Chapter 1

Introduction

Point sets occur in many applications, for instance as positions in space or in
space and time, and as building blocks of more complex geometric objects such
as curves and surfaces. For example, most digital data generated today includes
spatial information, e.g., a location in space [97]. In recent animated movies
hundreds of millions of points are used in the rendering process of a complex
scene [36].

More generally, points are used in most geometric algorithms. Examples of
classical application areas where geometric algorithms are used are computer
graphics and imaging, shape reconstruction, computer vision, geographical in-
formation systems, mesh generation, robotics, manufacturing and product de-
sign, molecular biology, astrophysics [33]. More recently, geometric aspects of
machine learning [129] and geometric algorithms on massive data sets [1, 7]
have received increasing attention. New applications of geometric algorithms
appear in emerging research areas such as sensor and ad-hoc networks [92, 149].

In geometric problems often large numbers of points need to be stored and
processed. For analyzing and efficiently handling large point sets, these need
to be organized. An efficient storage access depends on the data layout, i.e.,
on how the data is organized on memory. Organizing point sets in a geometric
data structure may reveal spatial relations of the points, in particular proximity
relations. Furthermore, point sets need to be organized as input to applications,
for further geometric processing, and analysis.

One possibility of organizing a point set is using space-filling curves [126].
For instance for accessing large data bases, a data layout based on space-filling
curves can be used to guarantee good geometric locality [88]. Consider for
example the schematic layout of a database in Figure 1.1(a). The stored data
is shown with their positions in space. The data is stored along a space-filling
curve. The space-filling curve is indicated in the figure by the solid line. The
dashed line indicates which points are grouped into one page. The advantage of
this data layout is that queries on the data are expected to need to access only
a few number of pages. Furthermore, this data layout adapts well to update.
A property of space-filling curves, which is important for the data layout, is
that points which are close on the curve are also close in space. This property
makes ordering the points along a space-filling curve applicable as heuristic for
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Figure 1.1: Geometric structures on point sets.

the traveling salesperson problem [122], i.e., the problem of finding the shortest
round-trip through a set of points. Further applications of space-filling curves
include mesh indexing [111] and processing raster data, e.g., images [147] and
terrains [94].

A geometric structure reflecting proximity relations of a point set is the
Voronoi diagram. Given a set of points in the plane, its Voronoi diagram is a
partioning of the plane into cells such that all points in a cell have the same clos-
est neighbor in the point set (see Figure 1.1(b)). This concept can be illustrated
by the post office problem. Given the locations of several post offices, find the
closest post office to a given position. The post office problem can be solved
efficiently for several queries by computing the Voronoi diagram of the post of-
fice locations and determining the cell of the Voronoi diagram in which a query
position lies. The concept of a Voronoi diagram has independently emerged in
several sciences, for instance in biology, physiology, chemistry, physics, crystal-
lography, metereology, geography, and mathematics [8]. A list of applications
from A (anthropology, archeology, astronomy) to Z (zoology) is given in [56].

In Figure 1.1(c) points with adjacent Voronoi cells are connected by an
edge. The resulting tessellation of the space is called Delaunay tessellation
or Delaunay triangulation. The Delaunay tessellation is an efficient way of
representing the combinatorial structure of the Voronoi diagram. Furthermore
the Delaunay tessellation has many useful properties.

A structure revealing topological properties of a point set is the flow com-
plex. The flow complex can be described as follows. Each point in the plane
flows away from its closest neighbors in the point set. This induces a partition
of the plane where a cell of the partition consists of all points that flow into
the same point. The partition is shown in Figure 1.1(d) with the direction of
flow indicated by arrows. Organizing a point set by computing its flow complex
is a first step for further analysis and processing of the point set. The flow
complex has been applied in surface reconstruction, shape segmentation, image
processing and molecular biology.

In this thesis, we are interested in the computation of the structures de-
scribed above: orders along space-filling curves, Delaunay tessellations, and
flow complexes. The Voronoi diagram can be easily computed from the Delau-
nay tessellation. We will use space-filling curve orders for constructing Delaunay
tessellations and use Delaunay tessellations for constructing flow complexes.
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Figure 1.2: Experimental running time of constructing a Delaunay tessellation
along space-filling curve orders.

For space-filling curve orders and Delaunay tessellations we will focus on
theoretically analyzing the running time of algorithms. Commonly, the run-
ning time of an algorithm is measured by a worst-case analysis. That is, an
upper bound on the running time depending on the number of points is de-
termined for the worst-possible point distribution. Even if the complexity of
the Delaunay tessellation of a point set is linear, as it is in two dimensions,
the running time of any algorithm for constructing it using standard operations
will be of order at least nlogn in the worst case, where n is the number of
points. Figure 1.2 shows the graph of the function xlogx as a dashed line. In
comparison, Figure 1.2 also shows the graph of the running time in experiments
of a Delaunay tessellation construction algorithm using space-filling curves for
surface data (a small sample of the surface data is also shown in the figure). The
graph suggests a linear running time. Besides a good performance in practice,
theoretical guarantees on its performance are of interest. However, a worst-case
analysis is not suitable to explain the linear running time in experiments.

An alternative to a worst-case analysis is an average-case analysis. In an
average-case analysis, the expected running time of the algorithm is determined
based on the distribution of the input points. For computing space-filling curve
orders and Delaunay tessellations (with space-filling curve orders), we will con-
sider both worst-case and average-case analyses but with an emphasis on the
average-case.

For the flow complex we will not be interested in the running times but
simply in an algorithm for computing it in arbitrary dimension. Previously the
flow complex has been studied only in two and three dimensions. For these
cases the known algorithms rely on the special structure of the flow complex in
these dimensions. We consider the fundamental geometric structure of the flow
complex and how it can be used to design an algorithm for computing it. In
turn this results in a deeper understanding of the topological structure of the
flow complex.
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Overview of results and structure of the thesis.

Chapter 2:

e Space-filling curves and space-filling curve orders of point sets are intro-
duced.

e Analysis of fast space-filling curve order computation in particular in the
average-case.

e For points on a grid, optimization of discrete space-filling curve orders
depending on the measure of locality.
Chapter 3:

e The Voronoi diagram, Delaunay triangulation, and incremental construc-
tion are introduced.

e Worst-case analysis of incremental constructions con BRIO in the general
framework of configuration spaces.

e Algorithm for constructing Delaunay triangulation using space-filling curves.

e Average-case analysis for uniform points in the plane.

Chapter 4:
e Average-case analysis using a different counting scheme than in Chapter 3.

e Analysis is applied to uniform points in higher dimensions and normally
distributed points in the plane.

e Experimental evaluation of the algorithm on various point distributions.

e Analysis of a further algorithm for constructing the Delaunay tessellation
based on nearest neighbor search in higher dimensions.

Chapter 5:
e The flow complex is introduced.
e Analysis of properties of the flow complex.

e A general algorithm for computing the flow complex in any dimension.

Chapter 6:
e Flow shapes are introduced.

e Proof of the homotopy equivalence of union of balls and flow shapes.



