Chapter 5

Recursive (Geometry of the
Flow Complex

Summary. The flow complex is a geometric structure, similar to the Delaunay
tessellation, for organizing a set of (weighted) points in R?. Flow shapes are
topological spaces corresponding to substructures of the flow complex. The
flow complex and flow shapes have found applications in surface reconstruction,
shape matching, image processing, and molecular modeling. In this chapter we
give an algorithm for computing the flow complex of weighted points in any
dimension. The algorithm reflects the recursive geometry of the flow complex.

Notes. The results in this and the following chapter were obtained under
the supervision of Joachim Giesen. The algorithm was published in [25]. The
analysis of the topology is an analysis of the results presented in [52] refined
and generalized to arbitrary dimensions. The results of this and the following
chapter will be published in [24].

The properties of the flow complex in Section 5.4 have been previously
considered by Matthias John in his PhD thesis [82]. Lemmas 5.3, 5.4, 5.6
and 5.7 together with their proofs (except for minor changes) are from his
thesis. For completeness we included these proofs here.

5.1 Introduction

In the previous chapters we discussed space-filling curves and Delaunay tessel-
lations for organizing a set of points. Space-filling curves yield a linear order on
the point set suitable for storing the points in a way that points which are close
to each other in the linear order are also close in Euclidean space. We used
the space-filling curve order of a point set to compute its Delaunay tessella-
tion. Here we will use the Delaunay tessellation to compute a further geometric
structure for organizing a point set, the flow complex.

The flow complex of a set of points has been successfully applied to surface
reconstruction from a point cloud [69], to shape segmentation and matching [51],
to gamut mapping [70] and to modeling properties of macromolecules in bio-
geometry [68]. It is a cell decomposition based on the flow in the direction of

95

96 Chapter 5. Flow Complex

(a) (b) () (d)

Figure 5.1: Illustration of the recursive structure.

the steepest ascent of the power distance function of a given set of weighted
points. It is closely related to the Voronoi diagram and the Delaunay tessel-
lation, in particular in the case of weighted points it is related to the power
diagram and the regular triangulation (see e.g. [115]). The flow complex was
introduced by Giesen and John [69]. Discrete flow was first used in 1995 for
surface reconstruction by Edelsbrunner [60] (see also [61]) who defined a flow
relation on the simplices of the Delaunay tessellation.

For computing the flow complex so far only algorithms specializing on the
two and three dimensional complex are known. For instance in the case of un-
weighted, two-dimensional points the complex corresponds to the Gabriel graph
which can easily be computed using the Delaunay tessellation. Here we want to
obtain insight into the general structure of the complex in higher dimensions.
The analysis of its geometric structure leads to an algorithm for computing the
flow complex of (weighted) points in any dimension, which reveals a recursive
geometry of the flow complex.

Example. In Section 5.5 we present an algorithm for constructing the flow
complex of a set of points. The algorithm computes the inflow into any critical
point of the distance function to a point set. Flow here is meant with respect
to the direction of steepest ascent of this distance function and a critical point
is a point with no unique direction of steepest ascent (later we will make these
concepts more precise). The basic concept of the algorithm is to first compute
the points that flow directly (on a straight line segment) into the critical point,
then the direct flow into these points, and so on. We illustrate this by the
simple example of Figure 5.1 with three input points (see Section 5.5.1 for a
more complex example). By definition the flow at a point in the plane is in the
direction in which the Euclidean distance to the closest input point (or points)
increases most. Figure 5.1(a) shows the three input points (black dots) and a
critical point (@) of the flow. This critical point is a local maximum of the
distance function. The flow into this critical point can be computed as follows:
We start with the point itself. Direct flow into this point lies either on a line
segments between one of the input points and the critical point or on one of
the bisectors of two input points. This gives as direct flow the six (open) line
segments shown in Figure 5.1(b). Next, we consider the direct flow into these
line segments. There is only flow into the line segments on bisectors. Into
each of these line segments there is flow from two (open) triangles shown in

5.2. Preliminaries 97

Figure 5.1(c). There is no flow into these triangles. Thus the total flow into
the critical point is the open triangle spanned by the input points. The flow in
the example has six further critical points: the input points themselves (which
are minima of the distance function and have themselves as inflow region) and
the midpoints of the line segments between the input points (which are saddle
points of the distance function and have the open line segments between the
points as inflow region). The flow complex is shown in Figure 5.1(d).

5.2 Preliminaries

In this chapter we discuss geometric data structures on weighted points in R%.

Complexes. A polyhedral complex [155] C is a finite collection of polyhedra
in R¢ such that

- the empty polyhedron is in C,
- if C' € C then all the faces of C are also in C,

- the intersection C7 N Cy of two polyhedra C7,Cy € C is a face both of Cy
and of Cs.

For polyhedra C7, Cy we will denote by Cy < Cs (and by Cy > C1) that C;
is a face of Cy (and C3 a co-face of C1) and by C; < Cs (and by Cy > C) that
(' is a proper face of Cy (and Cy a proper co-face of C1).

If the cells of a polyhedral complex C are all bounded then C is called poly-
topal complex. If the cells are all simplices then C is called (geometric) simplicial
complez. The combinatorial structure of a simplicial complex is captured by an
abstract simplicial complez, i.e., a family of subsets of {1,...,n} that is closed
under taking subsets.

The Voronoi diagram is an example for a polyhedral complex. The Delaunay
tessellation is a polytopal complex, and furthermore simplicial if the points (and
for weighted points the corresponding balls) are in general position.

Power Distance. In the following the term point always refers to a weighted
point and the terms Delaunay tessellation and Voronoi diagram always include
also the weighted versions, i.e., the regular triangulation and the power diagram.
Recall from Section 4.6 that the power distance of z € R? from a point p with
weight w,, is defined as

(@) = |z = pll* — w,.

For two points p and ¢ the set of all points with the same power distance
to p and ¢ is a hyperplane orthogonal to the line through p and ¢g. This yields
the following relation between a Voronoi face and its dual Delaunay face which
we will use to derive properties of the flow complex.

Remark 5.1. The affine hulls of a Voronoi face and its dual Delaunay face are
orthogonal and intersect in exactly one point.

98 Chapter 5. Flow Complex

Figure 5.2: One-dimensional example of flow induced by a set of weighted
points.

Relative Interior and Boundary. Let aff(C) denote the affine hull of C.
The relative interior C° and the relative boundary OC of C are the interior and
the boundary of C' in aff(C'). For instance the relative interior of a Delaunay
edge contains all points in this edge besides the endpoints, i.e., the interior
relative to the line through the edge. The relative interior of a vertex is the
vertex itself. We always refer to the interior and to the boundary of convex sets
with respect to their dimension, i.e., to their relative interior and boundary.

The closure of C will be denoted by C.

For computing the flow complex the relative interiors and boundaries of
(the underlying space of) Voronoi faces will play a central role. The relative
boundary of a Voronoi face is (the underlying space of) the union of its proper
faces.

5.3 Flow and the Flow Complex

5.3.1 The Distance Function and its Critical Points

Distance Function. The flow that we are going to study is the flow in di-
rection of the steepest ascent of the distance function

h(x) = min {r,(x)|p € P}

induced by the points in P.

Figure 5.2 shows a one-dimensional example with weighted points. The
points in P are shown as black dots. The weight w, of a point p is the signed
distance from the point to the apex of the parabola below it (positive weight)
or above it (negative weight) it. The graph of the distance function h is the
lower envelope of the parabolas.

5.3. Flow and the Flow Complex 99

Critical and Regular Points. For a smooth function the direction of steep-
est ascent corresponds to the direction of the gradient. Here, h is not smooth on
the boundary of Voronoi cells but the notion of generalized gradients is appli-
cable. Generalized gradients have been defined in the context of critical point
theory for distance functions on Riemannian manifolds [34, 74, 121] pioneered
by Grove and Shiohama [75].

In the case of the Euclidean space R? as Riemannian manifold and h as
distance function, generalized gradients can be described as follows: Let N(x) C
P Dbe the set of nearest neighbors of z in P, i.e., the set of all p € P with
mp(z) = h(z). For a point x € R? the set of generalized gradients at x is the set
of unit vectors v € R? pointing away from all points in N(z), i.e., for which

(v,z—p) >0 forall pe N(z).

For instance, if N(z) only contains one point then h is smooth in z and the
generalized gradient is the open hemisphere with the unit vector in direction of
the gradient as center.

A point is called critical if the set of generalized gradients is empty, oth-
erwise it is called reqular. Thus, a point x € R? is critical if and only if
x € conv(N(x)). If x € dconv(N(x)), then it is a degenerate critical point. In
the following we assume that all critical points are non-degenerate. This di-
rectly yields a description of the critical points in terms of the Voronoi diagram
and the Delaunay tessellation. The convex hull conv(N(z)) is the Delaunay
face dual to the Voronoi face corresponding to N(z) in which x lies.

Remark 5.2. The critical points of h are exactly the intersections of Voronoi
faces and their dual Delaunay faces.

In the one-dimensional example of Figure 5.2 the critical points are the local
maxima (@) and minima (©) of the distance function h. In higher dimensions
saddle points are further critical points. In the case of weighted points as in the
example, points in P are not necessarily minima, thus not necessarily critical
points. The arrows below the z-axis indicate the direction of the generalized
gradient which is unique in the one-dimensional case.

In the following we define a vector field in accordance with this theory. We
will prove later that the vector at a regular point corresponds to the direction
of steepest ascent of the distance function.

5.3.2 A Vector Field of Generalized Gradients

Vector Field and Drivers. For z € R? the point

5(1:) = argminyeconv(N(x)) H‘T - y”2
is called the driver of x.

We define a vector field v : RY — R? by

v(w) = {m if z is a regular point of h

0 otherwise.

100 Chapter 5. Flow Complex

°* o) =@)
: O____///; ---_/”¢
______ ‘}\ — -}; - ',, L -~ @ - '/,
‘\\ [] I/I éfe\‘i
o ’ S)
\‘ /l ° % e
_________ M, I =)
L e —o—d -
(a) drivers (b) orbits (c) stable manifolds

Figure 5.3: Two-dimensional example of flow induced by a set of unweighted
points.

The drivers and vectors are illustrated in Figure 5.3(a) for a set P of un-
weighted points in R?2. The points in P are shown as black dots and the 1-
skeleton of their Voronoi diagram as dashed lines. For the three gray points the
corresponding drivers are shown and the corresponding vectors are indicated as
arrow. For the gray point in the interior of a Voronoi cell of a point p the driver
is the point p. For the gray point on a Voronoi segment the driver shown as
white point is the intersection of the Voronoi segment and the dual Delaunay
segment. For the gray point at a Voronoi vertex the driver shown as white point
is the closest point on the dual Delaunay triangle.

Flow. The flow ¢ :[0,00) x R? — R? is defined by the equations

¢(0,2z) = =
. ¢(ta:l:) —qb(to,l') _
lin — = v(é(to, x)).

If the first parameter is interpreted as time then ¢(t, z¢) can be interpreted
as the point reached at time t by starting at time 0 at xzg and following the
direction given by v. For zy € R?

o (1) 1= ¢(t, 20)

is called the orbit of xg. Figure 5.3(b) shows the orbits for some points for the

two-dimensional example used before.
If ¢(t,z09) = xo for all ¢ > 0 then ¢ is a fized point of the flow. The fixed
points of the flow are exactly the critical points of the distance function h.

5.3.3 The Flow Complex

Stable Manifolds. Points in R¢ flow either into a critical point or to infinity
as Figure 5.3(b) indicates. We are interested in a decomposition of R? into
regions S(c) such that all points in a region flow into the same critical point ¢,
i.e., the stable manifold of c

S(c) = {sc E]Rd’ (3t >0)o(t,y) :c}.

5.4. Properties of the Flow 101

Note that the points that flow to infinity do not lie in the stable manifold
of a critical point. To obtain a decomposition of R% we could add a designated
critical point at infinity.

Flow Complex. The flow complex is the collection of closures of the stable
manifolds of all critical points (not including a critical point at infinity).

For the one-dimensional example of Figure 5.2 the stable manifolds are line
segments and points. They are shown below the graph. The stable manifold
of a minimum is the minimum itself. The stable manifold of a maximum is a
full-dimensional open set, i.e., a segment in the one-dimensional example. The
flow complex in this example contains the three minima and the two (closed)
segments between them.

For the two-dimensional example the stable manifolds are shown in Fig-
ure 5.3(c). The distance function h has two maxima, and their stable manifolds
are the interiors of the two polygons depicted. The open segments on their
boundary are the stable manifolds of the saddle points of h and the vertices are
the stable manifolds of the minima, i.e., the points in P. The flow complex is
the closure of these stable manifolds, i.e., the two polygons and the segments
and vertices on their boundaries.

5.4 Properties of the Flow

Most of the properties proved in this section are needed to prove the correctness
of the algorithm in the next section. Furthermore, we prove that the vector v(z)
at a regular point 2 € R? corresponds to the direction of steepest ascent of h(z).

The following lemma yields a description of drivers in terms of Voronoi
diagrams. In particular it yields that the number of Voronoi faces is an upper
bound on the number of drivers. In the algorithm for computing the flow
complex we use it to compute drivers and to treat the flow within a Voronoi
face uniformly.

Lemma 5.3 ([24, 82]). Let V' be an arbitrary Voronoi face and D its dual
Delaunay face. Then all points x in the interior of V' have the same driver d
which is the point in D closest to aff(D) N aff(V').

Proof. The proof is illustrated in Figure 5.4. Note that for this example the
weight of the left vertex of D must be small compared to the weight of the right
vertex.

Let D be the Delaunay face dual to V and let z be the intersection point
of the affine hulls aff(V) and aff(D) (see Remark 5.1). Let § € D be the point
closest to z. Note that it is possible that § = z.

Let y be any point in D. Since y — z is orthogonal to x — z we have by
Pythagorean theorem (denoted in the following by P.t.)

P.t.

= o=z + lly - 2l
>l = 2lf* + 16 — 2l
= |lo—af*.

lz = yl®

102 Chapter 5. Flow Complex

Figure 5.4: Tllustration of the proof of Lemma 5.3.

Thus § is the closest point in D = conv(N(z)) to = and therefore its driver.
The argument holds for any point having V' as lowest dimensional Voronoi face
containing it, i.e., for all points in V°. O

For a point z in the Voronoi cell of p we have h(z) = mp(z), thus h is
determined by the power distance to its driver. To generalize this we assign a
power to every driver. We show in the following lemma that with these powers
h(z) is determined by . for all z. The power of a driver will be used as a
tool to prove the acyclicity of the flow.

For a driver d let D be the lowest dimensional Delaunay face that contains
d, and let p be a vertex of D. We define

wq = —mp(d).

Observe that the value wy is independent of the choice of p, as follows from
the following lemma. The intuition behind this definition is that the graphs of
the distance functions , of the vertices p of D intersect in a lower-dimensional
paraboloid with apex d and weight wy.

Lemma 5.4 ([24, 82]). For a Voronoi face V and the driver § of V°
h(z) = ms(z) for allz € V.

Proof. Let p' € P be a vertex of the lowest dimensional Delaunay face D’
containing . In particular, p’ is a point defining V', thus

h(z) = 7 (a)

for any point z € V. Since D’ is a convex polytope and ¢ is the closest point
on D' to x, x — ¢ and p’ — § are orthogonal.

5.4. Properties of the Flow 103

Therefore,

h(z) = my(x)
= ' =2 —wy

2o -] |l - 82— wy
= |8 —al* + 7y (5)

16 — [|? — ws
= ms(x).

O]

Like m, for p € P the power distance 75 of a driver has the property that it
is never below h.

Lemma 5.5. For a driver 6
h(z) < ms(x) for all x € RY.

If D is the lowest dimensional Delaunay face containing § and V its dual Vo-
ronoi face then
h(z) < ms(z) for all x ¢ aff(V').

Proof. Let p be a vertex of D. By definition of ws we have
m5(a) = [lz = 0||* + (|6 — pl* — wp.

Thus, m5(z) > mp(z) if and only if the angle £(p,d,z) < 7/2 by the law of
cosines. Since § € D and D is convex this holds for at least one of the vertices
p € D. If x ¢ aff(V') then there is a vertex p € D with £(p,d,z) < 7/2. O

The following lemma provides a condition under which a Voronoi face V
shares its driver with a co-face V' of V.

Lemma 5.6 ([24, 82]). Let V' be a Voronoi face with co-face V'. Let § and &'
be the drivers of V° and V'°, respectively. If no line segment connecting a point
of V with &' intersects V'° then 6 = &'. Otherwise, § # 8 and ws < wg.

Proof. Let D and D’ be the Delaunay faces dual to V and V', respectively.
Since V < V', we have D > D’. Let y be any point in the interior of V. Let 2
be the intersection point of the affine hull of D and V. Asy € V and 4,8’ € D,
d — z and ¢’ — z are orthogonal to y — 2.
First we prove
wyr —ws = ||z = &'|* — |2 — 8%

which is equivalent to mg (2) = ms(z).
We have

16 = 2||* — ws

75(2)

"
ot

16 —ylI> = lly — 2)|* — ws
= ms(y) — |y — 2|
= h(y)—lly— 2|

104 Chapter 5. Flow Complex

and by the same argument 75 (2) = h(y) — ||y — z||?. Thus, 75 (2) = 75(2).

Now we show that if the line segment L, 5 from y to ¢’ intersects the interior
of V! we have ||z — ¢'|| > ||z — d|| which implies ws > ws and that we get 6 = ¢’
otherwise. This part of the proof is illustrated in Figure 5.5. Note that in the
example of Figure 5.5(b) the weight of w, must be large relative to w,,.

Let Hq be the affine hull of D. Let Hj be the hyperplane through ¢’ orthog-
onal to L, 5. H; is subdivided by Hj in two half-subspaces. D’ is in the closed
half-subspace not containing y since D’ is convex and ¢’ is the closest point of
D' toy.

Let ¢ be any Delaunay vertex of D which is not a vertex of D’. The point
q lies in the same half-subspace of H; as the convex hull of D' U {¢} C D and
the point &’ lies in D’. So if ¢ lies in the same half-subspace as z as in the
case of Figure 5.5(a) there is a point of D closer to z than ¢ and therefore
|z —d'|| > ||z — d]|. If any such ¢ lies in a different half-subspace than z as
in the case of Figure 5.5(b) then ¢’ is the closest point of D to z and thus
Iz = &'l = [lz = 4]|.

If L, s intersects V' then ¢ lies in the same half-subspace as z. Otherwise
they lie in different half-subspaces. This proves the lemma. O

A consequence of this lemma is the following.
Lemma 5.7 ([24, 82]). For all y € R? there is an g9 > 0 such that
3y +ev(y)) =d(y) for all 0 < e < &p.
Proof. Let V be the Voronoi face with y € V°. For a sufficiently small € > 0
Yy =y+ev(y) eV’

with V’ a Voronoi face fulfilling V < V',

(a) Ly intersects V' and § # 0’. (b) L, 5 does not intersect V' and 6 = ¢’

Figure 5.5: The two possible cases in Lemma 5.6.

5.5. Recursive Geometry 105

For V =V’ we have §(y) = 6(y'). Assume V < V' and §(y) # 6(y’). Thus,
by Lemma 5.6 Ls(,, intersects the interior of V'. For an illustration refer
again to Figure 5.5 but now with the driver § placed beyond z. Let H be the
hyperplane orthogonal to L) 5,y containing y. Since the vector from §(y) to
y points into V/ and the vector from §(y’) to y out of V', §(y) and §(y’) lie on
different sides of H. But then the intersection of H with Lg, s, is closer to
y than 0(y) and lies inside D, contradicting that d(y) is the driver of y. O

Theorem 5.8 (Orbits). The orbit of a point is a polygonal chain (possibly
ending with a ray to infinity). The orbit passes through each Voronoi face at
most once. The weights of the drivers increase along an orbit.

Proof. For Voronoi faces V, V' with V' < V' Lemma 5.6 yields that the power
of the driver along the orbit stays the same if the orbit goes from V° to V’° and
strictly increases if it goes from V’° to V°. In the second case the driver changes
and a line segment of the polygonal chain ends. Thus, we have an increasing
sequence of drivers along an orbit and the orbit cannot enter a Voronoi face
multiple times. O

Theorem 5.9 (Steepest Ascent). For all reqular points x € R?, the vector v(x)
points in the direction of steepest ascent.

Proof. At a point x € R? with driver § by Lemma 5.4, h(z) = ms(x). For a
sufficiently small £y > 0, we have by Lemma 5.7 that § is the driver of all points
x + ev(x) for all 0 < e < gg and therefore

h(z + ev(z)) = 75(x + ev(x)).
For all unit vectors v’ we have
h(z 4 ev') < ms(x + ev’) < ms(x + ev(x)) = h(z + ev(w)),

where the first inequality follows from Lemma 5.5, the second inequality from
the definition of 75 and v, and the last equality from the argument above. If
v' # v(zx) the second inequality holds strictly, thus, v(x) is the direction of
steepest ascent at z.]

5.5 Recursive Geometry

Outline. The flow complex consists of the closures of the stable manifolds of
the critical points of the distance function. Thus, in order to compute the flow
complex we need to compute these closures.

We present an algorithm that computes the stable manifold for a given
critical point. The algorithm makes use of the close relationship of the flow
complex to the Delaunay tessellation and the Voronoi diagram of P. The critical
points can be determined using their description as intersections of Voronoi faces
and their dual Delaunay faces (Remark 5.2). The algorithm yields a description
of the closure of a stable manifold as a polytopal complex.

106 Chapter 5. Flow Complex

(a) weighted point set (b) stable manifold of ¢

Figure 5.6: A decomposition of a stable manifold as computed by the algorithm.

. . 63

(a) inflow into ¢ (b) inflow into L from V' (¢) inflow into C;

Figure 5.7: Several steps in the computation of the stable manifold of c.

5.5.1 Example

Before presenting the algorithm we illustrate the recursive nature of the flow by
the example of Figures 5.6 and 5.7. Figure 5.6(a) shows a set of four weighted
points together with its Voronoi diagram and Figure 5.6(b) shows the stable
manifold of the local maximum c. The points are depicted as black dots. Their
weights are depicted by the circles, where the weight of a point corresponds to
the squared radius of a circle. To demonstrate effects that do not appear in the
unweighted two-dimensional case, one of the points has a very large weight. As
a consequence one of the points does not lie in its Voronoi cell and the closure
of the stable manifold has non-simplicial cells.

We want to compute the stable manifold of the local maximum ¢ of h de-
picted as @. Thus, we want to compute the inflow into ¢, i.e., all points even-
tually flowing into c. The orbits of points flowing into ¢ are polygonal chains
ending at ¢ (Theorem 5.8). Therefore, any point flowing into ¢ either lies on
a line segment flowing into ¢ or flows into a line segment flowing into c¢. To

5.5. Recursive Geometry 107

such a line segment we have a corresponding driver, thus we have only a finite
number of such line segments (Lemma 5.3). In terms of inflow we have that the
inflow into c¢ is the union of these line segments and their inflow. This already
indicates the recursive nature of the flow.

Figure 5.7(a) shows the line segments flowing into c¢. Consider the line
segment L and the driver d; of the Voronoi segment V' in the figure. Thus all
points between d; and ¢ are driven into ¢ by §;. In general any line segment
flowing directly into ¢ must flow through a co-face of the Voronoi face containing
¢ and is driven by the driver of the interior of this co-face. In the example of
Figure 5.7(a) the Voronoi face containing c is c itself, the co-faces are the Voronoi
edges and cells containing this vertex, and the line segments flowing directly
into ¢ are drawn in bold.

Next consider the inflow into L. Since L (without its endpoints) lies in the
interior of the Voronoi segment V', inflow into L must again come from co-faces
of V. In the example there is inflow coming from both neighboring Voronoi
cells. Consider the inflow coming from V' as depicted in Figure 5.7(b). The
driver of V'° is §o. All points of V'’ between L and - are driven by d5 into L.
Since d3 lies outside of V' the resulting set of points C is conv{L,d2}° NV".

Now V' is a Voronoi cell, so there is no inflow from co-faces of V'. But
since do was cut-off from Cy by the boundary of V', inflow coming from this
boundary must be considered. The inflow into C7 comes from C5. The driver
03 lies in its Voronoi cell and is therefore not cut-off.

Computing all inflow into ¢ in this way yields the stable manifold of ¢ as
depicted in Figure 5.6(b).

5.5.2 Algorithm

Next we formulate the algorithm to compute the stable manifold of a critical
point ¢, i.e., the inflow into ¢. The recursive nature of the flow as illustrated
in the example above yields that the inflow into the relative interior C° of a
convex set C'is the set of all points flowing along a straight line into C° plus the
inflow into these points. We therefore formulate the algorithm INFLOW with a
parameter C. To compute the stable manifold of ¢ we call the algorithm with

C ={c}.

The Voronoi faces from which points might flow directly into C° can be eas-
ily determined if we know that C° lies in V° for a Voronoi face V. We therefore
keep track of this face as a second parameter of the algorithm. To compute
the stable manifold of ¢ this parameter is set to the lowest dimensional Voronoi
face V' containing c. Relative interiors are used to get a unique decomposition
of the Voronoi diagram and the stable manifolds.

We can now formulate the algorithm (Algorithm 6).

108 Chapter 5. Flow Complex

Algorithm 6: INFLOW(Convex polytope C, Voronoi face V with C' C V)

1 7:={C}

2 for each Voronoi face V' with V< V' do
3 J := driver of V'°

4 C" := conv(C, 9)

5 if C’"°NV’' ¢ C do

6 V= {V" <V n vy g v
7

8

9

for each V" €V do

| Z:=ZUlINFLOW(C'NV", V")
end for
10 end if

11 end for
12 return 7

We first describe how the algorithm works and then prove its correctness in
Theorem 5.10. We do not claim the algorithm to be optimal and do not analyze
the complexity of the algorithm beyond proving that it terminates. Nonetheless,
its complexity would be of interest in particular as an upper bound for the
complexity of the flow complex. The algorithm is polynomial in the number
of combinatorially different orbits, where we call two orbits combinatorially
different if they traverse a different sequence of Voronoi faces.

Since the inflow has to contain C' we add C to it in line 1 of the algorithm.
We have to take care of the inflow into the relative interior of C' that comes
through the boundary of V or through higher dimensional Voronoi faces that
contain V in their boundary. Since the algorithm INFLOW only takes care of the
higher dimensional Voronoi faces we need to guarantee that any flow coming
through the boundary of V' has been handled when INFLOW is called.

Note that in the special case of C' = {c} there cannot be any inflow from
within the Voronoi face V' (and thus from the boundary of V') since in this case
c is the unique driver of the relative interior of V' that pushes away all other
points in this relative interior (Lemma 5.3).

In the loop in lines 2 to 11 we take care of the inflow via all Voronoi faces
V' that contain V in their boundary. The relative interior of any Voronoi face
V' has a unique driver § that we determine in line 3 (using Lemma 5.3). All
points that flow via V' into the relative interior of C' have to be contained in
the intersection of V'’ with the relative interior of the pyramid C’ whose apex
is 4 and whose base is C. If V'’ does not contain its driver ¢, i.e., if § is not a
critical point, then the whole pyramid cannot be contained in V' but is cut off
at the boundary of V’. This can result in a non-simplicial cell as the example
of C; in Figure 5.7(b) shows.

In lines 5 to 10 we take care of the inflow coming from V’ and its boundary.
By definition of V in line 6 V'’ € V therefore the inflow into the cut-off pyramid
coming from higher-dimensional Voronoi faces is computed by a recursive call
of the algorithm in line 8. By construction there is no additional flow from
the relative interior of V' (Lemma 5.3). We now handle flow into the cut-off
pyramid coming from the boundary of V' by considering all possible cases. The

5.5. Recursive Geometry 109

polytope C is not driven into V’. We therefore do not add faces of V' to V if
their intersection with C’° lies in V. If the driver § of V' lies on the boundary
of V' then it has to be a critical point and is therefore not driven into V'. In
the algorithm ¢ will in this case not be added to the inflow since it is not in the
interior of C’. Any further point that is in C’ but outside C'° is driven past
it by the common driver § (Lemma 5.6). Therefore, any flow coming from the
boundary of V/ must come from points in C’° which are taken care of in line 6.

The recursion stops when there is no more inflow through higher dimensional
Voronoi faces or through the boundary of a Voronoi face to consider.

Theorem 5.10. Let ¢ be a critical point of the distance function h and let V
be the lowest dimensional Voronoi face containing c. Then INFLOW({c},V)
computes the stable manifold of c.

Proof. First we show that the algorithm terminates. For this we need to prove
that the depth of recursion can be bounded. If the recursion depth is at least
m we get a sequence (C1,V1),(C2,V2),..., (Cm=1,Vin—1), (Cn, Vi) = (¢, V)
of pairs of polytopes and Voronoi faces, and a point x € C; \ C2 which flows
through all the polytopes starting at C;. By Theorem 5.8, x flows at most once
through any Voronoi face. Therefore m is bounded by the complexity of the
Voronoi diagram and the algorithm terminates.

Next we need to prove that the computed face S’ is indeed the stable mani-
fold S of c. From the description of the algorithm above it is clear that S C S.
If we assume S ¢ S’ then there would be a point z which flows into ¢ but is
outside of S’. Since c is in S’ the point x eventually must flow into S’. Assume
the polytope C’ is the polytope of S” into which x flows first. We may assume
C' # {c} and therefore C’ has the form C’ = conv(C,§) NV with C a convex
polytope, V' a Voronoi face with C° C V°, and J the driver of V°.

Then z cannot flow into C’ through the relative interior of V because it
would be driven away by é. But x can also not come from a lower-dimensional
Voronoi face because then it would either come through C which is part of S’
or would be driven into V by §. But then the algorithm would have added
the corresponding polytope to Z in line 8 at the same time it added C’. The
algorithm checks for flow from higher-dimensional Voronoi faces in the main
loop, so = can also not flow into C’ by a higher-dimensional face. Therefore z
must already have been in S” and therefore S C S’. In total we have S = 5,
i.e., the algorithm computes the stable manifold of c.]

We have not considered the running time of the algorithm beyond observing
that it terminates. Theorem 5.8 yields an exponential bound on the running
time but it is open whether the running time is polynomial. The complexity of
the algorithm would give insight into the complexity of the flow complex which
also is an open problem. Along the lines of the previous chapters, it would be
interesting to bound the complexities (of the flow complex and the algorithm)
under assumptions on the point distribution. In particular for uniformly dis-
tributed points we expect that the recursion depth in the algorithm drastically
decreases.

110 Chapter 5. Flow Complex

9 O C
(a) C" = conv(C,6) NV with § ¢ V! (b) C' = conv(C,) and § € V'

Figure 5.8: Tllustration of the proof of Lemma 5.11: a polytopal face C' of a
stable manifold.

5.5.3 Properties of the Stable Manifolds

The algorithm gives insight into the structure of the stable manifolds of critical
points and the relationship between neighboring stable manifolds. Most impor-
tantly, the algorithm directly gives a polytopal decomposition of the closures of
stable manifolds and therefore of the flow complex.

In the following we discuss the relationship between neighboring stable ma-
nifolds. Let S7 and S5 be the stable manifolds of the critical points ¢; and ¢,
respectively. Let C7 and Cy be maximal polytopal faces of the closures of S}
and Sy, respectively, and let C; < C, thus C lies on the boundary of Ss. We
denote this situation by S < S5.

We prove that in this case the critical point ¢; lies on the boundary of Sy
and ¢; has a smaller distance function value than cs.

Lemma 5.11. Let Sy and Sa be the stable manifolds of critical points ¢1 and co,
respectively. If S1 < Sz, then c; lies on the boundary of S and h(c1) < h(cz).

Proof. Suppose ¢ does not lie on the boundary of Ss. Then the orbit of any
point in S7 must eventually leave the boundary of S;. Assume an orbit leaves
the boundary at a point y. Then y is on the boundary of a polytopal face
computed by the algorithm. Let C’ be the first polytopal face of Sy computed
by the algorithm with y on its boundary. We have C’ # {co}. Thus C’ is of the
form C’" = conv(C,§) NV’ with C a previously computed polytopal face of Ss,
V' the Voronoi face with C’° € V’°, and § the driver of V'°. The situation is
illustrated in Figure 5.8, where Figure 5.8(a) shows the case where § ¢ V' and
Figure 5.8(b) the case where 6 € V.

We consider the different cases for the position of y on the boundary of C".
The case y € C, e.g., y1 in Figure 5.8(a), is not possible by the assumption
that C” was the first polytope found by the algorithm with y on its boundary.
If y is in V’° (as y3 in the example of Figure 5.8(a) or ¢ in the example of
Figure 5.8(b)) then y has § as a driver and the orbit of y does not leave C” at
y. Now, consider the case that y is on the boundary of V'’ and the line segment
Ls, does not intersect the interior of V' (as y» in Figure 5.8(a)). Then by
Lemma 5.6 the driver of y is §, thus y cannot flow away from C’.

Therefore, the orbit of a point in S7 on the boundary of Ss cannot leave the
boundary of So, and the critical point ¢; of S1 must lie on the boundary of Ss.

5.5. Recursive Geometry 111

If we reconsider the case distinction for the position of a point y on the
boundary of Sy (Figure 5.8), we see that y € dC’ \ C can only be a critical
point if it is actually the driver § of C’°. Thus the critical point ¢ is the driver
0 of a point x € So with x # §. By Lemmas 5.4 and 5.5 we have

h(cr1) < me (c1) < ey (z) = h(x).

The point z flows into ¢s and h increases in the direction of the flow, thus
h(z) < h(c2) which proves the lemma. O

Conclusion

We presented an algorithm for computing the flow complex of a weighted point
set in any dimension. The algorithm reveals the recursive geometry of the flow
complex which we will use in the following chapter to analyze the topology of
the flow complex and its sub-complex.

A main open problem is the complexity of the flow complex. The complexity
of the algorithm would give insight into the complexity of the flow complex but
this again is an open problem. Theorem 5.8 yields an exponential bound on the
running time but it is open whether the running time is polynomial.

Along the lines of the previous chapters, it would be interesting to bound
the complexities (of the flow complex and the algorithm) under assumptions on
the point distribution. In particular for uniformly distributed points we expect
that the recursion depth in the algorithm drastically decreases.

