Chapter 2

Space-Filling Curves

Summary. We begin with an example of a space-filling curve and demon-
strate how it can be used to find a short tour through a set of points. Next
we give a general introduction to space-filling curves and discuss properties
of them. We then consider the space-filling curve heuristic for the traveling
salesperson problem and show how a corresponding order of the points can
be computed fast, in particular in a probabilistic setting. Finally, we consider
a discrete version of space-filling curves and present experimental results on
discrete space-filling curves optimized for special tasks.

2.1 Introduction

2.1.1 Example: Heuristic for Traveling Salesperson Problem

A space-filling curve maps a 1-dimensional space onto a higher-dimensional
space, e.g., the unit interval onto the unit square. We will use space-filling
curves in the form of the space-filling curve heuristic for the NP-hard Euclidean
traveling salesperson problem [67]. The Euclidean traveling salesperson problem
is the problem of finding the shortest closed tour through a set of points.

Figure 2.1 shows a point set, tours through the point set constructed using
the space-filling curve heuristic with two different space-filling curves, and the
shortest tour through the point set.

We demonstrate the space-filling curve heuristic for this task by the example
of the two-dimensional Hilbert curve [78]. Consider the following construction

(a) Point set (b) Heuristicusing  (c) Heuristicusing (d) Shortest tour
Moore curve Sierpinski curve

Figure 2.1: Short tours through a point set.
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Figure 2.2: Hilbert curve and order.

of a map from the unit interval to the unit square: Divide the unit interval
into four intervals, divide the unit square into four squares, and assign each
interval to one of the squares. This is shown in Figure 2.2(a). This process
can be continued recursively and furthermore it can be done in such a way
that neighboring intervals are assigned to neighboring squares. The first three
steps of this construction are shown in Figure 2.2(a-c). In the limit this yields
a surjective, continuous map from the unit interval to the unit square.

For our purposes it suffices to repeat the subdivision process until we can
read off the order of the points along the curve. In this example, for one of
the squares one more subdivision step is necessary. Figure 2.2(d) shows the
resulting order (and indicates the additional subdivision). We call this order
of the points a space-filling curve order — or in the special case of the Hilbert
curve Hilbert order — of the point set.

Since the Hilbert curve starts in the lower left corner and ends in the lower
right corner, the last edge of the round-trip (shown in Figure 2.2(d) as dashed
line) is likely to be long. Thus, the Hilbert curve is only suited for applications
where a short path through the points is needed. If a closed tour is required
as in the case of the traveling salesperson problem then a closed space-filling
curve is more suited, i.e., a curve starting and ending in the same point. The
Moore and the Sierpiriski curve used in Figure 2.1(b—c) are examples for closed
curves. See Section 2.1.5 for more details on these curves. The space-filling
curve heuristic for the traveling salesperson problem yields a tour which is at
most a logarithmic factor longer than the shortest tour [122]. In the case of
uniformly distributed points it is with high probability only longer by a constant
factor [65].

2.1.2 Applications

In general, space-filling curves allow one to reduce higher-dimensional proximity
problems, e.g., nearest neighbor search, to a one-dimensional problem. Solving
such a problem typically involves searching and sorting in the one-dimensional
space. Algorithms for searching and sorting have been studied extensively, in
particular I/O-efficient and parallel algorithms. Using space-filling curves, these
algorithms can be applied to higher-dimensional proximity problems. A further
advantage of space-filling curves like the Hilbert curve is their recursive nature
which allows to use them for hierarchical indexing of higher-dimensional data.
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A common application of space-filling curves is storage and retrieval of
multi-dimensional data in a database [88]. Proximity problems for which space-
filling curves have been used frequently are approximate nearest neighbors
search and finding closest pairs (see [99] and the references therein). Algo-
rithms for these problems using space-filling curves have been analyzed the-
oretically [32, 96, 93]. Space-filling curves can be used for multi-dimensional
optimization problems [128].

Space-filling curves are also used for low-dimensional problems as in the case
of the traveling salesperson problem [122]. For instance, they are used to index
meshes for parallel and distributed computing [111] and to organize and process
raster data (i.e., data on a grid), e.g., images [38, 118, 147], terrains [94], and
volumetric data [119].

2.1.3 History of Space-Filling Curves

In 1877/78 Cantor [28, 30] demonstrated that there is a bijective function be-
tween any two finite-dimensional smooth manifolds independent of their di-
mension. This in particular showed that such functions between the unit in-
terval and the unit d-cube for d > 1 exist. In 1879 Netto [110] proved that
if the dimensions of the manifolds are different such a function is necessarily
discontinuous. The question whether a surjective, continuous map from the
unit interval to the unit square exists remained open. In 1890 Peano [120] an-
swered this question positively by presenting such a map, now known as Peano
(space-filling) curve. In 1891 Hilbert [78] gave the first geometric construction
for such a map which we presented above. Many examples followed, of which
we will consider the curves by Moore (1900) [105], Lebesgue (1904) [90], and
Sierpinski (1913) [133]. For further background on space-filling curves we refer
to Sagan [126].

2.1.4 Definition

We refer to surjective, continuous maps from the unit interval to the unit d-cube
(d > 1) as d-dimensional space-filling curves. Note that we refer to the map
(and not its image) as curve. We restrict to this kind of space-filling curves
because they are useful for computing orderings of point sets.

In general, a space-filling curve is a continuous map from the unit interval
to R? for which the image is a region with positive Jordan content. A region
has positive Jordan content if it can be approximated from the inside and the
outside by (disjoint) unions of cubes, and the upper limit for the inner content
(defined in the canonical way) and the lower limit for the outer content are
equal and positive.

A space-filling curve cannot be injective [110]. For the Lebesgue measure
there exist injective, continuous maps from R to R? (with d > 1) for which the
image has a positive measure [116]. In general the continuous images of line
segments can be characterized as the compact, connected, locally connected
sets (see [126]).
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2.1.5 Examples

Next we present several examples of space-filling curves. For each curve, we
give the rule for the recursive, geometric construction. Furthermore, we show
the order of the cells of the subdivision after the second subdivision step and
after several steps more. We will only present two-dimensional examples. For a
three-dimensional example see [125, 126], for higher-dimensional curves see [2].

Hilbert Curve. The Hilbert curve is shown in Figure 2.2. A representation
of its construction rule is shown in the left and middle part of Figure 2.3(a). The
figure shows that the square with arrow to the left is replaced by four squares.
The ordering of the squares is indicated by the grey curve. The arrows show
the orientations of the squares. The right part of the figure shows the result of
a second application of the rule. Figure 2.4(a) shows the order of the cells after
4 subdivision steps.

Moore Curve. The Moore curve is a closed version of the Hilbert curve. It
is obtained by concatenating four copies of the Hilbert curve as shown in Fig-
ure 2.3(b). Figure 2.4(b) shows the order for the Moore curve after 4 subdivision
steps.

Peano Curve. The Peano curve uses a ternary subdivision instead of a binary
subdivision. It is the first known space-filling curve, found by Peano in 1890.
Its original construction was arithmetic but it can be constructed geometrically
as shown in Figure 2.3(c). The order after the third subdivision is shown in
Figure 2.4(c).

Lebesgue Curve. The Lebesgue curve uses a similar subdivision as the
Hilbert and Moore curves. Figure 2.3(d) shows its construction rule and Fig-
ure 2.4(d) the subdivision after 4 steps.

Constructing the curve exactly like the Hilbert curve as described in Sec-
tion 2.1.1 would result in a discontinuous mapping. Instead the construction
uses the Cantor set [29, 135], i.e., the set of numbers in the unit interval for
which the ternary expansions do not contain 1. Geometrically it can be con-
structed by dividing the unit interval into three equal parts, removing the mid-
dle (open) part, and continuing the construction recursively on the first and
third (closed) parts.

On the Cantor set the construction of the curve is done as for the Hilbert
curve on the unit interval. The parts of the unit interval not belonging to the
Cantor set are used for linear interpolation. For example in the first step of the
geometric construction of the Cantor set the unit interval is subdivided into 3
parts. For the construction of the Lebesgue curve the first part, i.e., [0,1/3], is
mapped to the left half of the unit cube, i.e., [0,1/2] x [0, 1]. The third part, i.e,
[2/3, 1], is mapped to the right half, i.e., [1/2,1] x [0, 1]. On the middle part, i.e.,
the open interval (1/3,2/3), the curve interpolates between the points (1/2,1)
and (1/2,0).
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Figure 2.3: Recursive, geometric construction of space-filling curves.
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(e) Sierpinski curve after 5 steps

Figure 2.4: Geometric construction of space-filling curves after several subdivi-

sions.
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Although the construction using the Cantor set yields a continuous curve,
the resulting curve lacks important properties which other space-filling curves
share. In particular it is not bi-measure preserving and is not Holder continuous
of order 1/2 (or 1/d in dimension d); see Section 2.1.6 for more details on these
properties. Nonetheless, the Lebesgue curve is useful and used for ordering
points because of its simplicity.

Sierpinski Curve. In contrast to the previously discussed space-filling curves
the Sierpinski curve is based on a triangular and not a cubical subdivision. Its
geometric construction is shown in Figure 2.3(e). The construction for the
upper left and the lower right triangle are the same (rotated by an angle of
7). The order after the fifth step of the subdivision is shown in Figure 2.4(e).
The Sierpiriski curve is used by Platzman and Bartholdi [122] for constructing
a short tour through a set of points.

2.1.6 Properties of Space-Filling Curve

In the following we survey important properties of space-filling curves. The
two properties we will need in the next chapters are Hélder continuity and the
bi-measure-preserving property. In the choice and formulation of the properties
we will mostly follow the exposition of Steele [137]. These properties are not
shared by all space-filling curves, in particular the properties do not hold for the
Lebesgue curve. We will illustrate them by the example of the Hilbert curve.
Let tg: [0,1] — [0,1]¢ denote a d-dimensional Hilbert curve. Note that for
dimensions d > 2 there is more than one d-dimensional Hilbert curve [2].

Holder Continuity. A map f: I € R — R? is called Holder continuous of
order 1/k (or short Holder-1/k) with Holder constant ¢y if for all s,¢ € I

1 (s) = F@O < esls — /.

This property is also referred to as Lipschitz continuity. Space-filling curves
in dimension d are typically Holder-1/d. This is not the case for the Lebesgue
curve since it linearly interpolates outside of the Cantor set.

For the two-dimensional Hilbert curve 1o, it follows directly from the recur-
sive construction that the image of an interval of length 1/4™ (m > 0) stays in
two neighboring squares of side length 1/2™. Therefore the distance between
the endpoints is at most v/5/2™. Thus, for s,¢ € [0,1] and m > 0 with

/4™ < |s —t] < 1/4™

we get,

lvats) —walt)] < G = T2 < 2VBls o'
This yields an upper bound of 2v/5 on the Holder constant cy, of the two-
dimensional Hilbert curve but actually the exact value of ¢, = v/6 is known [10].

The bound of 2v/5 also holds for the Moore curve. For the Peano curve the
argument above yields a bound of 3v/5 and for the Sierpiniski Curve a bound
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of 4v/2. A 2-dimensional space-filling curve cannot have a Holder constant
smaller than /5 [130].
For the d-dimensional Hilbert curve the argument above yields

[a(s) — va(t)]] < 2vd+ 3|s — t]*/4.

Nowhere Differentiability. The Hilbert curve, the Moore curve, the Peano
curve, and the Sierpinski curve are nowhere differentiable [126]. In contrast,
the Lebesgue curve is differentiable almost everywhere, since the Cantor set has
measure 0.

Bi-Measure-Preserving Property. By its recursive construction the Hilbert
curve maps an interval to a region with an area equal to the length of the in-
terval. In general we have for d-dimensional Hilbert curves that for any Borel
set A C [0,1]

M (A4) = Aa(a(A)),

where A1 and )\; denote the one- and d-dimensional measure, respectively. This
property is called the bi-measure-preserving property. It again holds for all
curves mentioned except for the Lebesgue curve.

Dilation and Translation Property. If we consider the second step of the
recursive construction of the Hilbert curve, we see that the Hilbert curve starts
with a scaled copy of itself, followed by several translated and rotated copies.
In general, a space-filling curve v has the dilation property and the translation
property if there is a p > 2 such that for all s,¢ € [0, 1]

[(s) = @Ol = vPlIY(s/p) — »(E/p)l
and for all 1 <i <pand s,t € [(i—1)/p,i/p]

[4(s) = @I = llv(s + 1/p) = 9(t + 1/p)|.

For the Hilbert curve p can be chosen as any power of 16.

2.2 Space-Filling Curve Heuristic
for the Traveling Salesperson Problem
As discussed in Section 2.1.1, space-filling curves can be used in a heuristic

for the Euclidean traveling salesperson problem. Conceptually, the heuristic
consists of two steps (Algorithm 1).

Algorithm 1: General space-filling curve heuristic with space-filling curve

Input: Point set {z1,...,2,} C [0, 1]
Output: Ordering of the point set

1 For i =1,...,n compute t; € [0, 1] with ¥(t;) = z;.
2 Sort x1,...x, by the order z; <z; & ¢; <t; for 1 <4,5 <n.
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For space-filling curves like the Hilbert curve which can be constructed by
recursive subdivision, preimages of points in [0,1]¢ can be computed based on
the subdivision. We will discuss this in more detail in Section 2.2.2.

The space-filling curve heuristic has been popularized by Bartholdi and
Platzman [9, 122] but has a longer history (see [137], p. 49). If the result of the
heuristic should be a closed tour — as in the case of the traveling salesperson
problem — then a closed space-filling curve suggests itself.

2.2.1 Properties

Experimental Evaluation of Tour Length. Compared to other heuristics
for the traveling salesperson problem, in experiments the space-filling curve
heuristic is fast but also results in relatively long tours [83]. For uniformly
distributed points the resulting tours have a length which is about 35% longer
than the Held-Karp lower bound on the shortest tour length (see [6] for details
on computational aspects of the traveling salesperson problem). For clustered
points the tour is between 41% and 96% longer, for instances from the TSPLIB
it is about 40% longer. In contrast the lengths of the tours computed by the
Concorde* implementation of the Lin-Kernigham algorithm are only about 2.5%
longer for uniform points. But the time needed is also by far longer, e.g., about
180 times longer for ten million points.

Worst-Case Tour Length. For the space-filling curve heuristic to be effec-
tive the space-filling curve should map two numbers of small distance to points
of small distance. This is guaranteed for most of the classical space-filling
curves by their Holder continuity of order 1/d. The following was observed by
Platzman and Bartholdi [122] for the two-dimensional case.

Observation 2.1. Let): [0,1] — [0, 1] be Hélder continuous of order 1/d with
Hélder constant cy,. Then the length of the one-way, non-closed tour through n
points computed by the space-filling curve heuristic is bounded by
cy - (n— 1)1,
If 1 is closed then the length of the closed tour is bounded by
cy pl-1/d

Proof. By the Holder continuity of ¥ the length of the one-way, non-closed tour
is bounded by

n—1
Cy Z |tigs — ta]
i=1

where t; denotes the ith preimage of the ordered preimages for ¢ = 1,...,n.
This sum is maximized by equidistant preimages and therefore bounded by

cp - (n=1)-(n—1)"Y=¢, (n—-1)171

The proof for the closed tour is the same except for the additional summand
|ty — tn |V O

*http://www.tsp.gatech.edu/concorde.html
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By the same argument the length of the computed tour using squared Eu-
clidean distances between points is constant in the plane:

Observation 2.2. Let 1: [0,1] — [0,1]? be Hélder continuous of order 1/2
with Holder constant cy. Then the length of the one-way, non-closed tour —
and if v is closed also the length of the closed tour — through n points computed
by the space-filling curve heuristic is bounded by ci.

Worst-Case Approximation Factor. The following properties hold for the
two-dimensional Sierpinski Curve, and are conjectured to be true for other
Hélder-1/d, bi-measure preserving, closed space-filling curves. The tour through
n points computed by the space-filling curve heuristic is at most by a factor
O(log n) longer than the shortest tour [122]. This bound is tight [13].

Probabilistic Analysis of Tour Length. The expected tour length E [LEFC}
computed by the space-filling curve heuristic through n independent uniformly
distributed points in the unit square is analyzed by Gao and Steele [65, 66].
Interestingly, although the expected tour length is of order /n, the quotient
E [L,SlF C] /+/n does not converge. Instead the following quotient converges:

Theorem 2.3 (Gao, Steele [65, 137]). If a heuristic tour is built using a space-
filling curve that satisfies the dilation property, the translation property, and
the bi-measure-preserving property, then there exists a continuous function ¢ of
period one such that

SFC
lim b [Ln ]
n—oo

=1 almost surely,
ne(log, n)

where p is the integer appearing in the dilation and translation property.

The tour length is with high probability close to its expected value:

Theorem 2.4 (Gao, Steele [65, 137]). If a space-filling curve has the bi-measure-
preserving property, then there are constants A and B such that for allt > 0,

P[|LFC — BE[L5FC]|] < B exp(—At?/logt).

The space-filling curve heuristic in combination with Talagrand’s inequal-
ity [142] can be used to prove Gaussian tail bounds (i.e., bounds as in Theo-
rem 2.4) for geometric optimization problems, in particular the traveling sales-
person problem and the Steiner tree problem (see [101, 137]).

2.2.2 Computation

For the Hilbert curve and curves with a similar recursive subdivision scheme a
preimage of a point can be computed iteratively.
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Figure 2.5: Subdivision and corresponding table.

We will illustrate the computation by the example of the two-dimensional
Hilbert curve. Consider a point (z,y) in the unit square for which the coordi-
nates have a binary representation with k£ bits each, i.e.,

k k
x:Zaiﬁ_i, y:Zbiﬂ_i.
i=1 i=1

In the first subdivision step, (a1, b;) determines the square in which the point
lies. A point on the boundary between two squares has more than one preimage
and could be assigned to either of the squares. Moreover in the case of the
Lebesgue curve, a point might have even more preimages (outside of the Cantor
set). From these preimages we choose a preimage out of the interval mapped
to the square corresponding to (ai,b).

In the ith subdivision step for 2 < i < k, (a;,b;) determines the square in
which the point lies and for this square

1. its rank in the space-filling curve order relative to the other squares of
the current subdivision step and

2. the orientation of the curve in the space-filling curve in the square.

Figure 2.5 shows for one subdivision step a table storing for one initial
orientation (init) the bits specifying the squares (coord), the ranks (rank), and
the resulting orientations (orient). The orientation of the space-filling curve in
a sub-square is needed for the next subdivision step. For a subdivision process
using squares there are at most 8 such orientations, i.e., the symmetries of
the square. We can either store a table for each initial orientation, or store a
table for one orientation and provide transformations of the table for the other
orientations. In our implementation we store a table for each orientation.

With k table lookups we can compute a preimage of (z,y). By computing
preimages for all points and sorting them by a worst-case optimal comparison-
based sorting algorithm, this yields an algorithm which runs in O(kdn+nlogn)
time where n is the number of points in R? and k the average number of bits
per coordinate. This conceptually corresponds to the algorithm described by
Platzman and Bartholdi except that their algorithm uses a Sierpiriski Curve.

In the following we will consider the following extensions and variants:

e Computing several steps of the subdivision at once.
e Using a sorting algorithm based on bucketing.

e Combining different sorting strategies based on the problem size.
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Figure 2.6: Two subdivision steps and corresponding table.

Several Steps at Once. After two subdivision steps a square is subdivided
into 16 squares. For these 16 squares we can store the ranks and the orientations
in tables. An example is shown in Figure 2.6. This halves the number of
subdivision steps needed to compute a preimage of a point.

The ranks and orientations for m subdivision steps can be stored in tables
of size of order O(4™). As long as m < log, n the tables can be computed in
linear time (in n) and stored in linear space. As index of the square (a,b) for
0 <a,b< 2™ we use the integer a + 2™b.

Assume we can in constant time compute the index (in the tables) of the
square in which a point lies. Then this allows us to determine for a point
a logarithmic number of bits of its preimage in constant time. This is not
possible in the standard model of computation, i.e., using only constant-time
basic arithmetic operations and comparisons.

The assumption can be fulfilled with a floor function which can handle a
logarithmic number of bits at once. If the unit square is subdivided into 2™ x 2™
squares then for a point (x,y) with 0 < z,y < 1 the index of the square is

(2™ ] + 272y ],

i.e., we use a floor function on m bits. As input for the next subdivision step
we use the point
2™z — |2Mx], 2™y — |2My]).

In the theoretical analysis we will instead of a constant-time floor function
use the following assumption: We assume that for a point set of size n in [0, 1]%
for d,n > 0 and a regular subdivision of [0, 1]¢ into O(n) cubes (called buckets),
the assignment of points to buckets can be determined in O(n) time. We will
refer to this assumption as linear time bucketing.

For the algorithm to run fast in practice, the implementation should take
into account typical issues concerning lookup tables, in particular problems
related to memory use. Memory access to tables is expensive when there are a
large number of cache misses. In an implementation this can be prevented by
using small tables, e.g., on 256 buckets.

Also for the theoretical analysis, it is not necessary that the number of
buckets is linear in the number of points. Instead it suffices that the number of
buckets is chosen such that the number of points is bounded by a polynomial
in the number of buckets. For example, assume we have m buckets and at most
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m¥ points for a constant k. Then after k subdivision steps we have m* buckets,
i.e., as many buckets as points.

Using comparison-based sorting the table-lookup approach allows to com-
pute the space-filling curve order in O(ndlog k+nlogn) time for n points in R?
with an average number of k bits per coordinate assuming linear time bucketing.

Sorting with Buckets. The computation of the preimages involves com-
puting point-to-bucket assignments. Therefore it makes sense to combine the
computation of the preimages with a sorting algorithm based on bucketing.

Within one level of subdivision bucket sort or counting sort can be used.
Further subdivision of buckets naturally suggests using radiz sort. Algorithms
based on radix sort either start with the least or the most significant digit. For
an overview of radix sort algorithms see [112] and for a general overview of sort-
ing algorithms see [41, 87]. For I/O-efficient implementations and experimental
evaluations of sorting algorithms based on bucketing, see for instance [81, 123].

Although the sorting algorithms described below can be used in a more
general context, we will refer to

e the items to be sorted as points and

e the number by which a point is sorted in the current subdivision level as
rank.

Radix sort starting with the least significant rank/digit (LSD-first radiz sort) is
only applicable if the number of (relevant) bits per point is known in advance.
Even then it does not combine well with space-filling curve computations since
the computation of the preimages starts with the top level of the subdivision,
i.e., the most significant rank. A possible way to apply LSD-first radix sort in
this situation is to use it only for the most significant ranks, and then to switch
to a different sorting strategy [98].

Instead of LSD-first radix sort, we use radix sort starting with the most
significant rank/digit (MSD-first radiz sort). We will focus on two variants,
forward radiz sort [4, 112] and adaptive radiz sort [55, 63]. For both algorithms
there are fast implementations [5]. We present adaptive radix sort since we use
it for computing a space-filling curve order in our implementation. It is also the
fastest algorithm in the experimental comparison of MSD-first radix sorting
algorithms and quicksort by Andersson and Nilsson [5]. We present forward
radix sort because of its good theoretical running time which is also simple
to analyze in a probabilistic setting. In contrast, the probabilistic analysis of
adaptive radix sort is more involved [48, 143, 144].

Adaptive Radix Sort. The principle idea of adaptive radix sort is to adapt
the number of bits used in one step and the number of buckets to the number of
elements to be sorted. Algorithm 2 outlines the computation of a space-filling
curve order using adaptive radix sort.
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Algorithm 2: Computing a space-fillingcurveorder using adap-
tive radix sort

Input: Point set in R?
Output: SFC order of the point set

1 Compute a bounding cube.

2 Partition the cube into approximately n grid cells by a 2% x --- x 2% grid
with k = |log &/n|.

3 Compute the space-filling curve order and orientations for grid cells by
the geometric construction scheme of a space-filling curve.

4 Assign points to cells.

5 Repeat from step 2 on grid cells using the cell as bounding cube, the
orientation as determined in step 3, and the number of points in the cell
for determining k.

In our implementation we use counting sort within a subdivision step. The
basic idea of counting sort is that in a first pass of the point set the number of
points per bucket is determined. This is then used in a second pass to insert
the points at the correct position in an auxiliary array. After these two passes
the points within buckets are still unsorted. In our implementation we sort
the points in a bucket recursively, re-using the original and the auxiliary array
(with possibly the original array as auxiliary array if the points of the bucket
are currently stored in the auxiliary array).

Forward Radix Sort. Forward radix sort combines the advantages of MSD-
first and LSD-first radix sort. Like other algorithms based on MSD-first radix
sort it only inspects the distinguishing prefixes. The main disadvantage of
many algorithms based on MSD-first radix sort is that the algorithm is called
recursively for every bucket separately while LSD-first radix sort proceeds to
work on the whole input. Forward radix sort overcomes this disadvantage by
processing all buckets that are not yet sorted in one scan.

For a description of the algorithm see [4, 112]. As in Algorithm 2 we again
first compute a bounding cube, and apply radix sort by subdividing this cube
and using lookup tables. The general idea of forward radix sort is to do the
following in each pass:

1. store with every point its prefix, i.e., the part of its preimage computed
so far,

2. sort all points by their rank in the next subdivision step, ignoring in which
cube it was previously,

3. sort points by their prefix, keeping points with the same prefix in the
order computed in step 2

The steps described above are not applied to parts of the point set for which
we know that they are already correctly sorted. Furthermore, some additional
work is necessary to reduce the number of empty buckets that are visited. This
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can be done either by further preprocessing, or by switching to a comparison-
based sorting algorithm if the number of unsorted points drops below some
threshold.

The running time of the algorithm is formulated for binary strings. It de-
pends on the average number B of bits in a distinguishing prefix and on the
number w of bits in a machine word on a unit cost random access machine.

Furthermore, the running time depends on the subroutine used for sorting
integers. We only consider the simplest version with bucketing as a subroutine
for sorting integers. For the case w € O(logn) the other variants do not improve
on the running time asymptotically, and w = logn+ O(1) is the number of bits
we can sort at once in a lookup table of linear size. For larger w better bounds
can be obtained by using different subroutines [4, 112].

Theorem 2.5 (Andersson and Nilsson [4, 112]). Given n binary strings let B
be the average number of bits in a distinguishing prefix. Assume the number of
bits in a machine word is in Q(logn). Then forward radiz sort using bucketing
as a subroutine for integer sorting sorts the binary strings in time

© (" <10§n * 1)) |

This running time can also be achieved by using the algorithm by Paige and
Tarjan [117]. If w € ©(logn) then this running time is optimal on a unit cost
random access machine with word length w since the minimal time needed for
inspecting all distinguishing bits and to process each element at least once is in
Q(nB/w + n).

Combining Different Sorting Strategies. To prevent visiting too many
empty buckets in our implementation of adaptive radix sort, we switch to a
comparison-based algorithm, insertion sort, if a bucket contains only a small
number of points. In our experiments this leads to a considerable speed-up.
This matches the experimental results by Andersson and Nilsson [5]. They
report that switching to insertion sort if only about 10-30 points are left, reduces
the running time of forward radix sort by about 40% and of adaptive radix sort
by about 50%.

Another example for a sorting algorithm combining different sorting strate-
gies is introspective sort [108]. Introspective sort is the standard sorting algo-
rithm in the C++ standard template library [109]. The algorithm sorts using
quicksort but with heapsort as a fallback for the case that a certain recursion
step is reached. Furthermore, instead of recursing on arbitrary small subprob-
lems, sequences of a length below a certain threshold are first left unsorted.
They are then sorted in a final pass using insertion sort.

In our implementation we apply radix sort choosing a lookup table for the
space-filling curve depending on the number of points (in the current bucket)
except until the number of points in a buckets drops below a threshold (e.g., 32
points). Then the algorithm switches to insertion sort, again using the lookup
tables. If the points are stored in the auxiliary array (see above) before the
insertion sort, the points are written back to the original array during this step.
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square  disc  chessboard mnormal Kuzmin line cube Buddha

0.3813 0.4118 0.4608 1.3570  0.6238 0.6239 0.3041 0.4432

Table 2.1: Running times for space-filling curve computation in CPU seconds.

In the following we report on the running time of our implementation of
adaptive radix sort switching to insertion sort if the number of points in a
bucket dropped below 32. The measurements were performed on a Intel(R)
Pentium(R) 4 CPU 3.00GHz with 2.048KB cache size and using the g++ 3.3.5
compiler with the option —0O2. All running times were averaged over 10 runs.
In two dimensions we measured the running times for 1000000 points for vari-
ous distributions. The distributions tested are points distributed uniformly in a
square, uniformly in a disk, pseudo-uniformly with a density varying according
to a chessboard pattern, normally with identity matrix as covariance matrix,
according to the Kuzmin distribution, and close to a line. The point distribu-
tions used are described in more detail in Section 4.5 and are illustrated there
in Figure 4.5. In three dimensions we measured the running times for 500 000
uniformly distributed points and for 543652 points from the Happy Buddha
data set’. The running times are summarized in Table 2.1.

There are two variants in our implementation of the algorithm. First, in-
stead of applying insertion sort one can choose to leave short sequences un-
sorted. Even though this does not result in a correct space-filling curve order,
the resulting order might be sufficient for the application. Second, instead of
choosing the size of the lookup tables depending only on the number of points
in a bucket, suitable thresholds for lookup tables can be precomputed using a
sample point set. The motivation for this is that a good choice for the size of
the lookup table might depend not only on the size of the point set but also
on the point distribution and aspects not related to the point set like the cache
size.

Probabilistic Analysis of Running Time. Next we analyze the expected
time needed to compute the space-filling curve order of independent identically
distributed points in R¢ using forward radix sort. In the analysis we only use

that the running time is in O <n <10§ — + 1)) Thus, the analysis holds for any

radix sort algorithm with this running time.

For a point, the number of bits in a distinguishing prefix can be expressed
in terms of the size of the bounding cube and the distance of the point to a
nearest neighbor.

Lemma 2.6. Let £ be the side length of the bounding cube used to compute the
space-filling curve order of a point set P. If the Loo-distance of a point p € P
to a nearest neighbor in P is larger than s > 0 then a prefiz with dlogy(£/s)
bits suffices to distinguish p.

Proof. We first handle the case of [0,1]? as a bounding cube, i.e., £ = 1. Con-
sider the subdivision process, where in one step a cube is replaced by 2¢ cubes.

fStanford 3D scanning repository, http://www-graphics.stanford.edu/data/3Dscanrep
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If after k steps (k > 0) a point lies in a cube only containing this point then
the distinguishing prefix for this point has at most kd bits.

After k steps the side lengths of the cubes in the subdivision is 27%. If
for a point the Ls.-distance to a nearest neighbor is larger than 2=% the cube
containing the point is empty. Therefore, k& < logy(1/s), and the number of
distinguishing bits is bounded from above by dlog,(1/s).

If the side length of the bounding cube is ¢ then this scales the side lengths
of the cubes in the subdivision by ¢. Thus the number of distinguishing bits is
bounded from above by dlogy(¢/s). O

For independent identically distributed points X1, ..., X, in R? let L and
S be defined as

L o= max{|Xi - Xjllwll <i.j <n}

S = min{||X; — Xi|leo|1 <i<n}.

For X;,...,X,, Lemma 2.6 yields
_ d .

This gives the following bound on the expected time to compute a space-filling
curve order.

Proposition 2.7. For independent identically distributed X1, . .., X, in R% and
the random wvariables L, S defined as above, a space-filling curve order can be
computed in expected time

E[log L] + E [log S™]
logn

O(n )

using forward radiz sort and assuming linear time bucketing.
Next we bound E [log L] and E [log S *1] from above by simpler expressions.

Proposition 2.8. Let Xi,...X,, in R? be independent identically distributed
random variables and let € > 0 be a real number with E[|| X1 — X2||5,] < oo and
E[|| X1 — X2||5&] < co. Then with linear time bucketing, the expected time for
computing a space-filling curve order of the points using forward radiz sort is
linear in n.

Proof. Tt suffices to prove E [log L] + E [log S™| € O(logn). First we have

EflogL] + E [logS™'] = é

(E[log L7] + E [log S7¢]) .
By Jensen’s inequality we get

E [log Lf] + E [log S™°] <logE[L*] +log E [S™¢] .
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For L, the maximum must be attained by one of the pairwise distances, thus

E[LF] < E| Y IXi—Xl5%

1<i<j<n

(5)El1% - Xali)

IN

By the same argument
E[57] < (n— DE [|X, - X,
Using these inequalities to bound E [log L] + E [log S~!] yields
E[log L] + E [log S7'] € O(logn).
]

If e < 1 then in the bound for E[L?] in the above proof the (3) can be
replaced by n— 1 by taking all distances to a single point and using the triangle
inequality. If € > 1 this remains true up to a constant (depending on ¢).

Observation 2.9. Let X1, Xy be independent identically distributed random
variables in R,

(a) B[l X1 — XallS] < 22 B[ Xa|5)-

(b) If the density function of X1 and Xa is bounded by a constant ¢ then
E[IX1 = Xa5] < 75 holds for e < d.

Proof. Observation (a) follows directly from the triangle inequality.
For Observation (b) we use that

E[[| X1 — X2||55] < max E [doo(z, X1)7¢] .
r€R4
For a point z € R¢

P [doo(z, X1) < 8] < ¢(25)%.

Therefore,

P [deo(z, X1)7° > ¢

P [doo(;c,Xl) > t_l/g}
< e/,

This yields
o
E [doo(z, X1)™] = / P[doo(x,Xl)n—l/ﬂdt
0

o0
< 29 / /e gy
0

2d¢
-1

o |,
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Proposition 2.7 shows for many common distributions that a space-filling
curve order can be computed in expected linear time. Proposition 2.8 and Ob-
servation 2.9 provide simple bounds for proving this for many distributions. We
use these bounds here for the uniform distribution and normal distribution for
which we will later analyze incremental constructions of Delaunay tessellation.

Corollary 2.10. For independent, normally distributed points in R¢ and for
independent, uniformly distributed points from a bounded region in R%, a space-
filling curve order of the points can be computed in expected linear time assuming
linear time bucketing.

Proof. For a uniformly distributed point X from a bounded region in R?, || X ||
is bounded by the side length of a bounding cube containing the region. Thus,
E[| X]|5] < oo for any € > 0. If V' is the volume of the region then the density
function of X is bounded by 1/V. Thus by Observation 2.9 the assumptions of
Proposition 2.8 are fulfilled.

Let X be normally distributed in R? with covariance matrix (Tij)1,<i,j<d-
Then

B[ X]]

A

E[1X]1]

d

= > E[X]]
=1
d

< > Vo
=1

where X(;) denotes the ith coordinate of X. The density function of X is

bounded by W’ Thus again the assumptions of Proposition 2.8 are

)
fulfilled. n

In a deterministic setting with integer coordinates bounded by a polynomial
in n, Proposition 2.7 directly yields a linear running time.

Corollary 2.11. For n points in R? with integer coordinates bounded by a
polynomial in n, a space-filling curve order of the points can be computed in
linear time assuming linear time bucketing.

2.3 Discrete Space-Filling Curves

In this section we discuss discrete space-filling curves, i.e., indexings of a grid.
In the geometric construction of space-filling curves we obtain mappings from
a discrete set of intervals to a discrete set of grid cells. This motivates the
definition of a discrete space-filling curve as a bijective map from {1,...,n"} to
{1,...,n}". Of particular interest are discrete space-filling curves that preserve
locality, either in the sense that nearby points in the linear space are mapped to
nearby points in the multi-dimensional, or that the pre-image of nearby points
in the multi-dimensional space are nearby in the linear space.
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If A= (aij)i7]—€{17wnr} measures the distance in the linear space and B =
(bij)ijeq1,..,.ny” measures the distance in the multi-dimensional space, then the
average locality of a discrete space-filling curve C can be expressed as

1 n” n"
2D sisbctc)

i=1 j=1

2.3.1 Optimizing Space-Filling Curves

We consider discrete space-filling curves optimized for proximity problems.

Quadratic Assignment Problem. By mapping {1,...,n}" back to {1,...,n"}
by a fixed bijective map, e.g., ¢: (k1,...,kr) — Z;Zl k;n?~1 the optimization
problem can be formulated as a Quadratic Assignment Problem(QAP) [26], i.e.,

T T

n n

Minimize Z Z az’j5¢>(i)¢(j)

i=1 j=1

over all permutations ¢ € S,r, where (Bij)i,je[n““} is defined by Bij = b1 1)

Therefore, techniques for quadratic assignment problems can be used to
optimize discrete space-filling curves. In the following we use algorithms from
the QAPLIB! [27], a quadratic assignment problem library, to optimize space-
filling curves. We applied heuristics for quadratic assignment problems to two
cases in two dimensions: the average path length Aj(,,) between neighboring
points weighted by the function f(m) and the expected tour length E(L) of the
Probabilistic Traveling Salesperson Problem on a grid.

Average Path Length. If points which are close to each other in space
should have similar indices, a possible quality measure is the average path
length. The path length between two grid points is the number of grid points
lying on the curve between them (including the last one). For instance the
path length is one if the points are adjacent in the traversal. We consider the
path length weighted by a function f: N — R. The average is taken over all
adjacent grid points. For the average path length Ay(,,) the matrix A is given
by ai; = f(|i — j|) and B is the adjacency matrix of the grid points.

The average path length has been considered for functions f,(m) = m?q.
For ¢ = 1 the class of optimal curves is known [64, 103, 107]. An example of an
optimal curve in shown in Figure 2.7(b). If ¢ — oo then the maximal distance
between two neighbors dominates all other terms. For two curves with equal
maximal distance the one with fewer occurrences of the maximal distance has
the smaller average path length. This yields that an optimal curve for ¢ — oo
is a diagonal curve [104] as shown in Figure 2.7(e). For ¢ > 1 it is known that
there is always an optimal curve that is ordered, i.e., for every grid cell the cells
above and to the right have a larger index [103].

Ihttp://www.seas.upenn.edu/qaplib/
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f(m)
n | Curve logm m m? m3
sim. ann. | 0.8077 | 4.2500 30.8036 212.8304
ant 0.8237 | 4.2232 | 30.5893 211.2143
8 | taboo 0.7872 | 4.2143 | 30.5893 211.1964
Hilbert 0.8206 | 5.0714 | 114.2143 4489.0179
Lebesgue | 1.0030 | 4.5000 51.0714 892.9286
sim. ann. | 1.5314 | 7.8542 | 117.3354 2061.7813
ant 1.1918 | 7.9104 | 115.3250 1596.9063
16 | taboo 1.2657 | 11.5813 | 115.0729 | 1586.9583
Hilbert 1.0051 | 9.9167 | 852.4500 | 134048.9583
Lebesgue | 1.2100 | 8.5000 | 355.8333 | 24685.5208

Table 2.2: Average path length A,y on an n x n grid.

Expected Tour Length. In its most general form an instance of the proba-
bilistic traveling salesperson problem consists of a traveling salesperson problem
instance together with a random variable for each vertex. The random variables
take values in {0,1} and determine whether a vertex must be visited or not.
The problem is to find a priori an order of the vertices which minimizes the
expected tour length. The probabilistic traveling salesperson problem was first
considered by Jaillet [80]. See [14] for an overview of results for the case that
the vertices are points in the Euclidean plane and are visited independently
with a probability p > 0. Here we also consider the case where all vertices are
visited with the same probability p but for points on a grid. For the expected
tour length E(L) we have a;; = p;—j, where p;_.; denotes the probability that
the point j is visited directly after the point 4.

with the indices 7 is visited and the point with the index j is visited next,
and B is the distance matrix of the grid points.

Experimental Results. The heuristics applied were simulated annealing [39],
taboo search [140] and an ant algorithm [141]. We used the implementations
of these heuristics by Eric Taillard in the QAPLIB. We compare the results
of these heuristics to the discrete space-filling curves given by the recursive,
geometric construction of classical space-filling curves.

The experimental results are summarized in Tables 2.3.1 and 2.3.1 and Fig-
ure 2.7. Table 2.3.1 shows experimental results for the average path length. The
first column shows the side length of the grid n. The second column names the
heuristic or recursive discrete space-filling curve used. The remaining columns
show the average path length for different choices of f. Table 2.3.1 shows ex-
perimental results for the expected tour length. The first column again shows
the side length of the grid and the second column the curve. The remaining
two columns show the expected tour length for p = 1/2,1/16.

Figure 2.7 shows drawings for some of the discrete space-filling curves in
Tables 2.3.1 and 2.3.1 and of a diagonal ordering. Figure 2.7(a—e) shows curves
for the average path length on an 8 x 8 grid. The curve shown in Figure 2.7(b)
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Figure 2.7: Discrete space-filling curves optimized for average path length (a—e)
and expected tour length (f-i).
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b
Curve 1/2 1/16
sim. ann. | 11.2745 | 1.3145
ant 11.2745 | 1.3145
taboo 11.2745 | 1.3145
Hilbert 11.7610 1.3158
Moore 11.3611 | 1.31521
Lebesgue | 14.1443 1.3225
sim. ann. | 128.9140 | 14.0977
ant 44.6264 | 13.8916
taboo 128.8940 | 14.0978
Hilbert 49.6593 | 14.1945
Moore 45.1102 | 14.0860
Lebesgue | 64.6978 | 15.0886

Table 2.3: Expected tour length on an n x n grid.

is optimal [103] for f(m) = m. The diagonal curve shown in Figure 2.7(e) is
optimal for m? for ¢ — co. For m? and m? an optimal curve is not known. For
the diagonal curve the average path length for f(m) = m3 is 217 for n = 8 and
1681.9375 for n = 16. Thus, the diagonal curve already compares well with the
best curves found. For m? and m?, Figure 2.7(c-d) show the best curves found
in our experiments. The curve in Figure 2.7(c) has some similarities with the
curves in Figure 2.7(b) and Figure 2.7(e). The curve in Figure 2.7(d) is already
more similar to the diagonal curve.

Figure 2.7(f-i) shows curves for the expected tour length for the probabilities
p=1/2 and p = 1/16. Figure 2.7(f) shows the curve computed for a 4 x 4 grid.
The curve has several edges of length v/2, thus for p = 1 it is not optimal. For
p = 1 the optimal curves are the closed curves with edges of length 1. The
remaining curves are on a 8 x 8 grid. The curve in Figure 2.7(g) for p = 1/2
has only edges of length 1 and /2. For small probabilities, the best discrete
space-filling curves calculated by the heuristics traverse the points in a nearly
angular ordering as the curve in Figure 2.7(h). For p — 0, tours through 4
points dominate the expected length since for tours through 2 and 3 points the
length of the tour does not depend on the order of the points. Thus, an ordering
is optimal for p — 0 if it minimizes the average perimeter of a (not necessarily
simple) 4-gon through 4 points.

For a comparison, Figure 2.7(i) shows a discrete counterpart to the Moore
curve. As a closed space-filling curve it is more suitable for the (probabilis-
tic) traveling salesperson problem than open curves like the Hilbert and the
Lebesgue curve. In the experiments for the probabilistic traveling salesperson
problem the Moore curve achieved good results (Table 2.3.1).

Eigenvalue Based Bounds. We considered bounding F(L) using eigenvalue
based bounds for the QAP [26] but only obtained weak bounds in this way. For
E(L), the coefficient matrices A, B are symmetric matrices with real entries.
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Figure 2.8: Subdivision of the triangular grid.

(a) Even side length (b) Odd side length

Figure 2.9: Recursive subdivision.

Let A = (A1,...,A,) denote the eigenvalues of A and p = (p1, ..., uy) denote
the eigenvalues of B. The simplest eigenvalue based bounds for the assignment
problem are (\, u)~ as lower bound and (A, u)™ as upper bound, where (\, j1)~
and (\, )" denote respectively the smallest and largest possible value of the
scalar product, allowing permutation of the coordinates.

2.3.2 Triangular Discrete Space-Filling Curve

So far we considered discrete space-filling curves that are defined on a square
grid. Next we present a recursive construction for a discrete space-filling curve
on a regular triangular grid. An indexing of a grid also gives an indexing of the
dual tiling. Thus, an application of the triangular discrete space-filling curve is
indexing hexagonal tiles. A different way to index hexagonal tiles would be the
use of tiling hierarchies [11].

A regular triangular grid can be obtained by successively subdividing a
triangle as shown in Figure 2.8. We assume that the grid is given in this
triangular form, i.e., with one vertex in the first row, two in the second, and so
on.

For the recursive construction the rules are shown in Figure 2.9(a-b). The
order of the discrete space-filling curve is specified by connecting all triangles
and specifying for each triangle the ingoing and outgoing vertex. We subdivide
into triangles of two different side lengths (measured in the number of grid
points per edge). The side length also determines the subdivision procedure.
There is one procedure for odd side length and one for even side length. An
example is shown in Figure 2.9(c).
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Conclusion

The emphasis of this chapter was on the fast computation of space-filling curve
orders. Using radix sort with lookup tables yields an algorithm which runs
in (expected) linear time as long as the quotient of the (expected) largest and
smallest point-to-point distance can be bounded by a polynomial in the number
of points. This is a weak condition as we also should by reformulating it for
random point sets. The linear running time was confirmed by our experiments.
This makes space-filling curve orders a good choice for spatially ordering a point
set if the computation time is crucial.






