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Chapter 1

Introduction

Proteins belong to the most important substances throughout nature, since they ac-
count for most of the functionality in all living organisms. Known since the eighteenth
century, they were first described by Gerardus Johannes Mulder in 1839 [1]. It took
more than a hundred years from that until, for the first time, the chemical structure of a
protein was derived by Kendrew et al. in their study of the myoglobin molecule. Sur-
prisingly to the scientific world at this time, the structure lacked any signs of symmetry:

“Perhaps the most remarkable features of the molecule are its complexity and its lack of sym-
metry. The arrangement seems to be almost totally lacking in the kind of regularities which one
instinctively anticipates, and it is more complicated than has been predicated by any theory of
protein structure. Though the detailed principles of construction do not yet emerge, we may
hope that they will do so at a later stage of the analysis.” [2]

This statement by Kendrew already foreshadows the problem of protein folding, which
entangles many scientists until today. As stated in a review on the fiftieth anniversary
of the nobelprize awarded to Kendrew and Perutz [3], the problem of protein folding can
be summarized by three main questions:

1. The physical folding code: How is the 3D native structure of a protein determ-
ined by the physicochemical properties that are encoded in its 1D amino-acid se-
quence?

2. The folding mechanism: A polypeptide chain has an almost unfathomable num-
ber of possible conformations. How can proteins fold so fast?

3. How to predict (with the aid of computers) protein structures?

Because proteins account by a large amount to the functionality of the human body,
understanding their nature is crucial for the physiological sciences. Many genetic dis-
orders are directly linked to misfolded proteins, such as Huntington’s disease.

1



Chapter 1. Introduction 2

The physical folding code Since the experiments of Mulder, it was known that pro-
teins consists of compounds, which are now known as aminoacids. He in fact believed
proteins to be made up of a single compound species. It was the work of Hofmeister [4]
and Fischer [5], that revealed their nature as polypeptides. During the 1930ies, William
Astbury’s crystallographic studies [6] of proteins raised the hypothesis of hydrogen
bonds holding proteins together. But it was not until 1951, when Linus Pauling and
coworkers [7] predicted the α and β structures, which together account for most sec-
ondary structure motifs in wild-type proteins [8, 9]. The findings of Kauzmann [10]
provided another fundamental driving force in protein folding: the hydrophobic inter-
action, where aminoacids try to minimize the water exposed surface. Together with the
fundamental interactions in molecular physics, the electrostatic and the van-der-Waals
interaction, hydrogen bonding and the hydrophobic effect provide the major compon-
ents that can explain the three dimensional structure of proteins. The folding mech-
anism is commonly described as a search for the lowest energy configuration in the
high-dimensional phase space made up by the atoms constituting the protein.
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FIGURE 1.1: The protein folding process can be understood as a stochastical search in a high-
dimensional landscape (here projected onto a single dimension) driven by entropic forces. The
folded state(s) are corresponding to states of lowest free energy, so that the free energy landscape
adopts a funnel-like shape.

The folding mechanism The second question in above’s list is the classic Levinthal’s
paradox [11]: Given the extremely high dimensionality of the phase space, how is it
possible to find proteins that fold on timescales as short as microseconds? He then
postulated the concept of the folding pathway, along which the protein is able to carry
out that search quickly. Given that most protein have only a single native state, this
led to the picture of a funnel-like free energy landscape along that pathway, where the
lowest energy states are identified with the folded state. This is depicted in Figure 1.1.
Here we show the free energy of the peptide as a function of some arbitrary projection
of the phase-phase, also known as reaction coordinate. Ideally this projection is chosen
such that the folding pathway is clearly visible and the folded state can be distinguished
well from its intermediate and unfolded conformations. This depiction, the free energy
as a function of some projection, is called a free energy landscape. The choice of the
reaction coordinate depends strongly on the specific peptide and is crucial for a good
description of the folding dynamics. An example for a reaction coordinate that can be
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obtained both experimentally and from simulations is the end-to-end distance between
the first and last residue of the peptide or protein.

This simple model however tells little about the dynamics of protein folding, since the
free energy landscape is only providing static information on the equilibrium popula-
tion. The search for the folded state is typically assumed as a diffusional process driven
by Brownian motion. In the most simple form, the folding process can be described
by a two state process: two metastable states, folded and unfolded, form two minima in
a one-dimensional free energy landscape, which are seperated by an energy barrier of
height ∆E (cf. Fig.1.2). In the limit of strong frictional damping, the barrier-crossing
time τ (i.e. the folding time) is given according to Kramers theory [12] as:

τ−1 =
ωa ωb m

2 π γ
e−β ∆E, (1.1)

where ωa and ωb are the curvatures of the free energy as depicted in Figure 1.2, m is
the mass and γ is the friction constant in the underlying Langevin equation. According
to Stokes’ Law, the frictional drag γ on a small particle in a fluid is proportional to the
viscosity η of the fluid. We can subsequently rewrite Eq. 1.1 as:

τ−1 ∼ 1
η

e−β ∆E, (1.2)

Thus, for a simple two-state folder the folding time should scale with the viscosity of
the solvent: τ ∼ η.

Unfolded Folded

Fr
ee

 E
ne

rg
y

Reaction Coordinate

FIGURE 1.2: The dynamics of a protein that has two distinct states, folded and unfolded, is
projected onto a suitable one-dimensional reaction coordinate. In this picture the two states
correspond to energy minima seperated by an energy barrier of height ∆E. Given the curvatures
ωa and ωb of the free energy function, the barrier-crossing time τ according to Kramers theory
is given by Eq 1.1.

This result has two important implications. First it sets a lower limit to protein fold-
ing, i.e. the protein cannot fold faster than it can diffuse in the free energy landscape.
Secondly, this is a prediction that can in principle be easily tested by experiments. The
challenge is to find peptides whose folding speed is close or even below this limit and
to find experimental methods to also monitor this process.
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Fortunately, in the last twenty years, several such studies have been carried out and a
number of fast folding proteins have been found. Probably the first to do so were Eaton
and coworkers in 1992 [13]. Using nanosecond lasers they measure the relaxation of
myglobin after ligand dissociation. By adding glycerol as a viscogen, they are able to
measure the conformational relaxation as a function of the viscosity. While they confirm
the linear relationship of Eq. 1.2 in priciple, they make an important discovery: For low
viscosities, the rate constant does not further increase with lowering the viscosity but
levels off and thus they propose a new relationship between folding time and solvent
viscosity: τ ∼ η + σ, where they attribute the contribution σ to what they call internal
friction, i.e. friction effects not originating from the solvent but from the internal barriers
that slow down the motion of the atoms. This finding is also supported by studies
of Kiefhaber and coworkers [14], who study the loop-folding kinetics of small model
peptides using FRET experiments.

Another particularly revealing experiment in this direction was executed by Jas, Eaton
and Hofrichter [15]. They use temperature jump experiments to measure the relaxation
time of a small α-helix and a β-hairpin. While they confirm Kramers law for the β-
hairpin, they find a completely different relationship for the α-helix, where the folding
rate τ−1 follows a power-law: τ ∼ ηα. In Chapter 3 of this thesis we will investigate this
in more detail and give possible explanations for the origin of such different results.

When talking about internal friction, this of course raises the question, what actually
creates internal friction. Manke and Williams [16] start from the perspective of an ideal
flexible polymer and identify deviations to be responsible for the internal friction. Many
such deviations can be envisioned for peptides: hydrogen bonding, backbone reorient-
ation, hydrophobic interactions etc. In a broader sense we can look at internal friction
as the rugeddness of the free energy landscape. This perception nicely links the micro-
scopic friction of a peptide to the well known macroscopic friction, that is caused by
pulling a large object over a microscopically rugged surface. The role of friction is very
much the same in both cases. If the object of interest is dragged along a certain path,
energy is dissipated.

It is important to note that the simple model of a two-state folder given above is not
valid in general. Not only are folding processes more complex involving intermediate
states, the concept of a single native folded structure would be misleading. Instead an
entire ensemble of conformations should be considered, whose population is not only
depending on outer conditions but is dynamic and not neccessarily representing the
equilibrium population in this free energy landscape. Not only are energetics compet-
ing but also timescales. This is of significant importance when the stability of different
secondary structures are compared. In Chapter 4 we will discuss how internal friction
differs between different secondary structure motifs, namely α-helical and β-hairping
structures, and how that influences the kinetic properties of the peptide.



Chapter 2

Computational Methods

Studying objects on a molecular and submolecular level requires a careful choice of
methods. Since peptides, as studied in this work, live on a nanometer scale, one has to
take into account the peculiarities of inter- and intramolecular interactions. The mod-
elling on this length-scale is particularly challenging, since long-range interactions that
bridge into mesoscopic length scales and short-ranged interactions originating from
quantum effects are highly correlated. This correlation usually hinders the treatment
of long-ranged interactions in a continuum model, thus requiring the inclusion of a
relatively large environment around the actual object of interest.

Once the modelling of the intra- and intermolecular interactions is accomplished, it
is, on a formal level, straightforward to obtain the quantities of interest by applying
the methods of statistical mechanics. The high degree of correlation in the system and
the large dimension of the phase space due to the size of the system however makes
it more or less impossible to evaluate the resulting Hamiltonian analytically or with
conventional numerical methods. When the correlations in the system are small, mean-
field theories can provide suitable solutions, however they typically fail on objects like
peptides.

One therefore has to switch to more approximate ways of evaluating the system’s Hamilto-
nian. If these methods attempt to be a computational representation of a real or model
system rather than some mathematical equation, they are usually called computer sim-
ulations. Two main classes may be distinguished: static evaluations of the phase space
using e.g. Monte Carlo simulations, and kinetically oriented methods such as Molecu-
lar Dynamics (MD) or Brownian Dynamics (BD) simulations. While the former are well
suited for problems where only static properties are of interest and they are typically
computationally less expensive, the latter give insight into dynamic properties as well.
However the overcoming of high energy barriers can be challenging.

When simulating any system, one has to choose the level of abstraction. There is a wide
range of methods between fully solving the quantum mechanics and coarse graining
up the level of entire molecules being the building blocks. The influence of the water
on peptide dynamics is significant, producing hydrogen bonds and the hydrophobic
effect. As these effects reach down to the interaction between single atoms, they are

5



Chapter 2. Computational Methods 6

hard to describe by continuous, implicit water models. Therefore, we mostly study all-
atom systems, meaning that atoms are the smallest object in the system and all-atoms
refers to also taking solvent atoms into account, namely water.

All of these methods provide an exact solution of the model to a certain statistical un-
certainty and, in the limit of enough computational effort, they evaluate the relevant
phase space and yield an exact solution of the underlying Hamiltonian. Therefore, we
are able to judge the quality of the modelling of the system’s interactions. Or we can,
if sufficiently convinced of the quality of the molecular modelling, make predictions on
certain properties of interest. We thus have a powerful tool at hand to study nanometer
sized objects and gain an understanding at the submolecular level.

2.1 Molecular Dynamics Simulations

The major focus of this thesis lies on friction effects, which are mainly a dynamic prop-
erty and thus molecular dynamics simulations are a natural choice as motivated above.
Molecular dynamics simulations are a semiclassical approximation to the actual dy-
namics. Semiclassical in a sense that the simulations follow Newtonian mechanics,
while the interactions forces are an empirical approximation to the underlying quantum
description. Thus a molecular dynamics simulation is in principal simply numerically
integrating Newtons equations of motion.

In practice however, the efficient implementation of such an integrator is a major chal-
lenge. In this work an integration timestep of 2 fs is used, resulting in several hundred
million integration steps for typical timescales in the order of several microseconds.
Therefore, molecular dynamics simulations are usually run using ready-to-use pack-
ages, such as Gromacs [17], which is used here.

As will be discussed in detail further below, proper care has to be taken when setting
up the interactions of an MD simulation. Typically, in a molecular dynamics simulation
only three types of interactions are present:

• Bonded interactions: usually rigid or harmonic potentials that keep distances and
angles between atoms in a desired range

• Lennard-Jones (LJ) interaction: The LJ interaction represents the non-electrostatic
part of the interactions between nonbonded particles.

VLJ = 4 ε

(
σ12

r12 −
σ6

r6

)
(2.1)

It consistst of two parts, an attractive part ∼ r−6 due to van-der-Waals forces and
a repulsive part in order to obey the Pauli principle. The parameters ε and σ are
empirically chosen to approximate the complex many-body quantum mechanical
interactions in the condensed state.
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• Electrostatic interaction: every atom is assigned a certain charge, which results in
a Coulomb interaction

While angular potentials are typically implemented as harmonic, this can be unfavor-
able for bonds. The stiff potentials that would reproduce the desired bonded properties
lead to vibrations, especially for the light hydrogen atoms. To properly calculate these
without corrupting the integration, small time steps are required, which in return leads
to a higher computational effort. Since these vibrations are lying in a quantum dom-
inated regime, they are anyway not properly calculated and as such unphysical, thus
removing these is not wrong either. The methods to keep atom bonds stiff without a
harmonic potential are called constraint algorithms. For 3-site molecules such as water
an analytical solution named SETTLE [18] exists, for more complicated molecules we
use the LINCS [19] algorithm.

Lennard-Jones interactions can be efficiently treated using cut-offs, since they are short
ranged on a atomar length scale due to their r−6 decay. This is however not true for the
electrostatic potential, which decays as r−1. For typical box sizes of a few nanometers,
the electrostatic interaction is still of non-negligible order. Therefore, assumptions have
to be made of how the system should look beyond the box size. The typical assumption
is that the system is repeated infinitely in each cartesian direction (for square or rectan-
gular boxes). Rather than summing up the interactions of the repetitions of the boxes, it
is more convenient to use a Fourier transformed expression of the Coulomb interaction.
With a proper resummation, called Ewald summation [20], the series can be truncated
and thus be computed efficiently. More elaborate versions are parallelisable and are
known as Particle Mesh Ewald (PME) methods [21] and are used in this work. Also in
this method, the short ranged part of the Coulomb interaction is calculated separately
in real space and cut off just as the LJ-potential. We use a cutoff of rc = 0.9 nm.

The standard formulation of a Hamiltonian in a periodic box would lead to what’s
known as an NVE ensemble, i.e. fixed particle number, volume and energy, where the
energy is given by the particle positions (potential energy) and initial speed (kinetic en-
ergy). When comparing to thermodynamic systems that ought to model real systems,
this is usually not the correct ensemble. The most common ensemble is probably the
isobaric-isothermic or NPT ensemble, where measures are taken to keep the temperat-
ure and pressure at a certain value. For the temperature the v-rescale thermostat [22]
is used and as a barostat we use the Parinello-Rahman [23] algorithm. Due to com-
putational reasons, we also use the isothermal (NVT) ensemble, which does not use a
barostat but keeps the volume fixed. Since in the thermodynamic limit all ensembles
should give the same results, one can reason that given proper equilibration, the NVT
ensemble can give the proper dynamics when pressure fluctuations are not too large.

2.1.1 Mass Scaling of the Solvent

One property we are especially interested in in this work is the solvent viscosity. For
studying a protein at a wide range of solvent viscosities, we use a modification of the
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standard MD protocol, where the solvent’s (i.e. water) mass is scaled by a certain factor
c. Under mass scaling, Newton’s equations of motion stay invariant

cm
d2r

d(
√

ct)2 = F, (2.2)

and thus the equilibrium properties will not be change. However, all dynamics proper-
ties will scale als

√
c. In Fig. 2.1 one can see that the solvent viscosity indeed scales as

η/η0 ∼
√

m/m0. While this method has been previously applied to speed up equilibra-
tion, we use it in a novel way to study internal friction effects. It is particularly suited,
since the free energy landscape of the protein is by definition not altered, whereas in
experiments the effects of added viscogens (e.g. polyethylenglycol) might be present.
With this method we can study a wide range of solvent viscosities and most import-
antly also viscosities far lower than water viscosity, which is experimentally unreach-
able, since typical viscogens only increase the viscosity of water.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5√
m/m0
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P
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MD Data
η(m/m0 = 1) ·

√
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FIGURE 2.1: Viscosity η of SPC/E water for different water masses measured using a Green-

Kubo formalism [24]: η = limτ→∞
V

kB T

∫ τ
0

〈
σxz(t0) σxz(t0 + t)

〉
t0

dt, where σxz is one off-

diagonal element of the stress-tensor.

2.1.2 Steered Molecular Dynamics

The basic concepts of molecular dynamics simulations laid out above often assume sys-
tems to be in equilibrium. This is however no necessity when using the MD method.
One particular example of non-equilibrium molecular dynamics simulations is called
Steered Molecular Dynamics Simulations, where an external force is applied to a group
of atoms in the system. For example, this method can be used to obtain and thereby
study processes that would otherwise be out of reach on the typical timescales of mo-
lecular dynamics simulations, such as protein unfolding or ligand-receptor bindings.
Experimentally there exist conceptually very similar techniques, such as Atomic Force
Microscopy (AFM) [25] und optical tweezers [26] and this can provide a link between
theory and experiment [27].

In principal, there are two types of pulling scenarios: constant force and constant velo-
city. In this work, we investigate the dissipative effects during unfolding, thus constant
velocity pulling is more appropriate. This is achieved by putting the atom group in
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a moving harmonic potential (described in detail in chapter 4). Proper care has to be
taken of the periodic boundaries.

2.2 Force Fields

As laid out above, the modelling of some molecular system relies on the proper choice
of interactions and in the case of standard molecular dynamics simulations this includes
bond parameters, LJ-parameters and partial charges. A combined set of such paramet-
ers for some class of molecules is called a force field. Since it is virtually impossible
at this time to fulfill all experimental observations using a single forcefield, a subset of
parameters of interest out of all available observables is chosen to benchmark the force-
field against. For simple molecules such as water this can be properties such as density,
viscosity or dielectric permittivity. For complex molecules like peptides one usually
looks at folding properties, such as helix propensities.

2.2.1 Water

Although being a very small molecule with only three atoms, water is notoriously com-
plex in its behaviour and has been a major challenge to simulate up to today. Due
to its complex interaction with itself and the peptide of interest, it is hard to replace
water by a coarse grained model, although attempts exist and do work under certain
circumstances. But once an atomistic description of water is necessary, a large number
is needed since no simple continuum transition exists. This makes all-atom simulation
of peptides and other large systems computationally expensive.

FIGURE 2.2: Different classes of water models based on their number of interaction sites. Sites
denoted M and L are called dummy atoms and they don’t carry a mass but typically carry the
negative charge so that the true charge distribution of the water molecule is better represented.
Thus they usually give better results than the 3-site water model, albeit with a higher computa-
tional and modelling effort. [28]

Over the time several different models have been proposed, but they can loosely be
classified using the number of interaction sites assumed. The most simple models are
3-site models, one mass-carrying site for each atom of the water molecule. Models with
more interaction sites have several mass-less particles, that can however still be carrying
charges. Throughout this work we use the SPC/E water model [29], a 3-site water
model, which, is widely used in the field of protein simulations and several protein
forcefields are benchmarked using this water model. This water model is well known
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for reproducing the dielectric properties of water well, a property that makes it well
suited for peptide simulations.

2.2.2 Peptides

While water is a very simple molecule of only (in this case) three interaction sites with
a rigid conformation, peptides and proteins are far more complex. Since peptides are
flexible, one also has to find proper parameters for angle potentials. For a chain of
four atoms, cis and trans configurations are usually favorable over all other possible
alignments. As this is a four-site interaction, angle potentials are usually not able to
reproduce this correctly. Thus another type of bonded interactions is introduced, that
has to be modelled properly, so called torsional potentials.

In the field of protein simulations, a large number of forcefields exist, each with even
more variations attached to cope with special cases and minor improvements. A proper
choice is therefore hard to make and due to restrictions on computational power avail-
able, proper testing of several different forcefields might be difficult to accomplish. In
this work we choose the Amber03 forcefield, which is widely used for studying pep-
tides and proteins. However one has to remember the weaknesses of the choice made.
In the case of the Amber03 [30] forcefield, it is known that helices are overstabilised [31]
and a comparison to experimental setups might be difficult. But this can also be of use,
since small homopolymeric helices are not stable in an actual experiment. If the gov-
erning principles would be the same however, this way makes it much easier to study
peptides that can be easily grasped from the perspective of a theoretician.



Chapter 3

Peptide Chain Dynamics in Light
and Heavy Water: Zooming in on
Internal Friction

Frictional effects due to the chain itself, rather than the solvent, may have a significant
effect on protein dynamics. Experimentally, such “internal friction” has been invest-
igated by studying folding or binding kinetics at varying solvent viscosity; however
the molecular origin of these effects is hard to pinpoint. We consider the kinetics of
disordered glycine-serine and α-helix forming alanine peptides, and a coarse-grained
protein folding model in explicit-solvent molecular dynamics simulations. By varying
the solvent mass over more than two orders of magnitude, we alter only the solvent vis-
cosity and not the folding free energy. Folding dynamics at the near-vanishing solvent
viscosities accessible by this approach suggest that solvent and internal friction effects
are intrinsically entangled. This finding is rationalized by calculation of the polymer
end-to-end distance dynamics from a Rouse model that includes internal friction. An
analysis of the friction profile along different reaction coordinates suggests a connection
between friction and the formation of hydrogen bonds upon folding.

3.1 Introduction

It seems intuitively clear that the kinetics of protein folding and conformational trans-
itions is not dictated by water viscosity alone, but also by internal dissipation processes.
In essence, if one could experimentally lower the viscosity of water without changing
the folding free energy landscape, one would – for large enough proteins and in the
hypothetical limit of vanishing solvent viscosity – still expect folding to be diffusive,
but with a diffusivity entirely determined by the internal friction of the protein. Apart
from early stopped-flow studies on ribonuclease A [32], the majority of experiments
have demonstrated kinetic slowing down with increasing solvent viscosity: In a spec-
troscopic study on the folding of the α-subunit of tryptophan synthase, the folding rate

11
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was found to scale inversely with increased solvent viscosity, confirming that the rate-
limiting step involves a solvent-dominated diffusional process, but the extrapolation to
vanishing solvent viscosity resulted in a negligible folding time, therefore no indication
of internal friction [33], in agreement with more recent studies on protein L [34]. A
study on the conformational relaxation following CO photodissociation in myoglobin
on the other hand yielded a substantial viscosity-independent component [13]. For
various proteins that essentially fold down-hill in the µs range close to the ”speed-
limit”, the existence of a non-zero internal friction was confirmed [35–37], showing that
folding over low barriers is particularly susceptible to internal friction effects [38]; in-
ternal friction has only been observed in one case for a larger protein [39]. Likewise,
the loop formation dynamics of intrinsically disordered short peptides was found to
be dramatically slowed down with added viscosifier [14, 40]. In a particularly reveal-
ing study, the kinetics of α-helix and β-hairpin formation in two short model peptides
was studied by laser temperature jumps and fluorescence detection [15]: The data were
compared with two different laws for the folding time as a function of solvent viscosity,
a pure power-law predicting infinitely fast folding at vanishing solvent viscosity, and
a linear law with a finite limiting folding time. Both forms essentially described the
data equally well, partly reflecting the restricted available data range since the aqueous
solvent viscosity cannot be lowered, but only increased by the addition of viscogenic
cosolutes. With the exception of very few protein studies [37], the unwanted effects of
viscogens on equilibrium properties cannot be excluded, which is particularly disturb-
ing since denaturants (that are commonly added to counteract the stabilization due to
viscogens) have also been shown to influence the peptide kinetics [41].

In an effort to assist and interpret these experimental efforts, Langevin simulations of
protein folding in implicit solvent were performed [42–44]. As solvent friction is re-
duced, folding times decrease linearly with viscosity, as expected. But for viscosities
orders of magnitude less than water, the functional dependence changes [43] and even-
tually a turnover is observed, leading to a counterintuitive decrease of folding rate with
decreasing viscosity [42, 44]. This turnover is related to suppressed momentum dissipa-
tion into the Langevin heat bath at low friction [12] but presumably has no experimental
relevance. The main drawback of standard implicit-solvent simulations is that viscous
damping, which mimics the solvent, acts in the same way on all residues, regardless
of whether they face the solvent or are in the protein interior [45]. The increase of the
importance of internal friction as one goes from disordered, solvent-rich conformations
to compact ones is therefore not fully accounted for in such models. In explicit-solvent
simulations, on the other hand, mass-rescaling provides a simple method for modi-
fying the water viscosity: changing the water mass by a scaling factor c, the inertial
force F following from Newton’s equation of motion is invariant when simultaneously
rescaling time by a factor

√
c,

cm
d2r

d(
√

ct)2 = F, (3.1)

meaning that at reduced water mass all transport properties are accelerated and in par-
ticular viscosity is reduced. By construction, equilibrium properties and therefore free
energies are not influenced: consequently, this trick has previously been used to accel-
erate the equilibration of protein simulations in explicit solvent [46, 47]. In the present
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paper we employ this procedure to study the viscosity-dependent kinetics of short pep-
tides and a two-state protein, changing the solvent mass by more than two orders mag-
nitude and in particular reaching the relevant regime of reduced solvent viscosities.
Since all time scales are shifted, small solvent friction is accompanied by high heat con-
ductivity, and therefore Kramer’s turnover is not expected, suggesting that our simu-
lation approach more closely captures the essence of experiments at modified solvent
viscosity. Our simulations show clearly that internal friction effects exist. The separ-
ation into internal and solvent friction is nevertheless not straightforward, even when
we locally resolve the friction profile along different reaction coordinates [48, 49] and
although in simulations we can substantially reduce the solvent viscosity.

Historically, the concept of internal friction arose for polymers in the context of dissip-
ation due to the thermally activated crossing of dihedral barriers [50]. Shortly after,
an alternative mechanism based on contacts between monomers that are not neces-
sarily close neighbors along the backbone was suggested [51]. These contacts can be
attractive (hydrogen bonds (HBs) are obvious candidates for this type) or steric and
thus purely repulsive, giving rise to considerable kinetic slowing down in polymeric
globules [52]. While local friction, e.g., due to dihedral barriers constitutes only a small
correction to the long-time chain relaxation, it can be dominant at short times or for
strongly stretched biopolymers [53, 54]. Using a simple Rouse model that incorporates
local internal friction, we show that the mean passage time for an incremental change of
the end-to-end distance depends non-trivially on the solvent viscosity, exhibiting both
linear as well as power-law behavior depending on the relative strength of internal and
solvent viscosity, but always showing a non-zero folding time at vanishing solvent vis-
cosity. The scaling form provided by the Rouse polymer model fits our simulation data
quite well. Although protein kinetics is more complicated, involving also steric and HB
effects, our calculation is a first step toward understanding the complex entanglement
of internal and solvent friction effects and rationalizes the occurrence of power-laws for
folding times as a function of solvent viscosity.

3.2 Simulation Details

Our explicit water molecular dynamics simulations use the GROMACS [17] simula-
tion package version 4.5, Amber ff03 force field [30] and SPC/E water [29] model. The
box size is 3.14 nm with 688 water molecules for Ala8 and 3.18 nm with 711 water mo-
lecules for (GlySer)4. Simulation times range up to 4 µs, pressure is set to 1 bar using
a Parrinello-Rahman barostat [23], and temperature to 300 K using a velocity rescaling
thermostat [22]. The heat bath in our MD simulations couples to the average velocity
in the simulation box [22] and therefore is expected to modify the dynamics only negli-
gibly, in contrast to standard Langevin simulations. The different water masses used are
between m/m0 = 0.01 and m/m0 = 9, where m0 denotes the standard water mass, and
the integration time step has been adjusted accordingly (for further simulation details,
see SI Text).
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3.3 Results and Discussion

3.3.1 Simulations at varying water mass

To study the effects of solvent viscosity on peptide dynamics we consider two simple,
8-amino-acid peptides. The first, a (GlySer)4 chain, is unstructured and has been widely
studied experimentally [14], the second is the helix forming peptide Ala8; both peptide
termini are capped. By changing the mass of water in the simulations, the water viscos-
ity varies between η/η0 =

√
m/m0 = 0.1 and η/η0 = 3.

A B

D

C

E

FIGURE 3.1: (A) Trajectories of the end-to-end distance QGS4
ee for (GlySer)4 for the lowest and

the highest viscosities, η/η0 = 0.1 and η/η0 = 3. (B) Free energy βF(Q) as a function of the
end-to-end radius QGS4

ee (blue lines) and radius of gyration QGS4
gyr (green lines) for (GlySer)4 for

all different viscosities. (C) βF(Q) for Ala8, here in addition results as a function of the root-
mean-square (RMS) deviation from the perfect helical state, qAla8

rms (red lines) are shown. (D)
Mean-first-passage times τGS4

fp (Qee, Q f
ee) in terms of the end-to-end distance for final position

Q f
ee = 0.5nm. (E) τA8

fp (Qee, Q f
ee) for the final position Q f

ee = 1.05nm.

In 3.1A we show the fluctuating end-to-end distance QGS4
ee (defined as the distance

between the terminal amino acids) for (GlySer)4 for the lowest and the highest vis-
cosities, η/η0 = 0.1 and η/η0 = 3, illustrating the clear difference in dynamics. In
3.1B we show the free energy βF(Q) = − ln P(Q), which follows from the averaged
probability distribution P(Q), as a function of QGS4

ee (blue lines) and radius of gyration
QGS4

gyr (green lines) for (GlySer)4 for all different viscosities. Note that q variables de-
note rescaled versions of the original Q, mapping the domain between the smallest and
largest observed reaction coordinate (RC) values Q onto the interval q = [0, 1], and that
P(q) is normalized as

∫ 1
0 dqP(q)=1. 3.1C displays βF(Q) for Ala8, where in addition to

qAla8
ee (blue lines), qAla8

gyr (green lines) we show F as a function of the root-mean-square
(RMS) deviation from the perfect helical state, qAla8

rms (red lines). We note that the free en-
ergy profiles for each RC and different water viscosities for both peptides agree closely
with each other, thus matching our expectation that solvent viscosity does not influence
equilibrium properties and in addition showing that our simulations are well equilib-
rated. The (GlySer)4 free energy profiles are rather broad and reflect the lack of ordered
structure, while the Ala8 profiles exhibit pronounced minima due to the α-helical state.
A quantitative analysis of how solvent viscosity influences the peptide kinetics is pos-
sible by computing mean first passage times τf p(Q, Q f ), which measure how long it
takes, starting from a given position Q along the RC, to reach the final state Q f for the
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first time. In 3.1D we show τGS4
fp (Qee, Q f

ee) for the end-to-end distance for the final pos-

ition Q f
ee = 0.5nm, in 3.1E we show τA8

fp (Qee, Q f
ee) for the final position Q f

ee = 1.05nm.
The final positions are in both cases chosen as convenient (i.e. statistically prominent)
product states in a prototypical folding reaction starting from Qee > Q f

ee. As already
suggested by the trajectories in (A), the folding becomes slower with increasing vis-
cosity. A well-equilibrated measure for the folding speed is the Boltzmann-averaged
mean-first passage time

τ̄fp(Q f ) =
∫ ∞

Q f
dQP(Q)τfp(Q, Q f )/

∫ ∞

Q f
dQP(Q). (3.2)

If the solvent viscosity η were the only time scale in the folding kinetics, the ratio
τ̄fp/(η/η0) would be independent of η/η0. The results in 3.2A for the end-to-end dis-
tance of the (GlySer)4 (blue) and Ala8 peptides (red data points) exhibit a pronounced
decrease of the rescaled folding time τ̄f p/(η/η0) with η/η0. Thus, the folding time τ̄fp

decreases sub-linearly with η/η0 as η/η0 → 0, proving that finite internal friction exists
both for the folding of (GlySer)4 as well as Ala8.
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A
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C

D

FIGURE 3.2: (A) Boltzmann-averaged mean-first passage time, Eq. 2, rescaled by the solvent
viscosity, τ̄fp(Q f )/(η/η0), for the end-to-end distance of the (GlySer)4 (blue) and Ala8 peptides
(red data points), as a function of η/η0. (B) Averaged folding time τ̄fp for (GlySer)4 as a function
of the viscosity ratio η/η0. (C) Analogous results for Ala8. (D) Results for the averaged folding
τ̄f

fp (green) and unfolding time τ̄u
fp (black) for the protein 1prb7−53 from a coarse-grained Go-type

model. In B-D, fits according to 3.3 (solid), 3.4 (broken), and 3.7 (dotted lines, N = 10 in B and
C and N = 47 in D) are shown. Note that in D, eqs. (3.4) and (3.7) are almost indistinguishable.

Testing the relevance of the peptide dynamics to proteins is challenging because of the
computational demands, even for the fastest-folding proteins. We therefore use instead
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a coarse-grained Go-type model [55] of the two-state 47-residue 3-helix bundle pro-
tein 1prb7−53 [56] with explicit solvent (details in SI). Remarkably, we find a very sim-
ilar non-linear dependence of the folding and unfolding rates on viscosity, revealing a
measurable internal friction even in this case. In 3.2B-D we plot the averaged folding
time τ̄fp for (GlySer)4, Ala8 and the coarse protein model as a function of the viscosity
ratio η/η0 and compare it with two previously suggested heuristic fitting functions [15]

τ̄fp = τint + τwatη/η0 (3.3)

and
τ̄fp = τ0(η/η0)

α. (3.4)

While both forms give fits of essentially equivalent quality, shown as solid and broken
lines, only the linear form 3.3 allows an easy separation of the folding time into an
internal contribution τint, which would be the folding time in the hypothetical limit of
vanishing solvent viscosity, and the water contribution τwat, which is the added folding
time due to the presence of water. allows no such separation, rather introducing an
exponent which turns out to be α = 0.59 for (GlySer)4, α = 0.73 for 1prb7−53, and
α = 0.66 for Ala8, quite close to experimental measurements for an α-helix forming
peptide of α = 0.64 [15], but leads to the non-intuitive extrapolation that folding occurs
infinitely fast as solvent viscosity vanishes. We emphasize that both forms definitely
assume that internal friction exists (otherwise we would have τ̄fp = τ0η/η0), but none
is rigorously derived from a polymeric or protein model. This gap is filled by a Rouse-
type calculation for the passage time of an ideal polymer chain with internal friction,
results of which are shown as dotted lines in 3.2B-D.

3.3.2 Passage times from Rouse model including internal friction

In the standard Rouse model for polymer dynamics, N connected beads at positions
Rn with n = 1 . . . N are subject to friction forces −ξmdRn/dt that counteract bead mo-
tion proportional to the monomeric Stokes friction coefficient ξm = 6πηa, where a is
the effective bead radius. The simplest mechanism for internal friction is bond friction
that acts on the bond vector Rn − Rn−1 in the form of a force proportional to the bond
stretching velocity,−ξbd(Rn−Rn−1)/dt, where ξb is the bond friction coefficient that to
leading order is independent of the solvent viscosity and only depends on dissipative
processes within the polymer (e.g., due to dihedral barriers). Since each monomer par-
ticipates in two bonds, the Langevin equation of motion takes in the continuum limit
the symmetric form [51, 54]

ξmdR(n)/dt = (κ + ξbd/dt)d2R(n)/dn2 + f(n) (3.5)

where κ ∼ kBT/a2 is a spring constant ensuring an equilibrium bond length ∼ a and
f (n) is a Gaussian random force. By normal-mode decomposition, 3.5 can be solved in
closed form, and the final result for the auto-correlation function of the mean-squared
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end-to-end distance Cee(t) = 〈(Ree(t)− Ree(0))2〉/〈R2
ee〉 with Ree = R(N)− R(0) is

Cee(t) = C0

N

∑
p

(
1− e−t/τp

)
/p2. (3.6)

Here C0 is a normalization constant so that Cee(∞) = 1, the sum runs over odd mode
numbers p only, and the mode relaxation time is τp = N2τm/p2 + τb where we have
defined the monomer relaxation time τm = ξm/(π2κ) and the bond relaxation time τb =

ξb/κ. For large times, Cee(t) approaches unity exponentially, Cee(t) ∼ 1− exp(−t/(N2τm +

τb)), where N2τm is the polymeric or Rouse relaxation time. For intermediate times, in
the so-called Rouse regime, Cee(t) grows as a power law, Cee(t) ∼

√
t/τm/N. Most rel-

evant for the present discussion based on the scenario of a protein diffusing in a 1D free
energy landscape is the diffusive regime at short times, where we find three separate
scaling ranges, depending on the relative strength of monomer and bond time scales:
Cee(t) ∼ t/τb for dominating internal friction N2τm < τb, Cee(t) ∼ t/(N

√
τbτm) for

intermediate internal friction τm < τb < N2τm, and Cee(t) ∼ t/(Nτm) for negligible
internal friction τb < τm (see SI Text). To connect to our simulation results for folding
times, we define a mean-passage time τmp by the condition that Cee has reached a cer-
tain threshold value, Cee(τmp) ≡ C∗ee, with C∗ee chosen small enough so that one stays in
the diffusive regime. A scaling function that contains all three regimes and accurately
reproduces 3.6 is τmp/C∗ee = C1τb + C2N

√
τbτm + C3Nτm (see SI Text). The coefficients

for C∗ee = 0.01 and N = 10 are C1 = 1, C2 = 0.9 and C3 = 2.1. Assuming a linear relation
between τm and η as τm = τ0

mη/η0, where τ0
m is defined as the monomer relaxation time

at reference solvent viscosity η = η0, we obtain

τmp/(C∗eeτb) = C1 + C2N

√
τ0

m
τb

η

η0
+ C3N

τ0
m

τb

η

η0
. (3.7)

We note: i) 3.7 contains two fitting parameters, an overall time scale, here taken to be
the bond relaxation time τb, and the ratio τ0

m/τb, thus the number of fitting parameters
is the same as in the previously discussed heuristic fitting forms eqs. (3.3) and (3.4). ii)
3.7 combines key aspects of eqs. (3.3) and (3.4), namely the folding time scale reaches a
finite value for vanishing η, as in 3.3, and power law behavior for intermediate times
is obtained, as in 3.4. The resulting fits according to 3.7 in 3.2B-D (dotted lines) are of
the same quality as the other fits. iii) For large chain lengths N, the first term in 3.7
that is independent of solvent viscosity becomes negligible; this is interesting in light
of the experimental observation that internal friction has been measured more often for
fast-folding (i.e., small) protein or protein domains [35, 36], with only one exception
[39].

The main point of our Rouse model calculation is to demonstrate the complexity of
chain kinetics when the solvent viscosity is varied, even for the relatively simple case
of local internal friction (mimicking dihedral barrier effects) as defined by 3.5. While
internal and solvent friction effects are additive for each mode relaxation time τp, as
assumed in 3.3, the mode mixing that takes place when a kinetic observable is calcu-
lated gives rise to power-law behavior, as assumed in 3.4. We now turn to more realistic
friction scenarios including interactions and HB effects.
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3.3.3 Locally resolved friction analysis

Some of the complexities observed in 3.2B-D could have to do with the fact that a fold-
ing time integrates over the friction landscape while the peptide moves from the start-
ing configuration to the final configuration, particularly since the relative weight of in-
ternal friction should increase as one goes from open to more collapsed and hydrogen-
bonded structures [37]. To look into this, we now resolve the friction profile locally.
Assuming that a given RC evolves according to the Fokker-Planck equation [57]

∂

∂t
P(Q, t) =

∂

∂Q
1

βξ(Q)
e−βF(Q) ∂

∂Q
P(Q, t)eβF(Q), (3.8)

where P(Q, t) is the probability of having a configuration with RC value Q at time t,
and ξ(Q) is the friction profile. Defining the round-trip time τrt(Q, Q f ) = sign(Q −
Q f )[τfp(Q, Q f ) + τfp(Q f , Q)] as the time needed to start at Q, reach Q f for the first time,
start from Q f again and reach back to Q for the first time, one finds [49] τrt(Q, Q f ) =

Z
∫ Q

Q f dQ′ βξ(Q′)eβF(Q′), where Z =
∫ Qmax

Qmin dQe−βF(Q) is the partition function which in
our normalization is unity. The friction profile based on the round-trip time (see SI Text)
reads [49]

βξ(Q) =
∂τrt(Q, Q f )/∂Q

ZeβF(Q)
, (3.9)

which in 3.3A is shown for different solvent viscosities for (GlySer)4 in terms of the
rescaled end-to-end distance coordinate qee. Indeed, the local friction increases with
increasing η, and in addition ξ goes up for smaller qee, i.e., when the peptide chain be-
comes more confined [37]. When comparing ξ(qee) at normal water viscosity η/η0 = 1
for (GlySer)4 (blue line) and Ala8 (red line) in 3.3B, we see that Ala8 shows a friction
maximum at an intermediate value of qee ≈ 0.4. This can be compared with the num-
ber of intra-peptide HBs NHB in 3.3C. HBs are defined according to the distance-angle
criterion that the acceptor - donor - hydrogen angle θ should be smaller than θ = 30o

and the donor-acceptor distance smaller than 0.35 nm [58].
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FIGURE 3.3: (A) Locally resolved friction profiles βξ(qee) for different solvent viscosities for
(GlySer)4 as a function of the rescaled end-to-end distance qee. (B) βξ(qee) at normal water
viscosity η/η0 = 1 for (GlySer)4 (blue line) and Ala8 (red line). (C) Number of intra-peptide
HBs NHB for (GlySer)4 (blue line) and Ala8 (red line).

Indeed, the maximum in ξ at qee ≈ 0.4 for Ala8 roughly matches the maximum in NHB,
corresponding to the helical state; the naive expectation (which will be rectified below)
would be that the total number of HBs determines local friction.
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FIGURE 3.4: (A) Friction profiles βξ (solid lines) and internal contribution βξint (broken lines) at
η/η0 = 1 for (GlySer)4 as a function of the rescaled radius of gyration qgyr (blue) and for Ala8
as a function of the RMS from the perfect helical state qrms (red). Representative simulation
snapshots are shown at the top. (B) Corresponding number of intra-peptide hydrogen bonds.
(C) βξGS4 for qgyr = 0.1 and qgyr = 0.2 as a function η/η0. Solid and broken lines denote linear
and power-law fits according to eqs. (3.3) and (3.4), respectively.

In fact, the end-to-end distance is not the most natural RC to characterize friction in
our two model peptides. Therefore in 3.4 we show βξ as a function of the radius of
gyration qgyr for (GlySer)4 and as a function of the RMS from the perfect helical state
qrms for Ala8. For a disordered chain like (GlySer)4, one would expect friction to be
mainly due to unspecific intra-peptide HBs and increased in the collapsed state; indeed,
ξ plotted versus qgyr shows a pronounced maximum for small qgyr in 3.4A (blue line)
that is paralleled by a maximum in NHB in 3.4B (blue line). Unexpectedly, for Ala8, a
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pronounced maximum in ξ appears at qrms ≈ 0.4 (red line in 3.4A) and thus shifted
away from the fully folded state (around qrms ≈ 0.1) where NHB has saturated to the
maximum value. Scrutinizing NHB for Ala8 in 3.4B (red line) more closely, one sees
that the maximum in ξA8 around qrms ≈ 0.4 correlates roughly with a sudden drop of
NHB around qrms ≈ 0.45. A possible connection between friction and variations in NHB

is suggested by the invariance of the Fokker-Planck equation (3.8) under coordinate
rescaling according to Q̃ = Q̃(Q) if the functions Ψ, F, ξ are simultaneously rescaled
as Ψ̃ = Ψ/Q̃′, F̃ = F + β−1 ln Q̃′, ξ̃ = ξ/(Q̃′)2, where Q̃′ ≡ dQ̃(Q)/dQ. Thus an
arbitrary friction profile ξ̃(Q̃) can be designed, including the limiting simple case of a
constant friction ξ̃(Q̃) = ξ̃0, while the kinetics stays invariant. Since all observables
(and in particular the HB number NHB) are not modified by the rescaling Q̃ = Q̃(Q), an
explanation of ξ(Q) in terms of equilibrium observables is spurious. Thus, the friction
profile can only be linked to derivatives, such as dNHB(Q)/dQ, which have similar
transformation properties as ξ(Q) itself. Indeed, when comparing ξA8 in 3.4A (red line)
with NA8

HB in 3.4B (red line), we see that maxima in ξA8 approximately correlate with
regions where NA8

HB changes pronouncedly with qrms. A mechanistic interpretation of
this would be that HB-related friction is particularly large when the number of HBs
significantly changes along the RC, i.e., when additional HBs are created, most likely
because formation of non-native HBs results in long-lived kinetic traps [39].

Finally, we check whether the local friction profile facilitates the separation into solvent
and internal friction. To that end, in 3.4C we plot ξGS4 for qgyr = 0.1 and qgyr = 0.2 as
a function η/η0. Similar to the mean first passage times shown in 3.2B, a linear fit as in
3.3 is possible (solid lines), but the data show clear signs of curvature, and a power-law
fit according to 3.4 (broken lines) is equally accurate. Nevertheless, the broken lines
in 3.4A show the internal friction profiles ξint(q) that are defined via the scaling form
ξ = ξint + ξwatη/η0 inspired by 3.3. ξint(q) largely parallels the total friction profiles
ξ(q) (solid lines), but the intuitive expectation that ξint should dominate in the folded
(HB-rich) state while solvent friction, i.e., ξ − ξint, should dominate in the unfolded
(open) state is not borne out by the data. This might have to do with the lack of a
rigorous recipe for the division between solvent and internal friction. Alternatively, this
could mean that water indirectly also influences HB-induced internal friction, possibly
because whenever an intra-peptide HB breaks, a water molecule penetrates and serves
as an intermittent HB donor or acceptor.

3.4 Conclusion

Our simulations clearly show that internal friction effects exist but at the same time
demonstrate that the quantitative separation into internal and solvent friction is not
straightforward. This is true even when we locally resolve the friction profile along dif-
ferent RCs [48, 49] and although in simulations we can substantially reduce the solvent
viscosity while making sure that free-energy folding profiles are not modified as viscos-
ity changes. This has primarily to do with the lack of a simple but physically motivated
definition of internal friction in terms of folding times or friction profiles. This com-
plexity is corroborated by a simple Rouse-type model for the kinetics of a Gaussian
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polymer chain including internal local friction, for which the calculated passage times
show power-law and linear behavior as a function of solvent viscosity, depending on
the internal friction strength and the polymer size N. It is the polymeric, multi-scale
nature of the dynamics that gives rise to the power-law viscosity dependency of time
scales in our model calculation, that turns out to be very similar to our simulations and
to experimental observations [15]. In fact, an alternative explanation for power-law
behavior based on the finite spatial range of spectroscopic probes has been previously
given [59] and in reality both mechanisms will be entangled.
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3.5 Supplementary Information

3.5.1 Reaction Coordinates

3.5.1.1 Definition

We project the simulation results onto three reaction coordinates: the end-to-end dis-
tance Qee, the radius of gyration Qgyr and in the case of Ala8 also the root mean-squared
deviation (RMSD) from an ideal helix Qrms.

End-to-end distance The end-to-end distance is calculated using the GROMACS tool
g_dist and is defined as

Qee = |R(1)− R(8)| , (3.10)

where we define R(1) and R(8) as the center of mass of the first and the last, i.e. 8th
amino acid, omitting the endcaps (cf. simulation details).

FIGURE 3.5: Free energy as a function of the rescaled end-to-end radius of (GS)4 (blue) and Ala8
(red). Representative snapshots are shown above.

The corresponding free energy profile together with snapshots is shown in 3.5. In the
case of the alanine helix, one can see quite clearly that the end-to-end distance is not a
good reaction coordinate, as one point in the reaction coordinate represents very dis-
tinct peptide configurations, as visualized by the different snapshots for qee = 0.6, and
thus cannot describe kinetic processes very accurately.
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Radius of gyration The radius of gyration is calculated with the GROMACS tool
g_gyrate and is defined as

Qgyr =

√
∑i |ri|2 mi

∑i mi
, (3.11)

where mi is the mass of the ith atom and ri the position with respect to the peptide’s
center of mass.

Root mean squared deviation (RMSD) from ideal helix As explained before, neither
the end-to-end distance nor the radius of gyration resolve the dynamics of the alanine
peptide well. We thus consider a reaction coordinate that describes the deviation from
an ideal helix and thus gives more insight into the helix dynamics. In order to calculate
this reaction coordinate, we first define an ideal helix by

Rideal
i = (r cos(φtw i), r sin(φtw i), d i), (3.12)

where i denotes the ith Cα-atom, r = 0.23 nm is the helical radius, d = 0.15 nm is the
rise per residue and φtw = 1.745 rad is the twist per residue.

In a second step we minimize the mean-squared deviation between the Cα positions of
the simulated helix and the ideal helix with respect to an overall translation and rotation
of the simulated helix, using the functional

Qrms =

√√√√ 8

∑
i=1

(
Rideal

i − Rsim
i

)2, (3.13)

where i again gives the ith Cα-atom and Rideal
i and Rsim

i are the positions of the ith atom
in the ideal and simulated alanine helix, respectively. The residual value Qrms after
optimizing is reported in the main text.

3.5.1.2 Rescaling

As the reaction coordinates produce different scales, we rescale them to enable a mean-
ingful comparison. The reaction coordinates are rescaled to be in the range [0, 1] accord-
ing to:

q =
Q−Qmin

Qmax −Qmin
, (3.14)

where Q is one of the reaction coordinates above and Qmax and Qmin are the maximum
and minimum of the respective reaction coordinate along all mass scalings. Note that
the scalings are done for each peptide type individually.
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3.5.2 Friction Coefficient and Round Trip Times

Although it is possible to calculate the friction coefficient from first passage times [60],
this approach has certain drawbacks. A way to improve statistics is by calculating the
round trip time for many targets q f [49]. As we assume a Markovian process, the derivat-
ive ∂τrt(q, q f )/∂q should not depend on q f , i.e. the τrt(q, q f ) are equal up to a constant.
We can therefore average the obtained derivatives and thus drastically improve the
statistics of the resulting friction profiles.

3.5.2.1 Definition

As already explained in the main text, we define the round-trip time as the time to reach
q f from q for the first time and then return to q

τrt(q, q f ) = sign(q− q f )[τfp(q, q f ) + τfp(q f , q)] (3.15)

In the top part of 3.6 we show round-trip times for different setups. The vertical col-
oured bars indicate the respective q f . One can see that indeed different curves only
differ by a constant, at least for a certain region around q f . The solid lines show spline
fits explained in the next section.

A B C D

FIGURE 3.6: Round-trip times τrt and friction coefficient ξ calculated from round-trip time fits.
Colours indicate different q f (indicated by vertical bars). Solid black lines give the weighted
average over different friction profiles as discussed in the text.
A) qGS4

ee (η/η0 = 1) B) qGS4
gyr (η/η0 = 1) C) qA8

ee (η/η0 = 1) D) qA8
rms(η/η0 = 1)
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3.5.2.2 Spline Fits

As a first step towards the calculation of the friction coefficient ξ we fit our round-trip
times with a monotonic spline

τrt, fit(q, q f ) = τrt, fit(qmin, q f ) +
∫ q

qmin

dq′eW(q′), (3.16)

where W(q′) is an arbitrary function, which, as eW(q′) > 0, via the integral ensures
a monotonic rising function. W(q′) is then fitted by a base of nbase = 79 quintic B-
splines. The number of base function nbase is chosen by nbase = ndata + norder − 2 with
ndata = 75 the number of data points and norder = 6 the order of the quintic spline. The
actual fitting is carried out using a standard least-squared scheme with the addition of a
smooting term λ

∫ qmax
qmin

dq′(∂W(q′)/∂q′)2, which penalized roughness. This smoothing
term is added to the sum of squared residues and then the combined sum is minimized.
λ is chosen in such a way, that statistical noise is removed yet the curve is not overfitted,
i.e. removing actual features in the curve by smoothing. Typical values were in the
range of λ = 10−6 ns2. The fitting routine is carried out using the Functional Data
Analysis (FDA) package [61] of the R statistical software.

3.5.2.3 Calculation of ξ

As explained in the main text, we calculate the friction coefficient by

βξ(q) =
∂τrt(q, q f )/∂q

ZeβF(q)
. (3.17)

The derivative of the round-trip time is straightforwardly calculated from the spline fits.
As explained before, in order to improve statistics, we calculate τrt for several q f and
average the resulting derivative. Due to statistics, the round-trip time is most accurate
in the neighbourhood of q f and thus only derivatives in the finite range q f − q0 < q <

q f + q0 contribute to the average, where we chose q0 = 0.15. The corresponding friction
profiles and the resulting average (solid black line) can be seen in 3.6 for several setups.

3.5.3 Derivation of Rouse Model

3.5.3.1 Model Description

We consider the usual Rouse model consisting of discrete beads interconnected by har-
monic springs of stiffness κ. To include internal friction we add a force term opposing
extensional motion of the bonds, namely −ξbd (Rn − Rn−1) /dt [50, 53]. Therefore the
total force on the nth bead due to internal friction reads:

ξbd (Rn−1 − 2Rn + Rn+1) /dt (3.18)

Thus the dynamics of the nth bead are governed by the Langevin-equation
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ξm
dRn

dt
=

(
κ + ξb

d
dt

)
(Rn−1 − 2Rn + Rn+1) + fn , (3.19)

where ξm is the usual Stokes friction and fn is the stochastic contribution.
If we consider large N and investigate the dynamics of the chain only at large length
scales, we can make a continuum approximation of 3.19, yielding

ξm
∂R(n, t)

∂t
=

(
κ + ξb

∂

∂t

)
∂2R(n, t)

∂n2 + f(n, t) , (3.20)

where now the chain is described by a continuous space curve R(n, t). Under the as-
sumption of free-end boundary conditions,

∂R(n, t)
∂n

∣∣∣
n=0

=
∂R(n, t)

∂n

∣∣∣
n=N

= 0 , (3.21)

3.20 has spatial eigenfunctions proportional to cos(pπn/N) with mode number p. As-
suming the same boundary conditions for the stochastic forces f(n, t) as for R(n, t), we
can expand both in terms of the cosine eigenfunctions by

R(n, t) = X0(t) + 2
∞

∑
p=1

Xp(t) cos(pπn/N) (3.22)

f(n, t) =
1
N

f0(t) +
1
N

∞

∑
p=1

fp(t) cos(pπn/N) , (3.23)

where the prefactors 2 and 1/N are included for convenience. These expansions can be
inserted into the Langevin-equation 3.20, multiplied by cos(p′πn/N) and integrated
over n,

∫ N

0
dn cos(p′π

n
N
)ξm

(
∂X0(t)

∂t
+ 2

∞

∑
p=1

∂Xp(t)
∂t

cos(pπ
n
N
)

)

=
∫ N

0
dn cos(p′πn/N)×

×
[(

κ + ξb
∂

∂t

)
2

∞

∑
p=1

Xp(t)
(
− p2π2

N2 cos(pπn/N)

)

+

(
1
N

f0(t) +
1
N

∞

∑
p=1

fp(t) cos(pπn/N)

)]
. (3.24)

Since
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∫ N

0
dn cos(p′π

n
N
) cos(pπ

n
N
) = δp0δpp′N +

(
1− δp0

)
δpp′

N
2

(3.25)

one obtains

ξp
dXp(t)

dt
= −κpXp(t) + fp(t) , (3.26)

where

κp =
2π2 p2κ

N
for p ≥ 0 , (3.27)

ξ0 = Nξm ,

ξp = 2Nξm +
2π2 p2ξb

N
for p > 0 . (3.28)

With eqs. (3.27) and (3.28) we can calculate the mode relaxation times τp, yielding

τp =
ξp

κp
=

τR

p2 + τb , (3.29)

where the Rouse time τR for a polymer with free ends is defined as

τR =
N2ξm

π2κ
(3.30)

and

τb =
ξb

κ
(3.31)

is the contribution of the internal friction to the mode relaxation times.

3.5.3.2 Noise Correlations

The inclusion of internal friction alters the noise correlation in real space with respect
to the case without internal friction, where the correlations are known and trivial. In
fact, internal friction leads to spatially correlated noise [53], meaning that the forces
are no longer δ-correlated in space. Calculation of the correlations with incorporated
internal friction in real space is rather involved, but if the dynamics are considered in
terms of normal mode amplitudes as in 3.26, the calculation is feasible. To calculate the
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correlation of the random normal mode amplitudes for a general space-correlation of
the real space noise forces, we consider

〈
f(n, t)fT(m, t′)

〉
= 2kBT1B(n, m)δ(t− t′) , (3.32)

with some arbitrary function B(n, m). Since we assume that the random forces f(n, t)
can be expanded in a cosine basis, this should also hold for B(n, m). Hence we can write

B(n, m) =
1

N2 B00 +
2

N2

∞

∑
k≥1

Bk0 cos (kπn/N)

+
2

N2

∞

∑
l≥1

B0l cos (lπm/N)

+
4

N2

∞

∑
k,l≥1

Bkl cos (kπn/N) cos (lπm/N) . (3.33)

Inserting this into 3.32 and multiplying this equation with cos (p′πn/N) cos (q′πm/N),
one obtains by integrating over n and m for the right hand side

2kBT1δ(t− t′)
∫ N

0
dn dm cos

(
p′π

n
N

)
cos

(
q′π

m
N

)
B(n, m)

= 2kBT1δ(t− t′)Bp′q′ . (3.34)

Using the expansion into normal modes, 3.23, the left hand side of 3.32 evaluates to

∫ N

0
dn dm

〈
f(n, t) cos

(
p′πn/N

)
fT(m, t) cos

(
q′πm/N

)〉
=

〈
fp′(t)

(
δp′0 +

1
2
(
1− δp′0

))
fT

q′(t)
(

δq′0 +
1
2
(
1− δq′0

))〉
. (3.35)

3.32 can thus be rewritten as

〈
fp(t)fq(t′)

〉
= 1

2kBTδ(t− t′)Bpq(
δp0 +

1
2

(
1− δp0

)) (
δq0 +

1
2

(
1− δq0

)) . (3.36)

With the solution of the Langevin equation 3.26,

Xp(t) = Xp(t0)e−(t−t0)/τp +
∫ t

t0

dt′ e−(t−t′)/τp
fp(t′)

ξp
, (3.37)

one obtains in the limit t0 → −∞ using 3.36
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〈
Xp(t)Xq(t + τ)

〉
=

e−τ/τq

ξpξq
(
1/τp + 1/τq

)1

× 2kBTBpq(
δp0 +

1
2

(
1− δp0

)) (
δq0 +

1
2

(
1− δq0

)) . (3.38)

For p ≥ 1 the Langevin equation 3.26 of the normal mode amplitudes describes a
particle in a harmonic potential with stiffness κp in each dimension. The corresponding
Hamiltonian of this system is given by H = κpX2

p/2. Using the standard Boltzmann

probability density, the second moment
〈

X2
p

〉
eq

in equilibrium can simply be calculated

via

〈
X2

p

〉
eq

=

∫ ∞
−∞ X2

pe−β
κp
2 X2

p d3Xp
∫ ∞
−∞ e−β

κp
2 X2

p d3Xp

. (3.39)

One obtains

〈
X2

p

〉
eq

= 3
kBT
κp

. (3.40)

Since the HamiltonianH does not include any cross terms connecting mode amplitudes
with different mode numbers, one can conclude that

〈
XpXT

q

〉
eq

= 1
kBT
κp

δpq . (3.41)

This constitutes the limit τ = 0 of 3.38 and therefore Bpq has to be diagonal, Bpq = Bpδpq

and furthermore

B̃p ≡
Bp(

δp0 +
1
4

(
1− δp0

)) = ξp . (3.42)

Thus we have derived the correlation of the noise forces for mode numbers p ≥ 1. Since
the p = 0 mode describes the diffusion of the whole polymer,

〈
X2

0(t)
〉
= 6Dt +

〈
X2

0(0)
〉

(3.43)

has to be fulfilled, where D = kBT/Nξm is the diffusion constant. Via the solution of
the Langevin equation, 3.37, one obtains

〈
X2

0(t)
〉
= 6

kBT
ξ0

t
B̃0

ξ0
+
〈
X2

0(0)
〉

, (3.44)
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Hence B̃0
!
= ξ0 and therefore

B̃p = ξp ∀p (3.45)

yielding

〈
fp(t)fq(t′)

〉
= 2kBT1δ(t− t′)δpqξp . (3.46)

3.5.3.3 End-to-End Mean-Squared Displacement

The end-to-end vector of the chain in terms of mode amplitudes is given by

Ree(t) ≡ R(N, t)− R(0, t) = −4
∞

∑
p,odd

Xp(t) . (3.47)

The end-to-end MSD is then given by

MSDee(t) =
〈
(Ree(t)− Ree(0))

2
〉

=

〈(
4

∞

∑
p,odd

(
Xp(0)− Xp(t)

)
)2〉

= 16
∞

∑
p,q,odd

( 〈
Xp(0)Xq(0)

〉
−
〈
Xp(0)Xq(t)

〉

−
〈
Xp(t)Xq(0)

〉
+
〈
Xp(t)Xq(t)

〉 )
. (3.48)

To calculate this we need the correlation functions
〈
Xp(t)Xq(0)

〉
for p > 0. These can

simply be evaluated by making use of the solution of the Langevin equation as given
in 3.37:

〈
Xp(t)Xp(0)

〉
=
〈

X2
p(0)

〉
e−t/τp

+

〈
Xp(0)

∫ t

0
dt′ e−(t−t′)/τp

fp(t′)
ξp

〉

=
〈

X2
p(0)

〉
e−t/τp . (3.49)

With 3.40 one obtains

〈
Xp(t)Xq(0)

〉
= 3δpq

kBT
κp

e−t/τp for p ≥ 1 . (3.50)
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Finally one finds for the end-to-end MSD:

MSDee(t) = 96
∞

∑
p,odd

kBT
κp

(
1− e−t/τp

)
. (3.51)

3.5.3.4 Scaling Results for the MSD

The MSD of the end-to-end vector as given in 3.51 has a limiting value for t→ ∞

MSDee(t→ ∞) = 96
∞

∑
p,odd

kBT
κp

= 96
kBTN
2π2κ

∞

∑
p,odd

1
p2

=
6kBTN

κ
, (3.52)

since ∑∞
p,odd

1
p2 = π2/8. Therefore the normalized version of the MSD, Cee(t) = 〈(Ree(t)−

Ree(0))2〉/〈R2
ee〉, reads

Cee(t) = C0

∞

∑
p,odd

1
p2

(
1− e−t/τp

)
, (3.53)

where C0 = 1/ ∑∞
p,odd

1
p2 . Now we define the monomer relaxation time

τm =
ξm

π2κ
, (3.54)

and with this write

Cee(t) = C0

∞

∑
p,odd

1
p2

(
1− exp

(
− t

N2τm/p2 + τb

))
. (3.55)

In order to take into account the discreteness of the peptide chain, we introduce a mode
number cutoff N. Therefore the following summations in the calculation of Cee(t) will
be terminated at p = N.

The function Cee(t) as given in 3.55 has distinct scaling properties in the various time
regimes:

3.5.4 Long Time Limit

In the long time limit characterized by t > τR + τb, the sum in 3.55 is dominated by its
first term. Therefore we approximate
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Cee(t) ∼ 1− e−t/(τR+τb) . (3.56)

This is a simple exponential decay to the limiting value of C(t→ ∞) = 1.

Short Time Limit For small t, t < τR/N2 + τb, we can expand the exponential in 3.55
yielding

Cee(t) ∼
N

∑
p=1, odd

1
p2

t
τR/p2 + τb

=
t

τR

N

∑
p=1, odd

1
1 + τb

τR
p2 (3.57)

and distinguish three different cases:

1. τb
τR

N2 < 1: For τb � τR the sum can be approximated by an integral,

Cee(t) ∼
t

τR

∫ N

0
dp

1
1 + τb

τR
p2 . (3.58)

Since τbN2/τR < 1, we can approximate the denominator of the integrand by 1,
which yields

Cee(t) ∼
N
τR

t . (3.59)

2. τb
τR

< 1 < τb
τR

N2: Up to a mode number p̂, defined by

τb

τR
p̂2 = 1 → p̂ =

√
τR

τb
, (3.60)

the denominator in the integrand again can be replaced by 1. For p > p̂ we neglect
the 1 in the denominator. Thus one obtains

Cee(t) ∼
t

τR

((
τR

τb

)1/2

+
∫ N

p̂
dp

1
τb
τR

p2

)

=
t

τR

((
τR

τb

)1/2

+

(
τR

τb

)1/2

− τR

τbN

)
. (3.61)

This yields:

Cee(t) ∼
2√
τRτb

t . (3.62)

3. τb > τR: We neglect the 1 in the denominator in 3.57 and therefore approximate
Cee(t) by
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Cee(t) ∼
t

τb

N

∑
p=1, odd

1
p2 ≈

t
τb

(
1− 1

N

)
. (3.63)

Intermediate Times For τR/N2 + τb < t < τR + τb we approximate the sum in 3.55
by an integral from 1 to N,

Cee(t) ∼
∫ N

1
dp

1
p2

(
1− e−t/(τR/p2+τb)

)
. (3.64)

Now we substitute

y =
t

τR/p2 + τb
, (3.65)

yielding

Cee(t) ∼
∫ y2

y1

dy
p

2τR

t
y2

(
1− e−y) , (3.66)

where

y1 =
t

τR + τb
< 1 ,

y2 =
t

τR/N2 + τb
> 1 . (3.67)

Using p = (τR/(t/y− τb))
1/2 one obtains

Cee(t) ∼
∫ y2

y1

dy
(

τR

t/y− τb

)1/2 t
2τRy2

(
1− e−y)

=
t1/2

2τ1/2
R

∫ y2

y1

dy
(1− τby/t)−1/2

y3/2

(
1− e−y) . (3.68)

To proceed further we split the integration according to
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Cee(t) ∼
t1/2

2τ1/2
R

( ∫ 1

y1

dy
(1− τby/t)−1/2

y3/2

(
1− e−y)

︸ ︷︷ ︸
I1

+
∫ y2

1
dy

(1− τby/t)−1/2

y3/2

(
1− e−y)

︸ ︷︷ ︸
I2

)
. (3.69)

Since τb/t < 1 and y1 < 1 we can expand the square-root and the exponential in I1,
yielding

I1 '
∫ 1

y1

dy y−3/2
(

1 +
1
2

τby
t

+O(y2)

)(
y− y2

2
+ . . .

)

=
∫ 1

y1

dy y−1/2
(

1 +
1
2

τby
t

+O(y2)

)(
1− y

2
+ . . .

)

= 2− 2y1/2
1 +

τb

2t
2
3

(
1− y3/2

1

)
− 1

3

(
1− y3/2

1

)

' 2− 2y1/2
1 . (3.70)

To evaluate the second integral I2 we first of all split again the integration

I2 =
∫ y2

1
dy

(1− τby/t)−1/2

y3/2
︸ ︷︷ ︸

I3

−
∫ y2

1
dy

(1− τby/t)−1/2

y3/2 e−y

︸ ︷︷ ︸
I4

. (3.71)

In I3 we substitute z = τby/t resulting in

I3 =
(τb

t

)1/2 ∫ z2

z1

dz z−3/2 (1− z)−1/2 , (3.72)

where

z2 =
τb

t
y2 =

τb

τb + τR/N2 < 1 ,

z1 =
τb

t
� z2 < 1 . (3.73)

Thus we can expand the square-root and obtain
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I3 '
(τb

t

)1/2 ∫ z2

z1

dz z−3/2
(

1 +
1
2

z + . . .
)

=
(τb

t

)1/2 [
2
(

z−1/2
1 − z−1/2

2

)
+
(

z1/2
2 − z1/2

1

)
+ . . .

]

= const.− 2
(τb

t

)1/2
(

τb + τR/N2

τb

)1/2

+ . . . . (3.74)

The last integral I4 is evaluated by partial integration

I4 =
∫ y2

1
dy

(1− τby/t)−1/2

y3/2 e−y

= −y−3/2 (1− τby/t)−1/2 e−y
∣∣∣∣
y2

1

−
∫ y2

1
dy
(3

2
y−5/2 (1− τby/t)−1/2

− 1
2

τb

t
y−3/2 (1− τby/t)−3/2

)
e−y

' (1− τb/t)−1/2 e−1 +O(e−y) . (3.75)

Hence we obtain for Cee(t)

Cee(t) '
t1/2

2τ1/2
R

(
const. + y1/2

1 + y−1/2
2 + . . .

)
. (3.76)

Combining all results for the different time regimes we have the complete scaling be-
haviour.

Summary of Scaling Behaviour

1. Negligible internal friction τb
τR

N2 = τb
τm

< 1:

Cee(t) ∼





Nt
τR

= t
Nτm

for t < τR/N2 = τm

(
t

τR

)1/2
for τR/N2 < t < τR

1− exp
(
− t

τR

)
for t > τR

(3.77)
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2. Intermediate internal friction τb
τR

< 1 < τb
τR

N2:

Cee(t) ∼





t
(τRτb)

1/2 for t < τR/N2 + τb ≈ τb

(
t

τR

)1/2
for τb < t < τR

1− exp
(
− t

τR+τb

)
for t > τR

(3.78)

3. Dominating internal friction τb
τR

> 1:

Cee(t) ∼





t
τb

(
1− 1

N

)
for t < τb

1− exp
(
− t

τb

)
for t > τb

(3.79)

3.5.5 Passage Times from Rouse Model including Internal Friction

As defined in the main text, the mean-passage time τmp arising from the end-to-end
MSD is given by the inversion of

Cee(τmp) = C∗ee (3.80)

in the short time regime.

3.5.5.1 Scaling Results for the Passage Time

Since we considered the short time limit of Cee(t), we can obtain the dependence of τmp

on τm simply via the scaling behaviour of the end-to-end MSD in the short time regime:

negligible τb : Cee(t) ∼
t

Nτm

!
= C∗ee

⇒ τmp ∼ C∗eeNτm ,

intermediate τb : Cee(t) ∼
t

N (τmτb)
1/2

!
= C∗ee

⇒ τmp ∼ C∗eeN (τmτb)
1/2 ,

dominating τb : Cee(t) ∼
t

τb

!
= C∗ee (3.81)

⇒ τmp ∼ C∗eeτb .
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3.5.5.2 Effective Power Law Exponents

To investigate the scaling of τmp in the three different viscosity regimes, we show the
slope of τmp versus the solvent viscosity η in a log-log-plot of τmp, namely
d log(τmp/τb)/d log(τ0

mη/τbη0). This slope gives the effective power law exponent α

of the viscosity dependence of τmp as shown in 3.7. The results are consistent with
the prediction of the theory in 3.81, one can easily distinguish the three different re-
gimes with slopes of zero, 1/2, and unity from the graph. In between the asymptotic
scaling regimes, the slope is continuously shifting. As defined in the main text, τ0

m
is the monomer relaxation time at reference solvent viscosity η = η0, meaning that
τm = τ0

mη/η0.
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FIGURE 3.7: Effective power law exponent α of the viscosity dependence of τmp as a function
of viscosity η for N = 10 (red), N = 47 (blue) and C∗ee = 0.01. Consistent with the scaling
predictions in 3.81, the effective exponent vanishes for vanishing solvent viscosity indicating a
dominance of the constant part of τmp given by τb, the passage time due to internal friction. For
intermediate solvent viscosities the curve flattens around α ≈ 0.5, indicative of the intermediate
scaling range with a

√
η-dependence. Increasing η leads to α → 1, since internal friction ef-

fects become negligible compared to solvent friction effects and one obtains a linear behaviour
∼ η. For small N the intermediate scaling regime is very narrow and one observes rather a
continuously shifting exponent.

3.5.5.3 Fit of the Passage Time

Consider the scaling behaviour of τmp as given in 3.81. In order to apply our theory to
experimental or simulation results for mean-passage times in a convenient fashion, we
now construct a closed-form scaling function that exhibits all three viscosity regimes
and also accurately reproduces the entire function in 3.55. Such a function can simply
be constructed by addition and reads
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τFit
mp

C∗ee
= C1τb + C2N

√
τmτb + C3Nτm (3.82)

= C1τb + C2N
√

τbτ0
m

η

η0
+ C3Nτ0

m
η

η0
(3.83)

where τ0
m is the proportionality constant relating τm and η/η0, τm = τ0

m η/η0. The amp-
litudes Ci are a priori unknown and we determine them via a fit to numerical results for
τmp. In order to make sure that we recover the exact result for vanishing solvent viscos-
ity, we fix the fit parameter C1 by the limiting value of τmp/τb at τm = 0. So we are left
with two fit parameters C2 and C3. The results of this fit for N = 10, 47 are shown in 3.8
and parameter values are given for N = 10, 20, 47, 100 in 3.1.

FIGURE 3.8: Fit of the Rouse result for passage time τmp versus solvent viscosity η obtained via
numerical inversion of Cee(τmp) = C∗ee for mode number cutoff N = 10 (upper panel), N = 47
(lower panel) and C∗ee = 0.01. The fit functions used are defined in eqs. (3.82) and (3.87) and the
values of the fit parameters are given in Table 3.1. As clearly visible in the inset, the fit func-
tion including the correction to leading scaling yields a better representation of the numerically
determined curve τData

mp in the small viscosity regime.

The results for the fit parameters do not differ much, as one would expect, since we treat
the leading N-dependence explicitly. For both N shown in 3.8 the overall behaviour of
the numerically exact result for τmp, as defined in 3.55, namely τData

mp , is well described
by the fit function. But for N = 10 in the regime of small solvent viscosities η there are
clear deviations of τFit

mp from τData
mp . Furthermore we varied C∗ee for fixed N = 10 and

performed fits. As shown in 3.1, the parameter values for different values of C∗ee are
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very similar, the small deviations for C∗ee = 0.1 are reasonable since Cee(t) in that range
is not entirely in the diffusive short-time regime. Given the numerical values of the
amplitudes Ci, one is now able to fit 3.83 to experimental or simulation results of mean-
passage times. Then there are only two fit parameters, namely the mode relaxation time
due to internal friction τb and the proportionality constant τ0

m.

TABLE 3.1: Values of the fit parameter Ci in eqs. (3.82) and (3.87)

N C∗ee C1 C2 C3 C4

10 0.1 τFit
mp 1.0 0.8 3.12 -

τFit,cls
mp 1.0 1.35 3.36 2.16

0.01 τFit
mp 1.0 0.91 2.11 -

τFit,cls
mp 1.0 1.67 1.92 1.59

0.001 τFit
mp 1.0 0.91 2.03 -

τFit,cls
mp 1.0 1.68 1.81 1.56

20 0.01 τFit
mp 1.0 1.15 2.01 -

τFit,cls
mp 1.0 1.35 1.96 3.18

47 0.01 τFit
mp 1.0 1.28 2.14 -

τFit,cls
mp 1.0 1.28 2.14 13304187.15

100 0.01 τFit
mp 1.0 1.25 2.85 -

τFit,cls
mp 1.0 1.25 2.85 11403389.0

3.5.5.4 Correction to leading scaling

As already mentioned in the preceding section, the fit function given in 3.82 does not
correctly reproduce the theoretical results in the small viscosity regime. To improve the
quality of the description we now reconsider the behaviour of τmp in this regime and
calculate the correction to leading scaling. Therefore we reconsider 3.57, which can be
rearranged to

Cee(t) ≈
t

τb

N

∑
p=1, odd

1
p2

1
N2τm/τb p2 + 1

. (3.84)

In the limit τm/τb → 0 we can make a Taylor expansion, yielding

Cee(t) ≈
t

τb

N

∑
p=1, odd

1
p2

(
1− N2τm

τb p2 +

(
N2τm

τb p2

)2

− . . .

)

=
t

τb

N

∑
p=1, odd

(
1
p2 −

N2τm

τb

1
p4 + . . .

)
!
= C∗ee . (3.85)

We assume ∑N
p=1, odd 1/p2 ≈ ∑N

p=1, odd 1/p4 ≈ 1 and obtain by inversion of 3.85
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τmp ≈ τbC∗ee

(
1− N2τm

τb

)−1

≈ C∗eeτb + C∗eeN2τm , (3.86)

where we made an expansion up to first order in τm/τb. Thus the correction to the lead-
ing scaling is linear in τm and we can define an improved fit function τFit,cls

mp including
the correction to leading scaling as

τFit,cls
mp

C∗ee
= C1τb + τb


 1

C2N
√

τm
τb

+ C3N τm
τb

+
1

C4N2 τm
τb



−1

(3.87)

= C1τb +


 1

C2N
√

τbτ0
m

η
η0
+ C3Nτ0

m
η
η0

+
1

C4N2τ0
m

η
η0



−1

(3.88)

Analogously to the preceding section we performed a fit of 3.87 to the numerical results
for τmp. The outcome can again be seen for N = 10, 47 in 3.8 and for N = 10, 20, 47, 100
in 3.8. For large N the parameter C4 has large values indicating that the correction to
leading scaling is less important, since large C4 values give negligible weight to the
correction term. Once the parameter values are determined, 3.88 can be used as an
alternative fit function for experimental or simulation results for mean-passage times
that would be more accurate in the limit of vanishing solvent viscosity.

3.5.6 Fits of folding times as a function of viscosity

Troughout the main text two different ways of fitting simulation data are employed: In
the first way, the averaged mean first passage time data are fitted to the models defined
in (Eqs. (3), (4) and (7)) in the main text:

Linear model: τ̄fp = τint + τwat η/η0 (3.89)

Power law model: τ̄fp = τ0 (η/η0)
α (3.90)

Rouse model: (3.91)

τ̄fp

C∗ee τb
= C1 + C2 N

√
τ0

m
τb

η

η0
+ C2 N

τ0
m

τb

η

η0

In the second way, the local friction coefficient is fitted to a viscosity dependent model
prediction. Here we only use the linear model and fit the friction data for different
values of the reaction coordinate, thereby obtaining the internal friction profile ξint,

ξ(Q, η/η0) = ξint(Q) + ξwat(Q) η/η0. (3.92)
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At first sight, both ways of fitting, the first being based on folding times, the second
being based on friction, seem equivalent. This of course is only true, if one can make
sure that the free energy landscape is not modified by changes in the solvent viscosity,
which experimentally is an issue, as discussed in the main text. If viscogenic agents af-
fect both the solvent viscosity and the free energy profile, a discussion of folding times
in terms of internal friction alone (and neglecting the variations of the free energy pro-
file) would be highly inconsistent. From a more general point of view, the friction is an
input parameter whereas the folding time is a derived quantity, which would also sug-
gest to center the discussion of internal friction effects on the friction itself. In support of
this, we note that the friction profile typically varies locally as a function of the reaction
coordinate; since the folding process integrates over a finite segment along the reaction
coordinate, the relative weights of internal and solvent friction are thereby smeared out
in the resulting folding time. Taking all arguments together, the full friction profile,
in combination with a theoretical model, is necessary to unambiguously disentangle
internal from solvent friction effects.

In our Rouse model calculation, we have extracted the internal friction contribution
from the mean-passage time in the diffusive short-time limit, where friction coefficient
and folding time are trivially related. So the issue as to whether friction or folding time
is a better target for fitting does not occur on that level. We have checked in an explicit
calculation that in the Rouse model, the local friction coefficient does not vary along
the end-to-end reaction coordinate, showing that the Rouse model in that respect is less
complex than the simulation model.

All fits are executed using a least-square scheme, i.e. the residual sum-of-squares RSS =

∑n
i=1 ε2

j is minimized, where εj = τ̄fp,j − τ̄fp is the residual. In the case of linear fits
an Ordinary Least Squares (OLS) scheme is used, for the other functional forms non-
linear least squares schemes using the Gauss-Newton algorithm have to be applied. All
calculations are carried out using the R statistics package. The resulting parameters of
the fits for eqs. (3.89) to (3.91) are shown 3.2.

TABLE 3.2: Fit parameters for linear, Rouse model and power law fit (cf. main text for definition)
as well as corresponding residual standard error estimates σ̂ according to 3.93

τint τwat C∗eeτb
τ0

m
τb

τ0 α σ̂linear σ̂rouse σ̂power

QGS4
ee 0.75 ns 1.12 ns 0.34 ns 0.09 2.05 ns 0.58 0.166 ns2 0.093 ns2 0.081 ns2

QGS4
gyr 0.50 ns 0.67 ns 0.24 ns 0.07 1.28 ns 0.55 0.137 ns2 0.091 ns2 0.068 ns2

QA8
ee 0.08 ns 0.14 ns 0.03 ns 0.13 0.24 ns 0.64 0.010 ns2 0.011 ns2 0.019 ns2

QA8
gyr 0.36 ns 0.77 ns 0.13 ns 0.18 1.21 ns 0.67 0.352 ns2 0.345 ns2 0.344 ns2

QA8
rms 0.46 ns 2.60 ns 0.07 ns 1.40 3.14 ns 0.86 0.477 ns2 0.485 ns2 0.497 ns2

Q1prb7
fold 32.1 µs 228 µs 1.85 µs 0.83 257 µs 0.75 8.58 µs2 7.51 µs2 7.93 µs2

Q1prb7
unfold 32.8 µs 235 µs 2.29 µs 0.65 262 µs 0.73 16.2 µs2 11.2 µs2 8.51 µs2
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As a simple measure to quantify goodness-of-fit we show the residual standard error σ̂

for the models defined above in 3.2:

σ̂ =

√
RSS
n− 2

, (3.93)

where n is the number of data points being regressed.

3.5.7 Hydrogen Bonds

The number of hydrogen bonds is determined using the g_hbond tool provided by
GROMACS. Here OH and NH groups are considered to be donors and O and N to
be acceptors. Hydrogen bonds are then determined using a cutoff radius of rhbond =

0.35 nm between donor and acceptor and a cutoff αhbond = 30◦ for the donor–hydrogen–
acceptor angle [58].

A B

C D E

FIGURE 3.9: Number of hydrogen bonds between different subgroups of the system (sum
means the sum of all peptide-peptide and peptide-water hydrogen bonds) as a function of dif-
ferent reacation coordinates:
A) qGS4

ee B) qGS4
gyr C) qA8

ee D) qA8
gyr E) qA8

rms

3.9 shows the resulting hydrogen bond profiles between water and various parts of
the peptide along the different reaction coordinates. The sum of intra-peptide and
peptide-water hydrogen bonds is almost constant, which shows that upon unfolding
water more or less compensates for the loss of possible intrapeptide hydrogen bonds.
For GS4 the total number of hydrogen bonds is dominated by water-peptide hydrogen
bonds, and shows no prominent features. The slight decrease of the total NHB at small
reaction coordinate values qGS4

gyr in 3.9B indicates that very compact structures are un-
able to efficiently hydrogen bond. The decomposition into the various contributions
shows that although the number of side-chain backbone hydrogen bonds goes up for
decreasing values of qGS4

gyr , this increase is not strong enough to make up for the loss of
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water-peptide hydrogen bonds. In the corresponding figure for the alanine helix one
can see, as expected, that the number of peptide-peptide hydrogen bonds is highest
for perfectly helical structures, which is appreciated from the plot in 3.9E as a function
of qA8

rms. Opening helix turns means breaking intra-peptide hydrogen bonds and thus
exposing them to the water. Interestingly, the total number of water hydrogen bonds
goes down upon helix formation, i.e. more peptide-water HBs are broken than peptide-
peptide HBs are created when the helix forms. This simply shows that water is a very
versatile and strong hydrogen bond forming agent.

3.6 Details of Atomistic Polypeptide Simulations

Our simulation are carried out using the GROMACS 4.5 [17] molecular dynamics pack-
age using the Amber ff03 force field [30] and the SPC/E [29] water model. The box size
is triclinic with vectors (3.18 nm,0. nm,0. nm), (0. nm,3.18 nm,0. nm) and (1.59 nm,1.59 nm,
2.25 nm) for GS4 and (3.14,0. nm,0. nm), (0. nm,3.14 nm,0. nm) and (1.59 nm, 1.59 nm,
2.25 nm) for Ala8. The box is filled with 711 water molecules for the glycine-serine
chain and with 688 water molecules for the alanine helix. Detailed information about
running time and time steps is shown in 3.3. We simulate in the NPT ensemble, where
the temperature is coupled to a heat bath of T = 300 K by a v-rescale thermostat [22]
and the pressure is set to 1 bar using a Parinello-Rahman barostat [23] where the bulk
compressibility is κ = 4.5× 10−5 bar−1. The Particle-Mesh Ewald method [21] is used
for the long-ranged Coulomb interactions. The cutoff distance for non-bonded Cou-
lomb and Lennard-Jones interactions is set to 0.9 nm. Every 20 steps the neigbour list
for non-bonded interactions is updated. All bonds are constrained using the LINCS
algorithm [62].

In order to keep the system electrically neutral and to eliminate spurious end effects,
we cap the N-terminus of the peptides with an acetyl (ACE) group and the C-terminus
with an N-methyl amide (NME).
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TABLE 3.3: Simulation time steps and trajectory resolution (identical for both peptides) and
simulation length for both peptides

m/m0 time step [fs] trajectory resolution [ps] duration (GS)4 [µs] duration Ala8 [µs]
0.01 0.25 5 0.5 0.5
0.03 0.5 2.5 0.5 0.75
0.1 1 5 0.5 1
0.25 1 5 0.5 1
0.5 2 10 1 2
0.75 2 10 1 2
1 2 10 1 3
1.5 2 10 1 4
2 2 10 2 4
4 2 10 2 3
6.25 2 10 2 4
9 2 10 2 4

3.6.1 Coarse-grained protein folding model

3.6.1.1 Modifications of “Martini” force field

As the basis for our protein folding model we use the “Martini” coarse-grained force-
field for both the solvent [63] and protein [64]. This model represents the protein
residues by a backbone bead and a number of side-chain beads, which differ according
to residue type. The solvent is represented by a “coarse water” particle that repres-
ents a blob of approximately four waters. The model uses a standard force field energy
function, with harmonic bonds and angles, and nonbonded interactions described us-
ing 12-6 Lennard-Jones and electrostatic interactions. The balance of protein-solvent,
protein-protein and solvent-solvent interactions in the Martini force field maintains a
compact structure for the protein, but does not preserve the native fold. To maintain the
native structure using this potential, additional energy terms such as an elastic network
model or fixed torsion angles have been used [65]. Since such approaches are clearly not
applicable to folding, we have instead adapted the protein force-field to create a type
of Gō model. Specifically, we made the following modifications: (i) all charges were
set to zero; (ii) pairs of beads closer than 9 Å in the native structure were treated with
the standard Martini Lennard-Jones parameters; (iii) bead pairs further than 9 Å in
the native structure were treated by a repulsive potential of the form V(r) = (σrep/r)12

with σrep = 7.2 Å; (iv) Cα-Cα equilibrium bond lengths were set to 3.8 Å to be con-
sistent with experimental protein structures (v) Cα-Cα-Cα-Cα torsion potentials were
introduced for the backbone, taken from the work by Karanicolas and Brooks [66]; (vi)
the spring constants for bonds and angles were set to 1.0 × 104 kJ mol−1 nm−2 and
6.0× 102 kJ mol−1 rad−2 respectively, the latter to avoid colinearity of atoms involved in
torsion angles. Note that all protein-solvent and solvent-solvent pair interactions were
unchanged. Tools for transforming the original Martini model into a Gō-like model are
available on request from the authors.
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3.6.1.2 Simulation protocols

We constructed a Gō-type model of the 47-residue 3-helix bundle protein 1prb7−53

studied by Gai and co-workers [67] as described above, based on the experimental
structure [68] (3.10 (A), (B)). Simulations were run with the Gromacs 4.0.5 simulation
package [69, 70], using parameters similar to those for the standard Martini force field,
modified as described above. The folded protein was solvated in a truncated octahed-
ron simulation cell with an initial distance between nearest faces of 6.5 nm. All bond
lengths were left unconstrained, except for the constraints defined within side-chain
rings in MARTINI. A time step was chosen for each solvent mass such that energy was
conserved in the absence of a thermostat: this resulted in time steps of 3 fs for a mass
of 2 a.m.u., 5 fs for a mass of 8 a.m.u., 10 fs for a mass of 24 a.m.u. and 15 fs for the
larger solvent masses of 72 and 216 amu (where the protein dynamics limits the time
step). The reference mass m0 = 72 amu, corresponding to four water molecules. After
a short equilibration at constant pressure of 1 bar (Parinello-Rahman barostat [23]) and
temperature of 320 K simulations were run at constant volume at a temperature of 320
K, with a Nosé-Hoover thermostat [71], so as to minimally interfere with the dynamics.

3.6.1.3 Folding Times

Folding times were calculated from the average lifetime of the protein in the unfolded
state, and unfolding times from the average lifetime in the folded state. Folding was
monitored using the fraction of native contacts Q (3.10 D): a folding event was counted
when Q first reached a value of 0.85, starting from unfolded, while an unfolding event
was counted when Q first reached 0.44, starting from folded.
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FIGURE 3.10: Coarse-grained protein folding model. Snapshots of (A) unfolded and (B) folded
conformations of the protein in explicit solvent; (C) RMSD from native structure and (D) frac-
tion of native contacts, showing two-state folding. Q cut-offs for defining transitions between
unfolded (Q = 0.44) and folded (Q = 0.85) are shown by broken red lines.



Chapter 4

Unfolding and folding internal
friction of β-hairpins is smaller than
of α-helices

By the forced unfolding of polyglutamine and polyalanine homopeptides in competing
α-helix and β-hairpin secondary structures, we disentangle equilibrium free-energetics
from non-equilibrium dissipative effects. We find that α-helices are characterized by lar-
ger friction or dissipation upon unfolding, regardless of whether they are free-energetic-
ally preferred over β-hairpins or not. Our analysis, based on MD simulations for atom-
istic peptide models with explicit water, suggests that this difference is related to the
internal friction and mostly caused by the different number of intra-peptide hydrogen
bonds in the α-helix and β-hairpin states.

4.1 Introduction

The folded structure a protein adopts under in-vitro equilibrium conditions is determ-
ined by the lowest free energy state [72]. This insight forms the starting point for theor-
etical as well as experimental studies employing the concept of a protein folding free-
energy landscape. At the same time, since the early studies on the T and R forms of
hemoglobin [73], it has been appreciated that for many proteins the native state is not
unique and conformational diversity is important to achieve proper function. This re-
vised view, according to which the native state is represented by an entire ensemble
of conformers, is essential to understand a number of biological processes such as en-
zymatic catalysis [74], protein-protein recognition [75], and signal transduction [76], to
name a few.

While protein conformational diversity is vital in many situations, it gives rise to detri-
mental health effects when proteins misfold into states that are toxic or exhibit loss of
function. A number of neurodegenerative diseases such as Parkinson’s, Alzheimer’s,

49
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Huntington’s are associated with the conversion of normally soluble proteins into in-
soluble filaments, so-called amyloid fibrils, enriched in β-sheet structures [77]. Whereas
the easily observable filamentous protein aggregates had initially been believed to be
pathogenic, more recent studies indicate that abnormal soluble protein monomers or
small oligomeric assemblies might be the main culprit [78].

A subclass of these human diseases are caused by homo-amino acid repeats [79]. Inter-
estingly, mostly polyalanine (polyAla) and polyglutamine (polyGln) tracts are known
to be prone to mutations that expand the homopeptide lengths and, beyond specific
thresholds, lead to devastating inheritable diseases. [80] Similarly to the other neurode-
generative diseases, the molecular mechanisms that cause their toxicity upon expansion
have remained largely unknown, [81] as do the normal molecular roles of polyAla and
polyGln tracts. [82, 83]

The nine known polyGln disorders, including Huntington’s disease [84], are late-onset
neurodegenerative diseases with a typical onset length threshold of about 30–40 glutam-
ines. [84, 85] The known polyAla diseases comprise congenital developmental dis-
orders as well as progressive late-onset neurological diseases. [86] In the disease-associat-
ed proteins the normal polyAla lengths are 10–20; the disease-causing increases range
from a single alanine to 11. [86] There is some evidence that polyAla expansions are
even more toxic than polyGln expansions of similar length. [87]

Of particular importance for the present study is the experimental observation that
the in-vitro aggregation kinetics of polyGln peptides is determined by an unfavorable
monomer folding transition [88]. This stands in contrast to conventional nucleation
models for polymer and filament growth and means that the study of the conforma-
tional interconversion kinetics of single homopeptides is relevant and interesting.

As a matter of fact, even the characterization of the equilibrium ensemble of single ho-
mopeptide conformers, involving the study of the structural and thermodynamic fea-
tures of monomers, represents a major challenge with contemporary simulation tech-
nology. In extensive solvent-explicit MD simulations, the stability of different folding
states of a single Gln40 homopeptide chain in the pathological length range was invest-
igated [89]. Different structures, among them the conventional α-helix and β-strand
states, but also more exotic ones such as β-sheet-stack and steric-zipper states were
tested against each other and the relative stability was assessed from the speed with
which different initially prescribed structures became unstable during the course of a
simulation. While some structures could clearly be excluded from being relevant for
the aggregation process, α-helix and β-hairpin structures showed high stabilities. In a
similar simulation study for polyAla homopeptides the free-energetic stability of the
α-helix and β-hairpin states was studied with particular stress on solvent effects [90].

Since the process of amyloid formation and fiber elongation typically occurs far from
equilibrium, it transpires that the free energies of different peptide-monomer conform-
ations are not the only decisive factors determining the likelihood with which a partic-
ular conformer is incorporated into a fibrillar structure. To give a simple example, let
us assume that the α-helix and β-hairpin states (defined over certain basins in a suit-
ably chosen peptide configurational space representation) of a particular peptide have
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identical free energies compared to the disordered state. In that case the rates at which
the α-helix and β-hairpin states form from the disordered ensemble are solely determ-
ined by the respective configurational diffusivities (i.e. the prefactors of the Kramers
rates) and will in general not be identical. As a matter of fact, these diffusivities sens-
itively determine the probability with which a certain conformer is built into a fibrillar
construct if (and only if) the fibril formation process occurs far from equilibrium.

This observation forms the conceptual starting point of the present work. To have a
framework simple enough to allow for complete simulations but also for novel con-
cepts to be developed and tested, we study two different relatively short homopoly-
mers, namely polyalanine Ala15 and polyglutamine Gln15, that are known to form com-
peting α and β structures [89, 90]. The choice of peptides is motivated by their relevance
for many neurodegenerative diseases, as discussed above. To disentangle free energetic
and dissipative effects, we introduce a computational framework where we unfold dif-
ferent ordered structures by pulling on the peptide ends with prescribed speed. By
extrapolation of the unfolding work to the limit of vanishing pulling speed, we estim-
ate equilibrium free-energy differences between different peptide secondary structures.
From the dependence of the unfolding work on the unfolding speed we extract the
dissipative work and from that the effective friction coefficient for unfolding different
folded states. Since on the linear-response level the friction for unfolding is the same as
the friction for folding along the same path, our results thus hold for both folding and
unfolding reactions.

While there are clearly more efficient simulation techniques for obtaining free energy
differences and entire free energy landscapes of proteins, our method is uniquely suited
to establish and compare the friction work associated with the unfolding of different
secondary structures. While the free energetic weight of the α-helix and β-hairpin states
differ considerably for Ala15 and Gln15 sequences, we find robustly that the unfolding
friction of the β-hairpin state is considerably lower than for the α-helix state. Our inter-
pretation of this finding in terms of the underlying hydrogen-bonding pattern in both
states suggests that this finding should hold generally true also for other sequences.
Note that β-hairpins experimentally typically show slower folding times than α-helix
forming sequences. This is not in contradiction to our predictions which specifically
concern the friction contribution. Interestingly, in recent work a β-hairpin sequence
was designed that folds as fast as α-helices of comparable size [91], suggesting that it
should experimentally be feasible to study β and α forming sequences that show similar
or even identical free energies.

In a non-equilibrium situation, for example when β conformers are sequestered into
kinetically arrested fibrils while the reverse process of fibril breakup is kinetically hinder-
ed, the folding friction can become the determining factor for the probability of a certain
conformer to be found in fibrils. This simple argument illustrates why in situations far
from equilibrium, it can be important to consider both free-energetic as well as dissip-
ative properties of different peptide conformations.
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4.2 Simulation Details

We study two homopeptides, polyalanine Ala15 and polyglutamine Gln15, each 15 amino
acids long. Except for Gln15 in the β starting configuration, all peptides are capped with
ACE and NME. Some additional simulations are run for the shorter peptide Ala8.

For our simulations we use the Gromacs 4.5 [17] molecular dynamics simulation pack-
age with the Amber03 [30] forcefield and the explicit SPC/E [29] water model. After
prior equilibration for 100 ps in the NPT ensemble, production runs are performed in
the NVT ensemble, with the temperature kept at T = 300 K by the v-rescale thermo-
stat [22]. The box size in pulling direction is 8 nm and in lateral directions 3 nm × 4 nm
for β-hairpins and 3 nm × 3 nm for α-helices, resulting in about 3,000 water molecules.
Electrostatics are accounted for using PME [21] with a cutoff of 0.9 nm.

The free energy landscape for Ala8 in Fig. 4.6b has been obtained from a 1 µs equilib-
rium simulation, whereas the free energy landscapes for Ala15 in Figs. 4.2c and 4.6b
have been obtained using the replica exchange method (1 µs each for 30 temperatures
ranging from 300 K to 452 K).

For pulling simulations at constant pulling velocity v we use the direction_periodic mode
of Gromacs’ pull code, which adds a time-dependent potential acting between the center-
of-masses of the two pulled groups,

Ustr(t) =
k
2

(
lx(t)− (lx(0)− v t)

)2
, (4.1)

where k is the force constant, lx the distance between the pulled groups along the x-
direction, and t the simulation time. Force constants are varied between k = 50 kJ/(mol
nm2) for low pulling speeds to k = 150 kJ/(mol nm2) for fast pulling speeds. The pulled
groups are the first and last amino-acid residues of the peptide (or capping groups, if
present).

The α and β states are separated by a large free energy barrier related to a torsional
angle in the turn of hairpins in our particular setup, therefore the final states after a
pulling simulation starting from α and β states are typically not the same [92]. In order
to meaningfully compare the unfolding works of the α and β states, we also perform
relaxation simulations by applying the time-dependent potential

Urel(t) =
k
2

(
lx(t)− (lx(0) + Finit/k + v t)

)2
, (4.2)

where lx(0) is the final extension and Finit is the final force measured in a pulling sim-
ulation. By construction, the relaxation simulation starts with the final extension from
the pulling simulation, by the term Finit the externally applied force at the beginning of
the relaxation simulation is the same as at the end of the pulling simulation.

Similar to our previous work [93], we decompose the total dissipative friction work into
the internal and solvent friction contributions by varying the water mass. To do so, we
also perform simulations with modified water masses of m/m0 = 0.1 and 10.
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Our primary reaction coordinate is the distance along the x-axis lx between the center
of masses of the first and last aminoacids. In addition, we also consider the end-to-end
distance Ree, which is the separation in 3D space between the first and last aminoacids.

For monitoring the “folded” and “unfolded” ensembles we calculate further quantit-
ies, namely the solvent-accessible surface area, the number of intra-peptide and intra-
backbone hydrogen bonds and the fraction of folded contacts Qaa, which is defined
as [94]

Qaa =
1

Naa
∑
i>j

1
1 + exp(κ (rij − λ r0

ij))
. (4.3)

The sum runs over all Naa pairs of folded contacts, defined by two heavy atoms i and j
being separated by at least three intermediate heavy atoms, i.e. |i− j| > 3, and a sub-
threshold distance r0

ij ≤ 4.5 Å in the folded state. The parameter κ controls the steepness

of the crossover (here κ = 5 Å−1) and λ accounts for fluctuations in the folded state (here
λ = 1.5). A value of Qaa = 1 corresponds to all folded contacts being intact.

For the comparison of the Ala8 and Ala15 free-energy landscapes we use the root-mean
squared deviation from an ideal helical structure, Qrms, based on the Cα atom positions;
for this, the ideal helix radius and the ideal rise per residue are assumed to be 0.23 nm
and 0.15 nm, respectively. As shown in our previous work [93], Qrms is well suited to
distinguish different conformations of an alanine α-helix.

The number of hydrogen bonds is calculated by the g_hbond-tool of Gromacs. Accord-
ingly, a hydrogen bond between a donor (OH or NH) and an acceptor (O and N) exists if
the bond angle is smaller than 30° and the distance between donor and acceptor atoms
is less than 3.5 Å (cf. Luzar and Chandler [58]). For the system including ACE/NME
caps, the hydrogen bond number does not include those caps. The average number of
hydrogen bonds are calculated in 200 ns (50 ns for the alanine α-helix due to fast un-
folding) equilibrium simulation. As the alanine β-hairpin is quite unstable and unfolds
very quickly, in our analysis we use the backbone-only hydrogen bond number Nbb

HB
of the Gln15 β-hairpin instead, motivated by the fact that Nbb

HB for the Gln15 and Ala15

α-structures are very similar and given by Nbb
HB = 9.2.

4.3 Results and discussion

4.3.1 Unfolding work

The time-dependent external stretching force acting between the two terminal pulled
groups is according to Eq. 4.1 given by

Fstr(t) = k ·
(

lx(t)− (lx(0)− v t)
)

. (4.4)

In Fig. 4.1b we plot the stretching force Fstr(t) for simulations of Ala15 starting in an ini-
tial α-helical structure, averaged over ten different simulation runs and smoothed over
neighboring data points, as a function of the terminal end-group separation lx(t) for five
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FIGURE 4.1: a) Snapshots of the Ala15 chain in the different representative states and schematic
illustration of the pulling and relaxation simulation setup. b) Stretching force extension curves
for Ala15 for different pulling velocities starting in the α-helical state. c) Relaxation force ex-
tension curves for Ala15 for different relaxation velocities starting in the fully stretched state.
d) Stretching and relaxation works vs. pulling and relaxation speed v for Ala15 in the α-helical
state. e) Unfolding work Wunf = Wstr −Wrel for Ala15 in the α-helical state defined in Eq. 4.7 vs.
pulling speed v. The lines show different fits described in the text.

different stretching velocities. For the largest pulling velocity considered, v = 10 m/s,
the stretching force is of the order Fstr ∼ 100 pN for a whole range of intermediate sep-
arations. When v is reduced by a factor of 1,000 to v = 0.01 m/s the measured force
decreases considerably, which shows that the main contribution to the stretching force
at large velocities is due to friction and thus is of dissipative nature. The steep force rise
at large separations lx > 4.8 nm is due to backbone stretching and seen in all curves,
regardless of the pulling velocity.

The stretching work performed by the external potential is given by the integral of the
mean stretching force over the stretching separation

Wstr =
∫ l f

li
Fstr(lx)dlx. (4.5)

The integration is carried out by a trapezoidal scheme with the lower and upper integ-
ration limits li and l f indicated by vertical lines in Fig. 4.1b. In Fig. 4.1d we show the
stretching work Wstr for the Ala15 α-helix as a function of the pulling velocity (green
squares), Wstr is seen to saturate at a value of about Wstr ' 80 kJ/mol for velocities
below v ' 0.01 m/s. In this limit, this stretching work is the free energy difference
between the two thermodynamic states defined by the start and end configuration en-
sembles, corresponding to the α-helical and the strongly stretched states, respectively,
as schematically shown in Fig. 4.1a. Most of this work corresponds to the elastic stretch-
ing of the peptidic backbone, an effect that we had scrutinized previously [95] and
which we are not interested in here. To meaningfully subtract the elastic backbone con-
tribution, we in Fig. 4.1c show force-extension curves obtained in the relaxation pro-
tocol using the time-dependent external potential Urel(t) defined in Eq. 4.2. Here we
start in the fully stretched state and slowly decrease the separation between the pep-
tide terminal groups. While for the stretching protocol data in Fig. 4.1b the external
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potential performs work on the peptide, in the relaxation protocol the peptide chains
performs work on the external potential. The resulting velocity dependence is quite dif-
ferent from the stretching-protocol data in Fig. 4.1b, for the largest relaxation velocity
v = 10 m/s the measured force in Fig. 4.1c is in fact smaller than the force at smaller
velocities, in other words, dissipative effects in the relaxation protocol reduce the work
extracted from the pre-stretched peptide chain, in agreement with the second law of
thermodynamics. Note that the difference between the two relaxation force trajectories
obtained for v = 1 m/s and v = 0.1 m/s in Fig. 4.1c is much smaller than the corres-
ponding difference between the two stretching force trajectories obtained for v = 1 m/s
and v = 0.1 m/s in Fig. 4.1b. This means that dissipative effects are less important in the
relaxation from the stretched peptide state than in the forced unfolding of the α-helical
state.

The interpretation of the asymmetry between pulling and relaxation transformations is
straightforward in terms of the two-dimensional force trajectories as a function of the
folded contact fraction Qaa and the end-to-end radius Ree shown in Fig. 4.2a: While the
trajectories for pulling speed v = 0.1 m/s (shown in red, all ten pulling trajectories are
plotted on top of each other with the start and end positions denoted by blue symbols)
connect the α-helical state, defined by Qaa ' 1, with the fully stretched state defined
by Ree ' 5 nm, the relaxation trajectories at the same speed of v = 0.1 m/s (shown in
green, endpoints are shown by yellow triangles) do not bring the system back to the
α-helical state. They rather correspond to the relaxation into the disordered ensemble
with an unconstrained end-to-end distance distribution (to obtain this, we intentionally
perform the pulling and relaxation simulation with a force along a fixed direction and
not along the chain end-to-end group direction). In Fig. 4.2b the pulling and relaxa-
tion trajectories are shown for speeds of v = 1 m/s, here the ensemble of states after
relaxation is even further away from the helical state. Our results in Fig. 4.2a demon-
strate that the refolding time exceeds the allocated time in the relaxation simulations at
v = 0.1 m/s and leads to a disordered ensemble, this is further corroborated by compar-
ison with the equilibrium distribution obtained by replica exchange simulations shown
in Fig. 4.2c. The relatively large relaxation speed used in the simulations is not dictated
by computer time considerations, but is rather chosen purposely and important for our
further analysis, as will be explained further below.

We note at this point that the disordered ensemble that is created by the relaxation
simulation clearly depends on the relaxation speed, as seen by comparing Figs. 4.2a
and b. The relaxation work, defined as

Wrel =
∫ l f

li
Frel(lx)dlx, (4.6)

and for an Ala15 chain shown in Fig. 4.1d (blue squares), is smaller than the correspond-
ing stretching work (green squares).

We define the pulling velocity-dependent unfolding work by

Wunf(v) = Wstr(v)−Wrel(v = 0.1 m/s), (4.7)
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FIGURE 4.2: Ten different Ala15 stretching trajectories starting in the α-helical state (red, initial
states: blue squares, final states: blue circles) and relaxation trajectories (green, final states:
orange triangles) shown as a function of the fraction of folded contacts Qaa and the end-to-end
distance Ree for identical pulling and relaxation speeds of a) v = 0.1 m/s and b) v = 1 m/s. c)
Free energy landscape of Ala15 obtained using replica-exchange simulations.

where we subtract the relaxation work at a fixed relaxation speed of v = 0.1 m/s. The
precise relaxation speed used in the above definition is not crucial as long as it is fast
enough not to allow the peptide chain to relax back into the folded state. As discussed
before, the value of the relaxation speed defines the unfolded ensemble that one com-
pares the folded state with. As defined in Eq. 4.7, Wunf(v) is the work needed to bring
the chain from the ordered initial state to a particular unfolded ensemble and contains
both equilibrium as well as dissipative contributions. The equilibrium unfolding work
follows from an extrapolation of Wunf(v) to small v, although we hasten to add that
in the strict limit v → 0 the folded ensemble will not remain stable during the initial
period of the pulling simulations. Clearly, if both pulling and relaxation transforma-
tion were performed at vanishing speeds, the pulling and the relaxing curves would
perfectly superimpose and the unfolding work would disappear. So the present sim-
ulation methodology rests on a scale separation of the unfolding and refolding times
on the one hand and the chain relaxation time on the other hand: both pulling and
relaxation speeds are chosen fast enough such that the chain does not spontaneously
unfold/refold upon pulling/relaxation, yet they are slow enough such that we enter
the linear-response regime where the friction force is proportional to pulling speed and
the extracted reconfigurational mobilities allow to extract the equilibrium diffusivities
that govern peptide folding and unfolding.

In Fig. 4.1e we show the unfolding work Wunf(v) for the Ala15 α-helix as a function of
the pulling velocity v (yellow squares). In order to separate the equilibrium unfolding
work Wunf(v = 0) from the dissipative contribution Wdiss(v) = Wunf(v)−Wunf(0) we
fit the data to the form

Wunf(v) = Wunf(0) + Wdiss(v) = Wunf(0) + γ L vα (4.8)

where L = l f − li is the pulling distance and γ denotes the friction coefficient. In the
linear-response regime the dissipative work should scale linear with the velocity [96]
and thus α = 1. The unrestricted fit to the entire data set in Fig. 4.1e (denoted by a
green line) yields an exponent α = 0.37 and describes the data over the whole velocity
range quite well. But since we are mostly interested in the low-velocity linear-response
regime, where we know that dissipation scales linearly in the velocity, an exponent
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differing from unity is not very meaningful and a fit with fixed α = 1 over a restricted
velocity range is more useful, as will be discussed later.

A simple scaling argument helps us to estimate at which pulling velocities linear re-
sponse is expected to break down [96]: From the scaling relation F∗ = kBT/a0 for the
mean thermal force acting on a fluctuating bond of range a0, we find that for a typical
length scale a0 ' 2× 10−10 m, which has been shown to roughly describe the range over
which a hydrogen bond acts, the typical force above which non-linear effects set in is of
the order of F∗ ' 20 pN [96]. Indeed, a linear fit with α = 1 over the data excluding only
the high-velocity data point for v = 10 m/s (blue line in Fig. 4.1e) does not work very
well, reflecting that the friction force for v = 1 m/s (which is the difference between the
force for the smallest velocity v = 0.01 m/s and v = 1 m/s in Fig. 4.1a) is of the order
of 50 pN and thus exceeds our simple scaling estimate F∗ ' 20 pN. The linear fit with
α = 1 over the data excluding the data points for both v = 10 m/s and v = 1 m/s in
Fig. 4.1e (red line) yields the equilibrium work of Wunf(v → 0) ' 22.5 kJ/mol, denoted
by a horizontal broken line. The connection of this result with an equilibrium definition
of the unfolding free energy will be discussed further below. Similar results for Ala15

in the β-hairpin state and for Gln15 are shown in Fig. 4.3a, the resulting equilibrium
unfolding works are listed in Table 4.1.

4.3.2 Unfolding friction of β-hairpin versus α-helix

In Fig. 4.3b we show the difference of the unfolding work between an α-helix and a
β-hairpin, defined as

∆Wα−β(v) = Wα
unf(v)−Wβ

unf(v), (4.9)

both for Gln15 as well as Ala15, as a function of the pulling velocity. Simulation data are
denoted by symbols, solid lines show the difference of the fitting curves according to
Eq. 4.8 from Fig. 4.3a and are not fitted to the actual differential data in Fig. 4.3b. The
good agreement with the data up to (and including) v = 0.1 m/s in Fig. 4.3b demon-
strates that even the differences between unfolding works of α and β secondary struc-
tures can be described by a linear viscous law. Note also that the difference of the
unfolding works ∆Wα−β(v) is independent of the definition of the unfolded ensemble
via the relaxation speed, which was primarily needed in order to be able to come up
with unfolding free works Wα

unf(v) and Wβ
unf(v) that can be compared with alternative

estimates based on equilibrium simulations. In that sense, our construction of the un-
folding work difference ∆Wα−β(v) is similar to a Born cycle and schematically shown
in Fig. 4.1a.

By extrapolation to v = 0 m/s the equilibrium free energy difference between α and β

secondary structures is estimated. For Ala15 we obtain ∆Wα−β(v = 0) = 4.3 kJ/mol,
suggesting that the α-helical structure is slightly favored, for Gln15 we obtain ∆Wα−β =

0 kJ/mol within our numerical accuracy, so α and β structures are degenerate for poly-
glutamine. In previous simulation studies of secondary structure formation of Ala12

the β structure was found to be slightly favored with respect to the α helical state [90],
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but we note that the precise free energy difference depends on the ensemble definitions
and also on the used protein and water force fields [97].

We repeat that the main point of the present work is not to obtain free energy differences
between folded structures, as there are techniques better suited for this, but rather to
disentangle equilibrium from dissipative effects and in particular to obtain the dissipat-
ive contribution to the folding and unfolding kinetics for different secondary structures.
In this respect, Fig. 4.3b reveals that ∆Wα−β(v) for both Gln15 and Ala15 increases with
v, meaning that the dissipative unfolding contribution of an α-helical structure is higher
than of a β-hairpin structure, rather independent of the equilibrium free energy differ-
ence. Note that this finding, which is the main result of our work, is independent of
details of the data fitting and therefore should be rather robust. Clearly, the dissipative
unfolding work contains - among other contributions – a part due to hydrodynamic fric-
tion owing to the motion of the unfolded peptide section through the aqueous solvent
by the action of the externally applied potential. Interestingly, the dissipative asym-
metry between α and β structures seen in Fig. 4.3b cannot be due to hydrodynamic ef-
fects, as the terminal groups of the α-helices are moved over a shorter separation range
( li = 2.1 nm to l f = 4.8 nm for Ala15 and from li = 1.8 nm to l f = 4.9 nm for Gln15) than
the end-groups of the β-hairpins (which are pulled from li = 0.5 nm to l f = 4.8 nm, see
Table 4.1). This shows that the hydrodynamic drag contribution (which will be estim-
ated in more detail further below) is in fact larger for β-hairpins, so the difference seen
in Fig. 4.3b must be due to internal friction effects.

In Fig. 4.3c we present the difference between the unfolding works in the α-helical and
β-hairpin states rescaled by the respective average intra-peptide hydrogen bond num-
bers Nα

HB and Nβ
HB given in Table 4.1, defined as

∆Wα−β
HB (v) = Wα

unf(v)/Nα
HB −Wβ

unf(v)/Nβ
HB. (4.10)

Except for the extreme pulling speed v = 10 m/s, the values of ∆Wα−β
HB (v) are quite

close to zero (and much smaller than if we would simply divide ∆Wα−β(v) by NHB),
suggesting that the difference of the dissipative unfolding contribution between α and
β states is related to the different number of hydrogen bonds in the two states.

This reasoning is very much in line with recent work showing that the sliding friction
force Ff of peptide bundles and of surface-adsorbed peptides in the viscous regime is
proportional to the number of hydrogen bonds NHB and the sliding velocity v and given
by [96, 98]

Ff = γHB v NHB. (4.11)

The friction coefficient per hydrogen bond was determined to be γHB ' 10−8 kg/s for
peptides sliding on a planar hydrophilic surface [96]. For peptide bundles it ranges
from γHB ' 10−11 kg/s up to γHB ' 10−6 kg/s depending on the aggregation num-
ber of the peptide bundles [98]. Connecting this with our present findings, the larger
friction when unfolding an α-helix can thus be rationalized by the larger number of
hydrogen bonds per monomer present in the folded α-structure.
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FIGURE 4.3: a) Unfolding work Wunf defined in Eq. 4.7 for Ala15 and Gln15 in the α-helical
and β-hairpin states vs. pulling speed v. The lines show linear fits excluding the data points
for v = 10m/s and v = 1 m/s. b) Unfolding work difference ∆Wα−β(v) between the α and β

structures as a function of the pulling speed, v, defined in Eq. 4.9. c) Work difference ∆Wα−β
HB (v)

between α and β structures rescaled by the respective number of hydrogen bonds according to
Eq. 4.10. The lines in b) and c) are based on the linear fits presented in a).

Based on the viscous friction law Eq. 4.11 we can now derive a simple expression for
the dissipative work upon unfolding defined in Eq. 4.8. For this we assume the friction
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force Ff to be linear in the velocity v, Ff = γ v, as valid in the linear-response regime for
low pulling velocities, thereby defining the friction coefficient γ. Furthermore assuming
the friction force to be constant over the entire pulling process, which seems reasonable
since the α and β structures are homogeneous and unzipped locally at the pulled ends,
we obtain for the dissipative work

Wdiss(v) = Wunf(v)−Wunf(0) =
∫ l f

li
dlx Ff(lx) ' γ L v, (4.12)

with L = l f − li being the integration limits denoted in Fig. 4.1 by vertical lines and
listed in Table 4.1 for the different structures used. The friction coefficients γ following
from the linear fits to the unfolding work in Fig. 4.3a are shown in Table 4.1.

It is instructive to compare these friction coefficients with what one would expect based
on hydrodynamic drag. For this consider the schematic picture Fig. 4.4b of a β-hairpin
that is terminally zipped open. The frictional force acting on each pulled strand with
a transient length lx is given by Ff ' v lx/(µhyd b), here b is the contour length per
amino-acid and µhyd denotes the hydrodynamic mobility per amino acid. In our previ-
ous simulations [96] we have estimated 1/µhyd ' 10−12 kg/s in good agreement with
experiments. The hydrodynamic dissipative work in the pulling process reads

Whyd(v) = 2
∫ L/2

0
dlx Ff '

L2 v
4 b µhyd

, (4.13)

where the pre factor of two accounts for the fact that two strands are symmetrically
pulled from the hairpin. Approximating L/b ' 15 we obtain Whyd/(L v) ' 4 ×
10−12 kg/s which is at least one order of magnitude smaller than the friction coefficients
derived from the simulated dissipated works presented in Table 4.1. We conclude that
while hydrodynamic friction effects are present in the simulations, and can play an im-
portant role for larger monomer numbers, they are overwhelmed by dissipative friction
effects of non-hydrodynamic origin.

FIGURE 4.4: a) Friction scenario where shearing forces are applied on the opposing peptide
strands in a β-strand structure and all NHB hydrogen bonds are simultanenously sheared. b)
Friction scenario where unzipping forces are applied on a β-hairpin and the hydrogen bonds
rupture one by one.

To make the notion of hydrogen bond friction more concrete, we now estimate the fric-
tion per hydrogen bond from our data. The hydrogen-bond friction law in Eq. 4.11 was
derived under the assumption that NHB hydrogen bonds are sheared simultaneously,
valid when an adsorbed peptide slides laterally over a planar surface [96] or when
a peptide slides axially with respect to a co-axial bundle of peptides [98], as shown
schematically in Fig. 4.4a. In the present case, the α-helix and β-hairpin secondary
structures are unzipped at the ends, and it seems reasonable that only the outmost
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terminal hydrogen bond is put under stress and thus the hydrogen bonds rupture one
by one. Assuming that each hydrogen bond has a range of a0 over which it acts and
produces frictional resistance, the effective number of hydrogen bonds that participate
in the frictional stress production on average is Neff

HB = NHB a0/L. This follows from the
following reasoning, shown schematically in Fig. 4.4b: To break a length a0 of the sec-
ondary structure, one needs to pull this much of the peptide through the region where
the structure breaking takes place (open end of the β-hairpin); as the hydrogen bond
density along the peptide is NHB/L, one ends up breaking a0NHB/L hydrogen bonds.
Replacing NHB by Neff

HB in Eq. 4.11 we obtain the modified friction law for the sequential
unzipping of hydrogen bonded secondary structures

Ff = γHB v NHB
a0

L
, (4.14)

where NHB is the total number of hydrogen bonds stabilizing a secondary structure
consisting of a peptide strand of contour length L, while a0 is the range over which
each hydrogen bond contributes to the friction. Comparing Eq. 4.14 with the definition
of the friction coefficient, Ff = γ v, we obtain

γHB =
L γ

a0 NHB
. (4.15)

Using a hydrogen-bond range a0 = 0.2 nm, in agreement with our previous result based
on the velocity-dependent crossover of the hydrogen bond friction [96], the results for
γHB for Ala15 and Gln15 in the α-helical and β-hairpin states are shown in Table 4.1.
Compared to the hydrogen-bond friction coefficients in peptide bundles [98], we see
that the obtained values for γHB roughly correspond to bundles formed from two to
three peptides, which seems realistic in terms of the packing density and the water
accessibility in the α-helical and β-hairpin states. The pronounced difference between
polyalanine and polyglutamine can be rationalized by the fact that γHB includes the
effects of varying hydrogen bond strength and bond-breakage cooperativity, which are
influenced by steric details and the hydrophobic environment and thus depend on the
amino-acid side-chain architecture. This is in line with the large spread in γHB we have
observed in our previous work on friction in peptide bundles of different aggregation
levels [98]. Apart from this sequence dependence, there seems to be very little addi-
tional influence of the secondary structure type, by this we mean that the difference
between γHB for the α-helix and β-hairpin structures for either polyalanine or poly-
glutamine is rather small. We thus conclude that the dissipative work in different sec-
ondary structures can be satisfactorily explained by the concept of hydrogen bond fric-
tion. By the same reasoning, we expect the friction coefficients for different sequences
to be different, but the comparison of friction coefficients for α-helical and β-hairpin
states of identical or very similar sequences should show the same characteristic ratio
we observe for polyalanine and polyglutamine sequences.
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FIGURE 4.5: Friction coefficient as defined in Eq. 4.16 as a function of the rescaled solvent vis-
cosity η/η0 for different pulling speeds for a) Ala15 and b) Gln15. The straight lines denote linear
fits according to Eq. 4.17.

4.3.3 Dependence on solvent viscosity: internal versus solvation versus hy-
drodynamic friction

By changing the mass m of the water molecules in our MD simulations we can vary
the solvent viscosity η without changing the free energetics [93]. Denoting the normal
water mass by m0, we performed additional stretching simulations of Gln15 and Ala15

starting in the α-helix and β-hairpin states for m/m0 = 1/10 and m/m0 = 10, giving
rise to water viscosities η/η0 = 1/

√
10 and η/η0 =

√
10, respectively, where η0 is the

unmodified water viscosity. In particular the simulations at reduced water mass are
very time consuming as they require substantially reduced simulation time steps, so
we did not perform additional relaxation simulations at modified water mass. Rather,
in this section we define the friction coefficient as

γ =
Wstr(v)−Wstr(0)

L v
, (4.16)

where the stretching work at vanishing pulling speed Wstr(0) is determined by linear
extrapolation for the data with standard water mass from the last section.

In Fig. 4.5a and b we show the friction coefficient γ as a function of η/η0 for Ala15 and
Gln15 for α-helix and β-hairpin states for a few different velocities. We fit the data with
the heuristic linear law

γ(v) = γint + γηη/η0, (4.17)

where γint is the internal friction in the hypothetical limit of vanishing solvent viscosity,
while the coefficient γη describes the solvent-related contribution to the total friction
coefficient [15, 93]. Focusing the attention first on the Ala15 data in Fig. 4.5a we note that
the slopes for α-helix (dark blue) and β-hairpin data (in light blue) are quite similar for
the slowest velocity v = 0.1m/s, while the α-helix data are shifted upwards with respect
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to the β-hairpin data. This would mean the helix structure has a higher internal friction
than the hairpin, while the solvent contribution is roughly similar. The data for Gln15

in Fig. 4.5b exhibit a similar behavior, although the slopes of the curves in the α and
β states differ somewhat. Nevertheless, the same trend is observed, and we conclude
that the different friction coefficients seen for α and β states are primarily caused by a
difference in the internal friction. This is in line with our interpretation of the dissipative
effects in terms of the internal peptide-peptide hydrogen bonds. Since non-linear effects
dominate the data for larger velocities, we only show those data without discussion.

4.3.4 Comparison with the equilibrium free energy landscape

In this section we compare the unfolding free energy, which in the previous sections
has been estimated by extrapolation to vanishing pulling velocity, with the standard
estimate based on the equilibrium folding free energy landscape. In this section, we in
addition show simulations for a shorter Ala8 peptide, as equilibration is less of an issue
for this chain length.

If one is interested in comparing the folded and unfolded states, it is clearly of import-
ance that both ensembles are reasonably sampled. In Fig. 4.6a we compare the velocity-
dependent unfolding works Wunf(v) of the Ala8 and Ala15 peptides. The lines show
linear fits and the extrapolated equilibrium works Wunf(v = 0 m/s) are quoted directly
in the plot. In Fig. 4.6b the free energy landscape of the Ala8 and Ala15 peptides are
shown as a function of the rms deviation from the ideal helical state Qrms. We adopt
the simplest possible definition of the folded and unfolded ensemble and assume the
peptide to be folded for Qrms < Q∗rms and unfolded for Qrms > Q∗rms.

The unfolding free energy, i.e. the free energy difference between the folded and unfol-
ded states, thus follows as

∆F = kB T ln

∫ Q∗rms
−∞ P(Qrms)dQrms∫ ∞
Q∗rms

P(Qrms)dQrms
. (4.18)

Now assuming ∆F = Wunf(v = 0 m/s) = 2.3 kJ/mol for Ala8, as follows from the data
in Fig. 4.6a, we obtain Q∗rms = 0.26 nm for the folding free energy curve for Ala8. We
indicate this transition value by green and blue colors of the free energy data in the
folded and unfolded ensembles in Fig. 4.6b, respectively. In Fig. 4.6c we show the dis-
tribution at the end of the relaxation simulations at a relaxation speed of v = 0.1 m/s
of 100 separate simulations of Ala8, calculated as averages over the last 1 ns of these
relaxation simulations (turquoise bars). We see that except a few relaxation simulations
that basically refolded and are characterized by small values of Qrms, most relaxation
simulations indeed end in the unfolded free energy basin. We conclude that for Ala8

the unfolding free energy estimates based on non-equilibrium simulations are consist-
ent with the free energy landscape. In the non-equilibrium simulations, the unfolding
free energy depends on the choice of the relaxation speed, in the free-energy landscape
scenario the unfolding free energy depends on the arbitrarily chosen position of the
division between the folded and unfolded basins.
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FIGURE 4.6: a) Unfolding work Wunf, defined in Eq. 4.7, of Ala8 (turquoise squares) and Ala15
(purple squares) in the α-helical state as a function of the pulling speed v, lines show linear fits
according to Eq. 4.8. b) Free energy landscapes for Ala8 and Ala15 in terms of the deviation from
the ideal helix state Qrms. The division between the folded (green) and unfolded (blue) domains
for Ala8 is chosen such that the equilibrium folding free energy coincides with the extrapolated
non-equilibrium unfolding work (see text). c) Probability distribution of the disordered en-
semble from relaxation simulations with relaxation speed v = 0.1m/s, obtained from the mean
Qrms over the last 1 ns of the relaxation trajectories. Results from 10 simulation trajectories for
Ala15 (purple bars, corresponding to the yellow triangles in Fig. 4.2a ) are compared with results
from 100 simulation trajectories for Ala8 (turquoise bars).
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For Ala15 in the α-state, the transition state would be predicted to be Q∗rms = 0.71 nm
based on the extrapolated unfolding work ∆F = Wunf(v = 0 m/s) = 23 kJ/mol, which
is far in the unfolded regime where the free energy landscape is badly sampled, as can
be seen in Fig. 4.6b. This is consistent with Fig. 4.6c where one sees that most of the
relaxation runs of Ala15 indeed do end up in the unfolded and badly sampled part of
the free energy landscape (purple bars). We conclude that while for Ala15 chains equi-
libration problems in the equilibrium simulations prevent a quantitative comparison of
the non-equilibrium unfolding work with corresponding equilibrium results, for Ala8

the two complementary approaches based on non-equilibrium pulling simulations and
equilibrium free-energy landscape simulations lead to consistent results.

TABLE 4.1: Pulling/relaxation distance L for the different homopeptides and different sec-
ondary structures. Initial and final terminal group separations li and l f . Unfolding work
Wunf(v = 0 m/s) obtained from Eq. 4.8. Friction coefficients γ and γHB defined in Eq. 4.12
and Eq. 4.15. Total number of intra-peptide hydrogen bonds NHB obtained from equilibrium
simulations. * Number of hydrogen bonds for Ala15 in the β structure is based on the number
of backbone-backbone hydrogen bonds of β-Gln15 , see text. Nbb

HB denotes the backbone-only
hydrogen bonds.

L li – l f Wunf(0) γ NHB Nbb
HB γHB

[nm] [nm] [kJ/mol] [10−10 kg/s] [10−10 kg/s]
Ala15 α 2.7 2.1 – 4.8 23 1.7 9.2 9.2 2.5
Ala15 β 4.3 0.5 – 4.8 14 0.4 4.7* 4.7* 1.8
Gln15 α 3.1 1.8 – 4.9 29 3.5 13.6 9.2 4.0
Gln15 β 4.3 0.5 – 4.8 27 2.1 9.4 4.7 4.9

4.4 Conclusions

We pull with prescribed velocities on homopeptides that are folded into different sec-
ondary structures and by a velocity-dependent analysis decompose the total work of
unfolding into its equilibrium and dissipative (frictional) contributions. The frictional
dissipation is dominated by non-hydrodynamic effects and shown to correlate well
with the total number of intra-peptide hydrogen bonds that stabilize the secondary
structure. In agreement with the different number of hydrogen bonds that stabilize
α-helices and β-hairpins, we find the friction of an α-helix to be larger than of a β-
hairpin, irrespective of the equilibrium free energy difference. This finding is in qualit-
ative agreement with recent conclusions from single-molecule experiments [99].

Let us demonstrate, with a simple thought experiment, the consequences these differ-
ences in friction coefficients could have on folding behavior. Assume an iso-free ener-
getic situation, i.e., that the competing α-helix and β-hairpin states as well as the dis-
ordered state are all connected along a constant free energy surface. The times required
for folding/unfolding the secondary structures then follow from the one-dimensional
diffusion law, t = 2 L2/D, with the diffusion constant given by D = kB T/γ. The length
L here is the length (given in Table 4.1) over which the peptide needs to diffuse when
folding/unfolding is taking place. For the Gln15 α-helix one obtains t = 1.6 µs, for
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the Gln15 β-hairpin 1.8 µs; for Ala15 we obtain 600 ns for the α-helix, and 360 ns for the
β-hairpin.

This insight that, free energies permitting, folding to β-hairpins could actually be faster
than to α-helices is particularly interesting in light of the prominent role played by β-
sheet structures in neurodegenerative diseases, but is also relevant in other situations
when α-helices convert to β-sheet structures [100]. In a non-equilibrium situation,
i.e. when β-hairpin structures are sequestered into kinetically arrested fibrillar struc-
tures, the faster formation rate of β-hairpins could lead to the proliferation of β-rich
fibrils, even when free-energetics by themselves would not prefer β structures. Actu-
ally, physiological chaperone rescue systems that are based on equilibrium free energy
differences would not be of much help in this situation, since they are not susceptible
to the faster formation rate of β structures. Whether this is related to the universal role
of β-structures in neurodegenerative diseases is at this point nothing but an interesting
speculation.

total friction

solvent friction internal friction

hydrodynamic
friction

non
hydrodynamic

friction

solvent
energetics

contribution

residual
internal

contribution

FIGURE 4.7: Schematic decomposition of the unfolding or folding friction into different contri-
butions: At the upper level, the friction work splits into the internal friction (obtained in the
hypothetical limit of vanishing solvent viscosity η = 0) and the solvent friction. The solvent
friction is operationally subdivided into a hydrodynamic contribution and a contribution that
cannot be described by the standard continuum hydrodynamic equations. The internal friction
is operationally subdivided into a contribution that accounts for the equilibrium solvent influ-
ence on the internal friction, for example via long-ranged dielectric effects, and the residual
internal frictional contribution.

Our results also shed light on a typical MD simulation protocol that probes the stabil-
ity of competing protein folding structures: In a standard setup, one starts simulations
in different states and watches which state becomes unstable first. Clearly, also in this
situation, the unfolding rate results from the convolution of the free energy difference
and the unfolding diffusivity or mobility. To put it in more drastic terms: In a situation
where the free energy of two different conformations are identical, the rate at which a
certain conformation unfolds will be solely determined by the diffusivity, and a discus-
sion in terms of free-energetic stability alone would lead to a spurious interpretation. In
such a situation, a separation into equilibrium and dissipative effects would be needed.

On a more fundamental level, we show by our simulations at varying solvent mass
how the total friction of a peptide transformation can be formally decomposed into an
internal friction part, obtained in the hypothetical limit of vanishing solvent viscosity,
and the remaining contribution, which is due to the finite solvent viscosity. The solvent
friction can be further decomposed into hydrodynamic friction, caused by the hydro-
dynamic drag of peptide parts when moving through solvent, which can be described
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by the Navier-Stokes equation, and effects that can not be described by continuum hy-
drodynamic equations. Note that this distinction is purely operational but is useful
when mechanisms of how solvent degrees of freedom influence folding rates shall be
delineated and discussed. As an example of a non-hydrodynamic solvent friction effect
we could think of hydration water that dynamically forms hydrogen bonds with pep-
tide surface groups and thereby influences folding or unfolding rates. It should be clear
that such effects could in principle be taken into account in generalized hydrodynamic
descriptions where the hydration layer kinetics is described by modified hydrodynamic
boundary conditions involving slip effects and increased surface viscosities, as was re-
cently done in the context of electrohydrodynamic effects [101]. On the other hand, the
internal friction contribution, which we can think of as being caused by viscous effects
within the peptide due to intra-peptide hydrogen bonding but also salt-bridging as well
as hydrophobic effects, will again be influenced by equilibrium solvent properties. One
example of such an equilibrium influence would be the dielectric constant of water,
which certainly will influence the Coulombic interactions within a protein and thereby
also the kinetics of salt-bridge and hydrogen-bond formation. We therefore can decom-
pose the internal friction into a part that is influenced by solvent equilibrium properties
and a residual internal contribution (which again is a purely operational decomposi-
tion). We summarize the various contributions to the friction of protein folding in the
schematic drawing in Fig. 4.7.

In our simulations, we have initiated the unfolding of the α-helix and β-hairpin states
by pulling the peptides at their ends, thereby dictating a certain path in the multi-
dimensional free energy landscape. Clearly, the actual equilibrium unfolding pathways
of β-hairpins and α-helices are more varied, as recent experiments and modeling ap-
proaches show [102, 103]. While in the limit of vanishing pulling speed the prescribed
pathway should not influence the results in a drastic manner, we admit that the ac-
tual pulling speeds employed in our simulation are still relatively large, so we point
out that our results should be interpreted with care. One advantage of pulling at the
peptide ends is that this scenario can be directly probed in experiments where peptide
chains are linked to magnetic or optical tweezers. Likewise, while for the sequences
used by us hydrogen bonds are dominant, for other sequences that are stabilized by
strong hydrophobic bonds or salt bridges these additional interactions could also play
an important role and constitute alternative mechanisms for internal friction, as was
recently suggested [104].

In our simulations we used the Amber03 peptide forcefield in combination with the
SPC/E water model. As a matter of fact, the choice of water model plays a rather
minor role [105, 106], while different peptide force-fields were recently shown to sensit-
ively influence the stabilities of competing folding states of a single Gln40 homopeptide
chain [89]. This is not of concern to us, since our main focus in this paper is not on
free energies. However, it remains to be tested to what degree the friction difference
between α-helix and β-hairpin states is robust again force-field variations.





Chapter 5

Conclusions

In this thesis we investigate the effects of internal friction on peptide kinetics. In the first
part we use mass scaling of the solvent (i.e. water) to prove that internal friction does in-
deed exist. If internal friction would not exist, the mean first passage times would scale
according to Kramers law and not deviate for low viscosities. The possibility to invest-
igate the viscous effects at lower viscosities than water’s without manipulating the free
energy landscape (e.g. by increasing temperature) is a unique feature of this method.
The seperation into internal and solvent viscous effects is however not trivial and no
simple model is available that can explain the experiments on that matter. The two
most prominent heuristic models for internal friction are a linear model and a power
law model. While the power law model fits nicely to some experiments and also to the
GlySer model peptide in our simulations, it must be wrong for vanishing viscosities,
since it would lead to infinitely fast folding speeds. In our work we present a simple
model based on a Rouse chain that includes both the linear form and a form that can
resemble a power law, thus including both models. The Rouse model includes friction
by introducing a damping element between the monomers. While this does not account
for more complex contributions to internal friction, such as hydrogen bonds, it exhibits
a complex functional forms for the viscosity dependence of the internal timescale and
can motivate the existence of the diverse findings in experiments. Using a locally re-
solved friction analysis we can also link the existence of internal friction to the number
of hydrogen bonds. By the simple argument that by proper rescaling a friction profile
can always be flattened whereas the hydrogen profile cannot, we argue that internal
friction is however not linked to the number of hydrogen bonds but to their variation
along the reaction coordinate. In this work we developed a tool for studying the in-
fluence of viscosity and quantifying internal frictions for small peptides. Considering
the fast increase in computational power, simulations of larger proteins will become
feasible and the method developed here can be readily applied in the future.

As the experiments by Jas et. al. [15] show, the functional form of the viscosity depend-
ence between an α-helix and a β-hairpin differs, suggesting internal friction plays an
important role in the formation of secondary structure. The transition from helical to
hairpin state is particularly important in the context of neurodegenerative diseases. We
developed a method to obtain unfolding work differences between these secondary
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structures by forced unfolding via pulling at different finite speeds. By extrapolation
to vanishing speed the unfolding work difference gives the free energetic difference of
the two states. While this method is not particularly good for obtaining free energy val-
ues, it is uniquely suited for investigating dissipative effects and thus the differences
in internal friction between secondary structures. Our choice of the homopeptides con-
sisting of alanine and glutamine is motivated by their importance in neurodegenerat-
ive diseases. Our results show that the friction is always higher for the helical state. By
comparing this with the number of hydrogen bonds in each state we show that the char-
acteristic hydrogen bond number of the secondary structure is the major reason for the
difference in internal friction. Considering that protein folding typically takes place in
a non-equilibrium environment, the folding friction can become the determining factor
for the probability of a certain conformer and it is thus important to not consider free
energetics alone but also dissipative effects.
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Abstract

Protein dynamics are significantly influenced by frictional effects, not only from the
surrounding solvent but also due to interactions inside the protein chain itself. Experi-
mentally, such “internal friction” has been investigated by studying folding or binding
kinetics at varying solvent viscosity; however the molecular origin of these effects is
hard to pinpoint. In this thesis, we studied the effects of internal friction by both equil-
brium and non-equilibrium molecular dynamics simulations.

We developed a mechanism using scaled solvent mass to probe more than two orders
of magnitude in viscosity without altering the free energy landscape of the protein.
Our method is especially suited to investigate peptide kinetics near vanishing viscos-
ities that are not reachable experimentally. While previous experimental studies have
suggested different functional forms for the viscosity dependence, our findings suggest
that solvent and internal friction effects are intrinsically entangled. This finding is ra-
tionalized by calculation of the polymer end-to-end distance dynamics from a Rouse
model that includes internal friction. While this simple Rouse model does not include
effects such as hydrogend bonds, an analysis of the local friction profile along differ-
ent reaction coordinates suggests a connection between friction and the formation of
hydrogen bonds upon folding.

Since hydrogen bonding is a major factor for the determination of secondary struc-
ture, internal friction can help in understanding the folding process. As the secondary
structure is of vast importance for the biological function of a protein, misfolding is
thought to be the explanation for many diseases including neurogedegenerative ones
such as Huntington’s or Parkinon’s disease. By the forced unfolding of polyglutamine
and polyalanine homopeptides in competing α-helix and β-hairpin secondary struc-
tures, we disentangle equilibrium free-energetics from non-equilibrium dissipative ef-
fects. We find that α-helices are characterized by larger friction or dissipation upon
unfolding, regardless of whether they are free-energetically preferred over β-hairpins
or not. Our analysis, based on MD simulations for atomistic peptide models with ex-
plicit water, suggests that this difference is related to the internal friction and mostly
caused by the different characteristic number of intra-peptide hydrogen bonds in the
α-helix and β-hairpin states, which is higher for the α-helical state.
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Kurzfassung

Die Proteindynamik wird entscheidend von Reibungseffekten beeinflußt, die nicht nur
vom umgebenden Lösungsmittel herrühren, sondern auch durch die Wechselwirkun-
gen innerhalb der Proteinkette bestimmt werden. Experimentell ist diese interne Rei-
bung durch Faltungs- oder Bindungskinetik bei verschiedenen Lösungsmittelviskosi-
täten untersucht worden; allerdings ist die molekulare Ursache dieser Effekte nicht gut
verstanden. In dieser Arbeit haben wir die Effekte von interner Reibung sowohl mit
Gleichgewichts- als auch Nichtgleichgewichts-Molekulardynamiksimulationen genau-
er untersucht.

Wir haben eine Methode entwickelt, um mittels skalierter Lösungsmittelmasse die Vis-
kosität zwei Größenordnungen zu variieren ohne dabei die Freie-Energie-Landschaft
des Proteins zu verändern. Unsere Methode ist besonders geeignet, um die Peptidkine-
tik bei nahezu verschwindenden Viskositäten zu untersuchen, die experimentell nicht
zugänglich sind. Experimentelle Studien haben unterschiedliche funktionelle Abhän-
gigkeiten von der Viskosität vorgeschlagen, wobei unsere eigenen Ergebnisse nahele-
gen, dass die internen Reibungseffekte und die des Lösungsmittels intrinsisch mitein-
ander verknüpft sind. Dieses Ergebnis unterlegen wir mit der Berechnung der End-zu-
End-Entfernungs-Dynamik von Polymeren mittels eines Rouse-Modells, welches in-
terne Reibungseffekte beinhaltet. Während dieses Modell allerdings keine Effekte wie
Wasserstoffbrückenbindungen enthält, zeigt eine Analyse des lokalen Reibungsprofils
entlang verschiedener Reaktionskoordinaten, dass eine Verbindung zwischen Reibung
und der Bildung von Wasserstoffbrückenbindungen besteht.

Da die Bildung von Wasserstoffbrückenbindungen allerdings ein entscheidender Fak-
tor bei der Bildung von Sekundärstrukturen ist, kann interne Reibung zum Verständ-
nis des Faltungsprozesses beitragen. Da die Sekundärstruktur von großer Bedeutung
für die biologische Funktion eines Proteins ist, wird eine Mißfaltung als Erklärung für
viele Krankheiten betrachtet, darunter auch verschiedene neurodegenerative Krank-
heiten wie Chorea Huntington oder Morbus Parkinson. Mittels erzwungener Entfal-
tung von Polyglutamin- und Polyalanin-Homopeptiden in miteinander konkurrieren-
den α-Helix- und β-Schleifen-Strukturen können wir die Gleichgewichts-Freie-Energie-
Effekte von den dissipativen Nichtgleichgewichts-Effekten trennen. Unsere Ergebnisse
zeigen, dass α-Helices duch eine größere Reibung bzw. Dissipation bei der Faltung cha-
rakterisiert sind, unabhängig, ob sie, gemessen an der freien Energie, gegenüber der
β-Schleife bevorzugt sind. Basierend auf Molekulardynamiksimulationen von atomi-
stischen Peptidmodellen, legen unsere Analysen nahe, dass dieser Unterschied mit der
internen Reibung zusammenhängt und vor allem durch eine unterschiedliche, charak-
teristische Anzahl von Intra-Peptid-Wasserstoffbückenbindungen des α-helikalen und
des β-Schleifen-Zustands bestimmt ist, wobei die Anzahl größer für den helikalen Zu-
stand ist.
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