Chapter 4

Incremental Constructions
along Space-Filling Curves
in Higher Dimensions

Summary. In this chapter we present an analysis of the incremental con-
struction along space-filling curves of a Delaunay tessellation which applies to
a wider class of distributions. We will focus on uniformly distributed points in
higher dimensions. We also apply the analysis to normally distributed points
in the plane. This analysis differs from the analysis for the two-dimensional
uniform case in the following way: While the analysis given previously was
mainly based on a refined analysis of the general straight line walk and of the
structure of a Delaunay triangulation near the boundary, the analysis in this
chapter focuses on the properties of the space-filling curve heuristic. It also ap-
plies to other traveling salesperson problem heuristics with similar properties.
After the analysis we present experimental results on incremental constructions
of Delaunay tessellations using space-filling curves. Furthermore, we analyze a
different incremental construction of Delaunay tessellations using nearest neigh-
bors which also runs in linear expected time on uniformly distributed points in
higher dimensions.

4.1 Introduction

The main difficulty in the analysis in the previous chapter is the boundary anal-
ysis for the Delaunay tessellation. In the analysis of this chapter we count the
number of intersections of a space-filling curve tour and a Delaunay tessellation
differently which prevents a separate analysis for the boundary of the Delaunay
tessellation. In brief, instead of counting for every walking step the expected
number of points which may interfere with it, we count for every point the
expected number of walking steps with which it may interfere. Thus, we ana-
lyze more the structure of the space-filling curve tour than the structure of the
Delaunay tessellation. This makes the analysis easier in higher dimensions as
well as near the boundary if the density of the point distribution is sufficiently
smooth.

71

72 Chapter 4. Incremental Constr. along SFCs in Higher Dim.

The analysis in this chapter is not a generalization of the analysis in the
previous chapter. In the previous chapter we considered uniformly distributed
points in a bounded convex region. If the region is not a square then the
point distribution is not smooth in the bounding square used for the space-
filling curve. Thus, the analysis in this chapter is not directly applicable to this
case. Further, we do not analyze the case where points are inserted during the
walk. In this chapter the analysis is applied to the case of uniformly distributed
points in a d-cube and to normally distributed points in the plane but most of
the analysis holds also for other point distributions.

4.2 Analysis

4.2.1 Counting Scheme

Setting. As in the analysis of the previous chapter we consider the following
situation: Let z1,...,z, and yi,..., ¥y, be points in R?. Assume we want to
insert y1,...,Ym into the Delaunay tessellation DT (z1,...,x,) of the points
T1,...,Tn. We insert yi,...,yn along a space-filling curve order denoted by
T(y1,...,Ym) which is given by a permutation mw: {1,...,m} — {1,...,m}.
Let f(z,DT(x1,...,zy)) denote the number of d-dimensional faces incident to
x in the Delaunay tessellation DT'(z1,...,x,), €.g., in the plane the number
of triangles incident to z. Let F(DT(x1,...,x,)) denote the total number of
d-dimensional faces of DT'(z1,...,2,). Let By, ,. denote the ball with the line
segment (y;,y;) as a diameter. Furthermore, let

m—1
(@, T(y1, - ym)) = Y 1B, (@),
=1

i.e., the number of balls around tour segments in which x lies.

We denote the random variables corresponding to x1,...,z, and y1,...,Ym
as X1,...,X, and Y7,...,Y,,, respectively.

We will analyze the case where new points are located first in the Delaunay
tessellation of the previous round and from there using a history.

Counting Scheme. For points in general position the faces of the Delau-
nay tessellation intersected by tour segments are (d — 1)-dimensional or d-
dimensional with these two cases alternating along the tour segment. Of these,
we will count the d-dimensional faces.

Let I be the number of intersections between d-simplices of the Delaunay
tessellation and line segments of the space-filling curve tour. We split the
number of intersections into I = I; + I where

e [1 is the number of intersections where the d-simplex is in conflict with
one of the endpoints of the tour segment,

e [, is the number of intersections where the d-simplex is not in conflict
with the endpoints of the tour segment.

4.2. Analysis 73

Figure 4.1: Illustration of the Figure 4.2: Balls along the space-filling
proof of Lemma 4.1. curve tour.

We first prove the following lemma.

Lemma 4.1. Let A be a d-simplex and s a line segment intersecting A. If
the endpoints of s lie outside of the circumsphere of A then the ball with s as
diameter contains a vertex of A.

Proof. The proof is illustrated in Figure 4.1. Let U be the circumsphere of A
and let K be the ball with s as a diameter. Without loss of generality we can
assume that the endpoints of s lie on U. Otherwise we can shrink s by which
we also shrink K. We want to show that K contains a vertex of A. We can
assume that the radius of K is less than the radius of U. Otherwise we have
U = 0K and all vertices of A lie in K.

Now consider the spherical cap U N K. Its boundary lies in a hyperplane H
and the cap itself in a half-space H defined by H. In particular,

UNHY"=UNK)NH' CK.
Since s intersects A there is a vertex x of A in HT. For this vertex we have
rcUNH" CK.
O

Consider a fixed line segment (yﬁ(i),yﬂ(iﬂ)) on the space-filling curve tour
(1 <i<m). By Lemma 4.1 any d-face of the Delaunay tessellation intersecting
this segment and not in conflict with one of the endpoints of the tour segment
must have one vertex in the ball with the tour segment as diameter. Thus, for
any intersection counted in I3 the corresponding Delaunay simplex has a vertex
in the ball with the corresponding tour segment as a diameter. We will use this
to bound Is.

Example. The counting scheme is illustrated in Figure 4.2: It shows a De-
launay tessellation and points along a space-filling curve. First consider the
ball B;. In the algorithm the Delaunay tessellation is traversed along the cor-
responding tour segment. During this, d-faces and (d — 1)-faces are processed

74 Chapter 4. Incremental Constr. along SFCs in Higher Dim.

which are triangles and edges in the two-dimensional case. We are only inter-
ested in the d-faces, i.e., the triangles. There is one point in the ball By. Thus
triangles at this point might contribute to Is. The number of contributing tri-
angles which are incident to this point can be bounded by the total number of
triangles at this point.

The situation that a face does not contribute to I because all its vertices
lie outside the ball is illustrated in the figure by the ball Bs. The intersecting
(d — 1)-face has all its vertices outside the ball. This gives that the adjacent
d-faces are in conflict with an endpoint of the tour segment and are therefore
counted in 1.

Bounding I;. A Delaunay face in conflict with a vertex of the tour needs to
be counted at most once for each tour segment adjacent to the vertex, i.e., at
most twice for the vertex. By Theorem 3.9 we can bound the cost induced by
these faces by a constant times the update cost, where the constant depends on
the sampling parameter and the dimension. This, directly bounds the expected
value of I7 in terms of the expected update cost.

Remarks on [;. Before bounding I5 let us make two further remarks on I.
First, in the case where points are inserted during the traversal the number
of conflicting faces can be bounded directly by the update cost because the
conflicting faces are destroyed when the endpoint of the tour segment is inserted.
Depending on the update scheme it might actually be the case that the walk
ends at the first d-dimensional conflicting face since the Bowyer-Watson update
can start at any conflicting d-face and find the remaining conflicts from there.

Second, bounding I in terms of I; + Iy can be applied to any traveling
salesperson problem heuristic. In this case the bound on E[I;] remains the
same. More generally, the points can be located by using a tree on the points
of the round and possibly on the points of the previous rounds. The points are
located by traversing the tree. In this case, a conflict between a vertex of the
tour and a simplex of the Delaunay tessellation might be counted as often as we
visit the vertex during the traversal. Thus we can again bound E [I1] in terms
of the expected update cost but get the expected maximum degree of the tree
as additional factor.

Bounding I>. We bound I by counting for each vertex of the Delaunay
tessellation in a ball of a tour segment the total number of d-simplices at this
vertex. That is,

-1 n

_[2 < 1By7'r(i)’y7r(i+l) (I‘j)f(.’ﬁj, DT(:El, cee ,:Cn))
i=1 j=1

3

©
I

b(zj, T(y1,...,ym)) f(zj, DT (x1,...,24)),

I
NE

1

<.
Il

where 14(z) = 1if x € A and 14(x) = 0 otherwise.

4.2. Analysis 75

In the following proposition we bound E [I5] for the case that the points are
given by independent identically distributed random variables.

Proposition 4.2. Let Xi,...,X,,Y1,...,Y,, € D C R? be independent iden-
tically distributed random variables which are in general position with probabil-
ity 1. Let

by, = sggE[b(m,T(Yl,...,Ym))],
F, = E[F(DT(X1,...,X,))].

Then E[Iy] < (d+ 1)by, F,.

Proof. In the following we abbreviate T'(Y1,...,Y,,) by T and DT(X;,...,X,)
by DT. We have

ElL] < E|> b(X:T)- f(X;DT)
i=1
< nE[BX1,T)- f(X1,DT)]
< nE[E[X.,T)[X1]- f(X1,DT)].
Since X is independent of Y7,...,Y,,, we have

E [b(Xl,T) |X1 = 1’1] = E [b(l‘l,T)] .
Since for all

Eb(z1,T)] < SlelgE b(x,T(Y1,...,Ym))] = bm

we have

Eb(X1,T)| X1 =x1] < by
Thus,
E[L] < bunE[f(X1,DT)]
b (d + 1)E [F(DT)]
(d+)by, Fy

since nE [f(X1,DT)] = E[>_i-, f(X;, DT)] counts each face once for each of
its vertices, i.e., (d + 1) times. O

The previous proposition bounds E [I3]. Like the bound for E[[1], it also
holds for other traveling salesperson problem heuristics and tree traversals.
Furthermore, it can be generalized to the case where the points do not come
from the same distribution. In this case, we have as bound for X; € D; (1 <
i<n)

sup E[b(z,T(Y1,...,Yn))] Fn.
at:EUlS i<n Di
In particular, the bound also holds for a non-random point set, although it does
not yield an interesting bound in this case.

76 Chapter 4. Incremental Constr. along SFCs in Higher Dim.

Let Br be a ball chosen uniformly at random from the balls along the tour.
To prove E [I5] € O(n) it suffices to prove that for all z € D

P[:zeBﬂ&O(il),

where D is the domain from which the X; are drawn (1 < i < n). Now,
P [z € By] does not depend on properties of the Delaunay tessellation, thus we
have reduced the problem to a problem on properties of the tour.

4.2.2 Analysis for Space-Filling Curve Orders

As noted before the analysis up to here also applies to other tour heuristics. To
bound P [z € Br| we will now use the Holder-continuity of space-filling curves.
Therefore, the following analysis will only hold for space-filling curve orders.

The following argument suggests that P [x € Br| € O(1/m) for space-filling
curve orders if the point distribution considered is “sufficiently” smooth: if
Y 1 [0,1] — [0,1]? is the space-filling curve used then the probability that
the preimage ¥*(z) of a point x falls into the interval [¢*(Yr(;)), " (Yr(is1))]
between two points defining a ball is 1/(m — 1). Thus the probability that a
point lies in the image of the interval under ¢ is again 1/(m —1) and this image
covers a similar area as the ball. This notion of “similar area” is difficult to
capture and we will argue directly using the probability distribution over the
space from which the points are drawn.

We want to bound P [z € Br]. First it is important to consider how the
space-filling curve was computed. If the points come from a certain region
we can simply compute the space-filling curve based on a subdivision of this
region. But for points from an unbounded region, like in the case of the normal
distribution, the bounding cube for the space-filling curve depends on the actual
points. For simplicity we will assume that the bounding cube is chosen as
[—u,u]? where u is the largest occurring coordinate, i.e., the largest L..-norm
of a point. For a space-filling curve psi: [0,1] — [0,1]% we denote by 1: [0,1] —
[—u,u]? the scaled space-filling curve. The mapping 121 is Holder continuous
with exponent 1/d and Holder constant cj =2u-cy, e, for t1,13 € [0,1] we

~

have Hw(tl) —zﬁ(tg)H < ¢y llta — t3]|/?. We denote by ¥*: [—u,u]? — [0,1]
the selection of preimages according to ™.

The following lemma provides a bound on the length of a tour edge in this
setting.
Lemma 4.3. Let Y7, ..., Y, be independent identically distributed random vari-
ables in RY with Lebesque density function gy,. Let ¢ : [0,1] — [0,1]¢ be a
Holder continuous and bi-measure preserving space-filling curve with Hélder
constant cy. Let L be a random tour segment of a space-filling curve tour
through Y1, ...,Y,, based on 1[) Then for all £ >0

P[|L| > ¢

m—1
d .
< / gvi (v) (1 — d/ s min {gy, (v/) | |ly — /|| < 8}d3> A\ (y).
R 0,4

G

4.2. Analysis 77

L]

Figure 4.3: The length ¢ of a tour segment implies an empty area of size at
least of order ¢¢ close to the segment.

Proof. Let Y (from Yi,...,Y,,) be the first point of the random segment L.
To bound P [|L| > ¢] we first consider P [|L| > ¢|Y = y|. For this we use the
Hoélder continuity and bi-measure preserving property of the space-filling curve.
The underlying idea is illustrated in Figure 4.3: A tour segment (solid line) of
length ¢ yields that the empty region (grey area) has a volume of order at least
¢, In turn, an area of £’ between two points (e.g., the end points of the dashed
line) yields that the distance between the points is at most of order ¢'.
In the case that |L| > ¢ for an ¢’ > 0 we get

E’d
6712} ’

i.e., a tour segment longer than ¢’ implies an interval of length at least (¢'/c 12))‘[
in which no other preimage lies. By the bimeasure-preserving property of the
space-filling curve we can consider the probabilities over [0,1]. Because of the
scaling, a density of A on the side of the points in [—u,u]? corresponds to a
density of (2u)¢\ = (cq;/cw)d/\ on the side of the preimages in [0, 1].

If the measure corresponding to an interval is a then the probability for one
point to be outside of the interval is 1 — a and for all m — 1 remaining points
is (1 —a)™ 1

Using the bimeasure-preserving property, now in the other direction, we can
bound the change of the distribution for tg,ty + t € [0, 1] by

~

HY) =T (Y)

~ ~

gr((to+1) = min{gw (b)) [|d(t0) - o)

This yields that

01/:’>d ' / / ,
- cp —y|| < egtd b dA®).
. > /[O,WW <% min {gv, () | |y —]| < gt} dA()

< Cdztl/d} .

Substituting the integration variable ¢t by s = Cp /4 we get

d .
N A PR S P
w)

78 Chapter 4. Incremental Constr. along SFCs in Higher Dim.

Thus we have a bound on a not depending on u. Now

m—1
d .
PlL| >V =y] < <1 - Cd/[oe] s min {gv; () | | —]| < S}dA(S)>
w Y

from which the claim of the lemma follows.
O

Using Lemma 4.3 we can bound P [z € Br| by

m—1
/ v (¥) (1 - i/ s min {gv, () | [ly = v'[| < S}d8> dX'(y).
Rd Cy J(0,[lz—yll]

For the bound of the lemma to be useful, the density of Y should not vary
too much over a small region. For instance, if the points come from a bounded
convex region and the space-filling curve is defined on a bounding cube of the
region then the density drops to zero when the space-filling curve leaves the
region, i.e., the tour “jumps”. In this case we would need to handle the jumps
separately.

4.3 Uniformly Distributed Points

So far, no assumption on the distribution of the points was made beyond being
independent identically distributed. We will now use Lemma 4.3 for the multi-
dimensional uniform distribution in the d-cube. We expect that the analysis
of this chapter can be generalized to convex regions by further analyzing the
boundary case.

Theorem 4.4. The incremental construction along space-filling curves (using
the history of a round) computes the Delaunay tessellation of points drawn
independently and uniformly from a d-cube in linear expected time.

Proof. We again analyze the cost of the last round. Assume Xi,..., X, are
the points of the previous round and Y7,...,Y,, the points of the last round.
Further assume that these points are drawn independently and uniformly from
the unit d-cube. By Proposition 4.2 it suffices to prove for all z € [0, 1]¢ that the
expected number of balls corresponding to a space-filling curve tour through
Y1,...,Y,, and containing x is constant.

Let L be the tour segment starting at Y, where Y is chosen uniformly at
random from Y7,...,Y,,. Let By be the corresponding ball. If x € By then
|L| > || — Y|, thus by Lemma 4.3

Pleze Br] < PIL[> [lz— Y]
m—1
< / [1 - Ci/ Sd_lds] dX4(y)
[0,1] Cy J0,l|lz—yll]
<

o (]

4.4. Normally Distributed Points 79

Let wy denote the surface area of the d-sphere and x4 the volume of the d-ball.
Using polar/spherical coordinates we get

Plz e Br] < /Rd [1— <Cfp>dr 1d>\d(y)
A I

Cd ” d m | o0
- e 12 (2)
¥ r=0
d
C
< Hd*w-
m

Thus the expected number of balls containing = is bounded by
ﬁdci,

i.e., the volume of a d-ball of radius c;. O

4.4 Normally Distributed Points

Now we use Lemma 4.3 to show that the incremental construction algorithm
runs in linear expected time for normally distributed points in the plane. In
the following we will handle the boundary case by assuming an additional point
location data structure as a fallback.

Theorem 4.5. The incremental construction along space-filling curves (using
the history of a round and an O(logn) point location data structure) computes
the Delaunay tessellation of points drawn independent identically normally dis-
tributed in the plane in linear expected time.

Proof. As in the proof of Theorem 4.4 for uniformly distributed points, it suf-
fices by Proposition 4.2 to bound P [z € By] for a point € R? and Br the
ball around a random tour segment L with starting point Y. Again we bound
Pz € By] <P]|L| > || — Y|] using Lemma 4.3.

Without loss of generality we assume that the points are independently and
normally distributed centered at the origin and with the identity matrix as
covariance matrix. The density function of a point is

L

g(y) = %67

For a point Y; with 1 < ¢ < m the probability that it is farther than a
distance ry from the origin is

P [||Yi]| > ro] = e 278

Therefore, the probability that at least one of m points is farther away than r¢
2
from the origin is bounded from above by me™270. Thus, for

ro := 4y/logm

80 Chapter 4. Incremental Constr. along SFCs in Higher Dim.

the probability that one of the points on the tour is farther than ry from the
origin is bounded from above by

_ 1
e 2logm _ —

m .
m
The points farther away therefore contribute at most % to P [z € Br] and can
be ignored in the following.

It remains to bound the probability P [x € Br, ||Y|| < r¢], i.e., the case that
the starting point of the segment is closer than rg to the origin. We first

bound P [|L| > 4y, ||Y|| < 7o] for £y := \/101@%‘ Using Lemma 4.3 and spherical

coordinates we have

PILI > o, [[Y]] < o]

m—1
< / re 2" (1 - 22/ se~2(r 9% g dr. (4.1)
[0,7’0] C’KZJ [0,40]

For r < ro we have (r + £y)? = r? + 20gr + €3 < r? + 8 +

1
Togm’ and therefore

_1 2 _ 1.2 _
e 2" > =3¢, fore; = e Y.

This yields

2 to 1 2 ml
1-— 2/ se”3(r8)" 4g
C¢ 0

IN
N
—_
|

Sl o
o
A%,
ml
[SIS
=
(V]
c\
s
»
Q
&
~
3
L

Inserting this bound into the bound (4.1) on P [|L| > lo, ||Y || < ro] yields

m—1
_ 1.2 Cc1 _1.2
re 2" (1 - e 2" ﬁ%) dr.
] C

P(L| > to, |Y] <] < /
P

[077"0

We have

m—1
%mfg re”2" (1 — 0216%712€3> = 4 <1 — 6216%7"2@)
c c dr c
() () P

and therefore

P[|L| > ¢, Y| < ro]

A
()
<N
1
I/
[
|
aQ
K| 2
[
|
=
S
»
I
N
v
3
—_ 1
[e=) =3
o

clmﬁg
2 2
< % _ Glogm
- clmﬁg c1 m

Thus there are an expected number of O(logm) points for which we do not
have a bound on |L|. As used for Proposition 3.16 we can handle these points

4.4. Normally Distributed Points 81

by an additional point location data structure like Kirkpatrick’s point location
hierarchy. This avoids the boundary analysis for the space-filling curve order.
The cost induced by the expected O(logm) points is in O(n+logm logn) where
the linear part comes from building the point location data structure and the
remaining part from the point location queries.
Finally we bound P [|L| > ||z — Y||,|L| < o, ||[Y]| < o] for z € R%. Since Y/
is distributed spherically symmetric we may assume that x lies on the positive x-
axis, i.e., x = (x,0) with x < 0. Furthermore, the probability is 0 if x > lp+ro,
SO we can assume
0<x <lp+ro.

Let B(z,r) denote the ball of radius r around z. We have so far

PILI > [l = Y[, [L] < Lo, [Y[| < o]

m—1
1 e slyl® [1 — ﬁugg — y|2e3luIP dA(y)
2 Jp c?

(w,lo) f¢y

IN

m—1
_ 1 o= Lllo—y'|? 1—2f§1|yy'||2e—%”z—y"‘2 dN(y). (4.2)
27 JB(0,1) Gy
Now,
le—y/[? > (x—1)? = x*+1 —2xl
> 2+ 13— 2(ro + o)l
> x* -8

by the definition of rg and lp, and analogously

(X +10)> = x>+ +2(r0+ o)l
X2+ 8+ 212

lz —3/II”

VANVA

Inserting these bounds on ||z — ¢/||? in the bound (4.2) we obtain

PIIL| > [l =Y, [L] < fo, [V < 7ol

m—1
3 e (1Bt)
21 JB(0,1) €

4 1.2 lo 2c1 9 _gj9 _1.2 m
= ¢e 2X r{l——5rie /267 3X dr
0 G

1 2 e
— 72 Y = [(1 _ 217*269/2@§X2>]
2c1m cy

r=0

IN

2
< Q725 1
- 2ctm

which proves the theorem.

82 Chapter 4. Incremental Constr. along SFCs in Higher Dim.

4.5 Experiments

Related Experiments. The analyses in this and the previous chapter apply
to several algorithms which have been thoroughly evaluated experimentally [3,
95, 153]. Before presenting our own experiments, we consider these. Besides
these algorithms, there is a new CGAL* package [42] providing spatial orderings
similar to space-filling curve orders which we describe as well.

Amenta, Choi, and Rote [3] test incremental constructions con BRIO on
surface data focussing on the performance in the case that the data structures
are stored in virtual memory. As insertion order in a round they use oct-trees
and kd-trees, with better results for oct-trees. An oct-tree traversal results in
a space-filling curve order, however, the standard oct-tree traversal results in
a Lebesque order which we have not considered since the Lebesque curve is
neither Holder continuous nor bi-measure preserving. As sampling parameter
only 2 is considered. For instance Figure 6 in their paper shows the running
time where points are located by walking in the Delaunay tessellation of the
previously inserted points. This corresponds to incremental constructions along
space-filling curves. The graph in their figure indicates a linear running time.

In their program tess3, Liu and Snoeyink [95] sample points to rounds,
sort them along a Hilbert curve, and locate the points by walking along the
Hilbert curve. The sampling is done according to the least significant bits.
Assuming that these bits are sufficiently random, this corresponds to sampling
with a sampling parameter of 2°, where b is the length of the bit pattern used.
The program tess3 performs a zigzag walk to find a sphere containing the new
point. The algorithm is tested on uniformly distributed points in a cube and
on protein data. It is compared to four popular codes for constructing the De-
launay tessellation in three dimensions. On both types of data, their algorithm
performs best and has linear running time in the experiments (see Figures 3
and 4 in their paper). Additionally to the overall running time, for uniformly
distributed points the number of created spheres/tetrahedra is counted and the
running times for the following costs are measured: creating sphere equations,
in-sphere tests, update, and point location. In their experiments, computing
the Hilbert order takes 3.45% of the running time. Point location along the
Hilbert curve takes only 0.43% of the running time.

Zhou and Jones [153] construct Delaunay tessellations in two dimensions
by sampling points to rounds, sorting points in a space-filling curve like order,
and inserting points by walking along this order. They test their algorithm on
uniform points, points on a parabola, and terrain data and observe that the
running time of their algorithm is effectively linear. The algorithm is compared
to insertion along a Lebesgue order (corresponding to the implementation of
Amenta et al. of con BRIO), divide & conquer algorithms, jump & walk, and
simple walking. Using the same data structures and primitives for the different
algorithms, their algorithm performs best. The costs measured are the running
times and the number of edge flips, in-circle tests, and CCW tests (i.e., orienta-
tion tests during the walk). The algorithm is tested for various sampling ratios.

*Computational Geometry Algorithms Library, http://www.cgal.org/

4.5. Experiments 83

(a) uniform in (b) uniform in disk (c) chessboard (d) uniform in cube
square

(e) normal (f) Kuzmin (g) line singularity (h) Buddha
Figure 4.4: Point distributions depicted with (a)—(g) 100 and (h) 5000 points.

The number of edge flips and in-circle tests are minimized for sampling param-
eter a close to one. The CCW tests are minimized for o about 20 and their
number drastically increases for a — 1. The number of flips and of in-circle
tests are minimized for « close to 1. In their experiments, o about 10 balances
the different costs best.

Delage [42] developed a CGAL package, spatial sorting, providing an order
similar to a space-filling curve order and an assignment to rounds (without
sampling). Pre-processing points with the provided order, significantly speeds
up the construction of the Delaunay tessellation. Experimental results have
not been published yet. The sorting is based on the Hilbert curve but splits
the points at the medians of the coordinates. If only a small number of points
remain, these are left unsorted.

Setting. The experiments described above yield an extensive evaluation of
incremental constructions of Delaunay tessellations along space-filling curves.
Nonetheless, we present our own experiments here. In particular, we are in-
terested in the dependence of the running time of the algorithm on the point
distribution and on the sampling parameter.

The algorithm is straightforward to implement using available software.
Both CGAL [17] and Shewchuk’s Triangle’ [131] include an incremental con-
struction algorithm using walking. For the experiments in this section we used
CGAL.

We considered several uniform and non-uniform distributions which are de-
picted in Figure 4.5(a)—(g). Furthermore, we tested our algorithm for points on
a surface, shown in Figure 4.5(h).

TTriangle, http: //www-2.cs.cmu.edu/~quake/triangle.html

84 Chapter 4. Incremental Constr. along SFCs in Higher Dim.

In two dimensions we tested the algorithm on two uniform distributions,
points distributed uniformly in a square and point distributed uniformly in a
disk. The analysis for uniformly distributed points directly generalizes to the
case of an (f3,v)-measure over a bounded convex region C, i.e., a probability
measure for which the density function f(x) is bounded for all € C' between
£ and « for fixed (0 < # <). As an example of such a distribution we take
points distributed over a chessboard where the density function f(x) is 1/8 on
white squares and 7/8 on black squares.

Further two-dimensional distributions we considered in our experiments are
the standard normal distribution, the Kuzmin distribution, and the line sin-
gularity distribution. The Kuzmin distribution can be used to model clusters.
It is a radially symmetric distribution where the distance r to the center has
cumulative distribution function M(r) = 1 — (1 4 72)~1/2. For the line singu-
larity distribution, points are very densely distributed along a line segment. It
can be defined by a transformation from the uniform distribution: For b > 0
and u,v € [0,1] independent uniform random variables, the transformation is
(z,y) = (u,b/(v—bv+b)); we chose b = 0.001. Blelloch et al. [16] suggest these
distributions as non-uniform representatives of real world problems and to defy
techniques relying on uniform distributions.

The algorithm runs in higher dimensions and we have analyzed it for uni-
formly distributed points in a cube (using an additional point location data
structure). In three dimensions we consider in the experiments uniformly dis-
tributed points drawn from a cube and points drawn from a surface.

In the experiments [3, 95, 153] discussed above, incremental constructions
along space-filling curves have been extensively compared to other algorithms,
and we will limit the comparison to one worst-case optimal algorithm, the
Delaunay Hierarchy [46] which is included in the CGAL library.

We test incremental constructions along space-filling curves for different
sampling parameters a > 1. We denote our algorithm with a sampling param-
eter of a by SFC(«). For a« — 1 our algorithm corresponds to the randomized
construction, i.e., to simple walking if no further point location data structure
is used. For a@ — oo the algorithm corresponds to an incremental construction
along a space-filling curve without sampling. We denote this by SFC(c0).

All time measurements are done on a Intel(R) Pentium(R) 4 CPU 3.00GHz
with 2.048KB cache size. We used CGAL 3.2.1 and the g++ 3.3.5 compiler
with options —02 and —NDEBUG.

Experimental Results. We split the running time into the time needed to
construct the space-filling curve order and the time for the incremental con-
struction. Table 4.1 and Table 4.2% show for the different distributions the
corresponding running times on 1000000 points in two dimensions and 500 000
uniform points in three dimensions and 543 652 points from the Happy Buddha
data set?.

#The improved running times in comparison to our previous experiments in [22] result from
compiling with —NDEBUG.
SStanford 3D scanning repository, http://www-graphics.stanford.edu/data/3Dscanrep

4.5. Experiments 85

Distribution SFC(2) SFC(4) SFC(8) SFC(16) SFC(c0)
square 0.3336 0.3464 0.3659 0.3711 0.3813
disk 0.3379 0.3643 0.3876 0.3982 0.4118
chessboard 0.3809 0.3951 0.4398 0.4433 0.4608
normal 0.6166 0.9044 1.1554 1.2224 1.3570
Kuzmin 0.7550 0.6775 0.8144 0.7667 0.6238
line 0.8693 0.7888 0.6740 0.7117 0.6239
cube 0.2686 0.2982 0.2859 0.3347 0.3041
Buddha 0.4433 0.4404 0.4506 0.4903 0.4432

Table 4.1: Running times of SFC construction in seconds.

Distribution =~ SFC(2) SFC(4) SFC(8) SFC(16) SFC(oo) Del. Hier.
square 3.1570 3.0798 3.0778 3.1342 3.8410 16.5918
disk 3.1910 3.0822 3.0v70 3.1202 3.8386 16.4786
chessboard 3.1734 3.0874 3.0894 3.1242 3.9074 16.4686
normal 3.1846 3.2170 3.0954 3.1218 3.9235 16.7746
Kuzmin 3.2018 3.11v8 3.1022 3.1302 3.7290 22.6614
line 3.1702 3.0798 3.1006 3.1358 3.8390 16.6742
cube 15.2210 15.1361 15.3974 15.7474 20.3061 32.6212
Buddha 17.3047 17.2695 17.8179 18.7144 31.9196 108.9810

Table 4.2: Running times of the incremental construction in seconds.

For all distributions in two dimensions, a sampling parameter of about 8
achieved best results. However the running time did not change much for
different sampling parameters, as long as the sampling parameter was not close
to 1. In three dimensions, a smaller sampling parameter of about 4 achieved best
results. In this case for large sampling parameters, in particular for SFC(c0),
the running time increased considerably.

For uniformly distributed points in two dimensions the dependency of the
running time on the sampling parameter is shown in more detail in Figures 4.5
and 4.6. Figure 4.6 shows the running time for sampling parameters close to 1
while Figure 4.5 shows the running time for larger sampling parameters. If the
sampling parameter tends to 1 the algorithm corresponds to simple walking
and therefore Figure 4.6 shows the running time of walking as first value. This
running time can be improved by sampling the starting point of the walk, i.e.,
using jump € walk. The running time we obtained for jump & walk was 167
seconds (compared to 251 seconds for walking). Both figures use non-linear
scales for the x-axis, Figure 4.5 uses a logarithmic scale.

86 Chapter 4. Incremental Constr. along SFCs in Higher Dim.

runningtime(s)
42

4.0

3.8

3.6

34

32

3.0 I I I I I I I I L I I -
2 4 8 16 32 64 128 256 5121000 10000 100000 no sampling

Figure 4.5: Running time for sampling parameter between 1 and oco.

runningtime(s)

250

200

150

100

50

waking 1+10°% 1+10° 1+10* 1+410° 141072 1+107% 2

Figure 4.6: Running time for sampling parameter close to 1.

4.6. Constructing the Delaunay Tess. using Nearest Neighbors 87

4.6 Constructing the Delaunay Tessellation using
Nearest Neighbors

4.6.1 Introduction

A point can be located in a Delaunay tessellation by finding a nearby vertex of
the tessellation and then walking from there. In the incremental construction
using space-filling curves the nearby point was the previous point in the space-
filling curve order. A randomized incremental construction using such a point
location scheme has been proposed by Su and Drysdale [139]. For locating a
new point a spiral search is performed on a grid data structure to find a point
in the tessellation near to the new one. The spiral search starts with the cell
containing the new point and then searches nearby cells. From this point a walk
in the triangulation is used to find the triangle containing the new point. In this
section we consider the performance of the algorithm on uniformly distributed
points. We analyze a variant of the algorithm using a nearest neighbor as
starting point, and present ideas for the analysis of the case that an oriented
walk from a nearby point is used.

Su and Drysdale formulate the algorithm for points in the plane but it
directly generalizes to higher dimensions. In the probabilistic analysis of the
algorithm we will assume that the input points are drawn independently from a
uniform distribution on a bounded convex region in the d-dimensional Euclidean
space R?. For uniformly distributed points in a square Su and Drysdale showed
that the grid data structure for the spiral search can be maintained in amortized
constant time per point, and their proof directly generalizes to the case of a
bounded convex region in R?. The spiral search in a convex bounded region
in R? needs expected constant time per point [12]. In our analysis we will
concentrate on the expected running time of the point location starting from
the point found by the spiral search.

The spiral search can be used to find the nearest neighbor in constant ex-
pected time but the number of cells examined can be reduced considerably (by
a constant factor) if the neighbor encountered first is taken instead. Su and
Drysdale therefore propose to start the walk at the first point found by the
spiral search. Taking a nearest neighbor instead allows for a simpler analysis.
Besides gaining further insight into the performance of the original algorithm
the variant using nearest neighbors is of interest on its own because of the
simple point location: walking is not necessary at all.

Besides stopping at the first point found, two further optimizations of the
algorithm are the following: Only a single point per cell is stored since it is
sufficient to know one point for any non-empty cell. Also the spiral search can
be stopped after a certain number of cells (depending on n), and instead the
walk is started at an arbitrary point of the tessellation.

For the nearest neighbor variant of the algorithm we prove that the expected
time needed is linear in the number of points plus some extra cost bounded by
the update cost. For the randomized incremental construction the expected
update cost is linear in the complexity of the Delaunay tessellation. Overall
this yields a linear expected time algorithm if the expected complexity of the

88 Chapter 4. Incremental Constr. along SFCs in Higher Dim.

Delaunay tessellation is linear. This is the case in two dimensions. In higher
dimensions it has been proved for points drawn independent, uniformly at ran-
dom from a d-ball [57] and d-cubes [15] and it is assumed to be the case for
uniformly distributed points from any “reasonably” smooth full dimensional
bounded region [71].

Variants of the algorithm in two dimensions have been analyzed [49, 138].
However a subtle fact that has been overlooked is that a point close to a random
query point is not a random point (i.e., uniformly drawn from the point set).
Therefore its expected degree must be bounded differently than for a random
point.

4.6.2 The Algorithm

The algorithm computes the Delaunay tessellation by a randomized incremental
construction. The points are inserted one by one in a random order. In each
insertion step the algorithm first finds the location of the new point in the
present data structure and then updates the data structure including the point.
The update can be done by flipping or by finding all conflicting simplices as
discussed in Chapter 3.

Point location for a new point is done in two steps:

1. Find a nearby point using a dynamic grid data structure.

2. Find the new point by a walk starting at the nearby point.

If one finds a nearest neighbor in the first step, then the update can be
started from there without needing to walk. It is still necessary to search for a
conflicting simplex with the nearest neighbor as vertex.

Spiral Search on a Grid. Bentley, Weide and Yao [12] show how a variety of
closest point problems can be solved efficiently for uniformly distributed points
drawn from a bounded convex region in R? using a grid. In particular they show
how to perform nearest neighbor searching efficiently on uniformly distributed
points: a set of points is assigned to a linear number of grid cells in linear time,
such that for a new query point its nearest neighbor from the point set can be
determined in expected constant time. For this, the grid cell of the new point is
determined and the cells around it are searched for the nearest neighbor using
a spiral search, i.e., the cells are searched ordered by distance. Ordering the
cells by their L,-distance to the cell containing the query point simplifies the
search. First the cell containing the new point is searched. If it is empty, the
surrounding cells are searched according to some expanding pattern. In two
dimensions this pattern can be a spiral as shown in Figure 4.7.

The first point found by the spiral search is not necessarily the nearest
neighbor since some of the cells which have not yet been searched may contain
closer points. To find the nearest neighbor the search must be continued until
all cells have been searched for which the minimum distance to the query point
is smaller than the distance between the point found first and the query point.

4.6. Constructing the Delaunay Tess. using Nearest Neighbors 89

/ L

6‘\ 1. 20\ 11

79 81 9/ 10
7

Figure 4.7: Finding a neighbor using spiral search.

In the figure the query point lies in cell 1 and the first point found lies in cell 3.
In this case the search for the nearest neighbor can be stopped after cell 11.

Dynamic Grid Data Structure. To use spiral search in the construction of
the Delaunay tessellation it is necessary to insert new points into the grid data
structure. While this is not difficult, it has the effect that the number of grid
cells and the number of points diverges. For this reason the grid data structure
is recomputed each time the average number of points per cell exceeds 2% for
a positive constant c¢. In this case each cell is subdivided into 2¢ smaller cells
and the points are reinserted. The overall amortized cost for maintaining the
grid data structure is linear assuming linear time bucketing.

Walking Schemes. After finding a nearby point using spiral search it is
necessary to find a simplex in conflict with the point, i.e., a simplex for which
the circumsphere contains the point. This is done by walking in the Delaunay
tessellation starting at the nearby point.

The variants of the algorithm differ in the walking scheme. The first variant
using nearest neighbors does not need walking at all. It suffices to search
the simplices at the nearest neighbor for a conflict with the new point. The
tessellation is then updated using a Bowyer-Watson update (see Chapter 1)
starting at a conflicting simplex. We analyze this variant in Section 4.6.3.

The second variant uses an oriented walk. This walking scheme is used by
Su and Drysdale in their implementation. An oriented walk can be described
as a traversal of simplices where one may pass through a (d — 1)-dimensional
face to a neighboring simplex if the new simplex and the query point are on the
same side of the hyperplane containing the (d — 1)-dimensional face. The walk
ends as soon as a simplex traversed is in conflict with the new point or contains
the point (in which case it is also in conflict with the point). An advantage of
an oriented walk in comparison to a straight-line walk is that the orientation
tests performed are simpler than the intersection tests in a straight-line walk.

90 Chapter 4. Incremental Constr. along SFCs in Higher Dim.

4.6.3 Probabilistic Analysis of the Nearest Neighbor Variant

We now analyze the simplest variant of the algorithm where the spiral search
is used to find a nearest neighbor of the query point and walking is not needed.
The spiral search and the dynamic grid data structure have been analyzed by
Bentley, Weide and Yao and by Su and Drysdale, respectively. It therefore suf-
fices to bound the cost for finding a conflicting simplex from a nearest neighbor.

Theorem 4.6. If spiral search is used to find a nearest neighbor, the algorithm
constructs the Delaunay tessellation in linear expected time when the points
are distributed independently and uniformly in a d-dimensional bounded convex
region for which the expected complexity of the Delaunay tessellation is linear.
In particular, this is the case in two-dimensions and for the unit d-ball and the
unit d-cube.

Proof. The expected time required for searching the nearest neighbor and for
updating the tessellation is linear [12, 37]. It remains to bound the expected
number of d-simplices of the tessellation containing the nearest neighbor of the
point to be inserted.

The difficulty is that the nearest neighbor is not a random point of the
tessellation. Still, a constant bound can be obtained. The analysis is similar to
part of the analysis of the Delaunay hierarchy by Devillers [46].

Let S := X U{q}, where X is the set of points in the tessellation so far,
and ¢ the point to be inserted. The point ¢ may be assumed to be a random
point of S. Instead of considering the Delaunay tessellation of X, we may use
the Delaunay tessellation of S: The difference in the complexity is bounded by
the update cost.

Denote by s(p) the number of d-simplices of the Delaunay tessellation con-
taining p, by n(p) the nearest neighbor of p in S, and by d(p) the number of
points in .S having p as their nearest neighbor. We have

Els(n(q))] = |;| S s(n(q))
peS

1 /

E Z s(p)d(p)

p'eS
< Els(g)] - 74,

where 74 denotes the kissing number [40], i.e., the number of d-spheres which can
touch a d-sphere of same size without intersecting, or equivalently the number
of points that can be placed on the surface of a d-sphere in such a way that
the angular separation of two points is at least 7/3. For instance the kissing
numbers for d = 2,3 are 75 = 6 and 73 = 12. By assumption E [s(g)] is constant.

The special cases of the d-ball and the d-cube follow directly from the linear
expected complexity of the Delaunay tessellation [57, 15]. Golin and Na [71]
note that the proof of the linear complexity of the d-ball can be extended to
any “reasonably” smooth full dimensional bounded region. O

4.6. Constructing the Delaunay Tess. using Nearest Neighbors 91

Figure 4.8: Illustration of power distance.

4.6.4 Notes on Oriented Walk Variant

The oriented walk variant is more difficult to analyze than the straight-line walk
since the simplices visited by the oriented walk are not as easy to describe geo-
metrically. However, an analysis may use the following monotonicity criterion
of the oriented walk.

Monotonicity Criterion. The monotonicity criterion of the oriented walk
captures the notion that traversed simplices are closer to the new point than
the starting point of the walk. As monotonicity criterion one can take the
decreasing power distance from the circumspheres of Delaunay simplices to the
query point.

A different criterion has been proposed by Zhu [154]. He suggests to link
the cost of the oriented walk to the cost of the straight line walk. But it seems
difficult to prove such a link. One difficulty are the dependencies between the
walking steps.

The power distance from a point z € R? to a point p with weight wp is
peR?and w, € R is

(@) = |l = |2 = w,

A geometric interpretation of the power distance is shown in Figure 4.8. Con-
sider the sphere S of radius ,/w, around p. Let ¢ be a point on this sphere
which lies on a tangent line through x. Then we have 7,(z) = ||z — ¢||*>. In the
following the weighted point p and its weight will not be explicitly given but
instead the sphere around p. We will call this distance the power distance of
the sphere S to the point z.

The following basic observation is illustrated in Figure 4.9 (see also [59]).

Observation 4.7. If an oriented walk in a Delaunay tessellation visits the
simplex To after the simplex T1 then the power distance from the circumsphere
of Ty to q is less (or possibly equal if the points are not in general position) than
the power distance from the circumsphere of T1 to q.

Proof. By induction it suffices to consider the case that T5 is visited directly
after T by the (d — 1)-face f they share. The hyperplane through f is the
bisector of the two spheres. By the definition of the walk the point ¢ lies on the
side of T5 and by the empty sphere property of the Delaunay tessellation this
is the side closer to the circumsphere of T5. O

92 Chapter 4. Incremental Constr. along SFCs in Higher Dim.

¢

Figure 4.9: The power distance of the Delaunay circumspheres to the query
point decreases along the oriented walk.

A different viewpoint on the above observation is the following proposition.
The power diagram is the Voronoi diagram using as distance the power distance.

Proposition 4.8 (Weller [151]). In the interior of the convex hull of a point
set, the Delaunay tessellation of the point set is identical to the power diagram
of the Delaunay circumspheres. Therefore the distance of the circumspheres to
the query point monotonously decreases along the walk.

Possible Analysis. Based on the monotonicity criterion, the oriented walk
variant might be analysed as follows.

1. Bound the power distance to the new point for the first simplex.

2. Bound the number of simplices that can be closer with respect to the
monotonicity criterion.

The first step may be done in two substeps.

1.a Bound the Euclidean distance between the new point and the first point
found by a random variable R;.

1.b Bound the diameter of circumspheres of simplices at this vertex by a
random variable Rs.

This gives a sphere S around the new point with radius R; + R in which the
circumspheres of the starting simplex lies. The radius Rj + R of the sphere S is
an upper bound on the square root of the power distance from the circumsphere
of the starting simplex to the new point. For the second step one may bound
the number of points for which the circumspheres of simplices at these points
can intersect the sphere S.

The difficult case for the analysis is again the boundary case. Handling the
boundary case seems to require further insight on the oriented walk and is an
interesting open problem.

4.6. Constructing the Delaunay Tess. using Nearest Neighbors 93

Conclusion

In this chapter we presented an alternative probabilistic analysis of incremental
constructions con BRIO using space-filling curve orders. In contrast to the anal-
ysis in the previous chapter this analysis emphasizes the structure of random
space-filling curve tours rather than the structure of random Delaunay tessella-
tions. Space-filling curve tours seem easier to analyze and in Lemma 4.3 we give
a general bound on the length of tour segments. With this bound we can easily
prove that the incremental construction runs in linear expected time in higher
dimensions for uniformly distributed points in a cube. In contrast an analysis
in the spirit of the previous chapter would require a better understanding of
random Delaunay tessellations already in three dimensions.

A drawback of considering the space-filling curve tour instead of the De-
launay tessellation is that we do not analyze the behaviour of the tessellation
during the round. This forces us to use an additional point location data struc-
ture in the analysis. In an implementation an additional data structure might
not be desirable, and it is an open problem to give the analysis without the
data structure.

A further challenge which is not apparent in the case of uniformly distributed
points but in the case of normally distributed points is the boundary behaviour
of space-filling curve tours, i.e., its behaviour near to the convex hull of a point
set. A better understanding of the boundary case for space-filling curves could
make it easier to apply the analysis to other distributions. Furthermore, to
prove a bound on the running time for more general distributions, e.g., normally
distributed points in higher dimensions, it would be necessary to know the
expected complexity of the Delaunay tessellations.

There are several fast implementations of incremental constructions con
BRIO using space-filling curve orders available. Using our implementation we
tested the algorithm on various distributions and for different sampling ratios.
The experiments indicate a linear running time for all tested distribution. While
our analysis applies to several of the tested point distributions, there are others
to which it does not apply. Of these, points distributed on a surface are of
particular interest in applications. Giving an analysis for this case remains
an open problem. For this a different ordering might be more suitable since
space-filling curves are typically bound to a certain dimension.

In the last part of this chapter we gave an analysis of an algorithm by Su
and Drysdale. We proved that it runs in linear expected time for uniformly
distributed points in arbitrary dimension. The analyzed case differs slightly
from the implementation, and it would be interesting to extend the analysis to
the version of the algorithm which uses an oriented walk. For this it would be
sufficient to understand the behaviour of the walk for short distances. Beyond
this, a more general analysis of the oriented walk would be of interest.

