
 

 
 

 
 

Luminescent conjugated oligothiophenes  

as diagnostic tools and potential pharmacophores  

in Alzheimer´s disease 

 

 

 

Inaugural-Dissertation  

to obtain the academic degree 

Doctor rerum naturalium (Dr. rer. nat.) 

 

submitted to the Department of Biology, Chemistry and Pharmacy 

of Freie Universität Berlin 

 

by 

Susann Handrick 

from Räckelwitz 

 

2014 



 

 
 

 

 

The present dissertation was prepared from June 2010 to April 2014 under the 

direction of Prof. Dr. med. Frank L. Heppner and  

supervision of Stefan Prokop, MD  

at the Department of Neuropathology, Charité – Universitätsmedizin Berlin. 

 

 

 

 

 

 

 

1st Reviewer:  Prof. Dr. med. Frank L. Heppner 

2nd Reviewer:  Prof. Dr. Fritz G. Rathjen 

 

 

date of defence: 29.09.2014 



 

 

 

 

 

 

 

 

Life is not about waiting in the storm to pass, 

it is about learning to dance in the rain. 



 

 

Acknowledgment 

First and foremost I want to thank Prof. Dr. med. Frank L. Heppner for his support and for 
giving me the opportunity to do my thesis in his department.  

I want to thank Prof. Dr. Fritz G. Rathjen to review my thesis. I also thank the members of the 
promotion committee to evaluate my thesis. 

My special thanks go to Stefan Prokop, MD for his guidance, supervision and scientific 
support during my thesis. I am also grateful to have given this very interesting project. His 
perpetual enthusiasm in scientific research motivated me during the last years a lot. In 
addition, I would like to thank him for the constructive comments and discussions to sum up 
my thesis. 

Further, I want to thank all collaborators on the EU project LUPAS for motivating scientific 
discussions during our biannual meetings. Special thanks go to all direct collaborations 
including the Linköping University in Sweden, the Université Claude Bernard Lyon 1 in 
France, the Norwegian University of Science and Technology in Norway and to the company 
Genovis AB in Sweden. I want to express my sincere gratitude to Prof. Per Hammarström, 
PhD, K. Peter R. Nilsson, PhD and Sofie Nyström, PhD who enabled my research visit at the 
Linköping University to perform the spectral analyses within my project. I enjoyed working at 
the Linköping University in December 2012 a lot. 

The financial support provided from the “Sonnenfeld Stiftung” for the finalization of this 
project is greatly appreciated. 

I would like to thank all the current and previous members of the Department of 
Neuropathology at the Charité – Universitätsmedizin Berlin for the great working 
environment. Especially, I would like to thank Carola and Gordon for reading this thesis and 
giving me constructive criticism. I loved to spent my days and work at the Department of 
Neuropathology together with my colleagues and friends Josi, Gordon, Carola, Alex D., Alex 
H., Steffi, Kelly and Adnan. Remembering the fruitful and stimulating discussions and also 
fun times will always put a smile on my face. 

In this line, I would like to thank some very special persons of my privat life who supported 
me throughout my thesis and have made my life so colorful. Sophie, Sarah, Josi and my sister 
Rony carried me through all phases of this thesis, listened patiently, always encouraged and 
supported me. Furthermore I am grateful to have friends like Luisa, Mathilde, Clemens, 
Diana, Jule and Tim, who carried me with love and trust through the last years. 

Najwutrobniši dźak chcu tež mojimaj staršimaj wuprajić. Dołhož móžu myslić, staj wój mje 
bjez wuměnjenjow při přesadźenju mojich sonow podpěrałoj. Sym wamaj tež z cyłeje 
wutroby dźakowna, zo sym stajnje lubje doma witana a zo mje lubujetaj. Přerady přijědu 
domoj, tež dokelž wěm, zo zamóžeće mje w kóždej situaciji popadnyć a znowa motiwěrować. 
Za wšitko to sym wamaj njesměrnje dźakowna! 



 

 

Table of contents 

List of abbreviations ................................................................................................................ 1 

1.  Introduction ...................................................................................................................... 3 

1.1  Dementia and neurodegenerative diseases ......................................................................... 3 

1.2  Alzheimer´s disease .............................................................................................................. 5 
1.2.1  Epidemiology and genetics of Alzheimer´s disease ........................................................................ 5 

1.2.2  Clinical symptoms and pathological alterations of Alzheimer´s disease ......................................... 5 

1.2.3  Treatment of Alzheimer´s disease ................................................................................................... 9 

1.2.4  Diagnostics of Alzheimer´s disease ............................................................................................... 10 

1.2.5  Alzheimer´s disease mouse models ............................................................................................... 13 

1.3  Luminescent conjugated oligothiophenes as novel amyloid binding agents ................. 14 

1.4  Aims and hypotheses of the thesis .................................................................................... 17 
1.4.1  LCOs as in vivo imaging tracer for detecting cerebral Aβ deposits in Alzheimer´s disease .......... 17 

1.4.2  Effect of LCOs on Alzheimer´s disease pathology in vivo ............................................................ 18 

2.  Material and Methods .................................................................................................... 20 

2.1  LCOs, LCO derivatives and LCO-MNPs ........................................................................ 20 

2.2  In vivo manipulations in mouse models ............................................................................ 22 
2.2.1  Alzheimer´s disease mouse model APPPS1 .................................................................................. 22 

2.2.2  Genotyping of APPPS1 mice ........................................................................................................ 23 

2.2.3  Intravenous and intraperitoneal applications in APPPS1 mice ..................................................... 25 

2.2.4  Blood sampling from APPPS1 mice ............................................................................................. 25 

2.2.5  Euthanasia and organ sampling ..................................................................................................... 26 

2.3  Histology ............................................................................................................................. 27 
2.3.1  Cutting of tissue ............................................................................................................................ 27 

2.3.2  Staining of tissue ........................................................................................................................... 28 

2.3.2.1  Hematoxylin and eosin staining ........................................................................................... 28 

2.3.2.2  Amyloid stainings ................................................................................................................ 28 

2.3.2.3  Immunohistology ................................................................................................................. 29 

2.4  Quantitative analyses of cerebral free floating sections ................................................. 31 
2.4.1  Quantification of area covered by a specific staining .................................................................... 31 

2.4.2  Counting Aβ plaques ..................................................................................................................... 32 

2.4.3  Aβ plaque size distribution analysis .............................................................................................. 32 

2.5  Biochemical analyses of cerebral Aβ burden ................................................................... 33 
2.5.1  Extraction of cerebral Aβ by homogenization of frozen hemispheres ........................................... 33 



 

 

2.5.2  Biochemical quantification of cerebral Aβ by an electroluminescence linked immunosorbent 

assay system .................................................................................................................................. 33 

2.5.3  Biochemical quantification of cerebral Aβ by SDS-polyacrylamid gel electrophoresis and Western 

Blotting .......................................................................................................................................... 34 

2.6  Spectral imaging of Aβ plaques after pFTAA and hFTAA co-staining ......................... 35 
2.6.1  Fluorescence microscopy .............................................................................................................. 35 

2.6.2  Confocal microscopy ..................................................................................................................... 36 

2.7  Electrophysiological measurements in the CA1 region of hippocampal slices ............. 36 
2.7.1  Generation of hippocampal slices ................................................................................................. 36 

2.7.2  Long term potentiation in the hippocampal CA1 region ............................................................... 36 

2.7.3  Paired pulse facilitation in the hippocampal CA1 region .............................................................. 37 

2.8  Microscopy .......................................................................................................................... 37 

2.9  Magnetic resonance imaging and intracranial pressure measurement ......................... 39 

2.10  Statistical analyses ............................................................................................................. 39 

3.  Results ............................................................................................................................. 40 

3.1  Efficient labeling of Aβ deposits with pFTAA on tissue sections and in vivo ................ 40 
3.1.1  Labeling of Aβ deposits in murine and human tissue samples ...................................................... 40 

3.1.2  In vivo labeling of cerebral Aβ deposits in the transgenic Alzheimer´s disease mouse model 

APPPS1 ......................................................................................................................................... 45 

3.1.2.1  Intravenous versus intraperitoneal pFTAA application ........................................................ 45 

3.1.2.2  Titration of pFTAA dosage for in vivo application in APPPS1 mice ................................... 49 

3.1.2.3  Time course of pFTAA in vivo binding to cerebral Aβ plaques ........................................... 51 

3.1.2.4  Histological analyses of peripheral organs after short term pFTAA application ................. 53 

3.2   LCOs coupled to magnetic nanoparticles as novel MRI contrast agents for diagnostics 

of Alzheimer´s disease ........................................................................................................ 59 
3.2.1  Staining of murine brain tissue with LCO derivatives and LCO-MNPs ....................................... 59 

3.2.2  Investigation of LCO derivatives and LCO-MNPs for blood brain barrier crossing after peripheral 

application ..................................................................................................................................... 67 

3.2.3  Summary of MRI results after short term application of LCO-MNPs to APPPS1 mice ............... 80 

3.2.4  Summary of LCOs as novel MRI contrast agents for diagnostics of Alzheimer´s disease ........... 82 

3.3  Long term pFTAA treatment of young experimental animals ....................................... 83 
3.3.1  Experimental setup of long term pFTAA treatment of young experimental animals .................... 83 

3.3.2  Monitoring toxic side effects during and after long term pFTAA treatment of young experimental 

animals .......................................................................................................................................... 84 

3.3.2.1  Weight gain of young experimental animals during long term pFTAA treatment ............... 84 

3.3.2.2  Blood analyses during and after long term pFTAA treatment of young experimental animals 

  ............................................................................................................................................. 86 



 

 

3.3.2.3  Postmortem screening of peripheral organs after long term pFTAA treatment of young 

experimental animals ................................................................................................................ 91 

3.3.3  Histological analyses of cerebral sections after long term pFTAA treatment of young experimental 

animals .......................................................................................................................................... 98 

3.3.3.1  Quantification of cerebral Aβ plaque burden by conventional amyloid stainings ............... 99 

3.3.3.2  Quantification of cerebral Aβ plaque burden by immunohistological stainings ................ 101 

3.3.3.3  Spectral analyses of Aβ plaques after long term pFTAA treatment ................................... 105 

3.3.3.4  Quantification of dystrophic neurites around cerebral Aβ plaques .................................... 109 

3.3.3.5  Histological analyses of neuronal loss in distinct cerebral regions ..................................... 110 

3.3.3.6  Histological analyses of cortical gliosis .............................................................................. 111 

3.3.4  Biochemical analysis of cerebral Aβ burden after long term treatment of young APPPS1 mice . 114 

3.3.4.1  Detection of cerebral Aβ amounts by MSD 6E10 assay and by SDS-polyacrylamid gel 

electrophoresis and Western Blotting ................................................................................. 114 

3.3.4.2  Impact of pFTAA on Aβ extraction from brain tissue ........................................................ 124 

3.3.5  Summary of long term pFTAA treatment in young experimental animals .................................. 129 

3.4  Functional impact of short term pFTAA treatment in aged experimental animals ... 129 
3.4.1  Hippocampal long term potentiation measurements in young and aged APPPS1 versus WT mice .. 

  ..................................................................................................................................................... 130 

3.4.2  Short term pFTAA treatment of aged experimental animals ....................................................... 131 

4.  Discussion ...................................................................................................................... 137 

4.1  LCOs as in vivo tracer for detecting Aβ in Alzheimer´s disease ................................... 137 

4.2  Effect of LCOs on Alzheimer´s disease pathology in vivo ............................................ 143 
4.2.1  Effect of pFTAA on Aβ plaque pathology in vivo ....................................................................... 143 

4.2.2  Effect of pFTAA on Aβ oligomer toxicity in vivo ....................................................................... 146 

4.2.3  Conclusions of peripheral pFTAA treatment in APPPS1 mice ................................................... 147 

5.  Zusammenfassung ........................................................................................................ 149 

6.  Abstract ......................................................................................................................... 151 

7.  References ..................................................................................................................... 153 

8.  List of publications ....................................................................................................... 160 



   
 

1 
 

List of abbreviations 

Aβ   Amyloid-β 
aCSF   Artificial cerebrospinal fluid 
AD   Alzheimer´s disease 
ALT   Alanine aminotransferase 
APP   Amyloid precursor protein 
APPPS1 AD transgenic mice carrying the Swedish APP and the presenilin 1 

mutation L166P 
AST   Aspartat aminotransferase 
BBB   Blood brain barrier 
CAA   Cerebral amyloid angiopathy 
CERAD  Consortium to Establish a Registry for AD 
CP   Conjugated polymer 
CSF   Cerebrospinal fluid 
ddH2O   Double-distilled water 
DLB   Dementia with Lewy bodies 
DNA   Desoxyribonucleic acid 
dpi   Days post initial injection 
FA   Formic acid 
FAD   Familial Alzheimer´s disease 
FDG-PET   Fluorodeoxyglucose positron emission tomography 
FeO   Iron oxide 
fEPSP    Field excitatory postsynaptic potential 
FTD   Frontotemporal dementia 
GdF3   Gadolinium fluoride 
GLDH   Glutamate dehydrogenase 
H&E   Hematoxylin and eosin 
HFS   High frequent stimulation 
hFTAA  Heptameric formyl thiophene acetic acid 
i.c.   Intracranial 
ICP   Intracranial pressure 
i.p.   Intraperitoneal 
i.v.   Intravenous 
LCOs   Luminescent conjugated oligothiophenes 
LCPs   Luminescent conjugated polymers 
LOAD   Late-onset Alzheimer´s disease 
LTP   Lon term potentiation 
MCH   Mean corpuscular hemoglobin 
MCHC   Mean corpuscular hemoglobin concentration 
MCV   Mean corpuscular volume 
MCI   Mild cognitive impairment 
MNPs   Magnetic nanoparticles 
MRI   Magnetic resonance imaging 
n   Number of subjects per group 



   
 

2 
 

NFTs   Neurofibrillary tangles 
NPs   Nanoparticles 
NTNU   Norwegian University of Science and Technology 
PBS   Phosphate buffered saline 
PCR   Polymerase chain reaction 
PEG   Polyethylene glycol 
PET   Positron emission tomography 
PFA   Paraformaldehyd 
pFTAA  Pentameric formyl thiophene acetic acid 
PiB   Pittsburgh compound B 
PPF   Paired pulse facilitation 
PrP   Prion protein 
PSEN   Presenilin 
p-tau   Phosphorylated tau 
RFU   Relative fluorescence unit 
rpm   Revolutions per minute 
RT   Room temperature 
SAD   Sporadic Alzheimer´s disease 
SDS   Sodium dodecyl sulfate 
SDS-PAGE  SDS-polyacrylamid gel electrophoresis 
SMAβBA´s   Small molecule Aβ-binding agents 
TAE   Tris-acetate-EDTA 
TBS   Tris buffered saline 
TBS-T   Tris buffered saline containing 1 % triton X-100 
TEG   Triethylene glycol 
TEM   Transmission electron microscopy 
ThS   Thioflavin S 
ThT   Thioflavin T 
Tris   Tris(hydroxymethyl)-aminomethan 
t-tau   Total tau 
WB   Western Blotting 
WT   Wildtype mice 
wpi   Weeks post initial injection 
 



Introduction 

3 
 

1. Introduction 

1.1 Dementia and neurodegenerative diseases 

Dementia represents a syndrome of impaired cognition and behavior caused by brain 

dysfunction, severe enough to interfere with daily life1. Symptoms of dementia vary greatly 

and include impairment of the ability to acquire and remember new information as well as 

restricted visuospatial abilities and language functions. Demented patients show limitations in 

reasoning and handling of complex tasks, reveal changes in personality and behavior 

including apathy, loss of drive and empathy or social withdrawal2. Advanced age is the 

greatest risk factor for dementia (Tab. 1) whereas female elderlies reveal a higher prevelance 

of dementia than males3. 

 
Table 1: The international prevelance rate of dementia is plotted against increasing age groups 

Source: Alzheimer´s Disease International (2009). World Alzheimer Report. 

Prevalence of dementia 

Age group  International prevelance rate 

60 - 64  1.3 % 

65 - 69  2.2 % 

70 - 74  3.8 % 

75 - 79  6.5 % 

80 - 84  11.6 % 

85 - 89  20.1 % 

90 +  41.5 % 

 

The term neurodegeneration defines a progressive loss of structure and function of neurons, 

causing ultimately neuronal death4. Abnormal aggregation of misfolded proteins characterizes 

the majority of neurodegenerative disorders. Dementias associated with protein misfolding (so 

called proteopathies) include Alzheimer´s disease (AD), dementia with Lewy bodies (DLB), 

frontotemporal dementia (FTD) or Creutzfeldt-Jakob disease. In contrast, examples for non-

proteopathic dementias, which do not exhibit major deposits of misfolded proteins, are 

vascular dementia, normal pressure hydrocephalus, subdural hematomas, brain tumors or 

infections for example with the human immunodeficiency virus or herpes simplex viruses. 

The most common type of dementia is AD, which accounts for an estimated 54 % of all cases 

worldwide. DLB, FTD and mixed-dementias (most commonly AD associated changes and 



 

vascular

dementi

 

Figure 1
three sub
prevalenc
2011, Do
 

The un

respons

in the b

are gene

contain 

differen

histopat

fibrils 

intraneu

Parkinso

distingu

Despite 

knowled

causing 

novel th

 

r lesions) c

ia cases (Fig

: Worldwide 
btypes: i) AD,
ce rate. Adapte
ve Medical Pr

nderlying c

ible for me

brain accom

erally irrev

insoluble p

nt proteins6.

thological h

and hyper

uronal inclu

on´s diseas

uished by th

 significant

dge on the

 these prote

herapeutic a

combined m

g. 1)5. 

subtypes of 
, ii) FTD, DL
ed with permi
ress. 

ause of di

emory, judg

mpanying at

ersible. Cha

protein fibri

. Extracellu

hallmarks o

rphosphory

usions kno

e and DLB

he extracell

t advances i

e initiation 

eopathic neu

approaches d

make up 30

late onset dem
LB, mixed-dem
ission from Gr

ifferent typ

ement and 

typical prot

aracteristic 

ils that shar

ular plaques

f AD brain

ylated tau 

own as Le

B8. Prion dis

lular deposi

in the under

of protein 

urodegenera

difficult. 

Introduction

4 

0 % and v

mentia (≥ 65
mentia and iii

Grand et al., J M

pes of dem

movement.

tein deposit

atypical ce

re similar m

s and intrac

s consist fo

proteins7, 

ewy bodies

seases as in

ition of β-sh

rstanding of

misfolding

ative diseas

n 

vascular dem

years). Late 
i) vascular de
Multidiscip H

mentia is b

. The perma

tion in man

erebral prote

morphologic

cellular neu

or example 

whereas 

s and Lew

nfectious ne

heet rich pr

f the nature 

g and sprea

ses is lackin

mentia acco

onset dement
ementia, whic

Healthc, 2011, 4

brain cell d

anent and p

ny neurodeg

ein deposits

al features 

urofibrillary

of aggregat

α-synuclein

wy neurites

eurodegener

rion protein

of deposite

ad of amyl

ng, making 

ounts for 1

 
tias are differe
ch occur with 
4, 125-47. Co

damage in 

progressive 

generative d

s, termed am

but compri

y tangles (N

ted amyloid

n accumul

s that char

rative disor

n (PrP) agg

ed proteins, 

loidogenic 

the develop

16 % of 

entiated in 
a distinct 

opyright © 

regions 

changes 

disorders 

myloids, 

ise many 

NFTs) as 

d-β (Aβ) 

lates in 

racterize 

rders are 

regates9. 

detailed 

proteins 

pment of 



Introduction 

5 
 

1.2 Alzheimer´s disease  

1.2.1 Epidemiology and genetics of Alzheimer´s disease 

Most cases of AD, the leading cause of dementia, are sporadic (SAD or late-onset AD 

(LOAD)) with unknown causes and appear at ages above 65 years, while only 1-10 % account 

for the familial or inherited form of AD (FAD or early-onset AD). The prevalence rates for 

AD rise exponentially with age and double every five years after the age of 65 years10. 32 % 

of people age 85 and older are affected11, showing that advancing age is the greatest risk 

factor for SAD. The prevalence of AD in Germany is estimated to be as high as 1.2 million 

cases12; worldwide 24 million people are affected and 4.6 million new cases arise every 

year13. Due to the considerable aging of society in first world countries, the frequency of AD 

is expected to double every 20 years until 204014, which implicates a tremendous cost burden 

on the public health care system in the future.  

SAD is influenced by genetic variants combined with life exposure factors. The high-risk 

allele ε4 of apolipoprotein E represents the strongest common genetic variant for typical 

LOAD15. Recently also a single-nucleotide polymorphism in the gene encoding the triggering 

receptor expressed on myeloid cells 2 (TREM2) was associated with AD16,17. Further factors 

that increase the risk of SAD are cardiovascular diseases, smoking, hypertension, type II 

diabetes, obesity or traumatic brain injury. In contrast, leisure activity, mediterranean diet and 

physical activity are known protective factors reducing the risk of AD18. Inherited cases of AD 

are caused by rare mutations in one of three genes, which are most often inherited in an 

autosomal dominant pattern. These genes are i) the amyloid precursor protein (APP) on 

chromosome 21, ii) presenilin 1 (PSEN1) on chromosome 14 and iii) presenilin 2 (PSEN2) on 

chromosome 1. Mutations in these three genes lead to an increased production of the Aβ 

peptide, triggering its cerebral extracellular aggregation and deposition into Aβ plaques, an 

event believed to start the pathogenic cascade in AD19.  

 

1.2.2 Clinical symptoms and pathological alterations of Alzheimer´s disease 

Humans affected by AD experience initially a mild memory loss and show difficulties in 

remembering names or recent events. Early symptoms, including problems with memory, 

apathy and depression, usually develop slowly and get worse over time. Later symptoms 

include impaired judgment, disorientation, confusion, behavioral changes, and problems with 

speaking, swallowing, and walking11. 
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stabilizing microtubules28. Pathological hyperphosphorylation of tau leads to a detachment of 

tau proteins from microtubules and to a subsequent intracellular mislocation. These events 

cause the typical intraneuronal aggregate formation and deposition. 

According to the amyloid cascade hypothesis19, accumulation of Aβ in the brain, caused by an 

imbalance between Aβ production and clearance, is the primary force driving AD 

pathogenesis. Mutations identified in FAD patients promote cerebral Aβ production by 

favoring proteolytic processing of APP by β- or γ-secretase and/or increase the likelihood of 

self-aggregation of Aβ peptides into amyloid fibrils29. These processes strongly support the 

amyloid hypothesis as a pathogenetic concept for AD19. 

Aβ peptides, the main component of cerebral Aβ plaques mainly consist of 36-43 amino acids 

and originate from the amyloidogenic processing of APP. Soluble Aβ is constitutively 

produced by a variety of cell types and is known to be a normal component of human 

biological fluids30. APP as the precursor of the Aβ peptide is naturally processed by three 

proteases. The generation of Aβ peptides within the amyloidogenic pathway requires 

sequential enzymatic cleavage of the membrane-anchored β-secretase BACE1 (beta-site 

amyloid precursor protein cleaving enzyme 1) and the γ-secretase, a protein complex with 

PSEN1 or PSEN2 at its catalytic core (Fig. 4a). In contrast, processing by α- and γ-secretase 

mediates the non-amyloidogenic pathway31 (Fig. 4a), which is predominant under normal 

circumstances. Aβ peptides spontaneously self-aggregate into several physical forms 

including soluble oligomers (2-6 peptides), intermediate assemblies or grow into larger fibrils, 

which form the characteristic Aβ plaques (Fig. 4b). Aβ42 is known to be the most aggregation 

prone and damaging Aβ species32 and soluble Aβ oligomers are believed to be the main toxic 

species causing synaptic dysfunction, neuronal cell death and cognitive impairment in  

AD33–35. In human AD brains the concentration of soluble Aβ species correlates better with 

synaptic loss and cognitive decline than the number of senile plaques36,37.  
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immunotherapy, approaches targeting the inhibition, reversion and elimination of Aβ 

aggregation have been shown to be successful therapeutic strategies reaching clinical trials. 

Four different strategies can be distinguished42: i) inhibition of amyloid formation by small-

molecules, ii) inhibition of Aβ aggregation by small rationally-designed peptides, iii) use of 

amyloid-binding proteins and agents, which block the Aβ protein interaction and iv) clearance 

of misfolded Aβ proteins by immunotherapy. Small molecules like the amyloid binding dyes 

Congo red, methoxy-XO4 and other sulfonated dyes were shown to inhibit Aβ toxicity and to 

prevent Aβ fibrillogenesis in vitro43–45. The cationic surfactant hexadecyl-N-

methylpiperidinium bromide, a small molecule as well, inhibits the aggregation of Aβ 

peptides probably by binding to regions of the peptide necessary for the self-assembly46. 

Interestingly compounds like curcumin and rosmarinic acid have also been reported to exhibit 

anti-amyloidogenic properties47. Most of the small Aβ binding molecules however, lack 

specificity, reveal unwanted side effects and their mechanism of action is unknown. 

Nevertheless, they have good drug-like properties, which enable an oral treatment and blood 

brain barrier (BBB) crossing48 that are most useful for further clinical applications. 

 

1.2.4 Diagnostics of Alzheimer´s disease 

In the majority of cases the diagnosis of AD can be made with high accuracy in the living 

patient1. The clinical workup for the diagnosis of AD in symptomatic individuals includes 

mental status testing, physical and neurological exams as well as the sampling of 

cerebrospinal fluid (CSF) for the analysis of specific AD biomarkers46. Additionally, distinct 

imaging techniques play a key role for the clinical diagnosis of AD. Neuropathological 

analyses by immunohistological Aβ and tau stainings may be performed postmortem to 

confirm the clinical diagnosis and detect accompanying pathological processes. Ideally a pre-

symptomatic diagnostical detection of amyloid pathophysiology in subjects at risk could be 

established. This would allow to treat patients before the progressive cerebral Aβ plaque 

pathology initiates subsequent neuronal loss and irreversible cognitive impairments. 

Three preclinical stages of AD (I. asymptomatic amyloidosis, II. amyloidosis and 

neurodegeneration, III. amyloidosis, neurodegeneration and subtle cognitive decline) and the 

stage of mild cognitive impairment (MCI) due to AD precede full blown AD dementia. The 

most prominent cognitive deficits in AD dementia are impaired learning and recall of recent 

information (amnestic presentation), deficits in word finding and spatial cognition (language 

and visuospatial presentation) as well as impairments in reasoning, judgment and problem 
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solving (executive dysfunction). Cognitive deficits are assessed by a number of 

neuropsychological tests. The Consortium to Establish a Registry for AD (CERAD) for 

example was established to standardize procedures for the evaluation and diagnosis of AD 

patients. Standardized instruments of CERAD to assess the various manifestations of AD 

include clinical- and neuro-psychology, neuropathology, a behaviour rating scale for 

dementia, family history interviews and the assessment of service needs. The clinical 

diagnosis of AD requires the exclusion of other neurological diseases including absence of 

core features of DLB, FTD or progressive aphasia49. 

Aβ42, total tau (t-tau) and phosphorylated tau (p-tau) levels in the CSF have been assessed as 

potential biomarkers for AD. Besides guiding clinical diagnosis, they can provide a useful tool 

to evaluate disease risk or prognosis, or to monitor therapeutic interventions50. Aβ42 levels 

function as a measure of cerebral Aβ plaque load. Increased t-tau levels generally reflect 

neuronal and axonal damage in neurodegenerative diseases. Higher p-tau levels are 

specifically associated with faster progression from MCI to AD and more rapid cognitive 

decline. With above 80 % sensitivity and specificity, AD patients can be discriminated from 

non-demented age matched control subjects by increased t- and p-tau and decreased Aβ42 

levels in the CSF. But these CSF biomarkers are not optimal to discriminate AD from other 

dementias and since they are measured in the CSF and require a lumbar puncture, their 

applicability is limited.  

Biomarker quantification in the peripheral blood has not been proven to be reliable so far. 

Combined multivariate analysis of several inflammatory and signaling proteins detected in the 

plasma was shown to be promising, however it needs further investigation to determine its 

diagnostic value51. Additionally, there is a number of micro ribonucleic acids under 

investigation, which were shown to correlate with AD and could be detected in biological 

fluids like CSF, blood or urine52,53. Recently also a set of ten lipids from peripheral blood 

reflecting cell membrane integrity were discovered and validated as biomarker for the 

detection of preclinical Alzheimer´s disease54. 

Besides the use of distinct biomarkers for the clinical diagnosis of AD, there are several 

functional and structural imaging techniques available. Fluorodeoxyglucose positron emission 

tomography (FDG-PET) represents a functional imaging technique using the glucose analog 

FDG, labeled with radioactive fluorine-18, to measure by glucose consumption the general 

metabolic activity of neurons in the brain tissue55,56. Magnetic resonance imaging (MRI) is 

used for structural imaging of the symptomatic AD brain and characteristic features like 

atrophy and shrinkage of the brain are visualized. But as FDG-PET, MRI can not detect 
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into extracellular Aβ plaques occurring in an age-dependent manner. Because the Aβ42 peptide 

is known to be the most aggregation prone species63, cerebral Aβ plaque formation is 

accelerated in models of cerebral amyloidosis and leads to an earlier and more severe 

cognitive decline, when this peptide is preferentially cleaved from the precursor APP64,65 (for 

example the APPPS1 mouse model).  In contrast, elevated levels of Aβ40 drive the formation 

of a cerebral Aβ pathology in the AD mouse models Tg2576 and APP2366, leading to distinct 

properties of the pathological deposits. Aβ plaques in AD mouse models reveal a similar 

structure to those found in human brains – initially present diffuse plaques, consisting mainly 

of Aβ42, develop to dense Aβ42 cores, surrounded by smaller Aβ assemblies and non-Aβ 

components like α-synuclein or ubiquitin67. Tau pathology with NFTs containing 

hyperphosphorylated tau proteins, which is characteristic for human AD could be reproduced 

only in single mouse models. The majority of models develops only hyperphosphorylated tau 

containing dystrophic neurites and do not exhibit NFTs68. But many AD mouse models reveal 

memory impairments and cognitive deficits as well. Although none of the current existing 

models fully reproduces the complete spectrum of the human disease, critical aspects of AD 

pathology and disease processes can be experimentally recapitulated69. Experimental research 

in these mouse models has helped to better understand basic mechanisms of disease 

pathogenesis and has fueled novel treatment strategies, some of which are currently in late 

stages of clinical trials. 

 

1.3 Luminescent conjugated oligothiophenes as novel amyloid binding agents 

Luminescent conjugated oligothiophenes (LCOs) are a novel class of conformation-sensitive 

optical probes for the selective and specific staining of amyloids. LCOs emit fluorescent light 

after excitation and behave like structural chameleons – when a LCO molecule binds to 

amyloid, the structure of the molecular LCO backbone changes and simultaneously the 

wavelength of emitted light, as a direct indicator of structural properties of the detected 

amyloid species, alters39. As derivatives of conventional amyloidotropic dyes like Congo red 

or ThT, which are sterically rigid, LCOs consist of a flexible thiophene backbone whose 

geometry modulates their emitted fluorescence. Emission spectra of distinct amyloid bound or 

unbound LCOs can be detected by various techniques (spectral imaging, two-photon imaging, 

fluorescence resonance energy transfer, PET) and used for identification, structural 

discrimination and characterization of different amyloid lesions. 
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These molecular amyloid binding agents originate from conjugated polymers (CPs), which 

are in use as bioimaging tools or biosensors that provide a direct link between spectral signals 

and different biological processes70. Besides to the detection of conformational changes of 

proteins, CPs are utilized as biosensors for the sensitive detection of genetic material (for 

example infectious diseases, single nucleotide polymorphisms) based i) on the effective 

energy transfer of CPs and/or ii) on conformational changes of CPs70. Two important classes 

of CPs are luminescent conjugated polymers (LCPs) and LCOs, both described to be suitable 

for the detection and monitoring of conformational changes in proteins as well39,71. In contrast 

to the smaller hydrophobic LCOs based on a pentameric thiophene scaffold (Fig. 7a), LCPs 

reveal high molecular weights (1500-11000 Da). They were proven useful for discrimination 

of morphologically distinct fibrillar deposits, but can not be utilized as in vivo amyloid 

imaging agents and do not detect pre-fibrillar amyloid assemblies39. Smaller LCOs reveal 

molecular weights, which range between 530 and 650 Da and showed under physiological 

conditions striking specificity for amyloids. Enhanced selectivity and specificity for protein 

aggregates is associated with an increased exposure of the hydrophobic thiophene rings due to 

less ionic side chain substitutions than LCPs. Some LCOs even crossed the BBB rather 

efficiently after a peripheral administration in AD transgenic mice.  

In numerous in vitro and in vivo studies analyzing amyloid, not only in the context of 

neurodegenerative diseases but also for example in the context of systemic amyloid 

deposition, LCPs and LCOs were described to be promising diagnostical tools. LCPs were 

shown to be a useful for the discrimination of several prion strains, causing for example 

bovine spongiform encephalopathy, sheep scrapie or chronic wasting disease. Besides the 

differentiation of several prion strains, which were not distinguishable immunohistologically, 

LCPs were shown to link PrP conformational features with distinct disease phenotypes in 

respect of clinical progression and infection rate. LCO spectroscopy was additionally shown 

to be a sensitive and powerful tool for the identification and characterization of distinct 

amyloid classes of systemic amyloidosis, which are described to be progressive and lethal, 

and which therapy depends on the identification of the deposited proteins72.  

Furthermore, LCOs were shown to differentiate between distinct conformational states of Aβ 

assemblies during in vitro fibrillization, as well as between heterogeneic Aβ deposits on 

murine AD brain section by spectral imaging71. Two types of plaques were identified on tissue 

sections of transgenic mice. Compact-core plaques composed of rigid dense amyloid cores 

were visualized and more abundant Aβ plaques were detected, revealing a compact center 

with a protruding diffuse exterior. By the simultaneous use of two LCOs (qFTAA and 
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AD before progressive Aβ plaque pathology causes irreversible neuronal loss, a reliable 

method for pre-symptomatic detection of amyloid pathophysiology in subjects at risk is a 

prerequisite.  But also for monitoring therapeutic effects of potential AD pharmacophores, 

appropriate imaging techniques as well as sensitive amyloid ligands are of high importance. 

The novel molecular amyloid binding agents LCOs were shown to label different Aβ 

assemblies with sensitivity and high specificity in vitro, on tissue sections and also in vivo. 

Interestingly LCOs readily crossed the BBB, which is known to limit the brain penetration of 

the majority of substances76, after peripheral application with high efficacy and labeled 

characteristic cerebral amyloid lesions in AD transgenic mice39. Here, the question arises if 

LCOs might also be utilized for in vivo diagnostic approaches in humans. Due to the flexible 

conformation and distinct optional side chain functionalities of the LCO backbone it is 

conceivable to couple these molecular amyloid markers to magnetic nanoparticles (MNPs) 

and thus enable amyloid imaging in humans using the non-invasive imaging technique MRI. 

Combined particles, consisting of an LCO and a MNP component (LCO-MNPs) would have 

the advantage to specifically bind cerebral Aβ plaques, which could be directly visualized by 

MRI. Therefore it was aimed to investigate within the present thesis, if LCO-MNPs show the 

same binding properties as uncoupled LCOs and still cross the BBB after peripheral 

administration in AD transgenic mice. Different facts argue that LCO-MNPs might pass the 

BBB after systemic administration. Several uncoupled, peripheral applied LCOs like pFTAA 

and hFTAA have been shown to cross the BBB readily and label cerebral Aβ plaques 

selectively and efficiently39,75. Also, distinct nanoparticles (NPs) and MNPs were described to 

cross the BBB after a systemic administration. In cancer research NPs target brain tumors in 

context of MR imaging in transgenic mice77, but also for drug delivery across the BBB, NPs 

are under investigation (Lockman et al., 2002). Due to these facts it is hypothesized in the 

present thesis that LCO-MNPs show the same binding properties as uncoupled LCOs and 

might pass the BBB following an intravenous (i.v.) injection in APPPS1 mice. LCO-MNPs 

could function as novel in vivo imaging tracer for the detection of cerebral Aβ deposits 

potentially also for human diagnostic AD approaches. 

 

1.4.2 Effect of LCOs on Alzheimer´s disease pathology in vivo  

Most but not all neurodegenerative diseases are proteinopathies and are associated with the 

pathological deposition of distinct aggregated proteins in the brain. Characteristic 

extracellular fibrillar plaques, deposited in brains of AD patients, consist of aggregated Aβ 
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peptides and are in accordance with the amyloid cascade hypothesis19 thought to be the 

driving force in AD pathology. Many therapeutic approaches of AD focus on inhibition of Aβ 

fibrillization and aggregation. Among other substances like small molecules or proteins as 

amyloid-binding agents48, amyloid specific dyes like Congo red or methoxy-XO4 revealed 

anti-amyloidogenic properties directed against Aβ fibrillization and aggregation43,44,79.  

Furthermore, LCPs, precursors of the conformation sensitive molecular amyloid dyes LCOs, 

were previously shown to reduce prion infectivity by binding and compacting PrP fibers in 

vitro. These PrP fibers are described to form characteristic pathological deposits in the brains 

of prion infected patients80. As known for the PrP, which propagates through elongation and 

breakage of PrP aggregates, cerebral amyloid lesions in AD seems to spread partially 

autonomous, whereby new amyloid seeds may arise, possibly driving further Aβ aggregation 

and the progression of AD pathology9,81. Since LCPs revealed preventive and therapeutic 

properties in prion diseases, and LCOs were discussed to possibly influence Aβ oligomer 

toxicity74, a potential effect of LCOs on cerebral AD pathology is conceivable. But, besides a 

possible beneficial effect of LCOs on Aβ pathology in AD, the binding of pFTAA to Aβ fibrils 

could also cause a fibril breakage which would increase further seeding of broken Aβ fibrils 

and possibly enhance the progression of AD pathology.  

It is hypothesized that a peripheral pFTAA treatment in the transgenic AD mouse model 

APPPS1 affects cerebral Aβ pathology in an either beneficial or detrimental manner. On the 

one hand an influence of peripheral applied pFTAA, which was shown to cross the BBB 

readily, on cerebral Aβ plaque pathology in APPPS1 mice in vivo was analyzed and on the 

other hand the impact of pFTAA on toxicity of pre-fibrillar Aβ species was investigated on a 

functional level in vitro. Besides the potential therapeutic usability, for a future diagnostic use, 

side effects of long-term administration of pFTAA in APPPS1 mice were determined 

simultaneously. 
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2. Material and Methods 

2.1 LCOs, LCO derivatives and LCO-MNPs 

LCOs (pFTAA, hFTAA) and LCO derivatives (4004, 4010, 4011. 4020, 4021) were kindly 

provided by the research group of K. Peter R. Nilsson, PhD (“Luminescent Conjugated 

oligothiophenes – Illuminating the Dark Matters of Biology and Pathology”), IFM-

Department of Chemistry, Linköping University, Sweden. pFTAA and hFTAA have been 

synthesized as described previously39,70. LCO-MNPs coupled to gadolinium fluoride (GdF3; 

4012, 4013, 5010, 5011, 5012) were kindly provided and synthesized in a collaboration with 

the Linköping University and the research group of Prof. Dr. Stéphane Parola (“Functional 

Materials and Photonics”) of the Laboratoire de Chemie ENS Lyon at the Ecole Normale 

Supérieure, Université Claude Bernard Lyon 1, France. Genovis AB, Sweden kindly provided 

the iron oxide (FeO) coupled LCO-MNP 4026 and the non-coupled control MNPs. In table 2 

and 3 LCOs, LCO derivatives and LCO-MNPs are listed, which were used for stainings of 

tissue sections and in vivo labeling experiments described in this thesis.  
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Lysis of biopsies 

1x lysis buffer: 10 mM Tris(hydroxymethyl)-aminomethan (Tris) hydrochlorid (Merck; pH = 9 
(adjusted with NaOH)), 50 mM potassium chloride, 0.5 % Nonidet P-40, 0.5 % 
Tween20 

Proteinase K stock: 15.6 mg/ml in 10 mM Tris (pH = 7.5 (adjusted with HCl/NaOH); Roche)  

Ear biopsies were incubated in 150 µl tail lysis buffer (1x) containing 0.1 mg/ml proteinase K 

overnight at 55 °C on a shaker. Next morning samples were incubated at 95 °C for 10 min to 

inactivate the proteinase K and subsequently centrifuged at 1,400 revolutions per minute 

(rpm) for 10 min. The supernatant was used for the PCR reaction. 

 

PCR approach 

Genotyping of transgenic mice was performed using primer pairs targeting a specific 

sequence of the APP transgene. The template DNA for the PCR approach was used undiluted 

from the lysis samples. The corresponding PCR reaction is listed in table 4 and was 

performed using a PCR cycler (Eppendorf) with PCR conditions depicted in table 5. 

 
Table 4: PCR reaction 

 [end] in 20 µl/tube µl per sample 
Template DNA  2 
RED master mix (Invitek)  10 
APP 5’ – GAATTCCGACATGACTCAGG [10 µM] 0.375 µM 0.75 
APP 3’ – GTTCTGCTGCTGCATCTTGGACA [10 µM] 0.375 µM 0.75 
Double-distilled water (ddH2O)  6.5 
Total  20 
 

Table 5: PCR profile 

 Temperatur Time Cycle 
Initial denaturation 94 °C 2 min 1x 
Denaturation 94 °C 30 s 

35x Annealing 58 °C 30 s 
Elongation 72 °C 30 s 
Final elongation 72 °C 5 min 1x 
Storage 8 °C unlimited 1x 
 

Agarose gel electrophoresis 

1x Tris-acetate-EDTA (TAE) buffer: 50x TAE buffer (Ultra Pur, DNA Typing Grade, Invitrogen) diluted 
in ddH2O 

2 % agarose gel:    2 % agarose (SeaKem® LE Agarose, Lonza) in 1x TAE buffer 
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hemisphere and a part of each sampled organ were fixed for two hours in 4 % 

paraformaldehyde (PFA, Herbeta) before transferred to 30 % aqueous sucrose for 

dehydration. The remaining third part of sampled organs was fixed for one week in 4 % PFA 

before dehydration in an ascending alcohol series over night (Thermo Scientific, ExcelsiorTM 

ES Tissue Processor). Subsequently dehydrated tissue was embedded in liquid paraffin using 

the Shandon Histocentre 3 Embedding Center (Thermo Scientific, Electron Corporation). 

After cooling and hardening paraffin embedded tissue blocks were used for further analyses 

on paraffin sections. 

 

2.3 Histology 

2.3.1 Cutting of tissue 

Free floating sections 

Cryoprotectant: 150 ml ethylene glycol (4.6 M final concentration, Sigma-Aldrich), 125 ml glycerine 
(2.6 M final concentration, Roth), 250 ml 0.1 M PO4 buffer 

   0.1 M PO4 buffer:  diluted from 0.4 M PO4 buffer in ddH2O  
0.4 M PO4 buffer:  76 mM disodium hydrogen phosphate (Merck), 316 mM 

monobasic sodium phosphate (Sigma-Aldrich) in ddH2O 

Tissue, which was dehydrated in 30 % sucrose, was subsequently embedded in tissue tec 

(Richard-Allan ScientificTM Neg-50TM Frozen Section medium, Thermo Scientific) and frozen 

down to -24 °C placed on a metal plate. Frozen tissue was cut via a cryostat (HM560, 

Microm) into 30 µm thick sections. Sections were stored at 4°C in 24-well plates until further 

processing, floating in cryoprotactant. 

 

Frozen sections 

Before frozen sections were cut using the cryostat, frozen tissue was transfered over night 

from -80 °C to -20 °C. 7 µm thick fresh frozen sections were mounted directly on glass cover 

slips (SuperFrost®, R. Langenbrinck) and stored at -20 °C until further use. 

 

Paraffin sections 

For generation of human paraffin sections, brain autopsies were performed following written 

consent for pathological examination according to the law of Berlin.  Following routine 

diagnostic neuropathological examination parts of the frontal cortex were obtained and used 

for sectioning and conventional as well as immunohistochemical stainings. This procedure 

was approved by the Charité ethics commission (EA1/320/13).  
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PFA fixed and in paraffin embedded human and murine tissue was cut via a microtom 

(Microm) into 5 µm thick sections, which were mounted directly on glass cover slips. After 

drying overnight at 37 °C and fixation of sections at 55 °C for 30 min in an incubator, sections 

were stored at RT until further processing. 

 

2.3.2 Staining of tissue 

2.3.2.1 Hematoxylin and eosin staining 

Matured hematoxylin: 3.3 mM hematoxylin (Merck); 1 mM sodium iodate (Merck, Germany); 0.12 M 
aluminium potassium sulfate dodecahydrate in ddH2O 

 Addition of 0.3 M chloral hydrate and 4.8 mM citric acid monohydrate 
Eosin: Eosin-Y (Brunschwig Chemie) 1:2 diluted in 70 % ethanol  

Addition of 2-3 drops absolut acetic acid 

Serial paraffin sections were cut from a paraffin block at 5 µm on a microtom and stained 

subsequently with hematoxylin and eosin (H&E). The hematoxylin staining colors nuclei of 

cells blue and is followed by a counterstaining with an alcoholic eosin solution, which stains 

eosinophilic structures (cytoplasm, keratin und erythrocytes) pink. Mounted paraffin sections 

were stained for 5 min with matured hematoxylin and differentiated subsequently for 10 min 

under running tap water. Afterwards sections were stained for 30 s in eosin and rinsed in 

ddH2O. For dehydration an ascending alcohol series, including the steps 70 %, 80 %, 96 % 

and 100 % ethanol, was prepared and passed through. Before covering slides using Roti®-

Histokitt II mounting medium (Roth), sections were treated twice with xylene (>98 %, Roth) 

for 1 min. 

 

2.3.2.2 Amyloid stainings 

pFTAA staining 

For staining procedures 1 mg/ml (1.4 mM) stock solution of pFTAA (MW = 704.7) was 

prepared in ddH2O and stored at -20 °C until needed. Working solutions were kept at 4 °C. 

Fresh staining solutions were made for each staining by diluting the working solution 1:500 in 

1x PBS (Dulbecco´s Phosphate Buffered Saline w/o Ca2+/Mg2+, Biochrom), resulting in a 

2.8 µM staining solution. Free floating sections (30 µm), stored at 4 °C in cryoprotectant, 

were washed three times in 1x PBS and incubated for 30 min in the 2.8 µM pFTAA staining 

solution. Afterwards sections were rinsed again (3x), mounted on a glass slide and covered 

using an aqueous mounting agent (Microscopy Aquatex, Merck). pFTAA stained sections 

were analyzed on the day after. 
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pFTAA/hFTAA co-staining 

For spectral imaging, performed at the Linköping University, Sweden, free floating section 

were co-stained with pFTAA and hFTAA (MW = 868.9 MW). For both optical probes 1 

mg/ml stock solutions were prepared in ddH2O. Three serial free floating sections per 

transgene positive animal were mounted and rinsed (three times in 1x PBS), before being 

stained simultaneously for 30 min with pFTAA and hFTAA (1:2 (2.8 µM pFTAA staining 

solution : 2.3 µM hFTAA staining solution)). Sections were rinsed three times again, covered 

with aqueous mounting agent and analyzed on the day after. 

 

Staining with LCO derivatives and LCO-MNPs 

LCO derivatives and LCO-MNPs with known LCO concentrations were diluted in 1x PBS to 

a final concentration comparable to a pFTAA staining solution of equal concentration. Since 

fluorescent intensities of pFTAA labeled Aβ plaques are known, pFTAA was used as 

reference. If the LCO concentration of specific LCO derivatives or LCO-MNPs was not 

known, a dilution series (for example LCO derivative 4021 – available in powder form) was 

prepared and compared to stainings using a distinct pFTAA dilution. Labeled sections were 

analyzed on the day after using fluorescence microscopy. 

 
Congo red staining 

Stock solution I:  0.5 M sodium chlorid in 80 % ethanol – preparation 24 h before use 
   Addition of 1 % sodium hydroxide before use  
Stock solution II:  Filtration of 8.6 mM Congo red in stock solution I 
   Addition of 1 % sodium hydroxide before use 

For the Congo red staining, free floating sections were rinsed three times with 1x PBS, 

mounted on a glass slide and differentiated under running tap water after counterstaining with 

matured hematoxylin (5 min, details see chapter 2.3.2.1). Afterwards sections were incubated 

for 20 min in stock solution I and subsequently for 45 min in stock solution II before rinsed 

two times in absolute ethanol, treated for 1 min with xylene and covered using Roti®-

Histokitt II mounting medium. 

 

2.3.2.3 Immunohistology 

10 mM citrate buffer: 1.9 % citric acid (stock: 0.1 M) and 8.2 % potassium citrate dihydrate (stock: 
0.1 M) in ddH2O (pH = 6 (adjusted with HCl)) 

Cerebral free floating sections were used for immunohistological labeling of Aβ deposits, 

microglia, astrocytes, neurons and p-tau aggregates. Some stainings required a distinct pre-
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treatment of the tissue, which optimized subsequent stainings (details see Tab. 6). Before 

incubating sections with primary antibodies overnight at 4 °C, they were rinsed 3x in 1x PBS 

and blocked for 1 h at RT with 10 % normal goat serum (AdB Serotec) in 1x PBS containing 

0.3 % triton X-100 (Sigma-Aldrich). To label Aβ deposits, sections were stained with two 

mouse anti-human Aβ antibodies: i) 4G8 - reactive to amino acid residues 17-24 in the mid 

region of the Aβ protein (Covance) or ii) 6E10 - reactive to N-terminal amino acid residues 1-

16 (Covance). Microglia were stained by using antibody Anti Iba1 (Wako Chemicals) and 

astrocytes by antibody GFAP (Glial Fibrillary Acidic Protein, Dako). P-tau deposits were 

stained by the use of antibody AT8 (Thermo scientific) and for the neuronal staining antibody 

NeuN (Chemicon) was utilized. Primary antibodies were diluted with 5 % normal goat serum 

in 1x PBS containing 0.3 % triton X-100. After rinsing the sections three times with 1x PBS 

to wash off excessive primary antibodies, they were incubated with species specific 

peroxidase coupled (POD goat anti mouse/rabbit) or fluorescent secondary antibodies (Alexa 

Fluor®, see Tab. 6). Secondary antibodies were diluted with 5 % normal goat serum in 1x 

PBS containing 0.3 % triton X-100 and sections were incubated for 1 h on a shaker at RT. 

Incubations with fluorescent secondary antibodies were performed light protected. After 

rinsing the sections three times with 1x PBS to wash off the secondary antibody, stainings 

using peroxidase coupled secondary antibodies were developed with liquid DAB (Dako, 

K3647) and counterstained with matured hematoxylin. For dehydration an ascending alcohol 

series, including the steps 70 %, 80 %, 96 % and 100 % ethanol, was prepared and passed 

through. Before covering slides using Roti®-Histokitt II mounting medium, sections were 

treated twice with 98 % xylene for 1 min. Immunohistological stainings using fluorescent 

secondary antibodies were mounted after rinsing with 1x PBS (3x) and counterstained with 

DAPI containing aqueous mounting medium (Fluoroshiled Mounting Medium with DAPI, 

abcam®). Until further microscopic analyses, sections stained with fluorescent secondary 

antibodies were stored light protected at 4 °C. 
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Table 6: Overview of primary and secondary antibodies used for immunohistological stainings  

Primary antibodies Company /article no. Dilution Pre-treatment 
4G8 

(host: mouse) 
Covance  

SIG-39220 1:1,000 None 

6E10 
(host: mouse) 

Covance  
Sig39320 1:1,000 None 

Anti Iba1 
(host: rabbit) 

Wako Chemicals  
019-19741 1:500 10 mM citrate buffer (pH = 6) 

30 min, 75 °C 

GFAP 
(host: rabbit) 

Dako  
Z0334 1:5,000 

quenching 
30 min, 1 % H2O2 

30 min, 0.5 % H2O2 
15 min, 1 % H2O2 

NeuN 
(host: mouse) 

Chemicon 
MAB377 1:2,500 None 

AT8 
(host: mouse) 

Thermo scientific 
MN1020 1:100 None 

Secondary antibodies Company/article no. Dilution  

POD anti-mouse Dianova 
115-035-003 1:300  

POD anti-rabbit Dianova 
111-035-003 1:300  

Alexa Fluor® 568 Goat 
Anti-Mouse IgG (H+L) 

abcam 
ab175473 1:300  

Alexa Fluor® 647 Goat 
Anti-Mouse IgG (H+L) 

Invitrogen 
A-21235 1:300  

 
 

2.4 Quantitative analyses of cerebral free floating sections 

2.4.1 Quantification of area covered by a specific staining 

Quantitative analyses of distinct parameters on cerebral sections were done using the Stereo 

Investigator system including an Olympus microscope BX53, the QImaging camera COLOR 

12 BIT, a stage controller MAC 6000 system and a Wide-Field Fluorescence Microscope 

Excitation Light Source (X-Cite® 120Q, Lumen Dynamics). For analyses the Stereo 

Investigator 64-bit software (MBF Bioscience) was used. 

Cortical Aβ plaque burden (assessed by Congo red, pFTAA, 4G8 and 6E10 stainings) and 

cortical area covered by dystrophic neurites surrounding Aβ plaques (AT8 staining) were 

quantified with the Area Fraction Fractionator method of the Stereo Investigator software. 10-

12 sections per staining were viewed on the Olympus BX53 microscope with a computer-

controlled motorized stage at low magnification (4x/0.32 N.A. Plan-Apochromat) and the 

entire cortical region per section was contoured onto a live computer image using Stereo 

Investigator software. The measurement of plaque covered area was performed at a higher 

magnification (10x/1.4 N.A. Plan-Apochromat). Area covered by Aβ or p-tau staining was 

quantified by setting the counting frame to 100x100 µm, the scan grid size to 300x500 µm 
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2.5 Biochemical analyses of cerebral Aβ burden  

2.5.1 Extraction of cerebral Aβ by homogenization of frozen hemispheres 

TBS buffer: 20 mM Tris, 137 mM NaCl (pH = 7.6) 
  Addition of 1 pellet protease inhibitor (Roche) per 10 ml Tris-buffered saline (TBS) buffer 
TBS-T buffer: TBS buffer containing 1 % triton X-100 
SDS buffer: 2 % Sodium dodecyl sulfate (SDS) in ddH2O 
Formic acid: 70 % formic acid (FA) in ddH2O 

Frozen hemispheres of experimental mice were homogenized (150 mg frozen tissue/1,500 µl 

homogenization buffer) according to the publication of Kawarabayashi et al.84 with slight 

modifications. Hemispheres were homogenized consecutively in i) TBS buffer containing 

protease inhibitors, ii) TBS-T buffer, iii) SDS buffer and iv) FA. Homogenization occured 

mechanically by consecutive passing the solution through a 2 ml syringe and cannulas with 

decreasing diameter (G 23, G 27 and G 30). Brain extracts were incubated 30 min on ice 

(except FA homogenate, which was incubated at RT) and centrifuged at 100,000 g for 1 h at 

4 °C. The supernatant was collected, aliquoted, snap frozen in liquid nitrogen and stored at -

80°C until further use, the pellet was re-suspended in subsequent buffers. Protein 

concentrations of each fraction were determined using the Quantipro BCA Protein Assay Kit 

(Pierce) according to the manufacturer protocol using a TECAN fluorescence plate reader 

(Tecan). 

 

2.5.2 Biochemical quantification of cerebral Aβ by an electroluminescence 

linked immunosorbent assay system  

1x Tris Wash Buffer:  10x Tris Wash Buffer (supplied) diluted in ddH2O 
1 % Blocker A Solution:  1 % bovine serum albumin in 1x Tris Wash Buffer 
Detection Antibody Solution: 2 % 50x SULFO-TAG 6E10 Detection Antibody and 1 % 100x Blocker G in 

1 % Blocker A Solution 
2x MSD Read Buffer T:  4x MSD Read Buffer T (supplied) diluted in ddH2O  

Aβ40 and Aβ42 concentrations in brain extracts of APPPS1 mice were determined with an 

electroluminescence linked immunosorbent assay system (MSD assay) using the MSD 96-

Well MULTI-SPOT® Human (6E10) Abeta Triplex Assay (MSD, Meso Scale Discovery). 96-

well plates, pre-spotted with Aβ peptide-specific capture antibodies against Aβ1-38, Aβ1-40 and 

Aβ1-42 were blocked for 1 h on a shaker (800 rpm) at RT with 1 % Blocker A Solution (150 

µl/well) and afterwards rinsed three times for 3 min with 1x Tris Wash Buffer (200 µl/well). 

Subsequently 25 µl of brain extracts (diluted 1:10 in 1 % Blocker A Solution) were incubated 

for 2 h on a shaker (800 rpm) at RT in a total volume of 50 µl/well together with the Detection 

Antibody Solution on the MSD MULTI-SPOT® 96-well 4-spot plate. The plate was washed 
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three times (for 3 min) with 1x Tris Wash Buffer (200 µl/well). Afterwards 2x MSD Read 

Buffer T (150 µl/well) was added and the plate was read immediately on the Sector Imager 

6000. In the detection process, the electrochemiluminescence of the SULFO-TAG® is 

captured by a CCD camera and quantified using the software MSD DISCOVERY 

WORKBENCH 2.0. Every sample was tested in duplicate and those with a coefficient of 

variance > 20 % were excluded from the analysis. Aβ concentrations were read from the 

standard curves. 

To analyze Aβ amounts in the plasma of APPPS1 mice, the MSD 96-Well MULTI-SPOT® 

Human/Rodent (4G8) Abeta Triplex Ultra-Sensitive Assay (MSD) was utilized. Aβ detection 

was conducted according to the manufacturer´s instruction, as described in detail above for 

the MULTI-SPOT® Human (6E10) Abeta Triplex Assay. For the Aβ measurement 25 µl of 

undiluted plasma were incubated together with the 4G8 detection antibody.  

 

2.5.3 Biochemical quantification of cerebral Aβ by SDS-polyacrylamid gel 

electrophoresis and Western Blotting 

Tris buffer: 1M Tris (pH = 8) 
Loading dye: 5 % β-Mercaptoethanol (Roth) in 4x LDS Sample Buffer (NuPAGE, 

novex) 
10x Tris-Tricine-SDS running buffer: 1 M Tris, 1 M Tricine (Roth), 1 % SDS (pellets, Roth), (pH = 8.3)  
10x Transfer buffer:   250 mM Tris(hydroxymethyl)-aminomethan, 1.92 M glycine (Roth) 
Blocking buffer:    0.1% Tween-20 and 5% of skim milk in 1x PBS 

Tris/tricine SDS–polyacrylamide gel electrophoresis (SDS-PAGE) was performed to assess 

Aβ levels in different fractions after brain homogenization85. To analyze Aβ amounts in the FA 

fractions, samples were diluted 2:3 in tris buffer to neutralize the pH. Since the supernatant of 

the FA fraction is too acidic, the protein concentration could not be estimated. Before 

electrophoresis appropriate samples (12 µl) of the TBS, TBS-T, SDS (20-30 µg protein, 

calculated based on sample with lowest protein concentration) and diluted FA fractions were 

mixed with 4 µl loading dye and subsequently boiled (5 min at 95 °C) to denature proteins. 

Boiled samples were loaded on a 10-20 % Novex® Tricine Gel and proteins were separated in 

1x Tris/tricine SDS running buffer at initially 80 V (10 min) and subsequently at 120 V for 

about 60 min. Fot this purpose the CXell SureLockTM Electrophoresis Cell (life technologies) 

was used according to manufacturer’s instructions. To blot the tricine gels, 1x Western Blot 

(WB) transfer buffer was used for transfer of proteins on a nitrocellulose membrane (Hybond, 

Amersham Biosciences) at 100 V in the Mini-PROTEAN® Tetra Cell of BIO RAD. After 

blotting, membranes were boiled for 1 min in 1x PBS at 95 °C to fix blotted proteins on the 

nitrocellulose membrane and subesequently blocked in blocking buffer for 1 h. Aβ was 
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emission spectra of about 10 plaques (one to three plaques of five consecutive sections) were 

measured in total. The 509/589 ratio from the resulting 24 or 10 spectra per untreated, PBS or 

pFTAA treated APPPS1 mouse were averaged and graphed. 

 

2.6.2 Confocal microscopy 

Spectra of Aβ plaques after pFTAA and hFTAA co-staining were recorded with an LSM 510 

META (Zeiss) confocal laser scanning microscope through Plan-Neofluar 40L/0.75 objectives 

with an excitation at 458 nm. The selection of spectral regions and spectral processing was 

achieved with the standard software (LSM Image browser). 

 

2.7 Electrophysiological measurements in the CA1 region of hippocampal slices 

2.7.1 Generation of hippocampal slices 

For slice preparation APPPS1 mice were decapitated and their brains were quickly removed 

and bisected at the midsagittal plane. One brain hemisphere was used for electrophysiological 

measurements and the second hemisphere was gently snap frozen by immersion in a 2-

methylbutane bath surrounded by liquid nitrogen and stored at -80 °C for further histological 

analyses. For electrophysiological measurements the cerebellum was cut off in an angle of 

about 45 ° and the hemisphere was glued onto that plane. Semicoronal slices of 400 µm 

thickness were cut in ice-cold artificial cerebrospinal fluid (aCSF: 124 mM NaCl, 1,25 mM 

NaH2PO4, 10 mM glucose, 2 mM MgSO4, 2 mM CaCl2, 5 mM KCl, 26 mM NaHCO3) using 

a vibratome (VT1000S, Leica Biosystems GmbH). After the preparation, slices were stored at 

RT and aerated with carbogen (95 % O2, 5 % CO2) for at least 45 min. Slices were transferred 

to a submerged perfusion chamber on an upright microscope (Axioskop FS, Zeiss), fixed in 

the chamber using an U-shaped platinum wire with a grid of nylon threads and superfused 

with aCSF at a flow rate of 4 to 6 ml/min at RT. 

 

2.7.2 Long term potentiation in the hippocampal CA1 region 

Field excitatory postsynaptic potentials (fEPSPs) were recorded with glass pipettes (1-

1.5 MΩ, filled with 3 M NaCl) every 30 s in the hippocampal CA1 area and evoked by 

Schaffer collateral stimulation with an aCSF-filled glass electrode (Fig. 13). Baseline 

responses were collected using test pulses that yield about 30 % of the maximal fEPSP slope. 

Only slices with minimal fEPSP amplitude of 1 mV were recorded. Stable baseline response 

was measured for at least 10 min, before long term potentiation (LTP) was induced by theta-
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Table 7: Overview of utilized microscopy imaging techniques 

 Stereo Investigator  
system 

Brightfield  
microscopy 

Fluorescence 
microscopy 

Confocal-laser-
scanning system 

Microscope Olympus BX53 Olympus BX50 Zeiss Observer Z1 Zeiss LSM 5 Exciter 
Camera QImaging Color 12 bit  Olympus DP25 Zeiss AxioCam MRm - 

Filter/laser DAPI 
Dichroic mirror DM410 

Excitation filter BP360-370 
Barrier filter BA420IF 

 
FITC 

Dichroic mirror DM505 
Excitation filter BP470-495 

Barrier filter BA510IF 
 

Cy3 
Dichroic mirror DM570 

Excitation filter BP530-550 
Barrier filter BA575IF 

 
Cy5 

Dichroic mirror DM600 
Excitation filter BP545-580 

Barrier filter BA610IF 

- DAPI 
excitation G 365 

emission BP 445/50 
 

FITC 
excitation BP 470/40 
emission BP 525/50 

 
Cy3 

excitation BP 545/25 
emission BP 605/70 

 
Cy5 

excitation BP 640/30 
emission BP 690/50 

HeNe1 laser 
543 nm 

 
HeNe2 laser 

633 nm 
 

Laser Diode 405 
405 nm 

 
Argon laser 

458, 488, 514 nm 

Software Stereo Investigator 
(MBF BioScience) 

Cell D 
(Olympus) 

 
cellSens 

Dimension 
(Olympus) 

 

AxioVision 4 
(Zeiss) 

ZEN 2008 
(Zeiss) 

 

Transmission electron microscopy 

TEM analyses were done in the Department of the Neuropathology, Charité – 

Universitätsmedizin Berlin with help of Hanna Plückhan (technician at the Department of 

Neuropathology). In brief, after euthanasia brains of experimental mice were sampled and the 

cortex of one hemisphere was cut into 2x2 mm large tissue blocks. Tissue was fixed over 

night in 2.5 % glutaraldehyd and for additional 4 h in 1 % osmium tetroxide. Subsequently 

cerebral tissue blocks were dehydrated in aceton and embedded in araldite. Semi-thin (0.5 

µm) sections were generated using a Reichert ultramicrotom. To identify a tissue block 

containing Aβ plaques on the cut surface, these semi-thin sections were stained with 

Richardson solution and analyzed under a light microscope. From the original tissue block 

ultrathin sections (50-70 nm) were further cut with a diamond knife. Ultrathin sections were 

put on nickel grids and stained with uranyl acetate and lead citrate. Pictures were captured 
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using a Zeiss transmission electron microscope (model 902) and negatives were developed. 

Scanned images were inverted and processed in Adobe Photoshop CS3. 

 

2.9 Magnetic resonance imaging and intracranial pressure measurement 

Magnetic resonance imaging (MRI) and intracranial pressure (ICP) measurements were 

performed by the research group of Prof. Olav Haraldseth, Department of Circulation and 

Medical Imaging at the Norwegian University of Science and Technology (NTNU) in 

Trondheim, Norway. 

 

2.10 Statistical analyses 

Statistical analyses were performed using GraphPad Prism 5. Statistical significance is 

indicated as follows: * p < 0.05, ** p < 0.01 and *** p < 0.001. For the statistical analysis of 

pairwise comparisons of experimental groups, Student´s t-test was used, whereas one-way 

ANOVA with Bonferroni´s multiple comparison post-test was applied for comparison of more 

than two experimental groups. 
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Table 8: Experimental groups of i.v. versus i.p.  
pFTAA injection in aged APPPS1 mice 

Genotype Age Treatment 
WT 534 d i.v. pFTAA 

APPPS1 
588 d no treatment 
588 d i.v. pFTAA 
565 d i.p. pFTAA 

 

One day after a single i.v. and i.p. pFTAA application, peripheral cortical Aβ plaques showed 

fluorescent labeling with equal intensity (Fig. 21c, d). Aβ plaque labeling was detected mainly 

in the cortical periphery indicating an entry of pFTAA through meningeal blood vessels. 

Cerebral sections of the pFTAA injected WT animal and of the untreated APPPS1 animal 

revealed no fluorescent signal (Fig. 21a, b).  
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3.2 LCOs coupled to magnetic nanoparticles as novel MRI contrast agents for 

diagnostics of Alzheimer´s disease 

LCOs as novel amyloid binding agents were shown to identify Aβ assemblies in vitro and Aβ 

deposits on tissue sections selectively and with high specificity. In addition, it was also shown 

that i.v. applied LCOs in transgenic AD mice passed the BBB readily and labeled cerebral Aβ 

plaques efficiently39. Even after a peripheral i.p. application of the pentameric LCO pFTAA 

cerebral Aβ plaques revealed specific fluorescent labeling one day but also six weeks after 

injection (see chapter 3.1.2). In a next step, LCOs were investigated as potential in vivo 

amyloid tracers for human AD diagnostics. Since imaging of pathological Aβ deposition 

adopted a central role in AD diagnostics, specific and readily available amyloid binding 

agents are needed. For this purpose LCOs were coupled to MNPs with reactive groups and 

different spacer components. Optical imaging and the non-invasive MRI technique was used 

for Aβ plaque visualization in APPPS1 mice. 

The diagnostic utilization of LCOs coupled to reactive groups and different spacer 

components (termed LCO derivatives), and finally also of LCOs attached to MNPs (termed 

LCO-MNPs) was analyzed stepwise. When LCO labeling of cerebral Aβ plaques was detected 

after LCO-MNP injections, further MRI analyses were performed by collaborators from the 

group of Prof. Olav Haraldseth, Department of Circulation and Medical Imaging at the NTNU 

in Trondheim, Norway. 

 

3.2.1 Staining of murine brain tissue with LCO derivatives and LCO-MNPs 

Before distinct LCO derivatives and LCO-MNPs were tested in vivo, it was investigated if 

they are capable to label Aβ plaques on APPPS1 brain sections. Brain sections were stained 

with the same concentration of LCO derivatives and LCO-MNPs and fluorescent intensities 

of labeled Aβ plaques were analyzed by fluorescence microscopy. Exposure times for picture 

capturing were kept constant and compared to pFTAA stainings as an internal reference. Only 

when the fluorescent signal emitted from labeled cerebral Aβ plaques on APPPS1 brain 

sections lead to an overexposure with the given exposure time, the exposure time was 

manually adjusted. 

 

LCO derivatives were synthesized based on the backbone of the LCO qFTAA. This 

quaternary LCO was attached to a reactive propyne group (4004 – qFTAA-propargyl), with 

short (4011 – phosphonate-TEG-qFTAA) and long (4010 – phosphonate-Cyr15-qFTAA) 
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spacers with a terminal reactive group as well as with short spacers without a terminal 

reactive group (4020 – OH-TEG-qFTAA, 4021 – qFTAA-TEMPO).  

At a LCO concentration of 14 µM LCO derivatives 4004, 4010, 4011 and 4020 demonstrated 

labeling of cerebral Aβ plaques on tissue sections, although with different efficacy. Despite 

the fact that all probes where used at same concentration, pFTAA revealed the highest 

fluorescent intensity signals (Fig. 36). Among the LCO derivatives probe 4010 showed the 

highest fluorescent intensity signal, followed by probe 4010, 4004, 4011 and 4020.  
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Fluorescent labeled Aβ plaques on brain sections of LCO derivative treated APPPS1 mice 

were analyzed postmortem using fluorescence microscopy. In comparison to control PBS and 

pFTAA injections (Fig. 45, 47a) only LCO derivative 4011  (Fig. 47d) led to specific labeling 

of cerebral Aβ plaques at high magnification, indicating to reveal best BBB crossing 

properties among tested LCO derivatives (Fig. 47). 
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analyzed frozen hemispheres revealed postmortem artefacts and no significant MRI signals 

could be detected, subsequent MRI analyses were performed on live animals after i.v. 

injection directly at the NTNU in Trondheim, Norway. The following summerized results of 

the MRI measurements were generated by and are presented in the present thesis with 

permission of the research group of Prof. Olav Haraldseth, Department of Circulation and 

Medical Imaging at the NTNU in Trondheim, Norway. 

 

First study protocols and MRI sequence protocols for detecting changes in tissue relaxation 

times were established. T1 and T2 mapping was chosen to enable quantification of changes in 

tissue relaxation time due to Aβ plaque bound LCO-MNPs. MRI studies after i.v. injections of 

LCO-MNP 4013 (GdF3-PEG-NP-TEG-qFTAA), 4026 (FeO-PEG-qFTAM) and 5011 (GdF3-

PEG-spcr26-10%-pFTAA) showed in live APPPS1 mice no significant changes in T2 

mapping. Also by TEM no MNPs could be detected around or within cerebral Aβ plaques; 

also MNPs stuck in meningeal vessels were also not visible. Since it could not be proven, that 

MNPs reached the brain or cerebral Aβ plaques after systemic administration, it has to be 

assumed that possibly only the LCO component of LCO-MNPs crosses the BBB and labeled 

fluorescent detected Aβ plaques. 

ICP measurements with the same injection protocol showed that MNPs are present at such 

low concentrations that measurable changes in T1 and T2 relaxation times could not be 

induced. The conclusion from this result was, that the LCO-MNPs did not cross the BBB and 

did not remain in the brain parenchyma at detectable levels, in contrast to what was initially 

assumed based on the fluorescent imaging alone. 

Subsequently a new study protocol with an intracranial (i.c.) injection of the LCO-MNP 

derivative 5012 into the cisterna magna was developed, in order to bybass the BBB. Particle 

5012 was assumed to have best tissue penetration properties due to the pFTAA coupled 

gadolinium molecule instead of before utilized GdF3 MNPs. Since particle 5012 showed 

primarily T1 effects, T1 mapping was performed in this study. The MRI results showed a 

change in T1 in several brain regions of several animals, however without reaching statistical 

significance in contrast to untreated animals. ICP measurements confirmed that the injection 

of particle 5012 revealed high enough gadolinium concentrations in the brain to measure a 

theoretical reduction of T1. For this reason it was proven, that the i.c. application worked and 

injected LCO-MNPs bypass the BBB and remained in the brain. Further improvements of the 

MRI and study protocols need to be established in order to detect a significant MRI signal.  
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To sum up, peripheral i.v. administration of distinct LCO-MNPs led only to a weak 

penetrance of injected particles over the BBB. Measurable MRI signals could be achieved 

following direct administration of LCO-MNPs into the CSF, indicating that for establishing a 

more generalized applicability, MRI protocols for the peripheral administration of LCO-

MNPs need to be optimized. 

 

3.2.4 Summary of LCOs as novel MRI contrast agents for diagnostics of 

Alzheimer´s disease 

LCOs as potential novel tool for in vivo amyloid detection were coupled to MNPs and BBB 

crossing and cerebral Aβ plaque labeling of LCO-MNPs was investigated in aged APPPS1 

mice after peripheral i.v. application. First it was shown in vitro by tissue stainings and 

spectral imaging (Linköping University, Sweden) that Aβ specific properties of LCOs are 

retained when LCOs were coupled to MNPs. LCO derivatives and LCO-MNPs efficiently and 

specifically labeled Aβ deposits in vitro. After peripheral i.v. injection of aged APPPS1 mice, 

only LCO derivative 4011, where qFTAA was attached to a short linker with a terminal 

reactive phosphate group, achieved efficient cerebral Aβ plaque labeling. Otherwise, besides 

probe 4012 all applied LCO-MNPs showed efficient labeling of cerebral Aβ plaques after 

peripheral i.v. injection of APPPS1 mice. Compared to LCO derivatives, LCO-MNPs showed 

stronger fluorescent Aβ labeling of cerebral plaques after peripheral application despite their 

larger size, even at lower LCO concentrations. Among different LCO-MNPs, the FeO 

nanostructure coupled to the quartenary LCO qFTAM revealed the highest fluorescent 

intensity of labeled Aβ plaques after peripheral injection. However, probe 5012, which 

represents a gadolinium molecule coupled to pFTAA and is known to be a very small probe 

(not detectable by TEM), led also to a strong and homogenous Aβ plaque labeling after two 

i.v. injections. Since injected stock solutions of these two probes revealed the highest possible 

LCO concentrations among injected LCO-MNPs, it was assumed that the fluorescent intensity 

of labeled Aβ plaques after peripheral i.v. injection in APPPS1 mice correlates with the LCO 

concentration of the applied stock solution. 

Subsequent experimental results showed, that the attachment of different spacers (terminal 

reactive groups, short or long spacers) to LCOs led to no efficient cerebral Aβ plaque labeling 

after peripheral i.v. injection, indicating poor abilities to pass the BBB. Since systemic 

administered LCO-MNPs in general led to an efficient and specific fluorescent labeling of 

cerebral Aβ plaques after peripheral application, BBB crossing of coupled probes was 
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assumed. However, MRI measurements and TEM have not confirmed BBB crossing of LCO-

MNPs, no significant magnetic signal was detected and GdF3 MNPs could also not be 

visualized by TEM after peripheral injection of coupled probes. 

 

3.3  Long term pFTAA treatment of young experimental animals 

3.3.1 Experimental setup of long term pFTAA treatment of young experimental 

animals 

pFTAA as novel molecular amyloid marker was shown to cross the BBB of APPPS1 mice 

after peripheral i.p. injection and to efficiently label cerebral Aβ plaques of treated animals 

(see chapter 3.1.2). Several amyloid binding dyes like Congo red or methoxy-XO4 were 

described to influence Aβ aggregation and fibrilization43,44, hence the question arises if 

pFTAA has the same properties. To analyze, whether a long term pFTAA application 

influences AD pathology in vivo, a 12 week long pFTAA treatment of young APPPS1 mice 

was assessed. Within that approach young APPPS1 and WT mice were injected weekly with 

10 mg/kg pFTAA (APPPS1 n = 11, WT n = 6) or PBS (APPPS1 n = 4) up to a final age of 

120 d. The treatment was initiated at an age of 6-8 weeks, before cerebral plaque deposition 

starts in APPPS1 mice64, with repetitive i.p. pFTAA or PBS injections on four consecutive 

days. Re-injections of 10 mg/kg pFTAA or PBS were applied to animals weekly. Untreated 

APPPS1 (n = 5) and WT mice (n = 2) were used as further controls (Fig. 57, Tab. 14).  
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Figure 58: Weight gain of young APPPS1 and WT mice during long term treatment. 6-8 weeks old APPPS1 
mice and age matched WT controls were treated over 12 weeks with 10 mg/kg pFTAA or PBS. Before every 
single injection mice were weighted. Weight gain [%] of experimental groups i) APPPS1 – PBS treated (n = 4), 
ii) WT – pFTAA treated (n = 6) and iii) APPPS1 – pFTAA treated (n = 11) over 12 weeks is graphed. For 
statistical analyses one-way ANOVA with Bonferroni´s post test was used. 
 

Since transgenic APPPS1 mice were generated on the C57BL/6J background, weight 

development of experimental mice was compared to available basic physiology data on 

C57BL/6J mice (The Jackson Laboratory, Body weight information, JAX® mice strain 

C57BL/6J). Weight measurements of experimental APPPS1 and WT mice at 6-8 weeks and 

120 d (17 weeks) of age were comparable to published weight data of C57BL/6J mice (Tab. 

15), indicating no treatment specific effect on weight gain of young experimental mice. 

 
Table 15: Mean weights of experimental mice and C57BL/6J mice at 6-8 weeks and 120 d of age 

Source: The Jackson Laboratory, Body weight information, JAX® mice strain C57BL/6J. 
Animals Gender Weight at 6-8 weeks of age Weight at 120 d of age 

C57BL/6J 
JAX® mice strain 

male 22.6 ± 1.5 g 30.,7 ± 2.2 g 
female 18.1 ± 1.1 g 22.6 ± 2.0 g 

APPPS1 
PBS treated 

male 19.0 ± 2.0 g 27.5 ± 0.8 g 
female 16.1 ± 0.5 g 20.9 ± 1.3 g 

WT 
pFTAA treated 

male 20.6 ± 2.5 g 28.9 ± 2.1 g 
female 17.1 ±1.3 g 21.5 ± 0.5 g 

APPPS1 
pFTAA treated 

male 19.7 ± 0.6 g 26.7 ± 0.1g 
female 16.9 ± 0.4 g 21.4 ± 0.3 g 
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3.3.2.2 Blood analyses during and after long term pFTAA treatment of young 

experimental animals 

At two different time points (80 and 120 d of age) of the long term treatment of young 

APPPS1 and WT mice, blood was sampled and a differential blood count (erythrocytes; 

hemoglobin; hematocrit; mean corpuscular volume (MCV); mean corpuscular hemoglobin 

(MCH); mean corpuscular hemoglobin concentration (MCHC); leucocytes: granulocytes 

(neutrophils, basophiles, eosinophils), monocytes, lymphocytes; thrombocytes) was assessed 

to check the general health state of pFTAA and PBS treated experimental animals. At the age 

of 120 d also several hepatorenal parameters were measured. Blood analyses using EDTA-

plasma were performed by synlab, Berlin.  

 

In comparison to the specific reference ranges of synlab, Berlin, erythrocyte numbers, 

hemoglobin and hematocrit amounts slightly increased in all experimental groups at 80 d of 

age, however no statistical significant difference was detectable between the individual 

groups (Fig. 59a). The three red blood cell indices MCV, MCH and MCHC showed also no 

statistical significant differences between experimental groups (Fig. 59b).  
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conventional amyloid dyes Congo red and pFTAA and immunohistochemically using Aβ 

specific antibodies 4G8 and 6E10. Afterwards cortical Aβ plaque burden was quantified. Aβ 

plaque burden was assessed by analysis of area covered by the specific staining as well as by 

counting the total number of Aβ plaques. For both analyses 10 to 12 serial cerebral sections 

were quantified using the Stereo Investigator system. For the antibody staining with 4G8 an 

additional plaque size distribution analysis was done using the cellSens Dimension software. 

Three cortical pictures per section were taken using the Olympus BX50 brightfield 

microscope and subsequently cortical Aβ plaques per image were classified into seven 

different plaque size classes by the software cellSens Dimension. 

 

3.3.3.1 Quantification of cerebral Aβ plaque burden by conventional amyloid stainings  

Congo red is a commonly used histological dye for amyloid detection. It stains the compact 

core of Aβ plaques, the so called congophilic plaques consisting of dense aggregated Aβ 

fibrils. pFTAA, as one of the available LCOs, in contrast also labels diffuse Aβ deposits.  

After the long term pFTAA or PBS treatment of young APPPS1 mice the area covered by 

Congo red staining (Fig. 75b) and the number of cortical congophilic Aβ plaques of cerebral 

sections was quantified using the Stereo Investigator system (Fig. 75c). Also there was a trend 

of an increase in Aβ burden in pFTAA treated APPPS1 mice when assessed by Congo red 

staining, the analysis showed no statistically significant difference between groups in Aβ 

covered area by Congo red staining between untreated, PBS and pFTAA treated APPPS1 mice 

(Fig. 75b). However, a significant difference in Aβ plaque number, i.e. the cortical amount of 

Aβ plaques, was detected. pFTAA treated APPPS1 mice revealed significantly (p < 0,05) 

more congophilic Aβ plaques in comparison to PBS treated APPPS1 mice (Fig. 75c). No 

statistically significant difference in plaque number was observed between untreated and PBS 

treated as well as between untreated and pFTAA treated APPPS1 mice (Fig. 75c).  
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Therefore a 436 nm long pass excitation filter was used. Single Aβ plaques were imaged using 

the 10x and 40x objective and emitted spectra of monitored plaques were recorded. Analysis 

of spectra of Aβ plaques showed, that cores of untreated and PBS treated animals emitted blue 

light achieved by pFTAA binding. The plaque periphery emitted yellow light representing 

bound hFTAA (Fig. 82a, b). In contrast, Aβ plaques of pFTAA treated animals showed no 

staining specific difference between core and periphery, pFTAA/hFTAA co-stained plaques 

emitted an almost homogenous yellow light as seen for hFTAA staining (Fig. 82c). Since the 

largest changes in the emission spectra of pFTAA/hFTAA co-stained Aβ plaques on brain 

sections of untreated, PBS and pFTAA treated APPPS1 mice were recorded at 509 nm and 

589 nm, the ratio of the associated emission values was calculated and confirmed the 

differences achieved by the spectral confocal analysis. A statistically significant difference (p 

< 0.001) of the 509/589 nm ratio between pFTAA treated animals and untreated/PBS treated 

120 d old APPPS1 mice was detected (Fig. 82d). 
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3.3.3.5 Histological analyses of neuronal loss in distinct cerebral regions 

The analysis of dystrophic neurites around cerebral Aβ plaques on brain sections of long term 

treated APPPS1 mice revealed a trend towards decreased dystrophic neurites around cerebral 

Aβ plaques after long term pFTAA application compared to control animals. Because 

neuronal loss is a characteristic hallmark of AD, an immunohistochemical neuron staining of 

cerebral sections using the monoclonal antibody NeuN was assessed in a next step and 

neurons in distinct Aβ plaque affected regions were analyzed on APPPS1 brain sections after 

long term treatment by brightfield microscopy. Untreated, PBS and pFTAA treated APPPS1 

and WT mice were compared. No overt neuronal loss on analyzed brain sections of 120 d old 

APPPS1 mice was detected independent of treatment and genotype of screened animals when 

NeuN labeled brain sections were compared (Fig. 84). Especially detailed microscopic 

analyses of the cortex (Fig. 84b), the hippocampal CA1 region (Fig. 84c) and the dentate 

gyrus (Fig. 84d) revealed no obvious differences in experimental groups, either. It was shown 

before, that 17 month old APPPS1 mice with robust cerebral Aβ plaques pathology did no 

show neuronal loss in the cortex but exhibited a thinned neuronal layer in the hippocampal 

dentate gyrus formation93. Since APPPS1 mice in the present study were 13 month younger 

than the animals, which revealed neuronal loss in the hippocampus in this previous study93, 

the results presented here are in line with the reported properties of the APPPS1 animal 

model, where no overt neuronal loss is expected at 4 months of age. 
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3.3.4 Biochemical analysis of cerebral Aβ burden after long term treatment of young 

APPPS1 mice 

3.3.4.1 Detection of cerebral Aβ amounts by MSD 6E10 assay and by SDS-

polyacrylamid gel electrophoresis and Western Blotting 

Immunohistological analysis of overall cerebral Aβ plaque burden revealed no significant 

difference between untreated, PBS and pFTAA treated APPPS1 mice after long term 

treatment, while indicating a structural change of Aβ deposits (see chapter 3.3.3.1 and 

3.3.3.2). To confirm the immunohistological results, the second hemisphere of long term 

treated experimental APPPS1 mice was used for biochemical analysis of cerebral Aβ 

amounts. For this purpose soluble and insoluble Aβ of frozen hemispheres was extracted in a 

stepwise fashion in TBS, TBS-T, SDS and FA-buffer according to previously published 

protocols84 and Aβ amounts of single fractions were measured by the MSD 6E10 assay and by 

SDS-PAGE and WB.  

 

First, Aβ concentrations in the TBS fraction, which contains soluble Aβ from the cerebral 

parenchyma after brain homogenization were determined using the MSD 6E10 assay. A 

statistically significant difference of Aβ40 amounts between untreated, PBS and pFTAA 

treated APPPS1 mice (Fig. 87a) was not detected. However, the cerebral Aβ42 amount in the 

TBS fraction of pFTAA treated APPPS1 mice was statistically significantly increased (p < 

0.05) when compared to PBS treated animals. There was no statistical significant change of 

the Aβ42 amount between untreated and PBS treated as well as between untreated and pFTAA 

treated APPPS1 mice (Fig. 87b). 
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3.3.5 Summary of long term pFTAA treatment in young experimental animals 

The peripheral long term treatment of young APPPS1 mice with the molecular amyloid 

marker pFTAA, which readily crosses the BBB and labels cerebral Aβ plaques, caused no 

obvious side effects in treated animals and did not alter the overall cerebral Aβ plaque 

pathology, as assessed by postmortem histological Aβ quantification. However, more detailed 

histological analyses of cerebral Aβ plaques revealed that pFTAA treated APPPS1 mice have 

more numerous but smaller cortical Aβ plaques than untreated and PBS treated animals. 

Furthermore structural changes of cerebral amyloid deposits were observed after pFTAA 

treatment by spectral analysis – Aβ plaques appeared to grow and mature more slowly, as seen 

by a less developed dense-core of Aβ plaques in contrast to control mice. The observed higher 

number of cerebral Aβ plaques in pFTAA treated APPPS1 mice could be caused by increased 

seeding amyloid deposits induced by pFTAA. In conclusion, the peripheral pFTAA treatment 

influenced the structure of cerebral Aβ deposits, while having no significant impact on overall 

plaque burden and plaque associated pathology. 

 

3.4 Functional impact of short term pFTAA treatment in aged experimental animals 

It was described that besides Aβ aggregates, pFTAA as novel molecular amyloid marker also 

binds oligomeric, soluble, non-fibrillar Aβ assemblies in vitro39. These species have been 

shown to be the most toxic ones, causing synaptic loss and cognitive impairment in 

Alzheimer´s disease96. In the present thesis long term potentiation (LTP) and paired pulse 

facilitation (PPF) measurements in the hippocampal CA1 region at the Schaffer Collateral 

synapses were used, to analyze if a peripheral pFTAA treatment over 8 weeks influences 

synaptic long and short term plasticity in aged APPPS1 mice. Aged APPPS1 mice were 

chosen for the present approach because it is described, that the murine AD strain APPPS1 

reveal first impairments relating to cognitive functions and synaptic plasticity in the 

hippocampus at 8 month of age64,97. Since no significant change in overall cerebral Aβ plaque 

burden was visible after a 12 week long pFTAA treatment of young APPPS1 mice (see 

chapter 3.3), it was of interest to know if peripheral pFTAA applications affect mice with 

robust cerebral Aβ plaque burden i) on a functional level and ii) on cerebral Aβ plaque 

pathology. 
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treatment in older mice (Fig. 104). For statistical analysis Student´s t-test was used and 

revealed no significant difference between pFTAA or PBS treated APPPS1 mice. As the short 

term treatment was initiated at 7.5 months of age, where APPPS1 mice were already adult, no 

major weight change over the treatment period was expected. 
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Figure 104: Weight curves of aged APPPS1 mice included into the short term treatment approach. To 
analyze possible toxic side effects of a short term pFTAA treatment in aged APPPS1 mice, 7.5 month old 
animals were treated with PBS (n = 7) or pFTAA (n = 8) and the body weight was measured before every single 
injection. Student´s t-test was used for statistical analysis.  

 

After sacrificing pFTAA and PBS treated APPPS1 mice at 9.5 month of age, hippocampal 

slices were prepared for subsequent electrophysiological measurements, where LTP and PPF 

in the hippocampal CA1 region have been assessed. Since pFTAA is known to bind Aβ 

oligomers, which were described to cause synaptic dysfunction in AD brains7, it was 

investigated if changes in synaptic transmission can be measured by hippocampal LTP after 

an eight week long peripheral PBS or pFTAA treatment of aged APPPS1 mice. A stable 

synaptic baseline transmission (fEPSP) was measured for 10 min before slices were 

stimulated at high frequency and fEPSPs were assessed for the subsequent hour. No statistical 

significant difference  between PBS and pFTAA treated, aged APPPS1 mice was observed 30 

min after HFS (Fig. 105), synaptic transmission of experimental, aged APPPS1 mice showed 

a mean potentiation of about 158 % after PBS and 161% after pFTAA treatment. 
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4. Discussion 

Within this thesis LCOs, a class of multimodal fluorescent oligothiophenes, were evaluated 

with regard to their possible application as in vivo tracers for Aβ detection and as potential 

pharmacophores in the AD context.  

For diagnostic applications LCOs coupled to MNPs were analyzed for the capability to cross 

the BBB after peripheral administration and for their applicability as in vivo MRI contrast 

agents. In a second line of research the potential of LCOs as pharmacophores was assessed in 

different treatment paradigms in young and old APPPS1 mice. While efficient crossing of 

intact LCO-MNP molecules across the BBB could not be demonstrated, which precluded 

further analysis of LCO-MNPs as MRI contrast agents, the long term treatment of young 

APPPS1 mice revealed an impact of LCOs on the structure of Aβ deposits in the brain.   

 

4.1 LCOs as in vivo tracer for detecting Aβ in Alzheimer´s disease  

AD is the major neurodegenerative disease affecting about 4.6 million people worldwide14. In 

face of this disease epidemic an efficient treatment strategy is urgently needed. Since the 

damage of the brain is already far progressed when symptoms of dementia are apparent, better 

diagnostic techniques, ideally for a pre-symptomatic detection of cerebral amyloid 

pathophysiology in subjects at risk, are a prerequisite for effective therapeutic interventions. 

By assessing defined clinical symptoms in combination with the amyloid PET imaging 

technique, a clinical AD diagnosis can be assessed with high accuracy1. But, although 

amyloid PET imaging represents a useful diagnostic tool in AD, it has distinct limitations for 

an urgently needed widespread application. Besides the usage of a radioactive tracer agent and 

the concomitant exposure of the patients to radiation, high costs and limited availability are 

the most deterrent ones59.  

In principle the amyloid binding agents LCOs might be useful alternative diagnostic marker 

for specific and selective in vitro and in vivo detection of amyloid, with the advantage to 

distinguish between structurally different amyloid lesions. Pre-fibrillar Aβ oligomers and 

aggregated Aβ fibers can be discriminated by the pentameric LCO pFTAA using spectral 

imaging during in vitro fibrillization98. Distinct LCOs, for example pFTAA, hFTAA and 

qFTAA, are described to be usable also for in vivo imaging (for example 2-Photon imaging) 

of pathological protein aggregates in transgenic AD mice. Probes show quick and efficient 

crossing of the BBB after peripheral application and label cerebral Aβ plaques with high 
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selectivity and specificity39,75.  This is in contrast to the fact that, almost all of large-molecule 

pharmaceutics (for example peptides, recombinant proteins, monoclonal antibodies, RNA 

interference-based drugs and gene therapies) and more than 98 % of all small molecule drugs 

are known not to pass the BBB76,99.  

Within the present thesis it was hypothesized, that LCO derivatives as precursors of coupled 

LCO-MNPs and LCO-MNPs bind cerebral Aβ plaques comparable to uncoupled LCOs and 

pass the BBB following an i.v. injection in APPPS1 mice to function as novel in vivo imaging 

tracer for the detection of cerebral Aβ deposits in AD.  

In a first step it was analyzed if LCO derivatives, after they revealed efficient and specific Aβ 

plaque labeling on APPPS1 brain sections and showed amyloid binding properties in vitro, 

fulfill the requirements to cross the BBB after a peripheral administration in APPPS1 mice. 

Since uncoupled LCOs pFTAA, qFTAA and hFTAA readily crossed the BBB after peripheral 

injection, it was hypothesized that slightly modified LCO derivatives would do so too. The 

results presented here did not confirm the hypothesis. Only LCO derivative 4011, where 

qFTAA was attached to a short spacer with a terminal phosphate group, achieved efficient 

cerebral Aβ plaque labeling, detected on cerebral sections after peripheral administration in 

APPPS1 mice, and thus indicated BBB crossing. LCO derivatives where the quaternary LCO 

qFTAA was only attached to a reactive terminal propyne group (4004), a long spacer with a 

terminal phosphate group (4010) or to other short spacers (4020, 4021) revealed no specific 

Aβ plaque labeling after i.v. injection, assuming that distinct attached spacer components 

limited BBB crossing of those LCO derivatives.  

As mentioned above, distinct uncoupled LCOs (pFTAA, qFTAA, hFTAA) readily crossed the 

BBB after systemic administration in AD transgenic mice39,75. Other derivatives of Congo red 

penetrate the BBB after peripheral application as well. Congo red itself but also methoxy-

XO4 as a small molecule Aβ-binding agent (SMAβBAs) or curcumin were described to pass 

the cerebral barrier after systemic application43,44,100. The cationic dye methylene blue, 

belonging to a class of compounds known as phenothiazines, was also described to cross the 

BBB as potential drug for AD101. In contrast, LCO derivatives penetrated not readily into the 

brain. After peripheral administration only LCO derivative 4011 labeled cerebral Aβ plaques, 

indicating limiting properties for BBB penetration. This LCO derivative has three negatively 

charged groups. In contrast to cationic molecules, anionic substances have an improved 

bioavailability and are promising carriers for in vivo administration of therapeutics102. 

Additionally anionic surface charges of NPs were shown to enhance brain permeability103. On 
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results. Only one (LCO derivative 4011) out of five LCO derivatives tested passed the BBB 

after i.v. application and labeled cerebral Aβ plaques which argues for defined structural 

properties of the LCO derivative to allow BBB passage and cerebral Aβ plaque labeling. 

In parallel, LCOs attached through distinct spacer components to MNPs were analyzed for 

their binding properties to cerebral Aß plaques following peripheral i.v. injection. Efficient 

BBB passing after i.v. application of LCO-MNPs in APPPS1 mice was hypothesized, but in 

this project only optical signals of the LCO component were detected whereas significant 

MRI signals are missing. 

All peripherally applied LCO-MNPs were assumed to have crossed the BBB on the basis of 

optical imaging results since all derivatives labeled cerebral Aβ plaques. Fluorescent labeling 

of cerebral Aβ plaques on sections of LCO, LCO derivative and LCO-MNP treated APPPS1 

in mice was detected preferentially close to the ventricles. Due to this cerebral labeling 

pattern, it is assumed that LCOs and distinct derivatives penetrate into the brain through 

meningeal vessels. The passage of specific molecules between the bloodstream and the brain 

can be regulated by paracellular or transcellular pathways104. Since applied LCOs, LCO 

derivatives and LCO-MNPs revealed an anionic surface charge, a transcellular passive 

diffusion through the BBB is less likely. Probes are further assumed not to penetrate into the 

diseased brain by receptor mediated endocytosis as shown for distinct FeO nanoparticles105, 

because a specific receptor ligand was not attached to the surface of any tested particle. Also, 

these negatively charged molecules have probably not penetrated into the brain by adsorptive-

mediative endocytosis and transcytosis as shown for positively charged molecules104. Thus it 

is conceivable that tested probes crossed the BBB with the help of specific drug transporters. 

The adenosine triphosphate (ATP)-binding cassette (ABC) transporter superfamily (ABC 

transporter) and the solute-linked carrier (SLC transporter) are involved with influx and efflux 

transport function for cerebral drug uptake and export106. 

In comparison to pFTAA injections and applications of other LCO-MNPs, LCO-MNP 4026 

and LCO-MNP derivative 5012 revealed most efficient fluorescent labeling of cerebral Aβ 

plaques after peripheral administration as assessed by fluorescence microscopy.  

As discussed before for the brain penetration of LCO derivatives, structural characteristics 

like particle size and side chain charge of injected molecular markers play a major role for 

passing the BBB after peripheral administration. However LCO-MNP 4026 and LCO-MNP 

derivative 5012 are morphologically very different. LCO-MNP 4026 has a long spacer 

component, which was used to couple the quaternary LCO qFTAM with a FeO MNP. In 

contrast, LCO-MNP derivative 5012 represents a probe, where the pentameric LCO pFTAA is 
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coupled through a short spacer to a single gadolinium molecule, instead of a MNP. Thus, on 

the basis of optical imaging results, structure of distinct LCO-MNPs did not seem to be the 

limiting factor for BBB passing of LCO-MNPs and subsequent cerebral Aβ plaque labeling. 

LCO-MNP 4026 (190 µM) and LCO-MNP derivative 5012 (4 mM) showed the highest LCO 

concentrations among all MNP coupled probes tested (range 28.7 µM – 4 mM), what could 

explain the efficient cerebral Aβ plaque labeling after peripheral administration in APPPS1 

mice. This fact is in line with results, which were achieved after peripheral administration of 

pFTAA in APPPS1 mice. The intensity of pFTAA labeled cerebral Aβ plaques was previously 

shown to be LCO concentration related as well. In contrast, as discussed above, the 

differential ability of different LCO derivatives to cross the BBB is most likely not due to 

different concentrations of the provided LCO solutions. 

It was hypothesized and initially assumed by optical imaging of cerebral sections after 

peripheral LCO-MNP treatment of APPPS1 mice, that all tested MNP coupled probes were 

able to cross the BBB. Simultaneously performed TEM analyses of ultrathin cerebral sections 

of LCO-MNP treated APPPS1 mice identified no MNPs around or within cerebral Aβ 

plaques. However, since just a small cerebral area and a distinct Aβ plaque number was 

investigated for MNPs by TEM, it cannot be excluded that MNPs were present in the brain 

tissue but were not detected. Since specific fluorescence but no significant TEM and MRI 

signals were detected on cerebral sections after peripheral administration of distinct LCO-

MNPs, it needs to be further investigated if LCO-MNPs crossed the BBB. Fluorescently 

labeled cerebral Aβ plaques showed that at least the LCO component crossed the BBB. But it 

is not known if the attached MNP component penetrated into the brain as well.  

In contrast to pFTAA and qFTAA alone, which cross the BBB readily (Aslund et al., 2009, 

personal communication with collaborators), LCO-MNPs are structurally much bigger in size, 

which could limit the BBB passing of coupled particles. To cross the BBB, MNPs need to be 

rather small – ideally smaller than 100 nm78. The size distribution of GdF3 and FeO MNPs 

conjugated to qFTAA and pFTAA was measured in PBS and particles revealed diameters of 

40 nm in average (unpublished data, personal communication with collaborators of the 

Université Claude Bernard Lyon 1, France and Genovis AB, Sweden). Several NPs with sizes 

up to ~400 nm were previously shown to cross the BBB after systemic administration107. 

Fe4O3 NPs with an average diameter of 16.5 ± 1.6 nm passed the BBB by receptor-mediated 

transcytosis in rats and could be detected by MRI techniques105. But also larger, fluorophore-

embedded Fe4O3 NPs of ~ 100 nm were shown to pass the BBB in mice108. Thus, the size of 

the injected LCO-MNPs (40 nm) used in the present thesis should not have limited BBB 
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crossing following a peripheral application in APPPS1 mice and does not explain why the 

hypothesis, that LCO-MNPs would cross the BBB after peripheral administration could not be 

proven.  

Nevertheless, low toxicity and sufficient stability in physiological environments are also 

crucial requirements for a successful in vivo application of MNPs. Polyethylene glycol (PEG) 

or triethylene glycol (TEG) as hydrophilic polymers and trimers, were coupled to the surfaces 

of all tested LCO-MNPs (see chapter 2.1). By attaching PEG or TEG to the surface of NPs, 

hydration of the particle is increased and attached proteins are known to be protected from 

enzymatic degradation during in vivo applications109. The surface addition of PEG has the 

additional advantage to increase in vivo compatibility of NPs, since i.v. injected uncoated NPs 

are known to be rapidly cleared from the bloodstream by the reticuloendothelial system110. 

Prolonged half-lives, believed to result from decreased opsonization and subsequent clearance 

by macrophages, are described as well for hydrophilic polymer coated NPs111. Consecutively 

it is assumed that LCO-MNPs in vivo were tolerated by the murine system and could in 

principle reach the brain, especially because they were targeted by surface attached LCOs. 

As mentioned, qFTAA and pFTAA were attached at the MNP surface as LCO components of 

investigated LCO-MNPs. Both LCO probes reveal an anionic charge74,112. It was shown 

previously, that the surface charge is involved in determining the ability of NPs to cross the 

BBB and low concentration anionic NPs do not affect BBB integrity103. The surface of LCO-

MNPs 5010 and 5011 was for example covered by 2 % (LCO-MNP 5010) or 10 % (LCO-

MNP 5011) pFTAA, which might not have limited BBB penetration. 

As mentioned, optical imaging revealed significant fluorescent signals after peripheral 

application of LCO-MNPs, but MRI measurements performed at the NTNU in Trondheim, 

Norway revealed no significant changes in T1 and T2 relaxation times. It is conceivable that 

technical limitations related to MRI measurements limited the detection of significant signals. 

For the paramagnetic gadolinium particles, which were mainly coupled to LCO-MNPs used in 

the present study, it is described, that they reveal small positive magnetic susceptibilities 

causing only modest decreases of relaxation times and therefore exhibit limited MRI 

sensitivity113,114. In contrast, superparamagnetic FeO particles provide the largest change in 

signal per unit of metal87. However, MRI measurements at the NTNU - Trondheim did not 

reveal significant signals in brains of APPPS1 mice treated with Feo based LCO-MNP 4026. 

Postmortem iron staining on tissue sections was negative as well (data not shown). Thus, it is 

not clear, if the LCO-MNP 4026, qFTAM attached to FeO MNPs, or other MNP coupled 
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particles passed the BBB and entered the brain to bind cerebral Aβ deposits in APPPS1 mice 

after peripheral administration. 

It is also imaginable that coupled particles termed LCO-MNPs dissociated in vivo following a 

peripheral i.v. injection. The LCO component crossed the BBB and labeled cerebral Aβ 

plaques and since MNPs alone were not targeted to the brain, they might have accumulated in 

the murine system or possibly been metabolized. Especially for FeO particles it was shown 

that they can be recycled by the organism87. After peripheral administration of LCO-MNPs 

5010 and 5011, where different amounts of pFTAA (2 % or 10 %) are attached to a GdF3 

MNP, collaborators from the Linköping University in Sweden confirmed the finding of 

fluorescent Aβ plaque labeling on cerebral sections of treated APPPS1 mice by spectral 

imaging. However simultaneously fluorescent LCO signals were detected on liver and spleen 

sections (data not shown). These findings indicate that coupled LCO-MNPs might not have 

been able to cross the BBB and circulated in the periphery after i.v. application. But since 

fluorescent cerebral Aβ plaques were detected it is assumed that coupled particles partially 

dissociated, the LCO component reached the brain and achieved the observed fluorescent 

plaque labeling. With regard to the stability under physiological conditions, the properties of 

LCO-MNPs in solution were studied by collaborators at the Université Claude Bernard Lyon 

1 in France and revealed sufficient stability in artificial physiological environments (data not 

shown). Finally it is not clear, if LCO-MNPs dissociated in vivo after peripheral 

administration. 

Although it is described in the literature, that distinct MNPs are able to pass the BBB after 

peripheral administration103,105,108,115,116, intact LCO-MNPs could not be detected in AD brains 

after peripheral administration. Further investigations like optimizing MRI protocols after 

peripheral administration of LCO-MNPs are necessary to finally proof the hypothesis that 

these particles can penetrate into the brain. Nevertheless, since LCOs alone were shown to 

readily cross the BBB after peripheral application, they represent a useful and promising tool 

for non-invasive diagnostic or therapeutic approaches targeting the brain.  

 

4.2 Effect of LCOs on Alzheimer´s disease pathology in vivo 

4.2.1 Effect of pFTAA on Aβ plaque pathology in vivo 

The neuropathological disease AD is characterized by cerebral aggregation and deposition of 

the pathological protein Aβ. Since cerebral Aβ plaque pathology is thought to drive disease 

progression19, many therapeutic approaches target Aβ aggregation and fibrillization. 
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Interference with Aβ aggregation as well as influence on Aβ fibrillization are known features 

of several amyloid binding dyes such as Congo red. LCPs as precursors of LCOs and LCOs 

are derivatives of Congo red117,118. LCPs were previously shown to inhibit prion propagation 

by stabilizing PrP aggregates80. Since prion diseases and AD share the common property of 

pathological cerebral protein aggregation, the potential of LCOs to act as pharmacophores for 

AD was further investigated.  

If robust binding of LCOs, which are known to pass the BBB, influences cerebral Aβ 

pathology in a beneficial or detrimental manner, or causes side effects in the transgenic AD 

mouse model APPPS1, was analyzed within the present thesis. 

Long term pFTAA or PBS treated finally 120 d old APPPS1 mice revealed no significant 

difference in overall cerebral Aβ plaque burden. However, in contrast to control mice, pFTAA 

treated animals had more but smaller Aβ plaques. Spectral imaging confirmed this finding and 

in addition revealed structural differences of cortical Aβ plaques in APPPS1 mice after 

pFTAA treatment. Furthermore it was observed, that overall plaque associated pathology was 

not significantly affected by the pFTAA treatment. However, a trend towards less dystrophic 

neurites surrounding cortical Aβ plaques was demonstrated in pFTAA treated APPPS1 mice. 

This trend might be explained on the one hand by structural differences of cortical Aβ plaques 

after pFTAA treatment. A smaller area of cortical Aβ plaques could correlate with a decrease 

of associated toxic side effects as visualized by the appearance of plaque surrounding 

dystrophic neurites. On the other hand it is conceivable that this trend is only an artefact of the 

underlying analysis, since the decreased Aβ plaque covered area provides a reduced surface 

area exposed to neurites in general. 

Different amyloid binding agents like Congo red or methylene blue were investigated as 

potential pharmacophores in AD previously and side effects of these treatments in AD animal 

models were monitored. Similar to methylene blue or SMAβBAs43,101, the long term pFTAA 

treatment in young APPPS1 mice caused no obvious side effects. In contrast, an oral 

treatment of the AD animal model Drosophila melanogaster with the amyloid binding dye 

Congo red revealed side effects and resulted in an immobility even of Conge red treated 

control flies119. Since the pFTAA treatment revealed no toxic effects, its diagnostic and 

therapeutic potential is still promising. 

Comparable to the presented long term pFTAA treatment in young APPPS1 mice, cerebral Aβ 

plaque pathology was analyzed after a systemic short term (three weeks) treatment with small 

molecule Aβ-binding agents (SMAβBA´s,  for example methoxy-XO458) of the AD mouse 

model PS1/APP previously43. Although there are differences in the treatment setup (injected 
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concentration, treatment period, AD mouse strain), a shift in plaque size distribution towards 

smaller plaques was observed for both studies. Biochemical Aβ quantification after the 

pFTAA treatment could not be validated in this thesis, because of the observed Aβ 

precipitation during brain homogenization in vitro. This fact was not investigated by Cohen et 

al., possible because relative Aβ levels were decreased after biochemical and histological 

quantifications by equal amounts of about 60 %43. Since both quantifications of cerebral Aβ 

amounts revealed the same result, it is speculated that SMAβBAs cause no Aβ precipitation in 

vitro as observed for pFTAA and that SMAβBAs may indeed be able to reduce cerebral Aβ 

burden. 

As presented here, after pFTAA long term treatment of APPPS1 mice with the Congo red 

derivative pFTAA, reduction of Aβ aggregation could be observed. For Congo red it has been 

shown, that it blocks Aβ oligomer toxicity in vitro and reduces Aβ plaque load due to a 

blockage of Aβ aggregation in brains of the AD animal model Drosophila melanogaster in 

vivo 45,63,119,120. Postmortem analyses of the cerebral Aβ plaque burden in pFTAA treated mice 

revealed more numerous but smaller cortical plaques. The increased number of cortical 

plaques might be explained by more amyloid seeds, which occur by pFTAA binding to Aβ 

fibrils triggering possibly a fibril breakage as shown for PrP aggregates121. Furthermore it is 

conceivable that the decreased mean area per Aβ plaque is caused by pFTAA masked plaques, 

what prevents further Aβ fibril aggregation. Due to these findings it is assumed that pFTAA 

acted in a similar manner as Congo red63 and since pFTAA also binds pre-fibrillar Aβ 

oligomers, their further aggregation into insoluble Aβ fibrils, causing the growth of 

extracellular Aβ plaques, was prevented. 

The plaque size distribution analysis and the spectral imaging of Aβ plaques after pFTAA 

treatment pointed to alterations in Aβ plaque morphology. In comparison to controls, pFTAA 

treated APPPS1 mice revealed by spectral imaging a less developed amyloid core of cortical 

congophilic Aβ plaques. Recently, also differences of Aβ plaque morphology between young 

and aged APPPS1 mice were observed73. As APPPS1 mice grow older than 10 months, the 

core of the plaques appears to rearrange and the LCO staining pattern of individual Aβ 

plaques changes73. Mice of the pFTAA treatment were much younger than animals, which 

revealed age dependent morphological differences in cerebral Aβ plaque deposition. The 

pFTAA treatment was initiated before plaque deposition started at 6-8 weeks of age and 

plaque burden was analyzed already at an age of 120 d. But since it is shown in the present 

study that pFTAA bound to cerebral Aβ deposits decelerates cortical plaque growth, overall 

plaque pathology in APPPS1 mice treated with pFTAA for up to an age of at least ten months 
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might be changed. It is further known, that from approximately 8 months of age on, almost no 

formation of new plaques is detected but present Aβ plaques appear to grow in APPPS1 

mice122. Due to these facts it would be of high interest to analyze the structure of cerebral Aβ 

plaques in pFTAA treated APPPS1 mice at an age about 10 month and older. 

The amyloid binding dye methylene blue apparently has beneficial effects in the treatment of 

cognitive disorders and was shown to slow down the cognitive decline in AD within clinical 

trials101. In vitro studies revealed the ability of methylene blue to inhibit the assembly of tau 

proteins into filaments101. The aggregation of hyperphosphorylated tau proteins is a hallmark 

of human AD and these proteins accumulate also in dystrophic neurites around cerebral Aβ 

plaques in APPPS1 mice64. After the peripheral long term pFTAA treatment of young 

APPPS1 mice, a trend to less dystrophic neurites, surrounding cortical Aβ plaques and 

containing hyperphosphorylated tau aggregates, was observed. However this trend did not 

reach statistical significance. In contrast to methylene blue, a direct effect of pFTAA on tau 

pathology in treated APPPS1 mice was not investigated but this finding indicates an influence 

of the peripheral pFTAA treatment on plaque associated pathology und fits to the fact, that 

pFTAA treated APPPS1 mice also showed a decrease in mean area per cerebral Aβ plaque. A 

positive correlation of Aβ plaque size and the area covered by dystrophic neurites around 

cortical Aβ plaques can be hypothesized.  

 

4.2.2 Effect of pFTAA on Aβ oligomer toxicity in vivo 

An impairment of synaptic transmission in AD, determining finally deficits in cognition and 

memory, is assumed to be mainly caused by neurotoxic soluble Aβ oligomers. It was 

hypothesized within the present thesis, that a peripheral pFTAA treatment in aged APPPS1 

mice might have a functional effect on synaptic transmission. This hypothesis was based on 

the fact that pFTAA is described to bind beside deposited Aβ assemblies also the neurotoxic 

pre-fibrillar Aβ oligomers33–35,39,123. Impairments in synaptic transmission are described to be 

observed in APPPS1 mice older than 8 month97, why the pFTAA treatment was initiated at 7.5 

month of age in APPPS1 mice. However, a peripheral pFTAA treatment of aged APPPS1 

mice revealed no differences in synaptic transmission to PBS treated APPPS1 controls and the 

underlying hypothesis could not be proven. 

pFTAA is described to bind pre-fibrillar Aβ oligomers during in vitro fibrillization and it is 

speculated that an pFTAA binding of these species might block their toxicy74. Congo red was 

shown to reduce the concentration of oligomers in vitro63. Furthermore it was shown recently, 
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that a systemic vaccination using anti-oligomeric Aβ antibodies improves cognitive functions 

by reducing Aβ deposition and tau pathology in AD mice124. However an in vivo effect of 

pFTAA on synaptic transmission in hippocampal slices of treated APPPS1 mice could not be 

detected. Additionally no significant effect of the peripheral pFTAA treatment in aged 

APPPS1 mice on cerebral Aβ plaque pathology and Aβ plasma levels (see chapter 3.4.2) was 

observed.  It is questionable if pFTAA affected cerebral Aβ pathology in aged mice with 

advanced disease pathology at all. 

The pFTAA treatment was initiated in APPPS1 mice at 7.5 month of age because it is known 

that impairments of hippocampal synaptic transmission does not occur before 8 months of 

age97. But it is assumed, that pre-fibrillar oligomeric Aβ species occur in the diseased brain 

already before Aβ plaque deposition125 and based on this knowledge the pFTAA treatment 

might have been initiated too late, to influence synaptic transmission and possibly rescue 

neurotoxic effects of Aβ oligomers. When combining the results of the two peripheral pFTAA 

treatment approaches in APPPS1 mice (see chapter 3.3 and 3.4) it is assumed, that pFTAA 

influences cerebral Aβ plaque formation in young animals but not plaque maintenance in aged 

APPPS1 mice. Furthermore the treatment period of two month in aged animals might have 

been too short, to affect cerebral Aβ plaque maintenance. These results are comparable to 

previous observations, where a combination treatment (inhibition of Aβ production and 

passive immunization using antibody Ab9) influenced especially the formation of newly 

formed Aβ deposits126. Therefore, it would be of interest to measure synaptic transmission in 

aged animals, where the pFTAA treatment was initiated before or with cerebral Aβ plaque 

deposition and neurotoxic Aβ oligomers were pFTAA bound before first cognitive 

impairments in animals occur. 

 

4.2.3 Conclusions of peripheral pFTAA treatment in APPPS1 mice 

Taken together, no substantial effect of pFTAA on overall cerebral Aβ pathology was 

observed, however detailed analyses revealed an influence on cortical plaque assembly. After 

a peripheral pFTAA treatment, young APPPS1 mice revealed an increase of Aβ plaque 

number and a shift to smaller cerebral Aβ plaques when compared to controls. A 

conformational change of cortical Aβ plaque morphology was observed, which indicates a 

slower cerebral Aβ plaque growth and maturation after systemic pFTAA treatment in APPPS1 

mice. The observed effect might even decelerate or moderate AD progression, but therefore 

cerebral Aβ load of longer treated aged APPPS1 mice needs to be analyzed and additional 
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functional studies need to be assessed. A peripheral pFTAA treatment does not influence Aβ 

oligomer toxicity on a functional level, but as discussed it is speculated that the treatment was 

initiated too late and disease pathology was already too advanced. It is conceivable, that a 

treatment initiated earlier,  for example before plaque deposition starts in APPPS1 mice (6-8 

weeks of age) might alter not only fibrillar Aβ deposition (see long term pFTAA treatment) 

but also toxic effects of oligomeric species. Since a remarkable effect of pFTAA on in vitro 

precipitation of Aβ was observed it is of high interest why only a minor effect on Aβ plaque 

pathology in vivo and no effect on synaptic transmission in APPPS1 mice was observed. An 

earlier and longer peripheral pFTAA treatment but also a local i.c. treatment of pFTAA, 

allowing for higher local concentrations of pFTAA via an osmotic minipump might influence 

cerebral Aβ pathology in APPPS1 mice differently85,127,128.  
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5. Zusammenfassung 

LCOs (luminescent conjugated oligothiophenes) als neue β-Amyloid-bindende 

Substanzen zur Diagnose und Therapie der Alzheimer´schen Erkrankung 

LCOs sind neuartige, konformations-sensitive optische Amyloid-Marker, die je nach Struktur 

der gebundenen, pathologischen Amyloid-Ablagerungen Fluoreszenzlicht unterschiedlicher 

Wellenlänge emittieren. Nach einer intravenösen Injektion in dem transgenen Alzheimer 

Mausmodell APPPS1 sind bestimmte LCOs, beispielsweise pFTAA, in der Lage die Blut-

Hirn-Schranke (BHS) zu passieren und zerebrale β-Amyloid-Plaques sowohl langfristig als 

auch spezifisch zu markieren. 

Im Rahmen dieses Promotionsprojektes wurden LCOs zum einen auf ihre Verwendbarkeit als 

neuartige diagnostische Marker zur Detektion von zerebralen β-Amyloid und zum anderen als 

potentielle therapeutische Substanzen im transgenen Alzheimer Mausmodell APPPS1 

untersucht.  

Innerhalb des diagnostischen Versuchsansatzes wurde analysiert, ob an magnetische 

Nanopartikel gekoppelte LCO-Derivate (LCO-MNPs) für den Einsatz als Kontrastmittel nach 

einer intravenösen Injektion ebenfalls in der Lage sind, die BHS zu passieren und an zerebrale 

β-Amyloid-Ablagerungen in APPPS1 Tieren zu binden. Nach intravenöser Applikation der 

LCO-MNPs wurden mittels Fluoreszenz-Mikroskopie in APPPS1 Tieren LCO-markierte β-

Amyloid-Plaques detektiert. Magnetische Nanopartikel konnten bisher mittels der 

Magnetresonanztomographie und Elektronenmikroskopie allerdings nicht im Hirn der 

behandelten Tiere nachgewiesen werden.  

Verschiedene Amyloid-spezifische Marker wie beispieslwesie Kongo Rot oder Methoxy-XO4 

wiesen zuvor anti-amyloidogene Eigenschaften in vitro und in transgenen Alzheimer Tier-

Modellen in vivo auf. Auch LCPs (luminescent conjugated polythiophenes) als Vorläufer von 

LCOs reduzieren die Ausbreitung von Prion-Proteinen in vitro und wiesen somit einen 

Amyloid-hemmenden Effekt auf. Innerhalb des vorliegenden Promotionsprojektes wurde 

weiterhin untersucht, ob die langfristige in vivo Bindung von pFTAA an zerebrale β-Amyloid-

Plaques in APPPS1 Tieren einen Einfluss auf die Plaque-Pathologie in kortikalen 

Hirnregionen hat und LCOs somit möglicherweise als neue therapeutische Substanzen 

eingesetzt werden können. Nach einer in vivo Behandlung von transgenen APPPS1 Tieren, 

wurden keine toxischen Nebenwirkungen beobachtet und Analysen der Gesamt-Plaque-

Belastung im Hirn der behandelten Tiere zeigten im Vergleich zu Kontrolltieren keine 

signifikanten Unterschiede. Allerdings wiesen pFTAA-behandelte APPPS1 Tiere signifikant 
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mehr kleinere β-Amyloid Plaques und geringere durchschnittliche Flächen pro Plaque auf. 

Zusätzlich wurden signifikante morphologische Unterschiede zwischen pFTAA gebundenen 

und unbehandelten zerebralen β-Amyloid Plaques aufgezeigt, die auf eine langsamere β-

Amyloid Plaque-Reifung hinweisen. Die erhöhte Anzahl an kortikalen Plaqes könnte auch auf 

eine mögliche, verstärkte Nukleation der Amyloidablagerungen auf Grund der pFTAA 

Bindung hinweisen. Zusammenfassend könnten diese beiden Ergebnisse die unveränderte 

Gesamt-Plaque-Belastung im Hirn pFTAA behandelter Tiere erklären. Da pFTAA auch pre-

fibrilläre, toxisch wirkende Aβ-Oligomere bindet, wurde ausserdem der Effekt einer pFTAA 

Behandlung auf die synaptische Transmission in APPPS1 Tieren untersucht. Es wurde jedoch 

kein signifikanter Einfluss der pFTAA Behandlung in APPPS1 Tieren auf die synaptische 

Transmission im Hippokampus nachgewiesen.  

Zusammenfassend demonstrieren die Ergebnisse keinen substantiellen therapeutischen Effekt 

während einer Langzeit-Behandlung von transgenen Alzheimer Tieren mit pFTAA. Allerdings 

unterstützen die generierten Daten die Anwendung von pFTAA beziehungsweise LCOs in der 

humanen in vitro Diagnostik und potentiell auch in der in vivo Diagnostik. 
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6. Abstract 

Luminescent conjugated oligothiophenes as diagnostic tools and potential 

pharmacophores in Alzheimer´s disease 

Luminescent conjugated oligothiophenes (LCOs) are novel molecular amyloid binding 

agents, which identify their targets with high sensitivity and specificity, and additionally 

provide structural information about bound amyloid lesions due to changing emission spectra. 

The pentameric LCO pFTAA readily crosses the blood brain barrier (BBB) after intravenous 

injection and efficiently labels cerebral Aβ plaques in Alzheimer´s disease (AD) transgenic 

APPPS1 mice. 

Within the present thesis, LCOs were investigated as in vivo tracers for detecting cerebral Aβ 

deposits and as potential pharmacophores in APPPS1 mice, a model of early and robust 

cerebral amyloidosis.  

To test LCOs for neuroimaging of cerebral Aβ deposits using magnetic resonance imaging 

(MRI), they were attached by distinct spacer components to magnetic nanoparticles (MNPs), 

resulting in coupled probes termed LCO-MNPs. LCO-MNPs were peripherally applied to 

APPPS1 mice and BBB passing as well as labeling of cerebral Aβ plaques was investigated 

using optical imaging and MRI. Results revealed a specific optical signal of LCO labeled 

cerebral Aβ plaques after peripheral administration of LCO-MNPs, however no significant 

MRI and transmission electron microscopic signals were detected so far.  

Since different amyloid dyes showed anti-amyloid effects by preventing Aβ fibrillogenesis or 

by inhibition of Aβ toxicity, pFTAA was further investigated as potential pharmacophores in 

AD. After crossing the BBB of APPPS1 mice following peripheral application, pFTAA binds 

deposited fibrillar Aβ plaques but possibly also pre-fibrillar toxic oligomers, which were 

described to primarily cause impairments in memory and cognition. To analyze the effect of 

cerebral bound pFTAA on AD pathology, APPPS1 mice were treated with pFTAA, and 

cerebral Aβ plaque load and hippocampal synaptic transmission were determined. Although 

no functional impact on synaptic transmission was observed after peripheral pFTAA 

treatment, an influence on Aβ plaque pathology in APPPS1 mice was detected. The overall 

cerebral Aβ plaque burden was not changed, however pFTAA treated APPPS1 mice revealed 

more numerous and smaller plaques when compared to PBS treated controls, which could in 

addition be structurally distinguished from Aβ plaques of control animals. Thus in vivo 

pFTAA binding to cerebral amyloid deposits in APPPS1 mice slows Aβ plaque growth and 



Abstract 

152 
 

maturation. The significant increase of cortical Aβ plaque number might be explained by 

elevated amyloid seeding through pFTAA binding to cerebral Aβ. 

The results of the present thesis show, that pFTAA or LCOs have the potential to be further 

investigated for human AD diagnostic, since they caused no obvious toxic side effects in long 

term treated APPPS1 mice and did not substantially alter cerebral plaque burden. 
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