
Chapter 6

Topology of Flow Shapes

Summary. In this chapter we analyze the topology of flow shapes, i.e., the
underlying spaces of sub-complexes of the flow complex. On the basis of the
algorithm of the previous chapter, we establish a topological similarity between
flow shapes and the nerve of a corresponding ball set, namely homotopy equiv-
alence.

6.1 Introduction

Flow shapes are obtained from the flow complex of a set of points by restricting
the influence of the points to a maximum distance α, i.e., to a ball of radius√

α since we are considering the power distance. Varying the distance α yields
a filtration of the flow complex, i.e., a family of nested sub-complexes. A flow
shape is the topological space underlying a sub-complex. In this chapter the
recursive structure of the stable manifolds captured by the algorithm in the
previous chapter is used to analyze topological properties of flow shapes.

Flow shapes are shape constructors, i.e., they transform finite point sets
into continuous shapes. The choice of the influence distance α for the points
allows multi-scale modeling which turns out to be useful in detecting features
at different scales. Due to their practical importance in geometric modeling,
various shape constructors have been proposed recently. Understanding the
relationship among them leads to new insights potentially helpful in applica-
tions. An overview of various shape constructors and their relation is given by
Carlsson and de Silva [31].

We place flow shapes in relation to these shape constructors by proving that
the flow shape for a distance α is homotopy equivalent to the union of balls of
radius

√
α. A natural representation of the topology of the union of balls is

the Čech complex of the balls. The Čech complex is the nerve of the ball set,
i.e., it is the simplicial complex with a vertex for every ball and a simplex for
every subset of balls with non-empty intersection. By the Čech theorem the
Čech complex is homotopy equivalent to the union of these balls and therefore
by the result of this chapter to the corresponding flow shape.

The Čech complex is inefficient in representing the underlying topology in
the sense that a large number of simplices (and in particular higher-dimensional
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(a) (b) (c) (d)

Figure 6.1: Filtration of a flow complex.

simplices) might be used to represent a simple topological space. The α-shape
complex [62] is a simplicial complex (with a scale parameter α) that has the
same homotopy type as the Čech complex [58] but is embedded in R

d and has
many fewer simplices. When varying α, the Čech complex and therefore also
the α-shape complex and the flow shapes change their homotopy type only at
discrete critical levels. An illustration of these complexes for different values of
α is given in Figure 6.2 in Section 6.3. In contrast to the other two complexes,
the geometry of the flow shapes changes only at these critical levels.

Thus, the flow complex filtration precisely captures the topological changes
of the family of Čech complexes parametrized by α. Furthermore the definition
of flow shapes has a strong Morse theoretic flavor which might allow the use of
Morse theoretic concepts [72, 74, 102].

Example. For a set of balls (of radius
√

α for α > 0) we obtain a sub-complex
of the flow complex by only including the cells completely covered by the union
of balls. The underlying space is called flow shape. In Section 6.4 we construct
for all values of α a deformation retraction from the union of balls to the flow
shape, i.e., the flow shape can be obtained by continuously shrinking the union
of balls.

For an illustration consider Figure 6.1 which has the same input points as in
the introduction of the previous chapter. It shows the filtration of the flow com-
plex in comparison to the union of balls (see Figure 6.2 for a comparison of flow
shapes to other shape constructors and Figure 6.3 for an example with points
sampled from a surface). For α = 0 the union of balls consists of the three
input points. The flow shape is the underlying space of the cells corresponding
to fixed points covered by the union of balls. Thus, for α = 0 the flow shape
also consists of the three input points and is equal to the union of balls. When
α is increased, the balls grow but can be continuously shrunken back to the
point set as long as none of the balls overlap (Figure 6.1(a)). In Figure 6.1(b)
a pair of balls overlap. The area of overlap contains a fixed point of the flow
and the corresponding cell has been added to the flow shape. The flow shape
now consists of a line segment and a point. As before, the flow shape can be
obtained by continuously shrinking the union of balls(but no longer only radi-
ally). Thus the flow shape and union of balls are again homotopy equivalent.
When increasing α further, first the two other pairs of balls intersect and the
corresponding line segments are added to the flow shape (Figure 6.1(c)). Even-
tually all three balls overlap and the cell constructed in the previous example
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is added to the shape (Figure 6.1(d)).
To construct the deformation retraction, the algorithm for the flow complex

can be used in the following way: Assume we have constructed the deformation
retraction for Figure 6.1(c) and now want to construct it for Figure 6.1(d). In
Figure 6.1(d) reducing α slightly (e.g. to the value of Figure 6.1(c)) will leave a
small part of the flow shape uncovered. After removing this small part we can
follow the steps of the algorithm to continuously shrink the corresponding cell
of the flow complex to its boundary, and thus shrink the flow shape to the flow
shape of Figure 6.1(c). Then, by again adding all parts removed we extend the
deformation retraction of Figure 6.1(c) to Figure 6.1(d).

6.2 Preliminaries

We first introduce underlying concepts from topology and then the union of
balls and the Čech complex.

Homotopy Equivalence and Deformation Retract. A homotopy is a
continuous map F : X × [0, 1] → Y . Two continuous maps f1, f2 : X → Y are
homotopic (denoted by f1 � f2), if there is a homotopy connecting them, i.e.,
f1(x) = F (x, 0) and f2(x) = F (x, 1).

A continuous map f : X → Y is called homotopy equivalence if there is a
continuous map g : Y → X with fg � idY and gf � idX , where idY and idX

denote the identity map on Y and on X, respectively. In this case the spaces X
and Y are said to be homotopy equivalent or to have the same homotopy type,
denoted by X � Y .

A homotopy F : X × [0, 1] → X is called deformation retraction of X to a
subspace A if F (x, 0) = x for all x ∈ X, F (X, 1) = A, and F (a, t) = a for all
a ∈ A and t ∈ [0, 1]. In this case A � X and A is called a deformation retract
of X.

Mapping Cylinder Neighborhood. The following topological concepts are
used in the proof of Theorem 6.6. For a more detailed and illustrated introduc-
tion to these concepts we refer to the textbook by Hatcher [77].

The mapping cylinder Mf of a continuous map f : X → Y is the quotient
space of the disjoint union of X × [0, 1] and Y formed by identifying (x, 0) of
X × {0} with the point f(x) in Y . A subspace A of X has a mapping cylinder
neighborhood N in X if the neighborhood N contains a subspace B (considered
as boundary of N) such that N −B is an open neighborhood of A and there is
a continuous map f : B → A and a homeomorphism g : Mf → N with

g(b, 1) = b and
g(b, 0) = f(b)

for all b ∈ B.
We will use the following property of such a pair (X, A) (see [77], Exam-

ple 0.15 and Corollary 0.20):
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Proposition 6.1. If A has a mapping cylinder neighborhood in X and the
inclusion A ↪→ X is a homotopy equivalence, then A is a deformation retract
of X.

Union of Balls. For the power distance of a point p with positive weight wp,√
wp was interpreted as radius of a ball around p. Similarly, for a parameter

α we will consider the family of balls Bα(P ) with radii
√

α + wp for all p ∈ P
with α + wp ≥ 0. Thus with Pα defined as

Pα := {p ∈ P |α + wp ≥ 0}

the union of balls is the underlying space of Bα(P ), i.e.,

|Bα(P )| :=
⋃

b∈Bα(P )

b =
{

x ∈ R
d
∣∣∣ ∃ p ∈ P such that πp(x) ≤ α

}
.

Čech Complex. The Čech complex Čα(P ) is the nerve [136] of the family of
balls Bα(P ), i.e., the simplicial complex with Bα(P ) as vertex set and a simplex
for every subset of balls with non-empty intersection. By the nerve lemma [91],
the Čech Complex and the union of balls are homotopy equivalent.

The subcomplex obtained by restricting to the simplices for which the Vo-
ronoi cells corresponding to the balls share a (non-empty) face is the α-shape
complex. It is a subcomplex of the Delaunay tessellation and is homotopy
equivalent to the Čech Complex [58].

6.3 Flow Shapes

We have a natural filtration of the flow complex, i.e., a family of nested sub-
complexes. By Fα(P ) we denote the sub-complex of the flow complex that
contains all stable manifolds of critical points at which the distance function
h takes a value no more than α. The underlying space |Fα(P )| is called flow
shape.

As discussed in Sections 5.1 and 6.2 further families of shapes and complexes
are: The union of balls |Bα(P )|, the Čech complex, and the α-shape complex.
These families are parametrized by the distance level α and for a given distance
level they are homotopy equivalent. In this section we prove that the flow shape
|Fα(P )| is also homotopy equivalent to the union of balls. Before we proceed
to the proof, we consider an example for these families.

Example. Figure 6.2 shows the union of balls, the Čech complex, the α-shape
complex, and the flow shape on a set P of unweighted points in two dimensions.
Three different values for α are shown in the three columns of the figure.

In the first row the union of balls is shown together with their Voronoi
diagram. In the left figure α is small and the balls are still isolated. In the
middle figure α is larger and some of the balls already overlap. In the right
figure α is very large, such that all balls overlap.
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Figure 6.2: Example of parametrized shapes and complexes
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Figure 6.3: The union of balls (left), the α-shape (middle) and the flow shape
(right) for increasing values of α (top to bottom). The second row shows a
zoom of the pictures in the first row. The shapes in each row are homotopy
equivalent.
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The second row shows the Čech complex. It is an abstract simplicial com-
plex, so the placement of the points does not indicate a position in the plane
but are chosen as for the union of balls to identify the vertices. Since in the
left row the balls are isolated, the complex consists only of the vertices. In the
middle figure it consists of vertices, edges, triangles, and a tetrahedron. The
tetrahedron is in the complex since the four corresponding balls have a com-
mon intersection. In the right figure, the complex is not depicted: all subsets of
points form a simplex since their balls have a common intersection. Thus the
complex is the power set P(P ), i.e., a 6-dimensional simplex.

In the next row the α-shape complex is depicted. It contains only simplices
for intersecting balls that also have a Voronoi face in common. For the isolated
balls in the left row, the α-shape complex is again the set of points. In the
middle figure it contains of the 3-simplex of the Čech complex only the two
Delaunay triangles. In the right figure the α-shape complex equals the Delaunay
tessellation of the points.

The bottom row shows the flow complex filtration. Again it starts with the
set of points. In the middle figure several edges (stable manifolds of saddle
points) and one two-dimensional face (the stable manifold of a maximum) are
present. In contrast to the α-shape complex this face is not decomposed into
two triangles, since it contains only one critical point. Also the further triangle
which is present in the α-shape complex is not contained since it does not
correspond to a critical point. In the right figure, one additional face is present,
the stable manifold of the second local maximum. Further increase of α will
not change the flow shape.

An example of flow shapes and other shape constructors on points sampled
from a surface is shown in Figure 6.3. The figure illustrates that these shape
constructors can be geometrically quite different although they are topologically
equivalent. Note that the union of balls looks almost like a big ball at large
levels. For the largest level a scaled version of the union of balls is shown.

6.4 Homotopy Equivalence of Union of Balls and
Flow Shapes

We prove the homotopy equivalence of the union of balls and flow shape for a
distance level α in several steps. First we will consider the levels α between
two critical levels. In this case the homotopy type of both complexes does not
change. Thus, we only need to consider critical levels. We separately consider
how the union of balls and how the flow shape change at critical levels, and
then combine this information to prove by induction over the critical values
that the two complexes have the same homotopy type.

Between Critical Levels. By definition the flow shapes do not change be-
tween the critical values of the distance function. From the critical point theory
of distance functions we get that an isotopy lemma as in Morse theory still holds
(for the notions from Riemannian geometry see [121]).
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Proposition 6.2 (Isotopy Lemma, Grove (Proposition 1.8) [74]). Let M be
a complete connected Riemannian manifold and A ⊂ M a compact subset of
M . Let hA : M → R denote the distance function of A. Suppose [r1, r2] ⊂ R+

contains only regular values for hA. Then all the levels h−1
A (r), r ∈ [r1, r2], are

homeomorphic, and the annulus

R(r1, r2) = DA(r2) − BA(r1) = {q ∈ M | r1 ≤ hA(q) ≤ r2}
is homeomorphic to h−1

A (r1) × [r1, r2].

We will mostly use the isotopy lemma in the following version, i.e., applied
to the point set P and using only that the homotopy of the union of balls does
not change between critical values. As in the previous chapter, we denote by h
the distance function induced by the point set P , i.e.,

h(x) = min {πp(x)| p ∈ P} .

Corollary 6.3. If the interval [α, α′] ⊂ [0,∞) does not contain any critical
value of h, i.e., there is no critical point x ∈ R

d of h with h(x) ∈ [α, α′], then
|Bα(P )| is homeomorphic to |Bα′(P )|, and |Bα(P )| is a deformation retract of
|Bα′(P )|.

Union of Balls at a Critical Level. The following lemma describes how
the homotopy of the union of balls changes at critical values. The union of balls
with parameter α + ε above a critical level α can be continuously deformed to
the union of balls with parameter α − ε below the critical level with a small
part of a Delaunay polytope glued in at each position of critical points at this
level. We will use this later to glue in the same part into a flow shape.

Before proving Lemma 6.4 we illustrate the configuration at a critical point
by the example of Figure 6.4. It shows a critical point c defined by the two
points p and p′. The distance level of c is α, i.e., both the distance from p to c
and from p′ to c is

√
α. Therefore the unions of balls |Bα−ε| = bα−ε ∪ b′α−ε and

|Bα+ε| = bα+ε ∪ b′α+ε are not homotopy equivalent. The points p and p′ define
a Delaunay face D. The part of D that we add to the smaller union of balls is
Dε := D \ Bα−ε.

Now |Bα+ε| can be shrunk to |Bα−ε| ∪ Dε in the following way. In the
proximity of a critical point an orthogonal shrinking is chosen as indicated by
the two black arrows in the figure. Outside of the proximity of any critical point
a radial shrinking is chosen as indicated by the gray arrows.

The different types of shrinking can be combined by a partition of unity. But
instead of constructing the shrinking explicitly we will again apply the critical
point theory for distance functions, i.e., Proposition 6.2. If the direction of the
arrows in Figure 6.4 is reverted, they indicate a set of generalized gradients for
|Bα−ε| ∪ Dε. The following lemma generalizes an observation by Siersma [134]
for the union of disks in two dimensions (cf. also Lemma 1.13 in [74]).

Lemma 6.4. Let α be a critical value of the distance function and c1, . . . , cm

with m ≥ 1 the critical points at value α. Let Vi be the lowest dimensional
Voronoi face containing ci and Di the dual Delaunay face for 1 ≤ i ≤ m.
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p p′

Figure 6.4: The set bα−ε ∪ b′α−ε ∪ Dε is a deformation retract of bα+ε ∪ b′α+ε.

There is an ε > 0 such that Di,ε := Di \ |Bα−ε| is a topological ball (of the
same dimension as Di) containing ci for 1 ≤ i ≤ m, and |Bα−ε|∪D1,ε∪. . .∪Dm,ε

is a deformation retract of |Bα+ε|.
Proof. We first restrict our attention to the case of one critical point c. Then
we generalize the argument to a set of critical points.

Let V the lowest dimensional Voronoi face containing the critical point c,
D the dual Delaunay face, and Dε := D \ |Bα−ε| (as in Figure 6.4). Since c is
a critical point and therefore its own driver, c is contained in Dε.

Let U be the union of the Voronoi cells of the vertices of D. Since c ∈ V ◦

and V ⊂ U , a neighborhood of c is contained in U◦. Let ε > 0 be chosen such
that the interval [α − ε, α + ε] contains no critical value except α and that a√

2ε-neighborhood of Dε is contained in U◦.
Instead of applying Proposition 6.2 to the point set P we apply it to the

compact set K with
K := P ∪ Dε.

The weight of all points in Dε is set to ε − α. This gives that the points with
distance at most α − ε to K are the points with distance at most α − ε to P
and the points on Dε. E.g., in Figure 6.4 the set of these points is the union of
bα−ε, b′α−ε, and Dε.

We prove that the levels α′ with

α − ε < α′ ≤ α + ε

are regular for the distance function hK of K.
At the distance level α+ ε the influence of Dε is limited to a

√
2ε-neighbor-

hood of Dε and therefore by construction limited to U◦. Points outside of this
neighborhood in |Bα+ε| \ |Bα−ε| are regular for hK .

For a point x ∈ U◦ \ aff(D) let NK(x) denote the set of closest points in
K to x. Since NK(x) is contained in D, the vector pointing orthogonally away
from aff(D) forms an angle less than π/2 with the vectors from the points in
NK(x) to c. Thus, this vector is a generalized gradient at x (even though it is
not necessarily a gradient) and x is a regular point of hK (see Section 5.3.1).

By Proposition 6.2 this gives that the level sets h−1
K (α′) are homeomorphic,

and |Bα+ε| can be deformation retracted to K. For the above argument, only
the generalized gradients in a small neighborhood of c had to be considered.
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Figure 6.5: Steps in the deformation retract in the proof of Lemma 6.5.

If we define K ′ := P ∪ D1,ε ∪ . . . ∪ Dm,ε and consider h′
K the argumentation

directly generalizes to a set of critical points by choosing ε > 0 in such a way
that the

√
2ε-neighborhoods of the Di,ε (i = 1, . . . m) do not overlap.

Flow Shape at a Critical Level. For the union of balls we can describe
the change of topology at a critical level by gluing in neighborhoods of the
critical points. We have an analogous result for flow shapes: By taking out
small neighborhoods out of the shape at the critical level, we can retract it to
the shape of the previous critical level.

Lemma 6.5. Let α be a critical value of the distance function and c1, . . . , cm

with m ≥ 1 the critical points at value α. Let Vi be the lowest dimensional
Voronoi face containing ci and Di the dual Delaunay face for 1 ≤ i ≤ m.

There is an ε > 0 such that |Fα−ε| is a deformation retract of |Fα| \ (D1,ε ∪
. . . ∪ Dm,ε) where Di,ε := Di \ |Bα−ε| for 1 ≤ i ≤ m.

Proof. We present a deformation retract using the structure of stable manifolds
inherently described by the algorithm Inflow. We retract maximal polytopal
faces of a stable manifold S one at a time such that S \ Dε is retracted to
the faces it shares with the closures of stable manifolds S′ with S′ < S. By
Lemma 5.11 these stable manifolds are present in |Fα|. For the deformation
retraction it is necessary that co-faces of the polytopal faces of S that we want
to retract are not yet present in the restricted flow complex. This is guaranteed
by Lemma 5.11. In particular, the stable manifolds of the same critical level do
not influence each other. We can therefore restrict the analysis to the case of
one critical point at the critical level α. In the case of several critical points we
can retract them one at a time.

Let ε > 0 be chosen such that the interval [α− ε, α + ε] contains no critical
value except α. Let c be the critical point at level α, S its stable manifold, V
the lowest dimensional Voronoi face containing c, D the dual Delaunay face,
and Dε := D \ |Bα−ε|.

The steps of the deformation retract are illustrated in Figure 6.5 by the ex-
ample of the weighted two-dimensional point set previously used. In the exam-
ple we want to retract the stable manifold corresponding to the two-dimensional
part of the flow complex. In Figure 6.5(a)-(d) always the parts that have been
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already retracted are labeled while the remaining part is shown shaded in gray.
Figure 6.5(a) shows the stable manifold with Dε removed.

The algorithm Inflow successively processes a sequence of Voronoi faces
(its second argument). For the proof we rearrange the order of processing
these Voronoi faces in a breadth first manner: we collect all flow from higher
dimensional Voronoi faces before we collect flow from the boundary of a Voronoi
face. For the implementation this means that instead of using a stack as it is
implicitly done with the recursive calls, we use a queue. We first gather all
cells intersected by Dε and retract to the boundary of the corresponding inflow
region. From there, we retract cell by cell.

This gives a sequence of cells as follows: we start with a point (the critical
point) and a Voronoi face V that contains the point. Then we process all
Voronoi faces that contain V . Whenever we process new flow coming from the
boundaries of previously processed Voronoi cells a new step in the sequence
starts. Assume that we have N steps in the sequence and let Sj , j = 1, . . . , N ,
be the interior of the part of the stable manifold S of c that has been constructed
after finishing step j of the sequence. In the example of Figure 6.5 we have three
parts of the stable manifold S in the sequence: S1 is the part reached without
crossing the boundary of a Voronoi cell. Then S2 additionally includes the lower
left triangle of the remaining part and S3 = S the right triangle.

We show by induction over N that S \Dε deformation retracts to S \SN =
S \ S = ∂S. Note that deformation retracts are transitive in the sense that if
X1 is a deformation retract of X2, and X2 is a deformation retract of X3 then
X1 is a deformation retract of X3.

We first show that S \Dε � S \ S1 holds by a deformation retract. For this
consider the boundary ∂S1 of S1. It has the structure of a polyhedral complex
and is visible from the critical point. With Dε removed we can therefore retract
(radially from c) to the boundary of S1. For the induction step we construct a
deformation retract from S\Sj to S\Sj+1 for 1 ≤ j < N . For this we consider a
cell C of ∂Sj∩Sj+1 together with the corresponding Voronoi face V . We proceed
by showing that the area of flow onto C from higher-dimensional Voronoi faces
can be retraced starting at C. We cannot directly follow the direction of flow
since the resulting map would not be continuous at the boundary. Instead we
use the following retraction: we choose a point x that is outside of C ′ and that
sees all interior points of C ′ through the interior of C, i.e., the line through x
and any point in the interior of C ′ intersects C. Such a point exists (close to
C) since C ′ is a convex polytope with C as a facet. Now C ′ can be retracted
starting at C radially away from x until a boundary of C ′ (other than C) is hit.
This process is shown in Figure 6.5(b) for the case j = 1. In the figure, S1 has
been already removed and C has been radially pushed away from x.

Lower dimensional parts of Sj might remain which we can retract in the
same way. In the example of the figure this is not necessary for S2, but in the
next step, i.e., when the right triangle is retracted, the middle segment remains
which then is retracted. From this we get a deformation retraction from S \ Sj

to S \ Sj+1 for 1 ≤ j < N , and by induction a deformation retraction from
S \ Dε to S \ SN = ∂S. Figure 6.5(d) shows the situation where all of S = S3

has been retracted to its boundary.



124 Chapter 6. Flow Shapes

Homotopy Equivalence. We are now prepared to prove the main theorem
of this section.

Theorem 6.6. Let P be a finite set of weighted points in R
d. For every α ≥ 0

the flow shape |Fα(P )| is homotopy equivalent to the union of balls |Bα(P )|.
Proof. The homotopy type of both |Bα(P )| and |Fα(P )| changes only at critical
values of the distance function h, and |Fα(P )| only changes at these levels at
all. For levels α, α′ between two critical levels |Bα(P )| is a deformation retract
of |B′

α(P )| by Corollary 6.3.
Thus, it suffices to check that |Fα(P )| stays homotopy equivalent to |Bα(P )|

if α passes a critical level.
We prove by induction that for all critical values α, |Fα(P )| is a deformation

retract of |Bα+ε(P )| for a suitable ε > 0.
Without loss of generality we assume that all points have non-positive

weights and the largest weight is 0. This can be achieved by subtracting the
largest weight from all others. Thus, h is positive and 0 is the smallest critical
value.

Let 0 = α0 < α1 < · · · < αn be the critical values of h. Note that there can
be only finitely many critical points of h by Lemma 5.3. Assume that |Fα(P )|
is a deformation retract of |Bα(P )| for all α ≤ αi−1 + ε, where ε > 0 is chosen
such that it satisfies the following:

(i) The ε-neighborhood of any critical value αj (0 ≤ j ≤ n) does not contain
any other critical value.

(ii) 0 < ε < min {εc| c a critical point}, where εc > 0 is chosen such that
Di,εc ⊂ S, where Di,εc is defined as before (see Lemma 6.4). The existence
of such an εc follows from the recursive construction of the stable manifold
S of c in the algorithm Inflow.

For α0 = 0 we have |Bα0(P )| = P0 = |Fα0(P )|, where P0 is the set of points
of weight 0. By retracting balls to points, we get that |Fα0(P )| is a deformation
retract of Bα0+ε.

In the induction step, we need to prove that |Fαi(P )| is a deformation
retract of |Bαi+ε(P )|. By the induction hypothesis we have that |Fαi−1(P )|
is a deformation retract of |Bαi−1+ε(P )|. By Corollary 6.3 we have for all
αi−1 +ε ≤ α′ < αi that |Bαi−1+ε(P )| is a deformation retract of |Bα′(P )|. Thus
|Fα′(P )| = |Fαi−1(P )| is a deformation retract of |Bα′(P )|.

Let c1, . . . , cm be the critical points of h at αi and D1,ε, . . . Dm,ε defined as
before (see Lemma 6.4).

We construct the deformation retraction in two steps: In the first step we
prove that

A := |Fαi(P )| \ (D1,ε ∪ . . . ∪ Dm,ε)

is a deformation retract of

X := |Bαi−ε(P )|.
In the second step we extend this to a deformation retraction from |Fαi(P )| to
|Bαi+ε(P )|.
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For the first step we use Proposition 6.1. We have A ⊂ X. Let N be
an ε′-neighborhood of A in X for a sufficiently small ε′ > 0, i.e., such that the
distance function of A has no critical value in the interval [0, ε′]. Proposition 6.2
applied to A yields that N is a mapping cylinder neighborhood of A.

Next, we need to prove that the inclusion ι : A ↪→ X is a homotopy equiva-
lence. Thus we need a map g : X → A such that

ι ◦ g � idX and g ◦ ι � idA.

Let G : X × [0, 1] → X be the deformation retraction of X to |Fαi−1(P )| given
by the induction hypothesis. Let g : X → A be defined by g(x) = G(x, 1).
The map ι ◦ g is simply G(·, 1) : X → X and therefore by induction hypothesis
homotopic to idX .

The map g◦ι is the restriction of g to A and therefore maps A to |Fαi−1(P )|.
By Lemma 6.5, |Fαi−1(P )| is a deformation retract of A, thus the map g ◦ ι is
homotopic to idA.

By Proposition 6.1, A is a deformation retract of X. The retract is constant
on

∂D1,ε ∪ . . . ∪ ∂Dm,ε

since this union is in A. We can extend the deformation retraction by the
identity map on D1,ε ∪ . . . ∪ Dm,ε to a deformation retraction from

X ′ := |Bαi−ε(P )| ∪ D1,ε ∪ . . . ∪ Dm,ε = X ∪ D1,ε ∪ . . . ∪ Dm,ε

to
A′ := |Fαi(P )| = A ∪ D1,ε ∪ . . . ∪ Dm,ε.

By Lemma 6.4, X ′ is a deformation retract of |Bαi+ε|. This concludes the
induction. We have proved that between any two critical levels the homotopy
type of the flow shape and the union of balls are the same. Since the homotopy
type only changes at critical levels, it also has to be the same at the criti-
cal levels. We therefore have for all levels α of the distance function h that
|Fα(P )| � |Bα(P )|.

Conclusion

We proved that the unions of balls and flow shapes are homotopy equivalent
based on the recursive geometry of the flow complex. This places flow shapes in
a class of topologically equivalent shape constructors. In their geometry these
shape constructors can be quite different as was illustrated using Figure 6.3 by
a comparison to α-shapes.
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