Aus der Bundesanstalt für Milchforschung
Institut für Biochemie und Physiologie der Ernährung
Kiel

Eingereicht über das Institut für Veterinär-Physiologie
des Fachbereiches Veterinärmedizin
der Freien Universität Berlin

Auswirkungen von Matrix- und Fällbadmodifikationen auf das
funktionelle Überleben von mikroverkapselten
Langerhans’schen Inseln in vitro

Inauguraldissertation

zur Erlangung der Würde des Doktors der Veterinärmedizin
an der
Freien Universität Berlin

Eingereicht von
Axel von Horsten
Tierarzt aus Heide / Holstein

Hamburg, September 2002

Journal Nr.: 2572
gewidmet
meinen Eltern
Inhaltsverzeichnis

1. Einleitung .. 9

2. Material und Methoden ... 12

 2.1. Versuchstiere .. 12

 2.1.1. Spendertiere .. 12

 2.2. Gewinnung der neonatalen Ratteninseln .. 12

 2.2.1. Inselisolierung .. 12

 2.2.2. Explantation ... 12

 2.2.3. Digestion ... 13

 2.2.4. Reinigung im Dichtegradienten ... 14

 2.3. Enkapsulierung der neonatalen Ratteninseln ... 16

 2.3.1. Aufbau der Enkapsulierungsanlage ... 16

 2.3.2. Kapselmodifikationen ... 18

 2.3.3. Ansatz der Alginat-Lösung .. 20

 2.3.4. Modifikationen der Alginat-Lösung ... 20

 2.3.4.1. Alginat-Lösung versetzt mit Albumin 20

 2.3.4.2. Alginat-Lösung versetzt mit Transferrin 21

 2.3.4.3. Alginat-Lösung versetzt mit Hämoglobin 21

 2.3.4.4. Alginat-Lösung versetzt mit Erythrozyten 21

 2.3.4.5. Alginat-Lösung versetzt mit Erythrozytenhämolisat 22

 2.3.5. Ansatz der Bariumchlorid-Lösung .. 23
2.3.6. Modifikationen der Bariumchlorid-Lösung ... 23
2.3.6.1. Bariumchlorid-Lösung versetzt mit Eisen II 23
2.3.6.2. Bariumchlorid-Lösung versetz mit Eisen III 23
2.3.7. Durchführung der Enkapsulierung ... 24

2.4. Kultivierung ... 28
2.5. Funktionstest .. 28
2.6. Insulinbestimmung ... 29

2.7. Histologie ... 30
2.7.1. Fixierung .. 30
2.7.2. Schneiden .. 30
2.7.3. Färben .. 31
2.7.4. Mikroskopie und Photographie ... 32
2.7.5. Vitalitätsbestimmung der verkapselten Inselzellen 32

2.8. Statistische Analyse ... 32

3. Ergebnisse ... 37
3.1. Herstellungsbedingungen optimaler Kapseln ... 37
3.2. Insulinsekretionen der unterschiedlichen Kapseltypen .. 38
3.2.1. Fällbadmodifikation ... 38
3.2.1.1. Bariumalginat-Kapseln ... 38
3.2.1.2. Bariumalginat-Eisen-II-Kapseln ... 39
3.2.1.3. Bariumalginat-Eisen-III-Kapseln .. 40
3.2.2. Alginatmodifikationen ... 41
3.2.2.1. Bariumalginat-Albumin-Kapseln ... 41
3.2.2.2. Bariumalginat-Transferrin-Kapseln ... 42
3.2.2.3. Bariumalginat-Hämoglobin-Kapseln .. 43
3.2.2.4. Bariumalginat-Erythrozyten-Kapseln .. 44
3.2.2.5. Bariumalginat-Erythrozytenhämolysat-Kapseln 45

3.3. Stimulierbarkeit der unterschiedlichen Kapseltypen 47

3.4. Vitalität der unterschiedlich mikroverkapselten Ratteninseln 49

4. Diskussion ... 50

5. Zusammenfassung ... 60

6. Summary .. 63

7. Rohdaten ... 65

8. Literaturverzeichnis .. 82
Vorwort

Hiermit möchte ich mich bei allen Personen bedanken, die es mir ermöglicht haben, in der zurückliegenden Zeit, trotz vieler Tiefen und Höhen diese Forschungsarbeit zu einem guten Ende gebracht zu haben.

Insbesondere möchte ich mich bei Herrn Prof. Dr. Jürgen Schrezenmeir bedanken, der mir dieses Forschungsthema und die hierfür erforderlichen Mittel zur Verfügung gestellt hat. Desweiteren möchte ich mich bei ihm für die Hilfsbereitschaft bei der Lösung schwieriger Probleme bedanken.

Mein besonderer Dank gilt Frau Dr. Christiane Laue für ihre zu allen Tages- und Nachtzeiten vorhandene Hilfsbereitschaft, für ihre Ratschläge und liebevolle Unterstützung bei der Durchführung der Arbeit. Ebenfalls danken möchte ich ihr für die Korrektur.

Bedanken möchte ich mich auch bei den wissenschaftlichen Mitarbeitern im Institut, Herrn Dr. Michael de Vrese, Herrn Dr. Martin Klempt, Frau Dr. Maria Pfeuffer und Herrn Dr. Nils Roos für die Hilfestellung bei der statistischen Auswertung, für EDV Probleme, bei labortechnischen Fragen und anderer kleinerer Probleme.

Hamburg, im September 2002

Axel von Horsten
Lebenslauf

Name: Axel von Horsten
Geburtsdatum: 19. Oktober 1965 in Heide/Holstein
Familienstand: ledig; 1 Kind
Eltern: Ernst-Otto von Horsten
 Anke von Horsten, geb. Boysen

Berufs- und Schulausbildung:

1972 - 1976 Grundschule in Lohe-Rickelshof
1976 - 1984 Klaus-Groth-Realschule in Heide/Holstein
 Abschluß: Mittlere Reife
1984 - 1987 Friedrich Köster GmbH & Co.KG
 Ausbildung zum Maschinenbaumechaniker
1987 - 1990 Gymnasium in Meldorf
 Abschluß: Abitur

Berufliche Tätigkeiten:

1990 - 1991 Maschinenbaumechaniker in Hamburg
1991 - 1992 Büro- und Schreibwarengroßhandel
 Rosepapier in Heide/Holstein

Hochschulausbildung:

10/92 - 3/98 Studium der Veterinärmedizin an der
 Freien Universität in Berlin
5/98 - 2/01 Doktorand an der Bundesanstalt für
 Milchforschung in Kiel

Berufliche Tätigkeit:

seit 3/01 Tierärztekammer Niedersachsen