
Chapter 2

Magnetic domain theory in static

Magnetic domains in ferromagnetic materials are generatedin order to minimize the sum of energy

terms, e.g., the magnetostatic, the exchange, the anisotropy, and the Zeeman energies. In the case

the magnetic film has infinite lateral extension and uniformly magnetized in the film plane, the mag-

netostatic energy is zero. However, if the film has a finite size, the surface charging has to be taken

into account, which leads to a demagnetizing field. This demagnetizing field separates the film

into domains with different orientations of magnetizationto reduce the magnetostatic energy (long

range magnetic interaction). The boundary between these domains is calledmagnetic domain wall.

Inside the wall, the spins rotate gradually, leading to a certain width of the wall . The wall width

is mainly determined by the competition between two energy terms, the exchange energy and the

anisotropy energy. The exchange energy between neighboring spins tends to increase the wall

width. A larger rotation of spins between two neighbors causes a higher exchange energy. How-

ever, a wider wall induces a higher anisotropy energy, because inside the wall the direction of spins

is away from the easy axis of magnetization. These two energies lead to short range interactions

(nm range).

In the reminder of this chapter, first, the magnetic energy terms, magnetostatic, exchange,

anisotropy and Zeeman energies, are introduced. Then the formation of magnetic domains by a

competition of all the energy terms is mentioned. At the end of this chapter, the different types of

magnetic domain walls, Bloch and Néel walls, will be expressed. Throughout, SI units are used.

2.1 Magnetostatic energy

The magnetostatic (dipole) energy depends on the magnetization M, the magnetic-dipole moment

per volume, that arises from the alignment of atomic magnetic dipoles. In a solid, the dipoles arise

primarily from electron spins. Although the orbital motionof electrons usually contributes less to

the dipole strength, it plays a significant role for the magnetic anisotropy.
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The existence of magnetic domains is a consequence of energyminimization [12,24]. A single

domain finite specimen has associated with it a large magnetostatic energy, but the breakup of the

magnetization into localized regions (domains), e.g., providing for flux closure at the ends of the

specimen, can reduce the magnetostatic energy. If the decrease in magnetostatic energy is greater

than the energy needed to form magnetic domain walls, then multi-domain specimens will arise.

One example is the case of an infinitely extended magnetic filmmagnetized uniformly normal

to the surface, for which the magnetostatic energy can be easily derived. The magnetic dipoles in

the film, ~M, create the stray field,Hstray. However, due to the surface charging, inside the film,

there exists the field which has the same amplitude asHstray but directs opposite to~M, the so

called demagnetizing field,Hd. So the magnetostatic energy, which has the same amplitude to the

demagnetizing energy in this case, will be described with~M and ~Hd as

Kd = −µ0

Z

V
~M · ~HddV = −µ0

Z

V
~M ·

~H
2

dV =
µ0

2
M2

S, (2.1)

where~M is exchanged to the saturation magnetization,MS, and~H is a sum ofHstray andHd, will

have the same field asMS.

2.2 Exchange energy

The basic interaction which causes cooperative magnetic ordering is the exchange interaction. The

exchange interaction energy,Eex, between two spins,~Si and~Sj , scales with the exchange integral,

J (dimension; J),

Eex = −Ji j~Si ·~Sj , (2.2)

where~Si and~Sj are the unit vectors of interacting spins on two atoms. The exchange interaction is

a manifestation of the Coulomb interaction between electroncharges and the Pauli principle.

If one estimates the exchange energy in a magnetic domain wall, it will be convenient to take

all spins together, i.e., a continuous model of spin rotation in a one-dimensional domain wall, the

totalEex inside the wall is,

Eex = A(
dθ
dx

)2, (2.3)

whereA = s2a2
LJNV /2 is the exchange stiffness constant (J/m), and is temperature dependent. s is

the spin quantum number (= 1/2), and aL is the lattice constant. NV indicates the number of nearest-

neighbor atoms per unit volume.θ is the angle with respect to the easy axis of magnetization. For

simple cubic (SC) and body centered cubic (BCC),J will be

J = 0.54kBTC for SC and, (2.4)

J = 0.34kBTC for BCC, (2.5)
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wherekB and TC are the Boltzmann constant and the Curie temperature, respectively.

It should be noted that the exchange energy tends to make a magnetic domain wall as wide as

possible. Since the exchange energy decreases with decreasing angle between spins on neighboring

atoms inside the wall, the spins rotate gradually, leading to a certain width of the magnetic domain

wall.

2.3 Anisotropy energy

The energy also depends on the orientation of the magnetization with respect to the crystallographic

axes of the material. This energy term is called the magneticanisotropy energy. It basically results

from spin-orbit interaction. Many kinds of FM films have a uniaxial anisotropy, whether they are

polycrystalline or single crystal, elements or alloys. In undisturbed crystals, the anisotropy energy

will be minimized along certain crystal axes. However, anisotropy can be induced by symmetry

breaking of the crystal structure at the interface and surface, by anisotropic modulation of atoms,

or by alignment of surface/interface defects.

2.3.1 Cubic anisotropy

The cubic anisotropy is magnetocrystalline in nature, and arises from the interaction of the atomic

magnetic moments with the intrinsic symmetry of their crystalline environment via a spin-orbit

interaction. The cubic anisotropy energy density is basically expressed by

EC = K1(m
2
xm2

y +m2
xm2

z +m2
ym2

z)+K2m2
xm2

ym2
z + ..., (2.6)

wheremx, my andmz are the magnetization along x, y and z crystal axes, respectively. Ki is theith

order anisotropy. At room temperature, the second order term and other higher order terms can be

mostly neglected, but they become important at low temperature.

2.3.2 Volume and surface/interface anisotropies

When working with magnetic ultrathin films, surface and interface anisotropies have to be consid-

ered, because of missing of neighbor atoms [25]. Surprisingly, a much stronger anisotropy was

found for mono atomic transition metal films compared with bulk materials [26]. In the case the

magnetic film with out-of-plane uniaxial anisotropy (alongthe z axis), the energy is symmetric in

the film plane. Then the surface anisotropy energy density is

ES = KSsin2θ, (2.7)

whereθ is the angle between the magnetization and the z axis, andKS the surface anisotropy.
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The volume anisotropy is also not negligible for magnetic thin films. Hexagonal or tetragonal

crystals (for example, a (0001)-hcp Co [27] or an epitaxiallygrown Ni film on a Cu(001) surface

[28], respectively) show a uniaxial volume anisotropy (Ku) normal to the film plane for a certain

thickness range. The volume anisotropy energy density can be written as

EV = Ku1sin2θ+Ku2sin4θ, (2.8)

whereθ is the angle between anisotropy axis and magnetization. Because of time inversion sym-

metry, the odd powers do not appear.

The total anisotropy energy density in a magnetic thin film isthe following (with d the film

thickness),

E = EV +
ES

d
. (2.9)

2.3.3 Field- and morphology-induced anisotropies

Most FM materials exhibit uniaxial anisotropy when they areheat-treated or grown in a mag-

netic field. The preferable magnetization is parallel to thefield direction, so called field induced

anisotropy. Even single crystal films can have this induced anisotropy [29,30].

The magnetic annealing effect can explain this kind of induced anisotropy. When the film is

deposited at some temperature in a magnetic field, it is structurally strained in the field direction.

After it is cooled down to the room temperature, the film is tightly bound to the substrate, and

consequently the atoms cannot diffuse to relieve the straincaused by the different magnetostriction.

This anisotropic distortion of crystal causes the magneticanisotropy energy along its direction.

The anisotropy energy can be induced in another way, by growing films onto a modulated

surface [31–33]. If the FM material was deposited on the surface, in which atomic steps or step-

bunches are aligned in one direction, the film shows a uniaxial anisotropy along or perpendicular

to the steps. The details of this morphology induced anisotropy will be found in Section 5.2.1 and

5.5.1.

2.4 Zeeman energy

Zeeman energy is the interaction energy of the magnetization vector field~M with an external mag-

netic field~HExt. Then the Zeeman energy is

EZ = µ0

Z

~M · ~HExtdV. (2.10)
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2.5 Formation of domains

To reduce the total magnetic energyε, FM films create domains of a certain size. The size of

domains is defined by minimization of the sum of all the above energy terms, exchange, anisotropy,

Zeeman, and demagnetizing energies,

ε = Eex+EA +EZ +Ed. (2.11)

Ultrathin films with out-of-plane anisotropy often form stripe- or labyrinth-shaped domains, sepa-

rated by Bloch-type walls, will be explained in subsequent section. Let’s assume that the x axis is

perpendicular to the wall plane and that the y axis is parallel to the wall in the film plane (as in Fig.

2.1). Then the total energy in the stripe-shaped domains becomes

ε = Lyd
Z P/2

0
(A(

dθ
dx

)2 +K1sin2(θ(x))−µ0MSHextsin(θ(x)))dx+Ed, (2.12)

whereP, Ly, d andHext are the period of stripe domains, the domain length along thestripe direc-

tion, the film thickness, and the external field in the direction normal to the surface (z axis). The

last term, demagnetizing energy, for the stripe domains hasa complicated formula derived by Yafet

and Gyorgy [34], which will be written as

Ed =
P
2

M2
S ∑

m=1,3,...

1
m

b2
m(δ)(1−exp(−4πmd

P
)), (2.13)

where

bm = (−1)(m−1)/2 4
πm

1
1−m2δ2cos(πmδ/2). (2.14)

δ is the wall width,w, divided by a half period of the stripe (2w/P). By minimizingε, the period of

the stripe domains can be derived.

The determination of domain size by magnetic energy minimization [24,34–38] has been widely

discussed, one example experimentally obtained by myself is introduced in Section 5.1.1.

2.6 Bloch wall and Ńeel wall

As mentioned above the magnetic domain boundaries have a certain width. There are two main

types of spin structures inside the domain walls, Bloch and Néel types. Besides many other kinds

of domain walls exist. One of them is called the cross-tie wall, which is an intermediate state

between Bloch and Ńeel walls, and it is composed of a mixture of Bloch and Néel walls [24, 39].

In Fig. 2.1, the spin structures of Bloch and Néel walls are shown. The Bloch wall is usually
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preferable in bulk materials. Spins rotate in the plane parallel to the wall plane. The wall width of a

180◦ Bloch wall is most commonly defined byπ
√

A/K, whereA andK are the exchange constant

and anisotropy energy, respectively [24]. Then the wall profile basically follows a sine law. In thin

films, however, a Bloch wall induces surface charges by its stray field. Then the Ńeel wall become

more favorable when the film thickness becomes smaller than the wall width. In a Ńeel wall, spins

rotate in the film plane (Fig. 2.1 (b)). The width and profile ofthe Ńeel wall are difficult to define.

The Ńeel wall has a narrow core andµm-long tails on both sides. The core width is of the order of

the exchange length [=
√

A/Kd (nm scale)], whereKd is the demagnetizing energy. The Néel wall

profile is well explained in [24,40].

Figure 2.1: The rotation of the magnetization vector in the Bloch wall (a) and in the Ńeel wall (b).


