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To my father

Mathematicians do not study objects, but relations between objects.
Thus, they are free to replace some objects by others so long as the
relations remain unchanged. Content to them is irrelevant: they
are interested in form only.

Henri Poincaré





Abstract.
Population balance systems model the interaction of the surrounding medium

and the particles which are described by the particle size distribution (PSD).
This way of modeling results in a system of partial differential equations where
the incompressible Navier–Stokes equations for the fluid velocity and pressure
are coupled to convection-diffusion equations for species concentration and the
system temperature, and a transport equation for the PSD. The equation for the
PSD may even contain an integral operator that models, e.g., the aggregation of
the particles. Whereas the flow field, the concentration of dissolved species, and
temperature are defined in a three-dimensional spatial domain, the PSD depends
also on the internal coordinates, which are used to describe additional proper-
ties of the particles (e.g., diameter, volume). In particular, uni-variate and
bi-variate population balance models are based on one- and two-dimensional
geometrical characterizations of the individual particles (diameter, volume, or
main axis in the case of anisotropic particles), resulting in four-dimensional
(4D) and five-dimensional (5D) population balance systems. There are several
classes of numerical methods for solving population balance systems. With the
ongoing rise of computer power, the option of using direct discretizations for
simulating those systems becomes more and more interesting since these dis-
cretizations do not introduce an additional error by circumventing the solution
of the higher-dimensional equation for PSD, like momentum-based methods or
operator-splitting schemes. In this thesis, it is shown for uni-variate popu-
lation balance systems that for an appropriate choice of the unknown model
parameters in aggregation kernel good agreements can be achieved between the
experimental data and the numerical results computed by the numerical meth-
ods. A mixed finite difference/finite volume method is used for discretizing
the PSD equation in the case of bi-variate population balance systems. In this
case, it is demonstrated that even in the class of direct discrerizations, different
numerical methods lead to qualitatively different numerical solutions.





Zusammenfassung.
Populationsbilanzsysteme modellieren die Wechselwirkung zwischen Teilchen,

welche durch ihre Partikelgrößenverteilung beschrieben sind, und ihrem umge-
benden Medium. Aus mathematischer Sicht führt das auf ein gekoppeltes Sys-
tem von partiellen Differentialgleichungen. Die inkompressible Navier–Stokes–
Gleichungen, welche die Fluidgeschwindigkeit und den Druck beschreiben, sind
hier an Konvektions–Diffusions–Gleichungen, welche die Konzentration der
Spezies sowie die Temperatur des Systems modellieren und an eine Trans-
portgleichung für die Beschreibung der Partikelgrößenverteilung gekoppelt. Die
Gleichung für die Partikelgrößenverteilung kann sogar einen Integraloperator
enthalten, der zum Bespiel die Aggregation von Partikeln modelliert. Das Strö-
mungsfeld, die Konzentration der gelösten Spezies und die Temperatur des Sys-
tems sind in einem dreidimensionalen Gebiet definiert. Die Partikelgrößenver-
teilung hängt darüber hinaus von den internen Koordinaten ab, welche zusätzli-
che Eigenschaften der Partikel (z. B. Durchmesser, Volumen) beschreiben. Ins-
besondere sind univariate und bivariate Populationsbilanzmodelle dadurch
gekennzeichet, dass sie eine ein- oder zweidimensionale geometrische Charakte-
risierung der einzelne Partikel darstellen (Durchmesser, Volumen der Teilchen
oder Hauptachse von anisotropen Teilchen). Dies resultiert in vierdimensionale
(4D) und fünfdimensionale (5D) Populationsbilanzsysteme. Zur numerischen
Lösung von solchen Systemen können verschiedene Klassen von Methoden ge-
nutzt werden. Mit dem Anstieg der Rechenleistung werden direkte Diskretisie-
rungen für die Simulation zunehmend interessanter. Solche direkten Schema-
ta haben gegenüber Momentenmethoden oder Operator-Splitting-Methoden den
Vorteil, dass kein zusätzlicher Fehler durch die Dimensionsreduktion entsteht.
Für univariate Populationsbilanzsysteme wird in der Arbeit gezeigt, dass un-
ter Benutzung von geeigneten Modellparametern für den Aggregationskern gute
Übereinstimmungen zwischen den numerischen Resultaten und den experimen-
tellen Messungen erzielt werden können. Für die Diskretisierung der Parti-
kelgrößenverteilung für bivariate Populationsbilanzsysteme wird ein gemischtes
Finite–Differenzen/Finite–Volumen–Verfahren benutzt. In diesem Fall wird ge-
zeigt, dass sogar direkte Diskretisierungsmethoden zu qualitativ unterschiedli-
chen Lösungen führen können.
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Ṽr = 90 ml/min (right). . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Initial distribution for KDP model. . . . . . . . . . . . . . . . . 5
1.4 (Logarithm of the) PSD at the center of the tube close to the

outlet; FWE–UPW–FDM (left) and RK–ENO–FDM (right). . . 6

2.1 Control volume. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Control volume. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Control volume. . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Aggregation: source term. . . . . . . . . . . . . . . . . . . . . . 39
2.5 Aggregation: sink term. . . . . . . . . . . . . . . . . . . . . . . 39
2.6 Cell Ki,j. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.7 Decomposition of the locally refined grid for the PSD. . . . . . . 50
2.8 Coupled problem. . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Cooling crystallization of urea synthesis. . . . . . . . . . . . . . 55
3.2 Schematic representation of the crystallizer. . . . . . . . . . . . 56
3.3 f̃L̃,seed(L̃) at the inlet (left) and the normalized volume fraction

of the PSD at the inlet (right). . . . . . . . . . . . . . . . . . . 66
3.4 The computational grid, flow domain not to scale (scaled up by

factor 40 in x3- and x3-direction). . . . . . . . . . . . . . . . . 67
3.5 The grid with respect to the internal coordinate, diameter (top)

and mass (bottom). . . . . . . . . . . . . . . . . . . . . . . . . 67
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1 Introduction

In the most general sense, a population is a collection of the same species of
individuals, e.g., particles, which due to the process of synthesis are connected
with each other.
Population balance modeling has gained a lot of attention in the last few

years, since it can be used to describe many particulate processes, e.g., crys-
tallization, comminution, precipitation, polymerization, aerosol, and emulsion
processes.
Particulate processes are characterized by the presence of dispersed systems

[21]. In these systems, the dispersed phase is surrounded by a continuous one,
the so-called dispersion or suspension medium. In general, a dispersed phase
may represent solid particles, drops or bubbles. In particular, in the context of
crystallization, the dispersed phase is represented by solid particles, i.e., crystal
particles.
Crystallization is a separation and purification process which is frequently

used in the chemical and pharmaceutical industries. The process starts by a
phase change in which the crystalline product is obtained from a solution (sus-
pension), which is made up of two or more species, where one is the solvent
(liquid) and the other the solute(s) (solid) [60]. Industrial crystallization can
operate continuously or batch-wise. Moreover, depending on the creation of
supersaturation, it can be distinguished between the following types of crystal-
lization from the solution: cooling crystallization, evaporative crystallization,
drawing-out crystallization, and reaction crystallization. In our applications,
we focus on the process of cooling crystallization. An advantage of the con-
tinuous over the batch process is that the optimal supersaturation can be easily
maintained by a certain flow for a given volume suspension. Therefore, for
continuous operations, the spatial separation of different population dynamical
phenomena, i.e., nucleation, growth, aggregation, and breakage, is possible. On
the other hand, kinetic data can be obtained by batch crystallization, which is
less time consuming and less expensive. These data can be applied also to the
design and operation of different types of continuous crystallizers [59].
The understanding of such processes has become a key issue for the optimal

control of chemical, agrochemical, and pharmaceutical products. Hence, mod-
eling and numerical simulations of population balances have become more and
more important in the last few years [33, 64].
Since particles may have different sizes and properties, a population balance

aims at investigating averaged properties of the whole population rather than the



2 1 Introduction

behavior of each individual particle. Such averages can be described by particle
size distributions (PSD), whose behavior can be modeled by population balance
systems. Moreover, the interaction between the particles and the continuous
phase leads to different thermodynamical and mechanical phenomena, e.g., nu-
cleation, growth, aggregation, breakage, and transport of particles [21, 33].
From a mathematical point of view, population balance systems are modeled

considering a flow field transporting the particles. This modeling results in a
system of partial differential equations where the Navier–Stokes equations for
the fluid velocity and pressure are coupled to convection-diffusion equations for
the species concentration and the system temperature, and a transport equation
for the PSD as it is illustrated in Fig. 1.1. In the considered applications, the
temperature gradient is small enough, the solution is sufficiently dilute, and the
size of the particles is also sufficiently small. All these aspects imply that the
influence of the temperature, concentration, and particles on the flow field can
be neglected.

Figure 1.1: Schematic representation of the coupled problem.

Since analytic solutions to these systems are not available, the recourse to
numerical methods is a self-evident consequence.
Altogether, a population balance system contains equations which are defined

in domains with different dimensions. In fact, the flow field, the concentrations
of dissolved species and the temperature are defined in a three-dimensional spa-
tial domain, while the PSD depends also on the internal coordinates, which are
used to describe additional properties of the particles (e.g., diameter, volume).
In particular, uni-variate and bi-variate population balance models are

based on one- and two-dimensional geometrical characterizations of the indi-
vidual particles (diameter, volume, or main axis in the case of anisotropic parti-
cles), resulting in four-dimensional (4D) and five-dimensional (5D) population
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balance systems. If more properties of the particles are utilized to characterize
the crystallization processes, the extensions to the multivariate models might
yield more reliable models of such processes, improving the accuracy of simula-
tions.
From a computational point of view, the accurate and efficient simulation

of such population balance systems poses a great challenge. Since the inter-
nal coordinate extends the dimension of the system at least by one, in many
applications the assumption of an ideally mixed tank is considered, i.e., the de-
pendency on space is neglected [54, 55, 56]. There are still only few approaches
for the simulation of the equation for the PSD in the higher-dimensional domain
[24, 44, 45, 71]. Currently, more widely used are several proposals for model
simplification, which replace the higher-dimensional equation for the PSD by a
system of equations in three dimensions. The most popular approaches in this
direction are the quadrature method of moments (QMOM) [58] and the direct
quadrature method of moments (DQMOM) [57]. These methods approximate
the first moments of the PSD. However, the reconstruction of a PSD from
a finite number of its moments is a severely ill-posed problem [14, 36]. An-
other approach for tackling the high-dimensionality of the population balance
systems is based on operator-splitting schemes, i.e., the high-dimensional pop-
ulation balance equation is decoupled into two low-dimensional equations which
are discretized separately [18, 19, 20]. Also this class of methods introduces an
additional error by circumventing the solution of the higher-dimensional equa-
tion for PSD. So, the development of accurate and efficient numerical schemes
to solve population balance systems is currently an important topic of research.
This thesis focuses on the treatment of fully coupled problems, e.g., (3D/4D)

and (3D/5D), with methods based on direct discretizations. The considered
(3D/4D) coupled system is an extension of the work proposed in [67]. In con-
trast to [67], our application, which models the process of urea synthesis, takes
into account the temperature of the system and aggregation phenomena. In
addition, the considered (3D/5D) coupled system, which models the process of
potassium dihydrogen phosphate crystallization, presents a new contribution to
the population balance community. All numerical simulations have been per-
formed with the open-source finite element software MooNMD [38], which had to
be extended for the considered application. A number of the numerical methods
solving coupled systems of type (3D/4D) were available to be used in MooNMD,
e.g., from the applications proposed in [7, 40]. While for the (3D/4D) coupled
problem only a few modules of the used algorithms had to be implemented, the
algorithms for the (3D/5D) coupled problem have been completely new imple-
mented.



4 1 Introduction

1.1 Outline of the thesis

Chapter 2 introduces the prototype equations which are usually contained in pop-
ulation balance systems, e.g., the Navier–Stokes equations, scalar convection-
diffusion equations, and transport equations. General formulations of conserva-
tion laws provide the derivation of each individual equation. Since these equa-
tions are hard to solve analytically, or sometimes it is impossible, the alterna-
tive numerical treatment is an obvious issue. In order to solve these equations
numerically, some general aspects are introduced, i.e., dimensionless formula-
tion, incorporation of initial and boundary conditions, variational formulation,
time and space discretization. Whereas the numerical methods for solving the
Navier–Stokes and scalar convection-diffusion equations are based on finite el-
ement methods, less expensive schemes based on finite difference ideas are used
for the computation of the PSD equations. In particular, the inf-sup stable
Q2/P

disc
1 finite element method (FEM) used for the Navier–Stokes equations, a

linear finite element method flux-corrected transport (FEM–FCT) [46] used for
scalar convection-diffusion equations, and different finite difference schemes,
e.g., forward Euler upwind finite difference method (FWE–UPW–FDM), back-
ward Euler upwind finite difference method (BWE–UPW–FDM), and a total
variation diminishing (TVD) Runge–Kutta scheme combined with an essential
non-oscillatory method of order three used for the transport equations (RK–
ENO–FDM) are presented.
An important issue for solving population balance systems is the coupling of

the equations. In our model, we consider a one-way coupling, which means
that the flow field used for the computation of concentration, temperature, and
PSD equations is not influenced by these quantities. The back coupling will
be neglected here since sufficiently small amount of particles are suspended in
a dilute dispersion medium and sufficiently small temperature gradients are
present in the system.
Chapter 3 considers a laboratory experiment [6], a synthesis of urea particles

for which measurement data are available. The uni-variate population balance
system modeling the considered application takes into account the nucleation,
the growth, the aggregation, and transport of urea particles. Direct discretiza-
tions for simulating the uni-variate population balance system including the
distribution of temperature and concentration as well as including aggregation
seem to be first time presented. The model of [67] was extended by taking into
account a temperature profile and including an aggregation kernel, which is of
utmost importance from the point of view of chemical engineering, since the
behavior of the particles is driven by aggregation. The used kernel consists of
two parts, one describing the aggregation by Brownian motion and the other
one describing shear-induced aggregation.
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An important aspect for reliable comparisons is the use of accurate numer-
ical methods. Thus, the flow field will be simulated by a higher-order finite
element method, the equations for the concentration of dissolved urea and for
the temperature are computed by one of the most accurate stabilized finite el-
ement methods [46], and the aggregation integrals are computed by a modern
approach from [28, 29, 30]. Only the convective part of the equation for the
PSD is discretized, for efficiency reasons, with rather simple schemes, based
on finite difference ideas. Results with the examined schemes are illustrated in
Fig. 1.4. With these methods, parameters for the aggregation kernel could be

Figure 1.2: Space-time-averaged normalized volume fraction at the outlet for
different methods; flow rate Ṽr = 30 ml/min (left); flow rate Ṽr =
90 ml/min (right).

identified for two experimental setups which give results that agree well with
the experimental data. Reasons for differences of the optimal parameters be-
tween both examples are discussed. Detailed studies of the PSD for different
nodes of the grid at the outlet highlight the impact of the individual terms of
the aggregation kernel.
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6 1 Introduction

In Chapter 4, the bi-variate modeling of the potassium dihydrogen phosphate
crystallization process is derived. A lot of particulate products encountered in
pharmaceutical and chemical industries show anisotropic morphologies. Thus,
extensions to the multivariate population balance systems yield more reliable
models of such processes, improving the accuracy of simulations. However,
only particle transport, growth and nucleation will be taken into account, since,
to date, there are no predictive models for the aggregation kernels. To our
best knowledge, the proposed numerical methods for solving bi-variate popula-
tion system are new contribution to the field of a population balance modeling.
Considering the same experimental setup as in Chapter 3, the five-dimensional
domain will be a tensor product of intervals. Measurement data are not avail-
able for this example. Therefore, this chapter will highlight the differences in
the numerical results in the cases that a very cheap but low order method is
used for the discretization of the 5D transport operator versus a more expen-
sive but higher order method. These methods are examined for a given initial
distribution, a square pulse, see Fig. 1.3.
The numerical results based on the examined finite differences schemes are

illustrated in Fig. 1.4. In these plots, it can be observed that the PSD computed
with FWE–UPW–FDM is much stronger smeared with respect to the internal
coordinates than the PSD computed with RK–ENO–FDM. A detailed compar-
ison of the results obtained with both schemes will show that some aspects of
these results are qualitatively different.

Figure 1.4: (Logarithm of the) PSD at the center of the tube close to the outlet;
FWE–UPW–FDM (left) and RK–ENO–FDM (right).

In Chapter 5 the considered approaches will be summarized. This chapter
concludes with an outlook to future investigation.



2 Aspects of the numerical simulation of population
balance systems

In this chapter, the system of equation modeling population balances is de-
rived. Such systems contain equations which are defined in domain with dif-
ferent dimensions. Whereas Navier–Stokes describing the flow field and the
convection-diffusion equations describing the concentration of dissolved species
and the temperature are given in three-dimensional spatial domain, the trans-
port equation describing the behavior of the whole population of particles, i.e.,
particle size distribution, is defined in higher dimensional domain, e.g., four-
dimensional and five-dimensional domain. In general, each individual equa-
tions accounting for the population balance system is hard or in the most of
the cases impossible to be solved analytically. Therefore, numerical methods
have to be applied to compute approximations of the solutions. For solving
the incompressible Navier–Stokes equations and the scalar convection-diffusion
equations methods based on finite element schemes are introduced. Cheaper
schemes based on finite difference ideas are considered for the computation of
the PSD equations.
Moreover, population balance systems describe the interaction between par-

ticles and surrounding medium which are present in dispersed systems. For
the considered applications, this fact leads to different thermodynamical and
mechanical phenomena, e.g., nucleation, growth, and aggregation.

2.1 The Navier–Stokes equations

From the point of view of continuum mechanics, the motion of isothermal New-
tonian fluids, e.g., water, air, oil, etc, can be described by the Navier–Stokes
equations.
Unsteady incompressible flows can be described by the Navier–Stokes equa-

tions for the velocity and pressure:

ρ̃ũt − µ∆ũ + ρ̃ ((ũ · ∇)ũ) +∇p̃ = ρ̃g̃ in (0, t̃end]× Ω̃,
∇ · ũ = 0 in (0, t̃end]× Ω̃,

(2.1)

where

• Ω̃ ⊂ R3
[
m3
]
is the flow domain,

• ũ
[m

s

]
is the velocity field,
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• p̃
[

kg
m s2

]
is the pressure,

• ρ̃
[

kg
m3

]
is the fluid density,

• µ
[

kg
m s

]
is the dynamic viscosity of the fluid,

• g̃ is the body force (gravity, centrifugal and Coriolis),

• t̃end [s] is the final time.

Problem (2.1) has to be equipped with an initial condition and with boundary
conditions.
From a mathematical point of view, the Navier–Stokes equations represent a

nonlinear partial differential equations, since the third term in the first equation
of (2.1), ρ̃ ((ũ · ∇)ũ) is a nonlinear term. The first equation in (2.1) describes
the conservation of linear momentum and the second one describes the con-
servation of the mass. The first and third term in the momentum equation in
(2.1) represent a convective transport and the second term a diffusive or viscous
transport. The convective term is called the convective acceleration and it is
caused by a change in velocity over position.
A characteristic parameter of the Navier–Stokes equations is the Reynolds

number
Re =

ρ̃ · u∞ · l∞
µ

[· ] ,

where u∞
[m

s

]
is a characteristic velocity of the flow and l∞ [m] is a charac-

teristic length scale of the problem. Based on the Reynolds number, flows can
be classified as follows:

• Re small: (ũ, p̃) does not depend on the time, the flow is steady-state,

• Re medium: the flow is laminar but time dependent,

• Re large: the flow is turbulent.

The applications considered in this thesis can be described by a steady flow,
i.e., velocity and pressure do not change in time. In this case, the stationary
Navier–Stokes equations read:

−µ∆ũ + ρ̃ ((ũ · ∇)ũ) +∇p̃ = ρ̃g̃ in Ω̃,
∇ · ũ = 0 in Ω̃,

(2.2)

equipped with appropriate boundary conditions.
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Figure 2.1: Control volume.

2.1.1 The derivation

Below, we shortly introduce the derivation of Navier–Stokes equations, following
[17, 32, 50, 76].
The classical way of continuum mechanics for deriving these equations is

based on a closed system, the so-called control mass system (CMS), which is
defined as an arbitrary quantity of mass of fixed identity. In fluid flows it
is difficult to follow the path of a specific particle of fluid. Therefore, it is
more convenient to deal with a specific spatial region in the neighborhood of the
product of interest, the so-called control volume system (CVS). It is assumed
that ũ, ρ̃, p̃ are sufficiently smooth functions in the domain Ω̃ and the time
interval (0, t̃end].
Let CV be an arbitrary volume in Ω̃ fixed in space and with a sufficiently

smooth surface ∂Ω̃. The volume CV , illustrated as in Fig. 2.1, is called control
volume. The conservation of mass states that the mass of a closed system will
remain constant over time. Thus, mass is:

m(t̃) =
∫
CV

ρ̃(t̃, x̃)dx̃ = const [kg].

Further, if mass is conserved in the control volume CV then the rate of

change of mass in CV has to be equal to the flux of mass ρ̃ũ
[

kg
m2 s

]
across

the boundary ∂CV of CV

d

dt̃
m(t̃) =

d

dt̃

∫
CV

ρ̃(t̃, x̃)dx̃ =
∫
∂CV

(ρ̃ũ)(t̃, s)n(s)ds, (2.3)

where n(s) is the outward pointing unit normal on s ∈ ∂CV .
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Using Gauss’ divergence theorem (all function are assumed to be sufficiently
smooth), one obtains:∫

CV

∇ · (ρ̃ũ)(t̃, x̃)dx̃ = −
∫
∂CV

(ρ̃ũ)(t̃, s)n(s)ds.

Further, inserting (2.3) into the last equation leads to∫
CV

∂ρ̃

∂t̃
(t̃, x̃) +∇ · (ρ̃ũ)(t̃, x̃)dx̃ = 0.

Thus, (
∂ρ̃

∂t̃
+∇ · (ρ̃ũ)

)
(t̃, x̃) = 0 ∀t̃ ∈ (0, t̃end], x̃ ∈ Ω̃, (2.4)

since CV was chosen as an arbitrary control volume. Equation (2.4) is the
so-called continuity equation.
A fluid is called homogeneous if density does not vary over space and it is

called incompressible if density does not vary over time. Thus, for incompress-
ible and homogeneous fluids, one has ρ̃(t, x̃) =: const = ρ > 0 and the last
equation becomes

∇ · ũ = 0 ∀t̃ ∈ (0, t̃end], x̃ ∈ Ω̃,

which is the second equation in (2.1).
The conservation of linear momentum states that the rate of change of the

linear momentum must be equal to the net force acting on a collection of par-
ticles. This aspect describes Newton’s second law of motion

F = m · a,

where F [N ] is the net force, m [kg] is the mass, and a
[m

s2

]
is the acceleration.

The momentum m in a control volume CV is given by

m(t̃) =
∫
CV

ρ̃ũdx̃.

By Newton’s second law, the change of momentum is given by the sum of
forces acting on the volume, that means

d

dt
m(t̃) =

∑
f̃ .

In the given physical situation, there are the following kinds of forces:
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• volume forces (e.g., gravity or other external forces, including sources and
sinks), which are given by a volume integral∫

CV

ρ̃g̃dx̃,

• surface forces (e.g., pressure, viscous forces, or other internal forces),
which are given by a surface integral∫

∂CV

σnds,

where

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


is the symmetric stress tensor.

Now, one can express Newton’s second law as

d

dt
m(t̃) =

∫
CV

ρ̃g̃dx̃ +
∫
∂CV

σnds.

Further, one considers a fluid particle at time t̃ and position x̃ = (x̃1, x̃2, x̃3)T

with the velocity ũ(t̃, x̃) = (ũ1, ũ2, ũ3)T and a small time interval ∆t̃.
A linear extrapolation of the particle path states the particle has the position

x̃ + ∆t̃ũ at the time t̃+ ∆t̃. The acceleration of the particle is

a(t̃, x̃) =
dũ
dt̃

(t̃, x̃) = lim
∆t̃→0

ũ(t̃+ ∆t̃, x̃ + ∆t̃ũ(t̃, x̃))− ũ(t̃, x̃))
∆t̃

.

By using the linear Taylor series approximation with respect to x̃ , it follows
that

dũ
dt̃

(t̃, x̃) = lim
∆t̃→0

1
∆t̃

[
ũ(t̃, x̃) +

∂ũ
∂x̃1

ũ1∆t̃+
∂ũ
∂x̃2

ũ2∆t̃+
∂ũ
∂x̃3

ũ3∆t̃

+
∂ũ
∂t̃

∆t̃+O((∆t̃)2) +O((∆t̃)3) + · · · − ũ(t̃, x̃)
]

= lim
∆t̃→0

[ ∂ũ
∂x̃1

ũ1 +
∂ũ
∂x̃2

ũ2 +
∂ũ
∂x̃3

ũ3 +
∂ũ
∂t̃

+ · · · O(∆t̃)
]
,
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where O is the Landau notation which is used to describe the limiting behavior
of the function when the argument tends to a particular value. Assuming that
∆t̃→ 0, this reduces to

dũ
dt̃

(t̃, x̃) = ũt + ((ũ · ∇)ũ).

In other words, the term m · a is modeled by the first order approximation in
an arbitrary control volume CV∫

CV

ρ̃(ũt + (ũ · ∇)ũ)dx̃.

This term has to be in balance with the net forces acting on CV . Therefore, it
follows that ∫

CV

ρ̃(ũt + (ũ · ∇)ũ)dx̃ =
∫
CV

ρ̃g̃dx̃ +
∫
∂CV

σnds.

Applying Gauss’ divergence theorem for

−
∫
∂CV

σnds =
∫
CV

∇ · σdx̃,

one obtains
ρ̃(ũt + (ũ · ∇)ũ) = ρ̃g̃ −∇ · σ.

This is the equation of motion of the velocity field. In the case of viscous fluids,
the stress tensor can be decomposed into a pressure part and a viscosity part

σ = −p̃I︸︷︷︸
pressure

+ τ (∇ũ)︸ ︷︷ ︸
viscosity

,

where τ is the strain tensor and I is the unit tensor. In the case of Newtonian
fluids, τ (∇ũ) has to fulfill:

• linearty in ∇ũ,

• rotationally invariant,

• symmetry.

This leads to the model

τ (∇ũ) = ς(∇ · ũ)I + 2µD
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where

D =
∇ũ + (∇ũ)T

2
is the deformation tensor and ς is a viscosity constant. Using the identities:

∇ · ∇ũ = ∆ũ,

∇ · (∇ũ)T = ∇(∇ · ũ),

∇ · [(∇ · ũ)I] = ∇(∇ · ũ),

and the relation for incompressible fluids

∇ · ũ = 0,

the first equation in (2.1) will be obtained.

2.1.2 The dimensionless form

Our numerical simulations are based on the dimensionless form of Navier–
Stokes equations, which can be derived introducing the following dimensionless
quantities:

u =
ũ
u∞

, p =
p̃

p∞
,

x = (x1, x2, x3) =
(
x̃1

l∞
,
x̃2

l∞
,
x̃3

l∞

)
, p∞ = ρ̃u2

∞, g =
l∞
u2
∞

g̃.

Inserting these relations into (2.2), leads to

ρ

(
(u∞u · ∇)

u∞
l∞

u
)

+
p∞
l∞
∇p− ν u∞

l2∞
∆u = ρg̃.

By rescaling the dimensionless form of (2.2) the following is obtained:

−Re−1∆u + (u · ∇)u +∇p = g in Ω,
∇ · u = 0 in Ω,

(2.5)

with

• Re =
l∞u∞
ν

the Reynolds number,

• ν =
µ

ρ
the kinematic viscosity,

• Ω the dimensionless domain.
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Based on dimensional analysis, two steady-state flows are similar if they have
the same Reynolds numbers [23].

2.1.3 Boundary conditions

In order to close the Navier–Stokes equations, appropriate initial and boundary
conditions need to be applied. Since (2.5) is not time-dependent, only spatial
boundary conditions are required. There are several types of boundary condi-
tions which can be prescribed for incompressible flows. Only those boundary
conditions are introduced which are used in the considered application.
The Dirichlet boundary condition prescribes the velocity field on a part of the

boundary:
u(x) = uD(x) at ΓD ⊂ Γ,

where Γ = ∂Ω is the boundary of Ω.
The no-slip boundary condition is a particular case of the Dirichlet boundary

condition, namely
uD(x) = 0 at ΓD.

One can prescribe also the normal stress at a part of the boundary. It takes
the form

σ · n = uN at ΓN ⊂ Γ.

In particular, the outflow or do-nothing boundary condition, namely

uN = 0 at Γout ⊂ Γ,

is used in flow problems where no other boundary conditions are prescribed
at the outflow. This condition states that the normal stress vanishes on the
boundary part Γout.

2.1.4 The variational formulation

The stationary Navier–Stokes equations (2.5) will be closed with the following
boundary conditions: Dirichlet boundary condition at the inflow, do-nothing
boundary condition at the outflow, and no-slip boundary condition for the rest
of the boundary, as below

−Re−1∆u + (u · ∇)u +∇p = g in Ω,
∇ · u = 0 in Ω,

u = uD on ΓD,
σn = 0 on Γout,

u = 0 on Γ \ (ΓD ∪ Γout).

(2.6)
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In order to achieve the variational or weak formulation some suitable function
spaces are introduced.
Sobolev spaces of order m are given by

Hm(Ω) =

u :
∫

Ω

∑
|α|≤m

|∂αu|2dx <∞

 .

They can be endowed with the norm

‖ · ‖Hm =

∫
Ω

∑
|α|≤m

|∂αu|2dx

 1
2

,

and the inner product

(u, v)Hm =
∫

Ω

∑
|α|≤m

|∂αu∂αv|dx.

In particular, the Lebesgue space L2(Ω) is given by

L2(Ω) = H0(Ω) = {u :
∫

Ω

|u|2x <∞},

with the corresponding norm and the corresponding inner product

‖ · ‖ =
(∫

Ω

|u|2dx
) 1

2

,

(u, v) =
∫

Ω

uvdx.

The choice of the function spaces depends on the specific boundary condition
imposed for the considered application and they are given by:

Q = {q : q ∈ L2(Ω)},

V0 = {v : v ∈ (H1(Ω))3,v|Γ\Γout = 0},

VD = {v : v ∈ (H1(Ω))3,v|ΓD
= uD,v|Γ\(ΓD∪Γout) = 0}.
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For deriving the weak formulation, the equations (2.5) must be multiplied
with test functions and integrated on Ω.
Thus, the variational formulation of the problem is to find (u, p) ∈ VD ×Q∫

Ω
(−Re−1∆u + (u · ∇)u +∇p) · vdΩ =

∫
Ω

g · vdx, ∀v ∈ V0,∫
Ω

(∇ · u) · qdx = 0 ∀q ∈ Q. (2.7)

Applying integration by parts, (2.7) can be written as:∫
Ω

Re−1∇u · ∇vdx +
∫

Ω

(u · ∇)u · ∇vdx−
∫

Ω

p · ∇ · vdx

=
∫

Ω

g · vdx +
∫

Γ

nσ · vds (2.8)∫
Ω

(∇ · u) · qdx = 0.

The second term on the right-hand side in (2.8),∫
Γ

nσ · vdΓ,

vanishes on the boundary due to the choice of function spaces VD, V0 and

nσ = 0 at Γout,

v = 0 at Γ \ Γout.

Now (2.8) can be written in the form:
Find u ∈ VD and p ∈ Q such that

Re−1(∇u,∇v) + ((u · ∇)u,v)− (p,∇ · v) = (g,v), ∀v ∈ V0,

(∇ · u, q) = 0 ∀q ∈ Q. (2.9)

2.1.5 The linearization

The problem (2.9) corresponds to a nonlinear algebraic system of equations.
Therefore, these equations have to be linearized. The nonlinear system (2.9) is
solved iteratively. An iterative procedure consists in:

• fix an initial guess (u0, p0);

• while (no convergence) do

– linearization of the nonlinear equations based on previous solution
(uk, pk) = (uk−1, pk−1);
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– solve the resulting system of linear equations.

We are using here a fixed point iteration. For the time-dependent Navier–
Stokes equations, better results were obtained with a fixed point iteration in
comparison with Newton’s method [35]. The fix point linearization consists in
treating explicitly the convective velocity:

(uk · ∇)uk ≈ (uk−1 · ∇)uk.

Using this linearization in the equation (2.9) leads to the following:
Given (uk−1, pk−1), compute (uk, pk) by

Re−1(∇uk,∇v) + ((uk−1 · ∇)uk,v)− (pk,∇v) = (g,v),
(∇ · uk, q) = 0,

(2.10)

for all (v, q) ∈ V0×Q, k = 1, 2, 3 · · · . The linearized form of NSE (2.10) yields
so-called Oseen equations.

2.1.6 The space discretization

There are various methods for solving numerically partial differential equations:
finite difference methods (FDM), finite element methods (FEM), finite volume
methods (FVM), spectral methods, vortex methods, boundary element methods
and this is not a complete list. No one method dominates in computational fluid
dynamics. Here, the method of choice for solving the Navier–Stokes equations
is the finite element method [8, 9, 11, 22, 25]. The Galerkin finite element
method consists in replacing infinite dimensional spaces by finite dimensional
spaces.
Let V hD be an approximation of VD, V h0 be an approximation of V0, and Qh be

an approximation of Q. The finite element spaces are based on a triangulation
of the domain. Let Th be a triangulation of Ω which can consist in the three-
dimensional case of tetrahedra or hexahedra.
The finite element problem reads as follows:
Find (uh, ph) ∈ V hD ×Qh such that

Re−1(∇uh,∇vh) +
(
(uh · ∇)uh,vh

)
− (ph,∇ · vh) = (gh,vh)

(∇ · uh, qh) = 0,
(2.11)

for all vh ∈ V h0 and for all qh ∈ Qh.
For simplicity of presentation, let

{
ϕhi
}
be a basis of V h0 and

{
ψhi
}
be a basis

of Qh:
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V h0 = span


ϕhi0

0

 ,

 0
ϕhi
0

 ,

 0
0
ϕhi


Nu

i=1

,

Qh = span
{
ψhj
}Np

i=1
,

where Nu, Np is the number of unknowns (degrees of freedom) for the velocity
and pressure, respectively.
Therefore, the unknown solution has the representation:

uh =
3Nu∑
j=1

ujϕ
h
j + u0, ph =

Np∑
j=1

pjψ
h
j , (2.12)

with the unknown values {uj}, {pj}. The function u0 must be chosen such that
uh satisfies the essential boundary condition, which means:

u0 = uDon ΓD, (2.13)

u0 = 0on Γ \ (ΓD ∪ Γout). (2.14)

Inserting (2.12) into (2.11) one obtains:

(Re−1∇uh,∇ϕhi ) =
dNu∑
j=1

uj(Re−1∇ϕhj ,∇ϕhi ) + (Re−1∇u0,∇ϕhi ),

((ũh · ∇)uh, ϕhi ) =
dNu∑
j=1

uj((ũh · ∇)ϕhj , ϕ
h
i ) + ((ũh · ∇)u0, ϕ

h
i ),

(ph,∇ · ψhi ) =
Np∑
j=1

pj(ψj ,∇ · ϕhi ), (2.15)

where ũh is the current approximation of the velocity, see Sec. 2.1.5. The
system (2.10) is a finite dimensional linear system of equations. The following
matrices and vectors are defined:

A = (aij) = (Re−1∇uhj ,∇ϕhj ) + (ũh · ∇)ϕhj , ϕ
h
i ),

BT = (bji) = (ψhj ,∇ · ϕhi ),

B = (bij) = (∇ · ϕhi ), ψhj ),

u = (u1, ..., udNu)T ,
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p = (p1, ..., pNp)T ,

g = ((gh, ϕhi )− (Re−1∇u0,∇ϕhi )− ((ũh · ∇)u0, ϕ
h
i )).

This leads to the following form of the linear system, which is called saddle
point form, (

A BT

B 0

)(
u
p

)
=
(
g
0

)
. (2.16)

The dimension of the system depends on the dimension of V h0 and Qh with

dimension = 3 · dim(V h0 ) + dim(Qh).

The choice of the pair spaces is very important, since this choice has to ensure
the uniqueness of the solution of the system. The system has a unique solu-
tion if and only if V h0 and Qh fulfill the following inf-sup condition (known as
Babuška–Brezzi condition) [9, 22]:
There exists a constant κ > 0 (independent of triangulation) such that

inf
qh∈Qh

sup
uh∈V h

0

(∇ · uh, qh)
||∇uh||||qh||

> κ. (2.17)

Concrete pairs of spaces fulfilling this condition are introduced in Sec. 2.1.7.
One considers K̂ as closed reference cell. The reference transformation from

K̂ onto a mesh cell K is denoted by FK .
We denote by Qk(K̂) and Pk(K̂) the following sets of polynomials on K̂: and

the global finite element spaces by

Qk(K̂) := {q̂ =
k∑

i,j,l=0

aijlx̂
iŷj ẑl},

Pk(K̂) := {p̂ =
i+j+l6k∑
i,j,l=0

bijlx̂
iŷj ẑl}.

The space on the arbitrary mesh cell K is given by:

Qk(K) := {q = q̂ ◦ F−1
K : q̂ ∈ Qk(K̂)},

Pk(K) := {p = p̂ ◦ F−1
K : p̂ ∈ Pk(K̂)},
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and the global finite element spaces by

Qk := {v ∈ H1(Ω): v|K ∈ Qk(K)}, k > 1,

Q0 := {v ∈ L2(Ω): v|K ∈ Q0(K)},
P disck := {v ∈ L2(Ω): v|K ∈ Pk(K)}, k > 1.

2.1.7 Numerical methods

There are a lot of proposals for stable pairs of finite element spaces, e.g.,
[13, 66]. We will use here an inf-sup stable pair of finite element spaces with
discontinuous pressure, Q2/P disc1 , which is a popular choice [25]. In compari-
son with the inf-sup stable pair Q2/P1, the discontinuous pressure in Q2/P disc1

ensures a better local mass conservation. The efficiency of the numerical simu-
lations depends on the solver which is chosen to solve the saddle point problem
(2.16). Due to the finite element discretization, (2.16) possesses a sparse struc-
ture in the system matrices. Iterative solvers are often used for solving systems
with large sparse system matrices. We use a solver based on coupled multigrid
methods. The flexible GMRES (generalized minimal residual) method proposed
by [70] with multiple discretization multigrid preconditioner has been proved to
be an efficient solver for the forthcoming saddle point problem [34, 37] and the
choice of inf-sup stable pair Q2/P disc1 of finite element spaces.

2.2 Scalar convection-diffusion equations

From a physical point of view, phenomena where species or energy (or other
quantities) are transported inside a physical system, due to diffusion and con-
vection can be modeled with convection-diffusion equations. From a mathemat-
ical point of view, these equations are partial differential equations and they
can be derived in a straightforward way from the continuity equation. The
time-dependent scalar convection-diffusion equation has the form:

c̃t − D̃∆c̃+ ũ · ∇c̃ = F̃ in (0, t̃end]× Ω̃, (2.18)

where

• Ω̃ ⊂ R3 [m3] is a bounded domain,

• c̃ denotes the unknown as for example temperature [K] or

concentration
[

mol
m3

]
,
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• D̃
[

m2

s

]
is the diffusion coefficient,

• ũ
[m

s

]
is the convection field (velocity field) assumed to be divergence-free

(∇ · ũ = 0),

• F̃ describes the sources
[
K

s

]
or
[

mol
s m3

]
,

• t̃end [s] is the final time.

As the Re number for Navier–Stokes equation, so the Péclet number is a
characteristic parameter for the convection-diffusion equations.
The Pe number is defined by

Pe =
l∞ · u∞
D̃

[·] ,

where l∞ [m] is a characteristic length scale of the problem and u∞
[m

s

]
is a

characteristic scale of the convection field (velocity).
Based on the Pe number, which represents the ratio of convective effects over

diffusive effects, three regimes can be distinguished:

• Pe 6 1 the equation is diffusion-dominated,

• 1 < Pe 6 10 convection and diffusion are both important,

• Pe > 10 the equation is convection-dominated.

2.2.1 The derivation

The general principle of the conservation laws states that the rate of change
of a scalar quantity c̃ in a control volume CV , as illustrated in Fig. 2.2, plus
the flux of the quantity through the boundary of CV is equal to the rate of
production or destruction of the quantity [76].
This can be written as:

∂

∂t̃

∫
CV

c̃(t̃, x̃)dx̃ +
∫
∂CV

Jc̃(t̃, x̃) · n(s)ds =
∫
CV

F̃(t̃, x̃)dx̃, (2.19)

where Jc̃ is the total flux and F̃ is a net volumetric source or sink of the quantity
c̃.
Using Gauss’ divergence theorem for an arbitrary volume CV ⊂ Ω̃, one

obtains: ∫
CV

∇ · Jc̃(t̃, x̃)dx̃ =
∫
∂CV

Jc̃(t̃, x̃)n(s)ds, (2.20)
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Figure 2.2: Control volume.

where n is the outward pointing unit normal on s ∈ ∂CV . Inserting (2.20) in
(2.19), and since CV was chosen as an arbitrary volume in Ω̃, results in

(c̃t +∇ · Jc̃)(t̃, x̃) = F̃(t̃, x̃) ∀t̃ ∈ (0, t̃end), ∀x̃ ∈ V. (2.21)

There are two kinds of contributions in generating fluxes: a contribution due
to the molecular agitation, which can be present even when the fluid stagnates
and a contribution due to the convective transport of the fluid [32]. The diffusive
contribution is usually described using the phenomenological Fick’s first law,
which assumes that the flux of the diffusing material in any part of the system
is proportional to the local gradient

Jc̃(t̃, x̃) = −D̃ · ∇c̃(t̃, x̃).

When there is convection or flow, the convective flux is always present. It
represents the amount of quantity c̃ transported by the flow and it has the form:

Jc̃(t̃, x̃) = ũc̃(t̃, x̃).

Combining these two terms, the total flux becomes

Jc̃(t̃, x̃) = −D̃ · ∇c̃(t̃, x̃) + ũc̃(t̃, x̃).

Substituting this expression into (2.21), one obtains

c̃t̃ +∇ · (−D̃ · ∇c̃+ ũc̃) = F̃ . (2.22)

Applying the product rule in (2.22),

∇ · (−D̃ · ∇c̃+ ũc̃) = −D̃∆c̃+∇ · ũc̃+ ũ · ∇c̃
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and using the fact that for incompressible fluids ∇·ũ = 0, one gets the equation
(2.18).
Considering the mass or energy balance for dispersed systems, the right-hand

side in (2.18) may account for interchange mass (energy) transfer between the
disperse and continuous phase due to thermodynamical phenomena, e.g nucle-
ation or growth of the particles [64]

F̃ = −ρd
∫
Ṽ

f̃(x̃, L̃, t̃)G̃ ˙̃V dṼ, (2.23)

with

• ρd density of dispersed phase,

• Ṽ volume of the particle,

• f̃(x̃, L̃, t̃) particle size distribution,

• G̃ growth rate.

2.2.2 The dimensionless form

The dimensionless form of the equation (2.18) is derived in the same way as
the dimensionless form of the Navier–Stokes equations. Further, for the dimen-
sionless convection-diffusion equation, the following dimensionless quantities
are introduced:

c =
c̃

c∞
, u =

ũ
u∞

, t =
t̃

t∞
,x = (x1, x2, x3) =

(
x̃1

l∞
,
x̃2

l∞
,
x̃3

l∞

)
, t∞ =

l∞
u∞

.

Inserting these quantities into (2.18)

c∞
t∞

∂c

∂t
− D̃ c∞

l2∞
∆c+

u∞c∞
l∞

u · ∇c = F̃ , (2.24)

leads to a dimensionless convection-diffusion equation:

∂c

∂t
− D̃

l∞u∞
∆c+ u · ∇c = F in (0, tend]× Ω,

where F :=
l∞

c∞u∞
F̃ and D :=

D̃

l∞u∞
.
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2.2.3 Numerical methods

In the considered application, this type of equation was closed with appropriate
initial and boundary conditions. Thus, the linear scalar convection-diffusion
equation takes the form:

∂c

∂t
−D∆c+ u · ∇c = F in (0, tend]× Ω,

D∇c · n = 0 on [0, tend]× ΓN , (2.25)

c = cD on [0, tend]× ΓD,

c(0, ·) = c0 in Ω.

As the boundary condition, we have considered the Neumann boundary con-
dition on ΓN , the Dirichlet boundary condition on ΓD (Γ = ΓN ∪ ΓD,
ΓN ∩ΓD = ∅), and as the initial condition c0 in Ω. For the equation (2.25) the
convection field might be time-dependent.
Apart from the spatial discretization, a temporal discretization is also needed.

We are using here as time discretization a one-step Θ-scheme. Therefore, the
first equation in (2.25) at the discrete time tk takes the following form

ck + θ1∆tk(−D∆ck + uk · ∇ck)

= ck−1 − θ2∆tk(−D∆ck−1 + uk−1 · ∇ck−1) (2.26)

+θ3∆tkFk−1 + θ4∆tkFk,

with ∆tk = tk − tk−1, and the parameters θ1, θ2, θ3, θ4. The forward and
backward Euler scheme and the Crank–Nicolson scheme are obtained by appro-
priate choices of these parameters:

• forward Euler scheme θ1 = θ4 = 0, θ2 = θ3 = 1,

• backward Euler scheme θ1 = θ4 = 1, θ2 = θ3 = 0,

• Crank–Nicolson scheme θ1 = θ2 = θ3 = θ4 =
1
2
.

Here, we use the Crank–Nicolson scheme for the time discretization [12].
Analogously to Navier–Stokes equations, in order to apply the Galerkin finite

element method, the variational formulation formulation of (2.26) is derived.
The multiplication of (2.26) by a test function v and applying the integration

by parts over the domain Ω leads to:
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Find ck ∈ VD such that

(ck, v) + 0.5∆tk((D∇uk,∇v) + (uk · ∇ck, v)) (2.27)

= (ck−1, v)− 0.5∆tk((D∇uk−1,∇v) + (uk−1 · ∇ck−1, v))

+0.5∆tk(Fk−1, v) + 0.5∆tk(Fk, v)

for all v ∈ V0, where

V0 = {c : c ∈ (H1(Ω))3, c|ΓD
= 0},

VD = {c : c ∈ (H1(Ω))3, c|ΓD
= cD}.

For the simplicity of the representation it is assumed that cD does not depend
on time, so that the space VD does not change in time.
In the usual way, the Galerkin finite element formulation is obtained by

approximating the infinite dimensional spaces VD and V0 with finite element
spaces V hD and V h0 . So, the problem reads:
Find chk ∈ V hD such that

(chk , v
h) + 0.5∆tk((D∇chk ,∇vh) + (uk · ∇uhk , vh)) (2.28)

= (chk−1, v
h)− 0.5∆tk((D∇chk−1,∇vh) + (uhk−1 · ∇chk−1, v

h))

+0.5∆tk(Fhk−1, v
h) + 0.5∆tk(Fhk , vh)

for all vh ∈ V h0 .
In the case of convection- or reaction-dominated problems, the Galerkin finite

element formulation is not stable [68]. The solution of (2.28) shows spurious
oscillations in the whole domain. Comprehensive numerical studies of finite el-
ement methods for time-dependent convection-diffusion equations can be found
in [39, 41, 42]. In these studies, a linear finite element flux-corrected transport
(FEM–FCT) scheme turned out to combine good accuracy and high efficiency.
We are using the linear FEM–FCT for solving the scalar convection-diffusion
equations in three-dimensional domain. A short description of the method is
given below.
The FEM–FCT methods were originally developed for transport equations

[46, 47, 48, 49], i.e., for a particular case of (2.18) with D = F = 0. In
contrast to most other stabilized finite element methods, this method works on
an algebraic level and does not modify the bilinear form which defines the finite
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element method. This method begins with the algebraic equation corresponding
to the Galerkin finite element method:

(MC + 0.5∆tE)ck = (MC − 0.5∆tE)ck−1 + 0.5∆tFk−1 + 0.5∆tFk, (2.29)

where

• (MC)ij = (ϕj , ϕi) is the consistent mass matrix and {ϕi} is a basis of
the finite element space,

• (Ek)ij = (eij) is the stiffness matrix containing the sum of diffusion,
convection and reaction,

• Fk is the right-hand side at time tk.

An essential and first goal of the FEM–FCT schemes is the positivity-
preserving of the solution of (2.25). Let D = F = 0, ΓD = Γ, and cD = 0
which results in:

c0(x) ≥ 0, ∀x ∈ Ω ⇒ c(t,x) ≥ 0, ∀x ∈ Ω, ∀t ≥ 0.

This property guarantees that the temperature or the concentration remains
non-negative. The numerical solution of (2.29) might be corrupted by spurious
oscillations or numerical instabilities.
If the maximum principle holds for the continuous equation (2.25), then this

principle has to be inherited from the discrete equation. This is given if the
system matrix of the discrete equation is an M–matrix. In other words, the
FEM–FCT starts by modifying the equation (2.29) such that a stable but low
order scheme is represented. For this, it is defined:

L := E + D,

with

D := (dij), dij = −max{0, eij , eji} for i 6= j, dii = −
N∑

j=1,j 6=i

dij ,

ML := diag(mi), mi =
N∑
j=1

mij ,

where N is the number of degrees of freedom and ML is called the lumped mass
matrix. It holds that

• the row and column sums of D are zero,
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• L does not posses positive off-diagonal entries.

Thus, the low order scheme reads:

(ML + 0.5∆tL)ck = (ML − 0.5∆tL)ck−1 + 0.5∆tFk−1 + 0.5∆tFk. (2.30)

The second aim of the FEM–FCT is to modify the right-hand side of (2.30)
in such a way that diffusion is removed where it is not needed but spurious
oscillations are still suppressed

(ML + 0.5∆tL)ck = (ML − 0.5∆tL)ck−1 + 0.5∆tFk−1 + 0.5∆tFk
+F∗(ck, ck−1), (2.31)

where the ansatz for the vector F∗(ck, ck−1) uses the residual of (2.30) and
(2.31)

r = (ML + 0.5∆tL− (MC + 0.5∆tE))ck (2.32)

−(ML − 0.5∆tL− (MC − 0.5∆tE))ck−1

= (ML −MC)(ck − ck−1) + ∆tkD(0.5ck − 0.5ck−1).

The residual vector has to be weighted adequately, therefore, for the definition
of the weights, the residual is decomposed into fluxes rij, i, j = 1, · · · , N , in
the following way

ri =
N∑
j=1

rij

=
N∑
j=1

[mij(ck,i − ck,j)−mij(ck−1,i − ck−1,j)

−0.5∆tkdij(ck,i − ck,j)− 0.5∆tkdij(ck−1,i − ck−1,j)].

Thus,

rij = mij(ck,i − ck−1,i)−mij(ck,j − ck−1,j)

−0.5∆tkdij(ck,i + ck−1,i)− 0.5∆tkdij(ck,j − ck−1,j). (2.33)

The ansatz for the correction term becomes

F∗i (ck, ck−1) =
N∑
j=1

αijrij ,



28 2 Aspects of the numerical simulation of population balance systems

with the weights αij ∈ [0, 1] and i = 1, · · · , N .
In the case that the weights are dependent on the residual vector F∗(ck, ck−1),

one gets the nonlinear case of the FEM–FCT scheme [47, 48]. On the other
hand, if all weights are equal to 1, the Galerkin finite element method is recov-
ered. A linear FEM–FCT method is used here. The motivation of choosing this
approach is based on the results of [39, 41, 42], which showed a good ratio of
accuracy and efficiency. The linear FEM–FCT method [46] has as a starting
point the following idea.
In the equation (2.33), ck will be replaced by an approximation which can

be computed with an explicit scheme. For this, an intermediate value will be
defined as follows:

ck−1/2 :=
ck + ck−1

2
.

Thus, one obtains:

rij = 2mij(ck−1/2,i − ck−1,i)− 2mij(ck−1/2,j − ck−1,j)

− ∆tkdij(ck−1/2,i − ck−1/2,j). (2.34)

An approximation of ck−1/2 can be obtained with a forward Euler scheme ap-
plied to the equation corresponding to the low order scheme (2.30), with the
time step ∆tk/2. It follows:

c̄ = ck−1 − 0.5∆tkM−1
L (Lck−1 −Fk−1).

Inserting this approximation into (2.34) the numerical fluxes of the linear
FEM–FCT method are given as:

rij = ∆tk[mij(ck−1/2,i − ck−1/2,j)− dij(c̄i − c̄j)],

where

ck−1/2,i : = (M−1
L (Fk−1 − Lck−1))i,

c̄i : = ck−1 + 0.5∆ck−1/2,i.

Regarding the computation of the weights [41], Zalesak’s algorithm was used
[77]. The motivation of choosing this algorithm was discussed in [47]. A short
description of the algorithm is given here:
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• Compute the sums of the negative/non-negative antidiffusive fluxes in the
node i

P+
i =

N∑
j=1,j 6=i

max{0, rij},

P−i =
N∑

j=1,j 6=i

min{0, rij}.

• Compute the distance to a local extremum of the auxiliary solution c̃

Q+
i = max

{
0, max
j=1,··· ,N,j 6=i

(c̄j − c̄i)
}
,

Q−i = min
{

0, min
j=1,··· ,N,j 6=i

(c̄j − c̄i)
}
.

• Compute the nodal correction factors

R+
i = min

{
1,
miQ

+
i

P+
i

}
,

R−i = min
{

1,
miQ

−
i

P−i

}
.

• Compute the weights

αij =

{
min{R+

i , R
−
j } , rij > 0,

min{R−i , R
+
j } , rij < 0.

The auxiliary solution c̃ is used to guarantee the fulfillment of the maximum
principle [46]. Since c̃ is computed with an explicit method, a CFL–like condi-
tion for FEM–FCT scheme has to be satisfied. This condition is [46, 47]

∆tk < 2 min
i

mi

lii
.

2.3 Higher dimensional integro-partial differential equation

Higher dimensional integro-partial differential equations are used for modeling
a variety of particulate systems as well as various stochastic phenomena in
science and engineering. These processes are characterized by the presence
of a dispersed phase system [21]. The dispersed phase is surrounded by the
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continuous phase dispersed phase example
gas liquid aerosol
gas solid spray granulation

liquid gas absorption
liquid liquid extraction
liquid solid crystallization

Table 2.1: Classification of the dispersed two-phase systems.

continuous one and forms the so-called population of particles. A schematic
classification of dispersed two-phase systems is given in Table 2.1.

Moreover, each particle interacts with the surrounding continuous phase by
exchanging heat, mass, and momentum which leads to different population phe-
nomena occurring in the dispersed phase system. These phenomena can be
classified into two groups. On the one hand, there are the phenomena due to
the heat and mass transfer between the continuous and dispersed phase (e.g.,
nucleation, growth); on the other hand, there are the phenomena due to the
fluid dynamic processes and momentum transfer between the two phases (e.g.,
breakage, aggregation). The equations describing these type of systems belong
to the class of transport equations, with the special feature that they describe
the evolution of a particle size distribution (PSD) in high-dimensional spaces.
They are known among in the engineering community as population balance
equations.
The mathematical modeling of population balance equations requires not only

the external coordinates, describing the characteristics of the continuous phase,
but also the the so-called internal coordinates, representing the characteristics
of the dispersed phase [33]. External coordinates indicate the physical location
of the particle,

x̃ = (x̃1, x̃2, x̃3),

and internal coordinates indicate the internal characteristic of the particle
(e.g., diameter, volume),

L̃ = (L̃1, · · · , L̃n).

Further, the internal coordinates could refer to the particles’ dimensions along
the characteristic axes, and with it, a prototype of this kind of equations is given
by:

f̃t + ũL̃ · ∇L̃f̃ + ũx̃ · ∇x̃f̃ = H̃ in (0, t̃end]× Ω̃x̃ × Ω̃L̃, (2.35)
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where

• Ω̃x̃ × Ω̃L̃ ⊂ R3 × Rn
[
m3 ·mn

]
is the product domain of external and

internal coordinates with n ∈ {1, 2},

• f̃
[

1
m3 mn

]
is the particles size distribution,

• ũL̃
[m

s

]
is the convective field with respect to internal coordinates,

• ũx̃

[m
s

]
is the convective field with respect to external coordinates,

• H̃
[

1
s m3 mn

]
is the source term,

• t̃end [s] is the final time.

2.3.1 The derivation

From a mathematical point of view, the dispersed phase is represented with the
help of a number density function, denoted by f̃ , which describes the expected
number of particles that are located in a certain domain of the particle state
space, Ω̃x̃ × Ω̃L̃, and a certain time t̃ [63].
Let (x̃, L̃) be a set of external and internal coordinates in Ω̃x̃ × Ω̃L̃. Both span
the space particle state space, so that any particle can be represented uniquely
by a point in this space. Therefore, f̃ depends on the external coordinates,
internal coordinates and time t̃

f̃ = f̃(t̃, x̃, L̃).

The number density function f̃ is assumed to be sufficiently smooth to allow
differentiation with respect to any of its arguments as many time as may become
necessary. The total number of the particles in the entire system at the time t̃
is given by [63]

N(t) =
∫

Ω̃x̃

∫
Ω̃L̃

f̃(t̃, x̃, L̃)dVx̃dVL̃, (2.36)

where dVx̃ and dVL̃ are infinitesimal volume measures in the space of external
and internal coordinates, Ω̃x̃ × Ω̃L̃.
We will consider only such systems, in which the particles change their state

deterministically. A particle space continuum was introduced in [62] that per-
vades the particle state space. It is assumed that the particles are embedded in
this continuum. Further, only such systems will be taken into account where
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the continuum phase coincides with the fluid phase, in other words, there is no
relative motion between the particles and the continuous phase.
The general form of the population balance equation can be derived in the

same way as for convection-diffusion equations. Applying the general principle
of the conservation [76], it follows,

d

dt̃

∫
CV

f̃dCV +
∫
∂CV

Jf̃ · nds =
∫
CV

H̃dCV, (2.37)

which states that the rate of change of the scalar quantity f̃ in a control volume
CV plus the flux of the quantity Jf̃ through the boundary of CV is equal to the
rate of change of production or destruction of the quantity.
Let CV = Vx̃ × VL̃ be an arbitrary fixed control volume in the particle state

space Ω̃x̃ × Ω̃L̃. Thus, the equation (2.37) takes the form:

Figure 2.3: Control volume.

d

dt̃

∫
Vx̃

∫
VL̃

f̃(x̃, L̃, t̃)dVL̃dVx̃ +
∫
∂Vx̃

∫
∂VL̃

Jf̃ (x̃, L̃, t̃) · ndsL̃dsx̃ =
∫
Vx̃

∫
VL̃

H̃dVL̃dVx̃.

Using Gauss’ divergence theorem for an arbitrary volume CV , one obtains:∫
∂Vx̃

∫
∂VL̃

Jf̃ (x̃, L̃, t̃) · ndsL̃dsx̃ =
∫
Vx̃

∫
VL̃

∇x̃,L̃ · Jf̃ (x̃, L̃, t̃)dL̃dx̃.

Since the choice of V is arbitrary, this equation results in

f̃t̃(x̃, L̃, t̃) +∇x̃,L̃ · Jf̃ (x̃, L̃, t̃) = H̃, (2.38)

where ∇x̃,L̃ denotes the gradient with respect to the external and internal coor-
dinates.
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For the following formulation of a general population balance [21], the trans-
port of the total flux ∇x̃,L̃ · Jf̃ (x̃, L̃, t̃) is split into a transport flux with respect
to the external coordinates ∇x̃ · Jf̃,x̃(x̃, L̃, t̃) and one with respect to internal
coordinates ∇L̃ · Jf̃,L̃(x̃, L̃, t̃). It follows:

f̃t̃(x̃, L̃, t̃) +∇x̃ · Jf̃,x̃(x̃, L̃, t̃) +∇L̃ · Jf̃,L̃(x̃, L̃, t̃) = H̃,

with

∇x̃ = ∇ =


∂

∂x̃1
∂

∂x̃2
∂

∂x̃3

 ,∇L̃ =


∂

∂ ˜̃L1

· · ·
∂

∂ ˜̃Ln

 .

Furthermore, the transport flux, similar to the flux of non-dispersed phase, can
be divided into a diffusive JD

f̃
and a convective ũf̃ part:

• Jf̃,x̃ = JD
f̃,x̃

+ ũx̃f̃ ,

• Jf̃,L̃ = JD
f̃,L̃

+ ũL̃f̃ .

The diffusive part of the transport flux in the physical space JD
f̃,x̃

accounts for
the thermal or Brownian motion of the particles. Assuming that there is no
interaction between the particles, the diffusive part JDx̃ can be described with
Fick’s first law

JD
f̃,x̃

= −D · ∇x̃f̃.

The convective part of the transport flux in the physical space ũx̃f̃ describes
the deterministic moving of the particles resulting from the forces of flowing
continuum exercised on the particles.
Based on the assumption that the particles are embedded in the continuum,

the velocity ũx̃ can be approximated by the velocity ũ of the surrounding con-
tinuous phase:

ũx̃ ≈ ũ. (2.39)

The diffusive part of the transport flux in the property space ũL̃,x̃ accounts for
the stochastic variation of the growth rate describing the deterministic average.
A so-called growth rate dispersion introduced by [65] is used to describe the fact
that the particles of the same size grow at different rates. This effect is modeled
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with Fick’s first law, in the same way as for the diffusive part in the physical
space JDx̃

JD
f̃,L̃

= −D · ∇L̃f̃.

For the considered application an exact information about the diffusion part is
not known. It is only known that the diffusion is very small and the convection
is much larger than that. Because of this aspect, the diffusive parts of the
particles transported through the physical and property space are neglected.
The convective part of the transport flux property space ũL̃f̃ describes the

rate of change of particle properties. Assuming L̃ is a characteristic length of
the particle, e.g., diameter, then the corresponding velocity ũL̃ is the growth
rate of the particles.
The starting point for the derivation of velocity in the property space is the

energy and material exchange between the continuous and dispersed phase. In
the models of the considered experiments, the growth rate does not depend on
the length of the particles here. Thus, one gets

ũL̃(L̃, x̃, ỹ) =
dL̃

dt̃
= G̃(ỹ), (2.40)

where the vector ỹ = ỹ(x̃, t̃) describes the state of the continuous phase, e.g.,
temperature, concentration. Moreover, assuming L̃ = (L̃1, L̃2) the character-
istic dimensions of the anizotropic particles, e.g., length and width, then the
corresponding growth rate of the particles with respect to the main axis is given
as: (

G̃1(ỹ
G̃2(ỹ

)
=
(
ũL̃1

(L̃1, x̃, ỹ)
ũL̃2

(L̃2, x̃, ỹ)

)
where

ũL̃1
(L̃1, x̃, ỹ) =

dL̃1

dt̃
= G̃1(ỹ), (2.41)

ũL̃2
(L̃2, x̃, ỹ) =

dL̃2

dt̃
= G̃2(ỹ). (2.42)

Then the equation (2.38) becomes

f̃t̃ +∇L̃ · (ũL̃f̃) +∇x̃ · (ũx̃f̃) = H̃. (2.43)
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Using (2.39), (2.40), the fact that for incompressible fluids ∇x̃ · ũ = 0 and the
product rule for

∇x̃ · (ũx̃f̃) = (ũx̃ · ∇x̃)f̃ + f̃(∇x̃ · ũx̃)

= ũ · ∇f̃

and

∇L̃ · (ũL̃f̃) = ∇L̃ · (G̃(ỹ)f̃)

= (G̃(ỹ) · ∇L̃)f̃ + f̃(∇L̃ · G̃(ỹ))

= G̃(ỹ) · ∇L̃f̃.

equation (2.43) results in:

• uni-variate population balance

f̃t̃ + G̃(ỹ)
∂f̃

∂L̃
+ ũx̃ · ∇x̃f̃ = H̃, (2.44)

• bi-variate population balance

f̃t̃ + G̃1(ỹ)
∂f̃

∂L̃1

+ G̃2(ỹ)
∂f̃

∂L̃2

+ ũx̃ · ∇x̃f̃ = H̃. (2.45)

The right-hand side term H̃ of (2.44) and (2.45) accounts for different phys-
ical phenomena, e.g nucleation, aggregation and breakage. As shown in [1],
it is known that breakage occurs for turbulent flow whereas aggregation takes
place in less turbulent regions. Here, the experiments which are the basis of the
simulations lead to steady-state flows. Therefore, it is not necessary to include
the breakage phenomena.
In the case of uni-variate modeling, H̃ describes only the aggregation since

the considered experiment of urea synthesis is aggregation-driven [6]

H̃ = H̃+,agg + H̃−,agg.

In the bi-variate modeling the crystallization of potassium dihydrogen phos-
phate, H̃ accounts only for nucleation since up to now there are no available
aggregation kernels in the literature

H̃ = H̃nuc.
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2.3.2 Population dynamical phenomena

Considering a dispersed two-phase system, the so-called population of particles
is embedded in the continuous phase. The interaction between the two phases
is done by exchanging heat, mass and momentum. This leads to different pop-
ulation dynamical phenomena occurring in the dispersed phase system. For
deriving population balance equations, one has to take into account these phe-
nomena which can be divided into two groups:

• phenomena due to the heat and mass transfer between continuous and
dispersed phase, e.g., nucleation, growth of the particles, see Sec. 2.3.3
and Sec. 2.3.4

• phenomena due to the fluid dynamic processes and momentum transfer
between the two phases, e.g., aggregation and breakage, see Sec. 2.3.5
(breakage will be neglected here).

2.3.3 Nucleation

The formation of new particles is called nucleation. This phenomena can occur
by several mechanisms: homogeneous, heterogeneous, and secondary nucleation
[60, 64]. Secondary nucleation accounts for producing of nuclei in the vicinity
of crystals present in a supersaturated system. In the considered applications,
only the secondary nucleation is taken into account.
In the context of the population balance equation, nucleation can be modeled

using a source term [21, 33] or via an appropriate specification of the boundary
condition [10, 64].
Modeling nucleation via a source term. From a mathematical point of view,

on the one hand, the formation of new particles can be described with a birth
rate, B̃nuc(L̃, y(x̃, t̃))[1/(m3s)], which depends on the state of the continuous
phase, e.g., temperature, concentration. The birth rate accounts for the num-
ber of particles that are formed per unit time and per volume element of the
geometric space. On the other hand, the newly formed particles can take dif-
ferent values in the internal coordinate, so the size of newly generated nuclei
can be described by a probability density distribution which satisfies∫

Ṽ

f̃nuc(L̃)dṼ = 1. (2.46)

For the particular case, for which the particles are assumed to nucleate at the
same size considering bi-variate population balances, e.g., (L̃1,nuc, L̃2,nuc), the
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Dirac delta distribution, δ
(
L̃− (L̃1,nuc, L̃2,nuc)

)
[1/(m2)], can be considered in-

stead of the probability density distribution:

δ
(
L̃− (L̃1,nuc, L̃2,nuc)

)
=

{
∞, if L̃ = (L̃1,nuc, L̃2,nuc),

0, else,
(2.47)

with∫
Ṽ

δ
(
L̃− (L̃1,nuc, L̃nuc)

)
dV =

∫
V

δ
(
L̃1 − L̃1,nuc

)
δ
(
L̃2 − L̃2,nuc

)
dṼ = 1.

(2.48)
Then, the source term in the population balance equation is modeled by

H̃nuc(L̃, t̃) = B̃nucδ
(
L̃1 − L̃1,nuc

)
δ
(
L̃2 − L̃2,nuc

)
. (2.49)

Modeling nucleation via a boundary condition. Neglecting the size distribu-
tion of generated nuclei, one can also assume, for uni-variate population bal-
ances, a source at the smallest boundary of the particle size domain L̃ = L̃nuc

given as [10]

f̃(t̃, x̃, L̃) =


B̃nuc

G̃
, if L̃ = L̃nuc,

0, else,
(2.50)

which states that there is a dynamic equilibrium of particles formed at the small-
est boundary at a nucleation rate Bnuc and the growth of these particles with
the linear growth rate G̃ [m/s], see Sec. 2.3.4.
For bi-variate population balances, the modeling using a boundary condition

does not satisfy the dimension units for particle size distributions.
From the kinetic theory [60, 64] it is known that frequently used expressions

for the nucleation rate are given in terms of supersaturation and total volume
of the crystalline phase as follows

B̃nuc = kbσ
b
relṼcryst, (2.51)

where

• kb
[
1/(m3s)

]
is the kinematic parameter for nucleation correlated with

the experimental data,

• b [·] is the kinetics order of nucleation,

• σrel [·] is the relative supersaturation,

• Ṽcryst

[
m3
]
is the total volume of the crystalline phase.
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The relative supersaturation is given by

σrel =
c̃− c̃sat

c̃sat
, (2.52)

where

• c is the solution’s concentration,

• csat is the equilibrium saturation concentration in dependency on temper-
ature.

The total volume of the crystalline phase is equivalent to the third order moment
of the density distribution f̃(t̃, x̃, L̃) and is given by

Ṽcryst =
∫
Ṽ

f̃(t̃, x̃, L̃)Ṽ dṼ, (2.53)

with

• Ṽ as the volume of the particles.

2.3.4 Growth

After nucleation had taken place, the nuclei formed began to grow into particles
of a larger size. This process is called particle growth and, similarly to nucle-
ation, is strongly based on thermodynamic considerations. Very often crystals
of different sizes have the same shape. If this is the case, the crystal size may
be represented by one characteristic linear dimension. Then, the linear growth
rate G̃ of the particle is defined as the rate of change of a characteristic size L̃ of
the particle given as in (2.40) with respect to spherical particles and as in (2.41)
and (2.42) with respect to needle-shape particles. Simplified and frequently used
expressions for the growth rate are given in terms of supersaturation [64]

G̃ = kgσ
g
rel, (2.54)

with

• σrel [·] as the relative supersaturation, see (2.52),

• kg [m/s] as a kinematic parameter of growth correlated to the experimen-
tal data,

• g [·] as a kinetic order of growth.
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2.3.5 Aggregation

In the aggregation process, particles collide with each other and form a new
larger particle. Further, it is important to differentiate between aggregation
and agglomeration processes. While agglomeration describes the formation of
permanent particle clusters, aggregation is the formation of possibly temporary
ones.
For deriving the aggregation term, the volume Ṽ of particles is considered.

Further, only binary aggregation is assumed, since the probability that three or
more particles collide in a time interval (t̃, t̃+ dt̃) is negligible small compared
with the probability that two particles collide. From a mathematical point of
view, aggregation is described by a source and sink term. The source term de-
scribes the amount of particles of volume Ṽ which are created by the aggregation
of two particles with volume Ṽ

′
and Ṽ − Ṽ ′, Ṽ ′ ∈ (0, Ṽ ), see Fig. 2.4. This

Figure 2.4: Aggregation: source term.

process is modeled by

H̃+,agg(Ṽ ) =
1
2

∫ Ṽ

0

κagg(Ṽ − Ṽ ′, Ṽ ′)f̃V (Ṽ − Ṽ ′)f̃V (Ṽ
′
) dṼ

′
. (2.55)

The factor 1/2 arises since there are two realizations of this event: the first
particle has volume Ṽ

′
, the second has volume Ṽ − Ṽ ′, and vice versa. The

sink term describes the amount of particles of volume Ṽ that vanish because they
are consumed by aggregations with other particles of volume Ṽ

′ ∈ (0, Ṽ
max

), see
Fig. 2.5.

Figure 2.5: Aggregation: sink term.



40 2 Aspects of the numerical simulation of population balance systems

H̃−,agg(Ṽ ) = −
∫ Ṽ

max

0

κagg(Ṽ , Ṽ
′
)f̃V (Ṽ )f̃V (Ṽ

′
) dṼ

′
(2.56)

= −f̃V (Ṽ )
∫ Ṽ

max

0

κagg(Ṽ , Ṽ
′
)f̃V (Ṽ

′
) dṼ

′
. (2.57)

The sum of H̃+,agg(Ṽ ) and H̃−,agg(Ṽ ) gives the change of particles of volume
Ṽ due to the aggregation. In the literature can be found different kernels which
are based on the mechanism by which particles collide and stick together. In
the considered application it is used the aggregation kernel given in [74]. This
kernel is the product of two factors

κagg(Ṽ , Ṽ
′
) = pcol(Ṽ , Ṽ

′
)peff(Ṽ , Ṽ

′
)
[

m3

s

]
. (2.58)

The first factor gives the probability of the collision of particles with volume
Ṽ and Ṽ

′
. The efficiency of the collisions, i.e., the amount of collisions which

actually lead to aggregations, is described by the second factor. Due to the lack
of models, this factor is chosen to be constant. This constant can be included
into scaling factors for the individual terms of the following kernel, see [2, 52],

κagg(Ṽ , Ṽ
′
) = Cbr

2kBT
3µ

(
3
√
Ṽ +

3
√
Ṽ
′
) 1

3
√
Ṽ

+
1

3
√
Ṽ
′


+
Csh

kV

√
2∇u : ∇u

(
3
√
Ṽ +

3
√
Ṽ
′
)3

, (2.59)

where

• kV is a particle form factor,

• kB = 1, 3806504 10−23 [J/K] is the Boltzmann constant,

• Cbr, Csh are constants that have to be calibrated on the basis of the exper-
imental data.

These factors include also the collision efficiency peff(V − V ′, V ′).
The first term in (2.59) is Brownian-motion-generated. It is important for

small particles since in this case the last factor becomes large. The second term
is shear-induced [74] and it becomes important if both particles are large.
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2.3.6 The dimensionless form

The dimensionless form of the equation is derived in the same way as the di-
mensionless form of Navier–Stokes and convection-diffusion equations. Besides
the dimensionless quantities introduced in the Sec. 2.1.2 and Sec. 2.2.2, addi-
tional quantities are required:

f =
f̃

f∞
, L =

L̃

L∞
.

Inserting these quantities into (2.44) one gets for the uni-variate case

f∞
t∞

∂f

∂t
+ G̃

f∞
L∞

∂f

∂L
+
f∞u∞
l∞

u · ∇xf = H̃, (2.60)

or

∂f

∂t
+G

∂f

∂L
+ u · ∇xf = H, (2.61)

where, G :=
l∞

u∞L∞
G̃ and H :=

l∞
u∞f∞

H̃.

Furthermore, using the additional quantities

L1 =
L̃1

L1,∞
, L2 =

L̃2

L2,∞

in (2.45) one gets for the bi-variate case

f∞
t∞

∂f

∂t
+ G̃1

f∞
L1,∞

∂f

∂L1
+G2

f∞
L2,∞

∂f

∂L2
+
f∞u∞
l∞

u · ∇xf = H̃ (2.62)

or

∂f

∂t
+G1

∂f

∂L1
+G2

∂f

∂L2
+ u · ∇xf = H, (2.63)

where, G1 :=
l∞

u∞L1,∞
G̃1, G2 :=

l∞
u∞L2,∞

G̃1 and H :=
l∞

u∞f∞
H̃.

2.3.7 Numerical methods

In order to solve these equations, initial and boundary conditions are prescribed
for (2.61) and (2.62) result in

∂f

∂t
+G

∂f

∂L
+ u · ∇xf = H+,agg +H−,agg, (2.64)

f = fD on [0, tend]× ΓD,
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f(0, ·) = f0 in Ω× (Lmin, Lmax),

and

∂f

∂t
+G1

∂f

∂L1
+G2

∂f

∂L2
+ u · ∇xf = Hnuc,

f = fD on [0, tend]× ΓD,

f(0, ·) = f0 (2.65)

in Ω× (L1,min, L1,max) × (L2,min, L2,max).

The transport equation of type (2.64) or (2.65) are given in four- and five-
dimensional domain. Therefore, their solution is expected to be more expensive
than the solution of convection-diffusion equations, e.g., (2.24). In [40], several
schemes were explored for solving (2.64). It was found that for laminar flow
fields, simple and inexpensive schemes yielded similar results for quantities of
interest compared with more accurate and expensive schemes. In particular,
finite element schemes are rather expensive because of the costs for assembling
the matrices (the number of quadrature points scales exponentially with the
dimension), see [7]. Furthermore, numerical studies in [39] based on higher
order finite difference schemes gave comparatively results to methods based on
finite element discretizations. In the considered applications the flow domain
Ω is taken as a hexahedral tube, and with it, the four- and five-dimensional
domain will be a tensor-product domain. Such a domain enables easily the
application of finite difference methods. Based on the available experience, the
following methods were applied for the discretization of (2.64) and (2.65):

• forward Euler upwind finite difference method (FWE–UPW–FDM),

• backward Euler upwind finite difference method (BWE–UPW–FDM),

• total variation diminishing (TVD) explicit Runge–Kutta essentially non-
oscillatory finite difference method (RK–ENO–FDM).

In particular, the application of finite difference schemes to (2.65) becomes
impossible due to the Dirac delta distribution included on the right-hand side
(2.49), since for finite difference methods, the right-hand side must be a con-
tinuous function. In order to combat this inconvenient, a hybrid discretization
was considered that used for the left-hand side in of (2.65) finite difference
methods and for the right-hand side a finite volume method. Since the inte-
gral of the Dirac delta distribution is well-defined, the Dirac delta distribution
can be discretized with finite volume methods. The hybrid discretization leads
to a condition on the mesh for the internal coordinates that allows to adjust
the scaling of the finite difference method for the left-hand side and the finite
volume method for the right-hand side.
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Beside that, an efficient algorithm was used for evaluating the aggregation
integrals. A short presentation of these methods by the means of (2.61) is given
in the following:

FWE–UPW–FDM The forward Euler method is an explicit method, which is
given at the time tk by

fhk = fhk−1 −∆tkF (tk−1, f
h
k−1), (2.66)

with
∆tk = tk − tk−1,

and

F (t, f) = G
∂f

∂L
+ u · ∇f −H. (2.67)

Thus, it follows

fhk = fhk−1 −∆tk

(
uhk · ∇fhk−1 +Ghk

∂fhk−1

∂L
− hhk

)
, (2.68)

where

• uhk approximates u,

• Ghk approximates G,

• Hh
k approximates H,

which are already computed variables at the time tk.
The convective terms on the right-hand side of (2.68) are discretized by an

upwind scheme [51]. The upwind scheme approximates the convective term
with respect to the external coordinates in (xi, L), assuming the 1-dimensional
case, by

uhk · ∇fhk−1(xi, L) ≈


uhk
fhk−1(xi, L)− fhk−1(xi−1, L)

xi − xi−1
uhk > 0,

uhk
fhk−1(xi+1, L)− fhk−1(xi, L)

xi+1 − xi
uhk < 0,

(2.69)
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and with respect to internal coordinate in (x, Li)

Ghk
∂fhk−1

∂L
(x, Li) ≈


Ghk

fhk−1(x, Li)− fhk−1(x, Li−1)
Li − Li−1

if Ghk > 0,

Ghk
fhk−1(x, Li+1)− fhk−1(x, Li)

Li+1 − Li
if Ghk < 0.

(2.70)

where

• uhk is the i-th component of the convection vector uhk ,

• (xi−1, L) and (xi+1, L) are the neighbor nodes of (xi, L) with respect to
the i-th component of external coordinate,

• (x, Li−1) and (x, Li+1) are the neighbor nodes of (x, Li) with respect to
the internal coordinate.

It can be seen from (2.69) that the computation of fhk using the forward Euler
upwind finite difference scheme does not require the solution of the linear system
of equations.

RK–ENO–FDM An optimal third order explicit total variation diminishing
Runge–Kutta method [73] using (2.67) takes the form

fhk = fhk−1 −∆tk

(
κ1

6
+
κ2

6
+

4κ3

6

)
, (2.71)

where

κ1 = F (tk−1, f
h
k−1),

κ2 = F (tk−1 + ∆tk, fhk−1 + ∆tkκ1),

κ3 = F

(
tk−1 +

∆tk
2
, fhk−1 +

∆tk
4
κ1 +

∆tk
4
κ2

)
.

Further, the terms of the right-hand side of the equation (2.71) will be ap-
proximated by a more sophisticated procedure than the simple upwinding finite
difference method, namely an essentially non-oscillatory (ENO) finite differ-
ence scheme of third order [72]. To obtain a higher order approximation than
with a simple upwinding scheme, second and third order information on the
numerical solution are used.
Denote by

• P 1
1 (L) the polynomial that interpolates the function fhk−1 at the nodes
{Li−1, Li, Li+1},
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• P 1
2 (L) the polynomial that interpolates the function fhk−1 at the nodes
{Li−2, Li−1, Li},

• Pj(L) the polynomial that interpolates the function fhk−1 at the nodes
{Li+1−j , Li+2−j , Li+3−j , Li+4−j} where j = 1, · · · , 4.

Define
a1

1 := (P 1
1 )L(Li) = fhk−1[Li−1, Li, Li+1],

a1
2 := (P 1

2 )L(Li) = fhk−1[Li−2, Li−1, Li],

a1 := (P1)L(Li) = fhk−1[Li, Li+1, Li+2, Li+3],

a2 := (P2)L(Li) = fhk−1[Li−1, Li, Li+1, Li+2],

a3 := (P3)L(Li) = fhk−1[Li−2, Li−1, Li, Li+1],

a4 := (P4)L(Li) = fhk−1[Li−3, Li−2, Li−1, Li],

where fhk−1[·] denotes divided differences.
The basic idea of ENO interpolation consists in using the smoother approxi-

mation, where smoothness is measured by the absolute value of the second and
third order divided differences. Then

∂fhk−1

∂L
(x, Li) ≈ appropriate aj .

• for the case of Ghk > 0, the algorithm reads as follows:

if |f [Li−1, Li, Li+1]| < |f [Li−2, Li−1, Li]|
if |[Li−2, Li−1, Li, Li+1]| < |f [Li−1, Li, Li+1, Li+2]|

choose a3

else
choose a2

else
else

if |[Li−3, Li−2, Li−1, Li]| < |[Li−2, Li−1, Li, Li+1]|
choose a4

else
choose a3

end
end

• for the case Ghk < 0, the algorithm reads as follows:
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if |f [Li−1, Li, Li+1]| < |f [Li−2, Li−1, Li]|
if |f [Li−2, Li−1, Li, Li+1]| < |f [Li−2, Li−1, Li]|

choose a3

else
choose a2

else
else

if |f [Li−2, Li−1, Li]| < |f [Li, Li+1, Li+2, Li+3]|
choose a2

else
choose a1

end
end

BWE–UPW–FDM The backward Euler is an implicit method, which applied
to (2.61) by using (2.67), leads to

fhk + ∆tk

(
uhk · ∇fhk +Ghk

∂fhk
∂L
−Hh

k

)
= fhk−1. (2.72)

Then, e.g., the discretization of the convective term with respect to internal
coordinate in (x, Li) in (2.72) is done with an upwind approach similar to
(2.70)

Ghk
∂fhk
∂L

(x, Li) ≈


Ghk

fhk (x, Li)− fhk (x, Li−1)
Li − Li−1

if Ghk > 0,

Ghk
fhk (x, Li+1)− fhk (x, Li)

Li+1 − Li
if Ghk < 0.

(2.73)

This leads to off-diagonal entries in the system matrix. The backward Euler
upwind finite difference requires the solution of a linear system of equations
in each discrete time which was solved with GMRES with SSOR (symmetric
successive over relaxation) preconditioner [40].

Hybrid discretization for the bi-variate transport equation The finite dif-
ference discretization is impossible to be applied in (2.65), since the right-hand
side (2.49), is not a continuous function. An alternative approach is presented
that use for the left-hand side in (2.65) finite difference methods and for the
right-hand side a finite volume method. The Dirac delta distribution in (2.49)
can be discretized with finite volume method, since the integral of the Dirac
delta distribution is well-defined. In the derivation of this approach, a condi-
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tion on the mesh for the internal coordinates is derived that allows to adjust
the scaling of the finite difference method for the left-hand side and the finite
volume method for the right-hand side.
The domain spanned by the internal coordinates, ΩL, is a rectangle

ΩL = [L1,min, L1,max]× [L2,min, L2,max]

decomposed by cells

Ki,j =
[
L1,i−1/2, L1,i+1/2

]
×
[
L2,j−1/2, L2,j+1/2

]
, 1 6 i 6 NL1 , 1 6 j 6 NL2 ,

L1,min = L1,1/2 6 L1,3/2 6 · · · 6 L1,NL1+1/2 = L1,max,

L2,min = L2,1/2 6 L2,3/2 6 · · · 6 L2,NL2+1/2 = L2,max.

Figure 2.6: Cell Ki,j .

The centers of the cells are given by

(L1,i, L2,j) ,

where
L1,i =

L1,i−1/2 + L1,i+1/2

2
, L2,j =

L2,j−1/2 + L2,j+1/2

2
.

The mesh sizes are denoted by

∆L1,i = L1,i+1/2 − L1,i−1/2, i = 1, 2, · · ·NL1 ,

∆L2,j = L2,j+1/2 − L2,j−1/2, j = 1, 2, · · ·NL2 .
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The finite volume formulation of (2.65) with respect to the internal coordi-
nates for the particular cell Ki,j reads [32]∫

Ki,j

G · ∇LfdΩL =
∫
Ki,j

HnucdΩL, (2.74)

with

G =
(
G1

G2

)
,∆Lf =

(
∂f
∂L1
∂f
∂L2

)
, Hnuc = Bnucδ(L1 − L1,nuc)δ(L2 − L2,nuc).

Applying Gauss’ divergence theorem to (2.74) and using the fact that

∇L ·G = 0,

one obtains∫
ΓKi,j

(G · nKi,j
)f · dΓL = Bnuc

∫
Ki,j

δ(L1 − L1,nuc)δ((L2 − L2,nuc)dΩL

=

{
1 if (L1,nuc, L1,nuc) ∈ Ki,j ,

0 else,
(2.75)

where the nKi,j is the unit normal vector to ΓKi,j at (L1,i, L2,i), outward to
Ki,j. Further, the left-hand side in (2.75) is discretized by∫

ΓKi,j

(G · nKi,j
)fdΓL ≈

∑
ΓKi,j

(G · nKi,j
)f (2.76)

with ∑
ΓKi,j

(G · nKi,j
)f = Gh1nABf

h
i−1/2,j |AB|+Gh2nBCf

h
i,j−1/2|BC|

+Gh1nCDf
h
i+1/2,j |CD|+Gh2nBCf

h
i,j+1/2|DA|

= Gh1∆L2,j

(
fhi+1/2,j − f

h
i−1/2,j

)
(2.77)

+Gh2∆L1,i

(
fhi,j+1/2 − f

h
i,j−1/2

)
.

The finite volume discretization of (2.74) becomes

Gh1∆L2,j

(
fhi+1/2,j − f

h
i−1/2,j

)
+Gh2∆L1,i

(
fhi,j+1/2 − f

h
i,j−1/2

)
= Bnuc. (2.78)
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Multiplying (2.78) by
1

∆L1,i∆L2,j
, one gets

Gh1

(
fhi+1/2,j − f

h
i−1/2,j

)
∆L1,i

+Gh2

(
fhi,j+1/2 − f

h
i,j−1/2

)
∆L2,j

=
Bnuc

∆L1,i∆L2,j
, (2.79)

which is the representation of the central finite volume discretization. This type
of discretization, in the case that convection dominates, could lead to oscilla-
tions in the solutions. Therefore, other types of finite volume discretization
are investigated, e.g., upwind finite volume discretization or an essential non-
oscillatory finite volume discretization. The evaluation of fhi−1/2,j, f

h
i+1/2,j,

fhi,j+1/2,j, and f
h
i,j+1/2,j depends on the selected finite volume schemes.

In particular, applying upwind finite volume discretization, the equation
(2.79) changes to

Gh1

(
fhi,j − fhi−1,j

)
∆L1,i

+Gh2

(
fhi,j,j − fhi,j,j

)
∆L2,j

=
Bnuc

∆L1,i∆L2,j
, (2.80)

for Gh1 ≥ 0 and Gh2 ≥ 0. On the other hand, the left-hand side in (2.80)
coincides with the upwind finite difference discretization of the left hand side
in (2.74).
In [72] was pointed out that for problems in more then one dimension, finite

difference schemes should be preferred to finite volume methods. It turns out
that in order to adjust the finite difference method in (2.74), the finite volume
term on the right-hand side of (2.75) has to be multiplied by the scaling factor

1
∆L1,i∆L2,j

.

Algorithm for evaluating the aggregation integrals The aggregation integrals
are computed by a modern approach from [28, 29, 30]. The grid for the PSD
is discretized with respect to the volume of the particles and refined towards the
smallest ones. For the algorithm, it is essential that this local refinement is not
arbitrary, but that the locally refined grid can be decomposed into uniform grids
at each level as it is illustrated in Fig. 2.7.
The ansatz space S for the PSD was chosen to consist of piecewise linear

functions.
Note that both terms in the considered aggregation kernel have separable

structure, i.e., the aggregation kernel can be written in the form

κagg(V, V ′) =
k∑
i=1

ai(V )bi(V ′).
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Vmin Vmax

l = 0

l = 1

l = 2

l = 3

Figure 2.7: Decomposition of the locally refined grid for the PSD.

Then, the integral term becomes

Hagg(V ) = H+,agg(V ) +H−,agg(V ) = (2.81)

=
1
2

∫ V

0

κagg(V − V ′, V ′)fV (V − V ′)fV (V ′) dV ′ (2.82)

−fV (V )
∫ ∞

0

κagg(V, V ′)fV (V ′) dV ′ (2.83)

=
k∑
i=1

[
1
2

∫ V

0

ai(V − V ′)bi(V ′)fV (V − V ′)fV (V ′)dV ′ (2.84)

−fV (V )ai(V )
∫ ∞

0

bi(V ′)fV (V ′) dV ′
]
. (2.85)

The evaluation of the sink term is not difficult since only one-dimensional in-
tegrals have to be computed.
The source term in this formulation is the sum of convolutions ϕi ∗ψi, where

ϕi = aif and ψi = bif . The functions ai(V ) and bi(V ) were approximated
by piecewise constants on the same grid as fV (V ). Legendre polynomials were
used as an orthonormal basis of S. Thanks to some known facts about Legendre
polynomials, the convolution can be computed with the complexity O(n log n),
where n is the number of grid points. In essence, it turns out that some discrete
convolutions have to be computed, which can be easily performed using the fast
Fourier transform (FFT ) [61].
The exact convolution ωexact =

∑k
i=1 ϕi ∗ ψi does not belong to the ansatz

space S. In the simulations, the L2 projection ωcomp of ωexact into the ansatz
space was used. An issue in using an approximation of ωexact might be mass
conservation. However, since ωexact − ωcomp is L2 orthogonal to all piecewise
linear functions, one obtains for all intervals [Vi, Vi+1]

massi(ωexact) =
∫ Vi+1

Vi

V ′ωexact(V ′) dV ′
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=
∫ Vi+1

Vi

V ′ωcomp(V ′) dV ′ = massi(ωcomp),

i.e., the mass (volume) is locally preserved. The only change in total mass that
might occur comes from the fact that the support of the convolution is larger
than the support of the convoluted functions. In the case of aggregation, only
non-negative contributions will be neglected by not considering the complete
support of the convolution such that the mass will always decrease. This might
be crucial for long-time simulations. To avoid the decrease of mass, a correction
to the aggregation term is computed as follows

Hagg(V ) := Hagg(V )−mass(Hagg(V ))
2

V 2
max − V 2

min

,

where Vmin and Vmax are the smallest and largest volume of the particles, re-
spectively. Then, although the local mass conservation is violated, the total
mass of the computed aggregation term is zero, which is in accordance with the
modeling of this term.
A different correction would be the L2 projection of H(V ) into the space of

mass-conserved functions {B(V ) :
∫ Vmax

Vmin
V ′B(V ′) dV ′ = 0}, which has the

form

Hagg(V ) := Hagg(V )−mass(Hagg(V ))
3V

V 3
max − V 3

min

.

Due to the factor V in the correction part, mainly the values H(V ) for large
volumes will be affected. For the aggregation term, these values will increase
to compensate the loss of mass due to cutting the support of the convolution.
It could be observed that this might result in unnaturally large values for the
aggregation term and then for the PSD, in the last interval for the internal
coordinate. The same happened with the strategy proposed in [29], which ap-
plies a correction only in the last interval. Hence, these approaches are not
recommended.

2.4 Coupling

Population balance systems are modeled considering a flow field transporting
the particles. This results in a system of partial differential equations where
the Navier–Stokes equations for the fluid velocity and pressure are coupled to
convection-diffusion equations for the species concentration and the system tem-
perature and a transport equation for the particle size distribution as it is il-
lustrated in Fig. 2.8. In order to solve such systems, one has to tackle a
coupled problem. A general definition and classification of coupled problems
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Figure 2.8: Coupled problem.

can be found in [78, 79] There are different ways to handle such problems
[15, 16, 78, 79].
One possibility refers to a monolithical approach [3] or so-called direct method

[69]. In this method all variables of the coupled problem are solved simultaneous.
Other possibilities are partitioned methods, also known as iterative methods.

In this case each equation will be solved for its connection variable by treating
the rest of the variables as known and iterating through the rest of the equations
until the solution of the coupled system is achieved.
Whereas monolithcal approaches are difficult and expensive to use in the

case of non-linear coupled problems, an advantage of the partitioned methods
consists in the possibility of solving each equation of the system with an adequate
numerical method. However, stability and convergence for partitioned methods
possess a great challenge [15, 16].
The method of choice for our coupling approach is based on iterative methods.

The coupling approach consists in solving three steps.
Firstly, the steady-state Navier–Stokes equations are computed separately,

since the flow field for velocity u and pressure p does not require any informa-
tion from temperature (T ), concentration (c) and PSD (f) equations, in other
words, whereas a one-way is realized a back-coupling can be neglected. In order
to be solved, the steady-state Navier–Stokes equations of type (2.6) have to be
linearized with a fixed point iteration (see Sec. 2.1.5) and discretized with an
inf-sup stable pair of finite element spaces (see Sec. 2.1.6), at which the choice
of the inf-sup stable pair Q2/P disc1 is discussed in Sec. 2.1.7.
Secondly, fully developed temperature and concentration fields are computed

by using the precomputed flow field arising from solving the steady-state Navier–
Stokes equations. The system for temperature and concentration is solved by a
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fixed point iteration. Both equations described by (2.25) are time-dependent and
strongly convection-dominated. Therefore, apart from the spatial discretization
a discretization in time is also required. The (2.25) for concentration and
temperature were discretized in time with a Crank–Nicolson scheme and in space
with Q1 finite element. Due to the convection-dominated issue a stabilized finite
element has to be applied. For this, a linear FEM–FCT method is used (see
Sec. 2.2.3).
Thirdly, the fully coupled system consisting of the equations for temperature,

concentration, and PSD are solved using the precomputed flow field, initial
temperature, and concentration distribution. The nonlinear coupled system is
solved iteratively with a fixed point iteration wherein one iteration consists in
three sub-steps:

• solve the equation for temperature with an current available approxima-
tion of the concentration and PSD;

• solve the equation for concentration with an approximation of the tem-
perature computed in the first sub-step;

• solve the equation for PSD with an approximation of the temperature and
concentration computed in the first two sub-steps.

The iteration for solving the coupled system was stopped if the sum of the Eu-
clidian norms of the residual vectors for concentration and temperature was
below a prescribed tolerance.

2.5 Software MooNMD and aspects of the implementation

All the numerical simulations were performed with the program package
MooNMD, Mathematics and object oriented Numerics in MagDeburg, devel-
oped by former members of the numeric group at the Institut für Analysis und
Numerik from Otto–von–Guericke–Universität Magdeburg. MooNMD is a free-
ware code written in C + + programming language. Generally, it may be used
for solving partial differential equations in two- or three-dimensional domains
[38]. The main advantage of MooNMD consists in the fact that the code can
be adapted and upgraded for different problem settings, which is especially im-
portant for solving coupled systems, e.g., (3D/4D) and (3D/5D).
In MooNMD, a number of numerical methods were disposable to be applied

for solving coupled systems of type (3D/4D), e.g., from the applications pro-
posed in [7, 40]. The considered uni-variate population balance system is an
extension of the work proposed in [40]. In addition to [40], the nonlinear iter-
ation for our coupled problem includes an equation for the system temperature.
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Moreover, aggregation phenomena are also taken into account. In particu-
lar, for the evaluation of the aggregation integral was used an efficient method
proposed in [43]. Whereas for the considered uni-variate population balance
system, (3D/4D) coupled problem, only a few modules of the used algorithms
have been implemented, the algorithms solving the considered bi-variate pop-
ulation balance system, (3D/5D) coupled problem, have been completely new
implemented.



3 Simulation of uni-variate population balance systems

This chapter considers the simulation of urea synthesis, which is described by
uni-variate population balance model. Our main focus is the numerical repro-
duction of the experimental data from from a laboratory experiment [6]. A
numerical scheme for the discretization of the uni-variate population balance
system of urea synthesis was proposed in [31]. In addition to [31], other two
numerical methods are studied and compared with the experimental data.

3.1 The experimental setup

The laboratory experiments are completely described in [6]. Further, the exper-
imental setup will be sketched as follows.
The solution (suspension) is made up of ethanol (solvent) and urea (solute),

which, due to the cooling process, start to crystallize. This process is depicted
in Fig. 3.1.

Figure 3.1: Cooling crystallization of urea synthesis.

The crystallization process takes place in continuous tubular reactors designed
as plug flow reactors, as illustrated in Fig. 3.2.
On one hand, the strongest advantage of a continuous crystallization tube

consists in the flexibility for controlling temperature, supersaturation and on the
other hand, the possibility of spatial separation of different population dynamical
phenomena, i.e., nucleation, growth, aggregation, breakage. Depending on the
specific context, these phenomena might be desired or undesired, and they can
be, in practice, controlled by chemical means, such as altering the solvent.
However, the considered application of urea synthesis is driven by aggrega-

tion. The task of the experiments is the quantification of aggregation within a
tube and for this a flow-through microscope is employed.
The main components of the experiment are:

1 vessel with crystal slurry (saturated solution with crystals),
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Figure 3.2: Schematic representation of the crystallizer.

2 seed crystal intake,

3 aggregation tube,

4 flow cell microscope with imaging sensor.

The proceeding of the experiment is as follows. The well-stirred vessel is filled
with equilibrating crystal suspension which is kept at a constant temperature.
Clear solution of ethanol is continuously withdrawn from the suspension through
a frit and pumped into a tube, through the microscope flow cell and then back to
the suspension vessel. At the start up only a clear solution is pumped through
the system with a defined flow rate. Then, in a specific time interval, seed
crystals are injected directly into the tube. The crystal population travels with
the solution along the tube until it is photographed using a microscope with a
flow-through cell, see Sec. 3.3.1.
Whereas nucleation, growth, and aggregation of the particles are taken into

account, breakage phenomena will be neglected here.

3.2 The model

The studied urea population is modeled by a system of equations describing
the flow field (velocity, pressure), the energy balance (temperature), the mass
balance (concentration) and the particle size distribution.
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3.2.1 Modeling the flow field

The experimental setups led to steady-state flow fields. Thus, the flow field is
described by the incompressible Navier–Stokes equations, see Sec. 2.1,

−µ∆ũ + ρ ((ũ · ∇)ũ) +∇p̃ = ρ̃g̃ in Ω̃,
∇ · ũ = 0 in Ω̃,

(3.1)

with the following model parameter:

• Ω̃ = (0, 210)× (0, 1)× (0, 1)
[
cm3

]
,

• ρ = 789
[
kg/m3

]
the density of ethanol at 298 K,

• µ = 1.074 · 10−3 [kg/(m s)] the dynamic viscosity of ethanol at 298 K,

• g̃ = 9.8 [m/s2] the gravitational acceleration.

In the experiments, the suspension is sufficiently diluted, the size of the parti-
cles is sufficiently small, and the temperature gradient is also small enough that
the influence of all these aspects on the flow field can be neglected. Hence, the
flow field can be modeled independently of the temperature field, concentration
field, and particle size distribution.
The boundary is given by

Γ̃ = Γ̃in ∪ Γ̃out ∪ Γ̃wall, (3.2)

with

• Γ̃in = {0 cm} × ( 1
3 cm, 2

3 cm)× ( 1
3 cm, 2

3 cm) as the inlet boundary,

• Γ̃out = {210 cm} × (0 cm, 1 cm)× (0 cm, 1 cm) as the outlet boundary,

• Γ̃wall = Γ \ (Γin ∪ Γout) as the boundary at the walls.

The unit outer normal vector on the boundary is denoted by nΓ̃.
The exact conditions at the inlet Γ̃in are not known, only the flow rates at

the inlet. A simple approach would be the application of plug flows (constant
velocities) at the inlet that matches the given flow rates. But this approach
leads to jumps in the boundary condition. For this reason, in order to impose
boundary data with enhanced regularity, an inlet boundary condition of the form

ũ(x̃) = Uin(Ψ(ξ(x̃), η(x̃)), 0, 0)T , x̃ ∈ Γ̃in, (3.3)

has been considered, where the profile Ψ(ξ, η) of this condition is the solution
of the 2D Poisson equation

−∆Ψ = 1 in Γ̃in, Ψ = 0 on ∂Γ̃in. (3.4)
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The parameter Uin was chosen to match the experimental inflow rates, see Sec.
3.3.1. The boundary condition on the outlet Γ̃out is the standard do-nothing
condition,

(µ∇(ũ)− p̃I) · ñΓ̃ = 0, x̃ ∈ Γ̃out, (3.5)

that is often used in numerical simulations, see 2.1.3. A boundary condition at
the outlet is not known from the experiments. In particular it is unclear how
good this boundary condition corresponds to (3.5). For this reason, the length
of the computational domain was chosen to be larger than the experimental
domain (210 cm instead of 200 cm) such that a possible slight incorrectness
of the outflow boundary condition (3.5) has no influence on the computational
results in the region that corresponds to the outlet of the experimental domain.
At all other boundaries (the walls), the no-slip condition

ũ(x̃) = 0, x̃ ∈ Γ̃wall, (3.6)

was applied.
Using the corresponding dimensionless quantities in (3.1) and including the

right-hand side into the pressure results in

− ν

l∞u∞
∆u + (u · ∇)u +∇p = 0 in Ω,

∇ · u = 0 in Ω,
(3.7)

with

• ν = µ/ρ = 1.361 · 10−6 [m2/s] as the kinematic viscosity of ethanol,

• Ω as the dimensionless domain.

Furthermore, the dimensionless boundary conditions are
u(x) =

Uin

u∞
(Ψ(ξ, η), 0, 0)T , x ∈ Γin,(

Re−1∇(u)− pI
)
· nΓ = 0, x ∈ Γout,

u(x) = 0, x ∈ Γwall.

(3.8)

3.2.2 Modeling the mass balance

The mass balance of the system is modeled by

∂c̃

∂t̃
−D∆c̃+ ũ · ∇c̃ =

− 3ρdkV G̃(c̃, T̃ )
mmol

∫ L̃max

L̃min

L̃2f̃ dL̃
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− −ρ
dkV L̃

3
minBnuc

mmol
in (0, t̃end)× Ω̃. (3.9)

with

• D = 1.35 · 10−9
[
m2/s

]
as the diffusion coefficient of urea in ethanol,

• ρd = 1323
[
kg/m3

]
as the density of urea (dispersed phase),

• kV = π/6 [·] as the scaling factor from diameters to volume (where it is
assumed that all particles are balls), given below in (3.12),

• mmol = 60.06 · 10−3 [kg/mol] as the molar mass of urea,

• Bnuc = 105 [1/(m3 s)] as a constant nucleation rate,

• L̃min = 2.5 · 10−6 [m] and L̃max = 5000 · 10−6 [m].

Whereas the decrease of dissolved urea due to the growth of particles is modeled
by the first term on the right-hand side of (3.9), the consumption of dissolved
urea due to the nucleation of particles is taken into account as the last term on
the right-hand side.
Equation (3.9) has to be equipped with initial and boundary conditions. The

boundary condition is given by c̃(t̃, x̃) = c̃sat(T̃in), x̃ ∈ Γ̃in,

D
∂c̃

∂ñΓ̃

= 0, x̃ ∈ Γ̃out ∪ Γ̃wall,

with the saturation concentration

c̃sat(T̃ ) =
35.364 + 1.305(T̃ − 273.15)

mmol

[
mol
m3

]
. (3.10)

With these boundary conditions, the equation (3.9) without the coupling terms
to the PSD is solved until a steady state is reached. This steady state is used
as initial condition

c̃(0, x̃) = c̃steady(x̃). (3.11)

The growth rate is given by

G̃(c̃, T̃ ) =

kg
(
c̃− c̃sat(T̃ )
c̃sat(T̃ )

)g
, if c̃ > c̃sat(T̃ ),

0, else,

(3.12)

where
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• kg = 10−7 [m/s] is the growth rate constant

• g = 0.5 [·] is the growth rate power.

Using the corresponding dimensionless quantities in (3.9) and proceeding as in
Sec. 2.2.2 the dimensionless mass balance becomes

∂c

∂t
− D

l∞u∞
∆c+ u · ∇c =

− 3ρdkVG(c, T )L3
∞f∞l∞

c∞u∞mmol

∫ Lmax
L∞

Lmin
L∞

L2f dL (3.13)

− ρdkV L
3
minBnucl∞L

3
∞

c∞u∞mmol
in (0, tend)× Ω

with

• the growth rate

G(c, T ) =

kg
(
c− csat(T )
csat(T )

)g
, if c > csat(T ),

0, else,
(3.14)

• dimensionless saturation concentration

csat(T ) =
c̃sat(T∞T )

c∞
.

The dimensionless initial and boundary conditions become

c(0,x) =
c̃steady(l∞x)

c∞
, (3.15)


c(t,x) =

c̃sat(T̃in

c∞
, x ∈ Γin,

D
∂c

∂nΓ
= 0, x ∈ Γout ∪ Γwall.

(3.16)

3.2.3 Modeling the energy balance

The energy balance is modeled by

ρcp
∂T̃

∂t̃
− λ∆T̃ + ρcpũ · ∇T̃ =

− 3∆hcrystρ
dkV G̃(c̃, T̃ )

∫ L̃max

L̃min

L̃2f̃ dL̃ (3.17)
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− ∆hcrystρ
dkV L̃

3
minBnuc in (0, t̃e)× Ω̃,

where

• cp = 2441.3 [J/(kg K)] is the specific heat capacity of ethanol,

• λ = 0.167 [J/(K m s)] is the thermal conductivity of ethanol,

• ∆hcryst = 2.1645 · 105[J/kg] is the heat of solution (enthalpy change of
solution).

Whereas the decrease of temperature with respect to the growth of particles is
modeled by the first term on the right-hand side of (3.17), the consumption of
temperature with respect to the nucleation of particles is taken into account as
the last term on the right-hand side.
The boundary conditions are known from the experiments

T̃ (t̃, x̃) = T̃in, x̃ ∈ Γ̃in,

λ
∂T̃

∂ñΓ̃

= 0, x̃ ∈ Γ̃out,

T̃ (t̃, x̃) = T̃wall, x̃ ∈ Γ̃wall,

(3.18)

with

• T̃in = 301.15 [K],

• T̃wall = 291.15 [K].

Hence, the suspension is cooled at the wall.
As an initial condition, a fully developed temperature field, based on the so-

lution of a steady-state equation without the coupling terms to the PSD, was
chosen:

T̃ (0, x̃) = T̃steady(l∞x). (3.19)

Further, the dimensionless form of the energy balance is given by

∂T

∂t
− λ

l∞u∞ρcp
∆T + u · ∇T =

− 3∆hcrystρ
dkVG(c, T )L3

∞f∞l∞
ρcpu∞T∞

∫ Lmax
L∞

Lmin
L∞

L2f dL (3.20)

− ∆hcrystρ
dkV L

3
minBnucl∞L

3
∞

ρcpu∞T∞
in (0, te)× Ω.

The dimensionless initial and boundary conditions are:

T (0,x) =
T̃steady(x̃)

T∞
, (3.21)
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

Tin(x) =
T̃in

T∞
, x ∈ Γin,

λ

l∞u∞ρcp

∂T

∂nΓ
= 0, x ∈ Γout,

Twall(x) =
T̃wall

T∞
, x ∈ Γwall.

(3.22)

3.2.4 Modeling the population balance

Population balances can be described in different coordinate systems, e.g., with
respect to the volume or diameter of the particles.
Assuming the cube- or spherical-shaped idealization of the particles, the be-

havior of the particle size distribution with respect to the diameter of the particle
is modeled by

∂f̃

∂t̃
+ G̃(c̃, T̃ )

∂f̃

∂L̃
+ ũ · ∇f̃ = (3.23)

H̃+,agg + H̃−,agg in (0, t̃e)× Ω̃× (L̃min, L̃max),

where

• f̃ is the PSD with respect to the diameter
[

1
m4

]
,

• G̃ is the growth rate expressed as the rate of change of particle length[m
s

]
,

• H̃+,agg is the source of the aggregation model and H̃−,agg its sink with

respect to the diameter
[

1
m4s

]
.

For modeling the aggregation, the volume of the urea particles is considered.
Therefore, it follows that on one hand the considered population balance refers
to the particle diameter and on the other hand to the particle volume. The
transformation from one coordinate system to the other becomes necessary.
Let f̃V

[
1

m6

]
be the PSD with respect to the volume. The number of the

particles with respect to the volume is the same as the number of particles with
respect to the diameter. This can be expressed by∫ Ṽmax

Ṽmin

f̃V (Ṽ )dṼ =
∫ L̃max

L̃min

f̃(L̃)dL̃. (3.24)
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Further, it is assumed that the particle volume is proportional to the cube of
the diameter as follows:

Ṽ = kV L̃
3, (3.25)

with kV > 0, i.e., all particles are assumed to be of the same shape (balls,
cubes). Then, the number of the particles with respect to the volume using
(3.25) is given by∫ Ṽmax

Ṽmin

f̃V (Ṽ )dṼ =
∫ L̃max

L̃min

f̃V (kV L̃3)3kV L̃2dL̃. (3.26)

The comparison of the expressions (3.24) and (3.26) leads to the following
transformation relationship:

f̃V (Ṽ ) = f̃V (kV L̃3) =
f̃(L̃)

3kV L̃2
. (3.27)

Then, the change with respect to the diameter for the right-hand side in (3.23)
is obtained by

H̃+,agg + H̃−,agg = 3kV L̃2
(
H̃+,agg(Ṽ ) + H̃−,agg(Ṽ )

)
. (3.28)

The initial condition is given by

f̃(0, x̃, L̃) = 0 in Ω̃× (L̃min, L̃max), (3.29)

i.e., there are no particles in the flow domain.
Boundary conditions are necessary at the closure of the inflow boundaries

f̃(t̃, x̃, L̃) =

 f̃in(t̃, x̃, L̃), x̃ ∈ Γ̃in

Bnuc

G̃(c̃, T̃ )
, at L̃ = L̃min, if G̃(c̃, T̃ ) > 0, (3.30)

where f̃in is given by experimental data, see Sec. 3.3.1.
Using the corresponding dimensionless quantities in (3.23) and proceeding as

in Sec. 2.3.6 the dimensionless population balance equation becomes

∂f

∂t
+ G(c, T )

l∞
u∞L∞

∂f

∂L
+ u · ∇xf

=
l∞

u∞f∞
(H̃+,agg + H̃−,agg) in (0, te)× Ω×

(
Lmin

L∞
,
Lmax

L∞

)
=

3kV L2
∞L

2l∞
u∞f∞

(H+,agg(V ) +H−,agg(V )) in (0, te)× Ω×
(
Vmin

V∞
,
Vmax

V∞

)
.
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with

H̃+,agg(V ) =
1
2

∫ V
V∞

Vmin
V∞

κagg(V∞V − V∞V ′, V∞V ′)

fV (V∞V − V∞V ′)fV (V∞V ′)dV ′,

H̃−,agg(V ) = −
∫ Vmax

V∞

Vmin
V∞

κagg(V∞V, V∞V ′)fV (V∞V ′)dV ′.

The dimensionless initial and boundary conditions of this equation are

f(0,x, L) = 0 in Ω×
(
Lmin

L∞
,
Lmax

L∞

)
, (3.31)

f(t,x, L) =


f̃in(t∞t, l∞x, L∞L)

f∞
, x ∈ Γin,

Bnuc

f∞G(c, T )
, at L =

Lmin

L∞
, if G(c, T ) > 0.

(3.32)

In the numerical simulations, the following reference values were used:

• f∞ = 1013 1
m4 ,

• l∞ = 0.01 m,

• u∞ = 0.01 m
s ,

• T∞ = 1 K,

• c∞ = 1000 mol
m3 ,

• L∞ = 5 · 10−3 m,

• V∞ = L3
∞ m3.

3.3 Setup of the simulations

3.3.1 The incorporation of the experimental data

Data for space-time-averaged normalized volume fractions are provided, which
were obtained by measurements using a microscope with a flow-through cell.
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In the experiments, the flow rate at the inlet Ṽr [ml/min] = Ṽr/60 [cm3/s] was
prescribed. This data has to be matched by the flow rate of the used boundary
condition at the inlet (3.3)

Ũin

∫
Γin

(Ψ(ξ, η), 0, 0)T dξdη

[
cm3

s

]
.

It follows that

Ũin =
Ṽr

60
∫

Γ̃in
(Ψ(ξ, η), 0, 0)T dξdη

,

where the integral in the nominator can be approximated by numerical quadra-
ture.
The boundary conditions for the temperature are provided from the exper-

iments as given in (3.18). Also the inlet condition of the concentration is
controlled as given in (3.10).
Concerning the inlet condition of the PSD, particles were injected into the

channel only in the time interval [0, t̃inj] s with t̃inj = 5 s. From the experi-
ments, a space-time-averaged inlet condition is provided, such that a boundary
condition of the form

f̃in(t̃, x̃, L̃) =
{
f̃inj(L̃) for t̃ ∈ [0, t̃inj] s, x̃ ∈ Γin,

0 else,

can be applied. The particles were contained in a solution with volume Ṽinj [m3],
which was injected into the domain in [0, t̃inj], i.e.,

Ṽinj =
∫ t̃inj

0

Ṽr dt̃ =
t̃injṼr

60 · 106
[m3].

It follows that the total number of particles which were injected is given by∫
Ṽinj

∫ L̃max

L̃min

f̃inj(L̃) dL̃ dx̃ = Ṽinj

∫ L̃max

L̃min

f̃inj(L̃) dL̃ =
∫ L̃max

L̃min

t̃injṼr
6 · 107

f̃inj(L̃) dL̃.

(3.33)
The experiments provide the distribution of the number of particles per diameter
f̃L̃,seed(L̃) [1/m] in Ṽinj. This number was identical in all experiments, see Fig.
3.3 for a presentation of this curve. Integration of fL,seed(L) gives the total
number of particles. To obtain the same total number of particles as given in
(3.33)

f̃L̃,seed(L̃) =
tinjVr
6 · 107

f̃inj(L̃) =⇒ f̃inj(L̃) =
6 · 107

t̃injṼr
f̃L̃,seed(L̃) L̃ ∈

[
L̃min, L̃max

]
,
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should hold. This expression gives the required value for the boundary condition
of the PSD at the inlet of the domain.
The experiments provide space-time-averaged evaluations of the volume frac-

tion of the PSD. Let x ∈ Ω, then the volume fraction is defined by

q3(t̃, x̃, L) =
L̃3f̃(t̃, x̃, L̃)∫ L̃max

L̃min
L̃3f̃(t̃, x̃, L̃) dL̃

.

The normalized volume fraction of the inlet condition for the PSD is given in
Fig. 3.3. Similarly derived profiles are provided at the outlet of the experimental
domain (x = 200 cm) for different flow rates. These profiles will be used in the
comparison with the numerical results.

Figure 3.3: f̃L̃,seed(L̃) at the inlet (left) and the normalized volume fraction of
the PSD at the inlet (right).

Experimental data were available for two setups which differed in the flow
rate at the inlet. Both setups will be considered in the numerical studies. An
important goal was the calibration of the unknown model parameters in the ag-
gregation kernel (2.59) in such a way that a good agreement to the experimental
data was obtained. This data consists of a space-time-averaged normalized vol-
ume fraction at the outlet. The second important aspect of the numerical stud-
ies was the investigation of the PSD at different points at the outlet. It will be
shown that, e.g., the PSD in the center of the channel possesses a considerably
different form compared with the PSDs in points which are closer to the walls.
The third goal was the comparison of some numerical methods.

3.3.2 Computational domain

The flow domain is very long compared with its thickness and there is a preferred
direction of the flow. This enables the use of an a priori adapted grid with
anisotropic grid cells of 132× 12× 12, see Fig. 3.4. The aspect ratio (ratio of
largest edge and smallest edge) of the mesh cells is small at the inlet to resolve
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the recirculation zone. It becomes larger towards the outlet. At the end of the
flow domain, the mesh cells have an aspect ratio of 30.

Figure 3.4: The computational grid, flow domain not to scale (scaled up by
factor 40 in x3- and x3-direction).

In particular small particles were injected into the fluid, see Fig. 3.3. For this
reason, the grid for the internal coordinate is locally refined for small diameters.
As explained in Sec. 2.3.7, the computation of the aggregation integrals is based
on a grid with respect to the mass of the particles which has to possess certain
properties. This issue was taken into account in the construction of the grid
with respect to the diameter, see Fig. 3.5 for both grids. The computational
grid used for the mass is made of 94 piecewise equidistant nodes.
The corresponding numbers of the degree of freedom for the simulations are

given in Tab. 3.1.

Figure 3.5: The grid with respect to the internal coordinate, diameter (top)
and mass (bottom).
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Simulation quantity Number of d.o.f.
velocity 496 875
pressure 76 032

temperature 22 477
concentration 22 477

PSD 2 112 838

Table 3.1: D.o.f for simulating of the urea synthesis.

3.4 Numerical results

3.4.1 Experiment with flow rate 30ml/min

First, an experiment was studied that was conducted with a flow rate of
Ṽr = 30 ml/min. The Reynolds number based on the integral mean velocity
at the inlet U = 4.5 cm/s, the diameter of the channel 1 cm and the kinematic
viscosity of ethanol ν = µ/ρ = 1.3612 10−6 m2/s is given by Re ≈ 331. The
stationary flow field at the inlet of the channel is shown in Fig. 3.6.

Figure 3.6: Experiment with flow rate Ṽr = 30 ml/min; cut of the stationary
velocity field at the inlet of the channel.

Based on the residence time of the particles, the data at the outlet of the
experimental domain at x̃1 = 200 cm were studied in the interval [200, 300] s.
For each grid point at the outlet, the PSD was added and then a time-average
was computed. After this, a spatial averaging was calculated and from this the
normalized volume fraction for these space-time-averaged values was derived.
This normalized volume fraction was utilized for the calibration of the unknown
parameters Cbr and Csh in the aggregation kernel (2.59). Furthermore, different
numerical approaches were studied for discretizing the PSD equation.
Results for the FWE–UPW–FDM and different values of the parameters Cbr

and Csh are presented in Fig. 3.7. Comparing the experimental data at the
outlet with those at the inlet, Fig. 3.3, one can observe that the curve of the
normalized volume fraction moves to the right. The increase of the number of
larger particles due to aggregation and growth is clearly visible. A rather good
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agreement of the experimental and the numerical data could be obtained with
Cbr ' 2 · 105 and Csh ' 0.01.

Figure 3.7: Flow rate Ṽr = 30 ml/min; space-time-averaged normalized volume
fraction at the outlet for different parameters Cbr and Csh.

For these parameters, the PSD at the outlet was studied in more detail.
Fig. 3.8 presents the time-averaged PSD which left the domain at different
nodes in the outlet plane and Fig. 3.9 shows the corresponding normalized vol-
ume fractions. Nodes on a line between the wall and the center of the channel
which is parallel to the plane x̃3 = 0 and nodes on a line between a corner of
the outlet and the center of the channel were considered. First, it can be seen
that the most particles could be found in the center of the channel, i.e., the bulk
of the particles followed the flow very well. The closer the node was to the wall,
the fewer the particles could be observed. In particular, the number of particles
in the nodes with a distance less than or equal to 1/6 cm of one of the walls
was negligible (green and cyan curves).

Figure 3.8: Flow rate Ṽr = 30 ml/min; time-averaged PSD at the outlet for
different nodes, Cbr = 2 · 105 and Csh = 0.01.

The distribution of the particles with respect to the diameter was very differ-
ent for different nodes. In the center of the channel, most of the small particles



70 3 Simulation of uni-variate population balance systems

Figure 3.9: Flow rate Ṽr = 30 ml/min; time-averaged normalized volume frac-
tion at the outlet for different nodes, Cbr = 2 · 105 and Csh = 0.01.

were observed but only very few large particles. The majority of the large par-
ticles could be found in regions that were 1/4 − 1/3 cm away from the center
of the channel. This different behavior can also be seen well in the normalized
volume fractions in Fig. 3.9. The results for the individual nodes illustrate in a
good way the effect of the different parts of the aggregation kernel (2.59). In the
center of the channel, the shear of the flow field was comparatively small. For
this reason, the second term in (2.59), which is of importance for the aggre-
gation of large particles, did not possess much impact. Away from the center,
the shear was larger. Hence, the second term of (2.59) became dominant in the
kernel and larger particles were generated by the aggregation.
The time step was set to be ∆t = 0.1 s. Because of the somewhat explosive

start at the beginning of the simulations, a smaller length of the time step was
applied in [0, 10] s. It was checked that with smaller time steps the results
practically do not change, see Fig 3.10:

Figure 3.10: Flow rate Ṽr = 30 ml/min; space-time-averaged normalized vol-
ume fraction at the outlet with Cbr = 2 · 105 and Csh = 0.01;
FWE–UPW–FDM for ∆t = 0.1, respectively ∆t = 0.05.
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Results with BWE–UPW–FDM and RK–ENO–FDM schemes are illustrated
in Fig. 3.11. The behavior of the normalized volume fraction do not change

Figure 3.11: Flow rate Ṽr = 30 ml/min; space-time-averaged normalized vol-
ume fraction at the outlet for FWE–UPW–FDM, BWE–UPW–
FDM (Cbr = 2 · 105, Csh = 0.01) and RKV–ENO–FDM (Cbr =
1 · 105, Csh = 0.007);

either qualitatively nor quantitatively by applying the first order schemes, e.g.,
FWE–UPW–FDM, BWE–UPW–FDM. Regarding the examined third order
scheme, RK–ENO–FDM, a rather good agreement of the experimental and
the numerical data could be obtained with the somewhat smaller parameters
Cbr ' 1 · 105 and Csh ' 0.007. With these model parameters this scheme also
aligns with the the other two.

3.4.2 Experiment with flow rate 90ml/min

A second experiment was conducted with the flow rate Ṽr = 90 ml/min. Also
this flow rate led to a stationary flow field, see Fig. 3.12, with Re ≈ 992 based
on the same reference values as for the first example.
Since the flow is considerably faster for Ṽr = 90 ml/min than in the first

experiment, the residence time of the particles is shorter. In particular, there
will be less time to build large particles by aggregation and growth compared
with the first experiment.

Figure 3.12: Experiment with flow rate Ṽr = 90 ml/min; cut of the stationary
velocity field at the inlet of the channel.
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Numerical results based on FWE–UPW–FDM for space-time-averaged nor-
malized volume fractions at the outlet are presented in Fig. 3.13. Time-
averaging of the PSD was performed in [60 − 110] s. Again, it was possible
to calibrate the parameters in the aggregation kernel in such a way that a good
agreement with the experimental data could be obtained. Appropriate parame-
ters are Cbr ' 3 ·105 and Csh ' 0.004. These parameters differ somewhat from
the parameters obtained for the first example, but they are of the same order of
magnitude.

Figure 3.13: Flow rate Ṽr = 90 ml/min; space-time-averaged normalized vol-
ume fraction at the outlet for different parameters Cbr and Csh.

More detailed studies of the PSD at the outlet are presented in Figs. 3.14 and
3.15. The principal behavior is the same as for the first example. Most of the
small particles, but almost no large particles, can be observed in the center of the
channel. The large particles move away from the center. At the points which
are too close to the walls, the amount of particles is negligible. In contrast to
the first example, the amount of very large particles is much smaller, compared
to the scaling. This is due to the shorter residence time.

Figure 3.14: Flow rate Ṽr = 90 ml/min; time-averaged PSD at the outlet for
different nodes, Cbr = 3 · 105 and Csh = 0.004.
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Figure 3.15: Flow rate Ṽr = 90 ml/min; time-averaged normalized volume frac-
tion at the outlet for different nodes, Cbr = 3·105 and Csh = 0.004.

The time step was set to be ∆t = 0.05 s.
The results with BWE–UPW–FDM and RK–ENO–FDM schemes are illus-

trated in Fig. 3.16.

Figure 3.16: Flow rate Ṽr = 90 ml/min; space-time-averaged normalized vol-
ume fraction at the outlet for FWE–UPW–FDM, BWE–UPW–
FDM (Cbr = 3 · 105, Csh = 0.004) and RKV–ENO–FDM (Cbr =
2 · 105,Csh = 0.003 );

Also here, for the third order scheme (RK–ENO–FDM) a rather good agree-
ment of the experimental and the numerical data could be obtained with the
somewhat smaller parameters Cbr ' 1 · 105 and Csh ' 0.007 than in the first
order schemes but with the same order of magnitude.

3.4.3 CPU time

The simulations were performed on HP BL2x220c computers with 2933 MHz
Xeon processors. Simulating one time step took around 45 – 60 seconds, in-
cluding the calculation of all data for evaluating the numerical simulations.
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The most expensive part was the computation of the aggregation which needed
around 75 % of this time.

3.4.4 Conclusions

For both experimental setups, it was possible to identify model parameters Cbr

and Csh such that a very good agreement with the experimental data (space-
time-averaged normalized volume fraction at the outlet) could be obtained. The
optimal values for Cbr and Csh differ a little but they are of the same order of
magnitude. We think that these differences are caused by the following reasons.
First, the idealization of spherical particles was used in modeling the equation
for the PSD. Second, the observed sizes of the diameters in the measurements
were not diameters of three-dimensional particles, but diameters of projections
of real particles into a plane. Both issues led, of course, to some errors in the
measurements. The calibration of Cbr and Csh compensated for these errors
quite well for each experiment. But this compensation led to somewhat different
values for Cbr and Csh. Finally, (2.59) is only a model with an unknown
modeling error.
For the same unknown model parameter, first order schemes act more or less

in the same way. Furthermore, the third order scheme align to the first order
schemes for somewhat smaller parameters.
The impact of both parts of the aggregation kernel (2.59) could be observed

well in detailed studies of the PSD in the nodes at the outlet. The numerical
results correspond completely to the expectations.
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This chapter considers the simulation of bi-variate population balance systems
based on crystallization of potassium dihydrogen phosphate (KDP). Real parti-
cles in crystallization processes are needle-shaped, so they cannot be represented
by a single characteristic length. Thus, more geometrical properties of the par-
ticles are often needed to characterize the particles for such processes. Crystal
shape characterization is rarely considered in modeling. The first characteri-
zation of the needle-shaped particles was introduced by [33]. Nowadays, there
are only few models in the literature considering the anisotropy of particles
[26, 54, 55, 56]. The disregard of shape dependence might be a possible reason
of the discrepancy of the model parameters in the numerical studies of urea
synthesis, see Sec. 3.4.4.

4.1 The setup

The setup of the simulations was chosen exactly the same as in Sec. 3.1.
Potassium dihydrogen phosphate is the solute and water is the solvent. KDP
is a popular model substance for bi-variate crystal research. The shape of KDP
crystals is a tetragonal prism in combination with tetragonal bipyramids as
illustrated in Fig. 4.1 [53]. The length of the crystal is given by L̃2 and the
width and depth are both equal to L̃1. The volume of the crystal is given by

Figure 4.1: Characteristic lengths of KDP crystals.

Ṽ =
1
3
L̃1

3
+
(
L̃2 − L̃1

)
L̃1

2
. (4.1)

The model parameters used in this application are based on experimental data
from [4, 5, 27, 75]. For the considered configuration, we do not possess mea-
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surement data, neither for an initial nor for a final particles size distribution.
Therefore, the considered model setup aims at investigating the differences of
the results obtained with different numerical methods. The inlet distribution is
taken as the following square pulse, see Fig. 4.2,

f̃in(t̃, x̃, L̃1, L̃2) =

{
1, if L̃1 ∈ (150, 250)µm, L̃2 < (600, 1000)µm,

0, else,
(4.2)

for t̃ ∈ [0, t̃inj] s with t̃inj = 10 s and x̃ ∈ Γ̃in defined as in (3.2).

L̃ 1 [m ]

L̃
2
[
m

]
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Figure 4.2: Initial distribution for KDP model.

4.2 The model

The population of KDP crystals is modeled similarly to the population balance
system of urea synthesis. Secondary nucleation, growth, and transport of the
particles are taken into account. For this example, the aggregation phenom-
ena is neglected since there are no predictive models for the aggregation kernel
available so far for bi-variate population balance systems.

4.2.1 Modeling the flow field

Assuming the experimental setup from Sec. 3.2, the flow field will be described
by the incompressible steady-state Navier–Stokes equations

−µ∆ũ + ρ ((ũ · ∇)ũ) +∇p̃ = ρg̃ in Ω̃,
∇ · ũ = 0 in Ω̃,

(4.3)

with the following model parameters:

• ρ = 1160
[
kg/m3

]
density of the overall solution at 298 [K],
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• µ = 1.5 · 10−3 [kg/(m s)] the dynamic viscosity of the overall solution at
298 [K] .

Also in this case, the model for the flow field neglects the dependence of the
temperature field, concentration field, and particle size distribution.
The boundaries are given as in (3.2) and the conditions on the boundaries

are imposed as in (3.3), (3.5), and (3.6).
Further, derived similarly to (3.7), the dimensionless form of (4.3) reads

− ν

l∞u∞
∆u + (u · ∇)u +∇p = 0 in Ω, (4.4)

∇ · u = 0 in Ω,

with

• ν = µ/ρ = 1.2931 · 10−6 [m2/s] as the kinematic viscosity of the overall
solution.

The dimensionless boundary conditions are given as in (3.8).

4.2.2 Modeling the mass balance

The mass balance of the KDP system is modeled by

∂c̃

∂t̃
−D∆c̃+ ũ · ∇c̃ =

σ̃gr

mmol
in (0, t̃end)× Ω̃, (4.5)

where

• σ̃gr

[
kg/(m3s)

]
is the mass transferred from the fluid to the solid phase

due to the growth per unit time and unit space,

• mmol = 136.08 · 10−3 [kg/mol] is the molar mass of KDP,

• D = 5.5 · 10−10
[
m2/s

]
is diffusion coefficient of KDP in water.

According to (2.23) and using (4.1), the consumption of mass with respect to
the growth rate is modeled by the term on the right-hand side in (4.5),

σ̃gr = −ρd
∫ L̃2,max

L̃2,min

∫ min{L̃2,L̃1,max}

L̃1,min

(
2G̃1(L̃1L̃2 − L̃2

1) + G̃2L̃
2
1

)
×f̃(t̃, x̃, L̃1, L̃2) dL̃1dL̃2, (4.6)

with

• L̃1,min = L̃2,min = 0 [m],
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• L̃1,max = 1.2 · 10−3 [m] and L̃2,max = 4 · 10−3 [m].

The growth rates for the individual internal coordinates are given by

G̃1(c̃, T̃ ) =

kg1
(
c̃− c̃sat(T̃ )
c̃sat(T̃ )

)g1
if c̃ > c̃sat(T̃ ),

0 else,

(4.7)

and

G̃2(c̃, T̃ ) =

kg2
(
c̃− c̃sat(T̃ )
c̃sat(T̃ )

)g2
if c̃ > c̃sat(T̃ ),

0 else,

(4.8)

with the model parameters:

• ρd = 2338
[
kg/m3

]
as the density of KDP (dispersed phase),

• kg1 = 1.221 · 10−5 [m/s] as growth rate constant with respect to L̃1,

• kg2 = 10.075 · 10−5 [m/s] as growth rate constant with respect to L̃2,

• g1 = 1.48 [·] as growth rate power with respect to L̃1,

• g2 = 1.74 [·] as growth rate power with respect to L̃2.

The saturation concentration is taken as in [56],

ρ̃csat

mmol
= c̃sat(T̃ ) =

9.3027 10−5T̃ 2 − 9.7629 10−5T̃ + 0.2087
mmol

. (4.9)

Considering the boundary conditions defined as in (3.10), equation (4.5) is
solved, without the coupling terms to the PSD, until a steady-state is reached.
Derived similarly to (3.13), the dimensionless formulation of (4.5) reads

∂c

∂t
− Dj

l∞u∞
∆c+ u · ∇c =

l∞
u∞c∞mmol

σ̃gr in (0, tend)× Ω, (4.10)

with

σ̃gr = −ρdf∞L2
1,∞L2,∞ (4.11)∫ L2,max

L2,∞

L2,min
L2,∞

∫ min{L2,L1,max}
L1,∞

L1,min
L1,∞

(
2G1(L2,∞L1L2 − L1,∞L

2
1) + L1,∞G2L

2
1

)
×

f(t,x, L1, L2) dL1dL2.
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Further, the growth rates are given by

G1(c, T ) =

kg1
(
c− csat(T )
csat(T )

)g1
if c > csat(T ),

0 else,
(4.12)

G2(c, T ) =

kg2
(
c− csat(T )
csat(T )

)g2
if c > csat(T ),

0 else.
(4.13)

The dimensionless saturation concentration is as follows

csat(T ) =
c̃sat(T∞T )

c∞
.

Dimensionless initial and boundary conditions are given as in (3.15) and
(3.16).

4.2.3 Modeling the energy balance

The energy balance for the KDP system is modeled by

ρcp

(
∂T̃

∂t
+ u · ∇T̃

)
= λ∆T̃ + ∆hcrystσ̃gr in (0, t̃end)× Ω̃, (4.14)

where

• cp = 4181.3 [J/(kg K)] is the specific heat capacity of water,

• λ = 0.602 [J/(K m s)] is the thermal conductivity of water,

• ∆hcryst = 119 [J/kg] is the heat of solution (enthalpy change of solution).

The decrease of temperature with respect to the growth of the particles is modeled
by the term on the right-hand side of (4.14), σ̃gr, defined as in (4.6). The
boundary condition are given as in (3.18) by

• T̃in = 308.15 [K],

• T̃wall = 291.15 [K].

As initial condition it was chosen a fully developed temperature field, which is
based on the solution of a steady-state equation without coupling terms to PSD.
It is given as in (3.19).



80 4 Simulation of bi-variate population balance system

Further, similarly to (3.20), the dimensionless formulation of (4.14) takes
the form

∂T

∂t
− λ

l∞u∞ρcp
∆T + u · ∇T =

l∞
T∞u∞ρcp

∆hcrystσ̃gr in (0, tend)× Ω.(4.15)

Dimensionless initial and boundary conditions are chosen as in (3.21) and
(3.22).

4.2.4 Modeling the population balance

The population balance equation for the bi-variate model is given by

∂f̃

∂t̃
+ G̃1(c̃, T̃ )

∂f̃

∂L̃1

+ G̃2(c̃, T̃ )
∂f̃

∂L̃2

+ ũ · ∇f̃ (4.16)

= H̃nuc in (0, t̃end)× Ω̃× (L̃1,min, L̃1,max)× (L̃2,min, L̃2,max).

The right-hand side in (4.16) accounts for nucleation which is assumed to
occur at the smallest particles, see Sec. 2.3.3,

H̃nuc = B̃nuc(c̃, T̃ )Ṽcrystδ(L̃1 − L̃1,nuc)δ(L̃2 − L̃2,nuc), (4.17)

with

δ(L̃1 − L̃1,nuc) =

{
1 if L̃1 = L̃1,nuc = 50 · 10−6 m,

0 else,
(4.18)

δ(L̃2 − L̃2,nuc) =

{
1 if L̃2 = L̃2,nuc = 100 · 10−6 m,

0 else.
(4.19)

This is a standard model for nucleation as proposed in [5]. The volume for the
crystalline phase is given by

Ṽcryst =
∫ L̃2,max

L̃2,min

∫ min{L̃2,L̃1,max}

L̃1,min

Ṽ f̃dL̃1dL̃2 (4.20)

=
∫ L̃2,max

L̃2,min

∫ min{L̃2,L̃1,max}

L̃1,min

(
1
3
L̃1

3
+
(
L̃2 − L̃1

)
L̃1

)
f̃dL̃1dL̃2
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and the nucleation rate by

B̃nuc(c̃, T̃ ) =


kb

(
c̃− c̃csat(T̃ )
c̃csat(T̃ )

)b
if c̃ > c̃csat(T̃ ),

0 else,

(4.21)

with the model parameters:

• kb = knuc

[
1/(m6s)

]
· Voverall

[
m3
]

= 3.75 · 1013
[
1/(m6s)

]
· Voverall =

7.875 · 109
[
1/(m3s)

]
nucleation rate constant [5] (calculated with respect

to overall volume in the tube Voverall = 2.1 · 10−4
[
m3
]
),

• b = 2.04 [·] nucleation rate power.

The initial condition is given by

f̃(0, x̃, L̃1, L̃2) = 0 in Ω̃× (L̃1,min, L̃1,max)× (L̃2,min, L̃2,max). (4.22)

Boundary conditions are necessary on closure of inflow boundaries

f̃(t̃, x̃, L̃1, L̃2) =
{
f̃in(t̃, x̃, L̃1, L̃2), x̃ ∈ Γ̃in, t̃ ∈ [0, 10] s
0, else,

(4.23)

where f̃in is given as a boundary distribution defined as in (4.2).
Similarly to (3.31), the dimensionless formulation of (4.16) is given by

∂f

∂t
+ G1

l∞
u∞L1,∞

∂f

∂L1
+G2

l∞
u∞L2,∞

∂f

∂L2
+ u · ∇xf (4.24)

=
l∞

u∞f∞
Hnuc in (0, tend)× Ω×

(
L1,min

L1,∞
,
L1,max

L1,∞

)
×
(
L2,min

L2,∞
,
L2,max

L2,∞

)
,

where
Hnuc = BnucVcrystδ(L̃1 − L̃1,nuc)δ(L̃2 − L̃2,nuc),

with

Bnuc(c, T ) =

kb
(
c− ccsat(T )
ccsat(T )

)b
if c > ccsat(T ),

0 else,
(4.25)

and

Vcryst = L3
1,∞L2,∞f∞ × (4.26)
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×
∫ L2,max

L2,∞

L2,min
L2,∞

∫ min{L̃2,L̃1,max}
L1,∞

L1,min
L1,∞

(
1
3
L1,∞L

3
1 + (L2,∞L2 − L1,∞L1)L1

)
fdL̃1dL̃2.

The dimensionless initial and boundary conditions are as following:

f(0,x, L1, L2) = 0 in Ω×
(
L1,min

L1,∞
,
L1,max

L1,∞

)
×
(
L2,min

L2,∞
,
L2,max

L2,∞

)
(4.27)

and

f(t,x, L1, L2) =


f̃in(t∞t, l∞x, L1,∞L1, L2,∞L2)

f∞
, x ∈ Γin, t ∈ (0, 10) s

0, else.
(4.28)

In the numerical simulations, the following reference values were used:

• f∞ = 1013 1
m5 ,

• l∞ = 0.01 m,

• u∞ = 0.01 m
s ,

• T∞ = 1 K,

• c∞ = 1 mol
m3 ,

• L1,∞ = 1000 · 10−6 m,

• L2,∞ = 1000 · 10−6 m.

4.3 Numerical results

Since the numerical simulations are based on the same setup as for the urea
synthesis, the flow domain is discretized as in Fig. 3.4, by using an a priori
adapted anisotropic grid of 132×12×12 cells. Further, the internal coordinates’
discretization uses 25 nodes with respect to the smallest length of the particle,
L̃1, and 81 nodes with respect to the largest length of the particle, L̃2. The
corresponding numbers of degrees of freedom for simulating the KDP process
are given in Tab. 4.1.
Considering the flow rate as in the application of urea synthesis, Ṽr =

30 ml/min, one obtains a stationary flow field with Reynolds number Re ≈ 348.
The flow field at the inlet of the channel is shown in Fig. 4.3.
Further, the fully developed temperature field at the inlet of the channel is

illustrated in Fig. 4.4. At the beginning of the simulation, at t̃inj ∈ [0, 10] s,
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Simulation quantity Number of d.o.f.
velocity 496 875
pressure 76 032

temperature 22 477
concentration 22 477

PSD 45 515 925

Table 4.1: D.o.f. for simulating the KDP process.

Figure 4.3: Flow rate Ṽr = 30 ml/min; cut of the stationary velocity field at
the inlet of the tube, domain not to scale (KDP).

particles were injected into the channel, see Fig 4.2, for the initial PSD.
Two finite difference methods were investigated for solving the bi-variate pop-

ulation balance system, FWE–UPW–FDM and RK–ENO–FDM, in the time
interval [0, 300] s. In order to apply these methods to the bi-variate transport
equation, they were combined with a corresponding finite volume method, see
Sec. 2.1.7.
The final concentration distributions computed with these methods seem, at

first glance, similar, but they are actually different in details, e.g., in the middle
of the tube, at x̃1 ≈ 100 cm, toward the walls, see Fig. 4.5. Altogether, it can be
observed at the end of the channel that the concentration of the dissolved species
computed with FWE–UPW–FDM is smaller than the concentration computed
with RK-ENO-FDM. The different quantitative behavior in the results at the
end of the channel arises from the fact that due to the smearing of the first

Figure 4.4: Flow rate Ṽr = 30 ml/min; cut of the initial temperature field at
the inlet of the tube, domain not to scale (KDP).
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order scheme larger particles are produced. This phenomenon will be clearly
visible in plots with respect to the PSD in Fig. 4.13 – Fig. 4.24. For creating
larger particles, more of the dissolved species has to be consumed, leading finally
to smaller values for the concentration.

Figure 4.5: Final concentration distribution (t̃ = 300 s) with FWE–UPW–FDM
and RK–ENO–FDM for ∆t = 0.1; concentration domain not to
scale (scaled up by factor 40 in y- and z-direction) (KDP).

To highlight the differences of the results obtained with both methods, the
PSD was studied at different locations in the tube. To this end, three cut planes
were chosen, one close to the inlet at x̃1 = 17.5 cm, one more downstream at
x̃1 = 49 cm, and the last one also close to the outlet at x̃1 = 200 cm, see Fig.
4.6.
First, an appropriate time step has to be found. If the time step is too

large, instabilities have to be expected because explicit time-stepping schemes
were applied. If the time step is too small, then the simulation will become
inefficient. In addition, from our experience, we expected that for sufficiently
small time steps the discretization error in space dominates, and therefore a
further decrease of the time step does not lead to an increase of the accuracy of
the results. To find possible instabilities, the PSD in the center of the tube at
the plane close to the inlet, at (x̃1, x̃2, x̃3) = (17.5, 1/2, 1/2) cm3, was studied,
see Fig. 4.7. Up to this point, there was more or less only a transport of
the initial PSD. In particular, one does not expect values that are much larger
than the value of the initial pulse, which is 1013. It can be seen in Fig. 4.7,
upper pictures, that such values were computed for ∆t = 0.2 (both schemes)
and ∆t = 0.15 (RK–ENO–FDM). The lower pictures of Fig. 4.7 reveal that
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Figure 4.6: Cut planes, parallel to the plane x̃1 = 0, for comparing the results
obtained with the two different schemes.

for both schemes the results for ∆t 6 0.1 were very similar. From Fig 4.8, it
can be observed that this statement holds true also for the other cut planes. In
summery, ∆t = 0.1 has been proved to be an appropriate time step. Therefore,
for all further studies, the time step was set to be ∆t = 0.1.
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Figure 4.7: Maximal value of the PSD at (x̃1, x̃2, x̃3) = (17.5, 1/2, 1/2) cm3

for different time steps; FWE–UPW–FDM (left); RK–ENO–FDM
(right). Note the different scaling of the y-axis.
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(a) (x̃1, x̃2, x̃3) = (49, 1/2, 1/2) cm3 (b) (x̃1, x̃2, x̃3) = (49, 1/2, 1/2) cm3

(c) (x̃1, x̃2, x̃3) = (200, 1/2, 1/2) cm3 (d) (x̃1, x̃2, x̃3) = (200, 1/2, 1/2) cm3

Figure 4.8: Maximal value of the PSD for different time steps; FWE–UPW–
FDM (left); RK–ENO–FDM (right). Note the different scaling of
the y-axis.
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The temporal evolution of the PSD was studied not only at the center of the
cut planes shown in Fig. 4.6, but also at other points situated in these planes.
This points are sketched in Fig. 4.9. There is one set of points reaching from

Figure 4.9: Studied nodes for the cut planes parallel to the plane x̃1 = 0.

the center of the tube to the center of a lateral wall and another set, where
the points reach from the center to the corner of two lateral walls. Due to the
different velocities in all these points, a different evolution of the PSD can be
expected. To keep the presentation of the results concise, we studied only the
evolution of the maximal value of the PSD in these points, see Fig. 4.10 – Fig.
4.12. It can be seen that the largest maximal values were predicted in the center
of the tube, i.e., the bulk of particles followed the flow very well. The further the
point of observation was away from center, the smaller the maximal value of
the PSD became. This general qualitative behavior was predicted by both of the
studied schemes, FWE–UPW-FDM and RK–ENO–FDM. However, the height
of the peaks (highest amount of particles that can be observed at the point at a
certain time) and the time interval where the curve is clearly larger than zero
(time interval where a notable number of particles can be observed at the point)
often differed considerably between both methods. Always, the method FWE–
UPW-FDM gave results with smaller peaks and larger time intervals in which
particles could be observed. As an example, at the center of the tube close to
the outlet (x̃1, x̃2, x̃3) = (200, 1/2, 1/2) cm3, the first order method predicted a
notable amount of particles in the time interval [200, 280] s, whereas the third
order method showed this event in [220, 260] s. Moreover, the maximal amount
of particles predicted by RK–ENO–FDM was almost four times larger than the
prediction of FWE–UPW-FDM. One can observe that the differences in the
numerical results obtained with both methods were the larger, the further the
cut plane was away from the inlet, i.e., the longer the PSD needed to reach the
cut plane.
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Figure 4.10: Maximal value of PSD at different nodes (17.5, x̃2, x̃3) cm3; FWE–
UPW–FDM (left); RK–ENO–FDM (right). Note the different
scaling of the y-axis.
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Figure 4.11: Maximal value of PSD at different nodes (49, x̃2, x̃3) cm3; FWE–
UPW–FDM (left); RK–ENO–FDM (right). Note the different
scaling of the y-axis.
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Figure 4.12: Maximal value of PSD at different nodes (200, x̃2, x̃3) cm3; FWE–
UPW–FDM (left); RK–ENO–FDM (right). Note the different
scaling of the y-axis. Maximal values of PSD in the nodes with a
distance less or equal to 1/6 cm of one of the walls were negligible
(magenta and cyan curves).
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Finally, comprehensive illustrations of the PSD in the different points are
provided in Fig. 4.13 – Fig. 4.24. In Fig. 4.13 – Fig. 4.18, the PSDs for the
points situated on the line between the lateral wall and the center are presented,
and in Fig. 4.19 – Fig. 4.24, the PSDs on the line from the corner to the center
of the tube. For each picture, the time instance was chosen where the maximal
value of the PSD was obtained. It can be clearly observed that results obtained
with RK–ENO–FDM were much less smeared than the results computed with
FWE-UPW–FDM. In addition, the maximal values of the PSDs were larger for
RK–ENO–FDM. The smearing introduced by FWE-UPW–FDM results even
to the fact that a notable amount of particles has already left the domain of
computation for the internal coordinates at the end of the tube, see Fig. 4.17
and Fig. 4.23. Again, it can be observed that the largest differences between the
two methods are near the outlet of the tube. The pictures in Fig. 4.13 – Fig.
4.24 also allow to distinguish between the part of the PSD that originates from
the inlet condition and the part which comes from the nucleation. Also for the
second part, the smearing introduced by FWE-UPW–FDM is clearly visible.
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(a) O = (17.5, 1/2, 1/2) cm3; t̃max = 21 s (b) E = (17.5, 5/12, 1/2) cm3; t̃max =
22 s

(c) D = (17.5, 4/12, 1/2) cm3; t̃max =
23 s

(d) C = (17.5, 3/12, 1/2) cm3; t̃max =
26 s

(e) B = (17.5, 2/12, 1/2) cm3; t̃max =
34 s

(f) A = (17.5, 1/12, 1/2) cm3; t̃max = 56 s

Figure 4.13: (Logarithm of the) PSD at (17.5, x̃2, x̃3) cm3; nodes on the line
between the wall and the center; FWE–UPW–FDM.
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(a) O = (17.5, 1/2, 1/2) cm3; t̃max = 21 s (b) E = (17.5, 5/12, 1/2) cm3; t̃max =
21 s

(c) D = (17.5, 4/12, 1/2) cm3; t̃max =
24 s

(d) C = (17.5, 3/12, 1/2) cm3; t̃max =
27 s

(e) B = (17.5, 2/12, 1/2) cm3; t̃max =
34 s

(f) A = (17.5, 1/12, 1/2) cm3; t̃max = 56 s

Figure 4.14: (Logarithm of the) PSD at (17.5, x̃2, x̃3) cm3; nodes on the line
between the wall and the center; RK–ENO–FDM.
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(a) O = (49, 1/2, 1/2) cm3; t̃max = 59 s (b) E = (49, 5/12, 1/2) cm3; t̃max = 60 s

(c) D = (49, 4/12, 1/2) cm3; t̃max = 65 s (d) C = (49, 3/12, 1/2) cm3; t̃max = 74 s

(e) B = (49, 2/12, 1/2) cm3; t̃max = 96 s (f) A = (49, 1/12, 1/2) cm3; t̃max = 167 s

Figure 4.15: (Logarithm of the) PSD at (49, x̃2, x̃3) cm3; nodes on the line
between the wall and the center; FWE–UPW–FDM.
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(a) O = (49, 1/2, 1/2) cm3; t̃max = 59 s (b) E = (49, 5/12, 1/2) cm3; t̃max = 60 s

(c) D = (49, 4/12, 1/2) cm3; t̃max = 65 s (d) C = (49, 3/12, 1/2) cm3; t̃max = 74 s

(e) B = (49, 2/12, 1/2) cm3; t̃max = 96 s (f) A = (49, 1/12, 1/2) cm3; t̃max = 167 s

Figure 4.16: (Logarithm of the) PSD at (49, x̃2, x̃3) cm3; nodes on the line
between the wall and the center; RK–ENO–FDM.
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(a) O = (200, 1/2, 1/2) cm3; t̃max = 240 s (b) E = (200, 5/12, 1/2) cm3; t̃max =
245 s

(c) D = (200, 4/12, 1/2) cm3; t̃max =
264 s

(d) C = (200, 3/12, 1/2) cm3; t̃max =
300 s

Figure 4.17: (Logarithm of the) PSD at (200, x̃2, x̃3) cm3; nodes on the line
between the wall and the center; FWE–UPW–FDM. Note that at
A′ = (200, 1/12, 1/2) cm3 and B′ = (200, 2/12, 1/2) cm3 there was
no notable amount of particles predicted.
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(a) O = (200, 1/2, 1/2) cm3; t̃max = 240 s (b) E = (200, 5/12, 1/2) cm3; t̃max =
245 s

(c) D = (200, 4/12, 1/2) cm3; t̃max =
264 s

(d) C = (200, 3/12, 1/2) cm3; t̃max =
300 s

Figure 4.18: (Logarithm of the) PSD at (200, x̃2, x̃3) cm3; nodes on the line
between the wall and the center; RK–ENO–FDM. Note that at
A′ = (200, 1/12, 1/2) cm3 and B′ = (200, 2/12, 1/2) cm3 there
was no notable amount of particles predicted.
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(a) O = (17.5, 1/2, 1/2) cm3; t̃max = 21 s (b) E′ = (17.5, 5/12, 5/12) cm3; t̃max =
22 s

(c) D′ = (17.5, 4/12, 4/12) cm3; t̃max =
26 s

(d) C′ = (17.5, 3/12, 3/12) cm3; t̃max =
33 s

(e) B′ = (17.5, 2/12, 2/12) cm3; t̃max =
52 s

(f) A′ = (17.5, 1/12, 1/12) cm3; t̃max =
137 s

Figure 4.19: (Logarithm of the) PSD at (17.5, x̃2, x̃3) cm3; nodes on the line
between the corner and the center; FWE–UPW–FDM.
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(a) O = (17.5, 1/2, 1/2) cm3; t̃max = 21 s (b) E′ = (17.5, 5/12, 5/12) cm3; t̃max =
22 s

(c) D′ = (17.5, 4/12, 4/12) cm3; t̃max =
26 s

(d) C′ = (17.5, 3/12, 3/12) cm3; t̃max =
33 s

(e) B′ = (17.5, 2/12, 2/12) cm3; t̃max =
52 s

(f) A′ = (17.5, 1/12, 1/12) cm3; t̃max =
137 s

Figure 4.20: (Logarithm of the) PSD at (17.5, x̃2, x̃3) cm3; nodes on the line
between the corner and the center; RK–ENO–FDM.
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(a) O = (49, 1/2, 1/2) cm3; t̃max = 59 s (b) E′ = (49, 5/12, 5/12) cm3; t̃max =
61 s

(c) D′ = (49, 4/12, 4/12) cm3; t̃max =
71 s

(d) C′ = (49, 3/12, 3/12) cm3; t̃max =
94 s

(e) B′ = (49, 2/12, 2/12) cm3; t̃max =
154 s

(f) A′ = (49, 1/12, 1/12) cm3; t̃max =
300 s

Figure 4.21: (Logarithm of the) PSD at (49, x̃2, x̃3) cm3; nodes on the line
between the corner and the center; FWE–UPW–FDM.
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(a) O = (49, 1/2, 1/2) cm3; t̃max = 59 s (b) E′ = (49, 5/12, 5/12) cm3; t̃max =
61 s

(c) D′ = (49, 4/12, 4/12) cm3; t̃max =
71 s

(d) C′ = (49, 3/12, 3/12) cm3; t̃max =
94 s

(e) B′ = (49, 2/12, 2/12) cm3; t̃max =
154 s

(f) A′ = (49, 1/12, 1/12) cm3; t̃max =
300 s

Figure 4.22: (Logarithm of the) PSD at (49, x̃2, x̃3) cm3; nodes on the line
between the corner and the center; RK–ENO–FDM.
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(a) O = (200, 1/2, 1/2) cm3; t̃max = 240 s (b) E′ = (200, 5/12, 5/12) cm3; t̃max =
251 s

(c) D′ = (200, 4/12, 4/12) cm3; t̃max =
291 s

(d) C′ = (200, 3/12, 3/12) cm3; t̃max =
300 s

Figure 4.23: (Logarithm of the) PSD at (200, x̃2, x̃3) cm3; nodes on the line
between the corner and the center; FWE–UPW–FDM. Note that
at A′ = (200, 1/12, 1/12) cm3 and B′ = (200, 2/12, 2/12) cm3

there was no notable amount of particles predicted.
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(a) O = (200, 1/2, 1/2) cm3; t̃max = 240 s (b) E′ = (200, 5/12, 5/12) cm3; t̃max =
251 s

(c) D′ = (200, 4/12, 4/12) cm3; t̃max =
291 s

(d) C′ = (200, 3/12, 3/12) cm3; t̃max =
300 s

Figure 4.24: (Logarithm of the) PSD at (200, x̃2, x̃3) cm3; nodes on the line
between the corner and the center; RK–ENO–FDM. Note that at
A′ = (200, 1/12, 1/12) cm3 and B′ = (200, 2/12, 2/12) cm3 there
was no notable amount of particles predicted.
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4.3.1 CPU time

The simulations were performed on HP BL2x220c computers with 2933 MHz
Xeon processors. Simulating one time step for the first order finite difference
scheme took around 29 – 33 seconds, including the calculation of all data for
evaluating the numerical simulations. The higher order method had higher
computational cost, in our simulations of around a factor of five.

4.3.2 Conclusions

The presented numerical study shows that even in the class of direct discretiza-
tions, different numerical methods might lead to qualitatively different numer-
ical solutions. With both methods, the most particles were predicted to occur
in the center of the channel and less particles closer to the wall. The bulk of
particles followed the flow very well. Also, the spatial separation to the internal
coordinates of nucleation from growth phenomena was clearly to distinguish in
the numerical results. The method RK–ENO–FDM computed results that were
less smeared than the results obtained with using FWE–UPW–FDM. It was
shown that predictions, e.g., on the maximal value of the PSD or the length
of the time interval with a notable amount of particles at certain points, were
qualitatively different. Since RK–ENO–FDM is of the higher order, one can
expect to have computed the more accurate results with this method.





5 Summary and outlook

5.1 Summary

This thesis presented a class of numerical methods using direct discretization for
simulating population balance systems. Such systems contain equations defined
in a three-dimensional domain (Navier–Stokes equations, convection-diffusion
equations for mass and energy balances), and an equation for the PSD defined
in a higher-dimensional domain, e.g., a four- and five-dimensional domain
resulting in uni-variate and bi-variate population balance models. The goal
of this thesis consists, on the one hand, in increasing the sensitivity of the
population balance community on the possible size of numerical errors and on
the other hand, in motivating careful and systematic studies of the properties
of numerical methods for solving multivariate particle balance systems in order
to obtain guidelines on which method is appropriate for which application.
Firstly, the process of urea synthesis was considered as a uni-variate pop-

ulation balance model. From the experiments, it is known that this process
is aggregation-dominated. To our best knowledge, the presented methods are
among the few approaches for solving a coupled population balance system with
aggregation which is defined in domains with three and four dimensions. Nu-
cleation, growth, aggregation, and transport of the particles were included into
the simulations. Two experimental setups were considered. For both, it was
possible with the proposed methods to calibrate unknown model parameters in
the aggregation kernel in such a way that good agreements to available experi-
mental data were achieved. With the examined methods, the obtained values of
the parameters for both experiments were somewhat different but of the same
order of magnitude. Several possible reasons for the observed differences were
pointed out:

• the idealized assumption of spherical particles in the modeling,

• the observations of projections of particles in the experiments,

• the modeling error of the kernel itself.

Therefore, extensions to multivariate models could achieve more trustful pre-
dictive models.
Secondly, the crystallization process of potassium dihydrogen phosphate

(KDP) was considered as a bi-variate population balance model. The proposed
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methods provide a new contribution to the numerical schemes for solving a cou-
pled population balance systems which are defined in domains with three and five
dimensions. In this application, the needle-shaped characterization of the par-
ticles was considered. In order to describe needle-shaped particles, two internal
coordinates are necessary, e.g., the length and the diameter of the cross-section
of the particles. The aggregation was disregarded in this example, since, to
date, no aggregation kernels are available in the modeling. Nucleation, growth,
and transport of the particles were taken into account. The incorporation of the
nucleation was done with a finite volume technique. Since no experimental data
were available for this application, the main goal was to demonstrate that even
in the class of direct discretizations, by applying different numerical methods,
qualitative differences in the solutions might be obtained. In particular, it was
shown that, at certain points in the flow domain, the extensive smearing of one
of the methods led to wrong predictions of the maximal value of the PSD as well
as the time interval where a notable amount of particles are present. However,
the higher order finite difference method had higher computational costs.

5.2 Outlook

This thesis presented numerical studies of uni- and bi-variate population balance
systems for situations where the PSD is defined in a 4D and 5D tensor-product
domain. Therefore, a tensor-product grid could be used and the application of
finite difference schemes was straightforward.

• An extension, which is necessary for applications, consists in modifying
the implementation to more complicated physical domains. Then, the
application of finite difference approaches to the PSD equation becomes
more involved. Since the internal coordinates still span a tensor-product
domain, an idea consists in developing hybrid discretizations for this equa-
tion which are based on finite element ideas for the external coordinates
and finite differences schemes for the internal coordinates.

• From the point of view of efficiency, the long computing times, caused by
high computational costs of the direct discretizations, can be reduced by
parallelizing the algorithms.

• An open topic, whose study would be very important for the chemical
engineering community, is the comprehensive and competitive study of
different approaches for solving population balance systems, in particular
of direct discretizations, momentum-based methods, and operator splitting
schemes. To our best knowledge, this topic is almost completely open.
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• For the calibration of model parameters, at is was necessary for the uni-
variate PSD in Sec. 3, an algorithmic improvement would be the use
of an optimization algorithm. Since such an algorithm usually requires
many numerical solutions pf the problem, new questions arise, like the
use of reduced order methods.
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