DIE ROLLE KUTANER HUMANER PAPILLOMAVIREN WÄHREND DER ENTWICKLUNG EPITHELIALER HAUTTUMORE

Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.)

eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

vorgelegt von

Anja Köhler aus Berlin

April, 2007

1. Gutachter: PD Dr. rer. nat. habil. Ingo Nindl, Charité Berlin, Klinik für Dermatologie, Venerologie und Allergologie, Hauttumorzentrum Charité (HTCC) 2.Gutachter: Prof. Dr. rer. nat. Volker Erdmann, Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Biochemie Disputation am 27.09.2007

Inhaltsverzeichnis

1	Einleitung	1
1.1	Nicht-melanozytäre Hauttumore	1
1.2	Papillomavirus-assoziierte Krankheiten	
1.3	1.3 Genomorganisation und Klassifikation der Papillomaviren	
1.4	Die Infektion der Haut	
1.5	Humane Papillomaviren und die Entstehung von Schleimhauttumoren	
1.6 Die Entstehung epithelialer Hauttumore		10
1.7	Tiermodelle zur Erforschung PV-assoziierter Erkrankungen	12
1.8 Ursächlichkeit humanpathogener Viren bei der Entwicklung von Karzinom		114
1.9		
2	Material und Methoden	16
2.1	Material	16
2.	Patientenproben und anderes Untersuchungsmaterial	16
2.	2 Aufbau der Studien	16
2.	3 Verwendete Geräte	20
2.	4 Verbrauchsmaterial	20
2.	5 Reagenzien	21
2.	6 Reagenzsysteme (Kits)	21
2.	7 Puffer und Lösungen	22
2.2	Methoden	23
2	1 DNA-Isolierung	23
2	2 Virale Positivkontrollen	24
2	3 Grundlagen der Polymerase-Kettenreaktion	27
2	4 Konventionelle Polymerase-Kettenreaktion	28
2		
2	Blot	
2	5	
2.3		
2.5	3	
2.3	9 Statistik	49
3	Ergebnisse	50
3.1	Etablierungen der Methoden	50
3.		
3.	\mathcal{E}	
3.	3 DNA <i>in situ</i> Hybridisierung	53
3.2	HPV-Infektionen in wiederkehrenden, nicht-melanozytären Hauttumoren	55

3.2	Nachweis von Infektionen mit konsistenten HPV-Typen	55		
3.2	2.2 Variantenanalysen	58		
3.2	2.3 Viruslast	60		
3.3	HPV-Prävalenz in Haarfollikeln verschiedener Areale des Körpers	61		
3.3	Nachweis kutaner HPV-Typen in Haarfollikelzellen	61		
3.3	Nachweis mukosaler HPV-Typen in Haarfollikelzellen	61		
3.3	Nachweis mehrerer HPV-Typen in Haaren von einer Lokalisation	63		
3.4	Verteilung kutaner/EV HPV-Typen in Haarfollikeln immunsupprinorgantransplantierter Patienten			
3.4	1.1 Prospektive Studie	64		
3.4	•			
3.5	HPV-Infektionen in Warzen von immunsupprimierten und immunkomp			
3.3	Patienten			
3.5				
3.5	5.2 Viruslast	72		
3.6	Lokalisation und Virusmenge in Haut und Haarfollikeln von Mastomys coucha	74		
3.6	5.1 In situ Hybridisierung	74		
3.6	Die Viruslast in Normalhaut und Tumoren	77		
3.6	Einfluss der Immunsuppression auf die Viruslast in Haarfollikelzellen	78		
4	Diskussion	80		
4.1	HPV-Nachweis und Genotypisierung mittels Reverse Line Blot	80		
4.2	Epidemiologie kutaner/EV HPV-Typen			
4.3	Persistierende Infektionen kutaner/EV HPV-Typen	85		
4.4	Warzen als initiale Erkrankung zur Hautkarzinogenese	87		
4.5	Viruslasten in Hauttumoren und Haarfollikelzellen.	90		
4.6	Tiermodell der Papillomavirus-induzierten Tumorentstehung	92		
4.7	Schlussfolgerungen und Ausblick	95		
5	Eigene Publikationen	97		
6	Literaturverzeichnis	98		
7	Zusammenfassung	111		
8	Summary	113		
9	Anhang	115		
Tabell	enverzeichnis	115		
Abbildungsverzeichnis 1				
Abkürzungsverzeichnis				
Danks	agung	119		

7 ZUSAMMENFASSUNG

Mehrere Faktoren führen zur Entstehung nicht-melanozytärer Hautkarzinome (engl. NMSC), wobei UV-Licht der Hauptrisikofaktor ist. Darüber hinaus spielt das Immunsystem eine zentrale Rolle wie Studien an immunsupprimierten, beispielsweise organtransplantierten Patienten (OTR) gezeigt haben. Bei diesen Menschen entstehen vor allem an Sonnenlichtexponierten Arealen persistierende Warzen, die sich zu NMSC weiterentwickeln können. Mukosale Hoch-Risiko Typen humaner Papillomaviren (HPV) lösen anogenitale Karzinome aus (z. B. Gebärmutterhalskrebs), und auch kutane/EV HPV Typen scheinen die Entstehung epithelialer Hauttumore zu beeinflussen. Inwieweit sie als Auslöser dieser Krankheit gelten können, ist bislang unzureichend geklärt. Ziel dieser Arbeit ist die Rolle kutaner/EV HPV während der Hautkarzinogenese eingehender zu untersuchen und zu spezifizieren.

In dieser Arbeit wurden Lokalisation, Prävalenz, Persistenz und Viruslast kutaner/EV HPV-Typen mittels prospektiver und Fall-Kontroll Studien sowohl bei immunsupprimeirten als auch bei immunkompetenten Patienten untersucht. Als Probenmaterial dienten verschiedene Tumorbiopsien (invasiv), aber Haarfollikelzellen der Augenbrauen bildeten den überwiegenden Anteil der Proben (nicht invasiv). Das Sammeln von Haarfollikeln war wesentlich leichter als das Entnehmen von Normalhautproben und ermöglichte die Dokumentation der vorherrschenden kutanen/EV HPV-Typen eines Menschen an verschiedenen Arealen des Körpers. Die Durchführung von Studien beim Menschen ist aus ethischen Gründen beschränkt, so dass Untersuchungen des onkogenen Potentials kutaner Papillomaviren am *in vivo* Tiermodell *Mastomys coucha* (immunkompetente und immunsupprimierte Tiere) durchgeführt wurden. Diese Tiere sind latent mit MnPV-1 infiziert und entwickeln spontan Hauttumore. Alle Untersuchungen wurden mittels hocheffizienter Methoden wie des *Reverse Line Blots*, quantitativer PCR und *in situ* Hybridisierung durchgeführt.

Persistierende Infektionen mit kutanen/EV HPV wurden a) unabhängig vom Immunstatus, b) bei NMSC-Patienten und gesunden Menschen und c) in Tumorgewebe als auch in Haarfollikeln nachgewiesen. Insbesondere die kutanen/EV HPV-Typen HPV-5, -15, -20 und -23 wurden häufig gefunden, und Primärtumore, Rezidive und Metastase waren meist mit demselben kutanen/EV HPV-Typen infiziert. In Warzen von OTR waren signifikant

häufiger Infektionen von kutanen/EV HPV-Typen als in Warzen immunkompetenter Patienten nachweisbar. In Warzen beider Kohorten waren die Viruslasten von Warzenassoziierten HPV-Typen (HPV-3, -27, -57) um den Faktor 10⁵ höher als von kutanen/EV HPV-Typen. Allerdings wurde eine Aktivierung der viralen Replikation kutaner/EV HPV mit Beginn der Immunsuppression beobachtet. Dieselbe Aktivierung wurde auch bei immunsupprimierten M. coucha gezeigt. Bei Tieren mit Tumoren wurden sowohl in Hauttumoren als auch in Normalhaut höhere Viruslasten als bei gesunden Tieren ermittelt. MnPV-1 und/oder waren Genome virale Transkripte in Normalhaut, Haarfollikelzellen, Hauttumoren und sogar in Nervenzellen des Gehirns nachweisbar.

Hoch-Risiko HPV-Typen für epitheliale Hauttumore konnten im Gegensatz zum Gebärmutterhalskrebs nicht identifiziert werden. Der Nachweis persistierender HPV-Infektionen von Primärtumoren, Rezidiven und Metastasen mit denselben Viren deutet jedoch auf eine ursächliche Beteilung kutaner/EV HPV-Typen für die Entwicklung von NMSC. Die Aktivierung der viralen Replikation aufgrund Immunsupprimierung macht es wahrscheinlich, dass kutaner/EV HPV bei der Initiation der Onkogenese involviert ist. Vergleichbare Ergebnisse, die an *M. coucha* ermittelt wurden, deuten auf eine ursächliche Rolle von MnPV-1 bei der Hautkarzinogenese. Weiterführende Studien mögen die Bedeutung dieses *in vivo* Tiermodells für die die Erweiterung des Wissens über epitheliale Hauttumore herausarbeiten.

8 SUMMARY

Multiple factors contribute to the development of non-melanoma skin cancer (NMSC), including UV light as the main risk factor. Another key player of skin carcinogenesis is the immune system. This correlation has been shown in studies with immunosuppressed patients such as organ transplant recipients (OTRs). They develop persistent warts in sun-exposed areas that may have the potential to progress into NMSC. Furthermore, cutaneous human papillomaviruses (cutaneous/EV HPVs) are considered to be involved in the development of epithelial skin tumours. However, the question remains unanswered, if the viruses have the potential to initiate NMSC, as it has been shown for genital high risk HPVs causing anogenital carcinomas such as cervical cancer. The main objective of this work is to specify the role of cutaneous/EV HPV during skin carcinogenesis.

Localisation, prevalence, persistence, and viral load of cutaneous/EV HPV types were determined in prospective as well as case control studies with both immunosuppressed and immunocompetent patients. Tumour biopsies were investigated (invasive), however hair follicles of plucked eyebrows were the main sample source (non-invasive). The collection of eyebrow hairs was easier to perform than normal skin tissue, and they represent the cutaneous/EV HPV infection status of an individual at different regions of the body. Because studies in humans are limited, the *in vivo* animal model, *Mastomys coucha*, was used in order to determine the oncogenic potential of cutaneous papillomaviruses investigating both immunocompetent and immunosuppressed subjects. These animals are latently infected with MnPV-1 and develop spontaneously skin tumours. Highly efficient methods including reverse line blot, quantitative PCR, and *in situ* hybridisation were utilized.

Persistent cutaneous/EV HPV infections were found in both hair follicle cells and biopsies, independently from immune status and history of skin cancer. In particular, the cutaneous/EV HPV types HPV-5, -15, -20, and -23 were most frequent. Infection with the same cutaneous/EV HPV types was present in primary tumour, recurrence, and metastasis. Warts of OTRs showed significantly more infections with cutaneous/EV HPV types than those of non-OTRs. The mean viral load of the warts-associated HPV types HPV-3, -27, and -57 was more than a 10⁵ fold higher than of viruses from the cutaneous/EV group. The immune status of the individual under investigation did not influence the results. However,

the activation of viral replication started with the initiation of the immunosuppressant. The same was true for MnPV-1 present in immunosuppressed *M. coucha*. The viral load in both normal skin and tumours was higher in tumour-bearing animals than those without any skin disease. MnPV-1 genomes and / or viral transcripts were detected in normal skin, hair follicle cells, and even in neural cells of the brain.

It was not possible to identify and characterise high risk cutaneous/EV HPV types for NMSC as it was shown for cervical cancer. The persistence over different cancerous stages indicates the oncogenic potential of cutaneous/EV HPV types for cell transformation. Initiated by immunosuppression, the activation of virus replication suggests an important role of cutaneous/EV HPV in early stages of skin oncogenesis. The comparable results stated for *M. coucha* are probably indicative for the causal role of MnPV-1 during skin carcinogenesis. Further studies may highlight the importance of this *in vivo* animal model in accruing knowledge about epithelial skin cancer in humans.

9 ANHANG

Tabellenverzeichnis

Tabelle 1.1: Papillomavirus-assoziierte Erkrankungen des Menschen
Tabelle 1.2: Einteilung von Gattungen, Arten, Typen, Subtypen und Varianten
Tabelle 1.3: Nicht-humane Papillomavirus-assoziierte Erkrankungen*
Tabelle 2.1: Kryo- und Paraffinpräparate (FFPE) der entnommenen Patientenproben von 3 NMSC-Patienten
Tabelle 2.2: Papillomavirus-Plasmide
Tabelle 2.3: Spezifische Oligonukleotide für konventionelle PCR und Sequenzierung 29
Tabelle 2.4: Oligonukleotide für die Q-PCR
Tabelle 3.1: Ergebnisse der kutanen/EV HPV-Typisierung, Analyse der HPV E6 Varianten und Bestimmung der Viruslast in Tumoren von NMSC-Patient #1, #2 und #3
Tabelle 3.2 A und B: Nachweis von 24 kutanen/EV HPV- und 37 mukosalen HPV-Typen in Haaren verschiedener Hautareale von immunsupprimierten OTR (A) und IK Probanden (B) 62
Tabelle 3.3: Ergebnisse der HPV-Typisierung von Haarfollikelzellen kürzlich transplantierter OTR (n=63);
Tabelle 3.4: HPV-Infektionen transplantierter Patienten in den Gruppen mit kutanen Warzen (n=52), Hauttumoren (NMSC, N=49) und ohne kutane Warzen und Hauttumore (Kontrolle, n=53)
Tabelle 3.5: Nachweis von HPV-DNA der α-, β-, γ-, μ- und ν-Gattungen in Warzen von OTR und IK
Tabelle 3.6: Bestimmung der Viruslast in Hautwarzen von OTR und IK
Tabelle 3.7: Ergebnisse der Bestimmung der Viruslast in Haarfollikelzellen nach Immunsuppressivgabe

Abbildungsverzeichnis

Abbildung 1.1: Die Risikofaktoren für die Entstehung von kutanen Plattenepithelkarzinomer (SCC).
Abbildung 1.2: Organisation des HPV-8 Genoms.
Abbildung 1.3: Stammbaum der <i>Papillomaviridae</i>
Abbildung 1.4: Verlauf einer produktiven Infektion von Papillomaviren im Hautepithel 6
Abbildung 1.5: Stammbaum der α-PV
Abbildung 2.1: Prinzip des Reverse Line Blot
Abbildung 2.2: Durchführung des Reverse Line Blot
Abbildung 2.3: Quantitative PCR
Abbildung 2.4: Quantitative PCR von HPV-8 mit Fluoreszenzfarbstoff SYBR Green
Abbildung 2.5: Prinzip der <i>in situ</i> Hybridisierung mittels Tyramid-Signal-Amplifikation 46
Abbildung 3.1: Reverse Line Blot und Polyakrylamidgel-Gelelektrophorese
Abbildung 3.2: Sequenzalignment von HPV-2a, -27, -57 und den Subtypen -27b und -57b 52
Abbildung 3.3 A–F: Referenzsystem für DNA- <i>in situ</i> Hybridisierung (ISH)
Abbildung 3.4: Reverse Line Blot mit BGC-PCR-Produkten
Abbildung 3.5: Darstellung der E6 Variantenanalyse von HPV-8, -14, -21 und -36 in 2 NMSC Patienten
Abbildung 3.6: Ausschnitt aus dem Sequenzvergleich der HPV-21 Sequenzvariante 21var-1 59
Abbildung 3.7: Prävalenz kutaner/EV HPV-Typen in Haarfollikeln immunsupprimierter Patienten im ersten Monat nach Transplantation und nach 3, 6, 9, 12 und 18 Monaten 64
Abbildung 3.8: Veränderung der HPV-20 Viruslasten bei 6 Patienten innerhalb von 18 Monater nach Organtransplantation.
Abbildung 3.9: Verteilung der mukosalen, Warzen-assoziierten und kutanen/EV HPV-Typen in Warzen von organtransplantierten (OTR) und immunkompetenten (IK) Patienten
Abbildung 3.10: Verteilung von kutanen/EV HPV-Typen und Warzen-assoziierten HPV-Typer der A4-Spezies in Warzen von organtransplantierten (OTR) und immunkompetenten (IK) Patienten
Abbildung 3.11 A-F: DNA-in situ Hybridisierung (ISH) an Hautgewebe von M. coucha 75
Abbildung 3.12 A und B: MnPV-1-DNA im Gehirn (Thalamus) von M. coucha
Abbildung 3.13 MnPV-1-Viruslast in Normalhaut und Hauttumor von Tieren mit Tumoren (Alund in der Haut gesunder Tiere in Abhängigkeit vom Alter (B)
Abbildung 3.14 Die Entwicklung der Viruslast nach Immunsuppressivgabe

Abkürzungsverzeichnis

AEC Amino-Ethyl-Carbazol Α antisense ΑK Aktinischs Keratose AS **A**mino**s**äure **BCC** Basal Cell Carcinoma **BGC-PCR** Beta Gamma Cutaneous-Polymerase Chain Reaction bp **B**ase**p**airs **BPV** Bovines Papillomavirus **COPV** Canine Oral Papillomavirus **CRPV** Cottontail Rabbit Papillomavirus Dalton - Einheit des Molekulargewichtes Da **DMF Dim**ethylformamid **DMSO Dim**ethylsulfoxid DNA Deoxyribonucleic Acid dNTP desoxy-Nukleotidtriphosphat **EcPV** Equus Caballus Papillomavirus **EDAC** 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide **EDTA** Ethylendiamintetra-Acetat EtBr **Ethidumbromid** Epidermodysplasia Verruciformis ΕV F **f**orward **FFPF** Formalin Fixed Paraffin Embedded HR High Risk HPV Humane/s Papillomavirus/en ΙK Immunkompetenter Proband/Patient IS I mmun**s**uppresion kb **K**ilo**b**asenpaare **KBE** Kolonie bildende Einheiten LB Luria Bertani **LCR** Long Control Region LR Low Risk MnPV Mastomys natalensis Papillomavirus

NCR	Non-Coding Region
NMSC	Non Melanoma Skin Cancer
ORF	Open Reading Frame
OTR	O rgan T ransplant R ecipients
PCR	Polymerase Chain Reaction
PBS	Phosphat Buffered Saline
Q-PCR	quantitative Polymerase Chain Reaction
R	r everse
RLB	Reverse Line Blot
PV	Papillomavirus (en)
TAE	T ris- A cetate- E DTA-Puffer
TBS	Tris Buffered Saline
S	s ense
SCC	Squamous Cell Carcinoma
SDS	S odium d odecyl s ulfat
STD	Sexually Transmitted Diseases
SSSDNA	Sonificated Solmon Sperm DNA
U	U nit - Einheit der Enzymaktivität
UV	U ltra v iolett

Einheiten des Internationalen Einheitensystem (SI, Le Système international d'unités) wurden nach geltendem Gesetz verwendet.

Danksagung

An erster Stelle möchte ich meinem Doktorvater Dr. Ingo Nindl danken, in dessen Arbeitsgruppe die vorliegende Arbeit angefertigt wurde. Seine wissenschaftliche Betreuung, sowie kritischen Beiträgen trugen maßgeblich zum Gelingen dieser Arbeit bei.

Mein besonderer Dank gilt Dr. Marc Gottschling, für anregende fachliche Diskussionen, neue Blickwinkel, unermüdliches Korrekturlesen und viel Geduld.

Herrn Prof. Volker Erdmann danke ich für die Bereitschaft diese Arbeit zu begutachten.

Allen Mitarbeitern der Dermatologischen Klinik der Charité Berlin, hauptsächlich dem klinischen Personal des HTCC sei gedankt. Prof. Sterry und Prof. Stockfleth danke ich für die Möglichkeit meine Promotionsarbeit durchführen zu können, für die Bereitstellung von Material, Laborflächen und technischen Geräten.

Nicht zuletzt möchte ich mich bei den Arbeitsgruppen von Prof. Frank Rösl und Dr. Michael Pawlita und ihren Mitarbeitern am DKFZ Heidelberg, im speziellen Julia Nafz und Kristina Michael für die gute Zusammenarbeit bedanken.

Allen Mitgliedern der Arbeitsgruppe sei für das nette Arbeitsklima und die große Hilfsbereitschaft bei den täglichen Problemen der Laborarbeit gedankt, insbesondere Mandy Lehmann und meinen studentischen Mitstreitern Chantip Dang, Kathi Westphal und Anja Dahten

Diese Promotionsarbeit ist meiner Patentante Marianne Weitze, meiner "Schwester im Geiste" Katrin Schult und vor allem meinen Mutter Erika Köhler gewidmet – für ihre uneingeschränkte Unterstützung, die vielen aufmunternden Worte und das stetige Interesse an meiner Arbeit.