Dissertation
zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften
(Dr. rer. nat.)

von
Joachim Reiß

eingereicht im Fachbereich Physik der
Freien Universität Berlin

angefertigt am
Hahn-Meitner-Institut, Berlin

November 2002
Arbeit eingereicht am: 22. November 2002

Gutachter:
1. Prof. Dr. M. Ch. Lux-Steiner
2. Prof. Dr. J. Luther

Datum der Disputation: 27. Januar 2003
Inhaltsverzeichnis

1 Einleitung 1

2 Grundlagen 5
2.1 Sulfid-basierte Chalkopyrit-Solarzellen ... 5
2.1.1 Materialeigenschaften der Chalkopyrit-Verbindungshalbleiter 5
2.1.2 Aufbau und Wirkungsweise der Dünnschicht-Solarzellen .. 7
2.1.3 Präparation der Chalkopyrit-Solarzellen ... 11
2.1.3.1 Sequentieller Präparations-Prozess von CuInS$_2$-Absorberschichten 12
2.1.3.2 PVD-Präparation von Cu(In,Ga)S$_2$-Absorberschichten 13
2.2 Elektrischer Transport in Chalkopyrit-Solarzellen ... 14
2.2.1 Transport in einem pn-Übergang ... 14
2.2.2 Transport in Hetero-Übergängen .. 18
2.2.3 Bandverlauf des Hetero-Übergangs .. 22
2.2.4 Rekombinations-Mechanismen in Dünnschicht-Solarzellen 27
2.2.4.1 Thermisch aktivierte Rekombination .. 28
2.2.4.2 Tunnelunterstützte Rekombination .. 33
2.2.5 Generation in Dünnschicht-Solarzellen .. 38
2.2.6 Ladungsträger-Transport über Korngrenzen ... 41

3 Kennlinien-Analyse 47
3.1 Fehlerdiskussion ... 51

4 Rekombination und Transport 53
4.1 Ladungsträger-Transport in CuInSe$_2$– und CuGaSe$_2$–basierten Solarzellen 53
4.2 Dioden-Charakteristika in CuInS$_2$–basierten Solarzellen ... 57
4.2.1 Einfluss der Absorber-Präparation ... 58
4.2.2 Dotierung des CuInS$_2$–Absorbers ... 62
4.2.3 Bandlücken-Variation in Cu(In,Ga)S$_2$–basierten Solarzellen 65
4.2.4 Vergleich und Diskussion der Dioden-Charakteristika ... 69
4.3 Parallel- und Serienwiderstand ... 76
4.3.1 Physikalische Ursachen des Serienwiderstandes .. 77
4.3.2 Einfluss der Korngrenzen auf die Transporteigenschaften 80
4.4 Diskussion der Transporteigenschaften .. 87
4.5 Zusammenfassung ... 91
5 Strom-Spannungs-Charakteristika unter negativen Spannungen

5.1 Beobachtung des Durchbruchverhaltens von Chalkopyrit-Solarzellen

5.2 Numerisches Modell von CdS-Kanälen durch den CuInS$_2$-Absorber

5.3 Morphologie-Unabhängigkeit des Strom-Spannungs-Verhaltens

5.4 Separation der Variablen Temperatur und Spannung

5.5 Beleuchtungs-Abhängigkeit des exponentiellen Anstiegs der Stromdichte

5.6 Relation der Transport-Eigenschaften unter positiven und negativen Spannungen

5.7 Generations-Tunnel-Modell

5.8 Verbessertes Abschattungs-Verhalten von Solarmodulen

5.9 Zusammenfassung und Folgerungen

6 Zusammenfassung

Anhang A: Quantenausbeute

Anhang B: Kelvinsonden-Kraftmikroskopie

Anhang C: Fallbetrachtungen zu den dominierenden Rekombinations-Mechanismen

Anhang D: Symbole und Abkürzungen

Literaturverzeichnis

Lebenslauf

Publikationen

Danksagung