Chapter 3

Magnetic domain theory in dynamics

Microscale magnetization reversal dynamics is one of thddsoes, because of a great demand
for fast response and high density data storage devicesx&nple SV and MTJ systems. Such
devices are operating in the ns regime, where magnetizegi@rsal takes place by magnetic do-
main nucleation and domain wall propagation (see Fig. 1r3his chapter, the mechanism of the
magnetic domain wall motion in the ns range and slower wikkglained.

In Fig. 3.1, the relation between velocity of wall motion amegnetic field is schematically
shown. In the low field range, the velocity increases exptakinwith field. The wall motion
in this range is so called thermally activated motion ($#c8.1). Upon increasing the field, the
velocity comes into a regime linear with field, viscous wabitran (Section 3.2). Extrapolation of
this linear part to the field axis is called the critical fieldg,i;, which is about a border between
these two regimes. The velocity does not increase infinitaly saturates at some field, the so
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Figure 3.1: The relation between velocity of wall motion amdgnetic field in thermally activated
motion, in viscous motion and above the Walker limit field.
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12 CHAPTER 3. MAGNETIC DOMAIN THEORY IN DYNAMICS

called Walker limit field,Hwaiker, (Section 3.3). Abovédwaiker, the velocity may fluctuate and/or
even oscillate as a function of field.

3.1 Thermally activated wall motion

By quasi-static magneto optical Kerr effect (MOKE) measwerts, square-shaped hysteresis loop
will be obtained along the easy axis of magnetization. Adgploop is drawn in Fig. 3.2. The
squared loop indicates that the magnetization reversds stithe intrinsic surface defects or the
edge of the specimen where domains are nucleated, and the papagate. However, if one
looks at the hysteresis loop closely, one could see thatnitaking a step-like behavior (inset in
Fig. 3.2). This means that the domain walls proceed in alsyegtep motion. The wall motion
is hindered/pinned by surface defects, such as grain boesdaurface roughness and/or large
crystalline imperfections [11, 41]. When the external figi, is lower than the coercivityHc,
the domain walls proceed by successive thermally activateghs. Magnetization reversal by
thermally activated domain wall motion has been widely stigated [8—11, 41-44]. Fatuzzo [45]
has proposed the mechanism of domain wall propagation iodkctrics, which was extended to
the magnetic domain wall motion in magnetics by Labrune T9je speed of wall motion can be
described by following equation,

(3.1)
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Figure 3.2: Schematic hysteresis loop taken with the fiefgieg along the magnetic easy axis.
One part is enlarged, showing that the magnetization ralvé&daking place by a step-by-step
motion of the magnetic domain wall.
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Figure 3.3: Propagation of magnetic domain walls in a 7 ML ka 6n Cu(001) in 15 seconds
from the left to the right, obtained by Kerr microscopy [11hHc of this film was 3.5 mT. The
amplitude of the applied field was 0.82 mT.

whereH is the magnetic field. The Barkhausen volume, 6 generally the smallest volume in
which the magnetization reversed by one wall jump. The gnleagrier, B, is the energy blocking
or hindering the wall propagation.g\Vs in general the Barkhausen length¥(¥g) divided by a
time constantr. In Ref. [10], 10 s is used for, and 16° s in Ref. [9]. In this report, the former
will be used.

Thermally activated magnetic domain wall propagation irgnedic ultrathin films was care-
fully investigated with relation to surface morphology bygmetic after effect measurements in
Ref. [11], and one of the examples is shown in Fig. 3.3. The &amvps 7 atomic monolayer
(ML) Fe a on Cu(001) clean surface, deposited in ultrahiglumaecat room temperature. The out-
of-plane easy axis was confirmed by the MOKE experiment. Theuias initially magnetically
saturated along the z axis, then a negative field 0.82 mT walgeddo reverse the magnetization,
which was smaller thapgHc (= 3.5 mT). Magnetic domain structures (left and right imauerig.
3.3) were imaged by Kerr microscopy at 5 and 20 seconds afersing the field, respectively.
The white domains got bigger during the field. The estimapeskd of wall propagation was about
10 m/s, and k was also obtained using Eq. (3.1). In the case of thin filmsc&h be a product
of the size of surface terraces and film thickness, apdsEhe energy barrier that hinders wall
propagation at the terrace edge. A larger thermal energgasled for a wall overcome a larger
barrier. Interestingly in Ref. [11], the distance of Barkhaugimps is similar to the atomic terrace
size of the Cu(001) clean surface, but much bigger than tieec$iEe islands (20 - 40 nm).

Since the magnetization reversal by domain nucleatiorssathermally activated process, the
domain nucleation probability, R, is presented in a similaywo the velocity of wall propagation,

(IJOMSHVN - EN)

1
R=—exp

- (3.2)

keT

In Ref. [9] for a GdFe alloy, the Barkhausen volume for domaiol@ation, \{, was found to be
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Figure 3.4:Hc vs. In(dH/dt) curve obtained for a Au/0.8 nm Cu/Au sandwich system at room
temperature. The dashed line is a guide to the eyes [42].

the same as Y. In general, the barrier energy for nucleatioR, i larger than E, like it was found
on this alloy system.

The magnetization reversal processes, magnetic domaleation and wall motion, are easily
identified byHc vs. In(dH/dt) experiments [10, 42, 46—48]. Afc vs. In(dH/dt) curve from
Ref. [42] is shown in Fig. 3.4. This curve was obtained for a0A8/hm Cu/Au sandwich system
at room temperature. When the sweep rate of the applied fiblelasv 16 T/s (at the kink in Fig.
3.4), the wall propagation is dominating the reversal. Abthat, mainly nucleation takes place.

Up to here, thermally activated magnetization reversatg@sees have been discussed. In the
next section, the viscous wall motion is expressed, in whiehspeed of magnetic domain wall
motion increases linearly as a function of the amplitudel pivhenH is higher tharHcyi;.

3.2 Viscous wall motion

In this section, the viscous wall motion, in which the walloaty is proportional to the amplitude
of applied field, will be interpreted. This is directly dezt¥from the Landau-Lifshitz-Gilbert (LLG)
equation of motion [13] in the case of a one-dimensional domall in a uniaxial anisotropy
system, e.g., a Bloch wall in an FM film with an out-of-planeyeasis of magnetization.

Quantum mechanically, we have to consider the motion of @ $gn,S, in a time varying
magnetic flux densitﬁ(t), to which the magnetic momeycouples, whergis the gyromagnetic
ratio expressed in Section 3.2.1, can be described witholteving Hamilton operator,

H=—yS-B(t). (3.3)
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Figure 3.5: TorqueT, on magnetizatiorlyi, by an applied fieldta.

Then, the angular momentum is written as,

dS 1 . L -

4t = ipISH=Y5xEB. (3.4)
The right hand side is the torque on the magnetic morSéntthe magnetic field. The above

equation can be rewritten by changiigo a magnetic dipoleyi,
d _

V() = VM (1) x B(t)]. (3:5)
And, with B is poH in vacuum,
SN0 = —WolM (1) < (V) (3.6
This formula is simplified and the basic equation of motiowigten as,
—%zmem. (3.7)

The right hand side gives the torquie,acting on the magnetic dipole by the applied fi¢ld,(Fig.
3.5). The dipole precesses aroutiglwith a certain anglé.

The precessional motion of magnetic dipoles in a magnetiemnad is not only driven by the
Zeeman energy, but also by anisotropy, exchange and detimggenergies. Then Eq. 3.7 should
be written with the effective fieldier,

M — —
—7 = WM X Hett, (3.8)
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whereHef s depends on the direction df. By introducing the dampindie++ turns to be

- ow al\7|
Hett=—— — —, 3.9
HoHefr =~ Y (3.9)
wherew is energy volume density (dimension: 3jmincluding the Zeeman, anisotropy and ex-
change energies, andthe damping constant. Then the LLG equation of motion is

S M x M
M =y W, aMx

= N (3.10)

The first term on the right hand side is a stationary precedsion. If there is no damping, i.e.,
HoHeff = -OW/OM, M is always normal to the plane ®f andHess. This means that the spin
precesses around the field direction in a cone, @itbmaining constant. This kind of precession
is called "Larmor precession”. This angular frequernwyis

w = HoyHef . (3.11)

Another feature of this behavior is that the static energgM—H;ff does not change, and hence
the motion is a conservative precession. The second terng.in3Ll0 presents the process of
damping, hence the energy is not conserved. By damping, doegsing moment loses energy and
approaches to its static equilibrium direction aldthg ;.

For the motion of a one-dimensional Bloch wall by a sufficiemiigh external field, the prop-
agation speed of domain walls depends on the rate of enesgipdtion by damping, the so called
viscous wall motion. The energy dissipation density can btem,

W= (0w/38)6 + (dw/0p) o, (3.12)

wheref andg@are the angles in the y-z plane and in the x-z plane (see thdioate system in Fig.
2.1), respectively. Then the LLG equation in polar and atiraicomponents becomes

g _YOWo s

0= Ma(psme oa@sing (3.13)
wsig— YW ¢
@sind = YED +00 (3.14)

Solving the two equations above fow/d@ and dw/d0, and substituting them into Eq. 3.12, one

finds
W= _yiMl\'ﬁzz —M—y“(éznpzsinze) (3.15)
_M

v (¢gsin® — 016)dq — (—Bsind — agsin’8)3q). (3.16)
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Integratingw along the y axis gives the corresponding differential inlwakrgy,dypw,

2M -« . -
dyow = (95 )0+ (3~ aag)do), (3.17)
where g and\ represent the wall position with respect to the x axis andaxalkéwidth parameter,
respectively. Eq. 3.17 is equivalent to the pair of partitiedential equations

oypw 2M . -
—— = —(g—alg), 3.18
0y (q—oaAg) (3.18)
Oyow  2M  a/rmqg

When a wall moves at some velociyn a net uniform drive fieldH, the rate of Zeeman energy
gained per unit area is

Yow = —2HoMH(q (3.20)

This energy gain must, according to energy conservatiorgither stored in the intrinsic wall
energy or else dissipate to the lattice by viscous dampirtggftate Eq. 3.20 over all space gﬁﬂ

q+ a\é% @), which, using Egs. 3.18 and 3.19,

. 2Ma @ -
Vow = ~ =S+ 09 (3.21)

This expression gives the dissipation function for wall imet From Eq. 3.20 and Eq. 3.21, one
gets,

9= (A2 + ¢P). (3.22)

If one supposes that= 0, namely, the wall is always purely Bloch type, the velocityvall motion,
g, will be

g=v= %H (3.23)

where an approximatiofi®) = (§)? is used. Here the linear dependence of the domain wall wgloci
on the magnetic field is derived. The coefficieyli/t) is call the mobility of wall motion.
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3.2.1 Gyromagnetic ratio

The gyromagnetic ratioys the ratio of the atomic magnetic momenysg to the atomic angular
momenturhJ, where J is the total moment, a sum of spin and orbital masn€eFhe constany
related to an effective dimensionless g-factor by the fdamu

y=0gue/h, (3.24)
wherepg is the Bohr magneton,
g = ef/(2me) = 9.27410x 10724 J/T. (3.25)

whereh = 1.05459x 10734 J s is Planck’s constant divided byt2ande the electron charge (=
1.60218x 1019 C) and m the electron effective mass (= 9.10988.0 31 kg). For a free electron
in a solid with spin but no orbital motion, the g-factor is @3 andyis 1.79x 10 (T s)~1. These
values can be used for itinerant 3d electrons in 3d tramsitietals.

3.3 Walker limit field

It was suggested in the above section that the wall velooitgeases linearly with the field within
a certain range. However, the velocity saturates at soreetefé field, the so called Walker limit
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Figure 3.6: Domain wall velocity along the t (n=ec)

easy axis in FeNi vs. applied field. The solid

line is the rigorous one-dimensional analytid-igure 3.7: Simulation of wall velocity vs. time
solution calculated by Schryer and Walker [20]for a S00A thick FeNi film [21]. The applied
and the circles and diamonds are for 1080 field was 8.0 mT.

and 500A thick films calculated by Yuaret.

al. [21].
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field, expressed as [20]

1
Hwalker= EGMS- (3.26)

Above this field, the velocity may fluctuate or even oscillalee to the fact that the spin structure
inside the domain wall is varied by a high magnitude of thelfiél simple explanation ca be given
for a Bloch wall in a thin film with an out-of-plane anisotrogyig. 2.1 (a)), and with the applied
field along the easy axis [21]. When the applied field excé&gsker, Spins inside the Bloch wall
rotate also around the field axis. As a result, the wall ingslalso in-plane component, namely,
the wall involves the Mel type wall. Two senses of spin precession, in the wallgkamd in the
film plane, co-exist. The harmony of these two precessiomdians causes the oscillation of the
wall velocity either as a function of time (Fig. 3.6) or as adtion of field (Fig. 3.7).

In Fig. 3.6, the domain wall velocity vs. applied field is shofer 500A (diamonds) and 1000
A (circles) thick FeNi films and a 1D analytic solution (solidree) [21]. For a 50Q thick FeNi
film, a typical velocity evolution under high field (8 mT) asunttion of time is shown in Fig.
3.7. The oscillatory transition between Bloch ande@Nwall manifests itself by the oscillation of
wall velocity (Fig. 3.7), since the masses and viscositfedese walls are very different from each
other [21].

Oscillatory motion of a transverse head-oadllwall in a narrow stripe of FeNi (5 nm-thick,
1250 nm-long and various widths from 5 to 35 nm) has been sitedlanalytically and fully com-
putationally [22]. There it was mentioned that if the extdrireld along the longitudinal direction
of the stripe is sufficiently strong, the spins in the wallgass also around the field axis. Then the
spins have also a magnetization component normal to the famep such that the spins precess
also around the z axis by the demagnetizing field. The en@aggy flor this damping lowers the
wall velocity. It was mentioned in that article thidykeris the field which can point spins normal
to the film plane. It was also observed there tHat,ker depended on the ratio between width
and thickness of the stripe, which reflects the ratio betwmeérof-plane and in-plane stray field
energies under the external field.
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