
Chapter 3

Magnetic domain theory in dynamics

Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand

for fast response and high density data storage devices, forexample SV and MTJ systems. Such

devices are operating in the ns regime, where magnetizationreversal takes place by magnetic do-

main nucleation and domain wall propagation (see Fig. 1.3).In this chapter, the mechanism of the

magnetic domain wall motion in the ns range and slower will beexplained.

In Fig. 3.1, the relation between velocity of wall motion andmagnetic field is schematically

shown. In the low field range, the velocity increases exponentially with field. The wall motion

in this range is so called thermally activated motion (Section 3.1). Upon increasing the field, the

velocity comes into a regime linear with field, viscous wall motion (Section 3.2). Extrapolation of

this linear part to the field axis is called the critical field,HCrit , which is about a border between

these two regimes. The velocity does not increase infinitely, but saturates at some field, the so

Figure 3.1: The relation between velocity of wall motion andmagnetic field in thermally activated
motion, in viscous motion and above the Walker limit field.
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called Walker limit field,HWalker, (Section 3.3). AboveHWalker, the velocity may fluctuate and/or

even oscillate as a function of field.

3.1 Thermally activated wall motion

By quasi-static magneto optical Kerr effect (MOKE) measurements, square-shaped hysteresis loop

will be obtained along the easy axis of magnetization. A typical loop is drawn in Fig. 3.2. The

squared loop indicates that the magnetization reversal starts at the intrinsic surface defects or the

edge of the specimen where domains are nucleated, and the walls propagate. However, if one

looks at the hysteresis loop closely, one could see that it ismaking a step-like behavior (inset in

Fig. 3.2). This means that the domain walls proceed in a step-by-step motion. The wall motion

is hindered/pinned by surface defects, such as grain boundaries, surface roughness and/or large

crystalline imperfections [11, 41]. When the external field,H, is lower than the coercivity,HC,

the domain walls proceed by successive thermally activatedjumps. Magnetization reversal by

thermally activated domain wall motion has been widely investigated [8–11, 41–44]. Fatuzzo [45]

has proposed the mechanism of domain wall propagation in ferroelectrics, which was extended to

the magnetic domain wall motion in magnetics by Labrune [9].The speed of wall motion can be

described by following equation,

v = v0exp

(

µ0MSHVB −EP

kBT

)

, (3.1)

Figure 3.2: Schematic hysteresis loop taken with the field applied along the magnetic easy axis.
One part is enlarged, showing that the magnetization reversal is taking place by a step-by-step
motion of the magnetic domain wall.
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Figure 3.3: Propagation of magnetic domain walls in a 7 ML Fe film on Cu(001) in 15 seconds
from the left to the right, obtained by Kerr microscopy [11].µ0HC of this film was 3.5 mT. The
amplitude of the applied field was 0.82 mT.

whereH is the magnetic field. The Barkhausen volume, VB, is generally the smallest volume in

which the magnetization reversed by one wall jump. The energy barrier, EP, is the energy blocking

or hindering the wall propagation. v0 is in general the Barkhausen length (=3
√

VB) divided by a

time constant,τ. In Ref. [10], 109 s is used forτ, and 1010 s in Ref. [9]. In this report, the former

will be used.

Thermally activated magnetic domain wall propagation in magnetic ultrathin films was care-

fully investigated with relation to surface morphology by magnetic after effect measurements in

Ref. [11], and one of the examples is shown in Fig. 3.3. The sample was 7 atomic monolayer

(ML) Fe a on Cu(001) clean surface, deposited in ultrahigh vacuum at room temperature. The out-

of-plane easy axis was confirmed by the MOKE experiment. The film was initially magnetically

saturated along the z axis, then a negative field 0.82 mT was applied to reverse the magnetization,

which was smaller thanµ0HC (= 3.5 mT). Magnetic domain structures (left and right images in Fig.

3.3) were imaged by Kerr microscopy at 5 and 20 seconds after reversing the field, respectively.

The white domains got bigger during the field. The estimated speed of wall propagation was about

10 m/s, and EP was also obtained using Eq. (3.1). In the case of thin films, VB can be a product

of the size of surface terraces and film thickness, and Ep is the energy barrier that hinders wall

propagation at the terrace edge. A larger thermal energy is needed for a wall overcome a larger

barrier. Interestingly in Ref. [11], the distance of Barkhausen jumps is similar to the atomic terrace

size of the Cu(001) clean surface, but much bigger than the size of Fe islands (20 - 40 nm).

Since the magnetization reversal by domain nucleation is also a thermally activated process, the

domain nucleation probability, R, is presented in a similar way to the velocity of wall propagation,

R =
1
τ

exp

(

µ0MSHVN −EN

kBT

)

. (3.2)

In Ref. [9] for a GdFe alloy, the Barkhausen volume for domain nucleation, VN, was found to be
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Figure 3.4: HC vs. ln(dH/dt) curve obtained for a Au/0.8 nm Cu/Au sandwich system at room
temperature. The dashed line is a guide to the eyes [42].

the same as Vp. In general, the barrier energy for nucleation, EN, is larger than Ep, like it was found

on this alloy system.

The magnetization reversal processes, magnetic domain nucleation and wall motion, are easily

identified byHC vs. ln(dH/dt) experiments [10, 42, 46–48]. AnHC vs. ln(dH/dt) curve from

Ref. [42] is shown in Fig. 3.4. This curve was obtained for a Au/0.8 nm Cu/Au sandwich system

at room temperature. When the sweep rate of the applied field isbelow 16 T/s (at the kink in Fig.

3.4), the wall propagation is dominating the reversal. Above that, mainly nucleation takes place.

Up to here, thermally activated magnetization reversal processes have been discussed. In the

next section, the viscous wall motion is expressed, in whichthe speed of magnetic domain wall

motion increases linearly as a function of the amplitude ofH, whenH is higher thanHCrit .

3.2 Viscous wall motion

In this section, the viscous wall motion, in which the wall velocity is proportional to the amplitude

of applied field, will be interpreted. This is directly derived from the Landau-Lifshitz-Gilbert (LLG)

equation of motion [13] in the case of a one-dimensional domain wall in a uniaxial anisotropy

system, e.g., a Bloch wall in an FM film with an out-of-plane easy axis of magnetization.

Quantum mechanically, we have to consider the motion of a free spin,~S, in a time varying

magnetic flux density,~B(t), to which the magnetic momentγ~Scouples, whereγ is the gyromagnetic

ratio expressed in Section 3.2.1, can be described with the following Hamilton operator,

H = −γ ~S·~B(t). (3.3)
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Figure 3.5: Torque,~T, on magnetization,~M, by an applied field,~Ha.

Then, the angular momentum is written as,

d~S
dt

=
1
i h̄

[~S,H] = γ~S×~B. (3.4)

The right hand side is the torque on the magnetic moment~S in the magnetic field~B. The above

equation can be rewritten by changing~S to a magnetic dipole,~M,

d
dt

~M(t) = γ[~M(t)×~B(t)]. (3.5)

And, with~B is µ0~H in vacuum,

d
dt

~M(t) = −γµ0[~M(t)× ~H(t)] (3.6)

This formula is simplified and the basic equation of motion iswritten as,

−Ṁ
γ

= µ0~M× ~Ha. (3.7)

The right hand side gives the torque,~T, acting on the magnetic dipole by the applied field,~Ha (Fig.

3.5). The dipole precesses around~Ha with a certain angleθ.

The precessional motion of magnetic dipoles in a magnetic material is not only driven by the

Zeeman energy, but also by anisotropy, exchange and demagnetizing energies. Then Eq. 3.7 should

be written with the effective field,He f f,

−Ṁ
γ

= µ0~M× ~He f f, (3.8)
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where~He f f depends on the direction of~M. By introducing the damping,He f f turns to be

µ0 ~He f f = − ∂w

∂~M
− α ~̇M

γM
, (3.9)

wherew is energy volume density (dimension: J/m3), including the Zeeman, anisotropy and ex-

change energies, andα the damping constant. Then the LLG equation of motion is

~̇M = γ ~M× ∂w

∂~M
+

α ~̇M× ~M
M

. (3.10)

The first term on the right hand side is a stationary precession term. If there is no damping, i.e.,

µ0He f f = –∂w/∂~M, ~̇M is always normal to the plane of~M and ~He f f. This means that the spin

precesses around the field direction in a cone, withθ remaining constant. This kind of precession

is called ”Larmor precession”. This angular frequency,ω, is

ω = µ0γHe f f. (3.11)

Another feature of this behavior is that the static energy –µ0~M· ~He f f does not change, and hence

the motion is a conservative precession. The second term in Eq. 3.10 presents the process of

damping, hence the energy is not conserved. By damping, the precessing moment loses energy and

approaches to its static equilibrium direction alongHe f f.

For the motion of a one-dimensional Bloch wall by a sufficiently high external field, the prop-

agation speed of domain walls depends on the rate of energy dissipation by damping, the so called

viscous wall motion. The energy dissipation density can be written,

ẇ = (∂w/∂θ)θ̇+(∂w/∂φ)φ̇, (3.12)

whereθ andφ are the angles in the y-z plane and in the x-z plane (see the coordinate system in Fig.

2.1), respectively. Then the LLG equation in polar and azimuthal components becomes

θ̇ = − γ
M

∂w
∂φ

sinθ−αφ̇sinθ (3.13)

φ̇sinθ =
γ
M

∂w
∂θ

+αθ̇ (3.14)

Solving the two equations above forδw/δφ andδw/δθ, and substituting them into Eq. 3.12, one

finds

ẇ = − α
γM

~̇M
2
= −Mα

γ
(θ̇2 + φ̇2sin2θ) (3.15)

=
M
γ

[(φ̇sinθ−αθ̇)δq− (−θsinθ−αφ̇sin2θ)δφ]. (3.16)
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Integratingẇ along the y axis gives the corresponding differential in wall energy,dγDW,

dγDW =
2M
γ

[(−φ̇− αq̇
∆

)dq+(q̇−α∆φ̇)dφ], (3.17)

where q and∆ represent the wall position with respect to the x axis and thewall width parameter,

respectively. Eq. 3.17 is equivalent to the pair of partial differential equations

∂γDW

∂φ
=

2M
γ

(q̇−α∆φ̇), (3.18)

∂γDW

∂q
= −2M

γ
(φ− α/rmq̇

∆
). (3.19)

When a wall moves at some velocityq̇ in a net uniform drive fieldH, the rate of Zeeman energy

gained per unit area is

γ̇DW = −2µ0MHq̇ (3.20)

This energy gain must, according to energy conservation, beeither stored in the intrinsic wall

energy or else dissipate to the lattice by viscous damping. Integrate Eq. 3.20 over all space of (∂γDW
∂q

q̇ + ∂γDW
∂φ φ̇), which, using Eqs. 3.18 and 3.19,

γ̇DW = −2Mα
γ

[
q̇2

∆
+∆φ̇2] (3.21)

This expression gives the dissipation function for wall motion. From Eq. 3.20 and Eq. 3.21, one

gets,

q̇ =
α∆

γ µ0 H
[∆−2q̇2 + φ̇2]. (3.22)

If one supposes thatφ̇ = 0, namely, the wall is always purely Bloch type, the velocityof wall motion,

q̇, will be

q̇ = v =
γ∆
α

H (3.23)

where an approximation〈q̇2〉 = 〈q̇〉2 is used. Here the linear dependence of the domain wall velocity

on the magnetic field is derived. The coefficient (γ∆/α) is call the mobility of wall motion.
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3.2.1 Gyromagnetic ratio

The gyromagnetic ratio –γ is the ratio of the atomic magnetic moment –gµBJ to the atomic angular

momentum ¯hJ, where J is the total moment, a sum of spin and orbital moments. The constantγ
related to an effective dimensionless g-factor by the formula

γ = gµB/h̄, (3.24)

whereµB is the Bohr magneton,

µB = eh̄/(2me) = 9.27410×10−24 J/T. (3.25)

whereh̄ = 1.05459× 10−34 J s is Planck’s constant divided by 2π, ande the electron charge (=

1.60218× 10−19 C) and me the electron effective mass (= 9.10938× 10−31 kg). For a free electron

in a solid with spin but no orbital motion, the g-factor is 2.0023 andγ is 1.79× 1011 (T s)−1. These

values can be used for itinerant 3d electrons in 3d transition metals.

3.3 Walker limit field

It was suggested in the above section that the wall velocity increases linearly with the field within

a certain range. However, the velocity saturates at some effective field, the so called Walker limit

Figure 3.6: Domain wall velocity along the
easy axis in FeNi vs. applied field. The solid
line is the rigorous one-dimensional analytic
solution calculated by Schryer and Walker [20],
and the circles and diamonds are for 1000Å
and 500Å thick films calculated by Yuanet.
al. [21].

Figure 3.7: Simulation of wall velocity vs. time
for a 500Å thick FeNi film [21]. The applied
field was 8.0 mT.



3.3. WALKER LIMIT FIELD 19

field, expressed as [20]

HWalker=
1
2

αMS. (3.26)

Above this field, the velocity may fluctuate or even oscillate, due to the fact that the spin structure

inside the domain wall is varied by a high magnitude of the field. A simple explanation ca be given

for a Bloch wall in a thin film with an out-of-plane anisotropy (Fig. 2.1 (a)), and with the applied

field along the easy axis [21]. When the applied field exceedsHWalker, spins inside the Bloch wall

rotate also around the field axis. As a result, the wall involves also in-plane component, namely,

the wall involves the Ńeel type wall. Two senses of spin precession, in the wall plane and in the

film plane, co-exist. The harmony of these two precessional motions causes the oscillation of the

wall velocity either as a function of time (Fig. 3.6) or as a function of field (Fig. 3.7).

In Fig. 3.6, the domain wall velocity vs. applied field is shown for 500Å (diamonds) and 1000

Å (circles) thick FeNi films and a 1D analytic solution (solid curve) [21]. For a 500̊A thick FeNi

film, a typical velocity evolution under high field (8 mT) as a function of time is shown in Fig.

3.7. The oscillatory transition between Bloch and Néel wall manifests itself by the oscillation of

wall velocity (Fig. 3.7), since the masses and viscosities of these walls are very different from each

other [21].

Oscillatory motion of a transverse head-on Néel wall in a narrow stripe of FeNi (5 nm-thick,

1250 nm-long and various widths from 5 to 35 nm) has been simulated analytically and fully com-

putationally [22]. There it was mentioned that if the external field along the longitudinal direction

of the stripe is sufficiently strong, the spins in the wall precess also around the field axis. Then the

spins have also a magnetization component normal to the film plane, such that the spins precess

also around the z axis by the demagnetizing field. The energy loss for this damping lowers the

wall velocity. It was mentioned in that article thatHWalker is the field which can point spins normal

to the film plane. It was also observed there thatHWalker depended on the ratio between width

and thickness of the stripe, which reflects the ratio betweenout-of-plane and in-plane stray field

energies under the external field.
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