 
that of CNT-SAs. Compared to SESAMs 
and CNT-SAs, graphene has the major 
advantage of intrinsic wideband operation, 
which can extend from the ultraviolet to 
the far-infrared region, owing to the linear 
energy dispersion relation of graphene 
(Box 1)21. Graphene SAs have been used 
to produce pulses from 0.8 μm (ref. 22) to 
2.9 μm (ref. 24). Such broadband operation 
does not imply that the performance of 
graphene SAs is wavelength independent; 
the saturation fluence of graphene SAs is 
lower at longer wavelengths (for example, 
66 μJ cm−2 at 800 nm (ref. 22), compared 
with 14 μJ cm−2 at 1,500 nm (ref. 23)). 
This wavelength dependence of the 
saturation fluence generally favours the 
use of graphene SAs in the mid-infrared 
region. Another challenge for graphene 
SAs is the low modulation depth of single-
layer graphene; it is typically around 1% 
(refs 22,23), which is too low for ultrafast 
fibre lasers. However, the modulation 
depth of graphene SAs can be improved by 
stacking multiple single layers of graphene, 
but this also increases the saturation 
fluence21. The characteristics of graphene 
SAs can be further engineered by, for 
example, modulating its optical absorption 
by electrical gating25, providing a combined 
active and passive modulation function.

In conclusion, the key benefits of CNT-
SAs and graphene SAs, namely broadband 
operation and simple, cost-effective 
fabrication and integration, outweigh their 
relatively high losses.

Current trends
Since their recent introduction, the 
performances of CNT-SAs and graphene 
SAs have steadily improved, and their 
unique features have resulted in the 
development of various novel mode-
locked fibre lasers. However, to confirm 
the suitability of these SAs for future 
applications, it is necessary to demonstrate 
that they can handle higher optical powers 
and shorter pulse durations, and that they 
can provide saturable absorption over a 
wider wavelength range (from the ultraviolet 
to the mid-infrared region). Below, we 
consider the specific requirements for SAs 
and approaches that are being considered to 
enable CNT-SAs and graphene SAs to meet 
these requirements.

Output power: Most early studies produced 
few-milliwatt soliton pulses by employing 
erbium-doped fibres as the gain medium 

and operating fibre lasers in the anomalous 
dispersion regime at 1.55 μm (see ref. 13 
and references therein). In such soliton 
fibre lasers, mode locking relies on the 
balance between dispersion and self-phase 
modulation. In the past few years, the 
focus has shifted towards the generation 
of dissipative solitons and similaritons 
to overcome the limits imposed by 
conservative soliton propagation. In these 
fibre lasers, in addition to the nonlinearity 
and dispersion, the cavity gain and losses 
need to be carefully balanced. These lasers 
generally produce highly chirped pulses 
and require spectral filtering to compensate 

for the dispersion26. The use of these novel 
regimes has resulted in a rapid increase 
in the pulse energies directly achievable 
from a fibre oscillator26. Most of the 
work in this area has relied on nonlinear 
polarization evolution for mode locking. 
However, most nonlinear polarization 
evolution devices employ free-space 
optics and non-polarization-maintaining 
fibres. For practical applications and 
environmental stability, all-polarization-
maintaining, all-fibre lasers27 are desirable. 
Certainly, there are significant advantages 
of using CNT-SAs and graphene SAs in 
these new mode-locking regimes28: not 

Graphene is a monolayer of hexagonally 
arranged carbon atoms, and is the 
building block for graphitic materials 
of every other dimensionality. Its 
energy–momentum relation is linear at 
low energy near the six corners of the 
two-dimensional hexagonal Brillouin 
zone (Fig. B1a). Graphene can absorb 
~2.3% of white light, despite being 
only a single atom thick (~0.3 nm). The 
optical absorption of few-layer graphene 
is proportional to the number of layers. 
Interband excitation in graphene by 
ultrafast optical pulses produces a non-
equilibrium carrier population in the 
valence and conduction bands. Saturable 
absorption is observed as a consequence 
of Pauli blocking. Ultrafast responses 
down to 100 fs can be observed by 
different relaxation channels in time-
resolved experiments21. The linear 
dispersion of the Dirac electrons ensures 
that, for any excitation, there will always 
be an electron–hole pair in resonance21. 
Thus, graphene is an ultrafast and ultra-
wideband SA material for ultrafast 
pulse generation.

CNTs are rolled-up graphene sheets 
that form seamless cylinders. Their 
electronic properties depend on their 
diameter and chirality (that is, the 
twist angle along the tube axis). The 
density of states of single-walled CNTs 
is dominated by a series of characteristic 
van Hove singularities because of the 
one-dimensional nature of the electronic 
bands. Saturable absorption occurs when 
strong excitation depletes the electron 
population of the valence band and 
enhances the electron occupation of 
the conduction band. Semiconducting 
CNTs have very fast recovery times that 
are of the order of picoseconds. CNT 
bundles, with the naturally occurring 

semiconducting to metallic ratio, exhibit 
even faster dynamics (sub-picosecond) 
because of excited states relaxing through 
the metallic tubes. To a first-order 
approximation, the bandgap of CNTs, 
which is directly related to their optical 
absorption peak positions, varies inversely 
with their diameter. Therefore, broadband 
operation is possible by using CNTs with a 
broad diameter distribution.

The fabrication methods of CNT-SAs 
and graphene SAs can be categorized into 
two classes: dry processing and solution 
processing. Dry processing typically 
involves directly incorporating free-
standing, as-grown CNTs or mechanically 
exfoliated graphene into the optical 
system. Solution processing generally 
entails dispersing CNTs or graphene into 
various solvents to either spray coat a 
substrate or embed the CNTs or graphene 
in a host polymer. In general, solution-
processing methods offer a simple, scalable 
and cost-effective approach to fabricate 
and integrate various CNT-SAs and 
graphene SAs.

Box 1: Graphene and carbon nanotubes
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Figure B1 | Electronic density of states. a,b Plots 
of energy–momentum relation of graphene (a) 
and of energy against electronic density of states 
(DOS) of a semiconducting nanotube (b).
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Fig. 26. (a) Kataura plot: transition energies of semiconducting (filled symbols) and
metallic (open) nanotubes as a function of tube diameter. They were calculated from
the van-Hove singularities in the joint density of states within the third-order tight-
binding approximation [6]. (b) Expanded view of the Kataura plot highlighting the
systematics in (a). The optical transition energies are roughly proportional to 1/d
for semiconducting (black) and metallic nanotubes (gray). The V-shaped curves
connect points from selected branches in (b), β = 22, 23 and 24; see text for details.
We indicate whether the ν = −1 or the +1 family is below or above the 1/d trend.
Squares (circles) are transitions of zigzag (armchair) nanotubes

ducting) state. Thus, the absorption should show peaks corresponding to
the transitions from the van-Hove singularity of the first valence band v1 to
the singularity of the first conduction band c1 at an energy E11, followed
by v2 → c2 at E22 and so forth (see Fig. 25). The absorption spectrum is of-
ten further approximated by considering only the van-Hove-related transition
energies Eii [167, 168]. Plotting them as a function of diameter one obtains
the so-called Kataura plot, which we discuss in the next section.

The band-to-band transition picture was believed to be correct for al-
most ten years and most interpretations of the Raman and optical spectra
relied on it. This view changed fundamentally after Bachilo et al. [60] mea-
sured photoluminescence and absorption from isolated nanotubes, followed
by resonant Raman experiments on similar samples by Telg et al. [63] and
Fantini et al. [64]: The experimental data could only be understood on the
basis of excitonic transitions. Therefore, the literature has to be viewed with
care because many studies relied on the band-to-band description.

E11 E22

E11

E22

a b

the substrate !Fig. 1" and is given by the ratio of substrate
thickness to twice the radius of curvature. The spectra are
fitted with lorentzians and Fig. 3 plots the resulting trends for
the G and 2D peaks. Note that Figs. 3!a" and 3!b" are a
combination of over 80 measurements on two samples,
strained in two different experimental setups, and include a
loading, unloading, and final loading cycle. Within the spec-
trometer resolution, we find no difference on prehistory and,
for a single sample and cycle, the strain dependence is
smooth. Linear fits using all the data yield !!G+ /!"#
−10.8 cm−1 /%, !!G− /!"#−31.7 cm−1 /%, !!2D /!"#
−64 cm−1 /%, and !!2D! /!"#−35 cm−1 /%, where we call
G+ and G− the higher and lower G subbands, by analogy
with nanotubes.33,34

B. Secular equation and Grüneisen parameters

The observed behavior can be explained by considering
the effect of uniaxial strain on the optical modes responsible
for the G, D, and D! peaks, respectively. The Grüneisen
parameter for the doubly degenerate in-plane Raman-active
E2g phonon, #E2g

, is6

#E2g
= −

1

!E2g

0

!!E2g

h

!"h
, !1"

where "h="ll+"tt is the hydrostatic component of the applied
uniaxial strain, l is the longitudinal direction, parallel to the
strain, and t is the direction transverse to it; !E2g

0 is the G
peak position at zero strain. The shear deformation potential
$E2g

is defined as35,36

$E2g
=

1

!E2g

0

!!E2g

s

!"s
, !2"

where "s="ll−"tt is the shear component of the strain.
Under uniaxial strain, the solution of the secular equation

for the E2g mode is35–38

%!E2g

& = %!E2g

h &
1
2

%!E2g

s

= − !E2g

0 #E2g
!"ll + "tt" &

1
2

$E2g
!E2g

0 !"ll − "tt" , !3"

where %!E2g

h is the shift resulting from the hydrostatic com-
ponent of the strain, and %!E2g

s is the mode splitting due to
the shear component of the strain. %!G+=%!E2g

+ and %!G−

=%!E2g

− are the shifts of the G+ and G− peaks relative to zero
strain.

It is important to note that the resulting phonon eigenvec-
tors are orthogonal:35–38 the E2g

+ is perpendicular to the ap-
plied strain !and thus experiencing smaller softening" and the
E2g

− parallel to it. This is analogous to the effect of curvature
on the G peak of carbon nanotubes. The G peak splitting in
nanotubes is the combined result of electron confinement and
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FIG. 2. !Color online" !a" G and !b" 2D peaks as a function of
uniaxial strain. The spectra are measured with incident light polar-
ized along the strain direction, collecting the scattered light with no
analyzer. Note that the doubly degenerate G peak splits in two
subbands G+ and G−, while this does not happen for the 2D peak.
The strains, ranging from 0 to #0.8%, are indicated on the right
side of the spectra.
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peaks, as a function of applied uniaxial strain. The lines are linear
fits to the data. The slopes of the fitting lines are also indicated.
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uniaxial strain in graphene,20,24 which report much smaller
!! /!", implying much smaller Grüneisen parameter. It is
difficult to see how the Grüneisen parameter of graphene
should be much smaller than that measured in plane for
graphite. Moreover, no G peak splitting was observed for
uniaxial strain,20,24 again in contrast with both our observa-
tion and general expectations.

We now consider the singly degenerate modes corre-
sponding to the D and D! peaks. The D peak is a breathing
mode similar to the TO A1g phonon at K.47 For pure A1g
symmetry and small strains, the uniaxial shift #!A1g

is given
only by the hydrostatic component of the stress

#!A1g
= − !A1g

0 $A1g
!"tt + "ll" . !7"

On the other hand, the D! phonon has E symmetry47 and we
could expect in principle splitting and a relation similar to
Eq. !4". However, experimentally this peak is very weak and
we cannot resolve any splitting in the strain range we have
considered. Thus, for small strains, we write for both Raman
peaks

#!2D;2D! = − !2D;2D!
0 $D;D!!1 − %"" . !8"

Combining our data with Eq. !8", we get $D#3.55 and
$D!#1.61. For free-hanging graphene, these give !!2D /!"
#−83 cm−1 /% and !!2D! /!"#−45 cm−1 /%. In the case of
graphene under biaxial strain, "ll="tt=" and #!2D,2D!=
−2!2D;2D!

0 $D;D!". Thus, using our fitted Grüneisen param-
eters, the expected 2D and 2D! variation as a function of
biaxial strain are !!2D /!"#−191 cm−1 /% and !!2D! /!"#
−104 cm−1 /%.

To the best of our knowledge, no data exist for the 2D- or
2D!-peak dependence in graphite as a function of uniaxial
strain. However, Ref. 44 measured !!2D /!&ll
#6.4 cm−1 /GPa for PAN carbon fibers. This scales to
!!2D /!"#−70 cm−1 /% in graphene, in agreement with our
predicted uniaxial trend, when using the in-plane Poisson’s
ratio of graphite to compare with fibers. For graphite under
hydrostatic pressure, Ref. 48 reported !!2D /!&h
#12.3 cm−1 /GPa and !!2D! /!&h#9 cm−1 /GPa. This cor-
responds to an in-plane biaxial strain '= !Sll+Slt"&h. From
1 / !Sll+Slt"#1 /1250 GPa,40 we get !!2D /!"#
−154 cm−1 /%, $2D=2.84, !!2D! /!"#−113 cm−1 /%, and
$2D!=1.74, in broad agreement with our predictions for bi-
axial strain.

Finally, we note that, in all cases, the 2D peak is ex-
tremely sensitive to strain. With a typical spectrometer reso-
lution of #2 cm−1, a remarkable sensitivity of #0.01% and
0.03% can be achieved for biaxial and uniaxial strains, re-
spectively. We also note that a combined analysis of G and
2D FWHM and shifts should allow to distinguish between
effects of strain, doping, or disorder.9–11

C. First-principles calculations

To further understand our findings, we perform first-
principles calculations on free-standing graphene, for small
strains up to #1%, to compare with experiments. The effects
on electron and phonon bands of larger strains will be re-

ported elsewhere. We use density-functional theory and
density-functional perturbation theory49 as implemented in
the PWSCF package of the QUANTUM-ESPRESSO distribution,50

within the local-density approximation, with norm-
conserving pseudopotentials51 and a plane-wave expansion
up to 55 Ry cutoff. The Brillouin zone is sampled on a 42
(42(1 Monkhorst-Pack mesh with a cold smearing in the
electronic occupations of 0.02 Ry. We use the equilibrium
lattice parameter a=2.43 Å and an interlayer spacing of
15 Å. We apply the strain in different directions. For each
direction and strain, we determine the structure with the low-
est total energy by varying the size of the unit cell in the
direction perpendicular to the strain. At zero strain, !G0
=1603.7 cm−1, !D0

=1326 cm−1, and %=0.15. Figure 4 plots
the resulting G+ /G− eigenvectors. These are perpendicular to
each other with the G− eigenvector oriented along the strain
direction as expected. For small strains, we find !!G− /!"#
−34 cm−1 /% and !!G+ /!"#−17 cm−1 /%, independent on
the strain direction, as expected from symmetry. We also get
$E2g

=1.87 and )E2g
=0.92, in excellent agreement with our

measured parameters. Note that in order to compare the cal-
culated trends for G+ and G− with our measurements, we
need to insert the theoretical parameters in Eq. !4" together
with the substrate Poisson’s ratio. This gives !!G− /!"#
−30 cm−1 /% and !!G+ /!"#−10.3 cm−1 /%, in excellent
agreement with the fits in Fig. 3!a". We also calculate the
biaxial strain variation for the G peak. We find !!G /!"#
−58 cm−1 /% and $E2g

=1.8, again in excellent agreement
with the biaxial values based on our experimental Grüneisen
parameter.

We then calculate the uniaxial and biaxial strain variation
for the 2D peak. We find !!2D /!"#−60 cm−1% for
uniaxial, and !!2D /!"#−144 cm−1 /% for biaxial and $D
#2.7 for both. These are in excellent agreement with the
results of hydrostatic pressure experiments on graphite, and
in broad agreement with our experimental data for uniaxial
strain !and the consequent biaxial predictions", being
#25 /% smaller. It is important to consider that, while for the
Raman-active G mode we are probing the same center-zone
phonon when measuring the Raman spectrum on a strained
sample, the Raman D and D! peaks are zone-boundary
phonons activated by double resonance. Any change in the
double-resonance condition during the strain experiments

FIG. 4. !Color online" Eigenvectors of G+ and G− modes deter-
mined by density-functional perturbation theory. These are perpen-
dicular to each other, with G− polarized along the strain axis, as
expected.
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uniaxial strain in graphene,20,24 which report much smaller
!! /!", implying much smaller Grüneisen parameter. It is
difficult to see how the Grüneisen parameter of graphene
should be much smaller than that measured in plane for
graphite. Moreover, no G peak splitting was observed for
uniaxial strain,20,24 again in contrast with both our observa-
tion and general expectations.

We now consider the singly degenerate modes corre-
sponding to the D and D! peaks. The D peak is a breathing
mode similar to the TO A1g phonon at K.47 For pure A1g
symmetry and small strains, the uniaxial shift #!A1g

is given
only by the hydrostatic component of the stress

#!A1g
= − !A1g

0 $A1g
!"tt + "ll" . !7"

On the other hand, the D! phonon has E symmetry47 and we
could expect in principle splitting and a relation similar to
Eq. !4". However, experimentally this peak is very weak and
we cannot resolve any splitting in the strain range we have
considered. Thus, for small strains, we write for both Raman
peaks

#!2D;2D! = − !2D;2D!
0 $D;D!!1 − %"" . !8"

Combining our data with Eq. !8", we get $D#3.55 and
$D!#1.61. For free-hanging graphene, these give !!2D /!"
#−83 cm−1 /% and !!2D! /!"#−45 cm−1 /%. In the case of
graphene under biaxial strain, "ll="tt=" and #!2D,2D!=
−2!2D;2D!

0 $D;D!". Thus, using our fitted Grüneisen param-
eters, the expected 2D and 2D! variation as a function of
biaxial strain are !!2D /!"#−191 cm−1 /% and !!2D! /!"#
−104 cm−1 /%.

To the best of our knowledge, no data exist for the 2D- or
2D!-peak dependence in graphite as a function of uniaxial
strain. However, Ref. 44 measured !!2D /!&ll
#6.4 cm−1 /GPa for PAN carbon fibers. This scales to
!!2D /!"#−70 cm−1 /% in graphene, in agreement with our
predicted uniaxial trend, when using the in-plane Poisson’s
ratio of graphite to compare with fibers. For graphite under
hydrostatic pressure, Ref. 48 reported !!2D /!&h
#12.3 cm−1 /GPa and !!2D! /!&h#9 cm−1 /GPa. This cor-
responds to an in-plane biaxial strain '= !Sll+Slt"&h. From
1 / !Sll+Slt"#1 /1250 GPa,40 we get !!2D /!"#
−154 cm−1 /%, $2D=2.84, !!2D! /!"#−113 cm−1 /%, and
$2D!=1.74, in broad agreement with our predictions for bi-
axial strain.

Finally, we note that, in all cases, the 2D peak is ex-
tremely sensitive to strain. With a typical spectrometer reso-
lution of #2 cm−1, a remarkable sensitivity of #0.01% and
0.03% can be achieved for biaxial and uniaxial strains, re-
spectively. We also note that a combined analysis of G and
2D FWHM and shifts should allow to distinguish between
effects of strain, doping, or disorder.9–11

C. First-principles calculations

To further understand our findings, we perform first-
principles calculations on free-standing graphene, for small
strains up to #1%, to compare with experiments. The effects
on electron and phonon bands of larger strains will be re-

ported elsewhere. We use density-functional theory and
density-functional perturbation theory49 as implemented in
the PWSCF package of the QUANTUM-ESPRESSO distribution,50

within the local-density approximation, with norm-
conserving pseudopotentials51 and a plane-wave expansion
up to 55 Ry cutoff. The Brillouin zone is sampled on a 42
(42(1 Monkhorst-Pack mesh with a cold smearing in the
electronic occupations of 0.02 Ry. We use the equilibrium
lattice parameter a=2.43 Å and an interlayer spacing of
15 Å. We apply the strain in different directions. For each
direction and strain, we determine the structure with the low-
est total energy by varying the size of the unit cell in the
direction perpendicular to the strain. At zero strain, !G0
=1603.7 cm−1, !D0

=1326 cm−1, and %=0.15. Figure 4 plots
the resulting G+ /G− eigenvectors. These are perpendicular to
each other with the G− eigenvector oriented along the strain
direction as expected. For small strains, we find !!G− /!"#
−34 cm−1 /% and !!G+ /!"#−17 cm−1 /%, independent on
the strain direction, as expected from symmetry. We also get
$E2g

=1.87 and )E2g
=0.92, in excellent agreement with our

measured parameters. Note that in order to compare the cal-
culated trends for G+ and G− with our measurements, we
need to insert the theoretical parameters in Eq. !4" together
with the substrate Poisson’s ratio. This gives !!G− /!"#
−30 cm−1 /% and !!G+ /!"#−10.3 cm−1 /%, in excellent
agreement with the fits in Fig. 3!a". We also calculate the
biaxial strain variation for the G peak. We find !!G /!"#
−58 cm−1 /% and $E2g

=1.8, again in excellent agreement
with the biaxial values based on our experimental Grüneisen
parameter.

We then calculate the uniaxial and biaxial strain variation
for the 2D peak. We find !!2D /!"#−60 cm−1% for
uniaxial, and !!2D /!"#−144 cm−1 /% for biaxial and $D
#2.7 for both. These are in excellent agreement with the
results of hydrostatic pressure experiments on graphite, and
in broad agreement with our experimental data for uniaxial
strain !and the consequent biaxial predictions", being
#25 /% smaller. It is important to consider that, while for the
Raman-active G mode we are probing the same center-zone
phonon when measuring the Raman spectrum on a strained
sample, the Raman D and D! peaks are zone-boundary
phonons activated by double resonance. Any change in the
double-resonance condition during the strain experiments

FIG. 4. !Color online" Eigenvectors of G+ and G− modes deter-
mined by density-functional perturbation theory. These are perpen-
dicular to each other, with G− polarized along the strain axis, as
expected.
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Figure 5.7. Scattering spectra of single silver nanoparticles of different shapes obtained in
dark-field configuration. Reprinted with permission from [Mock et al., 2002a]. Copyright 2002,
American Institute of Physics.

Figure 5.8. Optical dark field images together with SEM images of individual gold nanopar-
ticles (a) and corresponding scattering spectra (b) for an incident light polarization along the
long particle axis. Lines are experimental data, and circles cross sections calculated using the
empirical formula (5.24). Reprinted with permission from [Kuwata et al., 2003]. Copyright
2003, American Institute of Physics.

et al., 1998] and the direct imaging of multipolar fields [Hohenau et al., 2005a],
as well as the dispersion relation of gold nanorods [Imura et al., 2005]. More
details of typical setups can be found in chapter 10 on spectroscopy.

rupole mode,27,51 and cannot be explained by the dipolar
interaction model.

The shift in the plasmon extinction maximum is plotted
against the interparticle edge-to-edge separation gap for the
parallel polarization in Figure 3a. Note that the plasmon
maximum for s ) 212 nm (particles spaced enough to assume

minimal coupling) has been used as the reference for
calculation of the shift. Because these spectra are from an
ensemble of particle pairs rather than single particle pairs,
the data point for s ) 2 nm was not included due to the
significant dispersion in the lithographic fabrication of such
a small gap. The plot of the plasmon shift versus the

Figure 1. Representative SEM image of the array of nanodisc pairs used in the present study, having an interparticle edge-to-edge separation
gap of 12 nm, showing the homogeneity of the sample. The inset shows a magnified image of a single nanodisc pair clearly showing the
interparticle gap. Each nanodisc has a diameter of 88 nm and thickness of 25 nm. Images of arrays with other interparticle gaps are not
shown.

Figure 2. (a,c) Microabsorption and (b,d) DDA-simulated extinction efficiency spectra of Au nanodisc pairs for varying interparticle
separation gap for incident light polarization direction (a,b) parallel and (c,d) perpendicular to the interparticle axis.
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Schematic diagrams illustrating (a) a surface plasmon polariton (or propagating plasmon) and
(b) a localized surface plasmon.

provided a fundamental understanding of how plasmons are influenced by local struc-
ture and environment, they also suggested the usefulness of plasmons as a sensing
modality. Today, plasmon spectroscopy enjoys a reputation as an ultrasensitive method
for detecting molecules of both biological and chemical interest, in addition to its con-
tinued role in enabling surface-enhanced spectroscopic methods, including SERS,
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provided a fundamental understanding of how plasmons are influenced by local struc-
ture and environment, they also suggested the usefulness of plasmons as a sensing
modality. Today, plasmon spectroscopy enjoys a reputation as an ultrasensitive method
for detecting molecules of both biological and chemical interest, in addition to its con-
tinued role in enabling surface-enhanced spectroscopic methods, including SERS,
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Figure 2.6. (a) Propagating surface plasmon at a metallic surface. (b) Metallic nanosphere
(right) exhibits a localized surface plasmon resonance; this collective excitation of electrons
gives rise to a strong near-field at the particles surface. (c) Real part of the dielectric
functions of of gold (yellow) and sliver (grey) with the corresponding imaginary parts
shown in (d). (e) Scattering spectra of silver particles of different shapes, which are shown
as insets. The figures in (a,b) are taken from Ref. [71], and (c,d) are taken from Ref. [72]
with the original data in (b,c) from Johnson and Christi [73]. Panel (e) is taken from
Ref. [74].

For small metallic particles with dimensions of the order of 100 nm and below, localized
surface plasmons are predominantly of dipolar nature and higher orders may be neglected.
The resonance condition depends on the volume V of the particle, its dielectric function
as in Eqn. (2.13), the dielectric function of the surrounding medium εsm and the shape
of the particle incorporated in the form factor κ . It is typically given as the dipolar
polarizability

α(ω) = (1 + κ)ε0V
ε(ω)− εsm(ω)

ε(ω) + κεsm(ω)
, (2.14)

with κ = 2 for a sphere. The localized surface plasmon resonance between the excitation of
the surface electrons and incoming light occurs for Re[ε(ω)] = −κεsm(ω) - assuming that
the imaginary part of ε slowly varies with ω. The optical properties of the nanoparticle
such as the near-field, absorption and scattering are dominated by this resonance. At the
surface of the nanoparticle, for instance, the near-field E is given by a superposition of
the incoming field E0 and the dipole field originating from the metallic particle as [75, 76]

E = E0 +
κεm

ε+ κεsm
E0, (2.15)
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2.3. Plasmonic nanostructures

where the second term scales with r−3 from the particles centre at r = 0. Upon resonant
excitation, the near-field intensity |E|2 is greatly enhanced and gives rise to increased
Raman scattering, as described in Sec. 3.4. Similarly, the absorption and the scattering
of the particle are resonantly enhanced. They approximately scale with the polarizability
as |α|2 (absorption) and Im[α] (scattering). Measuring the absorption and/or scattering
of nanostructures is therefore a common way to determine the frequency of the LSPR.

It is instructive to display the effect of the variables that influence the spectral position
of the LSPR. Figure 2.6 (c) and (d) show the real and imaginary part of the dielectric
function of gold and silver, respectively. The resonances of a spherical particle in air
(κ = 2, εsm = 1), for instance, would largely differ for gold (≥ 500nm) and silver
(≤ 400nm). Silver particles of similar dimensions but different shape, may exhibit
very different resonances as evidenced in their scattering behavior shown in Fig. 2.6(e).
Nanostructures of highly anisotropic shape - e.g. lengthy nanorods - have different form
factors and hence result in different LSPR modes along the corresponding axes.

2.3.2. Coupled plasmonic dimers

When two particles are brought into close proximity, they interact via their near-field.
The electric field experienced by one particle is the sum of the incident field and the
near-field of the other particle. As a result, their localized surface plasmon resonances
become coupled and the near-field enhancement is maximal in the gap between them. The
coupling can be elegantly treated by analogy to electronic orbitals in molecules [1, 77, 78]:
the modes of the isolated particle hybridize to form coupled modes. This is schematically
shown in Fig. 2.7(a), where the direction and phase of the charge oscillations are indicated.
The mode with the maximum distance for charges of opposite sign is lowest in energy, even
lower than for isolated nanodiscs. This mode has a relatively large dipole moment and
interacts strongly with light; it requires the polarization of the excitation to be parallel to
the axis of the dimer and is referred as bright-, cavity-, or dimer mode. The other modes of
higher energy interact with light either not at all or only weakly (e.g. the in-phase charge
oscillation, second from top). The latter is energetically very close to the LSPR of an
isolated nanodisc. It requires the polarization of the excitation to be perpendicular to the
dimer axis, and is referred to as isolated- or uncoupled mode. Figure 2.7(b) and (c) show
the absorption of nanodisc dimers with decreasing gap sizes [79] for light polarizations
parallel and perpendicular to the dimer, respectively. While the energy of the cavity mode
in 2.7(b) decreases with the gap size, the resonance the isolated mode remains almost
entirely unaffected.
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2. Nanostructures

rupole mode,27,51 and cannot be explained by the dipolar
interaction model.

The shift in the plasmon extinction maximum is plotted
against the interparticle edge-to-edge separation gap for the
parallel polarization in Figure 3a. Note that the plasmon
maximum for s ) 212 nm (particles spaced enough to assume

minimal coupling) has been used as the reference for
calculation of the shift. Because these spectra are from an
ensemble of particle pairs rather than single particle pairs,
the data point for s ) 2 nm was not included due to the
significant dispersion in the lithographic fabrication of such
a small gap. The plot of the plasmon shift versus the

Figure 1. Representative SEM image of the array of nanodisc pairs used in the present study, having an interparticle edge-to-edge separation
gap of 12 nm, showing the homogeneity of the sample. The inset shows a magnified image of a single nanodisc pair clearly showing the
interparticle gap. Each nanodisc has a diameter of 88 nm and thickness of 25 nm. Images of arrays with other interparticle gaps are not
shown.

Figure 2. (a,c) Microabsorption and (b,d) DDA-simulated extinction efficiency spectra of Au nanodisc pairs for varying interparticle
separation gap for incident light polarization direction (a,b) parallel and (c,d) perpendicular to the interparticle axis.
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concept
order of 10 3  or higher can be obtained for gap widths 
of a few tens of nanometers, as shown in Figure  3b . 
If a light emitter is located within the gap of such antenna, 
it will be excited very effi ciently due to the ability of the 
antenna to concentrate the electromagnetic energy carried 
by the incident radiation within the gap. In Section 4, we will 
see that the presence of the metallic nanostructure also mod-
ifi es the local density of photonic states within the antenna 
gap, which drastically affects the radiative properties of any 
emitter placed within its vicinity. These two independent 
mechanisms mediated by metallic NPs provide us with a very 
suitable strategy to manipulate the emission- and decay-rate 
properties of light emitters. 

 Recently, a technique based on the nonlinear responses 
of nanoantennas, that is, two-photon-excited luminescence 
(TPL), has been used in order to map the hot spots in 
nanoantennas. [  44  ]  Figure  3c  shows the TPL microscopy image 
obtained for a 500-nm-long single nanobar. Figure  3d  corre-
sponds to a composite nanoantenna in which a 50-nm gap is 
opened between two 500-nm-long nanobars. Both antennas 
were illuminated with monochromatic light (730 nm) polar-
ized along their long axis. We can observe hot spots appearing 
at the extremes of the metal structures. However, the com-
posite antenna presents an even larger fi eld enhancement at 
the gap, in very good agreement with the theoretical calcula-
tions rendered in Figure  3b . Recently, the fundamental role 
played by the gap in composite nanobar antennas has been 
studied experimentally in the infrared regime and in a new 
class of nanoscale optical switches proposed consisting of a 
plasmonic nanoantenna loaded with a photoconductive semi-
conductor material. [  46a,b  ]    

 3. Dark Modes and Fano 
Resonances 

 Due to the strong radiative character of 
oscillating electric dipoles, dipole LSPRs are 
excited very effi ciently by free-space radia-
tion (plane waves). Hence, light–matter 
interactions occurring in deeply subwave-
length structures are usually dominated 
by the electric dipole moment induced in 
the system by the incident fi elds. For this 
reason, the dipole plasmonic resonances 
(the lowest in energy) supported by metallic 
NPs are usually known as bright modes. 
However, Maxwell’s equations predict the 
existence of higher multipole modes that 
are dipole inactive and that hardly couple 
to light. In contrast to dipole bright modes, 
these higher-order resonances are termed 
dark modes. Let us emphasize that the 
only mechanism that allows the excitation 
of these higher-order resonances by free 
radiation are retardation effects, whose 
origin is the slow response of metallic 
plasma electrons to the external excitation. 
This means that higher-order modes can 

only be excited in metallic NPs big enough for these retarda-
tion effects to be relevant. Note that, even in this case, high-
multipole LSPRs only couple to incident fi elds with the same 
symmetry properties. [  47  ]  The diffi culty of probing dark modes 
through optical methods has led to the recent appearance of 
several experimental works in which these plasmonic reso-
nances are studied by means of electron-energy-loss spectros-
copy techniques. [  48,49  ]  

 The nature of dark modes can be easily understood by con-
sidering a simple system, the plasmonic excitations appearing 
in two small metallic spheres placed close to each other. The 
interaction between the LSPRs supported by each sphere 
can be interpreted by means of the hybridization model pro-
posed by Prodan and co-workers. [  50  ]  This elegant theoretical 
approach establishes the analogy between bound electromag-
netic modes in composite metallic structures and electronic 
orbitals in molecules. Molecular states result from the overlap-
ping of the atomic orbitals involved in the chemical binding. 
Similarly, LSPRs of complex structures can be described 
through the electromagnetic coupling of the modes supported 
by the isolated elements forming them.  Figure    4a   sketches a 
simple energy diagram for the hybridized modes sustained by 
a dimer comprising two metallic spheres. For deeply subwave-
length systems, the energy levels are dictated by the electro-
static interaction between the charges induced in the spheres. 
Thus, the confi guration that maximizes the distances among 
charges of opposite sign corresponds to the lowest energy 
(note that some dimer modes have even higher energy than 
the isolated ones). Importantly, as can be seen in Figure  4a , the 
lowest composite LSPR also presents the largest net dipole 
moment. This constitutes a very bright mode, as it interacts 
strongly with incoming radiation. All the higher plasmonic 

    Figure  4 .     Dark modes and Fano resonances. a) Plasmon hybridization in spherical 
nanoparticles. The dipole plasmon of individual spherical particles is three-fold degenerate 
(along the three space axes). When two particles are close enough to interact, the dimer 
formed exhibits modes that originate from the hybridization of the modes in the single 
particles. The lowest energy mode is bright, with a large dipole moment. The highest energy 
mode has zero dipolar moment and does not couple to radiation (dark mode). b) SEM image 
of a dolmen structure. Charge distribution in the dolmen when illuminated with a polarization 
c) along and d) perpendicular to the symmetry axis of the structure (c.f., the red and blue 
arrows in (b), respectively). e) Confocal extinction cross section of the dolmen for the two 
main polarizations. f) Extinction cross sections computed by fi nite-difference time-domain 
(FDTD) calculations for this structure. When the exciting fi eld is perpendicular to the symmetry 
axis of the structure, the quadrupolar (dark) mode of the dimer interacts destructively with the 
dipole of the monomer, opening a transmission window with a nearly symmetric Fano shape. 
Adapted with permission. [  6  ]  Copyright 2009, American Chemical Society.  

Px Py

rupole mode,27,51 and cannot be explained by the dipolar
interaction model.

The shift in the plasmon extinction maximum is plotted
against the interparticle edge-to-edge separation gap for the
parallel polarization in Figure 3a. Note that the plasmon
maximum for s ) 212 nm (particles spaced enough to assume

minimal coupling) has been used as the reference for
calculation of the shift. Because these spectra are from an
ensemble of particle pairs rather than single particle pairs,
the data point for s ) 2 nm was not included due to the
significant dispersion in the lithographic fabrication of such
a small gap. The plot of the plasmon shift versus the

Figure 1. Representative SEM image of the array of nanodisc pairs used in the present study, having an interparticle edge-to-edge separation
gap of 12 nm, showing the homogeneity of the sample. The inset shows a magnified image of a single nanodisc pair clearly showing the
interparticle gap. Each nanodisc has a diameter of 88 nm and thickness of 25 nm. Images of arrays with other interparticle gaps are not
shown.

Figure 2. (a,c) Microabsorption and (b,d) DDA-simulated extinction efficiency spectra of Au nanodisc pairs for varying interparticle
separation gap for incident light polarization direction (a,b) parallel and (c,d) perpendicular to the interparticle axis.
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Figure 2.7. (a) Hybrid plasmon modes for two close by nanodiscs plotted against the
energy of the excitation. Only for in-phase charge oscillations the modes may couple to
light. (b,c) Absorption of nanodisc dimers with varying gap size for the cavity mode (b)
and the isolated mode. The caption OD refers to optical density, as the measurement of
the absorption was taken in transmission. Panel (a) is taken from Ref. [78], and panels
(b) and (c) are adapted from Ref. [79].
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3 | Raman scattering

Raman spectroscopy is a non-destructive characterization technique of major importance,
which provides an insight into fundamental properties of physical systems. In this chapter,
I briefly introduce the basics of Raman scattering in solid state systems. I will focus on
resonant Raman scattering in solid state systems, which is particularly important for
understanding Raman scattering in graphene and carbon nanotubes. Subsequently, the
Raman signatures of graphene and carbon nanotubes will be introduced. The section
will be rounded up by introducing plasmon-enhanced Raman scattering, including a brief
review on recent works that study PERS on graphene and tubes.

3.1. Basic concepts

Within the microscopic theory in solids, first order Raman scattering can be broken down
into three steps [68, 80]. An incoming photon with the frequency ω1 is absorbed by
exciting an electron-hole pair. The electron hole pair inelastically scatters by emitting
(Stokes process) or annihilating (Anti-Stokes process) a phonon with the frequency ωph.
It finally recombines radiatively by emitting a photon of the frequency ω2. The Feynman
diagram corresponding to the Stokes process is shown in Fig. 3.1, where any (time) order

white-atom defocus parameter. Although the sample holder
was maintained at room temperature, the observed region
might have been heated by the electron beam. Figure 3 shows
examples starting with the unperturbed lattice, the defect
structure, and then again the ideal lattice after the defect has
disappeared. An isolated Stone-Wales (SW) defect was
found during one exposure (1 s) of the sequence and relaxed
to the unperturbed lattice in the next exposure (4 s later)
(Figure 3a-d). Defects consisting of multiple five- and
seven-membered rings of carbon atoms spontaneously ap-
peared and remained stable for up to 20 s. Remarkably, all
defect configurations relax to the unperturbed graphene lattice
and contain the same number of pentagons and heptagons
in an arrangement that does not involve a dislocation or
disclination. In addition, Figure 3e and f shows a recon-
structed vacancy configuration involving a pentagon, which
also returned to the unperturbed lattice after a few seconds.
In this case, the missing carbon atom must have been

replaced, from a mobile adsorbate, via surface diffusion on
the graphene sheet.

Pentagon-heptagon (5-7) defects, in particular the
Stone-Wales defect,24 are proposed to play a key role in
the formation and transformation of sp-2 bonded carbon
nanostructures.25 It is customarily assumed that, after forma-
tion of SW defects, pentagon-heptagon pairs separate,
thereby inducing dislocations and curvature. These defects
are involved in the coalescence of fullerenes and nano-
tubes,25,26 and their mobility is relevant for the plastic
response of carbon nanotubes under strain.27 In our case of
the (almost22) planar graphene membrane, however, the
separation of pentagon-heptagon pairs is clearly not the
favored pathway: In all cases we have observed, the multiple
5-7 defects relax to the original unperturbed lattice. This
contrasts findings from highly curved graphene structures
where the introduction of dislocations in the electron beam9

and the motion of pentagons and heptagons10 has been

Figure 2. (a) Direct image of a single-layer graphene membrane (atoms appear white). (b) Contrast profile along the dotted line in panel
a (solid) along with a simulated profile (dashed). The experimental contrast is a factor of 2 smaller: Panel c shows the same experimental
profile with the simulated contrast scaled down by a factor of 2. (d and e) Step from a monolayer (upper part) to a bilayer (lower part of
the image), showing the unique appearance of the monolayer. Panel e shows the same image with an overlay of the graphene lattice (red)
and the second layer (blue), offset in the Bernal (AB) stacking of graphite. In the bilayer region, white dots appear where two carbon atoms
align in the projection. (f) Numerical diffractogram, calculated from an image of the bilayer region. The outermost peaks, one of them
indicated by the arrow, correspond to a resolution of 1.06 Å. The scale bars are 2 Å.
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SUPPLEMENTARY FIGURES 

 
 

 
 

 
Figure S1. 50 Pm aperture partially covered by graphene and its bilayer. This is the 
original photograph from Fig. 1A, as seen directly in transmitted white light in an 
optical microscope. No contrast enhancement or image manipulation has been used.  
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Figure S2. Transmittance spectrum of graphene over a range of photon energies E from near-infrared to 
violet. The blue open circles show the data obtained using the standard spectroscopy for a uniform 
membrane that completely covered a 30 Pm aperture. For comparison, we show the spectrum measured 
using an optical microscope (red squares). The red line indicates the opacity of SD. Inset: Dynamic 
conductivity G of graphene for visible wavelengths  (symbols) recalculated from the measured T. The 
green curves in both main figure and inset show the expected theoretical dependences, in which G varies 
between 1.01 and 1.04 of G0{ e2/4= for this frequency range. The red line and the gray area indicate the 

statistical average for our measurements and their standard error, respectively: G/G0 =1.01 r0.04. 

 5

a b c

K

K′

M

Γ

E

kx

ky

118 Christian Thomsen and Stephanie Reich

Fig. 1. Carbon nanotubes are tiny graphene cylinders. A strip is cut out of
graphene (a) and then rolled up (b) to form a seamless cylinder (c). The chi-
ral vector c = 10(a1 + a2) in (a) forms the circumference of the (10,10) nanotube
in (c). Along the nanotube axis the unit cell is repeated periodically, i.e., a nanotube
is a one-dimensional periodic system. The segment shown in (c) contains 13 unit
cells along the nanotube axis. The inset in (a) shows the graphene lattice and the
graphene unit cell vectors a1 and a2 on an enlarged scale

Before discussing the growth, we introduce the basic concepts and param-
eters that determine the properties of carbon nanotubes. As can be seen in
Fig. 1a the cutting of graphene fixes the so-called chiral or roll-up vector c.
This vector goes around the circumference of the final tube in Fig. 1c. There
are two parameters that control the microscopic structure of a nanotube,
its diameter and its chiral angle or twist along the axis. Both are specified
completely by c, which is normally given in terms of the graphene lattice
vectors a1 and a2 (see inset of Fig. 1a)

c = n1a1 + n2a2 . (1)

(n1, n2) are called the chiral index of a tube or, briefly, the chirality. A tube is
characterized by (n1, n2). In Fig. 1c we show as an example the (10,10) nano-
tube.

The diameter of a tube is related to the chiral vector by

d =
|c|
π

=
a0

π

√
n2

1 + n1n2 + n2
2 , (2)

where a0 = 2.460 Å is the graphene lattice constant [32–35]. For small tubes
(d < 0.8 nm) the diameter is predicted to deviate from the geometrical diame-
ter of a graphene cylinder in (2). Moreover, ab-initio calculations show that d
becomes a function of the chiral angle below 0.8 nm [36]. Deviations from (2)
are below 2 % for tube diameters d ≥ 5 Å [36]. Note also that sometimes differ-
ent lattice constants are used to calculate d. A popular value is a0 = 2.494 Å
obtained from a carbon–carbon distance aCC = a0/

√
3 = 1.44 Å; this value
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Fig. 2. Three carbon nanotubes with diameters around 0.8 nm: (a) (6,6) armchair,
(b) (8,4) chiral tube and (c) (10,0) zigzag nanotube. The gray hexagons indicate
the helix around the nanotube

for aCC was most likely taken from fullerenes that have a larger carbon–
carbon spacing than graphite and carbon nanotubes [37].

The second important parameter for carbon nanotubes is the chiral an-
gle Θ, which is the angle between a1 and the chiral vector (see Fig. 1a). The
chiral angle specifies the arrangement of the graphene hexagons on the wall
of the tube. This is illustrated in Fig. 2, where we show three single-walled
nanotubes with similar diameters but very different microscopic structure
due to different chiral angles. Θ is related to the chiral index by

Θ = arccos

[
n1 + n2/2√

n2
1 + n1n2 + n2

2

]
,

or

= 30◦ − arctan

[
1√
3

n1 − n2

n1 + n2

]
. (3)

The chiral angle is allowed to vary between 0◦ ≤ Θ ≤ 30◦; all other ranges
of Θ are equivalent to this interval because of the hexagonal symmetry of
graphene (see Fig. 1a). A chiral angle of 0◦ and 30◦ corresponds to tubes with
a particular high symmetry, as we discuss later. They are called zigzag (Θ =
0◦) and armchair tubes (Θ = 30◦).

The chiral vector not only determines the tube diameter and chiral an-
gle, but all other structural parameters including the length of the unit cell
and the number of carbon atoms in the unit cell. A compilation of these
parameters can be found in Table 1.

A very useful illustration for the chiral vectors is to draw all possible
nanotubes of a given diameter range onto a graphene lattice as in Fig. 3.
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for aCC was most likely taken from fullerenes that have a larger carbon–
carbon spacing than graphite and carbon nanotubes [37].

The second important parameter for carbon nanotubes is the chiral an-
gle Θ, which is the angle between a1 and the chiral vector (see Fig. 1a). The
chiral angle specifies the arrangement of the graphene hexagons on the wall
of the tube. This is illustrated in Fig. 2, where we show three single-walled
nanotubes with similar diameters but very different microscopic structure
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The chiral angle is allowed to vary between 0◦ ≤ Θ ≤ 30◦; all other ranges
of Θ are equivalent to this interval because of the hexagonal symmetry of
graphene (see Fig. 1a). A chiral angle of 0◦ and 30◦ corresponds to tubes with
a particular high symmetry, as we discuss later. They are called zigzag (Θ =
0◦) and armchair tubes (Θ = 30◦).

The chiral vector not only determines the tube diameter and chiral an-
gle, but all other structural parameters including the length of the unit cell
and the number of carbon atoms in the unit cell. A compilation of these
parameters can be found in Table 1.

A very useful illustration for the chiral vectors is to draw all possible
nanotubes of a given diameter range onto a graphene lattice as in Fig. 3.
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helical structure. Th ere are some exceptions to this, including nonhelical 
nanotubes, zigzag nanotubes with η = 0 and armchair tubes with η = π/6. 
Other helical tubes are called chiral nanotubes. Because the stability is 
mainly determined by their thickness or circumference, the direction of 
L for grown nanotubes is distributed almost uniformly.

The wave function satisfies the periodic boundary condition 
ψ(r + L) = ψ(r) in a carbon nanotube. This shows that the wave vector 
k satisfying the condition exp[ik⋅(r + L)] = exp(ik⋅r) is allowed in 
the first Brillouin zone of graphene. The condition can be rewritten 
as exp(ik⋅L) = 1, which gives straight lines perpendicular to L with 
neighboring distances 2π/L (Figure 3). When these lines pass through 
the K and K' points, that is, exp(iK⋅L) = 1 or exp(iK '⋅L) = 1 with K 
and K ' being the wave vector of the K and K' point, respectively, there 
is no gap at the Fermi level and the nanotube becomes metallic. In 
other cases, the nanotube becomes a semiconductor with a gap near 
the Fermi level.

Explicit calculations show that exp(iK⋅L) = exp(2πiν/3) and 
exp(iK '⋅L) = exp(–2πiν/3), where the integer ν is 0 or ±1 depending 
on na and nb. As a result, metallic (ν = 0) and semiconducting (ν = ±1) 
nanotubes appear at a ratio of one to two with varying L. In a 
semiconducting nanotube, the straight line closest to the K or K' point 
gives the conduction and valence bands. Because the spacing between 
neighboring lines is 2π/L and the energy is a linear function of the 
wave vector near the K and K' points, the energy gap is proportional 
to the inverse of the diameter d = L/π. The important feature is that 
there can be both metallic and semiconducting nanotubes with similar 
diameter and therefore one of the tough challenges lies in achieving 
the selective growth of semiconducting and metallic nanotubes or their 
separation after growth. 

Graphene as a metal 

Graphene has often been called a zero-gap semiconductor because 
the density of states is given by D(E) = |E|/2πħ2v2, which vanishes 
at E = 0 (Figure 2). This naming is quite inappropriate, however. 
A more appropriate name becomes clear when we consider the 
conductivity of graphene. 

The conductivity is usually given by the Einstein relation 
σ0 = gvgse2D*D(EF) in terms of the diffusion coefficient D*, where gv = 2 
is the valley degeneracy corresponding to the presence of the K and 
K' points and gs = 2 is the spin degeneracy. Let τ be the relaxation time 
due to impurity scattering. Then, the diffusion coefficient is given by 
D* ≈ v2τ. We have τ–1 ≈ (2π/ħ)ni⟨ui

2⟩EFD(EF), where ni is the impurity 
density, ui is the matrix element of the impurity potential between 
initial and final states, and ⟨...⟩EF denotes the average at the Fermi 

level. As a result, independent of the density of states, the conductivity 
becomes σ0 = gvgse2/2π2ħW, where W = ni⟨ui

2⟩EF/4π2ħ2v2 is a dimensionless 
parameter characterizing the strength of impurity scattering. Strictly 
speaking, the relaxation time determining the conductivity is 
different from the simple scattering time, but the difference is not so 
important here. 

Th e above shows that the conductivity is independent of the Fermi 
energy and the carrier concentration as long as the possible dependence 
of scattering strength W on EF or ns is neglected. Therefore, graphene 
should strictly be regarded as a metal rather than a semiconductor.

At EF = 0, where D(EF) = 0, however, this description can become 
inappropriate. In fact, potential fl uctuations due to impurities make the 
density of states at EF = 0 nonzero. Th eoretical calculations including this 
level-broadening eff ect performed prior to experiments showed that the 
conductivity takes a universal value of σmin = gvgse2/2π2ħ at EF = 0 [31]. 
Figure 4 shows examples of calculated density of states and conductivity. 
In graphene with weak disorder, that is, W ≪ 1, the conductivity drops 
to σmin from σ0 in a very narrow energy range close to E = 0. Similar 
calculations performed for the conductivity in magnetic fi elds predicted 
that the Hall conductivity, in particular, is quantized into (4e2/h)(j + 1/2) 
with integer j, corresponding to the half-integer quantum Hall eff ect [8].

Experimentally, the minimum conductivity has been shown to be 
nearly independent of samples [6], although the absolute value seems 
to be 3–4 times larger than the theoretical predictions. In the vicinity 
of zero energy, because of the weak screening effect due to the small 
density of states and the small kinetic energy of electrons, the eff ective 
scattering strength can be substantial and system inhomogeneity can also 
be signifi cant. Some reports have shown that the minimum conductivity 
varies from sample to sample [32]. Th is problem regarding the minimum 
conductivity remains an important subject to be understood in the future. 

Another important difference lies in the dependence of the 
conductivity on electron concentration. The theory predicts that 
the conductivity in pure graphene should be independent of the 
electron concentration, dropping to σmin in the extreme vicinity of zero 
energy over a singularly narrow region. Experimentally, however, the 
conductivity is nearly proportional to the electron concentration, as if 
there is an eff ective mobility independent of the electron concentration. 
Part of the reason for this lies in the fact that the scattering strength W is 
large at EF ≈ 0 (typically W ≈ 0.1), as mentioned above. Another reason is 
that the eff ective strength of dominant scatterers depends on the electron 
concentration according to W ∝ |ns|–1, and the Boltzmann conductivity 
becomes proportional to the electron concentration. 

Typical examples of such scatterers causing ns dependence are 
charged impurities. Charged centers localized in SiO2 are known to 
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Fig. 20. Band structure of a (10,10) armchair nanotube with diameter d = 1.4 nm.
(a) Ab-initio calculation; (b) nearest-neighbor tight-binding calculation with γ0 =
−2.7 eV [(16) with n = 10]; (c) third-nearest neighbors tight-binding calculation.
The dashed lines denote ab-initio calculated energies of the band extrema. The
agreement of the energies in (a) and (c) is excellent. From [6]

where m is an integer running from −(q/2 − 1) to q/2 [81]; see Table 1 for q,
n and R as a function of n1 and n2.

The quantum number m is very useful to index bands and phonon
branches and to derive selection rules, e.g., for Raman scattering, infrared
vibronic and optical electronic absorption [20, 81, 83, 87]. The m = 0 elec-
tronic bands and phonon branches always contain the graphene Γ point (see
Fig. 19b); m = q/2 (= n for achiral tubes) is the M point of graphene
for kz = 0 [9]. These two bands are nondegenerate for any quasiparticle and
any nanotube. In achiral tubes, all other bands are twofold degenerate in
chiral tubes, none, see [20, 85, 86] for a discussion and examples.

4.2 Electronic Band Structure

Figures 20 and 21 show the electronic band structure of a (10,10) and
(19,0) nanotube, respectively. Parts (a) in both figures are from first-principles
calculations, while parts (b) were obtained with (16) and (15), and parts (c)
are the results of the extended tight-binding model using up to third neigh-
bors [6]. For all practical purposes, the extended tight-binding model is in-
distinguishable from the ab-initio calculations. The simple nearest-neighbors
tight-binding scheme works reasonably well. There are certain systematics in
Figs. 20 and 21 about which we will not comment in detail. For example,
the band extrema are at the Γ point in the (19,0) tube, but at 2π/3a in the
(10,10) tube. General rules for the overall shape of the band structure and
the position of the band extrema as a function of n1 and n2 can be found
in [20].
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Fig. 2. Three carbon nanotubes with diameters around 0.8 nm: (a) (6,6) armchair,
(b) (8,4) chiral tube and (c) (10,0) zigzag nanotube. The gray hexagons indicate
the helix around the nanotube

for aCC was most likely taken from fullerenes that have a larger carbon–
carbon spacing than graphite and carbon nanotubes [37].

The second important parameter for carbon nanotubes is the chiral an-
gle Θ, which is the angle between a1 and the chiral vector (see Fig. 1a). The
chiral angle specifies the arrangement of the graphene hexagons on the wall
of the tube. This is illustrated in Fig. 2, where we show three single-walled
nanotubes with similar diameters but very different microscopic structure
due to different chiral angles. Θ is related to the chiral index by

Θ = arccos

[
n1 + n2/2√

n2
1 + n1n2 + n2

2

]
,

or

= 30◦ − arctan

[
1√
3

n1 − n2

n1 + n2

]
. (3)

The chiral angle is allowed to vary between 0◦ ≤ Θ ≤ 30◦; all other ranges
of Θ are equivalent to this interval because of the hexagonal symmetry of
graphene (see Fig. 1a). A chiral angle of 0◦ and 30◦ corresponds to tubes with
a particular high symmetry, as we discuss later. They are called zigzag (Θ =
0◦) and armchair tubes (Θ = 30◦).

The chiral vector not only determines the tube diameter and chiral an-
gle, but all other structural parameters including the length of the unit cell
and the number of carbon atoms in the unit cell. A compilation of these
parameters can be found in Table 1.

A very useful illustration for the chiral vectors is to draw all possible
nanotubes of a given diameter range onto a graphene lattice as in Fig. 3.
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Figure 2.5: Phonon dispersion of graphene showing different phonon branches, derived with the ab
initio QUANTUM-ESPRESSO code [55].

the acoustic phonon splits in one in-phase and one out-of-phase phonon. The out-of-phase phonon is
observable and its frequency is around ⇡ 40 cm�1 [58].
A Raman spectrum of graphene obtained at 2.33 eV excitation energy is depicted in Fig. 2.6. The
so-called G mode stems from the �. The other modes stem from the vicinity of the K point and are
activated due to the double-resonant process, which will be explained in the next chapter. The D mode
with a frequency of approximately 1350 cm�1, is activated by defects and provides information about
the defect density. A very prominent feature, which is also used to characterize and to distinguish single-
layer graphene from few layer graphene, is the 2D mode. The intensity is stronger than that of the G

mode as a consequence of the double-resonant process and enhanced electron-phonon coupling [56,59].
The mode in the vicinity 2450 cm�1 is also due to a double-resonant process, but involves a transverse
optical (TO) and a longitudinal acoustic (LA) mode. This mode is often called G⇤, however in this work
it is called TO + LA mode. In combination with the 2D mode, which is due to two TO phonons, this
mode allows to directly probe the LA phonon branch.
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with a frequency of approximately 1350 cm�1, is activated by defects and provides information about
the defect density. A very prominent feature, which is also used to characterize and to distinguish single-
layer graphene from few layer graphene, is the 2D mode. The intensity is stronger than that of the G

mode as a consequence of the double-resonant process and enhanced electron-phonon coupling [56,59].
The mode in the vicinity 2450 cm�1 is also due to a double-resonant process, but involves a transverse
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The mode in the vicinity 2450 cm�1 is also due to a double-resonant process, but involves a transverse
optical (TO) and a longitudinal acoustic (LA) mode. This mode is often called G⇤, however in this work
it is called TO + LA mode. In combination with the 2D mode, which is due to two TO phonons, this
mode allows to directly probe the LA phonon branch.
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Figure 3.1 Incoming photon with wave vector
k1 and frequency ω1 excites an electron-hole
pair, which scatters inelastically whilst emitting
a phonon of wave vector q and frequency ωph.
The electron-hole pair recombines radiatively
by emitting a photon with wave vector k2 and
frequency ω2. After Refs. [22, 80].
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3. Raman scattering

is possible. In the Raman process the overall energy and momentum is conserved

k1 = k2 ± q (3.1)

~ω1 = ~ω2 ± ~ωph, (3.2)

where ± refers to the Stokes and Anti-Stokes process and k1,k2 and q denote the
wave vectors of the absorbed photon, the emitted photon and the phonon, respectively.
While electrons and holes mediate the scattering process, the initial and final state of
the electronic system are the same. For first-order one-phonon Raman scattering, only
Γ-point phonons with q ≈ 0 adhere momentum conservation, compare Eq. (3.1).

From the point of view of formal quantum electrodynamics, the Raman scattering
amplitude is equivalent to the matrix element K2f,10 of the process shown in Fig. 3.1.
The electron-photon interaction is given by the electron-radiation Hamiltonian HeR and
the electron-phonon coupling is given by the electron-phonon Hamiltonian HePh, compare
Fig. 3.1. The corresponding transition matrix elements contribute to K2f,10 and the
scattering amplitude of a first order Stokes process is then given as [80]

K2f,10 =
∑

a,b

< ω2, f, i|HeR|0, f, b >< 0, f, b, |HePh|0, 0, a >< 0, 0, a|HeR|ω1, 0, i >

(~ω1 − Ee
ai − iγ)(~ω1 − ~ωph︸ ︷︷ ︸

=~ω2

−Ee
bi − iγ)

,

(3.3)
where |ω1, 0, i > denotes the photonic state of an incoming photon of energy ~ω1, ground
state of the phonon (no phonon), and the initial state i of the electronic system. In the
state |ω2, f, i > after the scattering process, the photonic state is defined by the emitted
photon of the energy ~ω, the final phononic state f , and the final electronic state, which is
the same as the initial state i. The sum runs over all intermediate electronic states a and
b, and Ee

ai is the energy difference between the states a and i (same for b). The Raman
scattering amplitude is kept finite by introducing the lifetime γ of the corresponding
electronic state. The Raman scattering cross section or intensity is

I ∼ |K2f,10|2 . (3.4)

Without going into the details of calculating the Raman scattering amplitude, its structure
is very helpful to elucidate the concepts necessary to understand the resonant nature of
Raman scattering in carbon nanotubes and graphene. If both a and b are virtual states as
indicated by the dashed lines in Fig. 3.2(a), the scattering process is called non-resonant.
Such a process typically yields a low Raman intensity, which remains constant upon
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3.1. Basic concepts

white-atom defocus parameter. Although the sample holder
was maintained at room temperature, the observed region
might have been heated by the electron beam. Figure 3 shows
examples starting with the unperturbed lattice, the defect
structure, and then again the ideal lattice after the defect has
disappeared. An isolated Stone-Wales (SW) defect was
found during one exposure (1 s) of the sequence and relaxed
to the unperturbed lattice in the next exposure (4 s later)
(Figure 3a-d). Defects consisting of multiple five- and
seven-membered rings of carbon atoms spontaneously ap-
peared and remained stable for up to 20 s. Remarkably, all
defect configurations relax to the unperturbed graphene lattice
and contain the same number of pentagons and heptagons
in an arrangement that does not involve a dislocation or
disclination. In addition, Figure 3e and f shows a recon-
structed vacancy configuration involving a pentagon, which
also returned to the unperturbed lattice after a few seconds.
In this case, the missing carbon atom must have been

replaced, from a mobile adsorbate, via surface diffusion on
the graphene sheet.

Pentagon-heptagon (5-7) defects, in particular the
Stone-Wales defect,24 are proposed to play a key role in
the formation and transformation of sp-2 bonded carbon
nanostructures.25 It is customarily assumed that, after forma-
tion of SW defects, pentagon-heptagon pairs separate,
thereby inducing dislocations and curvature. These defects
are involved in the coalescence of fullerenes and nano-
tubes,25,26 and their mobility is relevant for the plastic
response of carbon nanotubes under strain.27 In our case of
the (almost22) planar graphene membrane, however, the
separation of pentagon-heptagon pairs is clearly not the
favored pathway: In all cases we have observed, the multiple
5-7 defects relax to the original unperturbed lattice. This
contrasts findings from highly curved graphene structures
where the introduction of dislocations in the electron beam9

and the motion of pentagons and heptagons10 has been

Figure 2. (a) Direct image of a single-layer graphene membrane (atoms appear white). (b) Contrast profile along the dotted line in panel
a (solid) along with a simulated profile (dashed). The experimental contrast is a factor of 2 smaller: Panel c shows the same experimental
profile with the simulated contrast scaled down by a factor of 2. (d and e) Step from a monolayer (upper part) to a bilayer (lower part of
the image), showing the unique appearance of the monolayer. Panel e shows the same image with an overlay of the graphene lattice (red)
and the second layer (blue), offset in the Bernal (AB) stacking of graphite. In the bilayer region, white dots appear where two carbon atoms
align in the projection. (f) Numerical diffractogram, calculated from an image of the bilayer region. The outermost peaks, one of them
indicated by the arrow, correspond to a resolution of 1.06 Å. The scale bars are 2 Å.
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Figure S1. 50 Pm aperture partially covered by graphene and its bilayer. This is the 
original photograph from Fig. 1A, as seen directly in transmitted white light in an 
optical microscope. No contrast enhancement or image manipulation has been used.  
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Figure S2. Transmittance spectrum of graphene over a range of photon energies E from near-infrared to 
violet. The blue open circles show the data obtained using the standard spectroscopy for a uniform 
membrane that completely covered a 30 Pm aperture. For comparison, we show the spectrum measured 
using an optical microscope (red squares). The red line indicates the opacity of SD. Inset: Dynamic 
conductivity G of graphene for visible wavelengths  (symbols) recalculated from the measured T. The 
green curves in both main figure and inset show the expected theoretical dependences, in which G varies 
between 1.01 and 1.04 of G0{ e2/4= for this frequency range. The red line and the gray area indicate the 

statistical average for our measurements and their standard error, respectively: G/G0 =1.01 r0.04. 
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Fig. 1. Carbon nanotubes are tiny graphene cylinders. A strip is cut out of
graphene (a) and then rolled up (b) to form a seamless cylinder (c). The chi-
ral vector c = 10(a1 + a2) in (a) forms the circumference of the (10,10) nanotube
in (c). Along the nanotube axis the unit cell is repeated periodically, i.e., a nanotube
is a one-dimensional periodic system. The segment shown in (c) contains 13 unit
cells along the nanotube axis. The inset in (a) shows the graphene lattice and the
graphene unit cell vectors a1 and a2 on an enlarged scale

Before discussing the growth, we introduce the basic concepts and param-
eters that determine the properties of carbon nanotubes. As can be seen in
Fig. 1a the cutting of graphene fixes the so-called chiral or roll-up vector c.
This vector goes around the circumference of the final tube in Fig. 1c. There
are two parameters that control the microscopic structure of a nanotube,
its diameter and its chiral angle or twist along the axis. Both are specified
completely by c, which is normally given in terms of the graphene lattice
vectors a1 and a2 (see inset of Fig. 1a)

c = n1a1 + n2a2 . (1)

(n1, n2) are called the chiral index of a tube or, briefly, the chirality. A tube is
characterized by (n1, n2). In Fig. 1c we show as an example the (10,10) nano-
tube.

The diameter of a tube is related to the chiral vector by

d =
|c|
π

=
a0

π

√
n2

1 + n1n2 + n2
2 , (2)

where a0 = 2.460 Å is the graphene lattice constant [32–35]. For small tubes
(d < 0.8 nm) the diameter is predicted to deviate from the geometrical diame-
ter of a graphene cylinder in (2). Moreover, ab-initio calculations show that d
becomes a function of the chiral angle below 0.8 nm [36]. Deviations from (2)
are below 2 % for tube diameters d ≥ 5 Å [36]. Note also that sometimes differ-
ent lattice constants are used to calculate d. A popular value is a0 = 2.494 Å
obtained from a carbon–carbon distance aCC = a0/

√
3 = 1.44 Å; this value
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Fig. 2. Three carbon nanotubes with diameters around 0.8 nm: (a) (6,6) armchair,
(b) (8,4) chiral tube and (c) (10,0) zigzag nanotube. The gray hexagons indicate
the helix around the nanotube

for aCC was most likely taken from fullerenes that have a larger carbon–
carbon spacing than graphite and carbon nanotubes [37].

The second important parameter for carbon nanotubes is the chiral an-
gle Θ, which is the angle between a1 and the chiral vector (see Fig. 1a). The
chiral angle specifies the arrangement of the graphene hexagons on the wall
of the tube. This is illustrated in Fig. 2, where we show three single-walled
nanotubes with similar diameters but very different microscopic structure
due to different chiral angles. Θ is related to the chiral index by

Θ = arccos

[
n1 + n2/2√

n2
1 + n1n2 + n2

2

]
,

or

= 30◦ − arctan

[
1√
3

n1 − n2

n1 + n2

]
. (3)

The chiral angle is allowed to vary between 0◦ ≤ Θ ≤ 30◦; all other ranges
of Θ are equivalent to this interval because of the hexagonal symmetry of
graphene (see Fig. 1a). A chiral angle of 0◦ and 30◦ corresponds to tubes with
a particular high symmetry, as we discuss later. They are called zigzag (Θ =
0◦) and armchair tubes (Θ = 30◦).

The chiral vector not only determines the tube diameter and chiral an-
gle, but all other structural parameters including the length of the unit cell
and the number of carbon atoms in the unit cell. A compilation of these
parameters can be found in Table 1.

A very useful illustration for the chiral vectors is to draw all possible
nanotubes of a given diameter range onto a graphene lattice as in Fig. 3.
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where a0 = 2.460 Å is the graphene lattice constant [32–35]. For small tubes
(d < 0.8 nm) the diameter is predicted to deviate from the geometrical diame-
ter of a graphene cylinder in (2). Moreover, ab-initio calculations show that d
becomes a function of the chiral angle below 0.8 nm [36]. Deviations from (2)
are below 2 % for tube diameters d ≥ 5 Å [36]. Note also that sometimes differ-
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for aCC was most likely taken from fullerenes that have a larger carbon–
carbon spacing than graphite and carbon nanotubes [37].

The second important parameter for carbon nanotubes is the chiral an-
gle Θ, which is the angle between a1 and the chiral vector (see Fig. 1a). The
chiral angle specifies the arrangement of the graphene hexagons on the wall
of the tube. This is illustrated in Fig. 2, where we show three single-walled
nanotubes with similar diameters but very different microscopic structure
due to different chiral angles. Θ is related to the chiral index by
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The chiral angle is allowed to vary between 0◦ ≤ Θ ≤ 30◦; all other ranges
of Θ are equivalent to this interval because of the hexagonal symmetry of
graphene (see Fig. 1a). A chiral angle of 0◦ and 30◦ corresponds to tubes with
a particular high symmetry, as we discuss later. They are called zigzag (Θ =
0◦) and armchair tubes (Θ = 30◦).

The chiral vector not only determines the tube diameter and chiral an-
gle, but all other structural parameters including the length of the unit cell
and the number of carbon atoms in the unit cell. A compilation of these
parameters can be found in Table 1.

A very useful illustration for the chiral vectors is to draw all possible
nanotubes of a given diameter range onto a graphene lattice as in Fig. 3.
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helical structure. Th ere are some exceptions to this, including nonhelical 
nanotubes, zigzag nanotubes with η = 0 and armchair tubes with η = π/6. 
Other helical tubes are called chiral nanotubes. Because the stability is 
mainly determined by their thickness or circumference, the direction of 
L for grown nanotubes is distributed almost uniformly.

The wave function satisfies the periodic boundary condition 
ψ(r + L) = ψ(r) in a carbon nanotube. This shows that the wave vector 
k satisfying the condition exp[ik⋅(r + L)] = exp(ik⋅r) is allowed in 
the first Brillouin zone of graphene. The condition can be rewritten 
as exp(ik⋅L) = 1, which gives straight lines perpendicular to L with 
neighboring distances 2π/L (Figure 3). When these lines pass through 
the K and K' points, that is, exp(iK⋅L) = 1 or exp(iK '⋅L) = 1 with K 
and K ' being the wave vector of the K and K' point, respectively, there 
is no gap at the Fermi level and the nanotube becomes metallic. In 
other cases, the nanotube becomes a semiconductor with a gap near 
the Fermi level.

Explicit calculations show that exp(iK⋅L) = exp(2πiν/3) and 
exp(iK '⋅L) = exp(–2πiν/3), where the integer ν is 0 or ±1 depending 
on na and nb. As a result, metallic (ν = 0) and semiconducting (ν = ±1) 
nanotubes appear at a ratio of one to two with varying L. In a 
semiconducting nanotube, the straight line closest to the K or K' point 
gives the conduction and valence bands. Because the spacing between 
neighboring lines is 2π/L and the energy is a linear function of the 
wave vector near the K and K' points, the energy gap is proportional 
to the inverse of the diameter d = L/π. The important feature is that 
there can be both metallic and semiconducting nanotubes with similar 
diameter and therefore one of the tough challenges lies in achieving 
the selective growth of semiconducting and metallic nanotubes or their 
separation after growth. 

Graphene as a metal 

Graphene has often been called a zero-gap semiconductor because 
the density of states is given by D(E) = |E|/2πħ2v2, which vanishes 
at E = 0 (Figure 2). This naming is quite inappropriate, however. 
A more appropriate name becomes clear when we consider the 
conductivity of graphene. 

The conductivity is usually given by the Einstein relation 
σ0 = gvgse2D*D(EF) in terms of the diffusion coefficient D*, where gv = 2 
is the valley degeneracy corresponding to the presence of the K and 
K' points and gs = 2 is the spin degeneracy. Let τ be the relaxation time 
due to impurity scattering. Then, the diffusion coefficient is given by 
D* ≈ v2τ. We have τ–1 ≈ (2π/ħ)ni⟨ui

2⟩EFD(EF), where ni is the impurity 
density, ui is the matrix element of the impurity potential between 
initial and final states, and ⟨...⟩EF denotes the average at the Fermi 

level. As a result, independent of the density of states, the conductivity 
becomes σ0 = gvgse2/2π2ħW, where W = ni⟨ui

2⟩EF/4π2ħ2v2 is a dimensionless 
parameter characterizing the strength of impurity scattering. Strictly 
speaking, the relaxation time determining the conductivity is 
different from the simple scattering time, but the difference is not so 
important here. 

Th e above shows that the conductivity is independent of the Fermi 
energy and the carrier concentration as long as the possible dependence 
of scattering strength W on EF or ns is neglected. Therefore, graphene 
should strictly be regarded as a metal rather than a semiconductor.

At EF = 0, where D(EF) = 0, however, this description can become 
inappropriate. In fact, potential fl uctuations due to impurities make the 
density of states at EF = 0 nonzero. Th eoretical calculations including this 
level-broadening eff ect performed prior to experiments showed that the 
conductivity takes a universal value of σmin = gvgse2/2π2ħ at EF = 0 [31]. 
Figure 4 shows examples of calculated density of states and conductivity. 
In graphene with weak disorder, that is, W ≪ 1, the conductivity drops 
to σmin from σ0 in a very narrow energy range close to E = 0. Similar 
calculations performed for the conductivity in magnetic fi elds predicted 
that the Hall conductivity, in particular, is quantized into (4e2/h)(j + 1/2) 
with integer j, corresponding to the half-integer quantum Hall eff ect [8].

Experimentally, the minimum conductivity has been shown to be 
nearly independent of samples [6], although the absolute value seems 
to be 3–4 times larger than the theoretical predictions. In the vicinity 
of zero energy, because of the weak screening effect due to the small 
density of states and the small kinetic energy of electrons, the eff ective 
scattering strength can be substantial and system inhomogeneity can also 
be signifi cant. Some reports have shown that the minimum conductivity 
varies from sample to sample [32]. Th is problem regarding the minimum 
conductivity remains an important subject to be understood in the future. 

Another important difference lies in the dependence of the 
conductivity on electron concentration. The theory predicts that 
the conductivity in pure graphene should be independent of the 
electron concentration, dropping to σmin in the extreme vicinity of zero 
energy over a singularly narrow region. Experimentally, however, the 
conductivity is nearly proportional to the electron concentration, as if 
there is an eff ective mobility independent of the electron concentration. 
Part of the reason for this lies in the fact that the scattering strength W is 
large at EF ≈ 0 (typically W ≈ 0.1), as mentioned above. Another reason is 
that the eff ective strength of dominant scatterers depends on the electron 
concentration according to W ∝ |ns|–1, and the Boltzmann conductivity 
becomes proportional to the electron concentration. 

Typical examples of such scatterers causing ns dependence are 
charged impurities. Charged centers localized in SiO2 are known to 
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Fig. 20. Band structure of a (10,10) armchair nanotube with diameter d = 1.4 nm.
(a) Ab-initio calculation; (b) nearest-neighbor tight-binding calculation with γ0 =
−2.7 eV [(16) with n = 10]; (c) third-nearest neighbors tight-binding calculation.
The dashed lines denote ab-initio calculated energies of the band extrema. The
agreement of the energies in (a) and (c) is excellent. From [6]

where m is an integer running from −(q/2 − 1) to q/2 [81]; see Table 1 for q,
n and R as a function of n1 and n2.

The quantum number m is very useful to index bands and phonon
branches and to derive selection rules, e.g., for Raman scattering, infrared
vibronic and optical electronic absorption [20, 81, 83, 87]. The m = 0 elec-
tronic bands and phonon branches always contain the graphene Γ point (see
Fig. 19b); m = q/2 (= n for achiral tubes) is the M point of graphene
for kz = 0 [9]. These two bands are nondegenerate for any quasiparticle and
any nanotube. In achiral tubes, all other bands are twofold degenerate in
chiral tubes, none, see [20, 85, 86] for a discussion and examples.

4.2 Electronic Band Structure

Figures 20 and 21 show the electronic band structure of a (10,10) and
(19,0) nanotube, respectively. Parts (a) in both figures are from first-principles
calculations, while parts (b) were obtained with (16) and (15), and parts (c)
are the results of the extended tight-binding model using up to third neigh-
bors [6]. For all practical purposes, the extended tight-binding model is in-
distinguishable from the ab-initio calculations. The simple nearest-neighbors
tight-binding scheme works reasonably well. There are certain systematics in
Figs. 20 and 21 about which we will not comment in detail. For example,
the band extrema are at the Γ point in the (19,0) tube, but at 2π/3a in the
(10,10) tube. General rules for the overall shape of the band structure and
the position of the band extrema as a function of n1 and n2 can be found
in [20].
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tronic bands and phonon branches always contain the graphene Γ point (see
Fig. 19b); m = q/2 (= n for achiral tubes) is the M point of graphene
for kz = 0 [9]. These two bands are nondegenerate for any quasiparticle and
any nanotube. In achiral tubes, all other bands are twofold degenerate in
chiral tubes, none, see [20, 85, 86] for a discussion and examples.

4.2 Electronic Band Structure

Figures 20 and 21 show the electronic band structure of a (10,10) and
(19,0) nanotube, respectively. Parts (a) in both figures are from first-principles
calculations, while parts (b) were obtained with (16) and (15), and parts (c)
are the results of the extended tight-binding model using up to third neigh-
bors [6]. For all practical purposes, the extended tight-binding model is in-
distinguishable from the ab-initio calculations. The simple nearest-neighbors
tight-binding scheme works reasonably well. There are certain systematics in
Figs. 20 and 21 about which we will not comment in detail. For example,
the band extrema are at the Γ point in the (19,0) tube, but at 2π/3a in the
(10,10) tube. General rules for the overall shape of the band structure and
the position of the band extrema as a function of n1 and n2 can be found
in [20].

c
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Fig. 2. Three carbon nanotubes with diameters around 0.8 nm: (a) (6,6) armchair,
(b) (8,4) chiral tube and (c) (10,0) zigzag nanotube. The gray hexagons indicate
the helix around the nanotube

for aCC was most likely taken from fullerenes that have a larger carbon–
carbon spacing than graphite and carbon nanotubes [37].

The second important parameter for carbon nanotubes is the chiral an-
gle Θ, which is the angle between a1 and the chiral vector (see Fig. 1a). The
chiral angle specifies the arrangement of the graphene hexagons on the wall
of the tube. This is illustrated in Fig. 2, where we show three single-walled
nanotubes with similar diameters but very different microscopic structure
due to different chiral angles. Θ is related to the chiral index by

Θ = arccos

[
n1 + n2/2√

n2
1 + n1n2 + n2

2

]
,

or

= 30◦ − arctan

[
1√
3

n1 − n2

n1 + n2

]
. (3)

The chiral angle is allowed to vary between 0◦ ≤ Θ ≤ 30◦; all other ranges
of Θ are equivalent to this interval because of the hexagonal symmetry of
graphene (see Fig. 1a). A chiral angle of 0◦ and 30◦ corresponds to tubes with
a particular high symmetry, as we discuss later. They are called zigzag (Θ =
0◦) and armchair tubes (Θ = 30◦).

The chiral vector not only determines the tube diameter and chiral an-
gle, but all other structural parameters including the length of the unit cell
and the number of carbon atoms in the unit cell. A compilation of these
parameters can be found in Table 1.

A very useful illustration for the chiral vectors is to draw all possible
nanotubes of a given diameter range onto a graphene lattice as in Fig. 3.
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Figure 2.5: Phonon dispersion of graphene showing different phonon branches, derived with the ab
initio QUANTUM-ESPRESSO code [55].

the acoustic phonon splits in one in-phase and one out-of-phase phonon. The out-of-phase phonon is
observable and its frequency is around ⇡ 40 cm�1 [58].
A Raman spectrum of graphene obtained at 2.33 eV excitation energy is depicted in Fig. 2.6. The
so-called G mode stems from the �. The other modes stem from the vicinity of the K point and are
activated due to the double-resonant process, which will be explained in the next chapter. The D mode
with a frequency of approximately 1350 cm�1, is activated by defects and provides information about
the defect density. A very prominent feature, which is also used to characterize and to distinguish single-
layer graphene from few layer graphene, is the 2D mode. The intensity is stronger than that of the G

mode as a consequence of the double-resonant process and enhanced electron-phonon coupling [56,59].
The mode in the vicinity 2450 cm�1 is also due to a double-resonant process, but involves a transverse
optical (TO) and a longitudinal acoustic (LA) mode. This mode is often called G⇤, however in this work
it is called TO + LA mode. In combination with the 2D mode, which is due to two TO phonons, this
mode allows to directly probe the LA phonon branch.
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Figure 3.2. Simplified sketch of (a) non resonant and single resonant Raman scattering
with (b) incoming resonance or (c) outgoing resonance. (d) Double resonant Raman
scattering. The solid lines represent the real states of the system. Virtual states are
indicated by dashed lines. Arrows indicate the phonon (green) as well incoming and
scattered photons (red). All sketches refer to the Stokes-process only.

changing ~ω1. A typical example for excitation energies in the visible and infrared spectral
region is diamond (band gap ∼ 5.5 eV). Single-resonant Raman scattering occurs if one
the intermediate states is an eigenstate of the system. The corresponding term in the
denominator of Eqn. 3.1 becomes small and enhances the Raman intensity. If the incoming
photon matches an optical transition as in Fig. 3.2(b), the scattering process is called
incoming resonance. An outgoing resonance occurs if the scattered photon matches the
energy of the transition as depicted in Fig. 3.2(c). The energetic difference between the
two processes is given by the energy of the phonon in the scattering process. Double
resonant Raman scattering occurs if both the intermediate states are eigenstates of the
system as shown in 3.2(d). Such a situation is rarely observed in a scattering process that
involves only one phonon, but may be achieved by applying e.g. uniaxial stress to tune
the electronic eigenstates accordingly [81].

It is very instructive to have closer look at the calculation of the K2f,10 for some specific
cases, as discussed in detail by Thomsen et al. [57] and in Refs. [82]. For a one-dimensional
system with one pair of parabolic bands and the optical transition energy Eii, the energy
differences between initial and the intermediates states take the form

Ee
ai(k) = Ee

bi(k) = Eii +
~2k2

2µ
, (3.5)

where k is the wave vector of the electron and the reduced effective electron mass µ, that
incorporates the masses of electron me and hole mh as 1/µ = 1/me + 1/mh. The sum in
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3. Raman scattering

Eq. 3.1 converts into an integral over k and leads to

I ∼ |K2f,10|2 ∝
∣∣∣∣∣

1

i~ωph

(
1√

~ω1 − Eii − iγ
− 1√

~ω1 − ~ωph − Eii − iγ

)∣∣∣∣∣

2

. (3.6)

The Raman intensity after evaluating the absolute value in Eq. (3.6), yields two symmetric
maxima at the energies of both the incoming and the outgoing resonance.

The matrix element K2f,10 and the way it is evaluated changes if we consider only
one discrete electronic state, instead of a continuum of states as before. An example is
excitons in carbon nanotubes, Sec. 2.2. Only one state ehii with the exciton momentum
Q ≈ 0 is involved and Ee

ai(k) = Ee
bi(k) = ehii. If no other excitonic state close in energy

is available for the Raman process, the sum over all electronic states a and b is no longer
required and the corresponding Raman cross section is then

I ∼ |K2f,10|2 ∝
∣∣∣∣

1

~ωph

(
1

~ω1 − Eii − iγ
− 1

~ω1 − ~ωph − Eii − iγ

)∣∣∣∣
2

. (3.7)

Compared to the band-to-band case, the Raman intensity arising from an excitonic
transition also yields two symmetric but somewhat sharper maxima for incoming and
outgoing resonance, respectively. The form of Eqn. (3.7) is also interesting from a more
general point of view. It allows an intuitive connection to the general optical properties
of the system I discussed above.

As shown for instance in Refs. [68, 82], the two complex arguments within the absolute
value above - expressed in terms of real and imaginary part - represent the complex
dielectric function ε(ω) = εr(ω) + iεi(ω) and thereby provide a connection to fundamental
material properties like reflection and absorption. The Raman scattering cross section in
Eqn. (3.7) can expressed as

I ∝
(

1

~ωph

)2

|ε(ω1)− ε(ω2)|2 or (3.8)

∝
∣∣∣∣
ε(ω1)− ε(ω2)

~ω1 − ~ω2

∣∣∣∣
2

and (3.9)

∝
∣∣∣∣
∂ε

∂E

∣∣∣∣
2

for |~ω1 − ~ω2| � ~ω1, (3.10)

and depends on the difference of ε for excitation and emission. For small phonon energies,
the Raman scattering cross section I is proportional to the square of the derivative of
the dielectric function with respect to the excitation energy E. If the real part of ε is
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3.2. Graphene

a very slowly varying function of E, the Raman scattering cross section is proportional
to the derivate of the absorption α with respect to the energy as |∂α/∂E|2 via α ∝ εi.
The results of Eqns. (3.8) - (3.10) can also be obtained from the macroscopic theory of
Raman scattering, e.g. in Ref. [68].

If one is interested in the Raman selection rules only - that is if the matrix element in
Eqn. 3.1 is zero or not - it is useful to express the Raman intensity via contracting the
Raman tensor R as

I ∼ |es · R · ei|2 , (3.11)

where ei and es are the polarization of the incident and scattered light, respectively.
The form of R is connected to the symmetry or representation of a particular vibration.
Polarization dependent Raman measurements on unoriented samples, for instance on
carbon nanotube ensembles [22], allow one to determine wether a specific component of
R is zero, thereby revealing the symmetry of the corresponding Raman active vibration.

3.2. Graphene

The Raman spectrum of graphene carries a lot of information. Raman scattering has
therefore developed into a versatile and important tool to characterize graphene and its
derivatives. Comprehensive reviews and a large body of literature therein discuss every
aspect in great detail [83–85]. In this section I will briefly introduce the dominating
Raman active vibrations in graphene and how they are related to graphene’s peculiar
electronic properties.

With the unit cell containing two atoms, graphene has three optical and three acoustic
phonon branches [19]. The calculated phonon dispersion along the high symmetry axes is
shown in Fig. 3.3(a), with the corresponding acronyms explained in the figure caption.
The dominant Raman-active vibrations in graphene arise from the transversal optical
(TO) and longitudinal optical (LO) phonon branches. At the Γ-point, they form the
double degenerate E2g phonon mode. Due to the occurrence of a Kohn anomaly 1, the
electron-phonon coupling of this mode is particularly strong at Γ. A second Kohn anomaly
occurs for the TO-phonons of A1g symmetry close to K(K ′). The phonons from both
Kohn anomalies play a major role in the Raman signatures of graphene.
A typical Raman spectrum of graphene consists of distinct peaks and is shown in

1The partial dielectric screening of vibrations can rapidly change in metals and lead to an unusual
phonon dispersion - the Kohn anomaly - and strong electron-phonon coupling. It may occur if a
phonon wavevector q and two electronic states k1, k2 on the Fermi surface fulfill k1 = k2 + q. In
graphene the Fermi surface is point-like at K(K′). Kohn anomalies occur for q = 0 (E2g mode at Γ)
and q ≈ K (A1g-TO mode around K).
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3. Raman scattering

white-atom defocus parameter. Although the sample holder
was maintained at room temperature, the observed region
might have been heated by the electron beam. Figure 3 shows
examples starting with the unperturbed lattice, the defect
structure, and then again the ideal lattice after the defect has
disappeared. An isolated Stone-Wales (SW) defect was
found during one exposure (1 s) of the sequence and relaxed
to the unperturbed lattice in the next exposure (4 s later)
(Figure 3a-d). Defects consisting of multiple five- and
seven-membered rings of carbon atoms spontaneously ap-
peared and remained stable for up to 20 s. Remarkably, all
defect configurations relax to the unperturbed graphene lattice
and contain the same number of pentagons and heptagons
in an arrangement that does not involve a dislocation or
disclination. In addition, Figure 3e and f shows a recon-
structed vacancy configuration involving a pentagon, which
also returned to the unperturbed lattice after a few seconds.
In this case, the missing carbon atom must have been

replaced, from a mobile adsorbate, via surface diffusion on
the graphene sheet.

Pentagon-heptagon (5-7) defects, in particular the
Stone-Wales defect,24 are proposed to play a key role in
the formation and transformation of sp-2 bonded carbon
nanostructures.25 It is customarily assumed that, after forma-
tion of SW defects, pentagon-heptagon pairs separate,
thereby inducing dislocations and curvature. These defects
are involved in the coalescence of fullerenes and nano-
tubes,25,26 and their mobility is relevant for the plastic
response of carbon nanotubes under strain.27 In our case of
the (almost22) planar graphene membrane, however, the
separation of pentagon-heptagon pairs is clearly not the
favored pathway: In all cases we have observed, the multiple
5-7 defects relax to the original unperturbed lattice. This
contrasts findings from highly curved graphene structures
where the introduction of dislocations in the electron beam9

and the motion of pentagons and heptagons10 has been

Figure 2. (a) Direct image of a single-layer graphene membrane (atoms appear white). (b) Contrast profile along the dotted line in panel
a (solid) along with a simulated profile (dashed). The experimental contrast is a factor of 2 smaller: Panel c shows the same experimental
profile with the simulated contrast scaled down by a factor of 2. (d and e) Step from a monolayer (upper part) to a bilayer (lower part of
the image), showing the unique appearance of the monolayer. Panel e shows the same image with an overlay of the graphene lattice (red)
and the second layer (blue), offset in the Bernal (AB) stacking of graphite. In the bilayer region, white dots appear where two carbon atoms
align in the projection. (f) Numerical diffractogram, calculated from an image of the bilayer region. The outermost peaks, one of them
indicated by the arrow, correspond to a resolution of 1.06 Å. The scale bars are 2 Å.
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Figure S1. 50 Pm aperture partially covered by graphene and its bilayer. This is the 
original photograph from Fig. 1A, as seen directly in transmitted white light in an 
optical microscope. No contrast enhancement or image manipulation has been used.  
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Figure S2. Transmittance spectrum of graphene over a range of photon energies E from near-infrared to 
violet. The blue open circles show the data obtained using the standard spectroscopy for a uniform 
membrane that completely covered a 30 Pm aperture. For comparison, we show the spectrum measured 
using an optical microscope (red squares). The red line indicates the opacity of SD. Inset: Dynamic 
conductivity G of graphene for visible wavelengths  (symbols) recalculated from the measured T. The 
green curves in both main figure and inset show the expected theoretical dependences, in which G varies 
between 1.01 and 1.04 of G0{ e2/4= for this frequency range. The red line and the gray area indicate the 

statistical average for our measurements and their standard error, respectively: G/G0 =1.01 r0.04. 
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Fig. 1. Carbon nanotubes are tiny graphene cylinders. A strip is cut out of
graphene (a) and then rolled up (b) to form a seamless cylinder (c). The chi-
ral vector c = 10(a1 + a2) in (a) forms the circumference of the (10,10) nanotube
in (c). Along the nanotube axis the unit cell is repeated periodically, i.e., a nanotube
is a one-dimensional periodic system. The segment shown in (c) contains 13 unit
cells along the nanotube axis. The inset in (a) shows the graphene lattice and the
graphene unit cell vectors a1 and a2 on an enlarged scale

Before discussing the growth, we introduce the basic concepts and param-
eters that determine the properties of carbon nanotubes. As can be seen in
Fig. 1a the cutting of graphene fixes the so-called chiral or roll-up vector c.
This vector goes around the circumference of the final tube in Fig. 1c. There
are two parameters that control the microscopic structure of a nanotube,
its diameter and its chiral angle or twist along the axis. Both are specified
completely by c, which is normally given in terms of the graphene lattice
vectors a1 and a2 (see inset of Fig. 1a)

c = n1a1 + n2a2 . (1)

(n1, n2) are called the chiral index of a tube or, briefly, the chirality. A tube is
characterized by (n1, n2). In Fig. 1c we show as an example the (10,10) nano-
tube.

The diameter of a tube is related to the chiral vector by

d =
|c|
π

=
a0

π

√
n2

1 + n1n2 + n2
2 , (2)

where a0 = 2.460 Å is the graphene lattice constant [32–35]. For small tubes
(d < 0.8 nm) the diameter is predicted to deviate from the geometrical diame-
ter of a graphene cylinder in (2). Moreover, ab-initio calculations show that d
becomes a function of the chiral angle below 0.8 nm [36]. Deviations from (2)
are below 2 % for tube diameters d ≥ 5 Å [36]. Note also that sometimes differ-
ent lattice constants are used to calculate d. A popular value is a0 = 2.494 Å
obtained from a carbon–carbon distance aCC = a0/

√
3 = 1.44 Å; this value
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Fig. 2. Three carbon nanotubes with diameters around 0.8 nm: (a) (6,6) armchair,
(b) (8,4) chiral tube and (c) (10,0) zigzag nanotube. The gray hexagons indicate
the helix around the nanotube

for aCC was most likely taken from fullerenes that have a larger carbon–
carbon spacing than graphite and carbon nanotubes [37].

The second important parameter for carbon nanotubes is the chiral an-
gle Θ, which is the angle between a1 and the chiral vector (see Fig. 1a). The
chiral angle specifies the arrangement of the graphene hexagons on the wall
of the tube. This is illustrated in Fig. 2, where we show three single-walled
nanotubes with similar diameters but very different microscopic structure
due to different chiral angles. Θ is related to the chiral index by

Θ = arccos

[
n1 + n2/2√

n2
1 + n1n2 + n2

2

]
,

or

= 30◦ − arctan

[
1√
3

n1 − n2

n1 + n2

]
. (3)

The chiral angle is allowed to vary between 0◦ ≤ Θ ≤ 30◦; all other ranges
of Θ are equivalent to this interval because of the hexagonal symmetry of
graphene (see Fig. 1a). A chiral angle of 0◦ and 30◦ corresponds to tubes with
a particular high symmetry, as we discuss later. They are called zigzag (Θ =
0◦) and armchair tubes (Θ = 30◦).

The chiral vector not only determines the tube diameter and chiral an-
gle, but all other structural parameters including the length of the unit cell
and the number of carbon atoms in the unit cell. A compilation of these
parameters can be found in Table 1.

A very useful illustration for the chiral vectors is to draw all possible
nanotubes of a given diameter range onto a graphene lattice as in Fig. 3.
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3 = 1.44 Å; this value

118 Christian Thomsen and Stephanie Reich

Fig. 1. Carbon nanotubes are tiny graphene cylinders. A strip is cut out of
graphene (a) and then rolled up (b) to form a seamless cylinder (c). The chi-
ral vector c = 10(a1 + a2) in (a) forms the circumference of the (10,10) nanotube
in (c). Along the nanotube axis the unit cell is repeated periodically, i.e., a nanotube
is a one-dimensional periodic system. The segment shown in (c) contains 13 unit
cells along the nanotube axis. The inset in (a) shows the graphene lattice and the
graphene unit cell vectors a1 and a2 on an enlarged scale

Before discussing the growth, we introduce the basic concepts and param-
eters that determine the properties of carbon nanotubes. As can be seen in
Fig. 1a the cutting of graphene fixes the so-called chiral or roll-up vector c.
This vector goes around the circumference of the final tube in Fig. 1c. There
are two parameters that control the microscopic structure of a nanotube,
its diameter and its chiral angle or twist along the axis. Both are specified
completely by c, which is normally given in terms of the graphene lattice
vectors a1 and a2 (see inset of Fig. 1a)

c = n1a1 + n2a2 . (1)

(n1, n2) are called the chiral index of a tube or, briefly, the chirality. A tube is
characterized by (n1, n2). In Fig. 1c we show as an example the (10,10) nano-
tube.

The diameter of a tube is related to the chiral vector by

d =
|c|
π

=
a0

π

√
n2

1 + n1n2 + n2
2 , (2)
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the helix around the nanotube

for aCC was most likely taken from fullerenes that have a larger carbon–
carbon spacing than graphite and carbon nanotubes [37].

The second important parameter for carbon nanotubes is the chiral an-
gle Θ, which is the angle between a1 and the chiral vector (see Fig. 1a). The
chiral angle specifies the arrangement of the graphene hexagons on the wall
of the tube. This is illustrated in Fig. 2, where we show three single-walled
nanotubes with similar diameters but very different microscopic structure
due to different chiral angles. Θ is related to the chiral index by

Θ = arccos

[
n1 + n2/2√

n2
1 + n1n2 + n2

2

]
,

or

= 30◦ − arctan

[
1√
3

n1 − n2

n1 + n2

]
. (3)

The chiral angle is allowed to vary between 0◦ ≤ Θ ≤ 30◦; all other ranges
of Θ are equivalent to this interval because of the hexagonal symmetry of
graphene (see Fig. 1a). A chiral angle of 0◦ and 30◦ corresponds to tubes with
a particular high symmetry, as we discuss later. They are called zigzag (Θ =
0◦) and armchair tubes (Θ = 30◦).

The chiral vector not only determines the tube diameter and chiral an-
gle, but all other structural parameters including the length of the unit cell
and the number of carbon atoms in the unit cell. A compilation of these
parameters can be found in Table 1.

A very useful illustration for the chiral vectors is to draw all possible
nanotubes of a given diameter range onto a graphene lattice as in Fig. 3.
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helical structure. ! ere are some exceptions to this, including nonhelical 
nanotubes, zigzag nanotubes with η = 0 and armchair tubes with η = π/6. 
Other helical tubes are called chiral nanotubes. Because the stability is 
mainly determined by their thickness or circumference, the direction of 
L for grown nanotubes is distributed almost uniformly.

The wave function satisfies the periodic boundary condition 
ψ(r + L) = ψ(r) in a carbon nanotube. This shows that the wave vector 
k satisfying the condition exp[ik⋅(r + L)] = exp(ik⋅r) is allowed in 
the first Brillouin zone of graphene. The condition can be rewritten 
as exp(ik⋅L) = 1, which gives straight lines perpendicular to L with 
neighboring distances 2π/L (Figure 3). When these lines pass through 
the K and K' points, that is, exp(iK⋅L) = 1 or exp(iK '⋅L) = 1 with K 
and K ' being the wave vector of the K and K' point, respectively, there 
is no gap at the Fermi level and the nanotube becomes metallic. In 
other cases, the nanotube becomes a semiconductor with a gap near 
the Fermi level.

Explicit calculations show that exp(iK⋅L) = exp(2πiν/3) and 
exp(iK '⋅L) = exp(–2πiν/3), where the integer ν is 0 or ±1 depending 
on na and nb. As a result, metallic (ν = 0) and semiconducting (ν = ±1) 
nanotubes appear at a ratio of one to two with varying L. In a 
semiconducting nanotube, the straight line closest to the K or K' point 
gives the conduction and valence bands. Because the spacing between 
neighboring lines is 2π/L and the energy is a linear function of the 
wave vector near the K and K' points, the energy gap is proportional 
to the inverse of the diameter d = L/π. The important feature is that 
there can be both metallic and semiconducting nanotubes with similar 
diameter and therefore one of the tough challenges lies in achieving 
the selective growth of semiconducting and metallic nanotubes or their 
separation after growth. 

Graphene as a metal 

Graphene has often been called a zero-gap semiconductor because 
the density of states is given by D(E) = |E|/2πħ2v2, which vanishes 
at E = 0 (Figure 2). This naming is quite inappropriate, however. 
A more appropriate name becomes clear when we consider the 
conductivity of graphene. 

The conductivity is usually given by the Einstein relation 
σ0 = gvgse2D*D(EF) in terms of the diffusion coefficient D*, where gv = 2 
is the valley degeneracy corresponding to the presence of the K and 
K' points and gs = 2 is the spin degeneracy. Let τ be the relaxation time 
due to impurity scattering. Then, the diffusion coefficient is given by 
D* ≈ v2τ. We have τ–1 ≈ (2π/ħ)ni⟨ui

2⟩EFD(EF), where ni is the impurity 
density, ui is the matrix element of the impurity potential between 
initial and final states, and ⟨...⟩EF denotes the average at the Fermi 

level. As a result, independent of the density of states, the conductivity 
becomes σ0 = gvgse2/2π2ħW, where W = ni⟨ui

2⟩EF/4π2ħ2v2 is a dimensionless 
parameter characterizing the strength of impurity scattering. Strictly 
speaking, the relaxation time determining the conductivity is 
different from the simple scattering time, but the difference is not so 
important here. 

! e above shows that the conductivity is independent of the Fermi 
energy and the carrier concentration as long as the possible dependence 
of scattering strength W on EF or ns is neglected. Therefore, graphene 
should strictly be regarded as a metal rather than a semiconductor.

At EF = 0, where D(EF) = 0, however, this description can become 
inappropriate. In fact, potential fl uctuations due to impurities make the 
density of states at EF = 0 nonzero. ! eoretical calculations including this 
level-broadening eff ect performed prior to experiments showed that the 
conductivity takes a universal value of σmin = gvgse2/2π2ħ at EF = 0 [31]. 
Figure 4 shows examples of calculated density of states and conductivity. 
In graphene with weak disorder, that is, W ≪ 1, the conductivity drops 
to σmin from σ0 in a very narrow energy range close to E = 0. Similar 
calculations performed for the conductivity in magnetic fi elds predicted 
that the Hall conductivity, in particular, is quantized into (4e2/h)(j + 1/2) 
with integer j, corresponding to the half-integer quantum Hall eff ect [8].

Experimentally, the minimum conductivity has been shown to be 
nearly independent of samples [6], although the absolute value seems 
to be 3–4 times larger than the theoretical predictions. In the vicinity 
of zero energy, because of the weak screening effect due to the small 
density of states and the small kinetic energy of electrons, the eff ective 
scattering strength can be substantial and system inhomogeneity can also 
be signifi cant. Some reports have shown that the minimum conductivity 
varies from sample to sample [32]. ! is problem regarding the minimum 
conductivity remains an important subject to be understood in the future. 

Another important difference lies in the dependence of the 
conductivity on electron concentration. The theory predicts that 
the conductivity in pure graphene should be independent of the 
electron concentration, dropping to σmin in the extreme vicinity of zero 
energy over a singularly narrow region. Experimentally, however, the 
conductivity is nearly proportional to the electron concentration, as if 
there is an eff ective mobility independent of the electron concentration. 
Part of the reason for this lies in the fact that the scattering strength W is 
large at EF ≈ 0 (typically W ≈ 0.1), as mentioned above. Another reason is 
that the eff ective strength of dominant scatterers depends on the electron 
concentration according to W ∝ |ns|–1, and the Boltzmann conductivity 
becomes proportional to the electron concentration. 

Typical examples of such scatterers causing ns dependence are 
charged impurities. Charged centers localized in SiO2 are known to 
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Fig. 20. Band structure of a (10,10) armchair nanotube with diameter d = 1.4 nm.
(a) Ab-initio calculation; (b) nearest-neighbor tight-binding calculation with γ0 =
−2.7 eV [(16) with n = 10]; (c) third-nearest neighbors tight-binding calculation.
The dashed lines denote ab-initio calculated energies of the band extrema. The
agreement of the energies in (a) and (c) is excellent. From [6]

where m is an integer running from −(q/2 − 1) to q/2 [81]; see Table 1 for q,
n and R as a function of n1 and n2.

The quantum number m is very useful to index bands and phonon
branches and to derive selection rules, e.g., for Raman scattering, infrared
vibronic and optical electronic absorption [20, 81, 83, 87]. The m = 0 elec-
tronic bands and phonon branches always contain the graphene Γ point (see
Fig. 19b); m = q/2 (= n for achiral tubes) is the M point of graphene
for kz = 0 [9]. These two bands are nondegenerate for any quasiparticle and
any nanotube. In achiral tubes, all other bands are twofold degenerate in
chiral tubes, none, see [20, 85, 86] for a discussion and examples.

4.2 Electronic Band Structure

Figures 20 and 21 show the electronic band structure of a (10,10) and
(19,0) nanotube, respectively. Parts (a) in both figures are from first-principles
calculations, while parts (b) were obtained with (16) and (15), and parts (c)
are the results of the extended tight-binding model using up to third neigh-
bors [6]. For all practical purposes, the extended tight-binding model is in-
distinguishable from the ab-initio calculations. The simple nearest-neighbors
tight-binding scheme works reasonably well. There are certain systematics in
Figs. 20 and 21 about which we will not comment in detail. For example,
the band extrema are at the Γ point in the (19,0) tube, but at 2π/3a in the
(10,10) tube. General rules for the overall shape of the band structure and
the position of the band extrema as a function of n1 and n2 can be found
in [20].
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(a) Ab-initio calculation; (b) nearest-neighbor tight-binding calculation with γ0 =
−2.7 eV [(16) with n = 10]; (c) third-nearest neighbors tight-binding calculation.
The dashed lines denote ab-initio calculated energies of the band extrema. The
agreement of the energies in (a) and (c) is excellent. From [6]

where m is an integer running from −(q/2 − 1) to q/2 [81]; see Table 1 for q,
n and R as a function of n1 and n2.

The quantum number m is very useful to index bands and phonon
branches and to derive selection rules, e.g., for Raman scattering, infrared
vibronic and optical electronic absorption [20, 81, 83, 87]. The m = 0 elec-
tronic bands and phonon branches always contain the graphene Γ point (see
Fig. 19b); m = q/2 (= n for achiral tubes) is the M point of graphene
for kz = 0 [9]. These two bands are nondegenerate for any quasiparticle and
any nanotube. In achiral tubes, all other bands are twofold degenerate in
chiral tubes, none, see [20, 85, 86] for a discussion and examples.

4.2 Electronic Band Structure

Figures 20 and 21 show the electronic band structure of a (10,10) and
(19,0) nanotube, respectively. Parts (a) in both figures are from first-principles
calculations, while parts (b) were obtained with (16) and (15), and parts (c)
are the results of the extended tight-binding model using up to third neigh-
bors [6]. For all practical purposes, the extended tight-binding model is in-
distinguishable from the ab-initio calculations. The simple nearest-neighbors
tight-binding scheme works reasonably well. There are certain systematics in
Figs. 20 and 21 about which we will not comment in detail. For example,
the band extrema are at the Γ point in the (19,0) tube, but at 2π/3a in the
(10,10) tube. General rules for the overall shape of the band structure and
the position of the band extrema as a function of n1 and n2 can be found
in [20].
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Fig. 2. Three carbon nanotubes with diameters around 0.8 nm: (a) (6,6) armchair,
(b) (8,4) chiral tube and (c) (10,0) zigzag nanotube. The gray hexagons indicate
the helix around the nanotube

for aCC was most likely taken from fullerenes that have a larger carbon–
carbon spacing than graphite and carbon nanotubes [37].

The second important parameter for carbon nanotubes is the chiral an-
gle Θ, which is the angle between a1 and the chiral vector (see Fig. 1a). The
chiral angle specifies the arrangement of the graphene hexagons on the wall
of the tube. This is illustrated in Fig. 2, where we show three single-walled
nanotubes with similar diameters but very different microscopic structure
due to different chiral angles. Θ is related to the chiral index by

Θ = arccos

[
n1 + n2/2√

n2
1 + n1n2 + n2

2

]
,

or

= 30◦ − arctan

[
1√
3

n1 − n2

n1 + n2

]
. (3)

The chiral angle is allowed to vary between 0◦ ≤ Θ ≤ 30◦; all other ranges
of Θ are equivalent to this interval because of the hexagonal symmetry of
graphene (see Fig. 1a). A chiral angle of 0◦ and 30◦ corresponds to tubes with
a particular high symmetry, as we discuss later. They are called zigzag (Θ =
0◦) and armchair tubes (Θ = 30◦).

The chiral vector not only determines the tube diameter and chiral an-
gle, but all other structural parameters including the length of the unit cell
and the number of carbon atoms in the unit cell. A compilation of these
parameters can be found in Table 1.

A very useful illustration for the chiral vectors is to draw all possible
nanotubes of a given diameter range onto a graphene lattice as in Fig. 3.
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Figure 2.5: Phonon dispersion of graphene showing different phonon branches, derived with the ab
initio QUANTUM-ESPRESSO code [55].

the acoustic phonon splits in one in-phase and one out-of-phase phonon. The out-of-phase phonon is
observable and its frequency is around ⇡ 40 cm�1 [58].
A Raman spectrum of graphene obtained at 2.33 eV excitation energy is depicted in Fig. 2.6. The
so-called G mode stems from the �. The other modes stem from the vicinity of the K point and are
activated due to the double-resonant process, which will be explained in the next chapter. The D mode
with a frequency of approximately 1350 cm�1, is activated by defects and provides information about
the defect density. A very prominent feature, which is also used to characterize and to distinguish single-
layer graphene from few layer graphene, is the 2D mode. The intensity is stronger than that of the G

mode as a consequence of the double-resonant process and enhanced electron-phonon coupling [56,59].
The mode in the vicinity 2450 cm�1 is also due to a double-resonant process, but involves a transverse
optical (TO) and a longitudinal acoustic (LA) mode. This mode is often called G⇤, however in this work
it is called TO + LA mode. In combination with the 2D mode, which is due to two TO phonons, this
mode allows to directly probe the LA phonon branch.
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Figure 2.5: Phonon dispersion of graphene showing different phonon branches, derived with the ab
initio QUANTUM-ESPRESSO code [55].

the acoustic phonon splits in one in-phase and one out-of-phase phonon. The out-of-phase phonon is
observable and its frequency is around ⇡ 40 cm�1 [58].
A Raman spectrum of graphene obtained at 2.33 eV excitation energy is depicted in Fig. 2.6. The
so-called G mode stems from the �. The other modes stem from the vicinity of the K point and are
activated due to the double-resonant process, which will be explained in the next chapter. The D mode
with a frequency of approximately 1350 cm�1, is activated by defects and provides information about
the defect density. A very prominent feature, which is also used to characterize and to distinguish single-
layer graphene from few layer graphene, is the 2D mode. The intensity is stronger than that of the G

mode as a consequence of the double-resonant process and enhanced electron-phonon coupling [56,59].
The mode in the vicinity 2450 cm�1 is also due to a double-resonant process, but involves a transverse
optical (TO) and a longitudinal acoustic (LA) mode. This mode is often called G⇤, however in this work
it is called TO + LA mode. In combination with the 2D mode, which is due to two TO phonons, this
mode allows to directly probe the LA phonon branch.
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Figure 3.3. (a) Calculated phonon dispersion of graphene with three acoustic (A) and
three optical (O) branches. Only the in-plane longitudinal (L) and transverse (T) optical
phonons are Raman active. The ZO is the optical out-of-plane mode. The ZA mode is
an out-of-plane acoustic mode, the TA mode is an in-plane acoustic mode, and the LA
branch is the longitudinal acoustic mode. (b) Raman spectrum of graphene on SiO2 at
λ = 638 nm excitation with the dominant D, G, 2D and 2D′ Raman modes of graphene.
Panel (a) is taken from [86], courtesy of P. May.

Fig. 3.3(b) for a laser excitation of 1.94 eV. The most prominent, most informative and
most (controversially) discussed peaks are found in the range between 1250 cm−1and
3400 cm−1. Similarly, they play an important role in the Raman signature of graphene-
related allotropes like graphene nanoribbons, carbon nanotubes, and graphite. The
Raman scattering process involves one phonon for the G- and D-mode and two phonons
for the 2D and 2D′ modes.

The G(raphite)-peak at around 1582 cm−1 corresponds to the doubly degenerate E2g

optical phonon modes from the Γ-point. It is a vibration in the plane of the sp2 bonds
and the only first-order Raman active phonon with q = 0. Due to its high frequency, the
G-mode is a very sensitive probe for external perturbations such as doping [87, 88] or
strain [89, 90]. Given the linear electronic dispersion of graphene, one would intuitively
expect the G-mode to arise from a single resonant Raman process with ingoing and
outgoing resonances as introduced in Sec. 3.1, with the corresponding process shown in
Fig. 3.4(a). This is not the case, however, because the contributions from transitions
at different electronic k-states to the Raman scattering amplitude, Eq. 3.1, interfere
destructively [91]. This can be directly seen from calculating the corresponding matrix
element K2f,10, which I will outline in the following.

For the linear bands of graphene with the Fermi velocity vF , the intermediate electronic

24



3.2. Graphene

white-atom defocus parameter. Although the sample holder
was maintained at room temperature, the observed region
might have been heated by the electron beam. Figure 3 shows
examples starting with the unperturbed lattice, the defect
structure, and then again the ideal lattice after the defect has
disappeared. An isolated Stone-Wales (SW) defect was
found during one exposure (1 s) of the sequence and relaxed
to the unperturbed lattice in the next exposure (4 s later)
(Figure 3a-d). Defects consisting of multiple five- and
seven-membered rings of carbon atoms spontaneously ap-
peared and remained stable for up to 20 s. Remarkably, all
defect configurations relax to the unperturbed graphene lattice
and contain the same number of pentagons and heptagons
in an arrangement that does not involve a dislocation or
disclination. In addition, Figure 3e and f shows a recon-
structed vacancy configuration involving a pentagon, which
also returned to the unperturbed lattice after a few seconds.
In this case, the missing carbon atom must have been

replaced, from a mobile adsorbate, via surface diffusion on
the graphene sheet.

Pentagon-heptagon (5-7) defects, in particular the
Stone-Wales defect,24 are proposed to play a key role in
the formation and transformation of sp-2 bonded carbon
nanostructures.25 It is customarily assumed that, after forma-
tion of SW defects, pentagon-heptagon pairs separate,
thereby inducing dislocations and curvature. These defects
are involved in the coalescence of fullerenes and nano-
tubes,25,26 and their mobility is relevant for the plastic
response of carbon nanotubes under strain.27 In our case of
the (almost22) planar graphene membrane, however, the
separation of pentagon-heptagon pairs is clearly not the
favored pathway: In all cases we have observed, the multiple
5-7 defects relax to the original unperturbed lattice. This
contrasts findings from highly curved graphene structures
where the introduction of dislocations in the electron beam9

and the motion of pentagons and heptagons10 has been

Figure 2. (a) Direct image of a single-layer graphene membrane (atoms appear white). (b) Contrast profile along the dotted line in panel
a (solid) along with a simulated profile (dashed). The experimental contrast is a factor of 2 smaller: Panel c shows the same experimental
profile with the simulated contrast scaled down by a factor of 2. (d and e) Step from a monolayer (upper part) to a bilayer (lower part of
the image), showing the unique appearance of the monolayer. Panel e shows the same image with an overlay of the graphene lattice (red)
and the second layer (blue), offset in the Bernal (AB) stacking of graphite. In the bilayer region, white dots appear where two carbon atoms
align in the projection. (f) Numerical diffractogram, calculated from an image of the bilayer region. The outermost peaks, one of them
indicated by the arrow, correspond to a resolution of 1.06 Å. The scale bars are 2 Å.
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Figure S1. 50 Pm aperture partially covered by graphene and its bilayer. This is the 
original photograph from Fig. 1A, as seen directly in transmitted white light in an 
optical microscope. No contrast enhancement or image manipulation has been used.  
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Figure S2. Transmittance spectrum of graphene over a range of photon energies E from near-infrared to 
violet. The blue open circles show the data obtained using the standard spectroscopy for a uniform 
membrane that completely covered a 30 Pm aperture. For comparison, we show the spectrum measured 
using an optical microscope (red squares). The red line indicates the opacity of SD. Inset: Dynamic 
conductivity G of graphene for visible wavelengths  (symbols) recalculated from the measured T. The 
green curves in both main figure and inset show the expected theoretical dependences, in which G varies 
between 1.01 and 1.04 of G0{ e2/4= for this frequency range. The red line and the gray area indicate the 

statistical average for our measurements and their standard error, respectively: G/G0 =1.01 r0.04. 
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Fig. 1. Carbon nanotubes are tiny graphene cylinders. A strip is cut out of
graphene (a) and then rolled up (b) to form a seamless cylinder (c). The chi-
ral vector c = 10(a1 + a2) in (a) forms the circumference of the (10,10) nanotube
in (c). Along the nanotube axis the unit cell is repeated periodically, i.e., a nanotube
is a one-dimensional periodic system. The segment shown in (c) contains 13 unit
cells along the nanotube axis. The inset in (a) shows the graphene lattice and the
graphene unit cell vectors a1 and a2 on an enlarged scale

Before discussing the growth, we introduce the basic concepts and param-
eters that determine the properties of carbon nanotubes. As can be seen in
Fig. 1a the cutting of graphene fixes the so-called chiral or roll-up vector c.
This vector goes around the circumference of the final tube in Fig. 1c. There
are two parameters that control the microscopic structure of a nanotube,
its diameter and its chiral angle or twist along the axis. Both are specified
completely by c, which is normally given in terms of the graphene lattice
vectors a1 and a2 (see inset of Fig. 1a)

c = n1a1 + n2a2 . (1)

(n1, n2) are called the chiral index of a tube or, briefly, the chirality. A tube is
characterized by (n1, n2). In Fig. 1c we show as an example the (10,10) nano-
tube.

The diameter of a tube is related to the chiral vector by

d =
|c|
π

=
a0

π

√
n2

1 + n1n2 + n2
2 , (2)

where a0 = 2.460 Å is the graphene lattice constant [32–35]. For small tubes
(d < 0.8 nm) the diameter is predicted to deviate from the geometrical diame-
ter of a graphene cylinder in (2). Moreover, ab-initio calculations show that d
becomes a function of the chiral angle below 0.8 nm [36]. Deviations from (2)
are below 2 % for tube diameters d ≥ 5 Å [36]. Note also that sometimes differ-
ent lattice constants are used to calculate d. A popular value is a0 = 2.494 Å
obtained from a carbon–carbon distance aCC = a0/

√
3 = 1.44 Å; this value
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Fig. 2. Three carbon nanotubes with diameters around 0.8 nm: (a) (6,6) armchair,
(b) (8,4) chiral tube and (c) (10,0) zigzag nanotube. The gray hexagons indicate
the helix around the nanotube

for aCC was most likely taken from fullerenes that have a larger carbon–
carbon spacing than graphite and carbon nanotubes [37].

The second important parameter for carbon nanotubes is the chiral an-
gle Θ, which is the angle between a1 and the chiral vector (see Fig. 1a). The
chiral angle specifies the arrangement of the graphene hexagons on the wall
of the tube. This is illustrated in Fig. 2, where we show three single-walled
nanotubes with similar diameters but very different microscopic structure
due to different chiral angles. Θ is related to the chiral index by

Θ = arccos

[
n1 + n2/2√

n2
1 + n1n2 + n2

2

]
,

or

= 30◦ − arctan

[
1√
3

n1 − n2

n1 + n2

]
. (3)

The chiral angle is allowed to vary between 0◦ ≤ Θ ≤ 30◦; all other ranges
of Θ are equivalent to this interval because of the hexagonal symmetry of
graphene (see Fig. 1a). A chiral angle of 0◦ and 30◦ corresponds to tubes with
a particular high symmetry, as we discuss later. They are called zigzag (Θ =
0◦) and armchair tubes (Θ = 30◦).

The chiral vector not only determines the tube diameter and chiral an-
gle, but all other structural parameters including the length of the unit cell
and the number of carbon atoms in the unit cell. A compilation of these
parameters can be found in Table 1.

A very useful illustration for the chiral vectors is to draw all possible
nanotubes of a given diameter range onto a graphene lattice as in Fig. 3.
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Fig. 1. Carbon nanotubes are tiny graphene cylinders. A strip is cut out of
graphene (a) and then rolled up (b) to form a seamless cylinder (c). The chi-
ral vector c = 10(a1 + a2) in (a) forms the circumference of the (10,10) nanotube
in (c). Along the nanotube axis the unit cell is repeated periodically, i.e., a nanotube
is a one-dimensional periodic system. The segment shown in (c) contains 13 unit
cells along the nanotube axis. The inset in (a) shows the graphene lattice and the
graphene unit cell vectors a1 and a2 on an enlarged scale

Before discussing the growth, we introduce the basic concepts and param-
eters that determine the properties of carbon nanotubes. As can be seen in
Fig. 1a the cutting of graphene fixes the so-called chiral or roll-up vector c.
This vector goes around the circumference of the final tube in Fig. 1c. There
are two parameters that control the microscopic structure of a nanotube,
its diameter and its chiral angle or twist along the axis. Both are specified
completely by c, which is normally given in terms of the graphene lattice
vectors a1 and a2 (see inset of Fig. 1a)

c = n1a1 + n2a2 . (1)

(n1, n2) are called the chiral index of a tube or, briefly, the chirality. A tube is
characterized by (n1, n2). In Fig. 1c we show as an example the (10,10) nano-
tube.

The diameter of a tube is related to the chiral vector by

d =
|c|
π

=
a0

π

√
n2

1 + n1n2 + n2
2 , (2)

where a0 = 2.460 Å is the graphene lattice constant [32–35]. For small tubes
(d < 0.8 nm) the diameter is predicted to deviate from the geometrical diame-
ter of a graphene cylinder in (2). Moreover, ab-initio calculations show that d
becomes a function of the chiral angle below 0.8 nm [36]. Deviations from (2)
are below 2 % for tube diameters d ≥ 5 Å [36]. Note also that sometimes differ-
ent lattice constants are used to calculate d. A popular value is a0 = 2.494 Å
obtained from a carbon–carbon distance aCC = a0/

√
3 = 1.44 Å; this value
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Fig. 2. Three carbon nanotubes with diameters around 0.8 nm: (a) (6,6) armchair,
(b) (8,4) chiral tube and (c) (10,0) zigzag nanotube. The gray hexagons indicate
the helix around the nanotube

for aCC was most likely taken from fullerenes that have a larger carbon–
carbon spacing than graphite and carbon nanotubes [37].

The second important parameter for carbon nanotubes is the chiral an-
gle Θ, which is the angle between a1 and the chiral vector (see Fig. 1a). The
chiral angle specifies the arrangement of the graphene hexagons on the wall
of the tube. This is illustrated in Fig. 2, where we show three single-walled
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of Θ are equivalent to this interval because of the hexagonal symmetry of
graphene (see Fig. 1a). A chiral angle of 0◦ and 30◦ corresponds to tubes with
a particular high symmetry, as we discuss later. They are called zigzag (Θ =
0◦) and armchair tubes (Θ = 30◦).

The chiral vector not only determines the tube diameter and chiral an-
gle, but all other structural parameters including the length of the unit cell
and the number of carbon atoms in the unit cell. A compilation of these
parameters can be found in Table 1.

A very useful illustration for the chiral vectors is to draw all possible
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helical structure. Th ere are some exceptions to this, including nonhelical 
nanotubes, zigzag nanotubes with η = 0 and armchair tubes with η = π/6. 
Other helical tubes are called chiral nanotubes. Because the stability is 
mainly determined by their thickness or circumference, the direction of 
L for grown nanotubes is distributed almost uniformly.

The wave function satisfies the periodic boundary condition 
ψ(r + L) = ψ(r) in a carbon nanotube. This shows that the wave vector 
k satisfying the condition exp[ik⋅(r + L)] = exp(ik⋅r) is allowed in 
the first Brillouin zone of graphene. The condition can be rewritten 
as exp(ik⋅L) = 1, which gives straight lines perpendicular to L with 
neighboring distances 2π/L (Figure 3). When these lines pass through 
the K and K' points, that is, exp(iK⋅L) = 1 or exp(iK '⋅L) = 1 with K 
and K ' being the wave vector of the K and K' point, respectively, there 
is no gap at the Fermi level and the nanotube becomes metallic. In 
other cases, the nanotube becomes a semiconductor with a gap near 
the Fermi level.

Explicit calculations show that exp(iK⋅L) = exp(2πiν/3) and 
exp(iK '⋅L) = exp(–2πiν/3), where the integer ν is 0 or ±1 depending 
on na and nb. As a result, metallic (ν = 0) and semiconducting (ν = ±1) 
nanotubes appear at a ratio of one to two with varying L. In a 
semiconducting nanotube, the straight line closest to the K or K' point 
gives the conduction and valence bands. Because the spacing between 
neighboring lines is 2π/L and the energy is a linear function of the 
wave vector near the K and K' points, the energy gap is proportional 
to the inverse of the diameter d = L/π. The important feature is that 
there can be both metallic and semiconducting nanotubes with similar 
diameter and therefore one of the tough challenges lies in achieving 
the selective growth of semiconducting and metallic nanotubes or their 
separation after growth. 

Graphene as a metal 

Graphene has often been called a zero-gap semiconductor because 
the density of states is given by D(E) = |E|/2πħ2v2, which vanishes 
at E = 0 (Figure 2). This naming is quite inappropriate, however. 
A more appropriate name becomes clear when we consider the 
conductivity of graphene. 

The conductivity is usually given by the Einstein relation 
σ0 = gvgse2D*D(EF) in terms of the diffusion coefficient D*, where gv = 2 
is the valley degeneracy corresponding to the presence of the K and 
K' points and gs = 2 is the spin degeneracy. Let τ be the relaxation time 
due to impurity scattering. Then, the diffusion coefficient is given by 
D* ≈ v2τ. We have τ–1 ≈ (2π/ħ)ni⟨ui

2⟩EFD(EF), where ni is the impurity 
density, ui is the matrix element of the impurity potential between 
initial and final states, and ⟨...⟩EF denotes the average at the Fermi 

level. As a result, independent of the density of states, the conductivity 
becomes σ0 = gvgse2/2π2ħW, where W = ni⟨ui

2⟩EF/4π2ħ2v2 is a dimensionless 
parameter characterizing the strength of impurity scattering. Strictly 
speaking, the relaxation time determining the conductivity is 
different from the simple scattering time, but the difference is not so 
important here. 

Th e above shows that the conductivity is independent of the Fermi 
energy and the carrier concentration as long as the possible dependence 
of scattering strength W on EF or ns is neglected. Therefore, graphene 
should strictly be regarded as a metal rather than a semiconductor.

At EF = 0, where D(EF) = 0, however, this description can become 
inappropriate. In fact, potential fl uctuations due to impurities make the 
density of states at EF = 0 nonzero. Th eoretical calculations including this 
level-broadening eff ect performed prior to experiments showed that the 
conductivity takes a universal value of σmin = gvgse2/2π2ħ at EF = 0 [31]. 
Figure 4 shows examples of calculated density of states and conductivity. 
In graphene with weak disorder, that is, W ≪ 1, the conductivity drops 
to σmin from σ0 in a very narrow energy range close to E = 0. Similar 
calculations performed for the conductivity in magnetic fi elds predicted 
that the Hall conductivity, in particular, is quantized into (4e2/h)(j + 1/2) 
with integer j, corresponding to the half-integer quantum Hall eff ect [8].

Experimentally, the minimum conductivity has been shown to be 
nearly independent of samples [6], although the absolute value seems 
to be 3–4 times larger than the theoretical predictions. In the vicinity 
of zero energy, because of the weak screening effect due to the small 
density of states and the small kinetic energy of electrons, the eff ective 
scattering strength can be substantial and system inhomogeneity can also 
be signifi cant. Some reports have shown that the minimum conductivity 
varies from sample to sample [32]. Th is problem regarding the minimum 
conductivity remains an important subject to be understood in the future. 

Another important difference lies in the dependence of the 
conductivity on electron concentration. The theory predicts that 
the conductivity in pure graphene should be independent of the 
electron concentration, dropping to σmin in the extreme vicinity of zero 
energy over a singularly narrow region. Experimentally, however, the 
conductivity is nearly proportional to the electron concentration, as if 
there is an eff ective mobility independent of the electron concentration. 
Part of the reason for this lies in the fact that the scattering strength W is 
large at EF ≈ 0 (typically W ≈ 0.1), as mentioned above. Another reason is 
that the eff ective strength of dominant scatterers depends on the electron 
concentration according to W ∝ |ns|–1, and the Boltzmann conductivity 
becomes proportional to the electron concentration. 

Typical examples of such scatterers causing ns dependence are 
charged impurities. Charged centers localized in SiO2 are known to 
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Fig. 20. Band structure of a (10,10) armchair nanotube with diameter d = 1.4 nm.
(a) Ab-initio calculation; (b) nearest-neighbor tight-binding calculation with γ0 =
−2.7 eV [(16) with n = 10]; (c) third-nearest neighbors tight-binding calculation.
The dashed lines denote ab-initio calculated energies of the band extrema. The
agreement of the energies in (a) and (c) is excellent. From [6]

where m is an integer running from −(q/2 − 1) to q/2 [81]; see Table 1 for q,
n and R as a function of n1 and n2.

The quantum number m is very useful to index bands and phonon
branches and to derive selection rules, e.g., for Raman scattering, infrared
vibronic and optical electronic absorption [20, 81, 83, 87]. The m = 0 elec-
tronic bands and phonon branches always contain the graphene Γ point (see
Fig. 19b); m = q/2 (= n for achiral tubes) is the M point of graphene
for kz = 0 [9]. These two bands are nondegenerate for any quasiparticle and
any nanotube. In achiral tubes, all other bands are twofold degenerate in
chiral tubes, none, see [20, 85, 86] for a discussion and examples.

4.2 Electronic Band Structure

Figures 20 and 21 show the electronic band structure of a (10,10) and
(19,0) nanotube, respectively. Parts (a) in both figures are from first-principles
calculations, while parts (b) were obtained with (16) and (15), and parts (c)
are the results of the extended tight-binding model using up to third neigh-
bors [6]. For all practical purposes, the extended tight-binding model is in-
distinguishable from the ab-initio calculations. The simple nearest-neighbors
tight-binding scheme works reasonably well. There are certain systematics in
Figs. 20 and 21 about which we will not comment in detail. For example,
the band extrema are at the Γ point in the (19,0) tube, but at 2π/3a in the
(10,10) tube. General rules for the overall shape of the band structure and
the position of the band extrema as a function of n1 and n2 can be found
in [20].
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Fig. 2. Three carbon nanotubes with diameters around 0.8 nm: (a) (6,6) armchair,
(b) (8,4) chiral tube and (c) (10,0) zigzag nanotube. The gray hexagons indicate
the helix around the nanotube

for aCC was most likely taken from fullerenes that have a larger carbon–
carbon spacing than graphite and carbon nanotubes [37].

The second important parameter for carbon nanotubes is the chiral an-
gle Θ, which is the angle between a1 and the chiral vector (see Fig. 1a). The
chiral angle specifies the arrangement of the graphene hexagons on the wall
of the tube. This is illustrated in Fig. 2, where we show three single-walled
nanotubes with similar diameters but very different microscopic structure
due to different chiral angles. Θ is related to the chiral index by

Θ = arccos

[
n1 + n2/2√

n2
1 + n1n2 + n2

2

]
,

or

= 30◦ − arctan

[
1√
3

n1 − n2

n1 + n2

]
. (3)

The chiral angle is allowed to vary between 0◦ ≤ Θ ≤ 30◦; all other ranges
of Θ are equivalent to this interval because of the hexagonal symmetry of
graphene (see Fig. 1a). A chiral angle of 0◦ and 30◦ corresponds to tubes with
a particular high symmetry, as we discuss later. They are called zigzag (Θ =
0◦) and armchair tubes (Θ = 30◦).

The chiral vector not only determines the tube diameter and chiral an-
gle, but all other structural parameters including the length of the unit cell
and the number of carbon atoms in the unit cell. A compilation of these
parameters can be found in Table 1.

A very useful illustration for the chiral vectors is to draw all possible
nanotubes of a given diameter range onto a graphene lattice as in Fig. 3.
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Figure 2.5: Phonon dispersion of graphene showing different phonon branches, derived with the ab
initio QUANTUM-ESPRESSO code [55].

the acoustic phonon splits in one in-phase and one out-of-phase phonon. The out-of-phase phonon is
observable and its frequency is around ⇡ 40 cm�1 [58].
A Raman spectrum of graphene obtained at 2.33 eV excitation energy is depicted in Fig. 2.6. The
so-called G mode stems from the �. The other modes stem from the vicinity of the K point and are
activated due to the double-resonant process, which will be explained in the next chapter. The D mode
with a frequency of approximately 1350 cm�1, is activated by defects and provides information about
the defect density. A very prominent feature, which is also used to characterize and to distinguish single-
layer graphene from few layer graphene, is the 2D mode. The intensity is stronger than that of the G

mode as a consequence of the double-resonant process and enhanced electron-phonon coupling [56,59].
The mode in the vicinity 2450 cm�1 is also due to a double-resonant process, but involves a transverse
optical (TO) and a longitudinal acoustic (LA) mode. This mode is often called G⇤, however in this work
it is called TO + LA mode. In combination with the 2D mode, which is due to two TO phonons, this
mode allows to directly probe the LA phonon branch.
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The mode in the vicinity 2450 cm�1 is also due to a double-resonant process, but involves a transverse
optical (TO) and a longitudinal acoustic (LA) mode. This mode is often called G⇤, however in this work
it is called TO + LA mode. In combination with the 2D mode, which is due to two TO phonons, this
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states involved in the Raman process are given as Ee
ai = Ee

bi = 2|k|vF . In one dimension,
the sum over all intermediate states in the matrix element K2f,10, see Eq. 3.1, can be
converted to an integral over k [92]. The Raman intensity given in Eqn. (3.4) is then

I ∼ |K2f,10|2 ∝
∣∣∣∣
∫ ∞

0

1

(~ω1 − 2kvF − iγ)(~ω1 − 2kvF − ~ωph − iγ)

∣∣∣∣
2

∝
∣∣∣∣

1

2vF~ωph
ln

(
~ω1 − ~ωph − iγ

~ω1 − iγ

)∣∣∣∣
2

,

where the logarithm varies slowly with ~ω1 but no resonances occur (~ω1 � 0 eV). The
G-mode is therefore of non-resonant nature, in contrast to the simplified picture shown
in Fig. 3.4(a). Due to strong electron-phonon coupling via the Kohn-anomaly, on the
other hand, it has an intrinsically high Raman intensity, even compared to carbon-based
volume scatterers such as diamond.

The D-mode stems from the TO-branch close to K and is a double-resonant, one-phonon
second order Raman scattering process [83, 92, 93]. Due to q ≈ K 6= 0, it is forbidden as
it does not conserve momentum in the overall Raman process. A defect in the graphene
lattice, however, actives the D(efect)-mode by providing the necessary momentum via
elastic scattering. The particular phonon energy is then selected by fulfilling the resonance
condition for double-resonant Raman scattering, as schematized in Fig. 3.4(b). The
scattering occurs between different valleys and for electrons, holes, or both (dominant
contribution) in any given time order. The D-mode is dispersive with the excitation
energy, which allows one to probe its phonon dispersion in any available excitation window.
It shows very strong electron-phonon coupling due to the Kohn anomaly near K.
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3. Raman scattering

The 2D mode is a second order two-phonon Raman process. Similar to the D-mode,
it originates from scattering by phonons from the TO phonon branch. The 2D-mode
arises from a double resonant Raman process between K and K ′, shown in Fig. 3.4(c).
Instead of a defect in the case of the D−mode, the second phonon provides the necessary
momentum such that the process is allowed. Both 2D mode phonons arise from the
vicinity of the K-point, and due to the Kohn anomaly their electron-phonon coupling
is strong. In combination with the double resonant character of the scattering process,
the 2D-mode shows a much higher intensity than the G-mode. This is surprising, as
the G-mode involves only one phonon in the scattering process [94, 95]. The matrix
elements for two phonon scattering are typically much smaller than the matrix elements
for one phonon scattering. The intensity ratio shown in Fig. 3.3(b) typically serves as a
fingerprint to identify graphene, e.g. in comparison to bi- or multilayer graphene.
The 2D′ mode arises from two LO phonons near the Γ-point, where the dispersion of

this phonon branch overbends. The process is double resonant like the 2D-mode, but
in contrast to the latter the scattering occurs within the same Dirac cone as shown in
Fig. 3.4(d).

3.3. Carbon nanotubes

Similar to graphene, the Raman spectrum of carbon nanotubes carries a wealth of
structural information [22, 57, 83, 96]. It allows, for instance, to determine the diameter
of a carbon nanotube, its metallicity, wether it is defective or not, and under the right
circumstances even the chirality of a particular isolated nanotube. In the following I
will briefly introduce the dominant Raman active modes in CNTs and comment on the
resonant nature of their Raman response.
Figure 3.5 shows the Raman spectrum of carbon nanotubes deposited on a SiO2

substrate. In addition to the modes between 1250 cm−1 and 3400 cm−1 as for graphene,
important Raman modes for carbon nanotubes occur also in range between 100 cm−1 and
400 cm−1. The curvature of the carbon nanotube wall lifts the degeneracy of the G-peak
present in graphene. The high energy spectrum of nanotubes consist of TO and LO
phonons2, generally referred to as G− and G+, just below 1600 cm−1. The corresponding
shape and relative intensity distribution in Fig. 3.5 is typical for semiconducting carbon
nanotubes. In metallic nanotubes, the G+ or LO-mode is broadened and downshifted;
similar to graphene, these tubes have allowed electronic states belonging to bands that
cross at the K(K ′) points. They provide an additional phonon decay channel by the

2In achiral nanotubes, only one of the vibrations is allowed by selection rules.
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3.3. Carbon nanotubes

rupole mode,27,51 and cannot be explained by the dipolar
interaction model.

The shift in the plasmon extinction maximum is plotted
against the interparticle edge-to-edge separation gap for the
parallel polarization in Figure 3a. Note that the plasmon
maximum for s ) 212 nm (particles spaced enough to assume

minimal coupling) has been used as the reference for
calculation of the shift. Because these spectra are from an
ensemble of particle pairs rather than single particle pairs,
the data point for s ) 2 nm was not included due to the
significant dispersion in the lithographic fabrication of such
a small gap. The plot of the plasmon shift versus the

Figure 1. Representative SEM image of the array of nanodisc pairs used in the present study, having an interparticle edge-to-edge separation
gap of 12 nm, showing the homogeneity of the sample. The inset shows a magnified image of a single nanodisc pair clearly showing the
interparticle gap. Each nanodisc has a diameter of 88 nm and thickness of 25 nm. Images of arrays with other interparticle gaps are not
shown.

Figure 2. (a,c) Microabsorption and (b,d) DDA-simulated extinction efficiency spectra of Au nanodisc pairs for varying interparticle
separation gap for incident light polarization direction (a,b) parallel and (c,d) perpendicular to the interparticle axis.
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order of 10 3  or higher can be obtained for gap widths 
of a few tens of nanometers, as shown in Figure  3b . 
If a light emitter is located within the gap of such antenna, 
it will be excited very effi ciently due to the ability of the 
antenna to concentrate the electromagnetic energy carried 
by the incident radiation within the gap. In Section 4, we will 
see that the presence of the metallic nanostructure also mod-
ifi es the local density of photonic states within the antenna 
gap, which drastically affects the radiative properties of any 
emitter placed within its vicinity. These two independent 
mechanisms mediated by metallic NPs provide us with a very 
suitable strategy to manipulate the emission- and decay-rate 
properties of light emitters. 

 Recently, a technique based on the nonlinear responses 
of nanoantennas, that is, two-photon-excited luminescence 
(TPL), has been used in order to map the hot spots in 
nanoantennas. [  44  ]  Figure  3c  shows the TPL microscopy image 
obtained for a 500-nm-long single nanobar. Figure  3d  corre-
sponds to a composite nanoantenna in which a 50-nm gap is 
opened between two 500-nm-long nanobars. Both antennas 
were illuminated with monochromatic light (730 nm) polar-
ized along their long axis. We can observe hot spots appearing 
at the extremes of the metal structures. However, the com-
posite antenna presents an even larger fi eld enhancement at 
the gap, in very good agreement with the theoretical calcula-
tions rendered in Figure  3b . Recently, the fundamental role 
played by the gap in composite nanobar antennas has been 
studied experimentally in the infrared regime and in a new 
class of nanoscale optical switches proposed consisting of a 
plasmonic nanoantenna loaded with a photoconductive semi-
conductor material. [  46a,b  ]    

 3. Dark Modes and Fano 
Resonances 

 Due to the strong radiative character of 
oscillating electric dipoles, dipole LSPRs are 
excited very effi ciently by free-space radia-
tion (plane waves). Hence, light–matter 
interactions occurring in deeply subwave-
length structures are usually dominated 
by the electric dipole moment induced in 
the system by the incident fi elds. For this 
reason, the dipole plasmonic resonances 
(the lowest in energy) supported by metallic 
NPs are usually known as bright modes. 
However, Maxwell’s equations predict the 
existence of higher multipole modes that 
are dipole inactive and that hardly couple 
to light. In contrast to dipole bright modes, 
these higher-order resonances are termed 
dark modes. Let us emphasize that the 
only mechanism that allows the excitation 
of these higher-order resonances by free 
radiation are retardation effects, whose 
origin is the slow response of metallic 
plasma electrons to the external excitation. 
This means that higher-order modes can 

only be excited in metallic NPs big enough for these retarda-
tion effects to be relevant. Note that, even in this case, high-
multipole LSPRs only couple to incident fi elds with the same 
symmetry properties. [  47  ]  The diffi culty of probing dark modes 
through optical methods has led to the recent appearance of 
several experimental works in which these plasmonic reso-
nances are studied by means of electron-energy-loss spectros-
copy techniques. [  48,49  ]  

 The nature of dark modes can be easily understood by con-
sidering a simple system, the plasmonic excitations appearing 
in two small metallic spheres placed close to each other. The 
interaction between the LSPRs supported by each sphere 
can be interpreted by means of the hybridization model pro-
posed by Prodan and co-workers. [  50  ]  This elegant theoretical 
approach establishes the analogy between bound electromag-
netic modes in composite metallic structures and electronic 
orbitals in molecules. Molecular states result from the overlap-
ping of the atomic orbitals involved in the chemical binding. 
Similarly, LSPRs of complex structures can be described 
through the electromagnetic coupling of the modes supported 
by the isolated elements forming them.  Figure    4a   sketches a 
simple energy diagram for the hybridized modes sustained by 
a dimer comprising two metallic spheres. For deeply subwave-
length systems, the energy levels are dictated by the electro-
static interaction between the charges induced in the spheres. 
Thus, the confi guration that maximizes the distances among 
charges of opposite sign corresponds to the lowest energy 
(note that some dimer modes have even higher energy than 
the isolated ones). Importantly, as can be seen in Figure  4a , the 
lowest composite LSPR also presents the largest net dipole 
moment. This constitutes a very bright mode, as it interacts 
strongly with incoming radiation. All the higher plasmonic 

    Figure  4 .     Dark modes and Fano resonances. a) Plasmon hybridization in spherical 
nanoparticles. The dipole plasmon of individual spherical particles is three-fold degenerate 
(along the three space axes). When two particles are close enough to interact, the dimer 
formed exhibits modes that originate from the hybridization of the modes in the single 
particles. The lowest energy mode is bright, with a large dipole moment. The highest energy 
mode has zero dipolar moment and does not couple to radiation (dark mode). b) SEM image 
of a dolmen structure. Charge distribution in the dolmen when illuminated with a polarization 
c) along and d) perpendicular to the symmetry axis of the structure (c.f., the red and blue 
arrows in (b), respectively). e) Confocal extinction cross section of the dolmen for the two 
main polarizations. f) Extinction cross sections computed by fi nite-difference time-domain 
(FDTD) calculations for this structure. When the exciting fi eld is perpendicular to the symmetry 
axis of the structure, the quadrupolar (dark) mode of the dimer interacts destructively with the 
dipole of the monomer, opening a transmission window with a nearly symmetric Fano shape. 
Adapted with permission. [  6  ]  Copyright 2009, American Chemical Society.  
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of information must be taken into account, as we show in
Sec. V.

III. EXPERIMENTAL METHODS

Raman experiments were performed on HiPCO-produced
carbon nanotubes,33 suspended in D2O and wrapped by a
surfactant !SDS, sodium dodecyl sulfate, and SDBS, sodium
dodecylbenzene sulfonate".5 The samples were excited by
tunable Ti:sapphire and dye lasers and by an ArKr laser with
powers of #15 mW focused into the nanotube solution. The
scattered light was collected in backscattering geometry, dis-
persed by a Dilor XY800 triple monochromator and detected
by a charge-coupled device. The spectra were calibrated with
a neon lamp. We normalized the Raman intensity with re-
spect to the nonresonant Raman signal of CaF2 and BaF2 and
to the laser power and integration time.

IV. RESONANT RAMAN SCATTERING

In Raman scattering, the signal intensity increases
strongly when the excitation energy approaches an allowed
optical transition.19,34 If the incoming or scattered light
match the transition energy, this is called a resonance, and
the intensity is at maximum. Recording the Raman intensity
as a function of laser energy, we can determine the transition
energies Eii in carbon nanotubes. The method is suitable for
both semiconducting and metallic nanotubes, in contrast to
photoluminescence, which probes only semiconducting
tubes. By Raman spectroscopy we can directly probe the
optical transition probability for Eii, given the electron-
phonon coupling is known. In contrast to photolumines-
cence, the strength of the signal is not additionally deter-
mined by the efficiency of absorption into other electronic
bands and of relaxation into dark and luminescent states.35,36

In Fig. 2!a" we show the RBM spectra at different exci-
tation energies. We see groups of several close-by peaks hav-
ing their maximum strength one after the other, starting from
the highest frequency and resembling a laola wave.37 Each
peak will be assigned to a different nanotube chirality
!n1 ,n2"; see Sec. V. In Fig. 2!b" we show as an example the
resonance profiles of four peaks belonging to the same
group. The peak with the largest RBM frequency has its
resonance maximum at the lowest energy. The resonance en-
ergy increases as the RBM frequency decreases, and only for
the last RBM peak, the resonance energy decreases slightly
again. From the assignment !Sec. V" we find that such
groups of RBM peaks form so-called branches in the Kataura
plot. Each tube in a branch is related to its neighbor by
!n1! ,n1!"= !n1−1,n2+2".7,19

The Raman resonance profile is a superposition of an in-
coming and an outgoing resonance and can be described by34

I!El" = $ Mc

!"RBM
%2& 1

!El − Eii − i#/2"

−
1

!El − !"RBM − Eii − i#/2"&2

, !3"

where El is the laser energy, Eii the energy of the allowed

optical transition, and # the lifetime broadening of the inter-
mediate electronic states. M contains all matrix elements
and c summarizes all remaining factors. An incoming reso-
nance occurs when El=Eii, and an outgoing resonance when
El=Eii+!"RBM. If the incoming and outgoing resonances are
not resolved in the resonance profile, the resonance maxi-
mum is at #Eii+0.5 !"RBM.

Equation !3" describes Raman scattering for a single reso-
nant intermediate state Eii. This corresponds to an excitonic
transition, where the wave vector of the optically created
exciton Q=ke+kh is fixed by the momentum of the incoming
photon ki=Q#0 !ke and kh are the wave vector of the elec-
tron and hole, respectively". Excitons have been shown to
dominate optical transitions at room temperature in single-
walled carbon nanotubes.15,16 We therefore use resonant Ra-
man scattering by excitons to describe our spectra.

We now briefly comment on the modifications of the reso-
nant Raman cross section 'Eq. !3"( when considering band-
to-band transitions, i.e., uncorrelated electrons and holes. A
full discussion can be found in a review article by Thomsen
and Reich.19 For band-to-band transitions, Eii is identified
with the band gap of the resonant state instead of the Q=0

FIG. 2. !Color online" !a" RBM spectra of carbon nanotubes at
different excitation energies. The spectra are vertically offset for
clarity. From top to bottom the laser energy increases between 1.51
and 1.75 eV. Each peak arises from a different !n1 ,n2" nanotube. !b"
Resonance profiles for the peaks marked in !a" by vertical lines. The
dots are experimental data; the lines are fits according to Eq. !3".
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Figure 3.5. Raman spectrum of predominantly semiconducting carbon nanotubes for
λ = 638nm. The inset shows the mostly radial, in-phase nature of the radial breathing
mode. The inset is taken from Ref. [70].

excitation of an electron-hole pair around K. The frequency downshift of the LO-phonon
is caused by the Kohn-anomaly at the Γ-point. The vibrations cause the periodic opening
of a small band-gap, which in return lowers the electronic contribution to the phonon
energy [97, 98].

The radial breathing mode (RBM) in the low energy part of the spectrum in Fig. 3.5 is
a typical feature in the Raman spectrum of carbon nanotubes. All atoms move radially
in-phase, and the frequency ωRBM is in a good approximation connected to nanotube
diameter by ωRBM = c1/d+ c2, with several sets of parameters (c1, c2) available in the
literature [99–101].

Both the radial breathing mode and the G-mode arise from single-resonant Raman
scattering, see Sec. 3.1. The Raman intensity observed in an experiment depends strongly
on the particular combination of tube and excitation energy. Figure 3.6(a) plots the
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rupole mode,27,51 and cannot be explained by the dipolar
interaction model.

The shift in the plasmon extinction maximum is plotted
against the interparticle edge-to-edge separation gap for the
parallel polarization in Figure 3a. Note that the plasmon
maximum for s ) 212 nm (particles spaced enough to assume

minimal coupling) has been used as the reference for
calculation of the shift. Because these spectra are from an
ensemble of particle pairs rather than single particle pairs,
the data point for s ) 2 nm was not included due to the
significant dispersion in the lithographic fabrication of such
a small gap. The plot of the plasmon shift versus the

Figure 1. Representative SEM image of the array of nanodisc pairs used in the present study, having an interparticle edge-to-edge separation
gap of 12 nm, showing the homogeneity of the sample. The inset shows a magnified image of a single nanodisc pair clearly showing the
interparticle gap. Each nanodisc has a diameter of 88 nm and thickness of 25 nm. Images of arrays with other interparticle gaps are not
shown.

Figure 2. (a,c) Microabsorption and (b,d) DDA-simulated extinction efficiency spectra of Au nanodisc pairs for varying interparticle
separation gap for incident light polarization direction (a,b) parallel and (c,d) perpendicular to the interparticle axis.
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order of 10 3  or higher can be obtained for gap widths 
of a few tens of nanometers, as shown in Figure  3b . 
If a light emitter is located within the gap of such antenna, 
it will be excited very effi ciently due to the ability of the 
antenna to concentrate the electromagnetic energy carried 
by the incident radiation within the gap. In Section 4, we will 
see that the presence of the metallic nanostructure also mod-
ifi es the local density of photonic states within the antenna 
gap, which drastically affects the radiative properties of any 
emitter placed within its vicinity. These two independent 
mechanisms mediated by metallic NPs provide us with a very 
suitable strategy to manipulate the emission- and decay-rate 
properties of light emitters. 

 Recently, a technique based on the nonlinear responses 
of nanoantennas, that is, two-photon-excited luminescence 
(TPL), has been used in order to map the hot spots in 
nanoantennas. [  44  ]  Figure  3c  shows the TPL microscopy image 
obtained for a 500-nm-long single nanobar. Figure  3d  corre-
sponds to a composite nanoantenna in which a 50-nm gap is 
opened between two 500-nm-long nanobars. Both antennas 
were illuminated with monochromatic light (730 nm) polar-
ized along their long axis. We can observe hot spots appearing 
at the extremes of the metal structures. However, the com-
posite antenna presents an even larger fi eld enhancement at 
the gap, in very good agreement with the theoretical calcula-
tions rendered in Figure  3b . Recently, the fundamental role 
played by the gap in composite nanobar antennas has been 
studied experimentally in the infrared regime and in a new 
class of nanoscale optical switches proposed consisting of a 
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conductor material. [  46a,b  ]    
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 Due to the strong radiative character of 
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interactions occurring in deeply subwave-
length structures are usually dominated 
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the system by the incident fi elds. For this 
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arrows in (b), respectively). e) Confocal extinction cross section of the dolmen for the two 
main polarizations. f) Extinction cross sections computed by fi nite-difference time-domain 
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dipole of the monomer, opening a transmission window with a nearly symmetric Fano shape. 
Adapted with permission. [  6  ]  Copyright 2009, American Chemical Society.  

Px Py
rupole mode,27,51 and cannot be explained by the dipolar
interaction model.

The shift in the plasmon extinction maximum is plotted
against the interparticle edge-to-edge separation gap for the
parallel polarization in Figure 3a. Note that the plasmon
maximum for s ) 212 nm (particles spaced enough to assume

minimal coupling) has been used as the reference for
calculation of the shift. Because these spectra are from an
ensemble of particle pairs rather than single particle pairs,
the data point for s ) 2 nm was not included due to the
significant dispersion in the lithographic fabrication of such
a small gap. The plot of the plasmon shift versus the

Figure 1. Representative SEM image of the array of nanodisc pairs used in the present study, having an interparticle edge-to-edge separation
gap of 12 nm, showing the homogeneity of the sample. The inset shows a magnified image of a single nanodisc pair clearly showing the
interparticle gap. Each nanodisc has a diameter of 88 nm and thickness of 25 nm. Images of arrays with other interparticle gaps are not
shown.

Figure 2. (a,c) Microabsorption and (b,d) DDA-simulated extinction efficiency spectra of Au nanodisc pairs for varying interparticle
separation gap for incident light polarization direction (a,b) parallel and (c,d) perpendicular to the interparticle axis.
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of information must be taken into account, as we show in
Sec. V.

III. EXPERIMENTAL METHODS

Raman experiments were performed on HiPCO-produced
carbon nanotubes,33 suspended in D2O and wrapped by a
surfactant !SDS, sodium dodecyl sulfate, and SDBS, sodium
dodecylbenzene sulfonate".5 The samples were excited by
tunable Ti:sapphire and dye lasers and by an ArKr laser with
powers of #15 mW focused into the nanotube solution. The
scattered light was collected in backscattering geometry, dis-
persed by a Dilor XY800 triple monochromator and detected
by a charge-coupled device. The spectra were calibrated with
a neon lamp. We normalized the Raman intensity with re-
spect to the nonresonant Raman signal of CaF2 and BaF2 and
to the laser power and integration time.

IV. RESONANT RAMAN SCATTERING

In Raman scattering, the signal intensity increases
strongly when the excitation energy approaches an allowed
optical transition.19,34 If the incoming or scattered light
match the transition energy, this is called a resonance, and
the intensity is at maximum. Recording the Raman intensity
as a function of laser energy, we can determine the transition
energies Eii in carbon nanotubes. The method is suitable for
both semiconducting and metallic nanotubes, in contrast to
photoluminescence, which probes only semiconducting
tubes. By Raman spectroscopy we can directly probe the
optical transition probability for Eii, given the electron-
phonon coupling is known. In contrast to photolumines-
cence, the strength of the signal is not additionally deter-
mined by the efficiency of absorption into other electronic
bands and of relaxation into dark and luminescent states.35,36

In Fig. 2!a" we show the RBM spectra at different exci-
tation energies. We see groups of several close-by peaks hav-
ing their maximum strength one after the other, starting from
the highest frequency and resembling a laola wave.37 Each
peak will be assigned to a different nanotube chirality
!n1 ,n2"; see Sec. V. In Fig. 2!b" we show as an example the
resonance profiles of four peaks belonging to the same
group. The peak with the largest RBM frequency has its
resonance maximum at the lowest energy. The resonance en-
ergy increases as the RBM frequency decreases, and only for
the last RBM peak, the resonance energy decreases slightly
again. From the assignment !Sec. V" we find that such
groups of RBM peaks form so-called branches in the Kataura
plot. Each tube in a branch is related to its neighbor by
!n1! ,n1!"= !n1−1,n2+2".7,19

The Raman resonance profile is a superposition of an in-
coming and an outgoing resonance and can be described by34
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−
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, !3"

where El is the laser energy, Eii the energy of the allowed

optical transition, and # the lifetime broadening of the inter-
mediate electronic states. M contains all matrix elements
and c summarizes all remaining factors. An incoming reso-
nance occurs when El=Eii, and an outgoing resonance when
El=Eii+!"RBM. If the incoming and outgoing resonances are
not resolved in the resonance profile, the resonance maxi-
mum is at #Eii+0.5 !"RBM.

Equation !3" describes Raman scattering for a single reso-
nant intermediate state Eii. This corresponds to an excitonic
transition, where the wave vector of the optically created
exciton Q=ke+kh is fixed by the momentum of the incoming
photon ki=Q#0 !ke and kh are the wave vector of the elec-
tron and hole, respectively". Excitons have been shown to
dominate optical transitions at room temperature in single-
walled carbon nanotubes.15,16 We therefore use resonant Ra-
man scattering by excitons to describe our spectra.

We now briefly comment on the modifications of the reso-
nant Raman cross section 'Eq. !3"( when considering band-
to-band transitions, i.e., uncorrelated electrons and holes. A
full discussion can be found in a review article by Thomsen
and Reich.19 For band-to-band transitions, Eii is identified
with the band gap of the resonant state instead of the Q=0

FIG. 2. !Color online" !a" RBM spectra of carbon nanotubes at
different excitation energies. The spectra are vertically offset for
clarity. From top to bottom the laser energy increases between 1.51
and 1.75 eV. Each peak arises from a different !n1 ,n2" nanotube. !b"
Resonance profiles for the peaks marked in !a" by vertical lines. The
dots are experimental data; the lines are fits according to Eq. !3".
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Figure 3.6. (a) Resonant Raman profiles of the RBMs for several carbon nanotube
chiralities. The data was acquired from an ensemble of nanotube in solution. (b)
Resonant Raman profile of the G-peak intensity for a solution highly enriched with (10,5)
nanotubes. Panels (a) and (b) are adapted from Refs. [70] and [103], respectively.

integrated RBM intensity against the excitation energy for several nanotube chiralities.
The resonance window for these four tubes is similar and amounts to about 20meV.
Due to the small phonon energy range of 15− 45meV, incoming and outgoing resonance
overlap and cannot be separated. The G-mode, on the other hand, has a much broader
resonance window. Its comparably large energy of ∼ 200meV allows one to separate
incoming and outgoing resonance as shown in Fig. 3.6(b) for the (10, 5) tube.
In a typical experiment on few or even one nanotube it is therefore much more likely

to observe a G-mode but no radial breathing mode. A RBM verifies the presence of a
particular tube chirality. It is not sufficient, however, to rule out the contribution of
other CNTs to the G-peak that may be out of resonance with their RBMs. This fact is
sometimes neglected in literature, e.g. in Ref. [102]. In analogy to graphene, the dispersive
D-mode in nanotubes is activated by a defect and arises from a double resonant Raman
process. The 2D-mode is double resonant, independent of the defect density and requires
two phonons for momentum conservation.
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3.4. Plasmon-enhanced Raman scattering

3.4. Plasmon-enhanced Raman scattering

Plasmon-enhanced Raman scattering (PERS) describes the enhancement of Raman signal
by localized surface plasmons that arise from well defined metal nanostructures. The
process is mediated by the enhanced electromagnetic near-field produced by the structure.
In this thesis, more specifically, PERS describes the enhancement of Raman signals of
graphene and carbon nanotubes at hotspots in the gap of isolated plasmonic dimers. The
process itself is considered to consist of three separate steps:

• Enhanced absorption If the incident radiation of frequency ω1 described by the
field E0(ω1) matches the resonance of a localized surface plasmon ~ωLSPR, the
near-field at the corresponding hotspot is strongly enhanced. The absorption of an
object at the hotspot increases by the factor fabs = |E(ω1)|/|E0(ω1)|2.

• Raman scattering The Raman scattering process occurs as described in Sec. 3.1.
The Raman intensity IR scales linear with fabs. This assumes that the Raman tensor
remains unchanged, which is not necessarily the case for chemical enhancement.

• Enhanced emission If the scattered field E(ω2) matches the resonance of a
localized surface plasmon, it couples to the plasmonic structure and the emitted
light is enhanced in the far field. The intensity of the Raman scattered light increases
by the factor fem = |E(ω2)|/|E0(ω2)|2.

The idea behind enhanced emission is that the radiative dipole representing the Raman
scattered light is directly affected by the nearby metallic structures. They directly enhance
the energy extracted from the emitting dipole [104]. The magnitude of both enhanced
absorption and emission depend on the exact position of the Raman scatterer within the
hotspot and its orientation (if applicable, e.g. for molecules and carbon nanotubes).
It is instructive to discuss different scenarios for the processes describes above. For

small phonon energies, and both the incident and the scattered light falling within the
spectral width of the localized surface plasmon resonance. The Raman enhancement
IPERS scales with the fourth power of the electric field amplitude as

IPERS = fabs × fem × IR =
|E(ω)|4
|E0(ω)|4 × IR, (3.12)

with ω ≈ ωLSPR ≈ ω1 ≈ ω2. For larger phonon energies, e.g. the 2D-mode of graphene,
this is not necessarily the case. Enhanced absorption and emission are two separate
scenarios, which can be independently addressed by the choice of excitation energy relative
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3. Raman scattering

to the LSPR. It is worth noting that the enhancement of both absorption and emission is
treated in the classical framework, whereas Raman scattering is described in the quantum
mechanical picture. In the following I will briefly discuss several works related to PERS
of graphene and carbon nanotubes, which are representative for the state of the art in
the field.

3.4.1. PERS of graphene

Graphene is a newcomer in the field of surface- and plasmon-enhanced Raman scattering.
In a seminal work in 2010, Schedin et al. made use of graphene as a prototype two-
dimensional test material for the first time [17]. Dense arrays of gold nanodiscs were
fabricated on top of mechanically exfoliated graphene, Fig. 3.7(a), claiming enhancement
of the order of 35. Using several laser lines with different excitation wavelengths, the
authors probed different regimes of PERS and concluded that the enhanced signal follows
the fourth power of local field amplitude as discussed in the previous section. The same
group realized much higher enhancement of up to a factor of 1000 for graphene deposited
on top of plasmonic dimer arrays [105], see Fig 3.7(b). Fang et al. sandwiched complex
plasmonic structures between two layers of graphene, and observed Raman enhancement
from the visible to the near infrared region [18]. These studies demonstrated the feasibility
of graphene as a two-dimensional probe for plasmon-enhanced Raman scattering over a
broad range of wavelengths. Additionally, they showed that graphene can be interfaced
with plasmonic structures in any desired stacking order. It is difficult to compare the

a b c

Figure 3.7. (a) Arrays of Au plasmonic nanodiscs fabricated on top of mechanically
exfoliated graphene (blue). (b) Schematics of graphene placed on top of closely spaced
plasmonic dimers. (c) Scanning electron microscopy image of graphene-oligomer-graphene
sandwich. The nanostructures are fabricated on top of the bottom graphene layer, followed
by the deposition of the top graphene layer. The images in (a), (b), and (c) are adapted
from Refs. [17, 18, 105], respectively.
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3.4. Plasmon-enhanced Raman scattering

reported enhancement factors amongst each other: All measurements were performed on
ensembles of nanostructures and the number of plasmonic hotspots per unit area was not
factored in.

3.4.2. PERS of carbon nanotubes

Plasmon-enhanced Raman scattering by carbon nanotubes in a controlled manner as
defined in the introduction and at the beginning of this section has not been realized
prior to the works presented in this thesis. The interface of CNTs and enhanced near-field
intensities was realized in various ways, mostly by tip-enhanced Raman spectroscopy
(TERS). Here, the end of a metal coated tip, e.g. that of an atomic force microscope, is
illuminated and acts as the active plasmonic element [106–109].
Besides TERS, the interface of tubes and plasmonic particles was realized by Chu et

al., who grew nanoparticles on aligned tubes by electroless deposition [110]. Defects in
the atomic structure of the nanotubes served as seed locations for growth, which led to a
dense but random Au nanoparticle decoration of the CNT surface as shown in Fig. 3.8(a).
Raman spectra of CNTs with different grades of nanoparticle coverage are presented in
Fig. 3.8(b). The authors concluded that compared to pristine nanotubes (1), decoration
with few isolated nanoparticle (2), and clusters (3) subsequently increased Raman intensity
by plasmonic enhancement. In a similar study, Assmus et al. investigated the effect of an
isolated Au nanoparticle dimer, Fig. 3.8(c), which led to a 30-fold enhancement of the
Raman signal of a carbon nanotube [111, 112].

An alternative approach to realize PERS by carbon nanotubes was suggested by Takase
et al. [102], who dispersed carbon nanotubes on top of gold nanopyramids. The authors
claimed that the tubes would fall in nanometer sized gaps between the pyramids upon
deposition, as schematized in Fig. 3.8(d), and deduced a near-field induced breakdown
of optical selection rules. It requires a vivid imagination, however, to see how the SEM
image provided within the same panel confirms the suggested arrangement.
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a b c

that in the right panel is the E2
þ mode at 1,600 cm21. In contrast to

the Raman signals of bundled SWNTs deposited on a flat glass
substrate (Fig. 2c), well-resolved single peaks are observed for the
SWNT in the nanogap, allowing the successful detection of a
SERS spectrum originating from an individual SWNT18,19. The
strong enhancement at the nanogap makes it possible to easily
detect the Raman signal of isolated SWNTs, even for perpendicular
polarization. The Raman intensity of a SWNT for light polarized
perpendicular to the tube axis is very weak and unclear with an
unenhanced EM field. With the very intense EM field, however,
the Raman intensity in the nanogap is enhanced by a factor of at
least !1 × 102 in comparison with that of bundled SWNTs
on glass. This strong enhancement makes it possible to easily
detect the Raman signal of isolated SWNTs, even with
perpendicular polarization.

The relationship between the optical transitions and chiral vector
of an isolated SWNT can be represented using a Kataura plot20.
Figure 3 shows Kataura plots for the Dn¼ 0 (Fig. 3a), Dn¼+1
(Fig. 3b) and Dn ¼+2 (Fig. 3c) transitions. Along the horizontal
dashed line (indicating an incident-field energy of 1.58 eV), the
observed RBM frequencies excited by light polarized parallel and
perpendicular to the tube axis are marked by black and red
circles, respectively. The green symbols denote the calculated
exciton energies, and other coloured symbols denote the observed
exciton energies21,22. Quasi-dark22 and bright excitons23 of the
E12

S (E21
S ) transition are also shown in Fig. 3b. The electronic

transitions cannot always be specified using a Kataura plot
because some ES(M)

nvnc
transitions provide similar excitation energies.

However, the electronic transitions can be determined from the
spectral profile of the G-band.

We focus on the SERS spectra around vRBM ≈ 160 cm21. Some
SERS signals, as shown in the upper spectrum of Fig. 4, exhibit a
Breit–Wigner–Fano lineshape, which is characteristic of metallic
SWNTs24. Furthermore, the peaks of the E2 mode are not present,
indicating that the incident polarization is parallel to the tube axis
where the allowed transitions are those satisfying Dn¼ 0.
Therefore, the corresponding resonant excitation can be assigned

to the E11
M transition by referring to Fig. 3a. It is remarkable that

several SWNTs exhibit very sharp E2-mode peaks; one example is
shown in the lower spectrum of Fig. 4. This feature indicates that
the excitation-field polarization is perpendicular to the axis of a
semiconducting SWNT. According to the conventional selection
rules, the Dn¼+1 transitions are allowed in this case. However,
the RBM frequency relevant to the E12

S (E21
S ) transition with

1.58 eV is spectrally far from vRBM ≈ 160 cm21 (Fig. 3b).
Although the E13

S and E31
S transitions satisfy Dn¼+1 and are ener-

getically close, the corresponding SERS and photoluminescence
excitation spectra would not be detectable via the E13

S (E31
S ) excitons

(Supplementary Section S3).
As a remaining possibility for the optical electronic transition

explaining the E2-mode peaks, we consider the transitions forbidden
by conventional selection rules. The selection rules are broken when
the incident field has a significantly high gradient. Such a break-
down has been theoretically demonstrated for single-molecule exci-
tations in a nanogap8,9 and has recently been simulated for excitons
in a metal-tipped nanorod10,11. However, to date, no experimental
confirmation has been reported. Here, the SERS spectrum in ques-
tion is found to occur via the resonant E14

S (E41
S ) (Dn ¼+2) tran-

sitions according to the energetic considerations in Fig. 3c. These
transitions, indicated by the red arrows in Fig. 1, are optically forbid-
den by conventional selection rules. This would therefore constitute
the first observation of selection-rule breakdown.

To confirm selection-rule breakdown in the present study, we
calculated the absorption spectra of a semiconducting (15, 7)
SWNT lying in the nanogap of a metallic nanodimer, as shown in
Fig. 5a. We used the newly developed extended discrete dipole
approximation (EDDA) method, which demonstrates the micro-
scopic spatial interplay between the electric field and molecular
wavefunctions (‘Theoretical method’). As seen in Fig. 5a, the
absorption spectra of the SWNT in the presence of the nanogap
are quite different from those in its absence. Both bright and
quasi-dark states for the E12

S (E21
S ) (Dn ¼+1) transitions increase

by a factor of !1 × 102, thereby explaining the signal enhancement
in the present experiment. Here, we should note that the E14

S (E41
S )
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Figure 2 | Enhancement in Raman intensity for an SWNT in a nanogap. a, Left: SEM images of well-defined gold nanodimers. Right: illustration of an SWNT
lying in the nanogap of a dimer and the enhanced field polarization. b, SERS spectra showing the RBM mode (left: vRBM¼ 239 cm21) and G-band (right:
E2 mode at v¼ 1,600 and 1,531 cm21) of an isolated (9, 5) SWNT in the nanogap. The applied-field polarization is parallel to the long axis of the nanodimer
(u ¼08). c, Typical resonant Raman scattering spectrum of bundled SWNTs dispersed on flat glass.
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surface plasmons decays very rapidly from the NP surface.
Accordingly, the Raman signal is only enhanced for mol-
ecules in the range of just a few nanometers from the particle
surface. Assuming that only a few % of the CNT within the
diffraction limited laser spot !d"500 nm# is enhanced by
the NP, the local enhancement would be two to three om’s,
consistent with theory.19

Raman spectra acquired from another SWCNT, deco-
rated with a small agglomeration of gold NPs, are presented
in Fig. 2. Using the plot of Kataura et al. from Refs. 16 and
17, the measured RBM position !RBM=221 cm−1 and
"exc=568 nm, this SWCNT is assigned to the metallic !13,1#
tube. The broadened G line displayed by this nanotube is
indicative of a BWF resonance, and consistent with a metal-
lic character. The effective Raman intensity increase is found
to be approximately three om’s upon particle decoration. Several other SWCNTs decorated by NP agglomerates of

similar size yielded enhancement factors between one and
four om’s, independently of the electronic properties of the
tubes. This observation is in accordance with the existence of
enhanced electromagnetic fields inside cavities formed be-
tween NPs with a separation of the order of a few
nanometers.20 For instance, from electromagnetic theories it
is predicted that the enhancement in the center of particle
dimers with an interparticle distance of just a few nanom-
eters can be several om’s higher than at the surface of indi-
vidual particles, albeit they are also very sensitive to the
geometry of the aggregate.19

The number and arrangement of the NPs on the tubes
exerted a profound influence on the Raman response, as ap-
parent from Fig. 3, which plots the polarization angle depen-
dence of RBM and G line !maximum intensity component at
1590 cm−1# for the SWCNTs of Figs. 1 and 2. It is notewor-
thy that the other components of the G line !at 1570 and
1550 cm−1# showed similar behavior as the 1590 cm−1 com-
ponent. We first address NT1 that bears an isolated NP. The
data gained in !V-# configuration $Figs. 3!a# and 3!b#% pro-
vide evidence that the tube absorbs most strongly when the
polarization vector of the incoming light is parallel to the
tube axis, independent of the presence of the NP. This finding

FIG. 1. Raman spectra recorded at two positions !circles# along a SWCNT
!NT1#. !a# Comparison between the spectra taken on the bare tube !solid
line# and over a gold particle deposited onto the tube !dashed line# reveals
an enhancement of the G line and RBM by a factor of &4. Substrate peaks
are labeled by *. !b# Magnified spectra in the RBM range. !c# AFM image
of the investigated tube. The location of the nanotube has been highlighted
by a dashed line. !d# Raman G-line image of the particle-decorated tube
segment.

FIG. 2. !a# Raman spectra of a second SWCNT !NT2#, acquired on a bare
tube section !solid line# and above an agglomeration of several gold NPs
!dashed line#. Substrate peaks are labeled by *. In the enhanced spectrum,
the G line and RBM !b# appear with two om’s increased intensity. !c# AFM
image of the nanotube with a scanning electron microscopy inset of the
agglomeration. The nanotube is highlighted by a dashed line. !d# G-line
Raman image used to localize the CNT’s bare and modified regions.

FIG. 3. !Color# Normalized polarization dependence of the RBM and G-line
intensity measured on NT1 and NT2. For NT1, the bare tube !black !# is
compared with a section modified by a single gold NP !red !#. The NT2
spectra were acquired above two different gold NP agglomerations !green "
and blue !# on the nanotube, which differ in the geometrical arrangement of
the particles. For NT1 !black and red#, the solid lines are fits to the depen-
dencies expected by theory, whereas for NT2 !green and blue# a straight
connection of the data points is presented, since there is no model available.

173109-2 Assmus et al. Appl. Phys. Lett. 90, 173109 !2007"
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of the Supporting Information). From an organometallic chemi-
cal point of view, it is possible to form rather stable d-π
complexes of PdCl2 with the sidewalls of carbon nanotubes
when exposing SWCNTs in the solution of Na2PdCl4.40-42 As
shown in Figure 4b, after being immersed in 5 mM Na2PdCl4
solution for 2 min, PdCl2 nanoparticles with a uniform size of
6.8 ( 1.8 nm and a high density of over 30 NPs/µmSWCNT
were chemically adsorbed on SWCNTs. The nanoparticles were
then reduced by H2 to Pd with a smaller size of 5.7 ( 1.8 nm
and a lower density of about 25 NPs/µm SWCNT. The Pd
nanoparticles were used as the seeds for further gold deposition,
resulting in gold nanoparticles with a size of 54.7 ( 8.5 nm

and a high density of about 12 NPs/µm SWCNT (Figure 4c
and d). The average interparticle distance of the adjacent gold
nanoparticles was smaller than 30 nm, which was smaller than
the size of nanoparticles. Here, ∼85% of the nanoparticles were
deposited on SWCNTs. It is not as high as that in the gold-
seeded process; however, it is still satisfying. The size and
density of the deposited particles could also be well controlled
(Figures S4, S5, and S6 in the Supporting Information). For
example, when the adsorption time in the seed deposition step
was adjusted from 1 to 3 min, the size of the gold nanoparticles
decreased from 88 ( 35 to 32 ( 11 nm, while the density of
gold nanoparticles increased from 3 to 13 NPs/µm SWCNT,
and thus the average interparticle distance decreased from 245
to 42 nm.

3. In Situ SERS Measurement of Every Individual SWCNT
on Substrates. As shown above, gold nanoparticles with well-
controlled size and small interparticle distance can be decorated
uniformly on all SWCNTs with our methods. The nanoparticles

(40) King, R. B., Ed. Encyclopedia of Inorganic Chemistry; John Wiley
& Sons: West Sussex, 1994; Vol. 6.

(41) Simonov, P. A.; Troitskii, S. Y.; Likholobov, V. A. Kinet. Catal. 2000,
41, 255–269.

(42) Simonov, P. A.; Romanenko, A. V.; Prosvirin, I. P.; Moroz, E. M.;
Boronin, A. I.; Chuvilin, A. L.; Likholobov, V. A. Carbon 1997, 35,
73–82.

Figure 3. SEM images of the high-density SWCNT arrays on quartz (a) before and (b) after gold decoration based on gold seeds via repeating both the gold
seed deposition process and the seeded growth process several times. Inset of (b) is the magnified image.

Figure 4. AFM topographical images of (a) the as-grown high-density SWCNT arrays on quartz and (b) the PdCl2/SWCNT composites. (c) AFM topographical
image and (d) SEM image of the gold/SWCNT composites obtained by seeded growth based on palladium seeds. Inset in (d) is the magnified image.
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that in the right panel is the E2
þ mode at 1,600 cm21. In contrast to

the Raman signals of bundled SWNTs deposited on a flat glass
substrate (Fig. 2c), well-resolved single peaks are observed for the
SWNT in the nanogap, allowing the successful detection of a
SERS spectrum originating from an individual SWNT18,19. The
strong enhancement at the nanogap makes it possible to easily
detect the Raman signal of isolated SWNTs, even for perpendicular
polarization. The Raman intensity of a SWNT for light polarized
perpendicular to the tube axis is very weak and unclear with an
unenhanced EM field. With the very intense EM field, however,
the Raman intensity in the nanogap is enhanced by a factor of at
least !1 × 102 in comparison with that of bundled SWNTs
on glass. This strong enhancement makes it possible to easily
detect the Raman signal of isolated SWNTs, even with
perpendicular polarization.

The relationship between the optical transitions and chiral vector
of an isolated SWNT can be represented using a Kataura plot20.
Figure 3 shows Kataura plots for the Dn¼ 0 (Fig. 3a), Dn¼+1
(Fig. 3b) and Dn ¼+2 (Fig. 3c) transitions. Along the horizontal
dashed line (indicating an incident-field energy of 1.58 eV), the
observed RBM frequencies excited by light polarized parallel and
perpendicular to the tube axis are marked by black and red
circles, respectively. The green symbols denote the calculated
exciton energies, and other coloured symbols denote the observed
exciton energies21,22. Quasi-dark22 and bright excitons23 of the
E12

S (E21
S ) transition are also shown in Fig. 3b. The electronic

transitions cannot always be specified using a Kataura plot
because some ES(M)

nvnc
transitions provide similar excitation energies.

However, the electronic transitions can be determined from the
spectral profile of the G-band.

We focus on the SERS spectra around vRBM ≈ 160 cm21. Some
SERS signals, as shown in the upper spectrum of Fig. 4, exhibit a
Breit–Wigner–Fano lineshape, which is characteristic of metallic
SWNTs24. Furthermore, the peaks of the E2 mode are not present,
indicating that the incident polarization is parallel to the tube axis
where the allowed transitions are those satisfying Dn¼ 0.
Therefore, the corresponding resonant excitation can be assigned

to the E11
M transition by referring to Fig. 3a. It is remarkable that

several SWNTs exhibit very sharp E2-mode peaks; one example is
shown in the lower spectrum of Fig. 4. This feature indicates that
the excitation-field polarization is perpendicular to the axis of a
semiconducting SWNT. According to the conventional selection
rules, the Dn¼+1 transitions are allowed in this case. However,
the RBM frequency relevant to the E12

S (E21
S ) transition with

1.58 eV is spectrally far from vRBM ≈ 160 cm21 (Fig. 3b).
Although the E13

S and E31
S transitions satisfy Dn¼+1 and are ener-

getically close, the corresponding SERS and photoluminescence
excitation spectra would not be detectable via the E13

S (E31
S ) excitons

(Supplementary Section S3).
As a remaining possibility for the optical electronic transition

explaining the E2-mode peaks, we consider the transitions forbidden
by conventional selection rules. The selection rules are broken when
the incident field has a significantly high gradient. Such a break-
down has been theoretically demonstrated for single-molecule exci-
tations in a nanogap8,9 and has recently been simulated for excitons
in a metal-tipped nanorod10,11. However, to date, no experimental
confirmation has been reported. Here, the SERS spectrum in ques-
tion is found to occur via the resonant E14

S (E41
S ) (Dn ¼+2) tran-

sitions according to the energetic considerations in Fig. 3c. These
transitions, indicated by the red arrows in Fig. 1, are optically forbid-
den by conventional selection rules. This would therefore constitute
the first observation of selection-rule breakdown.

To confirm selection-rule breakdown in the present study, we
calculated the absorption spectra of a semiconducting (15, 7)
SWNT lying in the nanogap of a metallic nanodimer, as shown in
Fig. 5a. We used the newly developed extended discrete dipole
approximation (EDDA) method, which demonstrates the micro-
scopic spatial interplay between the electric field and molecular
wavefunctions (‘Theoretical method’). As seen in Fig. 5a, the
absorption spectra of the SWNT in the presence of the nanogap
are quite different from those in its absence. Both bright and
quasi-dark states for the E12

S (E21
S ) (Dn ¼+1) transitions increase

by a factor of !1 × 102, thereby explaining the signal enhancement
in the present experiment. Here, we should note that the E14

S (E41
S )
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Figure 2 | Enhancement in Raman intensity for an SWNT in a nanogap. a, Left: SEM images of well-defined gold nanodimers. Right: illustration of an SWNT
lying in the nanogap of a dimer and the enhanced field polarization. b, SERS spectra showing the RBM mode (left: vRBM¼ 239 cm21) and G-band (right:
E2 mode at v¼ 1,600 and 1,531 cm21) of an isolated (9, 5) SWNT in the nanogap. The applied-field polarization is parallel to the long axis of the nanodimer
(u ¼08). c, Typical resonant Raman scattering spectrum of bundled SWNTs dispersed on flat glass.
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a

b

c

d

Figure 3.8. (a) AFM image of CNTs decorated with gold nanoparticles. (b) Raman
spectra of tubes in (a). Compared to pristine tubes (1), the Raman intensity increases
for few nanoparticles (2), and is maximal for nanoparticles clusters (3). The isolated
CNT in (c) shows the highest enhancement where it is interfaced with a nanoparticle
dimer, see inset. (d) Schematic and scanning electron microscope picture of a nanotube
apparently placed in-between two gold nanopyramids. Panels (a) and (b) are adapted
from Refs. [110], and panels (c) and (d) are adapted from References [111] and [102],
respectively.
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4 | Papers forming this thesis

1. Polarized Plasmonic Enhancement by Au Nanostructures Probed through Raman
Scattering of Suspended Graphene.
S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, S.A. Maier,
A. Vijayaraghavan, and S. Reich.
Nano Letters 13(1), 301-308 (2013).

I performed the AFM and Raman measurements, interpreted the data and wrote the
manuscript. All authors discussed the data and commented on the manuscript. The
project was conceived by A. Vijayaraghavan, S. Reich, and me. R. Fernandez-Garcia
and S.A. Maier performed the numerical simulations and dark-field measurements.
A. Oikonomou and Fred Schedin fabricated the nanostructures. A. Oikonomou
performed SEM characterization, and produced and transfered graphene on top of
the structures.

2. Strained graphene as a local probe for plasmon-enhanced Raman scattering by gold
nanostructures.
S. Heeg, A. Oikonomou, R. Fernandez-Garcia, S.A. Maier, A. Vijayaraghavan, and
S. Reich.
Physica Status Solidi - Rapid Research Letters 7(12), 1067-1070 (2013).

I performed the AFM and Raman measurements, interpreted the data and wrote the
manuscript. All authors commented on the manuscript. The project was conceived
by me together with S. Reich. A. Oikonomou fabricated the nanostructures and
produced and transfered graphene on top of the structures.

3. Plasmon-Enhanced Raman Scattering by Carbon Nanotubes Optically Coupled with
Near-Field Cavities.
S. Heeg, A. Oikonomou, R. Fernandez-Garcia, C. Lehmann, S.A. Maier,
A. Vijayaraghavan, and S. Reich.
Nano Letters 14(4), 1762-1768 (2014).
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4. Papers forming this thesis

I performed the AFM and Raman measurements, interpreted the data and wrote
the manuscript. S. Reich and I conceived the study. A. Vijayaraghavan in I
designed and planned the dielectrophoretic deposition on top of plasmonic struc-
tures. A. Oikonomou fabricated the nanostructures, deposited the nanotubes and
performed SEM characterization. R. Fernandez-Garcia and S.A. performed the
numerical simulations. R. Fernandez-Garcia and I performed dark-field measure-
ments. C. Lehmann and I performed conductive-AFM measurements. All authors
commented on the manuscript.

4. Plasmon-enhanced Raman scattering by suspended carbon nanotubes.
S. Heeg, N. Clark, A. Oikonomou, A. Vijayaraghavan, and S. Reich.
Physica Status Solidi - Rapid Research Letters 8(9), 785-789 (2014).

A. Oikonomou fabricated the nanostructures and deposited the nanotubes. I
performed AFM and Raman measurements, interpreted the data and wrote the
manuscript. N. Clark and A. Vijayaraghavan assisted in the interpretation of AFM
data. All authors commented on the manuscript. I conceived the experiment
together with S. Reich.
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5 | Connection of the papers

In this thesis I aimed to devise, realize and characterize an interface between graphene
and plasmonic structures that allows to address the fundamentals of plasmon-enhanced
Raman scattering. Graphene is the ideal material to study these fundamentals. The
Raman cross section is constant and independent of the wavelength and the polarization of
incident and scattered light. This suitability has been utilized to study PERS or plasmon
enhanced sensing in several recent works as discussed in more detail in Sec. 3.4.1.

We chose Au nanodimers as the plasmonic core unit. The plasmonic excitations of
the nanodimers are well understood and can be treated approximately analytically and
numerically. Further advantages are the reproducible fabrication and the possibility to
combine experimental techniques (Raman scattering, dark field spectroscopy, atomic
force and electron microscopy). The localized surface plasmon resonance of a dimer has
pronounced wavelength and polarization dependencies, and the enhanced near-field resides
predominantly in the dimer gap. We reasoned that these properties would also govern
the response of the coupled system as seen in plasmon-enhanced Raman scattering. The
combination of graphene and a plasmonic dimer should therefore allow one to address the
very fundamental aspect of light-matter interaction by PERS.

Dimers consisting of two closely spaced Au nanodiscs (diameter 100nm, gap 30nm,
height 45nm) were fabricated on a flat SiO2 surface and covered with mechanically
exfoliated graphene, Fig. 5.1(a). The distance between two dimers was so large such that
each dimer acts as an isolated plasmonic structures without the collective resonances.
Signal enhancement would only arise from one dimer at the time. We decided to stack
graphene on top of the dimers and not the other way around for two primary reasons: it
allows to probe the interaction at the nanodisc surfaces and it does not restrict processing
steps during dimer fabrication, which may otherwise damage the graphene membrane.

The configuration of the graphene layer placed on top of the dimer is schematically
depicted in Fig. 5.1(a). Graphene is suspended across the dimer gap and between the
nanodisc edges and the substrate. The corresponding three-dimensional height image
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AFM data on structure before and after graphene deposition
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Figure 1: (a) 3D-AFM profile of the structure investigated. In (b) a different structure before
graphene deposition is shown. Comparing height profiles across the gap in x-direction before (d)
and after graphene deposition (c) confirms that graphene is suspended in the gap and between
the edges of the structures and the substrate. While the AFM-data was obtained using different
setups - and therefore different tips - the comparison between the height profiles rules out any
misinterpretation with respect to the observed topography
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Figure 5.1. (a) Schematic view of graphene covered plasmonic dimer. (b) 3D Topography
of graphene covered dimer as seen by AFM. (c) PERS spectrum of strained graphene on
top of the dimers (red) and reference (black). Adapted from Ref. [20].

obtained by AFM given in Fig. 5.1(b). Further away from the dimer, the graphene adheres
to the surface of the substrate. This adhesion has two important effects: First, it pulls
the suspended graphene in the gap of the dimer, the location of the strongly enhanced
near-field. Second, it elongates the graphene, thereby inducing strain in suspended parts
of the membrane, reaching maximum strain at the gap.

The combination of the two effects is evident from Fig. 5.1(c), where I compare the
plasmon-enhanced Raman spectrum upon resonant excitation of the plasmonic dimer (red)
to a reference spectrum (black). The signal enhancement arises exclusively for graphene
under strain. The strain softens the vibrational frequency of the phonons. Graphene
phonons at the plasmonic hotspot differ in energy from other areas and act as a local
probe. This probe is naturally placed in the vicinity of the hotspot, as it is produced by
the nanostructure itself. The Raman spectrum upon enhancement in Fig. 5.1(c) contains
a twofold set of information; one from the surrounding area and one spectrally redshifted
set of peaks arising from the hotspot. The absence of a downshifted D-peak confirms the
structural integrity of the graphene membrane. Both the G- and 2D′ - peaks allow the
estimation of the strain at the plasmonic hotspot [89, 113]. The 2D peak is suitable to
quantify the experimentally observed enhancement due to its high intrinsic intensity as
well as a comparably large strain-induced shift rate.

The high energy of the 2D peak (≈ 320meV) allows one to investigate the regimes of
both plasmon-enhanced absorption and emission separately as discussed in Sec. 3.4.1. The
enhancement displayed in Fig. 5.1(c) represents enhanced absorption, in agreement with
simulations and experimental dark field spectra of our dimer structures. Surprisingly we
did not observe enhanced emission for excitation energies for which the 2D-peak overlaps
with the plasmonic resonance of the dimer structure. While this does not affect any of
the results in this thesis, the lack of enhanced emission is of high interest and subject of
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ongoing studies, which I will briefly comment on in Sec. 6.
We verified the nature of the enhancement by a combination of spatially resolved,

polarization and excitation energy dependent measurements. As the intrinsic Raman
intensity of graphene remains unaffected, any changes in intensity are related to the
plasmonic enhancement of Raman scattering by the dimer structure. Fig. 5.2 shows a
line scan across the dimer structure with the polarization of the excitation set along the
dimer axis. It shows that the enhancement arises from a small area in the gap region,
which harbors a strongly enhanced light field, Sec. 2.3. Away from this area, the observed
Raman intensities dropped immediately. From simulations of the spatial distribution
of the near-field intensity we estimated the area of the enhancement. Factoring in this
localization we were able to confirm an overall PERS enhancement of the order of 103.
We lifted the localization of the enhancement by choosing the polarization of the

excitation (and emission) perpendicular to the dimer axis. In this regime the nanodiscs
are not coupled, the overall near-field enhancement drops, and the gap in-between them
is free of any enhancing near-field. The discs act as two independent, spatially separated
sources of plasmonic particles, which was reflected by a broadened spatial profile of
the Raman intensity. The overall enhancement dropped by a factor of 20 compared to
the coupled case, which is qualitatively expected as discussed in Sec. 2.3. Rotating the

Raman line scan

scan 

Sebastian Heeg Freie Universität Berlin

Raman scattering of suspended graphene enhanced by plasmonic Au nanostructures

Figure 5.2. Line scan across the dimer with the increased intensity arising exclusively
for downshifted vibrational frequencies from a small area. Taken from the Supporting
Information of Ref. [20].
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polarization of the excitation is hence equivalent to switching "on" and "off" the enhanced
near-field in the plasmonic cavity formed by the nanodisc dimer.
The final piece of evidence supporting our approach was the Raman response of the

graphene-covered dimer upon excitation away from the dimer resonance. No enhancement
occurred, and no effect of the polarization on the spatial distribution of the measured
Raman signals was observed. This confirmed that the previously observed polarization
dependence and spatial distribution of the enhanced Raman signals arose exclusively from
the plasmonic response of the dimer structure. The proof of principle results introducing
the use of strained graphene to probe plasmonic enhancement from Au nanodimers and
the apparent lack of enhanced emission was published in the first of the papers comprising
this thesis, Heeg et al., Nano Letters 13(1), 301-308 (2013).
The next logical step was to extend these pioneering results to establish the use of

strained graphene as a probe for plasmon-enhanced Raman scattering. To achieve this, we
investigated three alternative plasmonic nanoantenna designs as schematized in Fig. 5.3(a).
Each of them represents a different class of plasmonic structure. Triple nanodiscs host
enhanced near-fields in the two gaps in-between them and can be regarded as an example
for complex plasmonic structures with more than one hotspot. The double rods form a
dimer whose gap has a high aspect-ratio and sharp edges. The single nanodisc, finally,
represents a gapless plasmonic structure and, in a broader sense, isolated nanoparticles of
arbitrary shape.
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fields, we observe a peak separation of up to 85 cm–1 for 
the 2D-mode. The shifted Raman signals serve as a local 
probe for plasmonic enhancement. As the nano structures 
themselves modify graphene, this probe is always localized 
where enhanced near-fields occur. Our results indicate that 
any plasmonic structure of choice may be conveniently 
characterized by our approach.  

 
2 Fabrication and characterization Plasmonic 

structures of different geometrical shapes and sizes were 
exposed by electron-beam lithography in a LEO 1530 
Gemini FEG SEM and Raith Elphy Plus Lithography Sys-
tem with a laser interferometer stage. Metallization was 
carried out by evaporating 3 nm Cr + 40 nm Au followed 
by lift-off in an ultrasonic bath. We characterized the plas-
monic properties of the structures shown in Fig. 1 using 
polarized dark field spectroscopy (not shown). The maxi-
mum scattering cross section, which is closely related to 
localized surface plasmon resonance [12], was located at 
around 600 nm for all geometries investigated, in agree-
ment with Refs. [13–15]. Graphene flakes were prepared 
on p-doped Si substrates with a 300 nm surface of SiO2 by 
micromechanical cleavage, followed by accurate transfer 
on top of the plasmonic structures. A polymer was used to 
coat the graphene flake for supporting it during transfer on 
the target substrate using the so-called wet transfer method 
[16]. Structural characterization after graphene transfer 
was performed using a Park Systems XE 150 AFM. Ra-
man measurements were performed on a single grating Ho-
riba XploRA spectrometer in backscattering configuration 
using a 100× objective. The laser power was kept below 
1 mW under the objective. Spectra were acquired using la-
ser excitations of 532 nm and 638 nm and calibrated using 
a neon lamp. Spatially resolved Raman measurements 
were conducted using a piezo stage. 

  
3 Results and discussion Figure 1 shows the topog-

raphy of graphene placed on top of a line of three closely 
placed nano disks (TD) forming two cavities in (a), double 
rods (DR) forming a plasmonic cavity in (b) and a single 
nano disk (SD) in (c). The dimensions of the structures are 
given within the corresponding panels. Height profiles 
along the x-direction crossing the center of each structure 

are given in Fig. 1(d). Graphene is suspended between the 
edge of the structures and the substrate over a range of 
a150 nm, and additionally over the cavities for (a) and (b). 
Compared to a flat sheet, the graphene on top of the anten-
nas is elongated; in combination with the strong adhesion 
to the substrate [11], the suspended graphene on and 
around the structures is under tensile strain. For the struc-
ture in Fig. 1(c), the maximum elongation of the graphene 
sheet is located at the centre of the nano disk. Moving 
away from the center along the x-axis, the relative elonga-
tion with respect to the y-axis becomes smaller and vice 
versa. Therefore, we expect the strain to be highest on top 
of the structures, in the gaps and at their edges, decreasing 
outward. For (a) and (b), this is supported by the graphene 
being pulled few nanometers in the gaps, as visible in (d).  

For nano disks such as the one in Fig. 1(c), the near-
field enhancement is predominantly localized at the parti-
cles edges [15]. If the distance between two or more plas-
monic particles becomes small, they couple via near-field 
interaction. Upon excitation polarized along the axis con-
necting the structures, the incoming radiation is routed into 
sub-wavelength volumes in the corresponding gaps [17].   

The plasmonic near-fields naturally interact with 
strained graphene, as the nanostructures themselves locally 
induce the strain within the graphene cover layer. Tensile 
strain in crystals leads to phonon softening. The corre-
sponding vibrational frequency downshift can be moni-
tored with Raman spectroscopy. In the following, we show 
how this local modification of graphene, serving as our de-
tection channel for enhanced near-fields, delivers informa-
tion from regions well below the size of the laser spot 
(a1 µm) employed in the experiment.  

Out of the two prominent Raman active vibrations in 
graphene – the G-peak at around 1580 cm–1 and 2D-peak at 
around 2600 cm–1 – we focus our analysis on the latter for 
two reasons: the 2D-peak is more sensitive to strain [18, 
19] and luminescence exhibited by the Au nanostructure 
often overlaps with the G-peak but not with the 2D-peak. 
Figure 2(a) shows the 2D peak measured on top of TD 
(green) for an excitation of 638 nm polarized along x. 
Compared to a reference spectrum 2Dref (black) acquired 
a1.5 µm away from the structure, the increased intensity 
indicates plasmonic enhancement. In addition, the signal is
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Figure 1 AFM topography of Au (a) triple disks, (b) double rods and (c) a single nano disk covered with graphene. Diameter (D), gap 
size (G), length (L) and width (W) are given in the corresponding panels. Height profiles along x are shown in (d) for all structures. 
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Figure 1 AFM topography of Au (a) triple disks, (b) double rods and (c) a single nano disk covered with graphene. Diameter (D), gap 
size (G), length (L) and width (W) are given in the corresponding panels. Height profiles along x are shown in (d) for all structures. 
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Table 1 Position (cm–1), FWHM (cm–1) and intensity ratio of the 
2D peak components extracted from the Lorentzian fits shown in 
Fig. 2. Fitting parameters for SD are italicized. 

 2Dref  2D+  2D–  I(2D+ + 2D–)/I(2D)ref  

TD  2638, 31  2626, 34  2551, 67  2.98  
DR  2635, 36  2629, 41  2551, 70  2.12  
SD  2635, 32  2626, 30  2605, 32  3.25  

 
now split in an upper component (2D+) and lower compo-
nent (2D–), both of which are downshifted and broadened. 
All peaks in Fig. 2 are fitted using a Lorentzian line shape. 
The corresponding peak positions, peak widths and the in-
tensity ratio I(2D+ + 2D–)/I(2Dref) are given in Table 1. The 
increase in intensity exclusively arises from 2D–. It repre-
sents strained graphene suspended over the two cavities 
subject to plasmonic enhancement. 2D+, on the other hand, 
represents all other areas of lower or vanishing strain 
around the structures, which are illuminated by the laser 
spot but not subject to enhancement. 

Spatially resolved and excitation energy dependent 
Raman measurements confirm the disjoint origins of 2D– 
and 2D+. Figure 3(a) shows a line scan over TD along x, 
confirming that the appearance of 2D– is correlated with 
the center of the structure at x = 0. The integrated signal in- 

 

 
Figure 2 2D-peak of graphene measured on top of TD (a, green), 
DR (b, blue) SD (c, red). Each panel contains a reference spec-
trum away from the corresponding structure (black). The Lor-
entzian fits (dashed) of each peak are offset for clarity. All spec-
tra are taken with an excitation wavelength of 638 nm. 

 
Figure 3 Raman line scan across TD along x for (a) 638 nm and 
(b) 532 nm excitation wavelength. (c) Plot the integrated 2D in-
tensity for (a). (d) Evolution of the the position and FWHM of the 
2D peak in (b). 

 

tensities of all 2D peak components, normalized to 2Dref, 
are plotted versus the spatial position of the laser spot in 
Fig. 3(c). The profile represents the convolution of the la-
ser spot and the enhancement originating from the two 
cavities.  

We monitor the evolution of 2Dref to 2D+ and back by 
performing a similar line scan with an excitation wave-
length of 532 nm, where no enhancement occurs. While 
the signal intensity remains roughly unchanged along the 
profile shown in Fig. 3(b), the peak shifts down and broad-
ens on top of the structure. The corresponding peak posi-
tions and widths are plotted in Fig. 3(d). The peak behavior 
is therefore independent of plasmonic enhancement and 
confirms the nature of 2D+ as previously stated.  

Figure 2(b) shows Raman spectra of the 2D peak taken 
on the double rod structure and next to it as in (a). The 
peaks shapes and intensities are comparable to the triple 
dots in (a). Following the line of arguments developed in 
the previous paragraphs, we assign the lower 2D compo-
nent to strained graphene suspended over the cavity, which 
is subject to plasmonic enhancement. The upper 2D com-
ponent represents areas of lower or vanishing strain which 
are not enhanced.  

It is interesting to note that peak shifts and broadening 
for TD and DR are in very good agreement, although the 
structures themselves are of different size and geometry. 
The latter would intuitively suggest varying strain configu-

a b c

Figure 5.3. (a) Schematic of top view of plasmonic structures, whose height profiles after
graphene transfer are shown in (b). (c) PERS spectra (λL = 638 nm) of the 2D-peak of
the structures shown in (a) and (b), as well as reference spectra (black). Adapted from
Ref. [21].
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For all three structures the morphology after graphene-coating, see line scans crossing
the gaps in Fig. 5.3(b), is on par with the previously investigated nanodisc dimer: the
graphene membrane is pulled into the gap(s) by adhesion and is suspended between the
edges and the substrate. The Raman spectra in the presence of plasmonic enhancement are
shown in Fig. 5.3(c). For the two coupled structures in particular, the enhanced intensity
arises exclusively from softened vibrations. This confirms the general applicability of
strained graphene as a probe for PERS.

It is interesting to note that the vibrational softening at the hotspots is practically the
same for the triple dots and the double rods. Intuitively, one would expect the strain
configuration - and hence the frequency of our probe - to differ with the geometry, size
and arrangement of the nanoantennas. This is not the case here. Most likely, the strain
at the hotspots - and also the topography - represents the equilibrium between the energy
stored in adhesion to the substrate and in strain.

The overall enhancement of the Raman signal including hotspot localization amounts
to around 100 for all three structures, around an order of magnitude lower that for the
nanodisc dimer. We attribute the difference to a generally lower near-field enhancement
and/or reduced spectral overlap of the excitation with the plasmonic resonance. The
comparably low intensities, on the other hand, indicate the low detection threshold
enabled by our approach. Due to the spectral shift of the enhanced Raman signals
from the hotspot, even enhancement factors that are five to ten times smaller than the
ones displayed in Fig. 5.3(c) are detectable. The outlined extension and generalization
of strained graphene as a probe for plasmon-enhanced Raman scattering by plasmonic
nanostructures was published in the second paper of this thesis, S. Heeg et al., Physica
Status Solidi - Rapid Research Letters 7(12), 1067-1070 (2013).

The second part of this thesis demonstrates an interface between carbon nanotubes
and plasmonic nanostructures. Such a system realizes true nanoscale optical coupling
a one-dimensional and a zero-dimensional system. To achieve this we made use of our
graphene-based characterization scheme in several ways, both in a quantitative and
qualitative manner. The most obvious connection is the choice of plasmonic unit. We
used the same type of dimer structure, which had shown thousandfold cavity-induced
enhancement for graphene. The challenge relied in devising and implementing a method
to place a carbon nanotube in the dimer gap.

Together with the Nano-functional Materials group based in Manchester, I identified
the dielectrophoretic deposition (DEP) as the promising candidate to interface carbon
nanotubes with gapped plasmonic structures. This method assembles CNTs from solution
precisely between two sharp metal electrodes, Fig. 5.4(a), between which an alternating
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2.3 Plasmon-enhanced Raman scattering and photodetection
Graphene has emerged as an ideal test bed for plasmon-enhanced Raman scattering for three main

reasons. First, its constant absorption allows to relate an increase in Raman intensity directly to enhance-
ment by a nanostructure, as no intrisinic resonances have to be taken into account. Second, Raman
spectroscopy of graphene is a well established, non-invasive characterization tool that provides access to
many properties of graphene such as stress and strain, doping, disorder or electron-phonon coupling [18].
Third, the extended geometry of graphene guarantees an interface with plasmonic structures by plac-
ing one on top of the other. For a variety of nanostructure geometries and densities, enhancement up
to several orders of magnitude has been reported [5, 8, 19]. In a similar manner, the common strategy
in plasmon-enhanced photodetection in graphene-FETs is to place plasmonic nanostructures on top of
the graphene channel in Fig. 2(a), preferably in region (2). The high-intensity fields increase the photo
excitation of electron-hole pairs where the charge carrier separation occurs, achieving photocurrent en-
hancement up to a factor of 20 [6, 7]. Beyond the observation of enhancement, however, the processes at
the graphene-metal interface are limited due to a lack of local detection.

With the support of my co-workers, I suggested a new local probe for studying plasmonic enhance-
ment [8]. A dimer nanoantenna was covered with graphene, Fig. 3. The graphene signal was probed by
Raman scattering showing thousandfold enhancement. A key idea of our approach is the strain introduced
in graphene by the antennas. Strain shifts the graphene phonon frequency; vibrations at the hotspot differ
in energy from vibrations originating from other areas. Our probe is naturally placed in the vicinity of the
cavity, because it is produced by the structure. We verified Raman enhancement by rotating the polariza-
tion so that the light decouples from the cavity and by tuning the excitation energy out of resonance of the
plasmonic dimers. Both changes resulted in a loss in scattering intensity. This confirms the feasibility of
our approach for studying nanoscale optical coupling between graphene and plasmonic structures.

Raman scattering is one of the main characterization tools for carbon nanotubes. It provides access
to the nanotube’s diameter, its metallicity and for instance stress, defect concentration or doping [12, 20].
Only if the energy of the excitation matches the optical transition of a nanotube, Raman scattering allows
to determine its microscopic structures, often referred as twist or chirality. For photodetection on a sin-
gle nanotube-device level, the same limitation applies. Photocurrent is only generated upon excitation in
resonance with the optical transition of the corresponding CNT. Plasmon-enhanced Raman scattering and
photocurrent measurements are typically performed by scanning a contacted nanotube with an illuminated
metal tip (tip-enhanced Raman scattering or photocurrent mapping). While this allows a high spatial res-
olution and signal intensity, it cannot form a photodetector. The challenge in fabricating such a device is
placing a carbon nanotube in a plasmonic hotspot or constructing a hotspot around a nanotube.

I recently suggested a scalable bottom-up assembly of single-walled carbon nanotubes in plasmonic
hotspots for strongly enhanced light-matter interaction [21]. Nanotubes are placed in the gap of dimer
nanoantennas on a single device level by directed dielectrophoretic deposition, Fig 4. The cavity near-
fields enhance the Raman response of a carbon nanotube placed in the nanodimer gap by a factor of
thousand. Further, the enhanced Raman signal occurs for an excitation energy away from the nanotube’s
intrinsic resonance, partially lifting the strong intensity dependence on the optical transition energies.

surface of 300 nm thickness. Graphene is prepared by
mechanical cleavage and transferred on top of the structures.18

Atomic force microscope measurements reveal the topography
of the graphene layer deposited on top of the double dot
structure as shown in Figure 1a. The graphene layer is
suspended over the gap between the two particles and between
the edge of the particles and the surrounding substrate over a
length of around 150 nm in all directions. The colored arrows
indicate height profiles at different topographic conditions
shown in Figure 1b, such as crossing the particle centers and
the gap (red), and crossing the edge of the particles and the gap
(blue). The green arrow shows the graphene suspended at half
the height of the antennas and the black arrow indicates
graphene completely adsorbed on the substrate. Figure 1c
shows a sketch of the sample configuration.
The observed topography suggests that the graphene is

under tensile strain, which is defined by the corresponding
relative elongation ΔL/L0 as εx = ΔLx/Lx and εy = ΔLy/Ly
within our laboratory frame. The strain configuration (εx, εy)
varies for different locations on and around the structure. We
expect the strain components to be maximal on top of and in
the very vicinity of the structures, decreasing outward. As we
will show in the course of the data analysis, Raman
spectroscopy limits the sum of εx and εy to <1%.
In comparison to a perfect graphene sheet of equal lateral

dimensions, the height profiles crossing the particle centers
yield maximal relative elongations/strains of εx, εy > 2.5%,
assuming zero elongation at the unsuspended parts. These
values are about five times higher than the values deduced from
Raman spectroscopy and seem to be unrealistically high;
calculations on pressurized graphene balloons state that strains

of 5% require adhesion energies of 3 J/m2,19 which is roughly
ten times the experimentally obtained values of 0.45 J/m2 on
SiO2.

20 For strains derived from the topology only, one would
therefore expect immediate delamination, resulting in an
increase of the suspended parts and a reduction of the energy
stored in strain.
The differences can be explained by two main mechanisms.

First, during processing and transfer the graphene/PMMA
sandwich is placed on top of the structures and bends slightly,
partially reflecting their topology. Therefore, the reference for
the geometric calculations is larger than the assumed flat
graphene sheet, which as a result reduces the relative
elongation. Second, the graphene shows wrinkles and
undulation on the suspended parts and on SiO2, which lessens
the relative elongation further. While the topology fails to
quantitatively deliver the true strain, we observe a dominating
strain in y-direction, as the graphene is pulled ca. 4 nm into the
gap between the two particles. Optical images, and topographic
data on this and additional structures are presented in the
Supporting Information.
Figure 1d shows the scattering cross section (dots) of the

double structure obtained by polarized dark-field spectroscopy
before graphene deposition. The polarization PX of the
illumination source is oriented along the x-axis defined in
Figure 1a. In order to obtain the maximum SERS enhancement,
the plasmonic antennas were designed in such a way that the PX
resonance matches the excitation laser of 638 nm. We simulate
the scattering cross section of the double structure for PX and
PY, where PY is blue-shifted compared to PX, using a
commercially available finite-difference time-domain code
(Lumerical FDTD). The polarization dependence of the

Figure 1. (a) AFM image of graphene placed on top of the double structure. The colored arrows indicate the y-position of the height profiles shown
in (b). Each height profile is offset by 10 nm for clarity. (c) Sketch of the sample configuration. (d) Experimental dark-field spectra (circles) and
simulated scattering cross sections for PX (solid) and PY (dashed). The excitation wavelengths employed in the Raman experiments are indicated as
vertical lines, together with the corresponding wavelengths of the G and 2D modes of graphene.
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simulated scattering cross section is explained by near-field
coupling. The localized plasmon resonance of a single metallic
particle depends on its material, shape, and size. If the distance
between two adjacent particle becomes small (d ≪ λ), they
interact via their near-field. This interaction leads to (i) a shift
in the scattering cross section compared to single particles and
(ii) a strong near-field localization in the cavity formed between
the two particles. Using disks instead of rods as optical antennas
allows us to quantify the coupling effect between the two
particles by rotating the excitation polarization. In our case, PX
couples the particles and PY lets them act as two single particles.
Geometrical deviations of the real particles, such as nonperfect
edges, cause a blueshift of the experimental data compared to
our simulation. In addition, the effect of the Cr adhesive layer
may be underestimated in simulations.21

The wavelengths of the scattered light corresponding to the
G and 2D peaks, which are the dominant phonons observed in
graphene Raman spectra, are indicated in Figure 1d for the two
laser lines employed. Especially the energy of the 2D phonon
Eph is of the same order of magnitude as the line width Γ of the
plasmon. We are therefore able to distinguish rudimentarily
between the regimes of enhanced absorption (red) and
enhanced emission (green) and expect the SERS enhancement
factor to scale with the square of the field enhancement factor
|ELoc|/|E| for both cases. This can be clearly distinguished from
scaling with the fourth power of field enhancement, which is
generally observed in SERS for Eph ≪ Γ.22,23
Figure 2 shows the Raman spectra taken on the structures for

532 nm (green, panels a,b) and 638 nm excitation (red, panels
c,d) for PX (panels a,c) and PY (panels b,d). In all Raman
measurements, the analyzer in the spectrometer is set parallel to
the polarization of the excitation. For comparison, the spectrum
of graphene on SiO2 (black) under the same experimental
conditions but 1.5 μm away from the structure is shown. All
spectra are normalized to the 2D peak height on SiO2. The
position and the full width at half-maximum (fwhm) of the G

peak (∼ 1580/11 cm−1) and the 2D peak (∼ 2670/25 cm−1)
on SiO2, extracted from Figure 2(a), confirm the presence of
single layer graphene.9 This is supported by the peak height
ratio 2D/G of 2.8, which is in agreement with single-layer
graphene for an excitation of 532 nm and an oxide layer
thickness of 300 nm.24,25 We relate the intensity drop on top of
the dimer to the partial reduction of constructive interference
(see Supporting Information). Note that we concentrate on the
2D peak when evaluating the enhancement, as the G peak is
not suitable for two reasons: the gold nanostructures exhibit a
luminescence,26 whose shoulder overlaps with the G peak
(negligibly with 2D) and generally causes noisier spectra. In
addition, we observe peaks at 1450 and 1530 cm−1 on top of
the structure and next to it for 638 nm excitation, which we
assign to remainders of the glue used in graphene exfoliation.
Neglecting the shape and the position of the peaks observed

on the structure at this stage, we find a good qualitative
agreement between the observed signal intensities and
scattering cross sections in Figure 1d with respect to enhanced
absorption. The highest 2D intensity occurs for 638 nm and PX,
where the excitation is closest to the experimentally observed
scattering cross section. Combining the lower simulated
scattering cross section with the blueshift for PY, shifting the
maximum further away from the excitation of 638 nm, leads to
the enhancement we observe for PY. It is present but less
pronounced than for PX.
Interestingly, we do not observe a notable enhancement for

532 nm with either polarization; while the scattered light is off
the plasmon resonance for 638 nm, it is in resonance for 532
nm, yet no enhancement occurs. While this observation is not
decisive regarding the conclusions of this work, the apparent
lack of enhanced emission is certainly of interest regarding the
mechanism of cavity induced SERS of graphene and is currently
being studied. In the following, the term enhancement refers to
enhanced absorption only.

Figure 2. Raman spectra on the double structure for (a) λ = 532 nm and PX, (b) λ = 532 nm and PY, (c) λ = 638 nm and PX, (d) λ = 638 nm and PY.
The spectra are normalized to the 2D peak height measured on SiO2 next to the structure for the corresponding excitation and polarization.

Nano Letters Letter

dx.doi.org/10.1021/nl3041542 | Nano Lett. XXXX, XXX, XXX−XXXC

b c

Raman line scan raw data

(a) (b)

(c) (d)

Figure 5: Raman lines scans over the double structure in x-direction showing the evolution of the
G-peak (a) and 2D-peak (b) for PX and 638nm excitation. The corresponding line scans for PY and
shown in (c) and (d).
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(blue). Corresponding Raman maps are depicted in (b) and (c), respectively. (d) Raman spectra

for an excitation of 638nm for Py (red) and Px (blue). Corresponding Raman maps are shown in

(e) and (f), respectively. If necessary, a scaling factor is given within the panels.
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FIG. 1. Assembly of nanoplasmonic-nanotube systems by dielectropheretic deposition

of CNTs onto plasmonic antennas — a, Schematic of plasmonic antennas placed between inter-

connected biased electrodes and counter electrodes (yellow) which are capacitively coupled to the

p-type silicon substrate (blue) via 290 nm of SiO2 (green). Carbon nanotubes dispersed in aqueous

solution assemble between the electrodes due to dielectrophoretic forces and form nanoplasmonic-

nanotube systems shown in (b-e) in the form of AFM error images. CNTs may be suspended over

a cavity formed by rods (b), cross a nano disk (c,d) or placed next to a plasmonic structure.
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FIG. 2. CNT deposited inside a plasmonic cavity — a, Small carbon nanotubes bundle

successfully placed in the cavity formed by two closely spaced Au nano disks. b, SEM image of

nano disks before CNT deposition. Topographic feature of the CNT are highlighted by introducing

a mixing color (blue). Colored arrows indicate the position of the height profiles shown in (c).
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Figure 1: (a) 3D-AFM profile of the structure investigated. In (b) a different structure before
graphene deposition is shown. Comparing height profiles across the gap in x-direction before (d)
and after graphene deposition (c) confirms that graphene is suspended in the gap and between
the edges of the structures and the substrate. While the AFM-data was obtained using different
setups - and therefore different tips - the comparison between the height profiles rules out any
misinterpretation with respect to the observed topography
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Figure 3: (a) Graphene covered gold nanodimers. The
AFM topography in (b) confirms that the graphene is sus-
pended between the nanodisk gap as well as between
the nano disk edge and the substrate. (c) The graphene
Raman signal (red) is enhanced and shifted by the cavity
compared to graphene away from the structure (black).

surface of 300 nm thickness. Graphene is prepared by
mechanical cleavage and transferred on top of the structures.18

Atomic force microscope measurements reveal the topography
of the graphene layer deposited on top of the double dot
structure as shown in Figure 1a. The graphene layer is
suspended over the gap between the two particles and between
the edge of the particles and the surrounding substrate over a
length of around 150 nm in all directions. The colored arrows
indicate height profiles at different topographic conditions
shown in Figure 1b, such as crossing the particle centers and
the gap (red), and crossing the edge of the particles and the gap
(blue). The green arrow shows the graphene suspended at half
the height of the antennas and the black arrow indicates
graphene completely adsorbed on the substrate. Figure 1c
shows a sketch of the sample configuration.
The observed topography suggests that the graphene is

under tensile strain, which is defined by the corresponding
relative elongation ΔL/L0 as εx = ΔLx/Lx and εy = ΔLy/Ly
within our laboratory frame. The strain configuration (εx, εy)
varies for different locations on and around the structure. We
expect the strain components to be maximal on top of and in
the very vicinity of the structures, decreasing outward. As we
will show in the course of the data analysis, Raman
spectroscopy limits the sum of εx and εy to <1%.
In comparison to a perfect graphene sheet of equal lateral

dimensions, the height profiles crossing the particle centers
yield maximal relative elongations/strains of εx, εy > 2.5%,
assuming zero elongation at the unsuspended parts. These
values are about five times higher than the values deduced from
Raman spectroscopy and seem to be unrealistically high;
calculations on pressurized graphene balloons state that strains

of 5% require adhesion energies of 3 J/m2,19 which is roughly
ten times the experimentally obtained values of 0.45 J/m2 on
SiO2.

20 For strains derived from the topology only, one would
therefore expect immediate delamination, resulting in an
increase of the suspended parts and a reduction of the energy
stored in strain.
The differences can be explained by two main mechanisms.

First, during processing and transfer the graphene/PMMA
sandwich is placed on top of the structures and bends slightly,
partially reflecting their topology. Therefore, the reference for
the geometric calculations is larger than the assumed flat
graphene sheet, which as a result reduces the relative
elongation. Second, the graphene shows wrinkles and
undulation on the suspended parts and on SiO2, which lessens
the relative elongation further. While the topology fails to
quantitatively deliver the true strain, we observe a dominating
strain in y-direction, as the graphene is pulled ca. 4 nm into the
gap between the two particles. Optical images, and topographic
data on this and additional structures are presented in the
Supporting Information.
Figure 1d shows the scattering cross section (dots) of the

double structure obtained by polarized dark-field spectroscopy
before graphene deposition. The polarization PX of the
illumination source is oriented along the x-axis defined in
Figure 1a. In order to obtain the maximum SERS enhancement,
the plasmonic antennas were designed in such a way that the PX
resonance matches the excitation laser of 638 nm. We simulate
the scattering cross section of the double structure for PX and
PY, where PY is blue-shifted compared to PX, using a
commercially available finite-difference time-domain code
(Lumerical FDTD). The polarization dependence of the

Figure 1. (a) AFM image of graphene placed on top of the double structure. The colored arrows indicate the y-position of the height profiles shown
in (b). Each height profile is offset by 10 nm for clarity. (c) Sketch of the sample configuration. (d) Experimental dark-field spectra (circles) and
simulated scattering cross sections for PX (solid) and PY (dashed). The excitation wavelengths employed in the Raman experiments are indicated as
vertical lines, together with the corresponding wavelengths of the G and 2D modes of graphene.
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simulated scattering cross section is explained by near-field
coupling. The localized plasmon resonance of a single metallic
particle depends on its material, shape, and size. If the distance
between two adjacent particle becomes small (d ≪ λ), they
interact via their near-field. This interaction leads to (i) a shift
in the scattering cross section compared to single particles and
(ii) a strong near-field localization in the cavity formed between
the two particles. Using disks instead of rods as optical antennas
allows us to quantify the coupling effect between the two
particles by rotating the excitation polarization. In our case, PX
couples the particles and PY lets them act as two single particles.
Geometrical deviations of the real particles, such as nonperfect
edges, cause a blueshift of the experimental data compared to
our simulation. In addition, the effect of the Cr adhesive layer
may be underestimated in simulations.21

The wavelengths of the scattered light corresponding to the
G and 2D peaks, which are the dominant phonons observed in
graphene Raman spectra, are indicated in Figure 1d for the two
laser lines employed. Especially the energy of the 2D phonon
Eph is of the same order of magnitude as the line width Γ of the
plasmon. We are therefore able to distinguish rudimentarily
between the regimes of enhanced absorption (red) and
enhanced emission (green) and expect the SERS enhancement
factor to scale with the square of the field enhancement factor
|ELoc|/|E| for both cases. This can be clearly distinguished from
scaling with the fourth power of field enhancement, which is
generally observed in SERS for Eph ≪ Γ.22,23
Figure 2 shows the Raman spectra taken on the structures for

532 nm (green, panels a,b) and 638 nm excitation (red, panels
c,d) for PX (panels a,c) and PY (panels b,d). In all Raman
measurements, the analyzer in the spectrometer is set parallel to
the polarization of the excitation. For comparison, the spectrum
of graphene on SiO2 (black) under the same experimental
conditions but 1.5 μm away from the structure is shown. All
spectra are normalized to the 2D peak height on SiO2. The
position and the full width at half-maximum (fwhm) of the G

peak (∼ 1580/11 cm−1) and the 2D peak (∼ 2670/25 cm−1)
on SiO2, extracted from Figure 2(a), confirm the presence of
single layer graphene.9 This is supported by the peak height
ratio 2D/G of 2.8, which is in agreement with single-layer
graphene for an excitation of 532 nm and an oxide layer
thickness of 300 nm.24,25 We relate the intensity drop on top of
the dimer to the partial reduction of constructive interference
(see Supporting Information). Note that we concentrate on the
2D peak when evaluating the enhancement, as the G peak is
not suitable for two reasons: the gold nanostructures exhibit a
luminescence,26 whose shoulder overlaps with the G peak
(negligibly with 2D) and generally causes noisier spectra. In
addition, we observe peaks at 1450 and 1530 cm−1 on top of
the structure and next to it for 638 nm excitation, which we
assign to remainders of the glue used in graphene exfoliation.
Neglecting the shape and the position of the peaks observed

on the structure at this stage, we find a good qualitative
agreement between the observed signal intensities and
scattering cross sections in Figure 1d with respect to enhanced
absorption. The highest 2D intensity occurs for 638 nm and PX,
where the excitation is closest to the experimentally observed
scattering cross section. Combining the lower simulated
scattering cross section with the blueshift for PY, shifting the
maximum further away from the excitation of 638 nm, leads to
the enhancement we observe for PY. It is present but less
pronounced than for PX.
Interestingly, we do not observe a notable enhancement for

532 nm with either polarization; while the scattered light is off
the plasmon resonance for 638 nm, it is in resonance for 532
nm, yet no enhancement occurs. While this observation is not
decisive regarding the conclusions of this work, the apparent
lack of enhanced emission is certainly of interest regarding the
mechanism of cavity induced SERS of graphene and is currently
being studied. In the following, the term enhancement refers to
enhanced absorption only.

Figure 2. Raman spectra on the double structure for (a) λ = 532 nm and PX, (b) λ = 532 nm and PY, (c) λ = 638 nm and PX, (d) λ = 638 nm and PY.
The spectra are normalized to the 2D peak height measured on SiO2 next to the structure for the corresponding excitation and polarization.
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Figure 5: Raman lines scans over the double structure in x-direction showing the evolution of the
G-peak (a) and 2D-peak (b) for PX and 638nm excitation. The corresponding line scans for PY and
shown in (c) and (d).
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connected biased electrodes and counter electrodes (yellow) which are capacitively coupled to the

p-type silicon substrate (blue) via 290 nm of SiO2 (green). Carbon nanotubes dispersed in aqueous

solution assemble between the electrodes due to dielectrophoretic forces and form nanoplasmonic-

nanotube systems shown in (b-e) in the form of AFM error images. CNTs may be suspended over

a cavity formed by rods (b), cross a nano disk (c,d) or placed next to a plasmonic structure.
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FIG. 2. CNT deposited inside a plasmonic cavity — a, Small carbon nanotubes bundle

successfully placed in the cavity formed by two closely spaced Au nano disks. b, SEM image of

nano disks before CNT deposition. Topographic feature of the CNT are highlighted by introducing

a mixing color (blue). Colored arrows indicate the position of the height profiles shown in (c).
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Figure 1: (a) 3D-AFM profile of the structure investigated. In (b) a different structure before
graphene deposition is shown. Comparing height profiles across the gap in x-direction before (d)
and after graphene deposition (c) confirms that graphene is suspended in the gap and between
the edges of the structures and the substrate. While the AFM-data was obtained using different
setups - and therefore different tips - the comparison between the height profiles rules out any
misinterpretation with respect to the observed topography
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Figure 4: (a) AFM image of nanotubes placed in a gap
between two plasmonic nanodisks by directed dielec-
trophoresis. (b) Enhanced near-fields in the cavity in-
crease the Raman intensity of the tube (red). Rotating
the polarization decouples the nano disk and no near
field enhancement is present (blue).
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2.3 Plasmon-enhanced Raman scattering and photodetection
Graphene has emerged as an ideal test bed for plasmon-enhanced Raman scattering for three main

reasons. First, its constant absorption allows to relate an increase in Raman intensity directly to enhance-
ment by a nanostructure, as no intrisinic resonances have to be taken into account. Second, Raman
spectroscopy of graphene is a well established, non-invasive characterization tool that provides access to
many properties of graphene such as stress and strain, doping, disorder or electron-phonon coupling [18].
Third, the extended geometry of graphene guarantees an interface with plasmonic structures by plac-
ing one on top of the other. For a variety of nanostructure geometries and densities, enhancement up
to several orders of magnitude has been reported [5, 8, 19]. In a similar manner, the common strategy
in plasmon-enhanced photodetection in graphene-FETs is to place plasmonic nanostructures on top of
the graphene channel in Fig. 2(a), preferably in region (2). The high-intensity fields increase the photo
excitation of electron-hole pairs where the charge carrier separation occurs, achieving photocurrent en-
hancement up to a factor of 20 [6, 7]. Beyond the observation of enhancement, however, the processes at
the graphene-metal interface are limited due to a lack of local detection.

With the support of my co-workers, I suggested a new local probe for studying plasmonic enhance-
ment [8]. A dimer nanoantenna was covered with graphene, Fig. 3. The graphene signal was probed by
Raman scattering showing thousandfold enhancement. A key idea of our approach is the strain introduced
in graphene by the antennas. Strain shifts the graphene phonon frequency; vibrations at the hotspot differ
in energy from vibrations originating from other areas. Our probe is naturally placed in the vicinity of the
cavity, because it is produced by the structure. We verified Raman enhancement by rotating the polariza-
tion so that the light decouples from the cavity and by tuning the excitation energy out of resonance of the
plasmonic dimers. Both changes resulted in a loss in scattering intensity. This confirms the feasibility of
our approach for studying nanoscale optical coupling between graphene and plasmonic structures.

Raman scattering is one of the main characterization tools for carbon nanotubes. It provides access
to the nanotube’s diameter, its metallicity and for instance stress, defect concentration or doping [12, 20].
Only if the energy of the excitation matches the optical transition of a nanotube, Raman scattering allows
to determine its microscopic structures, often referred as twist or chirality. For photodetection on a sin-
gle nanotube-device level, the same limitation applies. Photocurrent is only generated upon excitation in
resonance with the optical transition of the corresponding CNT. Plasmon-enhanced Raman scattering and
photocurrent measurements are typically performed by scanning a contacted nanotube with an illuminated
metal tip (tip-enhanced Raman scattering or photocurrent mapping). While this allows a high spatial res-
olution and signal intensity, it cannot form a photodetector. The challenge in fabricating such a device is
placing a carbon nanotube in a plasmonic hotspot or constructing a hotspot around a nanotube.

I recently suggested a scalable bottom-up assembly of single-walled carbon nanotubes in plasmonic
hotspots for strongly enhanced light-matter interaction [21]. Nanotubes are placed in the gap of dimer
nanoantennas on a single device level by directed dielectrophoretic deposition, Fig 4. The cavity near-
fields enhance the Raman response of a carbon nanotube placed in the nanodimer gap by a factor of
thousand. Further, the enhanced Raman signal occurs for an excitation energy away from the nanotube’s
intrinsic resonance, partially lifting the strong intensity dependence on the optical transition energies.

surface of 300 nm thickness. Graphene is prepared by
mechanical cleavage and transferred on top of the structures.18

Atomic force microscope measurements reveal the topography
of the graphene layer deposited on top of the double dot
structure as shown in Figure 1a. The graphene layer is
suspended over the gap between the two particles and between
the edge of the particles and the surrounding substrate over a
length of around 150 nm in all directions. The colored arrows
indicate height profiles at different topographic conditions
shown in Figure 1b, such as crossing the particle centers and
the gap (red), and crossing the edge of the particles and the gap
(blue). The green arrow shows the graphene suspended at half
the height of the antennas and the black arrow indicates
graphene completely adsorbed on the substrate. Figure 1c
shows a sketch of the sample configuration.
The observed topography suggests that the graphene is

under tensile strain, which is defined by the corresponding
relative elongation ΔL/L0 as εx = ΔLx/Lx and εy = ΔLy/Ly
within our laboratory frame. The strain configuration (εx, εy)
varies for different locations on and around the structure. We
expect the strain components to be maximal on top of and in
the very vicinity of the structures, decreasing outward. As we
will show in the course of the data analysis, Raman
spectroscopy limits the sum of εx and εy to <1%.
In comparison to a perfect graphene sheet of equal lateral

dimensions, the height profiles crossing the particle centers
yield maximal relative elongations/strains of εx, εy > 2.5%,
assuming zero elongation at the unsuspended parts. These
values are about five times higher than the values deduced from
Raman spectroscopy and seem to be unrealistically high;
calculations on pressurized graphene balloons state that strains

of 5% require adhesion energies of 3 J/m2,19 which is roughly
ten times the experimentally obtained values of 0.45 J/m2 on
SiO2.

20 For strains derived from the topology only, one would
therefore expect immediate delamination, resulting in an
increase of the suspended parts and a reduction of the energy
stored in strain.
The differences can be explained by two main mechanisms.

First, during processing and transfer the graphene/PMMA
sandwich is placed on top of the structures and bends slightly,
partially reflecting their topology. Therefore, the reference for
the geometric calculations is larger than the assumed flat
graphene sheet, which as a result reduces the relative
elongation. Second, the graphene shows wrinkles and
undulation on the suspended parts and on SiO2, which lessens
the relative elongation further. While the topology fails to
quantitatively deliver the true strain, we observe a dominating
strain in y-direction, as the graphene is pulled ca. 4 nm into the
gap between the two particles. Optical images, and topographic
data on this and additional structures are presented in the
Supporting Information.
Figure 1d shows the scattering cross section (dots) of the

double structure obtained by polarized dark-field spectroscopy
before graphene deposition. The polarization PX of the
illumination source is oriented along the x-axis defined in
Figure 1a. In order to obtain the maximum SERS enhancement,
the plasmonic antennas were designed in such a way that the PX
resonance matches the excitation laser of 638 nm. We simulate
the scattering cross section of the double structure for PX and
PY, where PY is blue-shifted compared to PX, using a
commercially available finite-difference time-domain code
(Lumerical FDTD). The polarization dependence of the

Figure 1. (a) AFM image of graphene placed on top of the double structure. The colored arrows indicate the y-position of the height profiles shown
in (b). Each height profile is offset by 10 nm for clarity. (c) Sketch of the sample configuration. (d) Experimental dark-field spectra (circles) and
simulated scattering cross sections for PX (solid) and PY (dashed). The excitation wavelengths employed in the Raman experiments are indicated as
vertical lines, together with the corresponding wavelengths of the G and 2D modes of graphene.
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simulated scattering cross section is explained by near-field
coupling. The localized plasmon resonance of a single metallic
particle depends on its material, shape, and size. If the distance
between two adjacent particle becomes small (d ≪ λ), they
interact via their near-field. This interaction leads to (i) a shift
in the scattering cross section compared to single particles and
(ii) a strong near-field localization in the cavity formed between
the two particles. Using disks instead of rods as optical antennas
allows us to quantify the coupling effect between the two
particles by rotating the excitation polarization. In our case, PX
couples the particles and PY lets them act as two single particles.
Geometrical deviations of the real particles, such as nonperfect
edges, cause a blueshift of the experimental data compared to
our simulation. In addition, the effect of the Cr adhesive layer
may be underestimated in simulations.21

The wavelengths of the scattered light corresponding to the
G and 2D peaks, which are the dominant phonons observed in
graphene Raman spectra, are indicated in Figure 1d for the two
laser lines employed. Especially the energy of the 2D phonon
Eph is of the same order of magnitude as the line width Γ of the
plasmon. We are therefore able to distinguish rudimentarily
between the regimes of enhanced absorption (red) and
enhanced emission (green) and expect the SERS enhancement
factor to scale with the square of the field enhancement factor
|ELoc|/|E| for both cases. This can be clearly distinguished from
scaling with the fourth power of field enhancement, which is
generally observed in SERS for Eph ≪ Γ.22,23
Figure 2 shows the Raman spectra taken on the structures for

532 nm (green, panels a,b) and 638 nm excitation (red, panels
c,d) for PX (panels a,c) and PY (panels b,d). In all Raman
measurements, the analyzer in the spectrometer is set parallel to
the polarization of the excitation. For comparison, the spectrum
of graphene on SiO2 (black) under the same experimental
conditions but 1.5 μm away from the structure is shown. All
spectra are normalized to the 2D peak height on SiO2. The
position and the full width at half-maximum (fwhm) of the G

peak (∼ 1580/11 cm−1) and the 2D peak (∼ 2670/25 cm−1)
on SiO2, extracted from Figure 2(a), confirm the presence of
single layer graphene.9 This is supported by the peak height
ratio 2D/G of 2.8, which is in agreement with single-layer
graphene for an excitation of 532 nm and an oxide layer
thickness of 300 nm.24,25 We relate the intensity drop on top of
the dimer to the partial reduction of constructive interference
(see Supporting Information). Note that we concentrate on the
2D peak when evaluating the enhancement, as the G peak is
not suitable for two reasons: the gold nanostructures exhibit a
luminescence,26 whose shoulder overlaps with the G peak
(negligibly with 2D) and generally causes noisier spectra. In
addition, we observe peaks at 1450 and 1530 cm−1 on top of
the structure and next to it for 638 nm excitation, which we
assign to remainders of the glue used in graphene exfoliation.
Neglecting the shape and the position of the peaks observed

on the structure at this stage, we find a good qualitative
agreement between the observed signal intensities and
scattering cross sections in Figure 1d with respect to enhanced
absorption. The highest 2D intensity occurs for 638 nm and PX,
where the excitation is closest to the experimentally observed
scattering cross section. Combining the lower simulated
scattering cross section with the blueshift for PY, shifting the
maximum further away from the excitation of 638 nm, leads to
the enhancement we observe for PY. It is present but less
pronounced than for PX.
Interestingly, we do not observe a notable enhancement for

532 nm with either polarization; while the scattered light is off
the plasmon resonance for 638 nm, it is in resonance for 532
nm, yet no enhancement occurs. While this observation is not
decisive regarding the conclusions of this work, the apparent
lack of enhanced emission is certainly of interest regarding the
mechanism of cavity induced SERS of graphene and is currently
being studied. In the following, the term enhancement refers to
enhanced absorption only.

Figure 2. Raman spectra on the double structure for (a) λ = 532 nm and PX, (b) λ = 532 nm and PY, (c) λ = 638 nm and PX, (d) λ = 638 nm and PY.
The spectra are normalized to the 2D peak height measured on SiO2 next to the structure for the corresponding excitation and polarization.
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Figure 5: Raman lines scans over the double structure in x-direction showing the evolution of the
G-peak (a) and 2D-peak (b) for PX and 638nm excitation. The corresponding line scans for PY and
shown in (c) and (d).
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FIG. 4. Raman maps of CNT-B reveal plasmonic enhancement originating from the

dimer cavity— a, Raman spectra of CNT-B for an excitation of 532nm for Py (red) and Px

(blue). Corresponding Raman maps are depicted in (b) and (c), respectively. (d) Raman spectra

for an excitation of 638nm for Py (red) and Px (blue). Corresponding Raman maps are shown in

(e) and (f), respectively. If necessary, a scaling factor is given within the panels.
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FIG. 1. Assembly of nanoplasmonic-nanotube systems by dielectropheretic deposition

of CNTs onto plasmonic antennas — a, Schematic of plasmonic antennas placed between inter-

connected biased electrodes and counter electrodes (yellow) which are capacitively coupled to the

p-type silicon substrate (blue) via 290 nm of SiO2 (green). Carbon nanotubes dispersed in aqueous

solution assemble between the electrodes due to dielectrophoretic forces and form nanoplasmonic-

nanotube systems shown in (b-e) in the form of AFM error images. CNTs may be suspended over

a cavity formed by rods (b), cross a nano disk (c,d) or placed next to a plasmonic structure.
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FIG. 2. CNT deposited inside a plasmonic cavity — a, Small carbon nanotubes bundle

successfully placed in the cavity formed by two closely spaced Au nano disks. b, SEM image of

nano disks before CNT deposition. Topographic feature of the CNT are highlighted by introducing

a mixing color (blue). Colored arrows indicate the position of the height profiles shown in (c).
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Figure 1: (a) 3D-AFM profile of the structure investigated. In (b) a different structure before
graphene deposition is shown. Comparing height profiles across the gap in x-direction before (d)
and after graphene deposition (c) confirms that graphene is suspended in the gap and between
the edges of the structures and the substrate. While the AFM-data was obtained using different
setups - and therefore different tips - the comparison between the height profiles rules out any
misinterpretation with respect to the observed topography
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Figure 3: (a) Graphene covered gold nanodimers. The
AFM topography in (b) confirms that the graphene is sus-
pended between the nanodisk gap as well as between
the nano disk edge and the substrate. (c) The graphene
Raman signal (red) is enhanced and shifted by the cavity
compared to graphene away from the structure (black).

surface of 300 nm thickness. Graphene is prepared by
mechanical cleavage and transferred on top of the structures.18

Atomic force microscope measurements reveal the topography
of the graphene layer deposited on top of the double dot
structure as shown in Figure 1a. The graphene layer is
suspended over the gap between the two particles and between
the edge of the particles and the surrounding substrate over a
length of around 150 nm in all directions. The colored arrows
indicate height profiles at different topographic conditions
shown in Figure 1b, such as crossing the particle centers and
the gap (red), and crossing the edge of the particles and the gap
(blue). The green arrow shows the graphene suspended at half
the height of the antennas and the black arrow indicates
graphene completely adsorbed on the substrate. Figure 1c
shows a sketch of the sample configuration.
The observed topography suggests that the graphene is

under tensile strain, which is defined by the corresponding
relative elongation ΔL/L0 as εx = ΔLx/Lx and εy = ΔLy/Ly
within our laboratory frame. The strain configuration (εx, εy)
varies for different locations on and around the structure. We
expect the strain components to be maximal on top of and in
the very vicinity of the structures, decreasing outward. As we
will show in the course of the data analysis, Raman
spectroscopy limits the sum of εx and εy to <1%.
In comparison to a perfect graphene sheet of equal lateral

dimensions, the height profiles crossing the particle centers
yield maximal relative elongations/strains of εx, εy > 2.5%,
assuming zero elongation at the unsuspended parts. These
values are about five times higher than the values deduced from
Raman spectroscopy and seem to be unrealistically high;
calculations on pressurized graphene balloons state that strains

of 5% require adhesion energies of 3 J/m2,19 which is roughly
ten times the experimentally obtained values of 0.45 J/m2 on
SiO2.

20 For strains derived from the topology only, one would
therefore expect immediate delamination, resulting in an
increase of the suspended parts and a reduction of the energy
stored in strain.
The differences can be explained by two main mechanisms.

First, during processing and transfer the graphene/PMMA
sandwich is placed on top of the structures and bends slightly,
partially reflecting their topology. Therefore, the reference for
the geometric calculations is larger than the assumed flat
graphene sheet, which as a result reduces the relative
elongation. Second, the graphene shows wrinkles and
undulation on the suspended parts and on SiO2, which lessens
the relative elongation further. While the topology fails to
quantitatively deliver the true strain, we observe a dominating
strain in y-direction, as the graphene is pulled ca. 4 nm into the
gap between the two particles. Optical images, and topographic
data on this and additional structures are presented in the
Supporting Information.
Figure 1d shows the scattering cross section (dots) of the

double structure obtained by polarized dark-field spectroscopy
before graphene deposition. The polarization PX of the
illumination source is oriented along the x-axis defined in
Figure 1a. In order to obtain the maximum SERS enhancement,
the plasmonic antennas were designed in such a way that the PX
resonance matches the excitation laser of 638 nm. We simulate
the scattering cross section of the double structure for PX and
PY, where PY is blue-shifted compared to PX, using a
commercially available finite-difference time-domain code
(Lumerical FDTD). The polarization dependence of the

Figure 1. (a) AFM image of graphene placed on top of the double structure. The colored arrows indicate the y-position of the height profiles shown
in (b). Each height profile is offset by 10 nm for clarity. (c) Sketch of the sample configuration. (d) Experimental dark-field spectra (circles) and
simulated scattering cross sections for PX (solid) and PY (dashed). The excitation wavelengths employed in the Raman experiments are indicated as
vertical lines, together with the corresponding wavelengths of the G and 2D modes of graphene.
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simulated scattering cross section is explained by near-field
coupling. The localized plasmon resonance of a single metallic
particle depends on its material, shape, and size. If the distance
between two adjacent particle becomes small (d ≪ λ), they
interact via their near-field. This interaction leads to (i) a shift
in the scattering cross section compared to single particles and
(ii) a strong near-field localization in the cavity formed between
the two particles. Using disks instead of rods as optical antennas
allows us to quantify the coupling effect between the two
particles by rotating the excitation polarization. In our case, PX
couples the particles and PY lets them act as two single particles.
Geometrical deviations of the real particles, such as nonperfect
edges, cause a blueshift of the experimental data compared to
our simulation. In addition, the effect of the Cr adhesive layer
may be underestimated in simulations.21

The wavelengths of the scattered light corresponding to the
G and 2D peaks, which are the dominant phonons observed in
graphene Raman spectra, are indicated in Figure 1d for the two
laser lines employed. Especially the energy of the 2D phonon
Eph is of the same order of magnitude as the line width Γ of the
plasmon. We are therefore able to distinguish rudimentarily
between the regimes of enhanced absorption (red) and
enhanced emission (green) and expect the SERS enhancement
factor to scale with the square of the field enhancement factor
|ELoc|/|E| for both cases. This can be clearly distinguished from
scaling with the fourth power of field enhancement, which is
generally observed in SERS for Eph ≪ Γ.22,23
Figure 2 shows the Raman spectra taken on the structures for

532 nm (green, panels a,b) and 638 nm excitation (red, panels
c,d) for PX (panels a,c) and PY (panels b,d). In all Raman
measurements, the analyzer in the spectrometer is set parallel to
the polarization of the excitation. For comparison, the spectrum
of graphene on SiO2 (black) under the same experimental
conditions but 1.5 μm away from the structure is shown. All
spectra are normalized to the 2D peak height on SiO2. The
position and the full width at half-maximum (fwhm) of the G

peak (∼ 1580/11 cm−1) and the 2D peak (∼ 2670/25 cm−1)
on SiO2, extracted from Figure 2(a), confirm the presence of
single layer graphene.9 This is supported by the peak height
ratio 2D/G of 2.8, which is in agreement with single-layer
graphene for an excitation of 532 nm and an oxide layer
thickness of 300 nm.24,25 We relate the intensity drop on top of
the dimer to the partial reduction of constructive interference
(see Supporting Information). Note that we concentrate on the
2D peak when evaluating the enhancement, as the G peak is
not suitable for two reasons: the gold nanostructures exhibit a
luminescence,26 whose shoulder overlaps with the G peak
(negligibly with 2D) and generally causes noisier spectra. In
addition, we observe peaks at 1450 and 1530 cm−1 on top of
the structure and next to it for 638 nm excitation, which we
assign to remainders of the glue used in graphene exfoliation.
Neglecting the shape and the position of the peaks observed

on the structure at this stage, we find a good qualitative
agreement between the observed signal intensities and
scattering cross sections in Figure 1d with respect to enhanced
absorption. The highest 2D intensity occurs for 638 nm and PX,
where the excitation is closest to the experimentally observed
scattering cross section. Combining the lower simulated
scattering cross section with the blueshift for PY, shifting the
maximum further away from the excitation of 638 nm, leads to
the enhancement we observe for PY. It is present but less
pronounced than for PX.
Interestingly, we do not observe a notable enhancement for

532 nm with either polarization; while the scattered light is off
the plasmon resonance for 638 nm, it is in resonance for 532
nm, yet no enhancement occurs. While this observation is not
decisive regarding the conclusions of this work, the apparent
lack of enhanced emission is certainly of interest regarding the
mechanism of cavity induced SERS of graphene and is currently
being studied. In the following, the term enhancement refers to
enhanced absorption only.

Figure 2. Raman spectra on the double structure for (a) λ = 532 nm and PX, (b) λ = 532 nm and PY, (c) λ = 638 nm and PX, (d) λ = 638 nm and PY.
The spectra are normalized to the 2D peak height measured on SiO2 next to the structure for the corresponding excitation and polarization.
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Figure 5: Raman lines scans over the double structure in x-direction showing the evolution of the
G-peak (a) and 2D-peak (b) for PX and 638nm excitation. The corresponding line scans for PY and
shown in (c) and (d).
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Figure 1: (a) 3D-AFM profile of the structure investigated. In (b) a different structure before
graphene deposition is shown. Comparing height profiles across the gap in x-direction before (d)
and after graphene deposition (c) confirms that graphene is suspended in the gap and between
the edges of the structures and the substrate. While the AFM-data was obtained using different
setups - and therefore different tips - the comparison between the height profiles rules out any
misinterpretation with respect to the observed topography
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FIG. 1. Assembly of nanoplasmonic-nanotube systems by dielectropheretic deposition

of CNTs onto plasmonic antennas — a, Schematic of plasmonic antennas placed between inter-

connected biased electrodes and counter electrodes (yellow) which are capacitively coupled to the

p-type silicon substrate (blue) via 290 nm of SiO2 (green). Carbon nanotubes dispersed in aqueous

solution assemble between the electrodes due to dielectrophoretic forces and form nanoplasmonic-

nanotube systems shown in (b-e) in the form of AFM error images. CNTs may be suspended over

a cavity formed by rods (b), cross a nano disk (c,d) or placed next to a plasmonic structure.
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FIG. 2. CNT deposited inside a plasmonic cavity — a, Small carbon nanotubes bundle

successfully placed in the cavity formed by two closely spaced Au nano disks. b, SEM image of

nano disks before CNT deposition. Topographic feature of the CNT are highlighted by introducing

a mixing color (blue). Colored arrows indicate the position of the height profiles shown in (c).
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Figure 4: (a) AFM image of nanotubes placed in a gap
between two plasmonic nanodisks by directed dielec-
trophoresis. (b) Enhanced near-fields in the cavity in-
crease the Raman intensity of the tube (red). Rotating
the polarization decouples the nano disk and no near
field enhancement is present (blue).

a c

b

Figure 5.4. (a) An alternating current (AC) applied between two electrodes assembles
carbon nanotubes from solution such that they form an interface with plasmonic nanos-
tructures. (b) AFM image of a small bundle of carbon nanotubes placed in the plasmonic
cavity of a nanodisc dimer. (c) Raman spectrum of the small nanotube bundle shown in
(b). The polarization of the excitation switches on (red) and off (blue) the cavity. Panels
(b) and (c) are taken from Ref. [24].

current is applied [26, 114]. Nanotubes are deposited as well as oriented predominantly
along the axis connecting the electrodes. Ideally, this process is self-limiting. As soon
as a nanotube establish a conductive pathway between the electrodes, further tubes are
repelled from the region [115]. Typically the deposition occurs simultaneously at hundreds
of locations.

Our key idea was to place plasmonic nanostructures between the electrodes, exactly
where DEP deposits the nanotubes. The orientation of the structures was chosen according
to the desired type of interface. Placing nanodisc dimers in perpendicular orientation
between the electrodes allowed assembling tubes inside the dimer gaps as shown in
Fig. 5.4(b), reflecting unprecedented accuracy and control over the interface. We confirmed
the optical coupling of the dimer resonance and the nanotube by plasmon-enhanced Raman
scattering, Figure 5.4(c), following the characterization scheme developed using graphene.
For the excitation polarized along the dimer axis (red), the strongly enhanced near-
field in the cavity increased the Raman response of the CNT, namely the G-peak and
D-peak as discussed in Sec. 3.3, by a factor of 30 as compared to the perpendicular
polarization(blue). We confirmed the cavity-induced nature of the enhancement by
spatially resolved measurement and by choosing an excitation energy away from the dimer
resonance. Here we relied on the scheme developed for graphene coupled to dimers.

The polarization behavior is remarkable as it is inverted compared to a nanotube’s
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features in their G-peak spectra to E1(g) and E2(g) type phonons
associated with polarizations perpendicular to the nanotubes
axis and postulated a breakdown of electronic transition
selection rules under plasmonic enhancement. We note that
ref 34 presented no data to confirm the presence of isolated,
individual tubes in the plasmonic hotspots. Their Raman data
can alternatively be explained as A1(g) phonons arising from
different nanotubes. This straightforward explanation requires
no activation of normally surpressed Raman modes in
nanotubes or a breakdown of the (robust) selection rules for
optical transitions.
In the following, further evidence for the conventional nature

of plasmon-induced Raman scattering in carbon nanotubes is
provided. We compare CNT-B to another carbon nanotube
bundle (CNT-R) placed in a comparable cavity. Its
experimental features are given in the Supporting Information
S4. While CNT-B is oriented at around 75° with respect to the
dimer axis, CNT-R is oriented almost perpendicular to it.
Applying a similar analysis as above, the enhancement factor for
CNT-R drops by at least a factor of ∼20. We explain the
difference in the enhancement factors by the orientation of the
nanotube bundles within the cavity. For CNT-R, the
polarization of the near-field is polarized entirely perpendicular
to the nanotube axis. Even though the near-field is strong, it is
largely screened by the nanotube and the signal intensity is low.
For CNT-B, in contrast the near-field in the cavity is partially
projected on the nanotube axis without being screened by
surface charges, leading to increased experimental signal
intensities. A similar projection mechanism occurs in tip
enhanced Raman scattering of carbon nanotubes and supports
our interpretation.35

The dimer cavities are expected to yield an enhancement of
the order of 104, see Supporting Information S3. The partial or
vanishing projection of the near-field polarization onto the
nanotubes’ axis translates into lower enhancement factors that
we observe for CNT-B (103) and CNT-R (102). This
orientation dependence emphasizes the flexibility of our
nanotube−nanoplasmonic interface. To address phenomena
where an optical excitation perpendicular to the nanotube is
required, configurations like CNT-R should be realized. For
maximal signal enhancement, for example, to combine Raman

measurements with electrical transport, the antenna structure
should be rotated by, for example, 15° against the electrode axis
to allow a projection of the near-field polarization on the
nanotube axis as it is the case for CNT-B.
Our assembly scheme will allow to independently tune the

optical properties of the two components forming the
nanotube−nanoplasmonic interface. Single-chirality carbon
nanotube device arrays were successfully assembled by
DEP,19 thereby providing tubes with defined and uniform
optical resonances. On the other hand, the localized surface
plasmon resonance of the plasmonic nanostructures can be
tuned by varying the size of the nanodisks and the gap, and by
using alternative cavity designs such as bow tie antennas.
Ideally, a nanotube crosses the cavity and connects electrodes,
such as CNT-R. As a proof of principle, current versus voltage
characteristics of a nanotube connecting two electrodes but
without a plasmonic structure are presented in the Supporting
Information S5. In this case, the floating electrode is addressed
via conductive AFM. A connected carbon nanotube will serve
as a near-field probe whose characteristics upon illumination
can be accessed electrically. Alternatively, the CNT may act as a
nanoscale light emitter in the cavity via electroluminescence36

or phonon-assisted electroluminescence.37 It serves as an
emissive dipole of known position and orientation, which is
independent of selection rules present if an optical excitation
triggers light emission.
In summary, we assembled nanoplasmonic−nanotube

interfaces by the directed dielectrophoretic deposition of
carbon nanotubes on top of plasmonic antennas. For nanotubes
in a plasmonic cavity, we probed with plasmon-enhanced
Raman scattering optical coupling in the nanoscale. We
observed plasmonic enhancement on the order of 103, which
exclusively arises from carbon nanotube segments inside the
cavity. The enhanced Raman signal arose from fully symmetric
vibrations and was treated within the conventional framework
of Raman selection rules in carbon nanotubes. Highly enhanced
near-fields do not translate directly into enhanced Raman
signals but depend on the orientation of a carbon nanotube
inside the cavity. Beyond basic research, the scalability of our
assembly scheme qualifies nanotube−nanoplasmonic systems
as an excellent candidate to increase the performance of carbon
nanotubes as highly sensitive photodetectors and efficient light-
harvesters.

Method Summary. Fabrication. Sets of plasmonic
structures, placed in between electrode pairs with a gap of 1
μm, were exposed by electron-beam lithography in a LEO 1530
Gemini FEG SEM and a Raith Elphy Plus Lithography System
with Laser Interferometer Stage. Metallization was carried out
by evaporating 5 nm Cr + 40 nm Au followed by lift-off in an
ultrasonic bath. Each set consisted of 90 electrode pairs, 45 of
which contained plasmonic structures.

Dielectrophoresis. Ultrapure, unsorted SWCNTs (http://
www.nanointegris.com) in an aqueous surfactant solution were
used in this work. A dilution of 4 × 10−4 mg/mL was prepared
and a droplet of 0.5 μL was placed on top of the substrate. An
ac electric field of 6 Vpp at a frequency of 200 kHz was
generated by a TG1010 programmable 10 MHz function
generator. A Karl Suss probe station with tungsten probes was
used to connect the electrodes array with the function
generator in order to accurately position the SWCNTs at the
desired sites by dielectrophoresis. After 1 min, DI water was
used to rinse the substrate and a gentle stream of N2 was used
to dry it.

Figure 5. G-peak shape of CNT-B without plasmonic enhancement
(green, blue) and plasmonic enhancement in the cavity switched on
(red). The spectra are scaled to equal intensities to compare the peak
shape. The state of the cavity is schematically broken down into the
corresponding polarization and excitation wavelength of the incident
light.
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Figure 5.5 G-mode Raman
spectra of a small nanotube
bundle placed inside the
dimer gap acquired under
different experimental con-
ditions. The cavity is only
switched on for the match-
ing combination of polar-
ization and excitation (red).
The G-mode shape is inde-
pendent of excitation wave-
length and polarization and
arises from fully symmet-
ric vibrations only. From
Ref. [24].

intrinsic response, Sec. 2.2, for which light absorption and scattering polarized perpendic-
ular to the tube axis are strongly suppressed. A careful analysis of the G-peak shape,
shown in Fig. 5.5, confirmed that this suppression perpetuates to a high degree even
in the presence of the high-intensity light fields in the dimer gap: Additional Raman
modes associated with light polarizations perpendicular to the tube axis1 did not appear.
The observation of these Raman modes was claimed in the early 2000s [116, 117]. Other
studies, e.g. polarization dependent measurements on isolated nanotubes, reported their
suppression [118]. Subsequently, the topic was controversially discussed in the nanotube
Raman community. More recently, there has been a consensus these that Raman are
suppressed by depolarization in conventional Raman scattering. It was hypothesized,
however, that they may appear in near-field measurements, e.g. tip-enhanced Raman
scattering [109]. Our study confirmed that vibrations associated with light polarizations
perpendicular to nanotube axis are impossible to observe. We provided the final piece of
evidence to settle the discussion which has been going on the literature for over a decade.
The key to understanding the nature of the enhancement was a close investigation of

the relative orientation of the nanotube within the cavity. Fig. 5.4(b) shows that the
tube was not oriented strictly perpendicular to the dimer axis but rather at an angle of
75◦, allowing the partial interaction of CNT and light inside the cavity. Compared to this
nanotube, others oriented at almost 90◦ showed a 20 – fold drop in Raman enhancement.

1I provided a detailed discussion of these modes and the associated selection rules in the Supporting
information of Ref. [24].
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5. Connection of the papers

We concluded that the experimentally observed Raman signals of CNTs in plasmonic
cavities predominantly arise from projection of the enhanced near-field polarization on
the tube axis.

This has several important consequences: First, it allowed us to factor in the depolariza-
tion effect (×8) in the overall enhancement. In combination with signal localization (×9)
as seen in spatially resolved measurements this led to an overall enhancement ≥ 103, in
agreement with the values obtained for graphene coupled to dimers. Secondly, it generally
allows one to address the intrinsic optical response of the cavity and the tube individually
by the choice of polarization. In our case this coincided with an energetic separation
between the resonances of the dimer plasmon and the nanotube.

The true strength of DEP as implemented here lies in its flexibility. Beyond placing
tubes in nanometer sized gaps, we suspended them across dimers formed by rods or over a
single nanodisc. The exact shape and composition of the nanoantennas did not influence
the nanotubes deposition. This will allow tuning the optical response of the plasmonic
hotspot in the future, by choice of the appropriate shape, size, geometry and material of
the plasmonic antenna. The optical resonances of the nanotubes, on the other hand, can
be tuned by the appropriate choice of starting material, e.g. chirality enriched suspensions.
The concept of using dielectrophoretic deposition (DEP) of carbon nanotubes for the
assembly of nanoplasmonic-nanotube systems by directing the tubes onto Au plasmonic
antennas was published in S. Heeg et al., Nano Letters 14(4), 1762-1768 (2014).

In the last paper forming the body of this thesis, S. Heeg et al., Physica Status Solidi
- Rapid Research Letters 8(9), 785-789 (2014), I showed that the orientation of a tube
inside the cavity can be as effective for generating Raman enhancement as placing the
tube precisely at the plasmonic hotspot. This confirmed the polarization dependence
which we observed earlier. To the best of my knowledge, this study represents the first
report on plasmon-enhanced Raman scattering by suspended carbon nanotubes.

A small tube bundle was partially suspended in the cavity, Fig. 5.6 (a). Despite the lack
of spatial overlap with the near-fields of highest intensity in the very center of the gap, the
CNT showed considerable cavity induced enhancement, Fig. 5.6 (b). The unusual location,
on the other hand, realized a relatively good alignment (45◦) of the nanotube axis with
the polarization of the cavity near-fields, much higher than for the tubes crossing the gap
perpendicularly, which I discussed previously [24]. For this angle, the enhancement factor
due to polarization projection was four, much lower than for tubes crossing the cavity.
Nevertheless the overall enhancement was on the order 103. Together with the spectral
overlap of the tube resonance and the excitation energy, this provided a strong indicator
that the enhancement factors in Ref. [24] represent a lower boundary and are in fact up
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2.3 Plasmon-enhanced Raman scattering and photodetection
Graphene has emerged as an ideal test bed for plasmon-enhanced Raman scattering for three main

reasons. First, its constant absorption allows to relate an increase in Raman intensity directly to enhance-
ment by a nanostructure, as no intrisinic resonances have to be taken into account. Second, Raman
spectroscopy of graphene is a well established, non-invasive characterization tool that provides access to
many properties of graphene such as stress and strain, doping, disorder or electron-phonon coupling [18].
Third, the extended geometry of graphene guarantees an interface with plasmonic structures by plac-
ing one on top of the other. For a variety of nanostructure geometries and densities, enhancement up
to several orders of magnitude has been reported [5, 8, 19]. In a similar manner, the common strategy
in plasmon-enhanced photodetection in graphene-FETs is to place plasmonic nanostructures on top of
the graphene channel in Fig. 2(a), preferably in region (2). The high-intensity fields increase the photo
excitation of electron-hole pairs where the charge carrier separation occurs, achieving photocurrent en-
hancement up to a factor of 20 [6, 7]. Beyond the observation of enhancement, however, the processes at
the graphene-metal interface are limited due to a lack of local detection.

With the support of my co-workers, I suggested a new local probe for studying plasmonic enhance-
ment [8]. A dimer nanoantenna was covered with graphene, Fig. 3. The graphene signal was probed by
Raman scattering showing thousandfold enhancement. A key idea of our approach is the strain introduced
in graphene by the antennas. Strain shifts the graphene phonon frequency; vibrations at the hotspot differ
in energy from vibrations originating from other areas. Our probe is naturally placed in the vicinity of the
cavity, because it is produced by the structure. We verified Raman enhancement by rotating the polariza-
tion so that the light decouples from the cavity and by tuning the excitation energy out of resonance of the
plasmonic dimers. Both changes resulted in a loss in scattering intensity. This confirms the feasibility of
our approach for studying nanoscale optical coupling between graphene and plasmonic structures.

Raman scattering is one of the main characterization tools for carbon nanotubes. It provides access
to the nanotube’s diameter, its metallicity and for instance stress, defect concentration or doping [12, 20].
Only if the energy of the excitation matches the optical transition of a nanotube, Raman scattering allows
to determine its microscopic structures, often referred as twist or chirality. For photodetection on a sin-
gle nanotube-device level, the same limitation applies. Photocurrent is only generated upon excitation in
resonance with the optical transition of the corresponding CNT. Plasmon-enhanced Raman scattering and
photocurrent measurements are typically performed by scanning a contacted nanotube with an illuminated
metal tip (tip-enhanced Raman scattering or photocurrent mapping). While this allows a high spatial res-
olution and signal intensity, it cannot form a photodetector. The challenge in fabricating such a device is
placing a carbon nanotube in a plasmonic hotspot or constructing a hotspot around a nanotube.

I recently suggested a scalable bottom-up assembly of single-walled carbon nanotubes in plasmonic
hotspots for strongly enhanced light-matter interaction [21]. Nanotubes are placed in the gap of dimer
nanoantennas on a single device level by directed dielectrophoretic deposition, Fig 4. The cavity near-
fields enhance the Raman response of a carbon nanotube placed in the nanodimer gap by a factor of
thousand. Further, the enhanced Raman signal occurs for an excitation energy away from the nanotube’s
intrinsic resonance, partially lifting the strong intensity dependence on the optical transition energies.

surface of 300 nm thickness. Graphene is prepared by
mechanical cleavage and transferred on top of the structures.18

Atomic force microscope measurements reveal the topography
of the graphene layer deposited on top of the double dot
structure as shown in Figure 1a. The graphene layer is
suspended over the gap between the two particles and between
the edge of the particles and the surrounding substrate over a
length of around 150 nm in all directions. The colored arrows
indicate height profiles at different topographic conditions
shown in Figure 1b, such as crossing the particle centers and
the gap (red), and crossing the edge of the particles and the gap
(blue). The green arrow shows the graphene suspended at half
the height of the antennas and the black arrow indicates
graphene completely adsorbed on the substrate. Figure 1c
shows a sketch of the sample configuration.
The observed topography suggests that the graphene is

under tensile strain, which is defined by the corresponding
relative elongation ΔL/L0 as εx = ΔLx/Lx and εy = ΔLy/Ly
within our laboratory frame. The strain configuration (εx, εy)
varies for different locations on and around the structure. We
expect the strain components to be maximal on top of and in
the very vicinity of the structures, decreasing outward. As we
will show in the course of the data analysis, Raman
spectroscopy limits the sum of εx and εy to <1%.
In comparison to a perfect graphene sheet of equal lateral

dimensions, the height profiles crossing the particle centers
yield maximal relative elongations/strains of εx, εy > 2.5%,
assuming zero elongation at the unsuspended parts. These
values are about five times higher than the values deduced from
Raman spectroscopy and seem to be unrealistically high;
calculations on pressurized graphene balloons state that strains

of 5% require adhesion energies of 3 J/m2,19 which is roughly
ten times the experimentally obtained values of 0.45 J/m2 on
SiO2.

20 For strains derived from the topology only, one would
therefore expect immediate delamination, resulting in an
increase of the suspended parts and a reduction of the energy
stored in strain.
The differences can be explained by two main mechanisms.

First, during processing and transfer the graphene/PMMA
sandwich is placed on top of the structures and bends slightly,
partially reflecting their topology. Therefore, the reference for
the geometric calculations is larger than the assumed flat
graphene sheet, which as a result reduces the relative
elongation. Second, the graphene shows wrinkles and
undulation on the suspended parts and on SiO2, which lessens
the relative elongation further. While the topology fails to
quantitatively deliver the true strain, we observe a dominating
strain in y-direction, as the graphene is pulled ca. 4 nm into the
gap between the two particles. Optical images, and topographic
data on this and additional structures are presented in the
Supporting Information.
Figure 1d shows the scattering cross section (dots) of the

double structure obtained by polarized dark-field spectroscopy
before graphene deposition. The polarization PX of the
illumination source is oriented along the x-axis defined in
Figure 1a. In order to obtain the maximum SERS enhancement,
the plasmonic antennas were designed in such a way that the PX
resonance matches the excitation laser of 638 nm. We simulate
the scattering cross section of the double structure for PX and
PY, where PY is blue-shifted compared to PX, using a
commercially available finite-difference time-domain code
(Lumerical FDTD). The polarization dependence of the

Figure 1. (a) AFM image of graphene placed on top of the double structure. The colored arrows indicate the y-position of the height profiles shown
in (b). Each height profile is offset by 10 nm for clarity. (c) Sketch of the sample configuration. (d) Experimental dark-field spectra (circles) and
simulated scattering cross sections for PX (solid) and PY (dashed). The excitation wavelengths employed in the Raman experiments are indicated as
vertical lines, together with the corresponding wavelengths of the G and 2D modes of graphene.
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simulated scattering cross section is explained by near-field
coupling. The localized plasmon resonance of a single metallic
particle depends on its material, shape, and size. If the distance
between two adjacent particle becomes small (d ≪ λ), they
interact via their near-field. This interaction leads to (i) a shift
in the scattering cross section compared to single particles and
(ii) a strong near-field localization in the cavity formed between
the two particles. Using disks instead of rods as optical antennas
allows us to quantify the coupling effect between the two
particles by rotating the excitation polarization. In our case, PX
couples the particles and PY lets them act as two single particles.
Geometrical deviations of the real particles, such as nonperfect
edges, cause a blueshift of the experimental data compared to
our simulation. In addition, the effect of the Cr adhesive layer
may be underestimated in simulations.21

The wavelengths of the scattered light corresponding to the
G and 2D peaks, which are the dominant phonons observed in
graphene Raman spectra, are indicated in Figure 1d for the two
laser lines employed. Especially the energy of the 2D phonon
Eph is of the same order of magnitude as the line width Γ of the
plasmon. We are therefore able to distinguish rudimentarily
between the regimes of enhanced absorption (red) and
enhanced emission (green) and expect the SERS enhancement
factor to scale with the square of the field enhancement factor
|ELoc|/|E| for both cases. This can be clearly distinguished from
scaling with the fourth power of field enhancement, which is
generally observed in SERS for Eph ≪ Γ.22,23
Figure 2 shows the Raman spectra taken on the structures for

532 nm (green, panels a,b) and 638 nm excitation (red, panels
c,d) for PX (panels a,c) and PY (panels b,d). In all Raman
measurements, the analyzer in the spectrometer is set parallel to
the polarization of the excitation. For comparison, the spectrum
of graphene on SiO2 (black) under the same experimental
conditions but 1.5 μm away from the structure is shown. All
spectra are normalized to the 2D peak height on SiO2. The
position and the full width at half-maximum (fwhm) of the G

peak (∼ 1580/11 cm−1) and the 2D peak (∼ 2670/25 cm−1)
on SiO2, extracted from Figure 2(a), confirm the presence of
single layer graphene.9 This is supported by the peak height
ratio 2D/G of 2.8, which is in agreement with single-layer
graphene for an excitation of 532 nm and an oxide layer
thickness of 300 nm.24,25 We relate the intensity drop on top of
the dimer to the partial reduction of constructive interference
(see Supporting Information). Note that we concentrate on the
2D peak when evaluating the enhancement, as the G peak is
not suitable for two reasons: the gold nanostructures exhibit a
luminescence,26 whose shoulder overlaps with the G peak
(negligibly with 2D) and generally causes noisier spectra. In
addition, we observe peaks at 1450 and 1530 cm−1 on top of
the structure and next to it for 638 nm excitation, which we
assign to remainders of the glue used in graphene exfoliation.
Neglecting the shape and the position of the peaks observed

on the structure at this stage, we find a good qualitative
agreement between the observed signal intensities and
scattering cross sections in Figure 1d with respect to enhanced
absorption. The highest 2D intensity occurs for 638 nm and PX,
where the excitation is closest to the experimentally observed
scattering cross section. Combining the lower simulated
scattering cross section with the blueshift for PY, shifting the
maximum further away from the excitation of 638 nm, leads to
the enhancement we observe for PY. It is present but less
pronounced than for PX.
Interestingly, we do not observe a notable enhancement for

532 nm with either polarization; while the scattered light is off
the plasmon resonance for 638 nm, it is in resonance for 532
nm, yet no enhancement occurs. While this observation is not
decisive regarding the conclusions of this work, the apparent
lack of enhanced emission is certainly of interest regarding the
mechanism of cavity induced SERS of graphene and is currently
being studied. In the following, the term enhancement refers to
enhanced absorption only.

Figure 2. Raman spectra on the double structure for (a) λ = 532 nm and PX, (b) λ = 532 nm and PY, (c) λ = 638 nm and PX, (d) λ = 638 nm and PY.
The spectra are normalized to the 2D peak height measured on SiO2 next to the structure for the corresponding excitation and polarization.
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Figure 5: Raman lines scans over the double structure in x-direction showing the evolution of the
G-peak (a) and 2D-peak (b) for PX and 638nm excitation. The corresponding line scans for PY and
shown in (c) and (d).
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Figure 1: (a) 3D-AFM profile of the structure investigated. In (b) a different structure before
graphene deposition is shown. Comparing height profiles across the gap in x-direction before (d)
and after graphene deposition (c) confirms that graphene is suspended in the gap and between
the edges of the structures and the substrate. While the AFM-data was obtained using different
setups - and therefore different tips - the comparison between the height profiles rules out any
misinterpretation with respect to the observed topography
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p-type silicon substrate (blue) via 290 nm of SiO2 (green). Carbon nanotubes dispersed in aqueous

solution assemble between the electrodes due to dielectrophoretic forces and form nanoplasmonic-

nanotube systems shown in (b-e) in the form of AFM error images. CNTs may be suspended over

a cavity formed by rods (b), cross a nano disk (c,d) or placed next to a plasmonic structure.
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FIG. 2. CNT deposited inside a plasmonic cavity — a, Small carbon nanotubes bundle

successfully placed in the cavity formed by two closely spaced Au nano disks. b, SEM image of

nano disks before CNT deposition. Topographic feature of the CNT are highlighted by introducing

a mixing color (blue). Colored arrows indicate the position of the height profiles shown in (c).
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Figure 3: (a) Graphene covered gold nanodimers. The
AFM topography in (b) confirms that the graphene is sus-
pended between the nanodisk gap as well as between
the nano disk edge and the substrate. (c) The graphene
Raman signal (red) is enhanced and shifted by the cavity
compared to graphene away from the structure (black).

surface of 300 nm thickness. Graphene is prepared by
mechanical cleavage and transferred on top of the structures.18

Atomic force microscope measurements reveal the topography
of the graphene layer deposited on top of the double dot
structure as shown in Figure 1a. The graphene layer is
suspended over the gap between the two particles and between
the edge of the particles and the surrounding substrate over a
length of around 150 nm in all directions. The colored arrows
indicate height profiles at different topographic conditions
shown in Figure 1b, such as crossing the particle centers and
the gap (red), and crossing the edge of the particles and the gap
(blue). The green arrow shows the graphene suspended at half
the height of the antennas and the black arrow indicates
graphene completely adsorbed on the substrate. Figure 1c
shows a sketch of the sample configuration.
The observed topography suggests that the graphene is

under tensile strain, which is defined by the corresponding
relative elongation ΔL/L0 as εx = ΔLx/Lx and εy = ΔLy/Ly
within our laboratory frame. The strain configuration (εx, εy)
varies for different locations on and around the structure. We
expect the strain components to be maximal on top of and in
the very vicinity of the structures, decreasing outward. As we
will show in the course of the data analysis, Raman
spectroscopy limits the sum of εx and εy to <1%.
In comparison to a perfect graphene sheet of equal lateral

dimensions, the height profiles crossing the particle centers
yield maximal relative elongations/strains of εx, εy > 2.5%,
assuming zero elongation at the unsuspended parts. These
values are about five times higher than the values deduced from
Raman spectroscopy and seem to be unrealistically high;
calculations on pressurized graphene balloons state that strains

of 5% require adhesion energies of 3 J/m2,19 which is roughly
ten times the experimentally obtained values of 0.45 J/m2 on
SiO2.

20 For strains derived from the topology only, one would
therefore expect immediate delamination, resulting in an
increase of the suspended parts and a reduction of the energy
stored in strain.
The differences can be explained by two main mechanisms.

First, during processing and transfer the graphene/PMMA
sandwich is placed on top of the structures and bends slightly,
partially reflecting their topology. Therefore, the reference for
the geometric calculations is larger than the assumed flat
graphene sheet, which as a result reduces the relative
elongation. Second, the graphene shows wrinkles and
undulation on the suspended parts and on SiO2, which lessens
the relative elongation further. While the topology fails to
quantitatively deliver the true strain, we observe a dominating
strain in y-direction, as the graphene is pulled ca. 4 nm into the
gap between the two particles. Optical images, and topographic
data on this and additional structures are presented in the
Supporting Information.
Figure 1d shows the scattering cross section (dots) of the

double structure obtained by polarized dark-field spectroscopy
before graphene deposition. The polarization PX of the
illumination source is oriented along the x-axis defined in
Figure 1a. In order to obtain the maximum SERS enhancement,
the plasmonic antennas were designed in such a way that the PX
resonance matches the excitation laser of 638 nm. We simulate
the scattering cross section of the double structure for PX and
PY, where PY is blue-shifted compared to PX, using a
commercially available finite-difference time-domain code
(Lumerical FDTD). The polarization dependence of the

Figure 1. (a) AFM image of graphene placed on top of the double structure. The colored arrows indicate the y-position of the height profiles shown
in (b). Each height profile is offset by 10 nm for clarity. (c) Sketch of the sample configuration. (d) Experimental dark-field spectra (circles) and
simulated scattering cross sections for PX (solid) and PY (dashed). The excitation wavelengths employed in the Raman experiments are indicated as
vertical lines, together with the corresponding wavelengths of the G and 2D modes of graphene.
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simulated scattering cross section is explained by near-field
coupling. The localized plasmon resonance of a single metallic
particle depends on its material, shape, and size. If the distance
between two adjacent particle becomes small (d ≪ λ), they
interact via their near-field. This interaction leads to (i) a shift
in the scattering cross section compared to single particles and
(ii) a strong near-field localization in the cavity formed between
the two particles. Using disks instead of rods as optical antennas
allows us to quantify the coupling effect between the two
particles by rotating the excitation polarization. In our case, PX
couples the particles and PY lets them act as two single particles.
Geometrical deviations of the real particles, such as nonperfect
edges, cause a blueshift of the experimental data compared to
our simulation. In addition, the effect of the Cr adhesive layer
may be underestimated in simulations.21

The wavelengths of the scattered light corresponding to the
G and 2D peaks, which are the dominant phonons observed in
graphene Raman spectra, are indicated in Figure 1d for the two
laser lines employed. Especially the energy of the 2D phonon
Eph is of the same order of magnitude as the line width Γ of the
plasmon. We are therefore able to distinguish rudimentarily
between the regimes of enhanced absorption (red) and
enhanced emission (green) and expect the SERS enhancement
factor to scale with the square of the field enhancement factor
|ELoc|/|E| for both cases. This can be clearly distinguished from
scaling with the fourth power of field enhancement, which is
generally observed in SERS for Eph ≪ Γ.22,23
Figure 2 shows the Raman spectra taken on the structures for

532 nm (green, panels a,b) and 638 nm excitation (red, panels
c,d) for PX (panels a,c) and PY (panels b,d). In all Raman
measurements, the analyzer in the spectrometer is set parallel to
the polarization of the excitation. For comparison, the spectrum
of graphene on SiO2 (black) under the same experimental
conditions but 1.5 μm away from the structure is shown. All
spectra are normalized to the 2D peak height on SiO2. The
position and the full width at half-maximum (fwhm) of the G

peak (∼ 1580/11 cm−1) and the 2D peak (∼ 2670/25 cm−1)
on SiO2, extracted from Figure 2(a), confirm the presence of
single layer graphene.9 This is supported by the peak height
ratio 2D/G of 2.8, which is in agreement with single-layer
graphene for an excitation of 532 nm and an oxide layer
thickness of 300 nm.24,25 We relate the intensity drop on top of
the dimer to the partial reduction of constructive interference
(see Supporting Information). Note that we concentrate on the
2D peak when evaluating the enhancement, as the G peak is
not suitable for two reasons: the gold nanostructures exhibit a
luminescence,26 whose shoulder overlaps with the G peak
(negligibly with 2D) and generally causes noisier spectra. In
addition, we observe peaks at 1450 and 1530 cm−1 on top of
the structure and next to it for 638 nm excitation, which we
assign to remainders of the glue used in graphene exfoliation.
Neglecting the shape and the position of the peaks observed

on the structure at this stage, we find a good qualitative
agreement between the observed signal intensities and
scattering cross sections in Figure 1d with respect to enhanced
absorption. The highest 2D intensity occurs for 638 nm and PX,
where the excitation is closest to the experimentally observed
scattering cross section. Combining the lower simulated
scattering cross section with the blueshift for PY, shifting the
maximum further away from the excitation of 638 nm, leads to
the enhancement we observe for PY. It is present but less
pronounced than for PX.
Interestingly, we do not observe a notable enhancement for

532 nm with either polarization; while the scattered light is off
the plasmon resonance for 638 nm, it is in resonance for 532
nm, yet no enhancement occurs. While this observation is not
decisive regarding the conclusions of this work, the apparent
lack of enhanced emission is certainly of interest regarding the
mechanism of cavity induced SERS of graphene and is currently
being studied. In the following, the term enhancement refers to
enhanced absorption only.

Figure 2. Raman spectra on the double structure for (a) λ = 532 nm and PX, (b) λ = 532 nm and PY, (c) λ = 638 nm and PX, (d) λ = 638 nm and PY.
The spectra are normalized to the 2D peak height measured on SiO2 next to the structure for the corresponding excitation and polarization.
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Raman line scan raw data
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Figure 5: Raman lines scans over the double structure in x-direction showing the evolution of the
G-peak (a) and 2D-peak (b) for PX and 638nm excitation. The corresponding line scans for PY and
shown in (c) and (d).
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FIG. 1. Assembly of nanoplasmonic-nanotube systems by dielectropheretic deposition

of CNTs onto plasmonic antennas — a, Schematic of plasmonic antennas placed between inter-

connected biased electrodes and counter electrodes (yellow) which are capacitively coupled to the

p-type silicon substrate (blue) via 290 nm of SiO2 (green). Carbon nanotubes dispersed in aqueous

solution assemble between the electrodes due to dielectrophoretic forces and form nanoplasmonic-

nanotube systems shown in (b-e) in the form of AFM error images. CNTs may be suspended over

a cavity formed by rods (b), cross a nano disk (c,d) or placed next to a plasmonic structure.
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FIG. 2. CNT deposited inside a plasmonic cavity — a, Small carbon nanotubes bundle

successfully placed in the cavity formed by two closely spaced Au nano disks. b, SEM image of

nano disks before CNT deposition. Topographic feature of the CNT are highlighted by introducing

a mixing color (blue). Colored arrows indicate the position of the height profiles shown in (c).
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Figure 1: (a) 3D-AFM profile of the structure investigated. In (b) a different structure before
graphene deposition is shown. Comparing height profiles across the gap in x-direction before (d)
and after graphene deposition (c) confirms that graphene is suspended in the gap and between
the edges of the structures and the substrate. While the AFM-data was obtained using different
setups - and therefore different tips - the comparison between the height profiles rules out any
misinterpretation with respect to the observed topography
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Figure 4: (a) AFM image of nanotubes placed in a gap
between two plasmonic nanodisks by directed dielec-
trophoresis. (b) Enhanced near-fields in the cavity in-
crease the Raman intensity of the tube (red). Rotating
the polarization decouples the nano disk and no near
field enhancement is present (blue).
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2.3 Plasmon-enhanced Raman scattering and photodetection
Graphene has emerged as an ideal test bed for plasmon-enhanced Raman scattering for three main

reasons. First, its constant absorption allows to relate an increase in Raman intensity directly to enhance-
ment by a nanostructure, as no intrisinic resonances have to be taken into account. Second, Raman
spectroscopy of graphene is a well established, non-invasive characterization tool that provides access to
many properties of graphene such as stress and strain, doping, disorder or electron-phonon coupling [18].
Third, the extended geometry of graphene guarantees an interface with plasmonic structures by plac-
ing one on top of the other. For a variety of nanostructure geometries and densities, enhancement up
to several orders of magnitude has been reported [5, 8, 19]. In a similar manner, the common strategy
in plasmon-enhanced photodetection in graphene-FETs is to place plasmonic nanostructures on top of
the graphene channel in Fig. 2(a), preferably in region (2). The high-intensity fields increase the photo
excitation of electron-hole pairs where the charge carrier separation occurs, achieving photocurrent en-
hancement up to a factor of 20 [6, 7]. Beyond the observation of enhancement, however, the processes at
the graphene-metal interface are limited due to a lack of local detection.

With the support of my co-workers, I suggested a new local probe for studying plasmonic enhance-
ment [8]. A dimer nanoantenna was covered with graphene, Fig. 3. The graphene signal was probed by
Raman scattering showing thousandfold enhancement. A key idea of our approach is the strain introduced
in graphene by the antennas. Strain shifts the graphene phonon frequency; vibrations at the hotspot differ
in energy from vibrations originating from other areas. Our probe is naturally placed in the vicinity of the
cavity, because it is produced by the structure. We verified Raman enhancement by rotating the polariza-
tion so that the light decouples from the cavity and by tuning the excitation energy out of resonance of the
plasmonic dimers. Both changes resulted in a loss in scattering intensity. This confirms the feasibility of
our approach for studying nanoscale optical coupling between graphene and plasmonic structures.

Raman scattering is one of the main characterization tools for carbon nanotubes. It provides access
to the nanotube’s diameter, its metallicity and for instance stress, defect concentration or doping [12, 20].
Only if the energy of the excitation matches the optical transition of a nanotube, Raman scattering allows
to determine its microscopic structures, often referred as twist or chirality. For photodetection on a sin-
gle nanotube-device level, the same limitation applies. Photocurrent is only generated upon excitation in
resonance with the optical transition of the corresponding CNT. Plasmon-enhanced Raman scattering and
photocurrent measurements are typically performed by scanning a contacted nanotube with an illuminated
metal tip (tip-enhanced Raman scattering or photocurrent mapping). While this allows a high spatial res-
olution and signal intensity, it cannot form a photodetector. The challenge in fabricating such a device is
placing a carbon nanotube in a plasmonic hotspot or constructing a hotspot around a nanotube.

I recently suggested a scalable bottom-up assembly of single-walled carbon nanotubes in plasmonic
hotspots for strongly enhanced light-matter interaction [21]. Nanotubes are placed in the gap of dimer
nanoantennas on a single device level by directed dielectrophoretic deposition, Fig 4. The cavity near-
fields enhance the Raman response of a carbon nanotube placed in the nanodimer gap by a factor of
thousand. Further, the enhanced Raman signal occurs for an excitation energy away from the nanotube’s
intrinsic resonance, partially lifting the strong intensity dependence on the optical transition energies.

surface of 300 nm thickness. Graphene is prepared by
mechanical cleavage and transferred on top of the structures.18

Atomic force microscope measurements reveal the topography
of the graphene layer deposited on top of the double dot
structure as shown in Figure 1a. The graphene layer is
suspended over the gap between the two particles and between
the edge of the particles and the surrounding substrate over a
length of around 150 nm in all directions. The colored arrows
indicate height profiles at different topographic conditions
shown in Figure 1b, such as crossing the particle centers and
the gap (red), and crossing the edge of the particles and the gap
(blue). The green arrow shows the graphene suspended at half
the height of the antennas and the black arrow indicates
graphene completely adsorbed on the substrate. Figure 1c
shows a sketch of the sample configuration.
The observed topography suggests that the graphene is

under tensile strain, which is defined by the corresponding
relative elongation ΔL/L0 as εx = ΔLx/Lx and εy = ΔLy/Ly
within our laboratory frame. The strain configuration (εx, εy)
varies for different locations on and around the structure. We
expect the strain components to be maximal on top of and in
the very vicinity of the structures, decreasing outward. As we
will show in the course of the data analysis, Raman
spectroscopy limits the sum of εx and εy to <1%.
In comparison to a perfect graphene sheet of equal lateral

dimensions, the height profiles crossing the particle centers
yield maximal relative elongations/strains of εx, εy > 2.5%,
assuming zero elongation at the unsuspended parts. These
values are about five times higher than the values deduced from
Raman spectroscopy and seem to be unrealistically high;
calculations on pressurized graphene balloons state that strains

of 5% require adhesion energies of 3 J/m2,19 which is roughly
ten times the experimentally obtained values of 0.45 J/m2 on
SiO2.

20 For strains derived from the topology only, one would
therefore expect immediate delamination, resulting in an
increase of the suspended parts and a reduction of the energy
stored in strain.
The differences can be explained by two main mechanisms.

First, during processing and transfer the graphene/PMMA
sandwich is placed on top of the structures and bends slightly,
partially reflecting their topology. Therefore, the reference for
the geometric calculations is larger than the assumed flat
graphene sheet, which as a result reduces the relative
elongation. Second, the graphene shows wrinkles and
undulation on the suspended parts and on SiO2, which lessens
the relative elongation further. While the topology fails to
quantitatively deliver the true strain, we observe a dominating
strain in y-direction, as the graphene is pulled ca. 4 nm into the
gap between the two particles. Optical images, and topographic
data on this and additional structures are presented in the
Supporting Information.
Figure 1d shows the scattering cross section (dots) of the

double structure obtained by polarized dark-field spectroscopy
before graphene deposition. The polarization PX of the
illumination source is oriented along the x-axis defined in
Figure 1a. In order to obtain the maximum SERS enhancement,
the plasmonic antennas were designed in such a way that the PX
resonance matches the excitation laser of 638 nm. We simulate
the scattering cross section of the double structure for PX and
PY, where PY is blue-shifted compared to PX, using a
commercially available finite-difference time-domain code
(Lumerical FDTD). The polarization dependence of the

Figure 1. (a) AFM image of graphene placed on top of the double structure. The colored arrows indicate the y-position of the height profiles shown
in (b). Each height profile is offset by 10 nm for clarity. (c) Sketch of the sample configuration. (d) Experimental dark-field spectra (circles) and
simulated scattering cross sections for PX (solid) and PY (dashed). The excitation wavelengths employed in the Raman experiments are indicated as
vertical lines, together with the corresponding wavelengths of the G and 2D modes of graphene.

Nano Letters Letter

dx.doi.org/10.1021/nl3041542 | Nano Lett. XXXX, XXX, XXX−XXXB

simulated scattering cross section is explained by near-field
coupling. The localized plasmon resonance of a single metallic
particle depends on its material, shape, and size. If the distance
between two adjacent particle becomes small (d ≪ λ), they
interact via their near-field. This interaction leads to (i) a shift
in the scattering cross section compared to single particles and
(ii) a strong near-field localization in the cavity formed between
the two particles. Using disks instead of rods as optical antennas
allows us to quantify the coupling effect between the two
particles by rotating the excitation polarization. In our case, PX
couples the particles and PY lets them act as two single particles.
Geometrical deviations of the real particles, such as nonperfect
edges, cause a blueshift of the experimental data compared to
our simulation. In addition, the effect of the Cr adhesive layer
may be underestimated in simulations.21

The wavelengths of the scattered light corresponding to the
G and 2D peaks, which are the dominant phonons observed in
graphene Raman spectra, are indicated in Figure 1d for the two
laser lines employed. Especially the energy of the 2D phonon
Eph is of the same order of magnitude as the line width Γ of the
plasmon. We are therefore able to distinguish rudimentarily
between the regimes of enhanced absorption (red) and
enhanced emission (green) and expect the SERS enhancement
factor to scale with the square of the field enhancement factor
|ELoc|/|E| for both cases. This can be clearly distinguished from
scaling with the fourth power of field enhancement, which is
generally observed in SERS for Eph ≪ Γ.22,23
Figure 2 shows the Raman spectra taken on the structures for

532 nm (green, panels a,b) and 638 nm excitation (red, panels
c,d) for PX (panels a,c) and PY (panels b,d). In all Raman
measurements, the analyzer in the spectrometer is set parallel to
the polarization of the excitation. For comparison, the spectrum
of graphene on SiO2 (black) under the same experimental
conditions but 1.5 μm away from the structure is shown. All
spectra are normalized to the 2D peak height on SiO2. The
position and the full width at half-maximum (fwhm) of the G

peak (∼ 1580/11 cm−1) and the 2D peak (∼ 2670/25 cm−1)
on SiO2, extracted from Figure 2(a), confirm the presence of
single layer graphene.9 This is supported by the peak height
ratio 2D/G of 2.8, which is in agreement with single-layer
graphene for an excitation of 532 nm and an oxide layer
thickness of 300 nm.24,25 We relate the intensity drop on top of
the dimer to the partial reduction of constructive interference
(see Supporting Information). Note that we concentrate on the
2D peak when evaluating the enhancement, as the G peak is
not suitable for two reasons: the gold nanostructures exhibit a
luminescence,26 whose shoulder overlaps with the G peak
(negligibly with 2D) and generally causes noisier spectra. In
addition, we observe peaks at 1450 and 1530 cm−1 on top of
the structure and next to it for 638 nm excitation, which we
assign to remainders of the glue used in graphene exfoliation.
Neglecting the shape and the position of the peaks observed

on the structure at this stage, we find a good qualitative
agreement between the observed signal intensities and
scattering cross sections in Figure 1d with respect to enhanced
absorption. The highest 2D intensity occurs for 638 nm and PX,
where the excitation is closest to the experimentally observed
scattering cross section. Combining the lower simulated
scattering cross section with the blueshift for PY, shifting the
maximum further away from the excitation of 638 nm, leads to
the enhancement we observe for PY. It is present but less
pronounced than for PX.
Interestingly, we do not observe a notable enhancement for

532 nm with either polarization; while the scattered light is off
the plasmon resonance for 638 nm, it is in resonance for 532
nm, yet no enhancement occurs. While this observation is not
decisive regarding the conclusions of this work, the apparent
lack of enhanced emission is certainly of interest regarding the
mechanism of cavity induced SERS of graphene and is currently
being studied. In the following, the term enhancement refers to
enhanced absorption only.

Figure 2. Raman spectra on the double structure for (a) λ = 532 nm and PX, (b) λ = 532 nm and PY, (c) λ = 638 nm and PX, (d) λ = 638 nm and PY.
The spectra are normalized to the 2D peak height measured on SiO2 next to the structure for the corresponding excitation and polarization.
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Figure 5: Raman lines scans over the double structure in x-direction showing the evolution of the
G-peak (a) and 2D-peak (b) for PX and 638nm excitation. The corresponding line scans for PY and
shown in (c) and (d).
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Figure 1: (a) 3D-AFM profile of the structure investigated. In (b) a different structure before
graphene deposition is shown. Comparing height profiles across the gap in x-direction before (d)
and after graphene deposition (c) confirms that graphene is suspended in the gap and between
the edges of the structures and the substrate. While the AFM-data was obtained using different
setups - and therefore different tips - the comparison between the height profiles rules out any
misinterpretation with respect to the observed topography
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Figure 3: (a) Graphene covered gold nanodimers. The
AFM topography in (b) confirms that the graphene is sus-
pended between the nanodisk gap as well as between
the nano disk edge and the substrate. (c) The graphene
Raman signal (red) is enhanced and shifted by the cavity
compared to graphene away from the structure (black).

surface of 300 nm thickness. Graphene is prepared by
mechanical cleavage and transferred on top of the structures.18

Atomic force microscope measurements reveal the topography
of the graphene layer deposited on top of the double dot
structure as shown in Figure 1a. The graphene layer is
suspended over the gap between the two particles and between
the edge of the particles and the surrounding substrate over a
length of around 150 nm in all directions. The colored arrows
indicate height profiles at different topographic conditions
shown in Figure 1b, such as crossing the particle centers and
the gap (red), and crossing the edge of the particles and the gap
(blue). The green arrow shows the graphene suspended at half
the height of the antennas and the black arrow indicates
graphene completely adsorbed on the substrate. Figure 1c
shows a sketch of the sample configuration.
The observed topography suggests that the graphene is

under tensile strain, which is defined by the corresponding
relative elongation ΔL/L0 as εx = ΔLx/Lx and εy = ΔLy/Ly
within our laboratory frame. The strain configuration (εx, εy)
varies for different locations on and around the structure. We
expect the strain components to be maximal on top of and in
the very vicinity of the structures, decreasing outward. As we
will show in the course of the data analysis, Raman
spectroscopy limits the sum of εx and εy to <1%.
In comparison to a perfect graphene sheet of equal lateral

dimensions, the height profiles crossing the particle centers
yield maximal relative elongations/strains of εx, εy > 2.5%,
assuming zero elongation at the unsuspended parts. These
values are about five times higher than the values deduced from
Raman spectroscopy and seem to be unrealistically high;
calculations on pressurized graphene balloons state that strains

of 5% require adhesion energies of 3 J/m2,19 which is roughly
ten times the experimentally obtained values of 0.45 J/m2 on
SiO2.

20 For strains derived from the topology only, one would
therefore expect immediate delamination, resulting in an
increase of the suspended parts and a reduction of the energy
stored in strain.
The differences can be explained by two main mechanisms.

First, during processing and transfer the graphene/PMMA
sandwich is placed on top of the structures and bends slightly,
partially reflecting their topology. Therefore, the reference for
the geometric calculations is larger than the assumed flat
graphene sheet, which as a result reduces the relative
elongation. Second, the graphene shows wrinkles and
undulation on the suspended parts and on SiO2, which lessens
the relative elongation further. While the topology fails to
quantitatively deliver the true strain, we observe a dominating
strain in y-direction, as the graphene is pulled ca. 4 nm into the
gap between the two particles. Optical images, and topographic
data on this and additional structures are presented in the
Supporting Information.
Figure 1d shows the scattering cross section (dots) of the

double structure obtained by polarized dark-field spectroscopy
before graphene deposition. The polarization PX of the
illumination source is oriented along the x-axis defined in
Figure 1a. In order to obtain the maximum SERS enhancement,
the plasmonic antennas were designed in such a way that the PX
resonance matches the excitation laser of 638 nm. We simulate
the scattering cross section of the double structure for PX and
PY, where PY is blue-shifted compared to PX, using a
commercially available finite-difference time-domain code
(Lumerical FDTD). The polarization dependence of the

Figure 1. (a) AFM image of graphene placed on top of the double structure. The colored arrows indicate the y-position of the height profiles shown
in (b). Each height profile is offset by 10 nm for clarity. (c) Sketch of the sample configuration. (d) Experimental dark-field spectra (circles) and
simulated scattering cross sections for PX (solid) and PY (dashed). The excitation wavelengths employed in the Raman experiments are indicated as
vertical lines, together with the corresponding wavelengths of the G and 2D modes of graphene.
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simulated scattering cross section is explained by near-field
coupling. The localized plasmon resonance of a single metallic
particle depends on its material, shape, and size. If the distance
between two adjacent particle becomes small (d ≪ λ), they
interact via their near-field. This interaction leads to (i) a shift
in the scattering cross section compared to single particles and
(ii) a strong near-field localization in the cavity formed between
the two particles. Using disks instead of rods as optical antennas
allows us to quantify the coupling effect between the two
particles by rotating the excitation polarization. In our case, PX
couples the particles and PY lets them act as two single particles.
Geometrical deviations of the real particles, such as nonperfect
edges, cause a blueshift of the experimental data compared to
our simulation. In addition, the effect of the Cr adhesive layer
may be underestimated in simulations.21

The wavelengths of the scattered light corresponding to the
G and 2D peaks, which are the dominant phonons observed in
graphene Raman spectra, are indicated in Figure 1d for the two
laser lines employed. Especially the energy of the 2D phonon
Eph is of the same order of magnitude as the line width Γ of the
plasmon. We are therefore able to distinguish rudimentarily
between the regimes of enhanced absorption (red) and
enhanced emission (green) and expect the SERS enhancement
factor to scale with the square of the field enhancement factor
|ELoc|/|E| for both cases. This can be clearly distinguished from
scaling with the fourth power of field enhancement, which is
generally observed in SERS for Eph ≪ Γ.22,23
Figure 2 shows the Raman spectra taken on the structures for

532 nm (green, panels a,b) and 638 nm excitation (red, panels
c,d) for PX (panels a,c) and PY (panels b,d). In all Raman
measurements, the analyzer in the spectrometer is set parallel to
the polarization of the excitation. For comparison, the spectrum
of graphene on SiO2 (black) under the same experimental
conditions but 1.5 μm away from the structure is shown. All
spectra are normalized to the 2D peak height on SiO2. The
position and the full width at half-maximum (fwhm) of the G

peak (∼ 1580/11 cm−1) and the 2D peak (∼ 2670/25 cm−1)
on SiO2, extracted from Figure 2(a), confirm the presence of
single layer graphene.9 This is supported by the peak height
ratio 2D/G of 2.8, which is in agreement with single-layer
graphene for an excitation of 532 nm and an oxide layer
thickness of 300 nm.24,25 We relate the intensity drop on top of
the dimer to the partial reduction of constructive interference
(see Supporting Information). Note that we concentrate on the
2D peak when evaluating the enhancement, as the G peak is
not suitable for two reasons: the gold nanostructures exhibit a
luminescence,26 whose shoulder overlaps with the G peak
(negligibly with 2D) and generally causes noisier spectra. In
addition, we observe peaks at 1450 and 1530 cm−1 on top of
the structure and next to it for 638 nm excitation, which we
assign to remainders of the glue used in graphene exfoliation.
Neglecting the shape and the position of the peaks observed

on the structure at this stage, we find a good qualitative
agreement between the observed signal intensities and
scattering cross sections in Figure 1d with respect to enhanced
absorption. The highest 2D intensity occurs for 638 nm and PX,
where the excitation is closest to the experimentally observed
scattering cross section. Combining the lower simulated
scattering cross section with the blueshift for PY, shifting the
maximum further away from the excitation of 638 nm, leads to
the enhancement we observe for PY. It is present but less
pronounced than for PX.
Interestingly, we do not observe a notable enhancement for

532 nm with either polarization; while the scattered light is off
the plasmon resonance for 638 nm, it is in resonance for 532
nm, yet no enhancement occurs. While this observation is not
decisive regarding the conclusions of this work, the apparent
lack of enhanced emission is certainly of interest regarding the
mechanism of cavity induced SERS of graphene and is currently
being studied. In the following, the term enhancement refers to
enhanced absorption only.

Figure 2. Raman spectra on the double structure for (a) λ = 532 nm and PX, (b) λ = 532 nm and PY, (c) λ = 638 nm and PX, (d) λ = 638 nm and PY.
The spectra are normalized to the 2D peak height measured on SiO2 next to the structure for the corresponding excitation and polarization.
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Figure 5: Raman lines scans over the double structure in x-direction showing the evolution of the
G-peak (a) and 2D-peak (b) for PX and 638nm excitation. The corresponding line scans for PY and
shown in (c) and (d).
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Figure 1: (a) 3D-AFM profile of the structure investigated. In (b) a different structure before
graphene deposition is shown. Comparing height profiles across the gap in x-direction before (d)
and after graphene deposition (c) confirms that graphene is suspended in the gap and between
the edges of the structures and the substrate. While the AFM-data was obtained using different
setups - and therefore different tips - the comparison between the height profiles rules out any
misinterpretation with respect to the observed topography
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Figure 4: (a) AFM image of nanotubes placed in a gap
between two plasmonic nanodisks by directed dielec-
trophoresis. (b) Enhanced near-fields in the cavity in-
crease the Raman intensity of the tube (red). Rotating
the polarization decouples the nano disk and no near
field enhancement is present (blue).

a c

b

a b

Figure 5.6. (a) Schematic of small CNT bundle partially suspended inside a plasmonic
dimer cavity. (b) Plasmon-enhanced (red) and pristine (blue) Raman spectra of the tube
segments in the cavity shown in (a). From Ref. [25].

to an order of magnitude higher.
The tube segments subject to enhancement did not show any signs of mechanical

stress or any kind of static or dynamic doping. This is important if one is interested
in investigating the interaction of nanotubes and plasmonic structures by plasmon-
enhanced emissive processes such as electro- or photoluminescence. Such measurements
are preferentially performed on suspended carbon nanotubes, as the interaction with the
substrate often quenches the luminescence. Suspending the tubes using the plasmonic
antennas themselves, on the other hand, requires direct physical contact with the metal
structures. The absence of doping for the suspended tube shows that such quenching is
unlikely to occur using our assembly scheme. It makes CNTs suspended in plasmonic
cavities a viable experimental configuration.
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6 | Summary and outlook

In this thesis, I have realized the optical coupling of graphene and carbon nanotubes
to metallic nanostructures in new and unprecedented ways. For both of theses low-
dimensional systems, I verified by plasmon-enhanced Raman scattering their interaction
with the high intensity electromagnetic near-field at plasmonic hotspots. Strained graphene
locally probes the near-field of gapped plasmonic nanoantennas by serving as a two-
dimensional detector with an intrinsically constant Raman response. Dimer cavities
generate Raman signal enhancements up to 103 and induce the strain probe in the
graphene membrane. Carbon nanotubes inside comparable cavities show the same or
even larger enhancement while preserving their highly anisotropic optical response. The
nanotube-dimer interface on a single device level was achieved by directed dielectrophoretic
deposition.

The strength of both systems lies in the high degree of control over the interface in the
experiments. The optical responses of both the plasmonic elements and graphene/CNTs
are well know and are preserved upon combination. The focus on isolated plasmonic
structures made it possible to characterize the topography of the interface to a high
degree. The combination of both aspects enabled me to describe the optical coupling
of plasmonic dimers to graphene and tubes in great detail. The unique combination of
methods realized in creating the nanoscale coupled systems presented here form the basis
for a range of ongoing and future studies that I will describe and comment on in the
following.

The most interesting observation from a fundamental point of view is certainly the
apparent lack of plasmon-enhanced emission of Raman scattered light for graphene. In
the course of this thesis, all experiments conducted on various plasmonic structures
interfaced with graphene lacked enhancement for 532 nm excitation. For clarity, I compare
in Fig. 6.1(a) the energies of the excitation and Raman lines for the regimes of enhanced
absorption (red) and emission (green), together with the dark field spectrum of the gold
dimer discussed by us in Ref. [20]. If plasmon-enhanced emission were present, the coupled
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6. Summary and outlook

a b

Figure 6.1. (a) Dark field spectrum of gapped plasmonic dimer plotted together with the
laser excitation and graphene Raman emission wavelengths for the regimes of enhanced
absorption (red) and emission (green). (b) G-peak Raman spectrum (red) of highly
strained graphene on top of plasmonic dimer. The shift of 80 cm−1 compared to the
reference (black) corresponds to a tensile strain of ∼ 2.8%. Panel (a) is adapted from
Ref. [20]. The data in (b) is unpublished.

and uncoupled resonances of all antennas (single discs, dimers, trimers, with different sizes
and geometries) must be shaped such that they show up to thousandfold enhancement
at 638nm but no measurable interaction with light occurs for 616nm, the emission
wavelength of the 2D-mode for 532 nm excitation. This scenario seems unrealistic for the
width of the plasmon resonance observed by dark field spectroscopy, Fig. 6.1(a), more so
if we take into account the low detection threshold provided by strained graphene as a
probe. Beyond very weak or entirely absent plasmon-enhanced emission, our observations
are in principle compatible with very narrow plasmonic resonances, much sharper than
the dark-field spectrum in Fig. 6.1(a) suggests. This would lead to scenarios where the
G- and 2D-mode emission wavelengths probe different energetic regimes of enhanced
emission independently.

An explanation for above behavior is currently developed in the Reich group at FU
Berlin. From the theory side, the interference between classical and quantum mechanical
Raman scattering channels may provide a suitable explanation for the apparent lack of
enhanced emission for graphene coupled to plasmonic structures. Experimentally, further
insight is gained by measuring resonant Raman profiles of individual graphene covered
dimers. Here the excitation is swept over a large energy range such that all regimes
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of enhancement are covered. These measurements are challenging, as the sensitivity is
low compared to spectrometers optimized for one or few excitation wavelengths. They
represent, on the other hand, the first application of strained graphene as a probe for
PERS; enhanced Raman peaks are clearly and unequivocally identified by their energy.

Graphene is most prominent member of a growing family of two-dimensional materials
with a variety of properties [119, 120]. Monolayer transition-metal dichalcogenides, for
instance, are semiconductors with direct band gaps ranging from the visible to the infrared,
while hexagonal boron-nitride is a two dimensional wide band gap (>5 eV) semiconductor.
Like graphene, these materials can be exfoliated mechanically and transferred onto other
substrates, which makes them candidates for interfacing them with plasmonic structures.
PERS may then be studied for materials with e.g. electronic transitions energetically
close to the plasmonic resonance. Similar to graphene, some these of two-dimensional
systems have Raman active phonons which are independent of the polarization of incident
and scattered light. The characterization schemes for PERS on graphene developed in
this thesis can thus be partially or entirely applied.

Beyond probing enhanced near-fields, strain in graphene is of scientific interest [121],
as it allows one to mechanically alter the properties of graphene. Inhomogeneous strain,
for instance, may result in internal magnetic fields of up to 10Tesla in the graphene
membrane [122]. As shown in this thesis, plasmonic nanostructures can induce local
inhomogeneous strain in graphene, and simultaneously provide the means of local detection
by PERS. Such local optical probing by Raman spectroscopy is typically not available for
alternative methods used to create nonuniform strain [123]. By enhancing the adhesion
to the substrate through surface treatment, we surpassed the previously measured strain
values (< 1%). The highest tensile strain observed so far for graphene on plasmonic
dimers is 2.8%, with the corresponding G-peak spectrum shown in Fig. 6.1(b).

Carbon nanotubes offer a great flexibility for optical coupling. Selected nanotube
chiralities exhibit different energetic orders and distances of the plasmonic and the
nanotube excitonic resonance. The required suspensions of monochiral tubes are available
in high quality and have been successfully deposited by dielectrophoresis [28, 29]. Studying
single nanotubes of specific chirality will help for understanding the nature of plasmon-
enhanced Raman scattering. One particular question is to what extent—or if at all—an
energetic overlap between the resonances of tube and dimer is required for the plasmonic
enhancement of Raman signals. This is related to the small nanotube bundle I studied in
Ref. [24]. Within the sensitivity of the experiment, it lacked an intrinsic response for the
excitation matching the plasmonic resonance. Without knowing the exact chiralities of all
tubes forming the bundle, however, the possibility of non-resonant Raman scattering in
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Figure 6.2. A nanotube bundle crossing a nanodisc (left) is moved into the dimer gap
(right) by the tip of an atomic force microscope. Only after moving the nanotube,
plasmon-enhanced Raman signals occur. The data is not published.

carbon nanotubes cannot investigated. Efforts to deposit isolated nanotubes of predefined
chirality in plasmonic dimers are currently undertaken.
To further study and confirm the position and polarization dependence of PERS by

nanotubes, we conduct efforts to alter the position and the orientation of nanotubes in
hotspots after DEP. An example of such nanoscale manipulation is shown in Fig. 6.2.
The AFM picture in (a) shows a nanotube bundle crossing one nanodisc of a plasmonic
dimer. A gentle push by the tip of the AFM moved the bundle into the gap and changed
the relative orientation of its segments, Fig. 6.2 (b). Cavity-induced Raman enhancement
occurred only after the bundle was moved in the hotspot.
Beyond Raman scattering, the assembly scheme developed in this thesis provides the

means to study the interaction between nanotubes and plasmonic structures by alternative
techniques. Time resolved spectroscopy of plasmonic enhancement, for instance, will find
the time scales of the interaction between the metal plasmon and the nanotube’s excitons.
More intriguing, however, are electrical measurement performed on a CNT placed in
plasmonic dimers as depicted in Fig. 6.3(a). The electrodes used for dielectrophoresis
serve as source and drain contacts, and a gate voltage is applied via the silicon substrate.
Plasmon-enhanced photocurrent generation electrically probes the light absorption and
charge carrier generation by near-fields at the dimer gap. Similar to our PERS experiment,
the polarization of the excitation will switch on and off the plasmonic cavity and provides
an ideal built-in reference.

Dielectrophoretic deposition of carbon nanotubes is a highly scalable process, and inte-
gration densities of several million devices per square centimeter have been achieved [115].
So far we have used this scalability to assemble, identify and investigate optimal interfaces.
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Figure 6.3. (a) DEP assembles a nanotube for plasmon-enhanced photocurrent detection.
The enhanced near-field in the dimer cavity increases light absorption. The resulting
photoexcited charge carriers (blue arrows) are extracted by the electrodes used for
dielectrophoresis. (b) Schematic of plasmon-enhanced photodetector where multiple tubes
harvest charge photoexcited carriers from generated by an assembly of plasmonic hotspots.

Only about 2−3% of the devices were suitable for PERS studies. Here I define suitable to
refer only to devices with nanotubes placed in the dimer gap without additional tubes in
the immediate vicinity. Other tubes hamper optical characterization at the level of depth
conducted in this thesis. A photodetector based on our nanotube-nanoplasmonic interfaces
is not bound to such restrictions. It will consist of multiple carbon nanotubes interfaced
with extended plasmonic nanostructures which contain several hotspots, Fig. 6.3(b).
The enhanced near-fields in each hotspot increase the nanotubes’ light absorption. The
photoexcited charge carriers are collected at the electrodes.

In a device as sketched in Fig. 6.3(b) a sufficient number of tubes will be subject to the
enhanced near-field. The nanotube and electrode material will be optimized for charge
carrier extraction, e.g. using paladium electrodes to minimize the contact resistance
with the nanotube. It is important to note that all constituent parts of a nanotube-
nanoplasmonic photodetector and its assembly can be scaled up to wafer size. This is
particular relevant for the fabrication of the plasmonic nanostructures, which coercively
requires electron-beam lithography. This technology is on its way to become increasingly
available at scales and operation speeds necessary of technological exploitation [124].

In conclusion, this discussion of research projects that are currently underway demon-
strate that coupling plasmonic nanostructures to graphene and carbon nanotubes, as
accomplished in this thesis, is only the founding ground work. Many steps in different
directions are to follow. The interfaces created and described will help to clarify the
fundamentals of plasmon-enhanced Raman scattering. Beyond PERS, they will allow
us to address fundamental and complex interactions between plasmons and low dimen-
sional solid state systems. A scalable route to plasmon-enhanced photodetection and its
transition to technology is opened.
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A | Experimental methods

A.1. Raman spectrometers

The Raman measurements published in the papers that form this thesis were taken on
either a Horiba Jobin Yvon XplorA or a Witec Alpha 300. Both systems are single-grating
Raman spectrometers. In the following, I will briefly describe the basic setup of these
spectrometers shown in Fig. A.1, which can be divided into a microscopic unit and a
spectrometer unit. I point out the specifics of each instrument where applicable.

The excitation laser (dotted arrows in Fig. A.1) is coupled into the central beam path
of the microscope unit upon reflection from a beam splitter. The intensity of the laser
is regulated either by an internal set of interchangeable filters of varying optical density
(Xplora) or by adjusting the intensity with an external step less aperture (Alpha 300 ).
The light is then guided through an objective which focusses the laser on the sample. The
size of the focal spot depends on the numerical aperture (NA) in combination with the
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Figure A.1. Schematics of single-grating Raman spectrometer. Adapted from Ref. [125].
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wavelength of the excitation. For the measurements in this thesis, I mostly used 100×
objectives with NA= 0.95. While the diffraction limit in principle allows beam diameters
similar to or smaller than the wavelength of the excitation, realistic experimental setups
achieve spots diameters around 1µm. The sample itself is placed on a piezoelectric stage
with three axes. Lateral movement allows spatial mapping and height adjustment enables
the fine tuning of the focus via the stage.

The Raman scattered light is collected by the same objective used for focussing the
laser, realizing a backscattering configuration. It is then guided back on the central optical
beam bath, together with Rayleigh scattered and reflected laser light (black arrow). A
swing-away beam splitter enables imaging of the laser spot and the sample on a camera
such that the desired area can be selected for measurements. Edge filters prevent light
at the wavelength of the laser from entering the body of the spectrometer, Only light
of lower energy such as photoluminescence and Raman signals are transmitted. Every
laser wavelength requires a specific edge filter. The filters are changed either manually
together with other optical components (Alpha 300 ) or a motorized filter drawer (Xplora).
A λ/2-plate combined with an analyzer allows to measure the polarization dependence of
the Raman intensity. An adjustable pinhole can realize confocality, which restricts the
spatial depth of the scattering volume. For low-dimensional system like carbon nanotubes
and graphene, this is typically not necessary.

After the pinhole, the Raman scattered light enters the spectrometer trough the entrance
slit. It is then focussed on an grating which disperses the light onto a silicon-based charge
coupled device (CCD), where the Raman spectrum is recorded. The focal length of the
spectrometer - corresponding to the distance between grating and CCD in Fig. A.1 -
defines the resolution of the spectrometer, together with the total number of grooves of
the grating and the width of the entrance slit. The Alpha 300 has two and the Xplora
has four gratings, which range from 600 to 2400 grooves/mm. For the latter and 532 nm
excitation, and resolution of around 2 cm−1 can be achieved.

For the Alpha 300, the setup between the edge filter and the dispersive grating deviates
from Fig. A.1. Instead of a direct optical beam path, the microscope and spectrometer
units are connected by an optical fiber. The fiber acts as a pinhole and as the entrance
slit of the spectrometer. The choice of spectrometer for a particular measurement is given
by the strengths of each of them: The Xplora allows higher resolution and is optimized
for high sensitivity. It is particularly suited for point measurements or small maps. The
Alpha 300, on the other hand, is optimized for large area mapping. It allows very fast
acquisition times in the millisecond range and the software brings superior tools for data
handling and parameter extraction.
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A.2. Atomic force microscope

An atomic force microscope (AFM) measures the topography of a sample by dragging
a sharp tip over the surface of the sample. The tip itself is mounted on a cantilever,
Fig. A.2. Several operational modes are possible. In contact mode, the tip touches the
sample during a scan. Changes in the morphology of the sample deflect the tip and
hence the cantilever. The cantilever moves up or down to compensate for the deflection
of the tip. This movement is recorded and represents the topography of the sample. In
non-contact or tapping mode, the tip does not touch the sample but oscillates at a certain
distance away from the surface at kilohertz frequencies. It is deflected from the sample
by van-der-Waals forces.

The horizontal and vertical changes of the tip position are measured indirectly by the
cantilever that is equipped with a reflective coating. A low-power laser is aligned onto
the cantilever such and reflected into a photodetector. Upon deflection, the reflection of
the cantilever moves across the detector and is translated into the movement of the tip.
Typically, the sample itself is mounted on a piezo stage for lateral movement, and the
cantilever is equipped with a piezo drive to change its relative height position.

All but one measurement in this thesis were conducted in non-contact mode using a
Park XE150. It has a good height resolution and allows to identify carbon nanotubes as
well as graphene. The lateral resolution represent the folding of the tip shape and the
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Figure A.2. Schematics of an atomic force microscope.

55



A. Experimental methods

topography. For this reason, carbon nanotubes measured in tapping mode may shows
widths of up to fifty nanometers. I avoided using contact mode in all Experiments, to
avoid moving nanotubes or even rapturing the graphene membrane.
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B.1. Kurzfassung

Das physikalische Gebiet der Plasmonik beschreibt Wechselwirkungsprozesse zwischen
elektromagnetischen Feldern und freien Elektronen in Metallen. Die optischen Nahfelder
in der unmittelbaren Umgebung der Metalle weisen hohe Intensitäten auf. Metallische
Nanostrukturen führen zu plasmonischen Hotspots, in denen hohe Feldstärken auf kleinste
Volumen konzentriert sind. Die Absorption und Streuung von Licht steigt dort immens
an. In der vorliegenden Arbeit untersuche ich mittels Ramanspektroskopie die inelastische
Streuung von Licht an Graphen und Kohlenstoffnanoröhren unter dem Einfluss plas-
monisch verstärkter Nahfelder. Zunächst führe ich das Konzept verspannten Graphens
als Sonde zur Messung plasmonisch verstärkter Ramanstreuung ein. Im Anschluss unter-
suche ich die Wechselwirkung von Kohlenstoffnanoröhren mit plasmonischen Nahfeldern
mittels Ramanstreuung. Die Kopplung von Nanoröhren mit Bereichen hoher Nahfeldin-
tensität erreiche ich durch gezieltes dielelektrophoretisches Abscheiden der Nanoröhren
auf plasmonische Strukturen.

Ein plasmonischer Dimer wurde mit Graphen belegt und per Ramanstreuung charak-
terisiert. Die hohe Nahfeldintensität in der Dimerkavität verstärkte das Graphensignal
tausendfach. Die verstärkten Signale stammen ausschliesslich von verspanntem Graphen.
Verspannung verschiebt die Vibrationsfrequenzen im Graphen; die Verspannung im
Graphen entspricht somit einer lokalen Sonde für die plasmonisch verstärkten Nahfelder.
Diese Sonde befindet sich automatisch am richtigen Ort, da sie von der Nanostruktur selbst
erzeugt wird. Wir verifizierten die Verstärkung durch ortsaufgelöste Ramanmessungen mit
unterschiedlichen Anregungsenergien und -polarisationen. Unsere Methode delektiert die
direkte Wechselwirkung von Graphen mit verstärkten Nahfeldern misst: Das intrinsische
Ramansignal von Graphen hn̈agt weder von der Polarization noch von der Wellenlänte
des einbestrahlten Lichtes ab.

Für in der Kavität plasmonischer Dimere platzierte Kohlenstoffnanoröhren konnten
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wir Verstärkungen der Ramansignale in der Grössenordnung 103 bis 104 beobachten.
Es gelang es uns, die intrinsischen Resonanzen der Nanoröhren und die externen Res-
onanzen der Dimere durch die Wahl von Anregungspolarisation und -energie getrennt
zu detektieren. Dies zeigte unter anderem, dass plasmonenverstärkte Ramanstreuung
an Kohlenstoffnanoröhren mit der Projektion der Nahfeldpolarisation auf die Achse der
Nanoröhre skaliert. Desweiteren konnten wir zeigen, das selbst unter Einfluss starker
Nahfelder ausschliesslich vollsymmtrische Phononen zum Ramanspektrum von Kohlen-
stoffnanoröhren beitragen: Ramanmoden, die für ihre Anregung Lichtpolarisationen
rechtwinklig zur Achse der Nanoröhre benötigen, können nicht beobachtet werden. Dies
klärt eine langjährigen wissenschaftliche Debatte über die Symmetrie der Phononen in
Nanoröhren. Das zielgerichtete Ablegen von Kohlenstoffnanoröhren in die Kavitäten
metallischer Dimere gelang uns per dielektrophoretischer Abscheidung der Nanoröhren
auf die Nanostrukturen. Dieses von uns entwickelte Verfahren stellt in einer verallge-
meinerten Form eine neuartige Methode zur Verknüpfung von Kohlenstoffnanoröhren mit
plasmonische Systeme dar.

Die in dieser Doktorarbeit entwickelten experimentellen und konzeptionellen Methodiken
zur Kopplung von Graphen und Kohlenstoffnanoröhren an plasmonische Strukturen werden
es in der Zukunft ermöglichen, die fundamentalen Grundlagen plasmonisch-verstärkter
Ramanstreuung zu ergründen.
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For copyright reasons, the four publications comprising this cummulative thesis are not
included in the online version. The publications are listed below together with their
digital object identifiers.

1. Polarized Plasmonic Enhancement by Au Nanostructures Probed through Raman
Scattering of Suspended Graphene.
S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, S.A. Maier,
A. Vijayaraghavan, and S. Reich.
Nano Letters 13(1), 301-308 (2013).
http://dx.doi.org/10.1021/nl3041542

2. Strained graphene as a local probe for plasmon-enhanced Raman scattering by gold
nanostructures.
S. Heeg, A. Oikonomou, R. Fernandez-Garcia, S.A. Maier, A. Vijayaraghavan, and
S. Reich.
Physica Status Solidi - Rapid Research Letters 7(12), 1067-1070 (2013).
http://dx.doi.org/10.1002/pssr.201308145

3. Plasmon-Enhanced Raman Scattering by Carbon Nanotubes Optically Coupled with
Near-Field Cavities.
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A. Vijayaraghavan, and S. Reich.
Nano Letters 14(4), 1762-1768 (2014).
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