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Abstract

Tensors provide a powerful mathematical language to describe physical phenomena.
Consequently, they have a long tradition in physics and appear in various application
areas, either as intermediate product or as output of simulations or measurements. The
potential of tensors to describe complex anisotropic behavior, however, concurrently
complicates their interpretation. The central research question of this thesis is how
three-dimensional tensor fields of second order are visualized effectively so that, as a
long term goal, their interpretation becomes easier. The focus of this thesis lies on the
class of indefinite tensors.

The methods that are proposed in this thesis fall into two main categories: (1.) the
interactive exploration of the three-dimensional tensor data, and (2.) the geometric
reduction of the data to two-dimensional planes or triangulated surfaces. In both cases,
possible visualization approaches are presented. For interactive exploration of the data,
we propose to combine diagram views with three-dimensional hybrid visualizations.
We show that this facilitates familiarizing with the data and leads to exciting analytic
queries. If a geometric data reduction is possible, we focus on glyph- and texture-based
methods. In this context, the thesis is concerned with methods to improve their quality.
Therefore, we propose two algorithms for the efficient creation of anisotropic sample
distributions. Moreover, we present a novel visualization method that works on planar
slices as well as on triangulated surfaces. The basic idea of this method is to use
anisotropic sample distributions for the efficient computation of anisotropic Voronoi
cells, which then are used as base elements for texture mapping. Hence, the usage of
textures to encode the tensor’s various degrees of freedom becomes possible.

We evaluate our methods for the interactive exploration on stress tensor fields from
structure simulations. To show the effectiveness of novel visualization methods, various
datasets are presented.
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Zusammenfassung

Tensoren stellen ein mächtiges mathematisches Konzept dar, welches sich zur Beschrei-
bung einer Vielzahl physikalischer Phänomene eignet. Infolgedessen haben Tensoren
eine lange Tradition in der Physik und treten in zahlreichen Anwendungsgebieten,
entweder als Zwischenprodukt oder Ergebnis von Simulationen und Messungen, auf.
Das Potential von Tensoren, komplexes anisotropes Verhalten zu beschreiben, erschwert
jedoch zugleich deren Interpretation. Die zentrale Forschungsfrage dieser Arbeit ist,
wie sich dreidimensionale Tensorfelder zweiter Ordnung effektiv visualisieren lassen,
um auf lange Sicht deren Interpretation zu erleichtern. Der Fokus liegt hierbei auf der
Klasse von indefiniten Tensoren.

Um dies zu erreichen, werden in der Arbeit zwei wesentliche Richtungen vorgeschlagen:
die interaktive Exploration von dreidimensionalen Tensorfeldern und die geometrische
Reduktion der Daten auf zweidimensionale Schnitte oder triangulierte Oberflächen.
In beiden Fällen werden mögliche Visualisierungsansätze vorgestellt. Zur interaktiven
Exploration der Daten schlagen wir die Kombination von Diagrammansichten und
dreidimensionalen hybriden Ansichten vor. Wenn eine geometrische Reduktion der
Daten möglich ist, verfolgen wir Glyphen- und texturbasierte Visualisierungsmetho-
den. Hier stellt die Arbeit insbesondere Methoden zu deren qualitativen Verbesserung
mithilfe von anisotropen Samplingmethoden vor. Dazu wurden zwei Algorithmen zur
Berechnung von anisotropen Samplingmethoden entwickelt, die sowohl auf planaren
Schnitten als auch auf triangulierten Oberflächen anwendbar sind. Darüberhinaus wird
eine neue Visualisierungsmethode präsentiert, die auf Schnitten und triangulierten
Oberflächen arbeitet. Diese nutzt die mit den zuvor präsentierten Algorithmen erstell-
ten anisotropen Samplingverteilungen für die effiziente Berechnung von anisotropen
Voronoizellen, welche dann als Grundelement zur Texturierung verwendet werden
können. Auf diese Weise wird die Verwendung von Texturen zur Kodierung der vielen
im Tensor enthaltenen Informationen ermöglicht.

Wir evaluieren unsere Methoden zur interaktiven Exploration anhand von Stressten-
sorfeldern aus Struktursimulationen. Die neuen Visualisierungsansätze werden anhand
vieler unterschiedlicher Beispieldatensätze präsentiert.
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1
Introduction

Tensor mathematics is a beautiful, simple, and useful language for the
description of natural phenomena. [Danielson, 1997]

Visualization is fundamental to understanding models of complex phe-
nomena [. . . ]. [Munzner et al., 2006]

This thesis deals with the visualization and analysis of three-dimensional (3D) tensor
fields of second order. We present a concept for the visual exploration of these fields.
Furthermore, we propose two algorithms to generate anisotropic sample distributions
to improve glyph- and texture-based tensor visualization methods. We also show how
these sample distributions can be exploited for a novel visualization method for tensor
fields that works on two-manifold domains. The goal of this chapter is to motivate our
research, discuss the major challenges addressed in this thesis, and to list our main
contributions. Finally, an outline of the whole thesis is given.

1.1 Motivation

The major motivation of this thesis was to develop visualization and analysis methods
to investigate 3D tensor fields. Tensors are mathematical entities that describe linear
relationships between other tensors of zeroth order (scalars), first order (vectors) or
arbitrary order (tensors). Second-order tensors, which are the focus of this thesis, are
special cases of matrices. They are suited to describe any kind of anisotropic behavior.
Tensor fields result from simulations or measurements, either as intermediate product
or as the final result. Examples for applications in which tensors play an important
role include solid mechanics, continuum mechanics, astrophysics and medicine.

The interpretation of tensor fields is difficult since they encode much information
and because the physical meaning of this information is highly application-specific.

1



2 1.2. SCOPE

Here, scientific visualization can provide insight into the processes that are described
by tensors. This has been shown in previous work within the context of diffusion tensor
magnetic resonance imaging (DT-MRI) [Vilanova et al., 2005]. In other applications, for
example engineering applications, visualization and analysis tools specifically designed
for tensor fields are rare. Common practice in engineering applications is to analyze only
scalar quantities that were derived from the tensor and to discard the remaining tensor
information. But, tensors contain much more information than what is represented
by a single scalar value. We believe that the analysis of the whole tensor can lead to
deeper insights into the simulations themselves, as well as into the physical phenomena
that are simulated.

1.2 Scope

This thesis is concerned with the visualization of tensors as a certain class of data.
Focus is the class of indefinite tensors, which still are an underrepresented topic in
visualization. The thesis has no specific application context. However, most examples
are from engineering applications, where indefinite tensors play an important role.
Diffusion tensors, the most often encountered example of the class of positive-definite
tensors, will not be covered in this thesis. Of course, whenever possible, we try to
benefit from the advances made in this field.

1.3 Problems and Objectives

Scientific visualization is an interdisciplinary field of science. Therefore, research ques-
tions always arise from three different perspectives: the application side involving
those people (users) that generate the input data and have questions concerning this
data, the algorithmic side that is concerned with specific technical problems, and the
visualization side that needs to find suitable depictions to convey complex data in an
intuitive way. All these perspectives need to be considered in this thesis.

The most common method to depict tensors is to encode their properties in shape,
orientation and color of geometric entities (glyphs), for example, ellipsoids. While
glyphs have the potential to represent the whole information that is contained in a
tensor, they are often hard to interpret. Moreover, glyphs cannot be used to create
effective visualizations of a complete 3D tensor field. In such fields, every data point is
assigned to six independent variables that need to be encoded in the glyph. If every
data point is visualized by a glyph, the result are overloaded images that hamper the
interpretation of the underlying data. The task of depicting 3D tensor fields, therefore,
needs to solve a fundamental visualization problem: the avoidance of clutter and oc-
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clusion. One goal of this thesis, therefore, is to minimize the data that is visualized
so that only relevant information is depicted. Here, relevant means the data that
is needed to answer a specific analysis question. In scientific visualization, two ap-
proaches are often used for this purpose. These are feature extraction and data reduction.

Feature extraction means the extraction of meaningful data characteristics, here-
inafter referred to as feature. The goal is to reduce the complex input data to a less
complex subset that contains only relevant information with respect to a specific ques-
tion or task. Since the analysis of tensor fields, besides DTI, is a relatively new research
topic in scientific visualization as well as in the application fields where tensors appear,
a lack of specific questions can be observed, not least due to missing visualization
and analysis tools. As a consequence, and in contrast to scalar-, vector- and flow
visualization, rarely any feature definitions for tensors exist. In engineering applications,
for example, the analysis of tensors has been neglected in the past. Up to now, we
therefore do not exactly know what we can expect from the tensor data that arises
in these fields and what we are looking for in the data. As a consequence, automatic
segmentation or feature extraction methods are in general not applicable. For this
reason, we have identified the necessity of exploratory visualization, especially for stress
tensor fields. Such an undirected visualization concept is needed when we do not know
what we are looking for [Bergeron, 1993]. In these cases, exploratory visualization can
help to identify relevant features and patterns in the data.

By data reduction we mean two things: First, the reduction of the input data to less
complex mathematical entities, such as vectors or scalars. This kind of data reduction
can also be classified as feature extraction. Second, the geometric reduction of the
3D input data domain to a two-dimensional (2D) subdomain. Such a subdomain is
either a cut through the initial 3D domain, hereinafter referred to as slice, or a surface.
Previous research in tensor visualization has often focused only on slices, mostly because
visualizations become more complex in three dimensions and, hence, are more difficult
to understand. However, if this geometric reduction is done too early in the analysis
process, the change of tensors over the whole field cannot be communicated [Hashash
et al., 2003]. Moreover, if the tensor is solely reduced to a single scalar or vector, relevant
information might be lost. In both cases, data reduction can lead to misinterpretations
if the reduction is already made in the beginning of the analysis process. Therefore, a
goal of this thesis is to develop methods to extract specific tensor properties on-the-fly.
These include scalar- or vector-valued features that are derived from the tensor as well
as the extraction of single slices or surfaces of interest. With this approach, the tensor
data is reduced for the visualization but all the information is available at any time.

If the 3D input domain is restricted to a 2D subdomain, glyphs can be used to depict
the tensor field. A fundamental question of such local visualization methods, which
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depict single tensors at discrete points, is, where to place the glyphs to achieve a high-
quality visualization result. This becomes especially important if continuous structures
or patterns of the data need to be conveyed. Being placed at discrete grid positions, the
pattern of the underlying grid becomes visible in the final visualization, which disturbs
the perception of the field’s continuous behavior. Moreover, overlapping glyphs and
holes should be avoided as they lead to visual artifacts and undesired occlusions. As
shown in previous work [Kindlmann and Westin, 2006; Hlawitschka et al., 2007; Feng
et al., 2008], intelligent placement algorithms address this issue. However, previous
approaches do not work stable if glyph sizes across the sample domain vary strongly.
For indefinite tensor fields, however, such a setting is common, because they cannot be
easily normalized. For this reason, one goal of this thesis is to develop methods that
generate anisotropic sample distributions that guide the placement of glyphs and are
stable even for strongly varying glyph sizes.

1.4 Contributions

This section lists the major contributions of this thesis. They have been published in
four publications and one poster, on which this thesis is based:

• A. Kratz and D. Baum and I. Hotz, Anisotropic Sampling of Planar and Two-
Manifold Domains for Texture Generation and Glyph Distribution, IEEE Trans-
actions on Visualization and Computer Graphics, 2013

• A. Kratz and C. Auer and M. Stommel and I. Hotz, Visualization and Analysis
of Second-Order Tensors: Moving Beyond the Symmetric Positive-Definite Case,
Computer Graphics Forum, 2013

• A. Kratz and N. Kettlitz and I. Hotz, Particle-Based Anisotropic Sampling for
Two-Dimensional Tensor Field Visualization, Proceedings of Vision, Modeling,
and Visualization, 2011

• A. Kratz and B. Meyer and I. Hotz, A Visual Approach to Analysis of Stress
Tensor Fields, Scientific Visualization: Interactions, Features, Metaphors, Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2011

• A. Kratz, M. Hadwiger and I. Hotz, Improved Visual Exploration and Hybrid
Rendering of Stress Tensor Fields via Shape-Space Clustering, Poster presentation
at the IEEE VisWeek 2011, Providence, 2011

Categorization and analysis of previous work This thesis provides an overview of the
state of the art in tensor visualization (Chapter 3). In contrast to most previous work
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that focuses on diffusion tensors in medical applications (see, for example, [Vilanova
et al., 2005]), our review focuses on engineering applications and tensors that are not
symmetric positive definite; diffusion tensors are excluded.

Visual data exploration In order to address the need for the visual analysis of tensor
fields, this thesis proposes a concept that adapts the idea of multiple linked views to
tensor fields, where statistical plots and spatial depictions are presented side-by-side
(Chapter 4). Interactive selections of specific data properties that are highlighted
simultaneously in all views (brushing-and-linking) allow first insights into the data.
Although tensors have a multivariate nature [Vilanova et al., 2005], the adaption of
methods from multivariate data analysis is not straightforward. The major difference
of tensor data and multivariate data is that the individual tensor components are not
independent, whereas individual components of multivariate data are independent in
the sense that they are not linked via transformation rules. In this work, the application
of a multi-perspective approach to tensor fields was achieved by interpreting the shape
space (compare the work of [Bahn, 1999]) as feature space. In our framework, a shape
space is a scalar-valued feature space that serves as a link between the abstract tensor
and its depiction in diagrams and 3D spatial visualizations. With this approach, the
following is achieved:

• The difficulty to depict all the degrees of freedom of a second-order tensor in
a single depiction is solved by distributing this information in various views
(diagrams and spatial depictions), which all are presented side-by-side.

• The fact that we do not yet know what we can expect from the data is faced by
the concept of brushing-and-linking, which enables visual data exploration.

• The problem of clutter and occlusion in spatial depictions is addressed via hybrid
rendering that only depicts selected tensor properties.

Anisotropic sampling To improve the visual quality of glyph- and texture-based
tensor visualization methods, we have developed two approaches for the generation of
anisotropic sample distributions.

The first algorithm (Section 5.4) is a particle-based method for the generation of
anisotropic sample distributions on planar domains. In contrast to previous meth-
ods [Kindlmann and Westin, 2006; Hlawitschka et al., 2007], our approach can handle
samples that strongly vary in size across a given domain. We show the applicability
of the resulting sample distribution for glyph placement and as noise image to im-
prove texture-based visualization methods that are similar to line integral convolution
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(LIC) [Cabral and Leedom, 1993].

In order to extend the sampling to work also on two-manifold domains, we developed
an algorithm that solely depends on an anisotropic triangulation of the domain to
be sampled (Section 5.5). To create stable results even if sample sizes and sample
anisotropies vary greatly within a given domain, we propose the use of an anisotropic
triangulation that serves as basis for the creation of an initial sample distribution
as well as for a gravitational-centered relaxation. Thus, this approach is not only an
extension to two-manifold domains. It also significantly speeds up the generation of
anisotropic sample distributions for the planar case compared to previous approaches
and, thus, enables interactive slicing through tensor volumes. To demonstrate the
potential of our approach, we present results for several examples covering the planar
as well as the two-manifold case.

Texturing of anisotropic Voronoi cells To depict tensor fields on arbitrary 2D
domains, this thesis presents a novel visualization method (Chapter 6). Based on
anisotropic sample distributions, we present an interactive rendering approach that
depicts surface tensor fields in terms of anisotropic Voronoi cells. Through this approach,
the use of textures to encode tensor properties becomes possible. We show that textures
provide many possibilities to design tensor visualizations and to explore tensor fields
using texturing. We present several examples including different types of tensor fields
to demonstrate the flexibility of this visualization method.

1.5 Structure

Following this introduction, Chapter 2 presents the mathematical fundamentals of
second-order tensors that are needed for the subsequent chapters. Chapter 3 reviews
and categorizes previous work. It covers methods for the segmentation of tensor
fields (Section 3.2) as well as local (Section 3.3) and global visualization methods
(Section 3.4) and finally multiple view systems for tensors (Section 3.5). This is a review
and categorization of state-of-the-art tensor visualization methods with a focus on
tensors that are not positive definite. Diffusion tensors are not covered in this review.
Chapter 4 concentrates on methods for the visual data exploration of tensor fields. It
introduces the basic framework that implements multiple linked views for tensor fields
and that was developed within the scope of this thesis (Section 4.4). Chapter 5 presents
two approaches for generating anisotropic sample distributions on planar domains
(Section 5.4) and two-manifold domains (Section 5.5). The main part of this thesis ends
with the presentation of a novel visualization method for tensor fields on two-manifold
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domains (Chapter 6). The thesis concludes with a summary of the presented methods
and a discussion of future work in Chapter 7.





2
Tensor Fundamentals

Figure 2.1: Illustration of a symmetric second-order tensor as linear operator. The tensor is uniquely
determined by its action on all unit vectors (left). The eigenvector directions are highlighted as
black arrows. In this example, one eigenvalue (λ2) is negative. As a consequence, all vectors are
mirrored at the axis spanned by eigenvector e1. The eigenvectors are the directions with strongest
normal deformation but no directional change.

2.1 Introduction

This chapter introduces the mathematical fundamentals of second-order tensors that
are needed for the following chapters. The relevant fundamentals and formulas are
provided with respect to the goal of this thesis, which is the visualization of tensor
fields. More comprehensive introductions to tensors in general are found in the following
textbooks: A concise mathematical introduction to tensor calculus is given in [Hagen
and Garth, 2006]. A more detailed introduction from the viewpoint of physics and
engineering can be found in [Danielson, 1997; Brannon, 2003]. As a reference for a solid
mathematical treatment of the topic see [Abraham et al., 1988] and the more recent
book [Landsberg, 2012]. Parts of this chapter are also published in [Kratz et al., 2013a].

9
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2.2 Basic Notations

This thesis uses the following notations: Tensors and matrices are denoted using bold
capital letters, for example, T and M. If not stated otherwise, T describes a second-
order tensor and M a three-dimensional (3D) matrix, that is, M ∈ R3×3. The identity
tensor is I and the capital letter V denotes a vector space. Vectors are denoted as bold
lower-case letters, for example, v. Small letters denote scalars, for example, α or n,
and small letters with subscript ij denote matrix components, for example, mij . The
letter e denotes eigenvectors and the small Greek letter λ eigenvalues.

2.3 Tensor Definition

This section starts with a general definition of tensors as a multi-linear map (Equa-
tion (2.1)). This is the most general definition for tensors that encompasses every
following definition. However, there are various valid definitions for tensors, which
mainly differ with respect to the context in which they appear. The goal of this sec-
tion is to briefly introduce the most common definitions and to present the different
perspectives on tensors. The focus are second-order tensors.

Tensor as a multi-linear map Let V be a n-dimensional vector space over R, and let
V ∗ be its dual space defined as the space of all linear maps f : V → R. The operator
⊗ is the tensor product (Equation (2.19)). Then, a multilinear map from q copies of V
and p copies of its dual space V ∗ into the space R of real numbers

T : V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
p

⊗V ⊗ . . .⊗ V︸ ︷︷ ︸
q

→ R (2.1)

is called a tensor T of order r = p+ q; covariant order of p and contravariant order of
q. In this thesis, we only deal with finite-dimensional Euclidean vector spaces. Then,
the dual space V ∗ can be identified with V and it is not necessary to distinguish co-
and contravariant order [Abraham et al., 1988] 1. In the following, we only consider
tensors of order r = 2, which are the focus of this thesis.

Second-order tensor as a bilinear map A second-order tensor T is defined as a
bilinear function from two copies of a vector space V into the space R of real numbers

T : V ⊗ V → R. (2.2)

1Note, that in the more general case of non-Euclidean spaces (e.g., curved surfaces), the distinction
between covariant (upper) indices and contravariant (lower) indices is necessary.
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Second-order tensor as a linear operator Another perspective defines a second-order
tensor T as linear operator that maps any vector v ∈ V onto another vector w ∈ V .
Here, the tensor is a map from the vector space V onto itself:

T : V → V. (2.3)

The definition of a tensor as a linear operator is prevalent in physics. See Figure 2.1
for a 2D illustration.

Second-order tensor as a matrix In computer science, tensors are generally repre-
sented with respect to a specific Cartesian basis {b1, . . . ,bn} of the vector space V . In
this case, the tensor is uniquely defined by its components and is represented as a matrix.
Thus, in matrix notation, a 3D tensor (n = 3) of order r = 2 is represented by a matrix
M ∈ R3×3 with nr = 9 components (mij)i=1,...3,j=1...3. Considering definition (2.2), we
have

T(v,w) = wT ·M · v =
n∑

i,j=1
mijwivj , ∀v,w ∈ V, (2.4)

with v = v1b1 + · · ·+ vnbn and w = w1b1 + · · ·+ wnbn. Here ‘·’ denotes the standard
matrix multiplication. Considering definition (2.3), we have

T(v) = M · v, ∀v ∈ V. (2.5)

Please note that the matrix representation assumes a Cartesian coordinate system.

2.4 Tensor Invariance

The representation of a tensor as a matrix is prevalent in computer science and, hence,
also in the field of visualization. However, the strength of tensor mathematics is that
tensors are independent of specific reference frames, that is, they are invariant under
coordinate transformations. More precisely, the tensor components change according to
the transformation into another basis but the characteristics of the tensor are preserved.
Consequently, tensors can be analyzed using any convenient reference frame. Invariance
qualifies tensors to describe physical processes independent of the coordinate system.

In the following, we assume that a reference frame is given and mainly use matrix
notation. Nevertheless, the reader should still keep in mind that the following concepts
are independent from the chosen frame of reference. Furthermore, from now on the
term tensor is used equivalently to tensor of second order.

When we talk about invariant quantities (see also Section 2.7), we always mean
rotational invariance. Affine invariance will be denoted explicitly.
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2.5 Diagonalization

A tensor is independent of any chosen frame of reference. For specific reference frames,
however, the tensor representation becomes especially simple. Symmetric tensors can
be represented as diagonal matrices 2. The basis for such a representation is given by
the eigenvectors corresponding to the diagonal matrix. A vector e is called eigenvector
of T according to the eigenvalue λ if Te = λe. The eigenvalues are defined as the roots
of the characteristic polynomial (Equation (2.9)). The complete transformation of T
from an arbitrary basis into the eigenvector basis is given by

U T UT =


λ1 0 0
0 λ2 0
0 0 λ3

 . (2.6)

The diagonal elements λ1, λ2, λ3 are the eigenvalues and U is the orthogonal matrix
that is composed of the eigenvectors, that is

U = (e1, e2, e3). (2.7)

UT defines the transposed matrix of U. For symmetric tensors, the eigenvalues are
all real, and the eigenvectors constitute an orthonormal basis. The diagonalization
generally is computed numerically via singular value decomposition (SVD) or principal
component analysis (PCA). Note, that in the following we assume a descending ordering
of the eigenvalues

λ1 ≥ λ2 ≥ λ3. (2.8)

Characteristic polynomial A scalar λ ∈ R is eigenvalue of T if the characteristic
polynomial is equal to zero

det(T− λI) = 0. (2.9)

For 3D symmetric tensors, it is a polynomial of order three given as

λ3 − I1λ
2 + I2λ− I3 = 0. (2.10)

Characteristic invariants The coefficients I1, I2, I3 are called characteristic invariants

I1 = tr(T) = λ1 + λ2 + λ3

I2 = 1
2((tr(T))2− tr(T2)) = λ1λ2 + λ2λ3 + λ3λ1

I3 = det(T) = λ1λ2λ3.

(2.11)

2Asymmetric tensors can have complex eigenvalues for which no real eigenvectors exist (see, for
example, [Zhang et al., 2008]).
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For 3D symmetric tensors, the characteristic polynomial has n = 3 real solutions.
The multiplicity of an eigenvalue λ determines the dimension of the corresponding
eigenvector space {e ∈ V |Te = λe}. The eigenvector spaces are mutually orthogonal.
Tensors having eigenvalues of higher multiplicity are also called degenerate (see also
Section 3.2.3). In the case of three distinct eigenvalues, the eigenvectors are determined
uniquely and form an orthogonal basis.

2.6 Tensor Properties and Operations

This section provides the tensor properties and operations, which are needed for the
following chapters, and which play an important role throughout the whole thesis.

Tensor Properties

The following list introduces the most relevant mathematical properties of second-order
tensors. The physical interpretation of these properties varies between application areas.
Section 2.11, therefore, discusses these properties and their meaning in the context of
engineering applications.

Symmetric tensors A tensor S is called symmetric if it is invariant under permutations
of its arguments

S(v,w) = S(w,v) ∀v,w ∈ V. (2.12)

Written in matrix notation, sij = sji for any coordinate basis.

Antisymmetric tensors A tensor A is called antisymmetric or skew-symmetric if the
sign flips when two adjacent arguments are exchanged

A(v,w) = −A(w,v) ∀v,w ∈ V. (2.13)

Written in matrix notation, aij = −aji for any coordinate basis. From this, it follows
aii = 0.

Traceless tensors The trace of a tensor tr(T) is defined as the sum of its diagonal
components (Equation (2.18)). Tensors T with zero trace, i.e. tr(T) = 0, are called
traceless.
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Positive (semi-) definite tensors A tensor T is called positive (semi-) definite for
any non-zero vector v ∈ V if

T(v,v) > (≥) 0. (2.14)

It follows that for positive (semi-) definite tensors their eigenvalues and their determinant
are greater than (greater than or equal to) zero.

Negative (semi-) definite tensors A tensor T is called negative (semi-) definite for
any non-zero vector v ∈ V if

T(v,v) < (≤) 0. (2.15)

For 3D tensors, it follows that for negative (semi-) definite tensors their eigenvalues and
their determinant are smaller than (smaller than or equal to) zero. This generalization
does not hold for two-dimensional tensors of second order.

Indefinite tensors Each tensor that is neither positive definite nor negative definite
is indefinite. For indefinite tensors, T(v,v) results in positive as well as negative
values and the eigenvalues have different signs. No statement can be made about the
determinant.

In summary, we distinguish tensors that describe a deformation and those that are
generators of a deformation. Tensors that describe a deformation are positive definite.

Operations

The following list provides the most important operations for second-order tensors
T ∈ R3×3. These can be defined componentwise and are given with respect to matrix
representation in the following.

Transpose The transpose of a tensor T = (tij) is given as

TT = (tji). (2.16)

For symmetric tensors, thus, TT = T,

Determinant The determinant maps a tensor onto a scalar

det(T) =
n∑
i=1

(−1)i+jtij det(Tij). (2.17)
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Here, Tij ∈ R2×2 is the submatrix of T obtained by removing the ith row and jth

column of T. Note that there is no summation over j, which can be chosen arbitrarily.
Matrices of tensors with determinant not equal to zero are invertible. The sign of
the determinant is positive if the orientation of any basis is preserved. Geometrically,
the determinant’s absolute value can be interpreted as the volume ratio of a volume
element before and after transformation.

Trace The trace maps a tensor onto a scalar. The trace of a tensor T is defined as
the sum of its diagonal components

tr(T) =
n∑
i=1

tii. (2.18)

The determinant and trace are often used as a measure of the tensor’s size.

Tensor product The tensor product ⊗, or dyadic product, maps two tensors T1 and
T2 of order r1 respective r2 onto a tensor T1 ⊗T2 of order r1 + r2. As example, we
consider the identity tensor I, which is the sum of the tensor products of the three unit
vectors u1,u2,u3

I = u1 ⊗ u1 + u2 ⊗ u2 + u3 ⊗ u3. (2.19)

Dot product The dot product ·, or inner product, denotes the consecutive application
of two tensors. The dot product between two tensors T1 and T2 of order r1 respective
r2 results in a tensor T1 ·T2 with order r1 + r2 − 2.

In matrix representation, it is given by standard matrix multiplication of M ·N . The
dot product is associative.

Double dot product The double dot product :, or double inner product, maps two
tensors T1 and T2 onto a scalar. It is defined as the sum of the products of their
components

T1 : T2 =
n∑

i,j=1
t1ijt2ij = tr(T1 ·TT

2 ), (2.20)

where TT
2 is the transpose matrix (Equation (2.16)) of T2.

Frobenius norm The tensor norm maps a tensor onto a scalar. The Frobenius norm,
which is induced by the inner product (Equation (2.20))

‖T‖ =
√

T : T =

√√√√ n∑
i,j=1

t2ij , (2.21)

is the most common norm used for tensors.



16 2.7. TENSOR INVARIANTS

2.7 Tensor Invariants

Tensor invariants

I = f(λ1, λ2, λ3) (2.22)

are defined as scalar quantities that do not change under orthogonal coordinate
transformation. They describe tensor characteristics that reflect the fundamental
property of tensor invariance (Section 2.4). In general, any scalar function f(λ1, λ2, λ3)
that only depends on the eigenvalues again is an invariant. As a consequence, also every
scalar function of invariants is an invariant itself. Most common examples for tensor
invariants are the tensor’s eigenvalues (Equation (2.6)), determinant (Equation (2.17))
and trace (Equation (2.18)), which are, in terms of the eigenvalues, tr(T) =

∑3
i=1 λi

and det(T) =
∏3
i=1 λi, respectively. See also the characteristic invariants given in

Equation 2.11.

2.8 Tensor Fields and Interpolation

Tensor fields In visualization, usually not only a single tensor but a whole tensor field
is of interest. A second-order tensor field over some domain Ω is a map that assigns to
every point x ∈ Ω a second-order tensor T(x). In this work, Ω is a subset of the 3D
Euclidean space and T is represented with respect to a specific Cartesian basis.

Interpolation Typically, a tensor field is given as sampled data at discrete positions
on various grid types (e.g. rectilinear or tetrahedral grids). However, intrinsically, these
data describe a continuous quantity. Therefore, an important step is to reconstruct
a continuous function of the sampled signal. For the reconstruction of a continuous
function, different interpolation schemes are employed. In this thesis, component-wise
linear interpolation is used, because it is still the most stable method, it is applicable
to 3D tensor fields, and it is computationally efficient.

However, when using component-wise linear interpolation, some tensor properties
might not be preserved. This can be observed in the swelling effect (see, for exam-
ple, [Hotz et al., 2010]). The swelling effect describes the case when an interpolated
tensor has a determinant that is larger than the determinant of the original tensors.
For example, the interpolation of two tensors of linear shape results in a tensor that
exhibits spherical shape.
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Advanced tensor interpolation methods have mainly been developed for diffusion
tensors with the goal to maintain the directional information contained in the tensor
data (e.g., [Moakher and Batchelor, 2006; Fletcher and Joshi, 2007; Lenglet et al., 2006;
Pennec et al., 2006]). A consistent interpolation in 2D focusing on the preservation
of tensor field topology was introduced in the work of Hotz et al. [2010]. To preserve
the determinant of the original tensors and, hence, to avoid the swelling effect, their
method builds upon the separation of shape and orientation for the interpolation. A
general and efficient solution of their approach for the 3D case, however, is still missing.

Overall, which properties of the tensor are of interest and should be preserved during
interpolation heavily depends on the questions addressed by the visualization task.
Since no interpolation method has yet been developed that preserves the tensor as a
whole, tensor interpolation remains a critical part in the visualization and analysis
process of tensor fields. For data from simulations, the most natural choice is to use the
interpolation method that was used for the simulation. Unfortunately, these methods
are not always known and if so, they are often of higher order and hence conflict with
the demand for efficiency. In many cases, however, the resolution of the simulation is
high enough such that a multi-linear componentwise interpolation, as it is used in this
thesis, is sufficient.

2.9 Tensor Decompositions

The decomposition of tensors into distinctive parts is a common step prior to their
analysis. The parts can then be analyzed separately to reveal information that cannot
be easily obtained from the original tensor. This section lists the most common tensor
decomposition schemes that are used in visualization. It should be noted that some of
these decompositions are limited to positive-definite tensors and some to symmetric
tensors.

Symmetric/Antisymmetric For non-symmetric tensors T, the decomposition into a
symmetric part S and an antisymmetric part A is common practice:

T = S + A, (2.23)

with sij = 1
2(tij + tji) and aij = 1

2(tij− tji). Physically, the antisymmetric part contains
rotational information and the symmetric part contains information about isotropic
scaling and anisotropic shear. The latter part is often subject to further decompositions
described below. For more information about antisymmetric and symmetric tensors
and their applications, see also Table 2.1.
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Stretch/Rotation Another useful decomposition of non-symmetric, positive-definite
tensors T (e.g. deformation gradient tensors) is the polar decomposition. It decomposes
the transformation represented by T in a two-stage process: a rotation R and a right
stretch U, or a left stretch W:

T = R ·U = W ·R (2.24)

A tensor is called stretch if it is symmetric and positive definite. A tensor is called
rotation if it is orthogonal with determinant equal to one.

Shape/Orientation Via eigenanalysis (Equation (2.6)), symmetric tensors are sepa-
rated into shape and orientation. Here, shape refers to the eigenvalues and orientation
to the eigenvectors. It is important to note that the orientation field is not a vector
field due to the bi-directionality of eigenvectors. For the definition of features and for
interpolation (Section 2.8), it is often advantageous to consider shape and orientation
separately.

Isotropic/Anisotropic Symmetric tensors can be decomposed into an isotropic Tiso

and an anisotropic (deviatoric) part Tdev

T = 1
3tr(T) I︸ ︷︷ ︸

Tiso

+ (T−Tiso)︸ ︷︷ ︸
Tdev

. (2.25)

From a physical point of view, the isotropic part represents a direction independent
transformation (e.g., a uniform scaling or uniform pressure); the deviatoric part repre-
sents the distortion.

2.10 Projection Tensor

Some steps of the algorithms that are presented in Chapter 5 require the projection
of the tensor T onto the tangent plane of a given surface (Figure 2.2). The tensor T̂
projected to the surface defined by the surface normal n is given by

T̂ = P(n) ·T ·PT (n). (2.26)

Here, P is the projection tensor given by

P(n) = I− (n⊗ n)=


(1−n2

x) −nxny −nxnz
−nxny (1−n2

y) −nynz
−nxnz −nynz (1−n2

z)

, (2.27)



2.11. EXAMPLE APPLICATION: MECHANICAL ENGINEERING 19

Figure 2.2: Projection of a 3D tensor onto the tangent plane of a surface.

where I is the identity map. The projection tensor is symmetric, that is, PT = P. It has
one eigenvector in the direction of the surface normal n with eigenvalue zero and two
orthogonal eigenvectors, lying in the tangent plane. The eigenvectors of the projected
tensor T̂ are in general not eigenvectors of the original tensor T.

2.11 Example Application: Mechanical Engineering

Tensors provide [. . . ] a natural and concise mathematical framework for
formulating and solving problems in areas of physics such as elasticity, fluid
mechanics and general relativity. [Cammoun et al., 2009]

Tensors play an important role in numerous areas ranging from mathematics, physics,
various engineering disciplines to medical applications. We list examples of second-order
tensors and their applications in Table 2.1. A short overview over related applications
with focus on computer vision can be found in [Cammoun et al., 2009]. All these
applications build on the well-founded mathematical framework that was introduced
in Section 2.3. However, the mathematical properties (Section 2.6) that are exhibited
by their tensors of interest require diverse interpretations. The goal of this section is to
enhance the intuition for these properties and to introduce second-order tensors that
appear in mechanical engineering (see also Section 1.2 and Section 4.5).

Stress tensors describe internal forces or stresses that act within deformable bodies
as reaction to external forces (Figure 2.3a). Strain tensors are related to the deforma-
tion of a body due to stress by the material’s constitutive behavior. Together, they
specify the behavior of a continuous medium under load, which allows one to deduce
information about the strength of a technical part. Stress tensors convey information
about the stresses acting on cutting planes through the material: their direction, their
magnitude, their anisotropy and whether stresses are compressive (negative eigenvalues)
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Figure 2.3: External forces f are applied to a deformable body. Reacting forces are described by a
3D stress tensor that is composed of three normal stresses σ and three shear stresses τ (a). Given a
surface normal n of some cutting plane, the stress tensor maps n to the traction vector t, which
describes the internal forces (normal and shear stresses) that act on this plane (b).

Tensor Physical Meaning Symmetric Definiteness Examples of Application Areas 

Diffusion 
Material property: describes anisotropic diffusion 
behavior,  
e.g., of water molecules in tissue. 

yes positive semi-
definite 

Medicine                  
Computer Vision 

Stress Material reaction (in terms of stress) due to external 
forces. yes  indefinite 

Continuum Mechanics  
Medicine               
Geology 

Deformation 
Gradient 

Deformation of a volume element (partial derivative 
with respect to material coordinates).  
Describes rotation and distortion. 

no positive definite Continuum Mechanics 

Infinitesimal Strain Infinitesimal deformation gradient of a body due to 
stress. yes  indefinite Continuum Mechanics 

Velocity Gradient Deformation of a fluid body.  
Partial derivative of velocity field. no indefinite Flow Analysis 

Curvature Change of surface normal in any given direction. yes indefinite Differential Geometry  
Computer Graphics 

Metric Relates a direction to distances and angles. yes positive semi-
definite 

Differential Geometry  
Computer Graphics       
Physics 

Structure Local structure/orientation information of an image. yes positive semi-
definite Computer Vision 

!
Table 2.1: Examples of second-order tensors. Common properties of all tensors are: they are
independent of their describing reference frame, they linearly relate vectorial quantities and they
encode a quantity that inherently exhibits anisotropic behavior. They differ in their physical meaning
and characteristic properties. If tensors contain rotational information, they are not symmetric. If
anisotropy of the encoded quantity is the same in directly opposing directions, they are symmetric.
Tensors that only have positive eigenvalues are positive definite. If eigenvalues are signed, the tensor
is called indefinite. Then, it additionally encodes the type of the encoded quantity, for example, if
stresses are compressive or tensile or curvatures are elliptical, hyperbolic or parabolic. The properties
listed in the table follow form the definition of the tensor. For measurement data they might be
violated due to noise.
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or tensile (positive eigenvalues). If there is no rotation (which is, in general, fulfilled for
infinitesimally small volume elements), the stress tensor is symmetric. Corresponding
to Equation (2.3), the stress tensor is a linear function that maps an input vector
(surface normal n) to the stress vector (traction vector t) (Figure 2.3b):

t = Tσ · n =


σx τxy τxz

τyx σy τyz

τzx τzy σz

 · n = τn + σn. (2.28)

The traction vector is further decomposed into a part normal to the cutting plane
σn = (nT·T · n) · n representing normal stresses, and into a tangential part τn repre-
senting shear stresses.

The strain tensor is a normalized measure based on the deformation gradient tensor.
There are different strain definitions depending on the respective deformation theory.
For example, the Cauchy’s strain tensor dealing with infinitesimal deformations is
defined as the symmetric part of the infinitesimal displacement-gradient. Compared to
the deformation gradient tensor, it loses the information about rotation. The relative
infinitesimal volume change is expressed by the trace (Equation (2.18)) of the strain
tensor.

Questions and features In mechanical engineering, it is a common task to model
the mechanical material behavior by constitutive equations or material models. For
material models that are concerned with elasto-plastic material behavior, the cutting
planes that exhibit a maximum shear stress τmax give an indication of the onset and
evolution of yielding

τmax = λ1 − λ3
2 . (2.29)

Another example is the von Mises yield criterion that is often used in the field of ductile
materials. It states that material changes its behavior from elastic to plastic when
the von Mises stress exceeds a critical value. The von Mises stress is defined as the
magnitude of the tensor’s deviator

σv =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2

2 . (2.30)

Both quantities are measures for anisotropy. These two simple criteria should be con-
sidered as examples for the numerous criteria used in engineering to rate a 3D tensor
by a scalar value.
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The motivation to use such criteria is that one can easily measure the onset and
evolution of yielding by a simple uniaxial material test that delivers one scalar stress
value. We analyze relevant questions in more detail in Section 4.5.

Many questions motivating the simulations of stress and strain tensor fields are
related to information about the strength of a technical part. If the internal forces
exceed certain limits of material strength, there is the risk for structural failure of the
part. The analysis of the resulting stress tensor fields facilitates different failure models
depending on the workpiece’s materials. These failure models are often of the same
structure than the above mentioned criteria for yielding of materials and deduce a
scalar value from the 3D tensor data.



3
Categorization and Analysis of Previous

Work

3.1 Introduction

Looking at tensors from a visualization point of view, the extraction of relevant in-
formation from the literature is a non-trivial task. Several workshops have been held
with the goal to bring researchers from different disciplines together and to foster new
collaborations and research. As a result, several books [Weickert and Hagen, 2005;
Laidlaw and Weickert, 2008; Aja-Fernández et al., 2009] have been published that give
insight into the multiple related research areas. However, a clear focus on DTI and
image processing (structure tensor as feature descriptor during data analysis) can be
observed. Recently, a tutorial on tensors in visualization was presented [Kindlmann
et al., 2010] that also covers tensor topology, asymmetric tensors and higher-order
tensors for diffusion tensor imaging.

This chapter surveys, categorizes and lists the major challenges of analysis and
visualization methods of second-order tensors. The focus is the class of indefinite
(Section 2.6) tensors. Such tensors are, for example, generated as result of simulations
in engineering applications but they are also used as feature descriptors in flow analysis.
This chapter is based on the survey article Visualization and Analysis of Second-Order
Tensors: Moving Beyond the Symmetric Positive-Definite Case [Kratz et al., 2013a].

Structure Section 3.2 covers segmentation and topological methods that have been
developed to reduce the complex information of tensor fields. The succeeding sections
focus on visualization methods for indefinite tensor fields. These methods are catego-
rized into local methods depicting single tensors at discrete points (Section 3.3) and
continuous methods that provide an overview of the data (Section 3.4). Section 3.5

23



24 3.2. SEGMENTATION AND TOPOLOGY EXTRACTION

complements this chapter by providing a summary of methods that adapt the concept
of multiple views for tensors. The chapter concludes with a thorough discussion of open
problems and possible research directions in Section 3.6.

3.2 Segmentation and Topology Extraction

The goal of tensor segmentation algorithms is to aggregate regions that exhibit similar
data characteristics to ease the analysis and interpretation of the data. Two basic
classes can be distinguished:

1. Algorithms that generalize common segmentation and clustering techniques
from image processing. These approaches require the definition of appropriate
dissimilarity and similarity measures for tensor fields.

2. Algorithms that decompose the tensor field by extracting the topology. These
approaches aim for a structural segmentation that builds on the directional part
of the field. First distinctive locations (degenerate elements) in the tensor field are
computed. From these locations, separating structures are identified (separatrices)
that provide a segmentation of the field into regions with qualitatively equal
eigenvector behavior.

3.2.1 Challenges

Depending on the chosen algorithm, various challenges arise.

Similarity measure A first step comprises the choice of appropriate quantities that
should be segmented. These quantities can be features that are derived from the tensor
data or the original tensor data itself. The choice of quantities then determines the
choice of an appropriate similarity measure (Section 3.2.2).

Simplification of complex structures Topology-based segmentations may result in
very complex structures, which are hard to interpret. Therefore, algorithms for simpli-
fication and tracking over time play a crucial role (Section 3.2.3). The understanding
and representation of the topology for tensor fields of dimension higher than two is
subject to ongoing research.

3.2.2 Similarity-Measure-Based Segmentation

In order to adapt methods from image segmentation and clustering, an appropriate
dis-/similarity measure for tensors needs to be defined. Thus, questions posed by
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(a) Trisector (b) Wedge

Figure 3.1: Basic first order degenerate points for 2D tensor fields: (a) trisector, (b) wedge.
Separatrices for both eigenvector fields are drawn as bold red or blue lines, respectively. Exemplary
integrated tensorlines (thin lines) emphasize how the eigenvector behavior within is reconstructed
by the bounding separatrices (bold lines). Image courtesy [Auer et al., 2011].

segmentation are strongly related to those in interpolation (Section 2.8).

The simplest dissimilarity measures are based on tensor components separately
considering the tensor segmentation as a multi-channel segmentation of scalar values.
More elaborate methods use dissimilarity measures based on invariants (Section 2.7)
or comprise the entire tensor data. Most existing research efforts have been motivated
by DTI data. For a review of recent developments that focus on the segmentation of
anatomical structures from DTI, we refer the reader to [de Luis-García et al., 2009].
Proposed methods range from active contours [Wang, 2004] and level sets [Zhukov et al.,
2003; Feddern et al., 2003] to graph-cut algorithms [Weldeselassie and Hamarneh, 2007;
Ziyan et al., 2006]. Used metrics are the angular difference between principal eigenvector
directions, or standard metrics considering the entire tensor, like the Euclidean or
Frobenius distance. Wang and Vemuri [2004] introduced a distance measure using the
Kulback-Leibler distance from information theory designed for Gaussian distributions,
which is limited to positive-definite tensors. In general the chosen dis-/similarity measure
determines the applicability to indefinite tensors. A segmentation designed for meshes
based on the curvature tensor was introduced by [Lavoue et al., 2005]. Vertices of
the mesh are clustered according to their principal curvatures values using a k-means
classification.
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(a) Initial topological structure (b) Simplified topological structure

Figure 3.2: Rate of deformation of a swirling jet CFD simulation. Initial topological structure (a)
and its simplification (b). Image courtesy [Tricoche et al., 2001].

3.2.3 Topology-Based Segmentation

The topology of a tensor field represents its fundamental structure that is uniquely
defined by the underlying eigenvector fields. These structures are represented by the
topological graph or topological skeleton consisting of:

• Degenerate elements: Locations in the field where the tensor’s eigenvalues have a
multiplicity of two or three and the dimension of eigenvector space is larger than
one (Section 2.5). For 2D tensor fields, the generic case are degenerate points.
They can be classified according to the behavior of the eigenvector field in its
vicinity. Typical patterns are trisector (Figure 3.1a) and wedge (Figure 3.1b).
It is important to note that these patterns cannot occur in vector fields.

• Separatrices: Distinctive tensorlines or surfaces (Section 3.4.3) that emerge from
the degenerate elements and that are tangent to the eigenvector fields. For 2D
tensor fields, separatrices segment the tensor field such that they bound regions
of qualitative homogeneous eigenvector behavior.

2D symmetric tensor fields The basic idea to use topology to segment tensor fields
with respect to the structure of their eigenvector fields goes back to [Delmarcelle, 1994;
Delmarcelle and Hesselink, 1994; Lavin et al., 1997a,b]. To improve the applicability
of topological methods, Tricoche et al. [2001] have developed algorithms to simplify
tensor field topology. In correspondence with vector field topology, [Tricoche et al.,
2001] have extended these methods for time-dependent fields to track the structure
over time (Figure 3.2).
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(a) Topology-based edge field (b) Painterly rendering

Figure 3.3: Tensor-topology-based image-edge field (a) for painterly rendering of an image of a
duck (b). Image courtesy [Zhang et al., 2007].

Another approach resulting in a simplified and consistent topology was introduced by
Sreevalsan–Nair et al. [2010], which then was extended to curved surfaces [Auer et al.,
2011]. Both methods are based on the shape-preserving interpolation model [Hotz et al.,
2010] which emphasizes the strong connection of direction interpolation (Section 2.8)
and tensor topology. Since purely topology-based segmentation neglects the importance
of the eigenvalues, Auer et al. [2011] extend the topology extraction in this manner. To
achieve a more intuitive visualization, they also used this segmentation to generate
textures [Auer et al., 2012].

Topological methods are also beneficial in computer graphics. Examples for the appli-
cation of tensors in computer graphics and related research work are remeshing [Alliez
et al., 2003], tensor field design for the generation of textures (Figure 3.3) [Zhang et al.,
2007], and procedural street generation [Chen et al., 2008].

2D asymmetric tensor fields Regarding flow analysis, asymmetric tensor fields be-
come increasingly important. The most obvious approach to deal with such data is to
decompose the tensor into its symmetric and antisymmetric part (Section 2.9) The
antisymmetric part then corresponds to a rotation and is visualized using methods from
vector visualization. Alternative approaches were presented by [Zheng and Pang, 2005;
Zhang et al., 2008]. Zheng and Pang [2005] analyzed asymmetric tensor topology by
introducing dual-eigenvectors. Zhang et al. [2008] build upon this idea by a reparame-
terization of tensor space such that tensor fields can be studied by their eigenvalue and
eigenvector manifolds. They decompose the tensor into isotropic scaling, rotation, and
pure shear and determine the predominant behavior. With respect to this segmentation,
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(a) 3D Topology (b) Hybrid visualization

Figure 3.4: 3D topology of point-load dataset (a). Yellow arrows indicate point load directions,
while the two magenta spheres show the location of the triple degenerate points. Degenerate lines
are colored by the Eigen difference. Image courtesy [Zheng and Pang, 2005]. Hybrid visualization of
the displacement-gradient tensor field of an earthquake simulation (b). Image courtesy [Chen et al.,
2011].

different visualization methods (tensorlines and glyphs) are applied [Chen et al., 2011]
(Figure 3.4b).

3D symmetric tensor fields Research in 3D tensor topology is still in its infancy and
the applicability of existing methods to real-world problems is challenging. Hesselink
et al. [1997] started 3D topology, which was extended by Zheng et al. [Zheng and
Pang, 2004; Zheng et al., 2005, 2006]. They show that in 3D, degenerate elements form
one-dimensional structures (Figure 3.4a). Tricoche et al. [2008] demonstrate that these
degenerate lines can be defined as crease lines of a tensor invariant. While research for
degenerate elements has been initiated, separatrices, which occur in 3D as separating
surfaces, increasingly moved out of focus.

3.2.4 Discussion

In the following, the presented methods are discussed in terms of the challenges.

Similarity measure The choice of a certain similarity measure for a segmentation is
essential for the usability of the results. This question is closely related to the question
of feature definitions. Many existing methods from clustering or scalar and vector field
segmentation may be applied if the right notion of similarity is chosen.
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Tensor field topology Topological methods have their strength in a well-founded
mathematical basis. They are well suited to distill structural information of the direction
field. Nevertheless, the use of topological methods in real-world applications is still
very limited. This is partially due to the complexity of the resulting structures (already
for 2D) but also due to the missing interpretations for the respective applications.
First attempts have been made to build more intuitive visualizations facilitating the
topological structure [Chen et al., 2011; Auer et al., 2012], but there is certainly much
more potential that could be exploited.

3.3 Local Tensor Visualization Methods

Local methods depict single tensors sampled at discrete positions across the field.
Geometric objects (glyphs) are used to encode tensor properties in terms of shape,
color and orientation. Schultz and Kindlmann [2010] recently revealed the following
useful applications for glyphs:

• Debugging: For example, during design of new visualization methods.

• Evaluation of data quality: For example, when tensors appear as intermediate
product during simulations.

• Visualization overview: For example, to get a first clue of the data and reveal
patterns in it.

We would like to add probing to this list:

• Probing: Complex glyph geometries can be used for the detailed analysis of single
tensors.

A comprehensive overview of glyphs focusing on stress and strain tensors is given
in [Hashash et al., 2003]. Furthermore, Schultz and Kindlmann [Schultz and Kindlmann,
2010] recently discussed common glyph types with respect to specific design guidelines.
The goal of this section is to reveal the major challenges of glyph-based visualizations
and to emphasize those papers that we consider to be most inspiring for creative future
work. Interactive, high-quality rendering (e.g., [Sigg et al., 2006; Hlawitschka et al.,
2008]) will not be discussed.

3.3.1 Challenges

Design The design of glyphs comprises the questions which properties of the tensor
should be mapped to the various degrees of freedom that geometries provide and how.
The goal is to find a geometry that encodes all these properties without being too
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(a) Uniform sampling (b) Anisotropic sampling

Figure 3.5: Comparison of uniform ellipse placement (a) and placement based on an anisotropic
sample distribution (b). In (b) the continuous structure of the tensor field is much more emphasized
whereas in (a) the pattern of the underlying grid becomes visible. The placement was computed
with the method described in Section 5.5.

complex. Another criterion is whether a representation for single tensors is desired
(complex geometries can be used) or if the goal is to provide an overview of the data
to see patterns in it or to get an intuition for the data (in that case, less complex
geometries are preferable).

Rendering Concerning glyph rendering, visual ambiguity becomes an issue for 2D
projections. This is the case when the glyph’s shape depends on the viewpoint, which
can result in wrong interpretations and hampers the perception of orientation.

Placement Another challenge is where to place the glyphs. This becomes especially
important if continuous structures or patterns of the data need to be conveyed. Being
placed at discrete grid positions, the pattern of the underlying grid becomes visible in
the final visualization, which disturbs the perception of the field’s continuous behavior
(Figure 3.5). Moreover, overlapping glyphs and holes should be avoided as they lead to
visual artifacts and undesired occlusions.

3.3.2 Glyph Design

From a purely theoretical perspective, a 3D tensor is perfectly represented by an ellipsoid
scaled by the eigenvalues and oriented by the eigenvectors. However, ellipsoids suffer
from visual ambiguity. Furthermore, pure ellipsoids do not enable a distinction between
the sign of eigenvalues, which encode important physical properties (Section 2.11). This
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is particularly important for tensors that are not positive definite. The major goal of
glyph design, therefore, is to decide which properties are essential to achieve a specific
visualization goal and how these are mapped to a geometry. The following common
guidelines can support these decisions.

Which tensor quantities should be used? For the choice of feature descriptors that
are mapped to glyph parameters (shape, color, transparency), the following guidelines
can help:

• Use orthogonal tensor invariants (e.g. [Ennis and Kindlmann, 2006]).

• Use a set that describes the tensor uniquely.

• Focus on specific questions.

• Use quantities users are familiar with.

Whereas the first two points comply with mathematically elegant choices, the last
two points can enforce to break these rules. Moreover, glyphs that are designed for a
specific application field should follow the conventions that are shared by users in this
field. This might also force the visualization expert to break the first two rules.

How should the tensor quantities be depicted? Schultz and Kindlmann [2010] have
proposed the following general design guidelines for choosing geometries as glyphs:

• Symmetry preservation: Glyphs exhibit the same symmetries as the underlying
tensor.

• Continuity and disambiguity: Glyph geometries look similar for similar tensors.
That is, no abrupt changes of the geometry are allowed when neighboring data
values differ only marginally. On the other hand, different tensors should result
in distinguishable glyphs.

• Scale invariance: Uniform scaling of the tensor by changing its norm results in a
uniform scaling of the glyph geometry. For traceless tensors or tensors with small
norm, however, the corresponding feature descriptors are undefined and unstable,
respectively.

• Invariance under eigenplane projection: The projection of a tensor to a plane
spanned by two eigenvectors results in a corresponding orthogonal projection on
the glyph geometry.

The first two rules are very general, whereas the third rule (scale invariance) depends
on the application. Especially if the tensor’s deviator is of interest, glyphs that are
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e2

e1

T

Figure 3.6: Illustration of an indefinite symmetric second-order tensor interpreted as generator of a
deformation of a unit sphere. The resulting glyph is the deformation ellipsoid.

translation invariant are more important. An example for such a glyph is Mohr’s
circle (Section 3.3.5). We, therefore, add translation invariance as alternative to scale
invariance to this list.

3.3.3 Mapping and Normalization

Due to space-filling reasons, glyphs can be normalized [Laidlaw et al., 1998; Zhang et al.,
2003]. Especially for diffusion tensors, generally the normalized eigenvalues λ̃i = λi/‖T‖
are chosen as feature descriptors, where ‖ · ‖ is the Frobenius norm (Equation (2.21)).
For traceless tensors or tensors with small norm, a different scaling needs to be applied.
Overall, glyphs should only be normalized in applications in which the norm does not
play a role.

Many glyph shapes require positive feature descriptors and do not enable the distinc-
tion of the eigenvalues’ sign (e.g., ellipsoids). Alternative approaches use glyphs that
are especially designed to depict positive as well as negative eigenvalues (Section 3.3.5).
However, they are often prone to suffer from visual ambiguity. Another possible way
is to encode the sign of the eigenvalues in the surface color or define a mapping of
feature descriptors into the positive domain. The simplest mapping uses the magnitude
of the eigenvalues. However, as discussed in Section 2.11, the sign encodes important
information. Therefore, mapping techniques have been developed that preserve the
physical meaning of the tensor.

Tensors encoding infinitesimal deformations (e.g., the infinitesimal strain, rate of
strain and stress tensors) can be naturally mapped to positive-definite tensors by
applying an exponential mapping (see also [Schultz and Kindlmann, 2010]). Considering
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(a) (b)

cs=1 isotropic

cp=1 planar

cl=1
linear

(a) Superquadric glyphs
(a) (b)

cs=1 isotropic

cp=1 planar

cl=1
linear

(b) Nematic liquid crystal glyphs

Figure 3.7: Superquadric tensor glyphs extended to the indefinite space (a) for three-dimensional
tensors. The upper triangle in (a) corresponds to the space of the original superquadric glyphs.
Nematic liquid crystal tensor glyphs (b). Image courtesy [Schultz and Kindlmann, 2010; Jankun-Kelly
and Mehta, 2006].

an infinitesimal line segment ds, these tensors act as generators of a deformation
(Figure 3.6). This is expressed in the following differential equation

d(ds) = T · ds , (3.1)

which motivates an exponential mapping. Several related mappings F : λ→ F (λ) for
the eigenvalues have been proposed [Hotz et al., 2004], where F is a positive monotone
function. Examples are

F (λ) = a+ σ · f(λ) (a)
F (λ) = a · exp(σf(λ)) (b)

(3.2)

with f(λ) = −f(−λ) being a monotone function (e.g., f = id or f = arctan). The
parameter a > 0 defines the unit and σ > 0 controls the slope in the neighborhood
of λ = 0. Thus, regions where the eigenvalues change sign can be emphasized. While
(b) is positive by definition, for (a) the parameter σ has to be chosen appropriately.
Defining the mapping for the eigenvalues ensures rotational invariance.

3.3.4 Glyph Design based on a Parameterizable Space

A new and powerful family of parametric shapes extends the basic quadric
surfaces and solids, yielding a variety of useful forms. [Barr, 1981]

The basic idea of the approaches presented in this section is founded in geometric
modeling [Barr, 1981]. Barr introduced superquadrics as an extension of quadrics to



34 3.3. LOCAL TENSOR VISUALIZATION METHODS

produce a parameterizable continuous space of varying forms. Thus, only few base
geometries need to be designed from which more complex shapes can be interpolated
through parameterization. The adaptation of superquadrics to encode data properties
with respect to perceptional issues was presented by Shaw et al. [1999]. For positive-
definite tensors, superquadric tensor glyphs [Kindlmann, 2004] address the issue of visual
ambiguity. Cylinders, cuboids and ellipsoids, therefore, are combined in a barycentric
space that encodes the basic diffusion tensor shapes (linear cl, planar cp, spherical cs),
which are the anisotropy measures introduced in the work of Westin et al. [1997]:

cl = λ1 − λ2
λ1 + λ2 + λ3

, cp = 2(λ2 − λ3)
λ1 + λ2 + λ3

, cs = 3λ3
λ1 + λ2 + λ3

.

The base geometries for perfectly planar (a flat disk), perfectly linear (a sustained thin
cylinder), and isotropic tensors (a sphere) then build the corners of the barycentric
shape space (Figure 3.7a, upper triangle). Recently the superquadric shape space has
been extended for indefinite tensors [Schultz and Kindlmann, 2010] (Figure 3.7a).
For symmetric traceless tensors, a special variant of superquadric glyphs has been
introduced in [Jankun-Kelly and Mehta, 2006] to visualize the orientation of liquid
crystals (Figure 3.7b).

3.3.5 Glyphs Applied in Mechanical Engineering

The following list summarizes the most common glyphs in the context of mechanical
engineering.

Figure 3.8: Mohr’s circle.

Mohr’s circle Mohr’s circle is common in con-
tinuum mechanics and geology. It has been used
for stress tensors [Crossno et al., 2004, 2005] as
well as for diffusion tensors [Bilgen and Narayana,
2003] by the visualization community. Originally,
Mohr’s circle was developed as a 2D graph that
plots normal stresses σ against shear stresses τ
(Figure 2.3). The horizontal axis represents normal
stresses σ and the vertical axis represents shear
stress τ (see Equation (2.28)). The blue shaded
area in Figure 3.8 represents all possible combina-
tions of normal and shear forces. Each point within
this region then corresponds to one orientation of

the normal of a cutting plane (see also Section 2.11). The finding was that all possible
(σ, τ)-combinations fall within the domain of a circle. Traditionally, Mohr’s circle is used
to find the principal coordinate system, graphically. If the eigenvalues are already known,
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(a) Linear λ1 > λ2 ≈ λ3 (b) Planar λ1 ≈ λ2 > λ3 (c) Isotrop λ3 ≈ λ2 ≈ λ1

Figure 3.9: Lamé’s stress ellipsoid and Mohr’s circle in comparison.

Mohr’s circle is constructed from the three eigenvalues, which determine the position
and radius of the circle. The greater the circle’s outer radius, the higher the maximum
shear stress. Circles that degenerate to single points represent isotropic pressure. It is
common to display only half of the circle, which we will also do in Chapter 4. Mohr’s
circle has also been used in multiple-view systems (Section 3.5), where they are used as
basic element within a diagram to explore and to validate 3D finite-element simulations.

All following glyphs are aligned with the principal directions of the tensor. Alterna-
tively, they can be represented as surfaces (implicit or as deformed sphere) that do not
require an explicit eigenanalysis.

Lamé’s stress ellipsoid or PSN-Glyph Lamé’s stress ellipsoid displays all possible
traction vectors. It can be obtained by applying the tensor to the unit sphere {T ·n|n ∈
R3, ‖n‖ = 1}. The resulting glyph is an ellipsoid aligned to the tensor’s principal
directions and scaled by the magnitude of the eigenvalues (Figure 2.1). With respect
to the principal frame of reference, the glyph is defined as implicit surface by

x2

λ2
1

+ y2

λ2
2

+ z2

λ2
3

= 1 .

However, without additional color coding, the sign of the eigenvalues is not represented.
Figure 3.9 shows Lamé’s stress ellipsoid in comparison with Mohr’s circle.

Haber glyph The Haber glyph encodes the same information as Lamé’s stress ellipsoid,
but emphasizes the major principal direction. It is a combination of an elliptical disc
(displaying intermediate and minor eigenvector and eigenvalue, respectively) and a rod
in direction of the major eigenvector scaled by the major eigenvalue [Haber, 1990].

Reynolds glyph The Reynolds glyph highlights the normal stresses σn thereby neglect-
ing the shear τ (Equation (2.29)). The basic shape of the glyph allows one to distinguish
definite and indefinite tensors [Moore et al., 1996; Kriz et al., 2005] (Figure 3.10). The
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glyph is defined by the set of all normal directions scaled by the magnitude of the
normal stresses in that direction {σn · n|n ∈ R3, ‖n‖ = 1}.

HWY glyph The HWY glyph focuses on the magnitude of the shear stress and is a
sort of counterpart to the Reynolds glyph [Hashash et al., 2003]. Its surface represents
the normal of all possible cutting planes, scaled by the magnitude of the shear force
τn with τ2

n + σ2
n = ‖T · n‖. The glyph is defined by the set of all normal directions

scaled by the magnitude of the shear stresses acting in the plane perpendicular to the
normal n {τn · n|n ∈ R3, ‖n‖ = 1}. The direction of the shear stress in that plane is
not represented by the HWY glyph.

Quadric surface Quadric surfaces encode the entire tensor information. They are
defined as implicit surfaces by

λ1 x
2 + λ2 y

2 + λ3 z
2 = ±1 .

Quadric surfaces are mostly used in context with the curvature tensor of a surface
corresponding to the Dupin indicatrix. Note that the resulting surfaces are not bounded
for the case of indefinite tensors.

Plane-in-a-box glyph The plane-in-a-box glyph has been especially developed for the
analysis of stress and strain with application in geomechanics, where the question of
failure plays an important role [Neeman et al., 2005]. The plane-in-a-box glyph consists
of a plane, defined by the two larger eigenvectors, limited by a box. This glyph is used
in combination with other visualization methods to convey a global overview.

3.3.6 Glyph Placement

The goal of glyph placement techniques is to determine positions within some domain
Ω where it is effective to place glyphs. Here, effective means that the glyphs are densely
packed while holes and overlaps between them are avoided. This task is comparable
with questions from sampling theory. The following approaches all start with an initial
point distribution that is subsequently refined in an iterative manner.

Feng et al. [2008] presented a geometric approach that is based on anisotropic
Voronoi cells. Through Lloyd relaxation, particles are iteratively shifted into the di-
rection of each cell’s centroid. This finally leads to a sampling that fulfills blue-noise
properties. Since this approach only depends on attractive forces, it provides a stable
solution. A limitation is that it does not provide an explicit control of overlaps.
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Figure 3.10: Overview of basic stress glyph shapes. From top to bottom: ellipsoid (Lamé’s stress
ellipsoid), Reynold’s glyph displaying the normal forces, HWY glyph displaying the magnitude of
shear forces, and quadric surfaces. Whenever it is meaningful to distinguish compressive (red) and
tensile (green) forces, they are colored respectively. The right column illustrates the interpretation
of the various glyph types for the 2D case.

In the context of mesh generation, Shimada et al. [1996] presented a particle-based
approach for the generation of adaptive anisotropic meshes. Their approach relies on
an explicitly defined tensor field to specify an anisotropic spacing between the nodes.
These spacings then determine inter-particle forces: Repelling forces avoid overlaps and
attracting forces close holes.

For diffusion tensors, Kindlmann and Westin [2006] build upon the work of Shimada
et al. [1996]. In their work, the positive-definite tensor field is mapped to a potential
energy field that determines inter-particle forces. Hlawitschka et al. [2007] extended
their work focusing on improved initial sampling and interactivity through the use of an
isotropic Delaunay triangulation. Thus, forces are only computed between neighboring
particles. For initial sampling, they propose interleaved and stratified sampling.



38 3.4. GLOBAL TENSOR VISUALIZATION METHODS

3.3.7 Discussion

Design A variety of glyph types have been presented; each has its strengths and
limitations (e.g., Figure 3.10). Glyphs alone are rarely self-contained and seldom provide
intuitive insight into a physical process. Nevertheless, glyphs are indispensable for
tensor field visualization, because they still are the only way to visualize the whole
tensor. Until now, there is no universal glyph that is capable to meet the diverse
requirements imposed by the various application fields of tensors. Helpful guidelines for
glyph design have been formulated by Schultz and Kindlmann [2010]. A first question
that always should be imposed is whether to use a glyph in combination with probing
or in a global overview visualization. Glyph design will not be covered in this thesis.
Instead we focus on placement algorithms of ellipses and ellipsoids in Chapter 5.

Rendering Domain-specific glyphs (Section 3.3.5) contain a rich amount of valuable
information but they were not designed with respect to perceptional issues, which
appear during rendering. To visualize a whole tensor field, superquadric tensor glyphs
(Section 3.3.4) are more appropriate. Moreover, they represent an efficient and elegant
way to create meaningful glyph shapes via parameterization of some shape space.

Placement In the last years, several algorithms have been presented for distributing
glyphs. They are mainly categorized into methods that rely on particle simulations [Shi-
mada et al., 1996; Kindlmann and Westin, 2006; Hlawitschka et al., 2007] and those
that are based on Lloyd relaxation [Feng et al., 2008]. Apart from [Shimada et al., 1996;
Kindlmann and Westin, 2006], all methods have only been presented for 2D tensor fields.
In Chapter 5 we will present two methods to create anisotropic sample distributions for
the distribution of glyphs. We propose a particle-based methods (Section 5.4) that is
applicable to 2D tensor fields, and we propose a more general geometry-based method
(Section 5.5) that also works in two-manifold domains.

3.4 Global Tensor Visualization Methods

Local methods have the potential to depict the whole tensor information locally. Being
used together with placement algorithms, they can even convey continuous structures
of the underlying tensor field. Even more appropriate in providing an overview of the
data and to emphasize regional coherence and global structures are continuous methods.
Available methods depict scalar- and direction-related quantities that are derived from
the underlying tensor field.
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3.4.1 Challenges

A major challenge in visualizing tensor fields is the reduction of clutter and occlusion.
In this context, many difficulties arise that concern both: scalar visualization methods
as well as vector visualization methods.

Design Continuous tensor visualization methods mostly depict only a subset of the
information that is contained in a tensor field. Hence, they rely on data reduction (see
also Section 1.3). Similar to local methods, a first step, therefore, includes the decision
which quantities (scalar or vector) are appropriate to reach a given visualization goal
or analysis task and how to depict them efficiently.

Transfer function design For methods based on scalar-valued features, transfer func-
tions need to be designed that have the potential to reveal these features in an intuitive
way.

Seeding For methods based on vector-valued features, the question is where to depict
lines (seeding). The placement of seed points has a strong influence on the quality
of the final result in the sense how good vector-valued features can be revealed. In
contrast to vector fields, for tensor fields usually multiple directions are of interest,
which makes the problem even more difficult.

Generation of application-specific noise Vector visualization methods that adapt
LIC textures to depict directional features of tensor fields rely on an input noise texture.
Here, the challenge is to generate input noise textures that are specifically designed to
depict tensor fields.

3.4.2 Scalar Visualization Methods

Scalar visualization techniques for tensors provide a quick overview of scalar quantities
that are derived from the tensor field (e.g., von Mises stress for stress tensors). As part
of a hybrid rendering technique (e.g., [Dick et al., 2009]) they can provide context. The
following papers use ray-casting as rendering technique.

Kindlmann and Weinstein [1999] propose a volume rendering approach, which builds
on three components: (1) Hue-balls using a 2D colormap to encode direction. (2)
Triangular barycentric opacity maps that are parameterized by anisotropy using the
metrics introduced by [Westin et al., 1997]. (3) Lit-tensors providing a lighting model
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(a) von Mises stress (b) Hybrid visualization (c) Focus and context

Figure 3.11: 3D simulated stress tensor field for a human femur under load. Volume rendering of
a derived scalar quantity (here: von Mises stress) neglecting directional information (a). Hybrid
rendering encoding the sign and magnitude of the three eigenvalues as well as directional information
(b). Focus+context visualization that allows for a detailed stress analysis in interactively defined
focus regions (c). Image courtesy [Dick et al., 2009].

further enhancing the linear or planar character of the tensor, respectively.

Hlawitschka et al. [2009] focus on directional information for transfer function design.
The components of the normalized major eigenvector are mapped to RGB color values,
respectively. Transparency is chosen on the basis of scalar-valued features such as
fractional anisotropy (FA) or mode. To emphasize fiber bundle boundaries, additional
directional information is used.

Dick et al. [2009] presented a color-mapping for stress tensors that distinguishes
compressive and tensile forces. Every eigenvalue is separately assigned a color according
to its sign. The magnitude of the eigenvalues guides an opacity transfer function: it
emphasizes high stresses and fades out low stresses. A compositing scheme summarizes
and weights the RGB and α values of the single eigenvalues to one final color per sample.
In their work, volume rendering of the eigenvalues serves as context visualization. It is
combined with tensorlines, which are described in Section 3.4.3, to validate simulations
of physiological stress inside a bone due to an implant (Figure 3.11). The visualization
is part of a larger framework that allows the comparative visualization before and after
implantation to avoid stress shielding.
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3.4.3 Vector Visualization Methods

Many vector visualization methods have been adapted to visualize prevalent directions
in tensor fields. In general, one out of the two/three eigenvector fields is chosen. While
such generalizations are partially successful there are two aspects that should always
be kept in mind. First, when applying methods from vector visualization to depict
eigenvector fields, the bi-directionality of eigenvectors has to be considered. This means,
for example, that integrators need to be adapted in a way that the direction is checked
during integration. Second, the physical meaning of the methods in the context of
vector visualization may be lost in the context of tensor fields.

Tensorlines
The analogue to streamlines for vector fields are tensorlines for tensor fields. They are
defined as lines that are tangential to one chosen eigenvector field (major, intermediate,
minor). For the computation of tensorlines, all integrators for streamlines can be
adapted using an additional direction check [Weinstein et al., 1999]. Fiber tracking in
diffusion tensor imaging is an example focusing on the major eigenvector assuming
that it defines the orientation of nerve fibers in areas of linear anisotropy [Vilanova
et al., 2005]. Tensorlines only capture one eigenvector field. An extension are hyper-
streamlines, which incorporate eigenvalues and the other principal directions in the
cross section along the tensorline [Delmarcelle and Hesselink, 1993]. Hyperstreamlines
have been utilized in a geomechanical context [Scheuermann et al., 2001]. Even though
this method visualizes more information, the method is limited to low resolution due
to clutter. Shen and Pang [Shen and Pang, 2004] propose a method called hyperseed
that tackles the problem of seeding for the computation of tensorlines. The seeding is
controlled by the anisotropy of the field and has been used for DTI data.

Wilson and Brannon [2005] have introduced stress nets, which represent the directions
of maximum shear for 2D fields (Figure 3.12). To achieve a uniform distribution of
integral lines, the authors build upon a uniform seeding strategy [Jobard and Lefer,
1997]. In addition, the image background is used to represent scalar-valued features,
for example, the magnitude of the deviator (Equation (2.25)).

3.4.4 Texture-Based Methods

In the following, texture-based methods to visualize tensor fields are presented.

Methods based on LIC Several adaptations of the dense line integral convolution
(LIC) [Cabral and Leedom, 1993] to tensor fields have been presented. As for most
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Figure 3.12: Stress nets for the two-point-load dataset. The left image depicts the stress net for
the principal directions. The right image depicts the stress net for the same slice and the maximum
shear directions.

texture-based methods, they are mainly restricted to 2D surfaces and not suited for
3D tensor fields.

Zheng and Pang [2003] introduced HyperLIC where the one-dimensional filter kernel
used in LIC is replaced by a 2D kernel whose shape is determined by the tensor.
HyperLIC was designed to emphasize the major eigendirection in anisotropic regions,
and to deemphasize isotropic regions without preferred directions. This method is
especially suited for positive-definite tensors. For indefinite tensors, this method should
be applied carefully. As HyperLIC only considers the magnitude of the eigenvalues,
tensors that have eigenvalues with opposite sign are illustrated as isotropic, which can
lead to misinterpretations.

Hotz et al. [2004] presented fabric textures for the visualization of stress tensor fields.
They introduce a mapping of the indefinite stress tensor to a positive-definite metric
and use the positive eigenvalues to define spot-noise textures as input for LIC. Then, a
LIC-like texture for every eigenvector field is created and the two resulting textures
are blended, which results in images that resemble a fabric. Thinner fibers correspond
to compression and thicker fibers correspond to expansion.

Reaction diffusion Textures resembling ellipsoid packing (Section 3.3.6) can also
be obtained via reaction-diffusion textures. Reaction diffusion of two chemicals can
be described by a set of two nonlinear partial differential equations describing the
concentrations of two chemicals as a function of time. The change of the concentration
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(a) Ellipsoids (b) Tensor splats

Figure 3.13: Tensor ellipsoids (a) and tensor splats (b). Image courtesy [Benger and Hege, 2004].

is determined by two terms representing the diffusion, encoding the tensor, and the
reaction of the chemicals. The method has been introduced by Turing. Similar concepts
have been used for tensor field visualization [Kindlmann et al., 2000; Diewald and
Rumpf, 2000]. While this approach is capable of generating high quality textures, it
suffers from two problems: the difficulty in selecting the right parameters and its high
computational costs. Sanderson et al. [2006] proposed an advanced model to overcome
these problems.

Tensor splats The idea of tensor splats [Bhalerao and Westin, 2003; Benger, 2004]
is to map the tensor’s shape onto a geometric primitive and splat it onto the image
plane (Figure 3.13). The splats are assigned with an opacity value and composited in
front-to-back order. Hence, tensor splats are suitable for 3D tensor field visualization.
If they are applied to diffusion tensors, anisotropy is used to determine opacity values,
for example, regions of high fractional anisotropy are emphasized. Color is assigned
with respect to the eigenvalues. Thus, visual clutter is reduced and regions of interest
are emphasized. If other tensor invariants/feature descriptors are used, tensor splats
can also be applied to other tensor types.

Tensor field design An alternative approach that was presented in the context of
graphics and painterly rendering is the design of tensor fields [Zhang et al., 2007] to
generate textures. Here, the fields are designed with the goal to achieve specific visual
effects.
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3.4.5 Discussion

It can be observed that global visualization methods for tensor fields mainly were
adapted from the more elaborate fields, namely scalar- and vector visualization and
that global methods specifically designed for the depiction of tensor fields are rare.

Design Global methods that were specifically designed for tensor fields are tensor
splats [Bhalerao and Westin, 2003; Benger, 2004], HyperLIC [Zheng and Pang, 2003]
and fabric textures [Hotz et al., 2004]. HyperLIC is suited for positive-definite tensors
for which it has been designed. Better suited to depict indefinite tensors are fabric
textures. The fabric metaphor is well suited to illustrate the central properties of 2D
stress tensor fields: compression and expansion. We will present examples and results
that use this visualization technique in Chapter 4 and in Chapter 5. The limitation of
texture-based methods is that they can only be used efficiently for 2D visualizations.
Tensor splats are appropriate to visualize 3D fields but have been paid very little
attention in the past.

Transfer function design Scalar visualization methods in the context of tensor field
visualization are suited to provide a quick overview if an application or dataset is given
for which a specific scalar quantity is of interest. We believe that scalar visualization
methods should only be applied on scalar-valued features that were derived from the
tensor field such as in the work of Dick et al. [2009]. They should not be applied on
directional features because in these cases the interpretation is difficult.

Seeding If methods from vector visualization are adapted, effective seeding strategies
are needed. Here, mainly seeding methodologies were used that have already been
applied in vector visualization (e.g. [Verma et al., 2000]). To depict two eigenvector
fields in a three-dimensional visualization, Dick et al. [2009] propose to place seed points
only on the mesh surface. Thus, they are able to depict two directions simultaneously
in a three-dimensional visualization without introducing occlusion. In Chapter 4 we
show how meaningful seed points for stress tensor fields can be determined via brushing
in shape-space scatterplots.

Generation of application-specific noise Hotz et al. [2004] have shown how the
generation of specific noise textures can be used to tune LIC-like visualizations for
the depiction of tensor fields. Zheng and Pang [2003] have adapted the filter kernel
to use LIC for the depiction of 2D diffusion tensor fields. In Chapter 5, we show how
the quality of fabric textures is improved by combining fabric textures and anisotropic
sampling.
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3.5 Multiple Views for Tensor Visualization

Gaining useful insights via object-space rendering only (especially in 3D) can be difficult
due to the complexity of tensor fields. In recent years, a few papers were concerned
with multiple views for tensors, which allow the inspection and visual exploration of
tensor properties in detail and at large. Those methods can improve an intuition for
the data and help to make more precise statements about data properties than with
object-space renderings only.

3.5.1 Challenges

Design When designing multiple view systems for tensor visualization, a crucial
question is which views should be used and how they should be combined.

Interactivity Systems with the goal of visual data exploration must be interactive.
Hence, efficient implementations are mandatory.

3.5.2 Fiber Exploration

In the context of DTI, Chen et al. [2009] and Jianu et al. [2009] have both presented
multiple-view systems for interactive fiber exploration. They combine spatial fiber
representations with 2D diagrams and statistical views [Chen et al., 2009]. Of particular
interest is the multi-dimensional scaling approach used by Chen et al. [2009] to achieve a
low-dimensional embedding of the high-dimensional fibers. Thus, a fiber in object space
is narrowed down to a point in 2D space, where similarities are expressed via proximity.
Consequently, exploration of fibers becomes much easier than in 3D. Both approaches
further apply clustering. Whereas Chen et al. [Chen et al., 2009] use k-means clustering
applied on the 2D space, Jianu et al. [2009] apply hierarchical clustering. In the latter
work, the cluster result is depicted via dendrograms.

3.5.3 Stress Exploration

Crossno et al. [2005] present an approach that links Mohr diagrams and a wire-frame
depiction of a finite element model. Their focus is on the analysis of three-dimensional
stress tensor fields in a geomechanical context. The overall goal of their work is to
understand force-interactions between salt diapirs and “surrounding sediments” to
identify “drilling trajectories” that minimize the risk of drilling failures.
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3.5.4 Discussion

Design Multiple views for tensor visualization are a relatively new research topic. The
presented methods have mainly focused on views that are established for the analysis of
multi-variate data such as scatter plots. In Chapter 4 we will present a framework that
combines shape-space scatter plots, Mohr diagrams, parallel coordinates and directional
histograms, which are linked via feature spaces for tensors.

Interactivity Systems with the goal of visual data exploration must be interactive.
This clearly limits the number of approaches that can be used.

3.6 Discussion

We have reviewed and classified methods for analyzing and visualizing second-order
tensors focusing on tensors that are not symmetric positive definite. First of all, it can
be observed - maybe even more than in scalar or vector field visualizations - that there
are no universal solutions. Decisions for the development of new tensor analysis and
visualization algorithms are highly application specific. Despite this fact, the following
general observations are possible.

Topology extraction methods allow one to compute a topological skeleton consisting
of degenerate points and separatrices. Especially in combination with simplification
and tracking algorithms, the topological skeleton depicts the complex input data in a
simplified manner. Existing methods for topology extraction are of high theoretical and
structural interest. However, in their pure form, such skeletons are difficult to interpret
(particularly in 3D) and are often not considered as an intuitive data visualization from
the perspective of domain experts. Topology extraction, therefore, should be considered
as a pre-processing step. Taking this as a basis, more intuitive visualization methods
can be developed. Topological methods are not considered in this thesis.

Local tensor visualization methods depict the whole tensor information locally. For
local tensor visualization, most often glyphs are used. While glyphs have the power to
represent all tensor properties, their interpretation is often difficult and needs a lot
of expertise. Nevertheless, glyphs are a powerful tool and until now remain the only
visualization technique that is capable of visualizing the whole tensor. While complex
domain-specific glyphs are often not suited for the visualization of a whole tensor field,
superquadric glyphs that account for perceptional issues are more appropriate for this
task. In this work, we contribute to this area with two methods that automatically
compute meaningful placements for glyphs (Chapter 5).
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Global visualization techniques provide continuous depictions of derived scalar- or
vector-related features. Here, techniques from scalar and vector field visualization have
been adapted. The problem when adapting methods from vector visualization often
is a loss of meaning, since they do not necessarily have a physical interpretation for
tensor fields, or at least the meaning is very application-specific. In the context of
diffusion tensor imaging, tensorlines are used to represent nerve fibers. But, what is
the physical meaning of tensorlines in the context of mechanical engineering? We will
face this question in Chapter 4, especially in Section 4.5. Overall, global methods are
better suited to provide an overview than for an in-depth data analysis.

Multiple view systems for tensors might represent a powerful approach that helps
explore the data and to extract meaningful features. We will present a concept that
allows for the adaptation of multiple linked views to tensor fields in Chapter 4.





4
A Multi-Perspective Approach to Visual

Analysis of Stress Tensor Fields

(a) Hybrid spatial view (b) Selection in ordered shape space

Figure 4.1: Link-and-brush for stress tensor fields. Outliers representing a high maximum shear
stress are selected in ordered shape space (b). For the selected region, seed points are distributed
from which tensorlines are started (a).

4.1 Introduction

In this chapter, we present a new framework for the visual exploration of stress tensor
fields. The framework implements the concept of multiple views together with linking
and brushing. That is, various diagram views are presented side-by-side with 3D spatial
depictions of the data. Regions of interest can be selected in the diagram views via

49
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brushing and the selected regions are highlighted in all other views (Figure 4.1). The
major motivation to focus on such an approach was the finding that the analysis of
stress tensor fields is a relatively new research topic in engineering and, hence, domain
experts in these fields have not yet formulated specific questions towards the data. For
this reason, we have identified a strong need for explorative approaches in this applica-
tion context. Note that, although tensor visualization is related to the visualization
of multivariate data, the difference is that the individual tensor components are not
independent. The tensor components are linked by transformation rules when changing
the basis. This is not true for individual components of multivariate data. Hence, we
cannot simply use the single tensor components to parameterize the diagrams. With
our approach, we first define feature spaces and use these to parameterize the diagrams.

The concept of multiple views is beneficial for tensor fields for two reasons. First, the
multivariate nature of tensors is addressed, because tensor properties are distributed
in various diagrams and views, instead of being encoded in a single image. Thus, the
problem of clutter is reduced. Second, novel and more advanced visualization techniques
can be combined with diagrams that are well-known or already established.

The concept of linking-and-brushing is beneficial in the context of tensor field visual-
ization, because it offers the possibility to explore the data. Furthermore, the selection
(brushing) of interesting data properties or regions of interest in one of the views, helps
reduce the data that is visualized.

Challenges and questions that arise when designing such a framework are the decision
which views to use for the exploration of tensor fields, how the concept of multiple
views can be adapted to tensor fields, and, finally, interactivity. Specific to our approach
is the combination of views. In object space, that is, the domain of the tensor field, we
propose 3D hybrid visualizations that effectively combine spatial tensor field visualiza-
tion methods in a single image. The hybrid visualizations are steered by brushing in
the diagram views. Special attention has been paid to provide a variety of views and
to be flexible in the kind of views that are used.

In Section 4.5, we show examples from engineering applications. In these applica-
tions, users still analyze only scalar measures that are derived from the tensor (for
example, the von Mises stress) and neglect looking at the tensor itself. However, we
strongly believe, and first experiments have strengthened this, that the analysis of the
whole tensor field leads to deeper insights into the simulations themselves and into
the phenomenon that is simulated. We show that the presented exploratory approach
produces new insights into the data as well as new hypotheses regarding stress tensor
fields from engineering applications.
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Parts of this chapter are based on the paper A Visual Approach to Analysis of Stress
Tensor Fields [Kratz et al., 2011b].

Structure This chapter is organized as follows. First, we review relevant previous work
(Section 4.2). Subsequently, we describe how we build the feature spaces that are used
to parameterize the diagram views and spatial depictions (Section 4.3). In the following
section, the whole framework is introduced (Section 4.4) including diagram views
(Section 4.4.2) and hybrid views in object space (Section 4.4.3). Then, in Section 4.4.4,
we complement the manual brushing approach by investigating the value of clustering
and scalar field topology to automatically find characteristic subsets in the tensor data.
The visualization methods that were combined in the presented framework are shown in
Section 4.4.5 on various example datasets. The chapter ends with the presentation of a
project that resulted from the development of our framework. First insights into tensor
data from structure simulations are presented in Section 4.5. Finally, in Section 4.6 a
thorough discussion concludes the presented concept and results.

4.2 Related Work

The interactive analysis of feature spaces has been proposed for scalar fields [Maciejewski
et al., 2009; Dobrev et al., 2011], for vector fields [Daniels et al., 2010] and to analyze
flow simulation (for example, [Doleisch et al., 2003]). For tensor fields, this is a sparsely
researched field. Two approaches have been presented for fiber exploration in the context
of diffusion tensor imaging [Chen et al., 2009; Jianu et al., 2009]. Both approaches use
clustering in fiber feature space. Chen et al. [2009] use k-means clustering combined
with multi-dimensional scaling, and Jianu et al. [2009] use a hierarchical clustering
approach visualizing the result via dendrograms. For stress tensors, derived scalar
measures often have more relevance in a first analysis step than derived directions. We
therefore focus on feature spaces spanned by tensor invariants. The barycentric shape
space [Kindlmann and Weinstein, 1999; Kindlmann et al., 2000; Weinstein et al., 1999]
that has been used to guide diffusion tensor visualizations is also a scalar-valued feature
space. Only few visualization papers are related to using brushing in diagram views for
tensors [Crossno et al., 2005; Jianu et al., 2009; Chen et al., 2009]. Despite the work
of Crossno et al. [2005], combined views for stress tensors - in the variety and flexibility
that we will present in the following - have not been presented previously. Also hybrid
visualizations for tensor fields have only gained very little attention [Sigfridsson et al.,
2002; Dick et al., 2009] and were not yet combined with linking and brushing.
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4.3 Feature Spaces for Tensor Fields

A feature space, in general, is a d-dimensional abstract space, in which each point
corresponds to a feature. The point’s coordinates correspond to the values of the feature
attributes, and the dimension d is determined by the number of attributes that describe
the feature. Consequently, similar features, which describe similar attributes, build a
proximity in feature space. Many concepts benefit from this property. For example, in
pattern recognition this property is used for the classification of features. The challenge
when defining such a feature space is to find a set of feature attributes that are suitable
to represent the dataset, or to find a set that is suitable to answer a question that is
posed to the dataset. In the following, we describe, how we define feature spaces for
symmetric tensors in this work.

A symmetric tensor has six degrees of freedom represented by three direction-related
entities, which generally are the principal directions, and three eigenvalues (see also
Section 2.5). We, therefore, distinguish scalar-related features expressed in shape space
(Section 4.3.1) and direction-related features expressed in direction space (Section 4.3.2).
A first step when defining features for tensors consists of the tensor’s decomposition
into distinctive parts1. In this work, we mainly use the decomposition into shape and
orientation. Alternatively or in addition, a decomposition into an isotropic and an
anisotropic part is possible. In the following, we introduce the feature spaces and the
terminology that is used in this thesis.

4.3.1 Shape Space

This section summarizes a concept for the definition of scalar-valued features build-
ing upon tensor invariants (Section 2.7) and the work of Bahn [1999]. Bahn [1999]
introduced the term eigenvalue space for the space whose basis is constructed from
the tensor’s eigenvalues. In this space, the eigenvalues are considered to be coordinates
of a point in Euclidean space. Eigenvalue space has been further explored in Ennis
and Kindlmann [2006], who propose orthogonal invariants for the visualization of DTI
data. Considering a set of invariants as basis for the analysis of strain tensors has been
proposed in the work of Criscione et al. [2000]. In this work, we use the term shape
space for the vector space whose basis is constructed from the tensor invariants.

Ordered shape space Since a permutation of the eigenvalues describes the same tensor,
it is sufficient to restrict the shape space to the ordered subset where λ1 ≥ λ2 ≥ λ3.

1See Section 2.9 for a list of decomposition schemes that are most often used for second-order tensors
in visualization.
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See the work of Bahn [1999] for a closer discussion on the ordered eigenvalue space.
The ordered shape space builds the foundation for all following shape spaces. It is based
on the decomposition of the tensor into shape and orientation. For three-dimensional
symmetric tensors of second-order, the dimension d of the ordered shape space is d = 3.
Then, the whole space reduces to four subsets corresponding to positive-definite tensors,
negative-definite tensors and two subsets that cover indefinite tensors. Sometimes it is
appropriate to consider further reductions of this space, for example, if we deal with
specific tensor properties (Section 2.6), have incomplete information, or only partial
interest. According to the property this either leads to a dimension reduction (e.g.,
subspace of traceless tensors) or to the definition of a subset that has the dimensions
of the full shape space (e.g., subset of positive-definite tensors).

Shape descriptors A point in shape space is uniquely determined by the three
eigenvalues. Equivalently, three coordinates according to any other reference frame of
the shape space can be used. We call these coordinates shape descriptors. We present
examples for stress tensors in Section 4.3.3.

Reference frame An invariant I = f(λ1, λ2, λ3) defines a family of surfaces in shape
space. Each set of three independent invariants

∇λI1(∇λI2 ×∇λI3) 6= 0 with ∇λ = (∂/∂λ1, ∂/∂λ2, ∂/∂λ3), (4.1)

defines a local basis of the shape space. A set of invariants qualifies as global basis if Ii
is defined everywhere and ∇λIi 6= 0 for i = 1, 2, 3. From a mathematical point of view,
a desirable additional property is orthogonality of the tensor invariants [Bahn, 1999;
Criscione et al., 2000; Ennis and Kindlmann, 2006]

∇λIi · ∇λIj = 0 for all i, j ∈ {1, 2, 3}. (4.2)

Orthogonal invariants exhibit maximum independence of the shape descriptors by iso-
lating changes of one invariant from variations of the others. However, in some cases the
physical and domain-specific significance of invariants can predominate mathematical
properties. For this reason, in this thesis, we also allow shape spaces that do not have
an orthonormal basis.

In summary, an appropriate choice of reference frame depends on the application
and its research questions. Each reference frame, that is a set of invariants, yields its
own shape descriptors and, hence, provides its own view onto the tensor. Examples are
given in Section 4.3.3.
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Shape-space scaling In order to achieve a better distribution of the shape descriptors,
especially for their visual analysis, a scaling of the coordinate axes is beneficial. Several
scalings and mappings are possible and depend on the diagrams or visualization
techniques that are applied to the shape space. For the diagrams (Section 4.4.2), we
often use logarithmic mappings. For spatial depictions (Section 4.4.3), sign-preserving
mappings [Hotz et al., 2004; Kirby et al., 1999] are a good choice. The idea of sign-
preserving mappings is to find a mapping into the positive domain such that the tensor’s
physical meaning is visually expressed. Hotz et al. [2004], for example, consider stress
tensors as generators of a deformation. With their mapping, ellipsoidal glyphs that
describe compressive forces have a smaller volume than glyphs that describe expansive
stresses.

4.3.2 Direction Space

We use the term direction space for the feature space that consists of directions. The
full direction information is represented as a triple of points. Because eigenvectors are
normalized, no additional scaling is needed and all points lie on the surface of the
unit sphere. In general, we are only interested in a single direction or in two selected
directions (see also Section 4.3.3). For a single direction, the direction space, is a 2D
feature space with a spherical basis. Due to the unoriented nature of the eigenvectors,
the space further reduces to a hemisphere.

4.3.3 Example Feature Spaces for Stress Tensors

Figure 4.2: Mohr’s circle.

Shape descriptors corresponding to the Coulomb
failure criterion are [Lund, 2000]:

τmax = λ1 − λ3
2

c = λ1 + λ3
2

R = λ1 − λ2
λ1 − λ3

(4.3)

In terms of Mohr’s circle (Figure 4.2), c represents
the center and τmax the radius of the Mohr cir-
cle. The maximum shear stress τmax can also be
considered as anisotropy measure. Another com-
mon anisotropy measure that considers all three
principal stresses is the von Mises stress (Equa-
tion (2.30)). The shape factor R ∈ [0, 1] reveals
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R=0.0

R=0.25

R=0.5

R=0.75

R=1.0

Figure 4.3: Comparison of glyph shapes that are used for stress tensors. The describing invariants
as well as the directions are constant; the shape factor R varies. From left to right: Reynolds and
HWY glyphs combined, Reynolds glyphs, HWY glyphs, deformation ellipsoid, Mohr’s circle.

the kind of anisotropy. Similar to the terminology used in DTI, stresses with R = 0 are
called perfectly planar and stresses with R = 1 are called perfectly linear in this work.
Although the terminology of linearity and planarity has no physical relevance in the
context of stress tensor fields, some categorization of basic properties of a tensor field is
needed. Furthermore, the terminology is widely used in the field of DTI. Figure 3.9 in
Section 3.3.5 shows how ellipsoids and Mohr circles are related to each other. Note that
the shape factor is a relative value and undefined for small values of τmax (isotropic
stresses). The shape descriptors (τmax, c, R) build no orthogonal coordinate frame
(Equation (4.2)).

Shear-shape-factor space An example for a 2D space is the space whose axes are de-
scribed by the maximum shear stress τmax and the shape factor R that were introduced
in Equation (4.3). This space only considers the tensor’s deviator (Equation (2.25)),
that is, it does not contain any information about the isotropic part which relates to
uniform pressure. It is related to the idea of distinguishing tensors in terms of linearity
and planarity but this interpretation has no justification for zero-trace tensors such as
the deviator. Instead, it gives insight into the distribution of the directions related to
maximum shear (see also Figure 4.3). For R = 0.5, there are exactly two distinguished
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Figure 4.4: Reference model for exploratory visualization of tensor fields. Core of the model are
feature spaces. Selected shape descriptors and directions are visualized and analyzed via feature-space
plots. In object space, various tensor visualization techniques are combined in a feature-driven hybrid
visualization. Optionally, clustering can be applied to automatically compute cluster representatives
that have the potential to guide feature-space and object-space visualizations.

normal directions. For R = 0.0 and R = 1.0, the corresponding normal directions
span two cones. The shape factor is nicely represented by the normalized HWY glyphs
(Section 3.3.5).

Center-shape-factor space Another example, which is related to the representation
of stresses using Mohr circles (Section 3.3.5) is the space spanned by the Mohr center c
and the shape factor R (Equation (4.3)).

Directions For stress tensors, which are indefinite, the major and minor eigenvector
are of equal importance. The decision, whether both vectors need to be considered or
only a single one depends on the underlying application and the question that is posed
to the visualization. Another direction of interest for stress tensors is the direction of
maximum shear (see, for example, [Wilson and Brannon, 2005]). For three-dimensional
tensors, the direction of maximum shear is the bisector between the major e1 and
minor e3 eigenvectors (Equation (2.6))

eτ = e1 − e3
2.0 . (4.4)

4.4 A Framework for the Exploration of Tensor Fields

This section introduces the link-and-brush framework (Figure 4.4). It is implemented
as prototype in the visualization software Amira [Stalling et al., 2005] (Figure 4.5).
Currently, up to five simultaneous views are supported. For the datasets that are
described in Appendix A, these views can be interactively exchanged during runtime.
This substantially supports data exploration.
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Figure 4.5: Screenshot of the brush-and-link framework, which is implemented as prototype into
the visualization software Amira. The main window is separated into four diagram views: directional
histogram for the major eigenvector field (top left), Mohr diagrams (top right), parallel coordinate
plot (bottom left), scatterplots (bottom right). The area that is selected in the scatterplot is
highlighted in the Mohr diagram and the parallel coordinate plot. It represents high mixed stresses
and complies with the seed points that were used for the computation of the tensorlines. Hybrid
object space rendering is displayed in a separate 3D viewer. In the left, the user interface is displayed.
The diagrams can be interactively enabled or disabled. Transparencies, colors, and size of the
diagram primitives can be adjusted.

4.4.1 Overview

The proposed framework implements the concepts of multiple views and linking-and-
brushing in order to enable the visual exploration of 3D stress tensor fields. Input
is a 3D or 2D tensor field of second order that is given on a uniform or tetrahedral
(triangulated) grid.

Feature space For the definition of a feature space (Section 4.3), the input tensor
data is decomposed into two distinctive parts that separate shape and orientation.
Basic input for the scalar-valued shape space are the tensor’s eigenvalues, which refer to
tensor shape [Bahn, 1999]. Input for the direction space, in general, is a single direction
of interest.
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Diagram views and hybrid spatial views In order to analyze tensor properties in
detail and at large, we separate the visualization into diagram views (Section 4.4.2)
and 3D hybrid spatial views (Section 4.4.3).

Label field Selections in the diagram views are linked with the hybrid spatial depic-
tions by a 3D label field of the same grid type and size as the input data. The label
field is created and modified depending on what data properties and regions of interest
are selected in the plots. The label field determines in which regions what visualization
technique is applied and combined into a hybrid visualization.

Seed points Additionally to the label field, seed points, which are the starting points
that are used for the integration of tensorlines, can be randomly distributed in labeled
regions.

4.4.2 Diagram Views

These diagram views abstract from the tensor field’s spatial representation and give
insight into the (statistical) distribution of tensor properties. All views are linked and
used side-by-side. In the current implementation, we have decided on the following
diagrams:

• Scatterplots deliver insight into the distribution of tensor properties. Brush-
ing within the scatterplots creates and updates a label field and initiates the
distribution of seed points that are used for the computation of tensorlines.

• Parallel Coordinates are used in addition to the scatterplot because they offer
the possibility to represent more than two invariants.

• Mohr diagrams represent important invariants for stress tensors. Moreover,
they are a common tool in engineering, and therefore familiar to a large group of
potential users.

• Directional histograms quantify selected directions, for example major eigen-
vectors or other directions that are derived from the eigenvectors like the direction
of maximum shear.

The diagram views are parameterized by:

• Shape descriptors (Section 4.3.1)

• Shape-space scaling (Section 4.3.1)

• Directions (Section 4.3.2)

In the following, the diagrams are presented in detail.
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(a) (λ1, λ3)-Plot (b) (λ1, λ3)-Plot (c) (τmax, R)

Figure 4.6: Basic patterns in shape-space scatterplot.

Shape-Space Scatterplot
A scatterplot is a 2D diagram that consists of two axes; each axis represents the values
of one of the two scalar variables. Input, thus, is a tuple of scalar values. For each
such tuple, a point is plotted in the diagram. In this work, a scatterplot is a direct
visualization of a 2D shape space (Section 4.3.1). Different scalar-related attributes
can be used as input. Usually, scatterplots are used to depict the correlation of two
scalar variables. In this work, we are interested in the pattern (Figure 4.6) that arises
when the points are plotted against each other. These patterns allow a quick visual
extraction of basic properties of the input tensor field (see also Section 2.6), such as
definiteness, isotropy, anisotropy as well as linearity and planarity. In the following, we
illustrate this idea by means of two example configurations. Other configurations are
possible.

(λ1, λ3)-Scatterplot Input of this plot are the major and minor eigenvalue from
the ordered shape space (Section 4.3.1). Using these tensor invariants as input for
the scatterplot, basic properties of the input tensor field such as definiteness and
isotropy/anisotropy can be determined visually. For stress tensor fields, such a (λ1, λ3)-
scatterplot is useful to identify normal (compressive or tensile) and shear stresses.
See Figure 4.6a and 4.6b for a schematic depiction of this type of scatterplot. We
divide the scatterplot into four quadrants (A, B, C, D). Due to the ordering of the
eigenvalues (Equation (2.8)), the upper left quadrant (A) is empty. Points in the upper
right quadrant (B) correspond to positive-definite tensors (Equation (2.14)). For stress
tensors, points in quadrant B represent tensors with tensile stresses. Accordingly, points
in the lower left quadrant (C) correspond to negative-definite tensors (Equation (2.15)).
For stress tensors, points in quadrant C represent tensors with compressive stresses.
Finally, the lower right quadrant (D) contains points that represent indefinite tensors,
that is, eigenvalues have mixed sign. For stress tensors, points that are contained in D
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represent tensors with tensile and compressive stresses. To summarize, we can deduce
the following characteristics of stress tensor fields from the (λ1, λ3)-scatterplot:

• Points in quadrant B correspond to expansive stresses.

• Points in quadrant C correspond to compressive stresses.

• Points in quadrant D correspond to mixed stresses.

• Points that have a large distance to the isotropic axis exhibit a high level of shear
(Figure 4.6b).

• Points that are located near the isotropic axis exhibit no shear at all; they describe
tensors with isotropic behavior (Figure 4.6b).

For scaling, we often use a logarithmic mapping for a better distinction of the properties
in the scatterplot, and to avoid a cluttering around the origin. As a standard logarithmic
mapping has a singularity in zero, we use

f(λi) =

log(λi + 1), for λi ≥ 0

− log(1− λi), for λi < 0.
(4.5)

(τmax,R)-Scatterplot Input of this plot is the shear-shape-factor space (Section 4.3.3).
In contrast to the ordered shape space, the shear-shape-factor space does not distinguish
tensors corresponding to tension and compression. Instead, it separates regions of high
shear, which differ with respect to shape factor. We can extract the following properties
from this plot (Figure 4.6c):

• Points that are in quadrant A correspond to tensors that have linear shape.

• Points that are in quadrant B correspond to tensors that have planar shape.

• The distance to the vertical axis determines the value of shear stress.

Parallel Coordinate Plots
A parallel coordinate plot (PCP) is a 2D diagram that consists of n axes; each axis
represents one feature attribute. In a PCP, a n-dimensional feature is transferred to a
polyline that intersects the values on each horizontal or vertical axis that represents a
specific attribute. The advantage of PCPs, in contrast to scatter plots, is that they
are able to depict high-dimensional features. Scatterplots are restricted to only 2D
features. For higher-dimensional features, scatterplots are generally combined with
multi-dimensional scaling. See for example the work of Chen et al. [2009], where this



4.4. A FRAMEWORK FOR THE EXPLORATION OF TENSOR FIELDS 61

(a) Degenerate cases (b) Definiteness (c) Anisotropy

Figure 4.7: Basic patterns in parallel coordinate plot.

approach has been used for the extraction of fibers from diffusion tensor fields.

Originally, parallel coordinate plots were invented in the context of multi-variate
data analysis. In this work, we use PCPs in addition to scatterplots. The PCP is
parameterized by the ordered shape space. That is, each vertical axis of the PCP
represents one of the three eigenvalues. A triple of ordered eigenvalues, then, results in
one polyline. As for the scatterplot (Section 4.4.2), we are interested in the resulting
patterns, which enable a quick visual extraction of basic properties of the input tensor
field (see also Section 2.6). In the PCP, we can observe the following patterns (see
Figure 4.7):

• A straight horizontal line that runs through all three axes, represents an isotropic
tensor. In terms of shape, this is a spherically shaped tensor.

• A straight line in the upper sector represents a degenerate tensor with two equal
eigenvalues (λ1 = λ2), that is, a tensor that has planar shape.

• A straight line in the lower sector represents a degenerate tensor with two equal
eigenvalues (λ2 = λ3), that is, a tensor that has linear shape.

• The more a line differs from a straight line, the higher is the anisotropy.

• Lines that are located only in the upper (lower) sector correspond to positive-
definite (negative-definite) tensors. Lines that cross both sectors correspond to
indefinite tensors.

Mohr Diagram
Mohr’s circle is a common tool in material mechanics that is used to compute coordinate
transformations. In visualization, it has been applied to diffusion tensors to depict the
tensor’s diffusivity [Bilgen et al., 2002] as well as to stress tensors [Crossno et al., 2005].
Being a known technique for domain experts, Mohr diagrams can ease the access to
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Figure 4.8: The circle’s position on the x-axis represents whether the corresponding tensor is in
compression (left) or tension (right). The vertical position corresponds to their anisotropic behavior
and shape.

novel visualization methods. See Section 3.3.5 for more details on the basic idea of
Mohr’s circle.

Figure 4.8 illustrates the Mohr diagram which is one of the default diagrams within
the proposed framework. It consists of Mohr circles, which give an impression of the
relationship between the three eigenvalues and their relative strength. For a three-
dimensional tensor, a single Mohr circle consists of three circles. The radii and position
of the circles on the x-axis are determined by the three eigenvalues. Assuming a
descending order of the eigenvalues (Equation (2.8)), tensors that describe compressive
stresses are positioned on the left and tensors that describe tensile stresses are positioned
on the right of the origin. Tensors that describe mixed stresses are centered around
the origin. In the original diagram [Crossno et al., 2005], all circles are positioned on
a single axis. In this work, we further separate the circles according to their shape
(linear, planar, isotropic). For this classification, we divide the Mohr diagram into
three separate diagrams (Figure 4.8). To achieve this, we use the shape factor R (see
Equation (4.3)). A circle representing a tensor with R < 0.5 is drawn on the lower axis,
and a circle representing a tensor with R >= 0.5 is drawn on the middle axis. Although
R is a continuous quantity, this categorization enables the distinction of basic tensor
shapes in the diagram. For isotropic tensors, R is not defined. Therefore, we handle
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this case separately. Circles that represent isotropic tensors are identified by checking
whether τmax < ε (see Equation (4.3)). They are drawn as single points on the upper
axis. For the example presented in this chapter, the threshold was ε = 0.001. However,
the value can be interactively adjusted. To summarize, we can deduce the following
characteristics of stress tensor fields from the Mohr diagram:

• Circles that are located left from the origin correspond to compressive stresses.

• Circles that are located right from the origin correspond to expansive stresses.

• Circles around the origin exhibit both compressive and tensile forces.

• The greater the circle’s radius, the higher the level of shear.

• Circles degenerating to a single point exhibit no shear at all; they describe tensors
with isotropic behavior.

• Circles on the three categorization axes represent isotropic, linear and planar
tensors, respectively.

We achieve a further reduction of Mohr circles to be displayed through filtering. Similar
to the work of [Crossno et al., 2005], we use the Euclidean distance between two points
in shape space for filtering. A more advanced clustering applied to the shape space
(Section 4.4.4) results in diagrams that only show circles that reflect the very basic
pattern of the diagram.

Figure 4.9 shows all three shape-space diagrams side-by-side for the rotating-star
dataset.

(a) (λ1, λ3)-Plot (b) Parallel coordinate plot (c) Mohr diagram

Figure 4.9: Rotating star (Section A.3). All diagrams reveal that the tensorfield is positive definite.
From the PCP and the Mohr diagram, it can further be deduced that the stresses exhibit only
perfectly linear behavior, i.e., the shape factor is R = 1.
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Figure 4.10: The input directions for directional histogram and directional scatterplot are projected
on a hemisphere, flipping all vectors to the half space defined by the selected viewing axis. Each
point P(α,β) on the hemisphere represents all vectors spanning the angles α and β.

Directional Histogram
Directional histograms have been used to visualize the distribution of fiber orientations
in sprayed concrete [Fritz et al., 2009] and for diffusion tensors in terms of rose diagrams
and 3D scatterplots of the major eigenvector angles [Wu et al., 2004].

Figure 4.10 illustrates the directional histogram, which is used to analyze the
distribution of the tensor’s directional properties. To illustrate and quantify, for example,
the major eigenvector field, the intersection between all major eigenvector fields and the
unit sphere needs to be computed. Due to the non-oriented nature of eigenvectors only
half of the sphere’s surface needs to be considered. Therefore, all vectors are flipped to
the positive half space of a pre-selected axis (x, y, z). To create the histogram, we use
histogram binning. The number of intersections between vectors and a given surface
patch on the sphere are counted, thus performing a region-dependent binning. For
accurate results, a uniform subdivision of the surface into equal-sized bins is crucial.
Triangle binning results in a discrete visualization of the counted frequencies, where
each triangle is colored uniformly. The interpretation of the final plot depends on the
selected viewing direction. In the 2D plot, the diagram’s center corresponds to all
vectors that are collinear with this viewing direction. An arbitrary point on the sphere’s
surface represents all vectors that span the angles α and β with respect to the two
axes orthogonal to the selected viewing direction (Figure 4.10).
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4.4.3 Hybrid Views

Figure 4.11: Label field and tensorlines
started within the grey labeled region.

Spatial views represent the tensor field in its orig-
inal 3D coordinates. The most basic method to
display tensors in a spatial context is to use glyphs
(see Section 3.3 for an overview of different glyph
types). Although glyphs have the potential to show
the entire tensor information, they fail to give a
global continuous view of the tensor field (see
Section 3.4 for an overview of global tensor visual-
ization methods). Volume rendering methods, for
example, provide a quick overview of the tensor
field. However, in general, they only work on de-
rived scalar values and do not contain directional
information. Tensorlines depict eigenvectors in 2D
and 3D. If two directions need to be depicted si-

multaneously, however, the resulting images soon get cluttered. Texture-based methods,
finally, can only be applied to 2D slices or surfaces but not to the whole 3D data domain.

In this work, we therefore propose hybrid views and combine state-of-the-art visual-
ization methods that are suited for stress tensor fields. The visualization techniques that
we combine in our framework are listed below. The hybrid visualization is interactively
steered by the label field (Figure 4.11) that is created and updated through selections
in the diagram views, and by seed points that are randomly distributed in selected
regions.

3D Visualization Techniques
The framework that was developed within the scope of this thesis supports the following
3D visualization techniques for tensors.

Tensor glyphs To create the images that are presented in this thesis, we used ellipsoids
together with an antisymmetric mapping (see Equation (3.2) with f = arctan). The
GPU-based implementation is founded on the work Sigg et al. [2006].

Tensorlines Tensorlines (Section 3.4.3) are used to add directional information. To
create hybrid visualizations, seeds are randomly placed inside regions that correspond
to a specific label. Starting at these seed points, the line is integrated using a fourth-
order Runge-Kutta scheme. The integration is stopped as soon as the line runs into an
isotropic region, for example if τmax < ε, or if the line would run outside the domain.
The value for the threshold ε can be adjusted. For the depiction of the tensorlines, we
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use an existing display module of the visualization software Amira. The line rendering
is based on a GPU-based implementation that is founded on the work Sigg et al. [2006].

Volume rendering Volume rendering serves as context view and to provide a quick
overview of the tensor data. We implemented standard GPU ray-casting of scalar
invariants, for example, the von Mises stress. To distinguish between compressive and
expansive areas, we integrated the colormapping proposed by [Dick et al., 2009] into our
volume ray-caster. The ray casting implementation is founded on the work of Kruger
and Westermann [2003]. The eigenvalues are computed in the fragment shader during
ray-casting.

2D Visualization Techniques
In addition to the 3D visualization techniques, we have integrated the following 2D
visualization methods.

Texture-based methods To visualize 2D slices, we implemented LIC for tensor fields.
Because LIC textures can only depict a single direction, we also implemented fabric
textures [Hotz et al., 2004] to display two directions simultaneously. See Section 3.4.3
for more details and a discussion of the techniques. LIC as well as fabric textures were
implemented on the GPU to allow for interactive slicing through 3D datasets.

Stress nets In addition to fabric textures, stress nets [Wilson and Brannon, 2005]
also have the potential to display two directions simultaneously (Section 3.4.3). In
contrast to fabric textures, stress nets are not based on an input noise texture. Hence,
the stress net can be combined with the depiction of a scalar value.

Surface Visualization Techniques
To also visualize surface tensor fields, we developed novel visualization methods that
are presented in Chapter 5 and Chapter 6. The Voronoi-based visualization (Chapter 6)
offers the possibility to use textures to encode tensor properties.

4.4.4 Shape-Space Clustering

Diagram views as presented in Section 4.4.2 can support the identification of basic
data characteristics of the underlying tensor data. Via brushing in the diagram views,
representative subsets can be found, which then guide structured 3D visualizations de-
picting only the most relevant information that is contained in the data (Section 4.4.3).
Sometimes, however, already the diagrams are cluttered making their manual explo-
ration difficult. Under this perspective we analyzed the feasibility of nonparametric
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clustering to reduce the data to their basic structure.

For clustering, we decided on the mean-shift algorithm [Fukunaga and Hostetler,
1975]. Mean shift was first presented in the context of pattern recognition [Fukunaga
and Hostetler, 1975], and later adapted for computer vision [Cheng, 1995]. A new trend
of applying mean-shift on color feature spaces for image segmentation and filtering was
initiated by the work of Comaniciu and Meer [2002]. Since then, it is a well-accepted and
widely used technique in the field of image analysis. In contrast to k-means clustering,
mean shift enables the detection of arbitrarily shaped clusters and no choice needs to
be made for k, the number of clusters to be extracted. As one of our goals is to provide
a framework that requires no prior knowledge of the datasets and their describing
feature spaces, this property is crucial.

Choice of Shape Space
First, a shape space (Section 4.3) is selected for clustering. In this space, the tensor’s
shape is represented by a point, whose coordinates are called shape descriptors. To
prepare the shape space for clustering, the shape descriptors are normalized so that the
axes of the space are in the same range. Depending on the tensor field’s definiteness, we
normalize the values into the [0, 1]- or [−1, 1] range. For some datasets, an additional
logarithmic mapping is beneficial.

Mean-Shift Clustering
The basic idea is to consider the points corresponding to shape descriptors as repre-
sentatives of a density function. The central part of the mean-shift algorithm is the
estimation of the gradient of this density function and to find its maxima, without
computing the density explicitly [Comaniciu and Meer, 2002]. Feature points that
converge to the same maximum are assigned to the same cluster.

Given n feature points {fj} with j = 1 . . . n and a seed point x̃ ∈ {fj} (the initial
seed is determined randomly), the algorithm iteratively computes the mean-shift vector
m(x) by first defining a kernel K (i.e., a weighted neighborhood) around x̃, and then
computing the mean of the points within K, defined by

m(x) =
∑n
j=1K(x̃− xj)xj∑n
j=1K(x̃− xj)

− x̃. (4.6)

Finally, the kernel window is translated into the direction of maximum increase in the
density, the mean shift vector m(x). These steps are repeated until all points have
converged to their corresponding mode. We use a Gaussian kernel, which is sufficient for
our purposes since we do not need to support feature spaces with dimension higher than
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(a) Adaptive kernel (b) MAD kernel

Figure 4.12: Comparison of mean-shift clustering with two different kernels. Using a k-nearest
neighbor approach, mean shift finds the prevalent maxima. Using the MAD to approximate the
kernel radius r, outliers are found, too. The computation is based on the shear-shape-factor space
of the two-point-load dataset.

d = 3. For higher-dimensional feature spaces, the use of anisotropic kernels (e.g. [Sixing
et al., 2008]) is preferable as feature spaces become sparser the higher d is.

Although mean-shift is a nonparametric clustering algorithm, its accuracy is sensitive
with respect to the kernel parameters. Since we do not require any prior knowledge of
the density distribution, the choice of the radius r is difficult. We implemented two
approaches to deal with this problem: a k-nearest neighbor approach and an estimation
of r using the median absolute deviation (MAD). See Figure 4.12 for the different
results of both approaches. The adaptive approach via k-nearest neighbors identifies
the major maxima of the point distribution. Outliers, however, are missed. To also
catch outliers and to achieve similar results as with topological methods, we set the
kernel radius to a constant value according to the median absolute deviation (see, for
example, [Elgammal et al., 2000]): MAD = median|xi − x̂|. This measure has been
proven to be stable with respect to outliers. Therefore, we first compute the median x̂
of the whole point distribution for every dimension of the feature space. We then have
a MAD for every dimension. The bandwidth is finally set to r = min(MAD).

Comparison with scalar-field topology The mean-shift algorithm converges to the
maxima of an underlying density function without computing this density explicitly.
Thus, it decomposes a point distribution into several modes and classifies the points
according to the mode to which they converge. For this reason, the mean-shift algo-
rithm is related to scalar-field topology and can also be interpreted as topological
decomposition of some feature space [Paris and Durand, 2007]. Discrete Morse the-
ory [Günther et al., 2011] provides a way to extract critical points (maxima, minima,
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saddles) of a scalar function. The advantage of using discrete Morse theory to extract
prevalent features is that a consistent hierarchy can be computed using the notion of
persistence [Edelsbrunner and Harer, 2007]. It quantifies the stability of a topological
feature. That is, a critical point is said to be persistent if it is separated from two other
critical points by low saddles.

Representative Points from Clusters
Once the clusters have been computed, the next step is to find a meaningful repre-
sentative for each cluster for the depiction in the diagram views. The most natural
choice is to use the modes (or maxima) directly as representative for an entire cluster.
However, sometimes the modes do not reflect the overall feature behavior of the cluster
appropriately. In this work, we also used the nearest point to the weighted centroid.

4.4.5 Results

(a) Diagram views (b) Minor tensorlines (c) Major tensorlines

(d) Minor tensorlines (e) Major tensorlines (f) Major and minor tensorlines

Figure 4.13: Beam profile (Section A.6). Example for a selection in ordered shape space (a). Lines
that were started at the selected seed points are bold (b-f). Line bundles are depicted additionally
for a comparison of the representative lines and the bundle that they represent. The color violet is
used for lines in tensile regions, and the color green is used for lines in compressive regions.
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To the best of our knowledge there is no comparable system for visualization and
analysis of stress tensor fields to which we could have compared our methods. Therefore,
we will present several examples that demonstrate how our system works. Results with
a specific application context are given in Section 4.5.

Figure 4.13 shows an example of how our system is used to find meaningful positions
for the placement of seed points, which are used as starting points for the integration
of tensorlines. We could observe that the points with the highest maximum shear are
a good choice for this purpose. To validate this, we depict the tensorlines that were
computed on the basis of our selection in ordered shape space (bold lines) as well as
tensorlines that were computed on the basis of randomly distributed seed points (thin
line bundles). It can be seen that the basic pattern is already revealed with very few
tensorlines that were started at the selected seed points.

Figure 4.14 shows that shape-space clustering significantly reduces clutter in the
Mohr diagram. The clustering also enables automatic classification of shape-related
features. Hence, it provides an alternative to manual brushing to create hybrid visual-
izations of 3D stress tensor fields.

Figure 4.15 shows an example for a directional histogram binning directions of
maximum shear (Equation (4.4). At the beginning of the simulation (Figure 4.15b), all
shear directions exhibit a specific angle, which is depicted by a single circle in the dia-
gram. In later time steps, the shear directions become more scattered and the strongly
expressed direction splits into two maxima rings (Figure 4.15c). With further increasing
time, these two maxima merge again resulting in one dominant ring (Figure 4.15d).
According to our domain experts, the splitting is not physical. The assumption is that
the visualization using the directional histogram reveals discretization artifacts.

Figures 4.16 and 4.17 compare clustering results using the mean-shift algorithm and
discrete Morse theory. In Figure 4.16, the result of mean-shift clustering is shown by
the example of a Mohr diagram. In Figure 4.17, we computed the major and minor
tensorlines on the basis of automatically computed clusters using mean-shift clustering
of the shear-shape-factor space. The clusters correspond to regions of highest maximum
shear.

Figures 4.18, 4.19 and 4.20 show the patterns that arise in the shape-space diagrams.
The pattern of elastic materials is very similar in all plots, always revealing compressive,
tensile and mixed stressed. The star dataset reveals a completely different behavior.
Domain experts have shown strong interest in these patterns, because they allow the
user to quickly evaluate basic properties from the data, for example, deviations from
expected symmetry.



4.4. A FRAMEWORK FOR THE EXPLORATION OF TENSOR FIELDS 71

(a) Mohr diagram (unfiltered) (b) Mohr diagram (filtered) (c) Hybrid visualization

Figure 4.14: Rotating star (Section A.3). Due to the high gravitational forces inside the star, only
compressive stresses occur, which is revealed clearly in the filtered Mohr diagram (b). It is further
shown that only linear behavior, i.e., λ1 > λ2 ≈ λ3, happens. A few isotropic tensors (small circles
at the highest axis) represent the boundary. The hybrid visualization (c) consists of a transparent
isosurfaces for the maximum shear stress, glyphs depicted in regions of highest shear and tensorlines
to depict the rotational behavior of the neutron star.

(a) (b) t = 10 (c) t = 500 (d) t = 1580

# = 0 max(#)
Figure 4.15: Rotating star (Section A.3). Directional histograms (b-d) for the shear vectors for three
time steps. The colored triangles represent the number of data points (#) exhibiting a maximum
shear direction falling into the triangle. The selected viewing axis for the directional histograms is
the z-axis, which is highlighted in orange in (a).
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(a) Mean Shift (b) Discrete Morse Theory

(c) Mohr diagram (unfiltered) (d) Mohr diagram (filtered)

Figure 4.16: Two-point load (Section A.1). Clustering of the 3D ordered shape space. Maxima
extracted by the mean-shift algorithm (a) and using discrete Morse theory (b). The radius of the
spheres in (b) is scaled by persistence. The filtered Mohr diagram (d) only displays circles for
extracted representatives. In this example we used the nearest point to the weighted centroid of
each cluster.
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(a) Mean shift (b) Discrete Morse theory

(c) Tensorlines (d) Tensorlines

Figure 4.17: Two-point load (Section A.1). Clustering of the 2D shear-shape-factor space. Maxima
extracted by the mean-shift algorithm (a) and using discrete Morse theory (b). The radius of the
spheres in (b) is scaled by persistence. Tensorlines (c, d) started from two specific clusters are
highlighted. Lines integrating the minor eigenvector are colored green and lines integrating the
major eigenvector are colored violet. Seed points are colored according to their clusters, which are
highlighted in (a).
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(a) Beam profile (asym. load) (b) Beam profile (c) Beam profile (air)

(d) Beam profile (sym. load) (e) Cube (f) Rubber mount

(g) One Point Load (h) Shear specimen (i) Star

(j) Tripod (straight) (k) Tripod (curved) (l) Two Point Load

Figure 4.18: Shape-space scatterplot. Patterns for various datasets.
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(a) Beam profile (asym. load) (b) Beam profile (c) Beam profile (air)

(d) Beam profile (sym. load) (e) Cube (f) Rubber mount

(g) One Point Load (h) Shear specimen (i) Star

(j) Tripod (straight) (k) Tripod (curved) (l) Two Point Load

Figure 4.19: Parallel coordinate plot. Patterns for various datasets.
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(a) Beam profile (asym. load) (b) Beam profile (c) Beam profile (air)

(d) Beam profile (sym. load) (e) Cube (f) Rubber mount

(g) One Point Load (h) Shear specimen (i) Star

(j) Tripod (straight) (k) Tripod (curved) (l) Two Point Load

Figure 4.20: Mohr diagram. Patterns for various datasets.
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4.5 Example Application: Visualization and Analysis of 3D Tensor Data
from Structure Simulations

Within the last two years, the basic research results that have been presented in
Section 4.4.5 have raised interest in the field of engineering. An interdisciplinary project
was started using our framework to explore the value of tensor analysis in this field.

4.5.1 Background

Today, product development processes in mechanical engineering are almost entirely
carried out via computer-aided simulations. That is, new technical systems are first
tested and optimized at the computer. In the focus of this project are structure
simulations, which compute forces and deformations. The results of these finite-element
method (FEM) simulations are required to ensure the functionality and stability of
single components of a technical system as well as of the technical system as a whole.
Actual output of such simulations are the local deformations and stresses, which are
described by stress and strain tensors. See Section 2.11 for an introduction of these types
of tensors. The analysis of the simulation result is driven by the following questions:

• Does the construction element resist the applied load?

• Is the capacity of the construction element fully used?

• If the capacity is not fully used, can it be improved? For example with respect to
weight and the amount of material that is needed?

Especially the growing demand for lighter materials and constructions requires a precise
and efficient analysis of material yielding. A goal, for example, can be to develop a
component (of a technical system) that has less weight, needs less material and is more
stable with respect to a specific load on the basis of the analysis results.

4.5.2 Common Practice

To date, the basis of the analysis of structure simulations are scalar values that are
derived from the tensor data, for example, the von Mises stress. Such a scalar value
is then used to compare it with a characteristic threshold value given by a specific
failure model (see also Section 2.11). In case, this analysis shows that the external
forces exceed certain limits of material strength, there is a risk for structural failure of
the component. However, by considering only derived scalar data a lot of additional
information that is contained in the tensors is not used to analyze the yielding of
a material. In the following, we would like to investigate the importance of tensors



78 4.5. EXAMPLE APPLICATION

within this analysis process. The major question therefore is: Can the consideration
of the complete tensor data add value to the analysis and interpretation of structure
simulations?

4.5.3 Insights

A measure of an effective visualization can also be its ability to generate
unpredicted new insights, beyond predefined data analysis tasks. After all,
visualization should not only enable biologists to find answers but also to
find questions that identify new hypotheses. [Saraiya et al., 2005]

The following results are presented in terms of insights [Saraiya et al., 2005] that we
gained when applying our methods to various datasets. All datasets are the result of
FEM simulations. The data was provided by Prof. Dr. Markus Stommel and Marc
Schöneich from Saarland University. See Appendix A for a description of the datasets.
The following results relate to the stress tensor fields produced by the simulations.

Saraiya et al. [2005] define an insight to be “an individual observation about the
data by the participant”. They name eight “quantifiable characteristics of each insight”
that can be encoded in an analysis to evaluate different bioinformatic visualization
systems. We use the following three characteristics from their list as a selection that is
useful for our purposes:

• Observation: Findings about the data.

• Hypothesis: Hypotheses lead to new questions and new experiments that in-
fluence the design of the input data (from the engineering side) as well as the
design of novel visualization algorithms (from the algorithmic side).

• Directed versus Unexpected: Directed insights are related to a specific ana-
lysis question or visualization task. Unexpected insights reflect the explorative
nature of our approach (exploratory discoveries).

In contrast to the work of [Saraiya et al., 2005], we do not use these characteristics for
quantification or comparison with other visualization systems for tensor fields. Instead,
we use these characteristics for a classification of insights and to improve the structure
of the evaluation.

The following list is a recording of discussions that were stimulated by visualization
results generated within the framework that was presented in Section 4.4. The following
persons participated in the discussions: Markus Stommel, Gerik Scheuermann, Marc
Schöneich, Bernhard Burgeth and Ingrid Hotz.



4.5. EXAMPLE APPLICATION 79

(a) Selection in ordered shape space (b) Selection in shear-shape-factor-space

Figure 4.21: Cube (Section A.5). Selection of representative lines via explorative approach. The
seed points to compute the tensorlines were determined via brushing in the ordered shape space
(a) and in the shear-shape-factor-space (b). The force transmission point and the three stationary
points are marked by isosurfaces.

Cube
See Appendix A.5 for a description of the cube dataset.

Observation First images (Figure 4.21) that were presented to the domain experts
lead to the assumption that the route of the tensorlines reflects the way of the forces
through the dataset.

Unexpected insights An unexpected insight that was triggered from Figure 4.21 was
that the tensorlines are curved and that they progress from the force transmission point
to the three stationary points. The domain experts assumed that they are straight.

Hypotheses The fact that the tensorlines directly connect the force transmission point
and the three stationary points lead to the following hypothesis: With the knowledge
of the tensorlines and, hence, the progression of forces that act within a construction
element, a better stiffening of construction elements can be achieved.

Tripod
To validate the hypotheses that a better stiffening of construction elements can be
achieved with the additional knowledge of the tensorlines, the domain experts developed
two new tripod-geometries (Figure 4.23):

• A tripod geometry with straight connections between the force transmission point
and the stationary points (Figure 4.23a).
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(a) (b)

(c) (d)

Figure 4.22: Cube (Section A.5). Manual selection of representative lines via explorative approach.
The seed points were determined via brushing in shear-shape-factor-space. Figures (a) to (d) depict
the same selection from various perspectives. Lines that were considered as good representatives
are bold. Line bundles are depicted additionally for a comparison of the representative lines and the
bundle that they represent. The color violet is used for lines in tensile regions, and the color green
is used for lines in compressive regions.
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(a) Tripod (straight legs) (b) Tripod (curved legs)

Figure 4.23: Cube (Section A.5). Two different tripod geometries. In (a), the force transmission
point and the three stationary points are connected in a straight fashion. In (b), the force transmission
point and the three stationary points are connected in a curved fashion. The color violet is used for
lines in tensile regions, and the color green is used for lines in compressive regions.

• A tripod geometry with curved connections that were modeled on the basis of
three representative tensorlines (Figure 4.23b). These tensorlines were determined
in an explorative manner for the cube dataset as shown in Figure 4.22.

Observation For the tripod with straight legs, the progression of the tensorlines is
straight too. This is, what the domain experts expected. In this case, the simulated
deformation complies with the applied load. For the tripod with curved legs, two legs
behave as expected: the tensorlines are curved and connect the force transmission point
and the stationary points. In the third leg, however, a swirl of the tensorlines occurs.
In the simulated deformation, a torsion of the element happens. It can be deduced
that the representative tensorlines that are depicted in Figure 4.22 were chosen badly,
because a torsion of the element needs to be avoided. However, the negative results
lead to exciting new hypotheses.

Hypotheses Although we could not yet prove for the cube dataset that the knowledge
about the tensorlines leads to more stiffness, an interesting observation was the swirl
of the tensorlines. Since we could observe a torsion in the simulation, this lead to the
hypothesis that the tensorlines may be an indicator for the kind of deformation that
the construction element undergoes. If this is the case, tensorlines are a valuable tool
for validation purposes.
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(a) Major tensorlines and ellipsoids (b) Major and minor tensorlines

Figure 4.24: Beam profile (Section A.6). The seed points for the computation of the tensorlines
were determined via brushing in the shape-space scatterplot. The figures show that the lines connect
the force transmission point in the lower right with the part of the geometry that was fixed. In (a),
tensorlines integrated along the major eigenvector field are enhanced with ellipsoidal glyphs. In (b),
major (violet) and minor (green) tensorlines are depicted and colored accordingly.

Beam Profile
We applied our methods also to a geometry that represents a more realistic example
for a construction element. See Appendix A.6 for a description of the dataset.

Observation Considering our concept of providing various views on a single dataset,
the experts mentioned that especially the multitude of visualization techniques is
important. This observation came up when looking at the results for the beam profile
dataset. The reason is that for this dataset, the LIC textures (Figure 4.25) in the
yz-plane show more interesting structures than the tensorlines (Figure 4.24). We could
again observe that the progression of the tensorlines comply with the real deformation
the material undergoes, which strengthens our hypothesis that the tensorlines describe
the progression of the forces that act within a material.

Hypotheses The depiction of tensorlines superimposed with glyphs (Figure 4.24a) was
rated as interesting. A new hypotheses from the visualization side is that the additional
usage of glyphs can support the decision which tensorlines are good representatives.
A hypotheses from the engineering side was that the LIC textures (Figure 4.25) can
guide the design of rip structures that lead to stiffer and lighter construction elements.
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(a) Fabric texture (b) LIC (major) (c) LIC (minor)

(d) Fabric texture (e) LIC (major) (f) LIC (minor)

(g) Fabric texture (h) LIC (major) (i) LIC (minor)

Figure 4.25: Beam profile. Figures (a) to (f) show fabric and LIC textures for a slice in the yz-plane.
Figures (g) to (i) show fabric and LIC textures for a slice in the xz-plane superimposed with major
and minor tensorlines. In all examples, the force transmission point is in the lower right.
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(a) Solid (b) Air (c) Solid (d) Air (e) Solid (f) Air

Figure 4.26: Beam profile vs. profile partially filled with air.LIC textures in the yz-plane: fabric
texture (a, b), LIC textures integrating the major (c, d) and minor (e, f) eigenvector fields,
respectively.

Beam Profile (partially filled with air)
To validate the hypotheses that the LIC textures provide a hint for the design of better
rip structures, a new dataset was generated on the basis of the beam profile. In this new
simulation, the construction element was partially filled with a material that resembles
air to create an example that has no stiffness support.

Observation When observing the LIC and fabric textures (Figure 4.26), a first ob-
servation was that there is a significant difference between the solid profile and the
profile that is partially filled with air. We can observe a sharp transition between the
different media and a completely different pattern for the construction element filled
with air. The tensorlines for the beam profile shown in Figure 4.27a again comply
to the expected progression. The tensorlines for the profile filled with air depicted in
Figure 4.27b differ. The lines that integrate the minor eigenvector field (green) again
show a swirl which strengthens the hypotheses that the behavior of tensorlines indicates
what kind of deformation a material undergoes. For this example dataset, which has
no stiffness support, the simulated deformation results in a torsion.

Hypotheses The progression of the tensorlines shown in Figure 4.28 gives a hint for
a well-designed rip structure that leads to a stiffer material. That is, for this example,
one would design a rip structure with an approximately 45 degree angle. A course of
maximum shear within a 45 degree angle is what we would have expected, because we
have a torsion of the material.

Shear Specimen
For completeness, we further analyzed a construction element for which we know that
it is well designed. See Appendix A.7 for a description of the dataset. The question
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(a) Tensorlines (b) Tensorlines

Figure 4.27: Beam profile (a) and profile filled with air (b).

(a) Tensorlines (b) Tensorlines

Figure 4.28: Profile filled with air. The progression of the tensorlines (a, b) might give a hint for a
well-designed rip structure that might lead to a stiffer material.
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was whether the tensorlines can validate that this example constitutes a good design
of a construction element.

Directed insight Figure 4.29 confirms the desired load case, which is a progression of
the forces in a 45 degree angle. This again strengthens the hypotheses that tensorlines
describe the route of the forces.

(a) Tensorlines (b) Tensorlines

Figure 4.29: Shear specimen. Figures (a, b) show the major and minor tensorlines started in the
region of highest shear.

4.6 Discussion

Interactive visual data analysis is widely used in visualization. However, for stress
tensor fields it has received very little attention in the past (see also Section 3.6).
In this chapter, we have presented a concept that adapts the idea of multiple linked
views to stress tensor fields. To achieve this, we interpreted the shape- and direction
space as feature spaces that link the abstract tensor data and their depiction in 2D
diagrams and 3D hybrid views. Interactivity is crucial when aiming for an explorative
approach. Therefore, all visualization methods were designed to run on the GPU.
We also investigated mean-shift clustering and scalar field topology to automatically
identify relevant properties of tensor fields. We proposed to first define a feature space
which is subsequently classified. Finally, we presented insights that were gained by ap-
plying our methods to stress tensor fields resulting from structure simulations. We have
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shown that the presented visualization and analysis tools open up new perspectives on
the stress tensor fields, thereby generating new questions and hypotheses about the data.

One of the main challenges for the visualization of three-dimensional tensor fields is
that it is almost infeasible to squeeze all the information in one spatial representation.
We have demonstrated that this problem can be tackled by distributing all degrees of
freedom of a tensor in various views (diagrams and spatial views) instead of trying to
integrate all the information into a single visualization. Furthermore, brushing in the
diagram views helps reduce the data that is visualized. In combination with hybrid
visualizations, regions of interest are emphasized and the complex data is structured. By
having feature spaces in the core of the presented framework, specific tensor properties
can be extracted on-the-fly. We discovered that especially outliers in the diagrams are
of interest to determine meaningful positions for the placement of seed points. A novel
assumption that arose during many analysis sessions is that very large parts of the
tensor fields do not contain any important information. This could be exploited in
the future to create even more meaningful stress tensor visualizations and to alleviate
clutter.

Our results and the discussion with domain experts have confirmed the need for
powerful visual exploration and analysis tools for tensor fields. The experts confirmed
that they did not consider looking at the tensor data because appropriate tools were
missing. In addition, we identified the following reasons and bottlenecks, why the tensor
data has been neglected in the past:

• The use of mathematical concepts and failure models that rely on the original
tensor is not common in engineering applications, because failure models that
only rely on scalar values are much simpler and it is faster to evaluate them.

• Engineers have strict timing constraints and must quickly decide whether a
material or a whole technical system meets the requirements that are posed. It is
not feasible for them to analyze all quantities that arise in a simulation.

• Visualization and analysis tools that were specifically designed for the analysis of
tensors in engineering applications were not available.

Considering the first point in this list, we could not yet prove that the analysis of stress
tensor fields adds value to the analysis of material yielding or that it is more efficient
than using only a scalar value that was derived from the tensor data. However, our
results allow the assumption that the presented visualizations can indicate failures
in simulations. In the context of engineering, we believe that tensor visualization can
also give hints that a construction element was designed badly. Overall, the results
have motivated us and our cooperation partners to continue investigating, whether it
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is useful to consider stress tensor field visualizations in addition to traditional failure
models in the future. The second point in this list, the fact that engineers have strict
timing constraints, should be kept in mind when designing new visualization meth-
ods. Our experience is that domain experts favor simple visualization techniques like
scatterplots. In object space, a sparse usage of lines and glyphs at specific locations
is preferred, which motivates the use of a label field to determine focus and context
regions. Moreover, the domain experts rated the brushing-and-linking as extremely
helpful to get used to the data.

Although we show the applicability of our approach by the example of stress tensor
fields from engineering applications, we believe that the basic idea of the presented
concept is applicable to other types of tensors in other application contexts, too.



5
Anisotropic Sampling in Planar and

Two-Manifold Domains

(a) Initial anisotropic sampling (b) Final anisotropic sampling

Figure 5.1: Anisotropic sampling. First, an initial sample distribution is computed (a). Second, the
initial distribution is iteratively refined (b).

5.1 Introduction

For glyph-based visualizations (Section 3.3), a basic question is where to place the
glyphs to provide all details as well as to convey the evolution of tensors across the
field. If glyphs are placed at the grid positions, the pattern of this grid becomes visible
in the final visualization. This disturbs the perception of the field’s continuous behavior
and circumvents the discovery of regions with similar behavior. Therefore, the goal
of the methods presented in this chapter is to find positions for glyphs that are well

89
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distributed and that are independent from the grid positions. A good placement is
found if the glyphs do not overlap and significant gaps between them are avoided
(Figure 5.1).

Another visualization method for tensors is related to line integral convolution (LIC).
Such texture-based visualization techniques (Section 3.4.4) are based on noise images
as input. The quality of these input textures is crucial for the final result. Just as for
glyph placement, patterns and holes in theses textures result in visible artifacts.

The questions, where to place glyphs and how to generate high quality input noise
textures, are strongly related to questions in the field of blue-noise sampling. Since the
1980s, aperiodic point distributions with varying density and blue-noise properties are
a central research topic in computer graphics [Lagae et al., 2008]. Methods range from
simple dart throwing techniques [Cook, 1986] to real-time tile-based methods [Kopf
et al., 2006; Lagae and Dutré, 2008]; applications range from sampling theory to mesh
generation and illustrative rendering. In general, these methods focus on isotropic
samples and are hard to extend to work with anisotropic samples. However, when
visualizing tensor fields using glyph- or texture-based approaches, the needed samplings
are always anisotropic.

This chapter presents two approaches to generate unstructured distributions of ellipti-
cal samples that follow a Poisson-disk distribution avoiding overlaps and holes between
the samples as well as periodic patterns. We believe that glyph- and texture-based
visualizations only work effective in 2D domains. Therefore, the following methods only
deal with slices and triangulated surfaces.

This chapter is based on the following two papers: Particle-Based Anisotropic
Sampling for Two-Dimensional Tensor Field Visualization [Kratz et al., 2011a] and
Anisotropic Sampling of Planar and Two-Manifold Domains for Texture Generation
and Glyph Distribution [Kratz et al., 2013b].

Structure This chapter is organized as follows. We first discuss the most relevant
previous work in Section 5.2. Section 5.3 introduces the concepts and basic ideas which
underlie the two approaches that are presented in this chapter. Subsequently, the
two approaches for generating anisotropic sample distributions are presented. Both
approaches start with an initial sampling distribution that is iteratively refined. The
main difference of both approaches is the kind of refinement. The first algorithm is a
particle-based approach that is restricted to planar domains (Section 5.4). Such particle-
based approaches interpret the samples as moving particles that exert attracting and
repelling forces. The second algorithm is a geometry-based approach (Section 5.5). It
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relies on the definition of an anisotropic triangulation. Here, we propose a gravitational-
centered relaxation to refine the initial sample distribution.

5.2 Related Work

The generation of sample distributions with specific properties is a central research
topic in computer graphics with applications in rendering, visualization and geometry
processing. A huge amount of related work exists, most of which focuses on very specific
requirements and applications. The algorithms that are presented in this chapter are
also related to mesh generation and remeshing. Since an exhaustive review of related
methods from sampling theory and geometry processing is out of scope of this work,
we refer the reader to the following survey articles. For a deeper insight into remeshing
approaches, we refer to the article by [Alliez et al., 2005]. And for an overview about the
creation of aperiodic isotropic sample distributions, we refer to the articles by [Lagae
and Dutré, 2008; Lagae et al., 2008, 2010]. In the following, we focus on work that is
related to the approaches presented in this chapter.

Many previous work in generating sample distributions focuses on the generation
of Poisson-disk distributions [Lagae et al., 2008]. Distributions with this property
cover the sample domain densely while maintaining a minimum separation given by
a specified radius, the Poisson-disk radius. Common basic algorithms to create such
distributions are dart throwing [Cook, 1986] and Lloyd relaxation [Lloyd, 1982]. These
algorithms are expensive and have a high memory requirement. Thus, several enhanced
methods for generating Poisson-disk distributions have been presented. Among these,
tile-based methods [Kopf et al., 2006; Lagae and Dutré, 2008] have gained special
interest. Tile-based methods generate a small set of tiles once, where each tile has
the Poisson-disk characteristics. The tiles can then be used in interactive settings to
generate point distributions with arbitrary density. Thus, tile-based methods have a
low memory requirement and are suited for real-time applications. Unfortunately, these
methods cannot be easily generalized to the anisotropic case, where the samples vary
in size, shape and orientation and, therefore, would require a much larger set of tiles
and the handling of many special cases.

The objective of mesh generation most often is to find a mesh that is as coarse as
possible and as fine as needed to represent all properties of the shape of the underlying
object. In this context, anisotropic meshes are beneficial for simulating functions with a
strong directional character. The strength of such meshes is that the shape of the mesh
elements can be controlled by an underlying anisotropy function (metric tensor field).
Various approaches to tackle this problem have been presented [Bossen and Heckbert,
1996; Shimada et al., 1996; Li et al., 1999]. In [Shimada et al., 1996], for example,
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anisotropy is incorporated in the common circumcircle test to compute anisotropic
Delaunay meshes. Other solutions build on the construction of an anisotropic Voronoi
diagram, for example, [Labelle and Shewchuk, 2003; Boissonnat et al., 2008]. In [La-
belle and Shewchuk, 2003; Du and Wang, 2005], the triangle mesh is then defined
as the dual of the Voronoi diagram. These approaches are mathematically sound but
computationally expensive and hard to generalize to the two-manifold case.

In contrast to mesh generation, remeshing algorithms have the goal to improve a
given mesh with respect to specific criteria. Most advanced remeshing approaches rely
on surface parameterizations. Similarly, parameterizations are used for anisotropic
surface sampling [Li et al., 2010] and meshing of curved surfaces [Shimada et al., 1996].
While for remeshing algorithms an accurate representation of surface details is of high
importance, this is not the case for our purpose. This simplifies the sampling pro-
cess in many ways. Hence, our approach does not require an expensive parameterization.

In visualization, anisotropic sample distributions have been computed to guide the
positioning of glyphs [Kindlmann and Westin, 2006; Hlawitschka et al., 2007; Feng
et al., 2008]. The more a sample distribution reflects the continuous behavior of an
input vector- or tensor field, the more informative the final glyph-based visualization
becomes. Examples for applications within the context of tensor field visualization have
been presented in [Chen et al., 2011; Goldau et al., 2011]. Building on the particle-based
method of [Shimada et al., 1996], Kindlmann and Westin [2006] present an approach
for planar domains and volumes. Here, the input diffusion tensor field is mapped to
a potential energy field determining inter-particle forces. For the planar case, this
approach was extended in [Hlawitschka et al., 2007], which focuses on an improved
initial sampling and interactivity by using an isotropic Delaunay triangulation. In
this chapter, we show that more meaningful neighbor computations are achieved with
anisotropic triangulations. A limitation of these particle force-based algorithms is
that they often suffer from many non-intuitive parameters, and that they are sensi-
tive to parameter choices. Their strength is that they are easier to extend to 3D domains.

An alternative to particle-based approaches are geometry-based algorithms. These
are often based on Lloyd relaxation [Lloyd, 1982; Du et al., 1999]. For example, Feng
et al. [2008] use Lloyd relaxation to generate anisotropic samplings of planar domains.
As Lloyd relaxation relies on Voronoi diagrams, this approach requires the computation
of an explicit generalized Voronoi diagram including the handling of orphans. One
advantage of such a relaxation-based method over particle-based methods is that it is
almost parameter-free. However, the computation of an explicit generalized Voronoi
diagram on surfaces including the handling of orphans is computationally too expensive
for our purposes. Building upon ideas of [Feng et al., 2008], Li et al. [2010] extends dart
throwing and relaxation to anisotropic sampling. For this purpose, they replace the
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Euclidean distance metric by a geodesic one. In their work, relaxation is only applied
on planar domains, while surface sampling is restricted to dart throwing in combination
with surface parameterizations. The triangle-based approach presented in Section 5.5
avoids the need of surface parameterizations. Moreover, it is time-efficient and needs
only few parameters. It also uses relaxation in the two-manifold domain to equalize
distances.

5.3 Underlying Concepts and Basic Ideas

This section provides the basic concepts and ideas underlying the two algorithms that
are presented in this chapter. Furthermore, it summarizes the relevant prerequisites
and assumptions.

Input of both algorithms is:

• A geometric domain Ω that can be either a planar domain Ω ⊂ R2 with boundary
∂Ω, or a two-manifold domain Ω ⊂ R3 with or without boundary. Note that the
particle-based approach presented in Section 5.4 is restricted to planar domains.

• A 2D or 3D input field given on a uniform, triangulated or tetrahedral grid. The
input field can be either scalar-, vector- or tensor-valued.

• Optionally, a spatially varying importance function to create adaptive sample
distributions.

Output of both algorithms is a point distribution that fulfills the Poisson-disk charac-
teristics with respect to the underlying metric tensor field.

5.3.1 Notations

In this chapter the following notations are used: A general second-order tensor is
denoted as T; the metric tensor is denoted as M. Bold lower-case letters describe
sample positions, for example, p and q and vectors v and w. A sample set is S. The
Delaunay triangulation is denoted by D and a surface mesh by X . Small Greek letters,
such as α and β, denote angles.

5.3.2 Metric Tensor Fields

Regardless of the input field (scalar, vector, or tensor), the algorithms that are presented
in Section 5.4 and in Section 5.5 work on a metric tensor field, which is either a direct
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(a) M = M(p) = const (b) M = M(p)

Figure 5.2: Elliptical samples. Given a constant metric tensor field, all samples have the same shape,
size and orientation (a). Given a spatially varying metric tensor field, size, shape and orientation of
the samples depend on their position (b).

mapping of the input field or is derived from it (see Section 5.3.4). The size, shape
and orientation of the samples depend on the sample positions p ∈ Rd and the local
metric M(p) ∈ Rn×n at position p (Figure 5.2). Here, d and n are 2 in the planar case
and 3 in the two-manifold case. In either case, the metric tensor M is represented by
an n × n symmetric positive-definite matrix. To reconstruct M at arbitrary sample
positions in the planar domain, we use component-wise linear respectively bilinear
interpolation. On surfaces, the tensors are interpolated on a per-triangle basis using
barycentric coordinates.

The metric tensor describes anisotropic distances between sample positions p ∈ Ω.
It can be imagined as an ellipse or ellipsoid, respectively, which is scaled according to
the reciprocal eigenvalues and oriented according to the eigenvectors of M [Feng et al.,
2008]. Consequently, ellipses and ellipsoids build our basic sample shapes.

We assume that the metric tensor field does not vary strongly within a small local en-
vironment. The idea behind this assumption is that reasonable visualization results can
only be achieved if the variation of the tensor field, compared to the size of the samples,
is relatively small. Only with this assumption, the samples are valid representatives
for the part of the metric tensor field which they cover (see also [Feng et al., 2008]).
Globally, in contrast, sample sizes and shapes can differ significantly (Figure 5.2b).

In the following, we use the term sample for elliptical or ellipsoidal sample, and
metric for a 2D or 3D metric tensor.
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(a) Isotropic space (b) Anisotropic space

Figure 5.3: Undistorted Euclidean space (a) and distorted metric space (b). The black lines are
the isolines corresponding to the local metrics.

5.3.3 Isotropic vs. Anisotropic Space

Before we go into the details and present the sampling strategies that were developed
in this thesis, we would like to point out the differences of isotropic and anisotropic space.

In this work, we map an arbitrary type of tensor to ametric tensor (Section 5.3.4) that
describes distances between sample positions p ∈ Ω. It can be considered as distortion
of a circle into an ellipse. Hence, we distinguish between the undistorted Euclidean or
isotropic space (Figure 5.3a) and the distorted metric or anisotropic space (Figure 5.3b).

A special case arises when the metric tensor field does not vary across the domain Ω,
that is, M = M(p) = const. For this case, we can transform the anisotropic space into
the isotropic space via linear transformation using the inverse metric M−1. Common
methods for isotropic point distributions could be used in this space.

In this work, we require our technique to handle spatially varying anisotropies
M = M(p). Therefore, a global transformation of the complete space is not possible.

5.3.4 Anisotropy Design

In this section, we explain how metric tensor fields are generated in this work. As said
in Section 2.5, a tensor

M = U ·V ·UT (5.1)



96 5.3. UNDERLYING CONCEPTS AND BASIC IDEAS

can be described by its eigenvalues and eigenvectors, where U is a rotational matrix
whose columns are the eigenvectors of M, and V is a diagonal matrix whose diagonal
elements are the eigenvalues λ1, λ2, λ3 of M.

If the input data are scalar or vector fields, we first determine U and V and then
compose them again to get M (Equation (5.1)). In more detail, we derive the information
about the three eigenvectors and their scaling (represented by the eigenvalues) from
the input data. If tensor fields are given as input, we first decompose the tensor into U
and V. Then, we have the possibility to manipulate (map, scale) the eigenvalues to
finally compose the parts again to get M.

Scalar fields To derive metric tensor fields from color images, we compute the image’s
gradient as minor eigenvector. The vector field orthogonal to the gradient field represents
the major eigenvector field aligned with the edges of the input image. Anisotropy design
mainly subsumes the scaling and/or mapping of the eigenvalues.

Vector fields If the input data is a vector field, the vector field itself becomes the
major eigenvector field and the vector field orthogonal to the input field serves as
medium eigenvector field. If surface vector fields are given as input, a 3D tensor is
generated. Then, the minor eigenvector field is represented by the surface normal where
the corresponding eigenvalue is set to λ3 = ε. The value that is chosen for ε must be a
small value but larger than zero due to numerical reasons.

Tensor fields Finally, arbitrary tensor fields are possible input data. In that case, we
first decompose the input tensor T = U ·V ·UT into its eigenvalues and eigenvectors.
Then, the eigenvalues are scaled through eigenvalue mapping [Hotz et al., 2004].

5.3.5 Anisotropic Triangulations

Since Delaunay triangulations provide a useful notion of neighborhood relations and
region of influence, they play a central role in the presented approaches. In the following,
a variant of the Delaunay triangulation that we call anisotropic triangulation will be
defined. It builds the core of both sampling approaches.

Delaunay triangulations and Voronoi diagrams Given a planar Euclidean domain
Ω and a point set P = {pi, i = 1 . . . n} ⊂ Ω, a Voronoi diagram is defined as the set of
n Voronoi cells Ωi for which holds that all points that lie within Ωi are at least as close
to pi as to any other point in P . The Delaunay triangulation D of Ω with respect to P
can be defined by a couple of equivalent properties:
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(a) Isotropic neighbors (b) Anisotropic neighbors

Figure 5.4: Neighbor computation of the current sample (green) for an isotropic (a) and anisotropic
(b) triangulation of a constant field. In this example, the isotropic Delaunay triangulation and the
usage of a one-edge distance (blue samples) can lead to wrong neighbors. Using a two-edge distance
(yellow samples) does not provide a valid solution, either (a). Given an anisotropic triangulation, a
one-edge distance is sufficient and already results in meaningful neighbors (b).

• D is the dual graph of the Voronoi diagram.

• D maximizes the sum of the minimum angles.

• D guarantees that the circumcircle of each triangle does not contain any other
point of P .

In general, Delaunay triangulation algorithms focus on these properties and Voronoi
diagrams are computed as dual of the Delaunay triangulation. When generalizing
these ideas to non-Euclidean spaces, utilizing a spatially varying metric, the above
mentioned properties of the Delaunay triangulation are not equivalent anymore. In
general, an anisotropic Delaunay triangulation is defined based on the duality property.
Unfortunately, it is not guaranteed that the dual of an anisotropic Voronoi diagram
actually results in a valid triangulation (e.g. [Labelle and Shewchuk, 2003; Du and Wang,
2005]). This is already the case for planar domains and even worse for the manifold case.
To avoid this problem, several heuristics have been proposed (e.g. [Bossen and Heckbert,
1996; Shimada et al., 1996; Li et al., 1999]). Among the algorithmic challenges are an
efficient geodesic distance computation and the fact that Voronoi cells are no longer
bounded by straight lines. For time-efficient solutions, approximate definitions and
distance measures are useful. We propose to define a triangulation that represents a
meaningful neighborhood structure (Figure 5.4), independently from the Voronoi cells.
In the following, we introduce our definitions to generate anisotropic triangulations.
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Figure 5.5: Modified edge flip. Left: Configuration for which the angle condition is tested (red
edge). Here, the Euclidean angles are depicted. Middle: To validate the angle condition, we analyze
the angles opposite to this edge with respect to the inverse metric (swapped ellipses). In this
configuration, the angle condition is not fulfilled. Right: Valid configuration.

Modified edge flip To compute a Delaunay triangulation for non-Euclidean metrics
of parameterized surfaces, Shimada et al. [1996] propose an edge-flip algorithm based
on a generalized circumcircle test in parametric space. Since we deal with triangulated
surfaces without given parameterization, we propose to adapt the Delaunay angle
condition (see also [Navarro et al., 2011]), also applying an edge-flip algorithm. The
angle condition is easy to generalize to the anisotropic case and does not require a
parameterization. Note that the edge-flip algorithm only concerns the neighborhood
relation of the samples and does not change the original surface. We check for each
edge of a given triangulation if the sum of its opposite angles α and β satisfies the
following condition:

α+ β ≤ π. (5.2)

Therefore, we solely need to adapt the dot product for computing the angles α and β.
For two vectors v,w ∈ R3 and a local metric M, the scalar product becomes

〈v,w〉M = vT ·M ·w. (5.3)

Accordingly, the length of the vector v is defined as

‖v‖M =
√

vT ·M · v. (5.4)

If v,w are the two vectors that enclose the angle ∠(v,w) and share the point p we
have

∠(v,w)M(p) := arccos
(

〈v,w〉M(p)
‖v‖M(p)‖w‖M(p)

)
. (5.5)
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(a) Isotropic mesh (b) Anisotropic mesh

Figure 5.6: The figures show an isotropic mesh (a) and an anisotropic mesh with respect to a
given metric tensor field (b). The anisotropic mesh aligns naturally with the major eigenvector field.

We evaluate the angle condition using the inverse metric (Figure 5.5) and call the
resulting triangulation anisotropic triangulation.

Properties Such a triangulation, which is generated with respect to a given metric
tensor field, has the following properties (see Figure 5.6 and Figure 5.8):

• Its triangles are stretched according to the metric field and the edges are oriented
along the direction of the major eigenvector field [Shimada et al., 2000].

• It naturally has an adaptive character, which supports our requirement of good
visual quality.

• It leads to more meaningful neighbor computations in metric space than isotropic
triangulations do.

Algorithm (Planar domains) For creating the triangulation in the planar domain, we
use an incremental algorithm starting with a supertriangle that covers the whole sample
domain. We successively refine the triangulation by adding new samples in sparsely
populated areas (Sections 5.4.2, 5.5.2) thereby following the approach by Sloan [1987].
Whenever a new sample is added, we check if the angle condition (Equation (5.2))
is still fulfilled. Thus, the triangulation is built concurrently with the initial sample
distribution. Figure 5.7 shows an initial sampling and the corresponding anisotropic
mesh.

Algorithm (Two-manifold domains) For creating the triangulation in the two-manifold
domain, we propose an edge-flip algorithm on the basis of the triangulated input surface.
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(a) Initial sampling (b) Anisotropic mesh

Figure 5.7: Anisotropic triangulation in the planar domain (b) with respect to a non-uniform
anisotropic tensor field (a). The anisotropic triangulation aligns with the major eigenvector field,
which in this example is tangential to the image edges.

For computing edge flips in parallel, we distinguish four steps (similar to [Navarro
et al., 2011]):

1. Starting from the input triangulation, we check for each edge whether its adjacent
triangles fulfill the angle condition (Equation (5.2)). If it is not fulfilled, the
edge needs to be flipped and, therefore, is labeled l = 1. Otherwise and if it is a
boundary edge, it is labeled l = 0.

2. Next, a subset of edges with label l = 1 needs to be found that can be flipped
in parallel. This is the case if the two triangles that are adjacent to the current
edge do not have another edge that is labeled.

3. Now, the actual edge flip is performed for all labeled edges in parallel.

4. Finally, the triangulation and all neighbor information is updated.

These four steps are repeated until a user-specified number of edges fulfills the angle
condition (Equation (5.2)) or a maximum number of iterations was reached. In general,
this leads to an anisotropic triangulation as defined in Section 5.3.5. Depending on the
underlying metric field, however, dead-locks are possible. These occur if flipping one
edge results in a configuration where another edge becomes invalid and vice versa, and
it occurs if the two triangles adjacent to the current edge have another edge that needs
to be flipped and this configuration cannot be eliminated over several iterations. For
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(a) Isotropic mesh (b) Anisotropic mesh

Figure 5.8: Delaunay triangulation in the two-manifold domain: with respect to a uniform isotropic
tensor field (a) and a non-uniform anisotropic tensor field (b). The anisotropic triangulation (b)
aligns with the major eigenvector field and naturally has an adaptive character.

subsequent computations, however, these edges do not lead to problems, because we
only need the neighbor relations to compute minimum distances and, therefore, we use
second-order neighbors.

5.3.6 Triangle Fillrate

Figure 5.9: To compute the fillrate of a triangle, we use the metric at the triangle’s barycenter (red
ellipse). If the fillrate falls below a user-defined threshold, a new sample is inserted at the triangle’s
barycenter (right image) and a retriangulation (dotted lines) is initiated.

In the following, we will present a simple density measure, which we use for the creation
of an initial sample distribution: the triangle fillrate (Figure 5.9). A triangle’s fillrate is
the ratio between the subarea A◦ of the triangle that is covered by the elliptical samples
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at its corners, and the triangle area A4 itself. To compute A◦, we use the determinant
of the metric at the triangle’s barycenter q = 1

3(p1 + p2 + p3), where p1,p2,p3 are
the triangle’s vertices. As the sum of all triangle angles is always π, the area A◦ that is
covered by an ellipse/ellipsoid is always half of the area of the ellipse/ellipsoid, that is,
A◦ = 0.5 · π · det(M(q)). From A◦ and A4, the fillrate η is computed as

η = A◦
A4

. (5.6)

The densest packing of spheres in the 2D domain results in a hexagonal pattern.
Assuming such a hexagonal packing as gold standard, the optimal fillrate is given as

δfill = π

2
√

3
≈ 90.7%. (5.7)

5.4 Particle-Based Approach

The approach that is presented in the following is a particle-based approach. Here, the
samples are interpreted as moving particles. Because the movement is based on forces
defined by inter-particle distances, stable distances are achieved when the particle
system reaches an equilibrium, that is, when all elliptical samples centered at the
particle positions are closely packed without intersecting each other.

On the basis of previous work in the context of meshing [Shimada et al., 2000],
anisotropic sampling [Feng et al., 2008] and glyph placement [Kindlmann and Westin,
2006; Hlawitschka et al., 2007], we have developed a method that behaves in a robust
way even when the size of the samples varies strongly across the sample domain. This is
an important property of our approach which distinguishes the presented method from
previous work [Kindlmann and Westin, 2006; Hlawitschka et al., 2007]. To achieve this,
we propose the use of an anisotropic triangulation (Section 5.3.5) of particle positions.
It leads to more meaningful neighbor computations in metric space than isotropic
triangulations do. Furthermore, it provides good means for an explicit and automatic
control of prominent holes and overlaps, which otherwise would result in unpleasant
visualizations.

5.4.1 Overview

The following steps summarize our method for generating anisotropic sample distri-
butions in planar domains by interpreting the samples as moving particles that exert
attracting and repelling forces. Input is a scalar-, vector- or tensor field.

1. Define a metric tensor field as described in Section 5.3.4.



5.4. PARTICLE-BASED APPROACH 103

(a) 0D (b) 1D (c) 2D

Figure 5.10: To achieve a closed boundary treatment, the domain is sampled in order of dimension.
First, samples are placed at the corners (a), then they are distributed along the edges (b) and finally
they are inserted into the domain via dart throwing (c).

2. Generate an initial sample distribution respecting this metric. To gen-
erate such a distribution, we use anisotropic dart throwing (Section 5.4.2).

3. Iteratively refine the initial sample distribution via particle movement
(Section 5.4.3) until all forces are balanced or a maximum number of iterations is
reached. An anisotropic triangulation enables fast and correct neighbor-queries
and it is also used for an automatic population control (Section 5.4.4).

5.4.2 Initial Sampling

The initial sample distribution should have the following properties:

• The distances between particles are well-balanced so that significant holes and
overlaps are minimized.

• The samples cover the domain densely.

• It is unstructured so that periodic arrangements are reduced.

To generate a sample distribution that fulfills these criteria, we developed a variant
of relaxation dart throwing [McCool and Eugene, 1992] that can handle samples with
elliptical shape. According to Shimada et al. [2000], we sample the given domain Ω
in order of dimension: First, samples are placed at the corners of Ω, which are kept
fixed throughout the whole simulation (Figure 5.10a). Second, samples on the edges of
Ω are distributed via subdivision (Figure 5.10b). To avoid a structured placement of
edge samples, they are repositioned using a one-dimensional particle movement (Sec-
tion 5.4.3). Now, these positions are kept fixed throughout the whole simulation, which
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leads to a closed boundary treatment that avoids particles leaving the domain. Further-
more, this boundary treatment eliminates the necessity to define an external force as
it was required in previous work [Kindlmann and Westin, 2006; Hlawitschka et al., 2007].

To distribute samples inside the domain, we use dart throwing [Cook, 1986], that is,
samples are successively thrown into Ω (Figure 5.10c). They are rejected if they would
intersect with any previously accepted ellipse. To generalize this algorithm to work
with anisotropic samples, we use the same distance measure (Equation (5.10)) as for
the force function. The original dart throwing algorithm terminates if the rejection-rate
exceeds some threshold. In this work, we apply relaxation dart throwing. Starting
with larger samples, their size is successively reduced if the rejection-rate becomes too
large, that is, if the ratio of the number of accepted against the number of rejected
samples falls below a user-specified threshold value ε. To create the images in this
section, we used ε = 0.01. To determine ellipse sizes, we use the relative Poisson disk
radius r given as r = ρrmax, with ρ ∈ [0, 1] [Lagae and Dutré, 2005]. In our case rmax
is implicitly given by the local metric. For relaxation dart throwing we start with a
value of ρ = 0.9 which is reduced by 0.05 whenever the rejection rate becomes too large.
We stop reducing sample sizes when ρ = 0.75. As said in [Lagae et al., 2008], ρ needs
to be large but not too large to avoid regular configurations (ρ = 1 corresponds to a
hexagonal arrangement). An advantage of relaxation dart throwing is that it terminates
when a desired number of samples has been accepted, which is one of our requirements.
In order to estimate this number N , we compute an average value of the determinant
detavg of M, which provides a measure for the average size of elliptical samples. Given
the area A of the domain Ω, an appropriate number N of samples then is

N = A

detavg
. (5.8)

5.4.3 Particle Movement

In the following, we describe how the initial sample distribution is refined via particle
movement. The idea of this step is to equalize the distances between the samples so that
they become more uniform. To achieve this, a force function is defined that controls
the movement. The force function is a function of particle distances exerting attracting
and repelling forces depending on the inter-particle distances.

Distance measure Previous work approximate geodesic distances [Feng et al., 2008; Li
et al., 2010] via distance computation in the distorted space. These measures, however,
are not symmetric, which would require an additional conflict check [Li et al., 2010].
According to Shimada et al. [2000], we define the optimal distance dopt between sample
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pa pb

ra rb

yab

Figure 5.11: Approximated distance computation between the neighboring samples pa and pb.

positions pa and pb to be the sum of the two lengths ra and rb to the ellipses’ surface
in the direction of the connecting line yab = pa − pb (Figure 5.11)

dopt = ‖M(pa) · yab‖
‖yab‖︸ ︷︷ ︸
ra

+ ‖M(pb) · yab‖
‖yab‖︸ ︷︷ ︸
rb

. (5.9)

Thus, the optimal distance with respect to the force function is always dopt = 1 inde-
pendent from the local metric. The force function (Section 5.4.3) then is defined over
the relation d of the inter-particle distance yab and dopt

d = ‖yab‖
dopt

. (5.10)

Figure 5.11 shows that this approximation does not avoid all kinds of intersections.
However, we find that this measure is a good compromise with respect to the generation
of holes and overlaps. Preventing, for example, the two samples shown in Figure 5.11
from intersection would result in a bigger hole at the top.

Force function The force function f , being defined over the distance d (Equa-
tion (5.10)), controls the particle movement. The goal is to compute stable particle
distances that are characterized by elliptical samples that are closely packed and
non-intersecting. Therefore, we define a piecewise cubic spline f(d) with the following
properties (see also Figure 5.12):

• It has a zero crossing at d = 1 so that particles with optimal distance do not
move.

• If ]0 < d < 1[, repelling forces are exerted pushing particles apart.

• If ]1 < d < (1 + γ)[, attracting forces are exerted pulling particles together. The
parameter γ controls the range of attracting forces. As we only consider particle
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Figure 5.12: Force function. Within the range (0 < d < 1) repelling forces are exerted. Forces
become zero if d = 1 and within the range (1 < d < (1 + γ)) attracting forces are exerted.

interactions of neighboring samples, excluding long-distance interactions, our
method is not very sensitive with respect to γ. It can be set on a fixed value of
γ = 0.5.

The force Fa, which acts on particle a, is determined from the sum of the forces from
the neighboring particles Fa =

∑
b,b6=a fab. The equations of motion [Kindlmann and

Westin, 2006; Hlawitschka et al., 2007]

d2p

dt2
= Fa + Cdrag

dp
dt

(5.11)

are solved numerically via Euler integration using a step size of ∆t = 0.2. Since the
force scales with sample size, this leads to small steps for small particles and larger
steps for large samples. The drag parameter Cdrag counteracts the particle motion to
avoid oscillations and to guarantee numerical stability [Kindlmann and Westin, 2006].
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N Initial Seeding 100 Iterations 1000 Iterations
1000 7s 0.3s 3s
10000 90s 4s 40s

Table 5.1: Timing statistics in seconds measured on an 2.6 GHz Intel Xeon Quad Core. The
performance of the particle-based approach mainly depends on the desired sampling resolution N
and the time needed for initial seeding. The particle movement is very fast.

5.4.4 Automatic Insert and Delete Operations

The estimation of the number of particles n for the initial placement (Section 5.4.2) is
challenging. Especially considering our requirement of a stable particle system that
can handle samples of varying size, n is only a rough estimate. Therefore, we include
automatic delete and insert operations that adjust the number of samples during
simulation. This further enables an explicit control of holes and overlaps. According
to Shimada and Gossard [1995], we identify over- and underpopulated regions via
analyzing inter-particle forces. As soon as F exceeds (falls below) a given threshold,
particles are removed (inserted). Contrary to geometry-based approaches, which only
depend on attractive forces, particle-based methods are more sensitive to holes. Thus,
overpopulated regions appear only rarely.

To automatically insert samples in underpopulated regions, we exploit the anisotropic
triangulation (Section 5.3.5). Therefore, for each triangle, the fillrate η, being the ratio
of the covered area and the triangle’s area, is computed (Section 5.3.6). Assuming a
hexagonal packing as gold standard, the optimal fillrate is δfill ≈ 0.9 (Equation (5.7)).
If η is significantly below δfill, a new sample is inserted at q. For the images that are
depicted in this section, we inserted a new sample whenever η ≤ 0.6.

5.4.5 Results and Applications

We have presented a particle-based approach to generate unstructured distributions
of non-intersecting elliptical samples in planar domains. In the following, we evaluate
this method with respect to its performance and show examples for its application for
glyph placement and texture generation. Therefore, we applied the proposed methods
to a slice of the two-point-load dataset (see Appendix A.1) (Figure 5.14) and to a
color image (Figure 5.13) In the latter case, we computed the image’s gradient- and its
orthogonal vector field as described in Section 5.3.4 to generate a metric tensor field.
For both examples, we used an anti-symmetric mapping (Equation (3.2)).
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All images and timing results were obtained on an Intel Xeon X5550 2.67 GHz
system with 8 cores and an NVIDIA GeForce GTX680 graphics card.

Performance
The time needed for generation mainly depends on the desired sampling resolution
and the number of iterations needed until a stable placement has been reached (Ta-
ble 5.1). To create the images shown in Figure 5.13 and Figure 5.14, an update of the
Delaunay triangulation every eighth iteration was sufficient. The frequency of updates
is independent from the number of samples. Instead it depends on the variation of
sample size, that is, more frequent updates are required if the sample size across Ω
varies strongly. In our examples, we found a stable configuration after 100 iterations.
For comparison, Kindlmann and Westin [2006] computed 2000 iterations to create
the 2D results in their work, which took about 8 minutes. Usable results appeared
after 400 iterations. Unfortunately, they do not say anything about the number of
glyphs. Hlawitschka et al. [2007] mention that their packing becomes stable after
“several hundred steps”. For N = 1000 (10000) glyphs and 100 iterations they need
2s (55s). Because all of these measures were carried out on different PCs and in different
years, the times should be considered only as a rough comparison value. In fact, more
interesting are the number of iterations.

Applications

(a) Uniform sampling (b) Initial anisotropic sampling (c) Final anisotropic sampling

Figure 5.13: In these images, size and shape of elliptical samples are determined from a metric
based on the image gradient and its orthogonal vector field. To compute the sampling distribution
for these images, 1000 iterations were needed. The images show the samples placed at the grid
positions (a), before particle movement (b) and the result of the particle-based approach (c).
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In the following, we show that the distribution is well suited for the placement of glyphs
and as input noise texture for the creation of fabric textures.

(a) Input (random noise) (b) LIC texture (random noise)

(c) Input (our method) (d) LIC texture (our method)

Figure 5.14: These images show a slice from a stress tensor dataset from a finite-element simulation
that describes the elastic behavior of a block on which a pushing and a pulling force have been
applied. To compute the sampling distribution (c) used as input to create a fabric texture (d), 100
iterations were needed. Holes/clutter in the random noise input (a) result in darker/brighter regions
in the final image (b), which gives the impression of a 3D field. In (d), thinner fibers in compressive
regions can be distinguished clearly from thicker fibers in tensile regions.

Glyph Positioning For the placement of tensor glyphs a good distribution should
have the following properties:
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• Dense, to provide all relevant details and the evolution of tensors across the field.

• Unstructured, because the human visual system is sensitive to the recognition of
patterns.

• Evenly, minimizing prominent holes and overlaps.

Figures 5.13c and 3.5b demonstrate the superior quality of glyph-based depictions
when the glyphs are centered at the particle positions of the stable configuration. The
images become more informative and visually pleasant. If glyphs are placed at discrete
grid positions, the pattern of the underlying grid becomes visible and disturbs the
perception of the field’s continuous behavior. Figure 5.13b further shows the good
quality of our initial sample distribution. As our technique provides an automatic
control of overlaps, holes in the initial distribution are filled during particle movement.
However, the quality of the initial distribution influences the algorithm’s convergence
time.

Texture Generation Hotz et al. [2004] have presented a global texture-based method
that is especially designed to represent the central features of stress tensors, namely
compression and expansion. Therefore, a LIC-like texture for both eigenvector fields
is created and then the two resulting textures are blended, which results in images
that resemble a fabric: thinner fibers indicate compression and thicker fibers indicate
expansion. For this method, sparse noise textures (Figures 5.14b, 5.14d) are preferred
as input. However, especially sparse noise textures can suffer from holes which are
visible in the final image (Figures 5.14a, 5.14b). A good distribution that is used as
input noise texture should have the following properties:

• Even, to ensure a uniform brightness across the field. Otherwise, brighter regions
would be emphasized and, thus, might be perceived as more important.

• Unstructured, to avoid patterns to become visible in the final visualization.

Figure 5.14 compares the results using a random noise texture as input (Figures 5.14a,
5.14b) and one computed with our technique (Figures 5.14c, 5.14d). Using a noise
distribution computed with our technique results in a visualization where contrasts are
more balanced and the distances between the fibers are more uniform. Furthermore,
the visualization that is based on our technique has less the appearance of being
three-dimensional, which otherwise could lead to misinterpretations.

5.4.6 Discussion

In this section, we presented a particle-based approach to generate anisotropic sample
distributions. We extended relaxation dart throwing to work with anisotropic samples.
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Therefore, we use a distance measure that identifies intersections between elliptical
samples. The iterative refinement of the initial distribution via particle movement
was extended by introducing the use of an anisotropic triangulation. Through this
approach, the computation of forces becomes more stable due to improved neigh-
bor computations in comparison to isotropic triangulations. As a consequence, our
method is more stable with respect to samples that strongly vary in size across Ω.
Since particle-based approaches are very sensitive to holes in the initial distribution,
automatic insert and remove operations were presented. These are able to detect over-
and underpopulated regions during iterative refinement. Due to this automatic control,
holes in the initial distribution are filled during simulation. This is an important step,
because the quality of the initial distribution influences the final distribution’s quality
as well as the algorithm’s convergence time. In general, 100 iterations are sufficient to
create a stable particle configuration. In all our test cases, we never needed more than
1000 iterations.

We have shown the applicability of the resulting sample distribution to improve
glyph-based depictions and as input texture for the creation of fabric textures. A major
bottleneck in the presented particle-based approach is the time needed to create the
initial sample distribution. To optimize this step, the use of the anisotropic triangulation
would be beneficial so that conflict checks are only computed between neighboring sam-
ples. However, we have identified even more potential in the anisotropic triangulation.
Therefore, we will present a method to create initial sample distributions in Section 5.5
that does not need any conflict checks. With this method, we are able to create up
to 10, 000 samples per second. Another disadvantage of the particle-based approach is
that it is very sensitive to parameter choices. Although, we already identified default
values for the needed parameters and also got rid of parameters that were needed
in previous approaches, there is still room for improvement. Finally, the number of
iterations needed for the refinement of the initial distribution could be minimized. In
Section 5.5, we present an algorithm that exploits the anisotropic triangulation in
various ways, which improves the performance significantly.

A generalization of the particle- approach to work with 3D tensor fields would be
possible and was shown in previous work [Kindlmann and Westin, 2006]. In this work,
we have not considered an extension of the method to work with 3D tensor fields,
because we believe that 3D glyph visualizations do not result in very meaningful
visualizations. Instead, we focus on a more general approach that works in planar as
well as in two-manifold domains in the next section. With this method, we lose the
easy generalization to 3D domains. However, we will show that it comes with many
advantages and is highly time efficient.
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5.5 Triangle-Based Approach

This section presents a time-efficient approach for the generation of anisotropic sample
distributions that only depends on intuitive design parameters. The presented approach
works on planar as well as on two-manifold domains. Similar to Section 5.4, we employ
an anisotropic triangulation. In this work, however, we further exploit the properties
of such a triangulation for the fast creation of high-quality initial sample distributions
as well as for gravitational-centered relaxation. Thus, our approach is not only an
extension to two-manifold domains. It also significantly speeds up the generation of
anisotropic sample distributions for the planar case compared to the approach pre-
sented in Section 5.4. Due to this speed-up, the triangle-based approach also enables
interactive slicing through 3D datasets.

The extension of the planar case to two-manifold domains implicates several additional
challenges. To achieve interactive results there is always a compromise between an
approach with a solid theoretical basis and a more practical/approximative solution.
The design of our solution is guided by the following requirements:

1. The sample generation should be time-efficient.

2. It should depend on very few intuitive parameters.

3. The sample distribution should have a random character (no noticeable pattern)
and the sample domain should be covered densely (avoid large empty areas as
well as cluttered areas which both would be visually distracting).

The most critical part for the generalization to surfaces is the computation of distances
and the generalization of distance measures. Our technique avoids costly distance
computations whenever possible. Where distance computations are needed, we use fast
and easy to compute approximations which are sufficient for our purposes and result
in sample sets that fulfill our requirement of good visual quality (see Requirement (3)).

5.5.1 Overview

The following steps summarize our method for generating anisotropic sample distri-
butions on planar and two-manifold domains. Input is a scalar-, vector- or tensor
field.

1. Define a metric tensor field as defined in Section 5.3.4.

2. Generate an initial sample distribution respecting this metric. To gen-
erate such a distribution, we employ anisotropic triangulations (Section 5.3.5)
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and compute triangle fillrates to find areas that are sparsely populated. In these
areas, new samples are added. Furthermore, two additional design options are
provided: (1) the overall density is steered by the fillrate η. (2) A spatially varying
importance function facilitates a local density adaptation.

3. Apply a relaxation process (Section 5.5.3) that equalizes triangle sizes
with respect to the underlying metric tensor field. Thus, more uniform sample
distances with respect to the underlying metric tensor field are achieved. The
relaxation is based on the anisotropic triangulation.

5.5.2 Initial Sampling

The initial sampling procedure computes a set of samples S := {pi|pi ∈ Ω, i = 1 . . . n},
where n is the number of samples. We require our initial sample distribution to have
the same properties as they were discussed in Section 5.4: the samples should cover the
domain densely (no holes) while a minimum separation between them is maintained (no
overlaps). The major bottleneck of methods to generate such distributions, for example,
dart throwing, are costly distance computations [Feng et al., 2008]. In the following,
we present a method that exploits the triangulation’s properties (Section 5.3.5) to
generate an initial sampling with high visual quality. Thus, we do not require distance
computations to identify sample intersections. The properties of the triangulation in
combination with the assumption that the metric tensor field does not vary strongly
within a small local environment (Section 5.3.2), and finally the fillrate, allows us to
pass on explicit sample intersection tests.

Algorithm Starting point of initial sampling is a coarse anisotropic triangulation of
the input domain. For identifying areas where it is beneficial to insert a new sample,
we use the fillrate of a triangle as measurement (Section 5.3.6). In [Kratz et al., 2011b],
the triangle fillrate was used for population control in order to insert or remove samples
during the refinement procedure. We use the triangle fillrate as guidance for the initial
sampling procedure. To guarantee interactivity, we propose the following computations.

We can guide the distribution’s density by changing the target value for η. Smaller
values result in less dense initial samplings and higher values in denser samplings. To
add adaptivity, an additional importance function can be used that influences the scale
of the samples and, thus, also the fillrate. For example, an importance function that is
guided by the magnitude of the image gradient creates initial sample distributions that
are denser at the edges of the input image (see also Figure 5.17).
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In the planar case, we start by randomly sampling the boundary ∂Ω of the planar
sample domain and adding a few random samples within Ω.

1. For these samples, an anisotropic triangulation is computed that results in a set
of triangles T := {tk|tk ∈ Ω, k = 1 . . .m}, where m is the number of triangles.

2. For each triangle tk, its fillrate is determined. If the fillrate is below a user-defined
threshold, a new sample is added at the triangle’s barycenter.

3. Then, the triangulation is updated and the procedure is started again with step
(1).

4. Steps (1)-(3) are repeated until a desired density, specified by η, has been reached.
In the two-manifold case, we assume a given triangulated surface X .
1. In a first step, X is simplified using an edge-contraction algorithm [Garland and

Heckbert, 1997]. This procedure yields a coarse sample mesh X̂ and an associated
set of triangles T := {tk|tk ∈ Ω, k = 1 . . .m}, where m is the number of triangles.

2. The second step is similar to the planar case with the difference that new sample
positions need to be projected onto the original surface as it will be described in
Section 5.5.4.

3. The triangulation is updated and the procedure is started again with step (2)
until a desired sample density is reached.

5.5.3 Gravitational-Centered Relaxation

The initial sample distribution already fulfills Poisson-disk characteristics. To equalize
sample distances, we propose a gravitational-centered relaxation on the basis of the
anisotropic triangulation. It equalizes triangle sizes with respect to the metric tensor
field so that sample distances become more uniform (e.g., Figure 5.17(d)). This is
desirable for the rendering of anisotropic Voronoi diagrams, which we will introduce in
Chapter 6.

Centroid of tensor-weighted star For each sample pi, we consider its one-ring neigh-
borhood tj ∈ N(pi) (Figure 5.15). This star consists of n triangles that all share the
sample pi and have a barycenter qj . The centroid ci of the star with respect to the
metric is defined in analogy to the center of mass, which will be regained when using
the Euclidean metric

ci = M−1
i ·

n∑
j=1

A4j · (M(qj) · pi), (5.12)

whereby Mi =
∑n
j=1A4j ·M(qj).
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Figure 5.15: For gravitational-centered relaxation, the star around each sample is considered. To
compute the centroid of this star, the metric tensors (green ellipses) at the triangles’ barycenters are
used as weights (left). Once the star’s centroid is computed, the sample position and its one-ring
neighborhood are updated (right).

Point relocation The point relocation comprises an update of the current sample’s
one-ring neighborhood. For planar domains, the sample pi is simply translated towards
the centroid ci with

pi ← pi + (ci − pi). (5.13)

For the two-manifold case, centroids that are computed with Equation (5.13) in
general do not lie on X . Therefore, the translated points need to be projected back
onto X . The point relocation for surfaces, thus, becomes

pi ← P (pi + (ci − pi),ni)
pi ← P (pi + (ci − pi),−ni),

(5.14)

where P is the projection of the translated point onto X (Section 5.5.4), either in the
positive normal direction ni or in the negative normal direction −ni.

Algorithm The gravitational-centered relaxation is based on the initial sample set
S := {pi|pi ∈ Ω, i = 1 . . . n}, where n is the number of samples.

1. For each sample pi, its one-ring neighborhood is found.

2. Then, for each one-ring neighborhood, its centroid is computed.

3. Next, the sample pi is translated towards this centroid ci.

4. Finally, in the two-manifold domain, the translated point is further projected
back onto X .
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5. The procedure starts again with step (1) until a stable configuration has been
found, that is, when all samples lie in the centroid of their surrounding star, or if
a desired number of iterations has been reached.

5.5.4 Back-Projection

Figure 5.16: Link
between samples
and original surface.

For initial sampling and relaxation in the two-manifold domain, we
need to maintain the link between the original mesh and the sample
mesh. That is, for each sample, we need to know which triangle
of X it corresponds to (Figure 5.16). To do this efficiently, we use
a triangle octree (see, e.g., [Samet, 1988]) to store all triangles of
the input mesh X . As projection of a point pi, we take the closest
intersection point of the ray that starts in pi and goes into the
direction of ni and −ni, respectively, with X . With the octree data
structure, the triangles that need to be checked for intersection
are identified in an efficient way. The intersection test is done in
a hierarchical fashion starting with the root node that encloses all
triangles and traversing the octree until a node is found that is
not subdivided anymore. Then, its elements, i.e. its triangles, are
checked for intersection with the ray.

5.5.5 Volume Slicing

Slicing enables the inspection of 3D input data. These can be volume data but also 2D
animated scenes or time-dependent data. To provide a smooth transition between the
visualizations (Voronoi diagrams or glyphs) of single slices, we adapt our anisotropic
sampling for planar domains in the following way: Initial sampling as described in
Section 5.5.2 is done once for the first slice. For this slice, a gravitational-centered
relaxation (Section 5.5.3) is computed until a stable configuration is achieved. For
subsequent slices, we use the result of the previous slice as initial sample distribution.
Before relaxation, we compute the fillrate for each triangle of the previous result and
insert or remove samples if needed. Due to spatial coherence between the slices, these
operations are rarely required. Finally, very few relaxation steps (in our examples a
maximum of 5 steps were sufficient) are needed until a stable sample configuration is
achieved, which guarantees interactivity while inspecting the 3D volume or depicting
2D animated scenes.
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5.5.6 Results and Applications

In the following, we evaluate the presented algorithm with respect to its quality and
its performance. For this, we have applied the proposed methods to various datasets
that are presented in Appendix A. In addition, we created the following examples:

• Color image: For the planar case, we used the same color image as input as in
Section 5.4.5. Results for this input dataset are shown in Figure 5.17.

• Analytical surfaces and metric tensor fields: To analyze the quality of the
generated sample distributions (Figure 5.18) and to determine performance num-
bers (Figure 5.19), we generated tensor fields with specific anisotropy behaviors.
These are: uniform isotropic, uniform anisotropic and non-uniform anisotropic.

All images and timing results were obtained on an Intel Xeon X5550 2.67 GHz system
with 8 cores and an NVIDIA GeForce GTX680 graphics card.

Planar Domain
Figure 5.17 shows results of initial sampling in the planar domain. The images vary by
the three design parameters for the sampling: global density steered by the fillrate η,
an additional spatially varying importance function that is guided by the magnitude
of the image gradient, and the metric tensor field that was derived from the input
image. Depending on the input data and these parameters, our initial sampling strategy
generates approximately 10, 000 samples per second. On average, the generation of the
images depicted in Figure 5.17 took about 0.5 seconds. For comparison, anisotropic
dart throwing as presented in [Li et al., 2010] generates about 200 samples per sec-
ond and anisotropic dart throwing as presented in Section 5.4 generates about 100
samples per second. The images show that the initial sampling strategy efficiently
generates sample distributions that avoid holes and clutter. It reaches already a high
quality even without the relaxation process and may be sufficient for many applica-
tions. The uniformity of the sample distribution depends on the underlying metric
tensor field. See also Figure 5.18 for an analysis of the quality of the sample distribution.

In Figure 5.17d, a relaxation result after 10 iterations is shown. The relaxed sample
distribution is much more uniform. Focusing on the sample images, the initial sampling
is more pleasing to the eye due to the formation of regular patterns during the relaxation
process. But the relaxed version results in less artifacts in the Voronoi cell rendering,
which we will present and discuss in Chapter 6.
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(a) η = 0.1 n = 6, 639 15, 439 samples per sec. (b) η = 0.1 n = 3, 000 10, 714 samples per sec.

(c) η = 0.1 n = 3, 000 10, 714 samples per sec. (d) Relaxed (c), 10 steps

Figure 5.17: Results for initial sampling (a-c) and relaxation (d). The global density is controlled
via the fillrate η. Local density is controlled via an additional importance function based on the
image’s gradient (c). Anisotropy is steered by the choice of metric: In (b) an isotropic metric was
used; the other examples (a, c, d) show an anisotropic metric.
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(a) t = 3.2s (b) t = 0.078s (c) steps = 100 (d) t = 0.068s (e) steps = 100

(f) Dart throwing (g) Initial (h) Relaxed (i) Initial (j) Relaxed

Figure 5.18: Isotropic point sets (a-c), anisotropic point sets (d,e) and their corresponding power
spectra (f-j). The number of samples in all examples was n = 4000. The power spectra all have the
characteristics of a blue noise spectrum. That is, a zero region for low frequencies and a relatively
constant high-frequency region. Also only few repetition and grid artifacts are visible. Overlaps at
the borders arise because of the random initialization at the borders and because our method does
not compute any sample intersections. For the analysis, we have used the point set analysis tool
presented in [Schlömer and Deussen, 2011].

Metric Original Mesh Initial Mesh Sample Mesh Initial (ms) Relaxation (ms)
Uniform isotrop (a) 6077 (Sphere) 217 430 + 217 80 29
Uniform anisotrop (b) 6077 (Sphere) 217 413 + 217 75 26
Non-uniform anisotrop (c) 6077 (Sphere) 217 11587 + 217 716 38
Uniform isotrop (d) 1422 (Calypso) 400 2744 + 400 70 71
Uniform anisotrop (e) 1422 (Calypso) 400 1591 + 400 51 5
Non-uniform anisotrop (f) 1422 (Calypso) 400 236 + 400 24 13
Non-uniform anisotrop 112088 (Aneurysma) 1127 10535 + 1127 1600 900

Figure 5.19: Timings for the sample generation in the two-manifold domain for several analytic
surfaces (see also Figure 6.10 in Chapter 6). Timings for the relaxation are given for a single iteration.
To create the figures that are presented in this chapter, we have computed 100 relaxation steps. A
stable sample configuration, however, is generally achieved after 10 to 20 relaxation steps.

Two-Manifold Domain
Figure 5.20 depicts results for the sample distribution and the corresponding anisotropic
meshes in the two-manifold domain. The metric tensor field is designed on basis of the
wall shear stress of a blood-flow simulation (see Appendix A.4). In this example, the
fillrate was set to η = 1.0. That is, as many samples as possible were distributed on
the surface. The resulting anisotropic triangulation represents the anisotropy of the
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underlying metric. The close-ups show the triangulation before and after relaxation. It
can be seen that the triangle sizes equalize well with respect to the underlying metric
tensor field. To demonstrate that our method can deal with highly anisotropic and
varying metrics, we have exaggerated the anisotropy in this example.

Depending on the complexity of the original surface, our initial sampling strategy
generates around 6, 000 samples per second in the two-manifold domain for this example.
The most time-consuming steps are the projection of new samples onto the original
surfaces and the re-triangulation of the sample mesh. The table in Figure 5.19 provides
an overview of times that were needed to generate an initial sample distribution for two
analytic examples (sphere and calypso) and the aneurysm dataset. It can be observed
that the time needed for initial sampling also depends on the size of the original mesh.
That is, adding a single sample took about ≈ 0.06 ms for the sphere dataset, ≈ 0.03
ms for the calypso mesh and ≈ 0.08 ms for the aneurysm dataset. Overall, the time
needed for initial sampling depends on many aspects: the coarseness of the initial mesh,
the variance of the metric field, the size of the metric tensors, and how many samples
can be added in a single step. In this sense, the timings given in Figure 5.19 should be
treated only as reference.

The table in Figure 5.19 provides an overview of times that were needed for a single
relaxation step for the examples presented in this section. The times that are needed
for relaxation mainly depend on the size of the sample mesh but also on the quality of
the initial sampling, because it influences how many samples are moved in a single step.
The major bottleneck here is the back-projection of relocated samples onto the original
surface. A single relaxation step for the aneurysm dataset takes about 0.9 seconds.

5.5.7 Discussion

In this section, we have presented a method for the generation of anisotropic sample
distributions in the planar domain as well as in the two-manifold domain.

The sampling approach consists of two main steps, the initial sampling and the
subsequent relaxation. The goal of initial sampling is to generate sample distributions
that cover the underlying domain densely while significant holes and cluttered areas
are avoided. We have shown that this can be achieved efficiently through the use of a
density measure that we call triangle fillrate in combination with anisotropic triangula-
tions. This combination of an intuitive measure and a data structure that reflects the
underlying data, enables an efficient identification of areas where inserting new samples
is beneficial. The resulting method can be considered as a kind of guided dart throwing,
where costly intersection tests as well as conflict checks are not needed. This makes
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Figure 5.20: Results for the generation of anisotropic sample distributions in the two-manifold
domain (η = 1.0, n = 10, 535, t = 1.6s). The zooms show the anisotropic mesh before (left) and
after (middle) 100 relaxation steps, and the resulting glyph distribution on the basis of the relaxed
sample set (right).

the triangle-based approach much faster compared to the particle-based sampling that
was presented in Section 5.4. Furthermore, in contrast to the particle-based approach,
only one parameter is required to generate a sample set: the fillrate that controls the
distribution’s density. Additionally, an importance function can be used to generate
adaptive sample distributions.
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Motivated by Lloyd relaxation, which is commonly used in remeshing and sampling
approaches, we have proposed a gravitational-centered relaxation to equalize triangle
sizes with respect to the metric tensor field. Gravitational-centered relaxation has the
advantage that it is solely triangle-based and does not require an explicit representation
of an anisotropic Voronoi diagram. This makes it a stable and time-efficient method to
generate more uniform sample distributions as they are needed for the visualization
of the anisotropic Voronoi diagram. For applications such as stippling, however, the
relaxed sample set is too uniform. Here, the initial sampling result might be preferable
over the relaxed version. In contrast to the triangle-based approach, much less iterations
are needed for the refinement based on gravitational-centered relaxation. Moreover, no
additional insert or remove operations are required.

The most time-consuming step during initial sampling and relaxation in the two-
manifold domain is the back-projection, because we need to maintain the correspondence
between sample mesh and original mesh. For the timings in this section, the back-
projection was done every time a new sample was inserted or every time a sample
was moved. Here, a speed-up can be achieved if the back-projection is only done once
after adding all samples. Then, a breadth-first search starting from the last intersected
triangle might be sufficient.
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Anisotropic Voronoi Cell Rendering

(a) Sample mesh (b) Voronoi cells

Figure 6.1: On the basis of a well distributed point set, an anisotropic sample mesh is generated
(a). This mesh is the basis to compute anisotropic Voronoi cells (b) that are used as base elements
for texture generation.

6.1 Introduction

This chapter presents a novel tensor visualization method that works on two-manifold
domains. The basic idea is to compute an anisotropic Voronoi diagram which consists
of Voronoi cells that are distorted with respect to a local metric (Figure 6.1). These
anisotropic Voronoi cells then are used as base elements for texture mapping. We
show that such a diagram can be computed efficiently in the fragment shader if a
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well-distributed sample set as presented in Chapter 5 is given as input. Main design pa-
rameters of the visualization approach are the metric tensor field (see also Section 5.3.4)
and textures that are mapped onto Voronoi cells. We show that textures provide a
variety of possibilities to design the final image. A hatch pattern, for example, creates
images that have a painterly character; using a single line as input texture produces
images that reveal similar information like LIC textures (see Section 3.4.4); using a
single dot as input texture results in a visualization that is similar to glyph-based
depictions.

This chapter is based on the paper Anisotropic Sampling of Planar and Two-Manifold
Domains for Texture Generation and Glyph Distribution [Kratz et al., 2013b].

Structure This chapter is organized as follows. First, we introduce our definition
of an anisotropic Voronoi diagram (Section 6.2). Then we present a GPU-based
implementation for rendering and texturing of such a diagram in Section 6.3. In
Section 6.4 we show the applicability of the presented visualization method on various
examples. In particular, we visualize the formation of endothelia cells of a blood vessel
in accordance with a blood simulation. Since endothelia cells naturally have shapes
that resemble anisotropic Voronoi cells, this is an application that directly benefits
from our approach.

6.2 Anisotropic Voronoi Diagrams

We compute anisotropic Voronoi diagrams on the basis of a well-distributed sample
set, for example, by using one of the methods presented in Chapter 5. Given such a
sample set, we are able to compute the anisotropic Voronoi diagram using a simplified
distance measure and without requiring a surface parameterization.

Let S be a set of well-defined sample positions pi. In our case, a generalized Voronoi
diagram partitions the domain Ω into n Voronoi cells Ωi, where each region corresponds
to a Voronoi site that is centered at pi. In this work, a site has elliptical or ellipsoidal
shape and is described by a metric tensor M (Section 5.3.2). A Voronoi cell Ωi of a
site centered in pi then is defined as the set of all points P ⊂ Ω that are at least as
close to the site in pi than to any other site in pj ∈ Ω with j = 1 . . . n and i 6= j

Ωi = {P ∈ Ω|dM(pi)(pi, P ) ≤ dM(pj)(pj , P )}, (6.1)

with dM(p) (Equation (6.2)) using the 3D coordinates of pi.

In metric space, Voronoi cells are not bounded by straight lines but by curves. Fur-
thermore, they might be neither convex nor connected. In this case, orphans can appear,
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Figure 6.2: Visual artifacts appear only rarely. They are visible if the borders of the Voronoi cells
are displayed. The triangulation and the Voronoi diagram were computed independently in this
example, i.e., there is no duality between both graphs.

which are part of a Voronoi region that do not necessarily contain the region’s barycenter
(see, for example, the work of [Feng et al., 2008]). The basic idea of our approach is to
compute the Voronoi diagram on the basis of a sample set that has the property that all
samples are equally distributed across the input domain Ω with respect to an underlying
metric tensor field. For such well-defined sample distributions, orphans generally do
not appear and the Voronoi diagram can be computed via a simplified distance measure.

The most natural generalization of the Voronoi diagram is to use a geodesic distance
measure, which, however, is computationally expensive. To ensure a time-efficient
solution, we apply a distance measure that has already been successfully used in
previous work [Labelle and Shewchuk, 2003; Feng et al., 2008] to generalize Voronoi
diagrams. Assuming a local metric Mp and two points p and q, the simplified distance
measure is defined as

dMp(p,q)=‖q − p‖Mp=
√

(q−p)T ·Mp · (q−p). (6.2)

This distance measure simulates a piecewise constant metric. Thus, it fits very well
to the idea of elliptic glyphs, which represent the region of the tensor field that they
cover, and it is also generalizable to two-manifold domains.

Our method does not guarantee the absence of orphans in areas where the anisotropy
of the metric tensor field varies strongly. However, as we use the Voronoi diagram
for visualization purposes only, the rare appearance of orphans is negligible. Visual
artifacts only occur when the borders of the Voronoi cells are displayed (Figure 6.2).
They are not visible if the cells are texturized. Furthermore, we require that the input
tensor fields locally do not have large differences in anisotropy, because only then the
Voronoi cells are valid representatives for the part of the tensor field that they cover
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(see also Section 5.3.2). In contrast, for tensor fields that have a high local variation of
anisotropy, the appearance of orphans would be more likely.

6.3 Rendering and Texturing

To guarantee interactivity, which is one of our most important requirements, we present
a GPU implementation that computes the Voronoi cells in the fragment shader. In
contrast to previous GPU implementations of generalized Voronoi diagrams in the
planar domain (e.g., [Yuan et al., 2011]) or centroidal Voronoi diagrams in the two-
manifold domain (e.g., [Rong et al., 2011]), we do not need an explicit representation
of the diagram. For mapping textures into Voronoi regions, we solely need to know the
region’s centroid and the local metric at that point.

The following algorithm was implemented using the Open Graphics Library (OpenGL)
and shader programs of the OpenGL Shading Language (GLSL).

6.3.1 Pre-Processing and Data Structures

This section introduces the data structures and the pre-processing necessary to compute
anisotropic Voronoi cells in the fragment shader. In the following, we assume that a
sample set and its anisotropic triangulation, as described in Chapter 5, are given.

Figure 6.3: En-
riched surface

Enriched original surface To compute Voronoi cells, we re-
quire a data structure that provides information about the
sample’s local neighborhood. Therefore, input of the render-
ing step is the original high-quality mesh X that additio-
nally contains the information about the 3D sample positions
and their corresponding site ids. Since this meta data is en-
coded in the sample mesh X̂ , we splat the site ids of X̂
onto the triangles of X . That is, the id of a sample is pro-
jected onto X and the information is spread into its neighbor-
hood (Figure 6.3). To achieve this, we use the following ap-
proach.

Initially, all triangles of X are labeled with i = −1. Then, all vertices
of X̂ are inspected and their ids are splatted onto X via a breadth-first search. First, the
current site is projected onto X (see also Section 5.5.3). Starting from this intersected
triangle, we assign each neighboring triangle to the current site if the triangle’s id is
i < 0, i.e., no id was assigned to this triangle so far. If i > 0, we compute the Euclidean
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distance in 3D space to the current site and to the previously assigned site. If the
distance to the current site is smaller, the triangle’s site id is updated. The size of
the neighborhood that needs to be considered depends on the relation between the
number of triangles of the original surface and the number of samples. Each sample of
X needs to know which triangles of X are in its vicinity. The correspondence between
X̂ and X does not need to be precise, because we use second-order neighbors for the
computation of the Voronoi cells. We only need one triangle that is in the vicinity of
the current sample. Then, we can determine the correct neighbors using this sample as
starting point.

GPU Data Structures
The information that we need to compute anisotropic Voronoi cells in the fragment
shader and to evaluate the distance function given in Equation (6.2) are the metric
tensors, the site ids and the coordinates of (at least) the current sample’s one-ring
neighborhood.

The basic idea is to consider the samples pi of S as Voronoi sites around which the
regions Ωi are generated. Each site is described by:

• Id: A unique id i = 1 . . . n

• Shape: Coordinates pi ∈ R3 and metric M(pi)
In order to upload this information to the GPU, where the rendering is performed, we
encode this information into two textures (see also Figure 6.4):

• Id texture: The id texture stores the site ids and the information about the
local one-ring neighborhood of a site.

• Attribute texture: The attribute texture stores the coordinates and the metric
tensor of a site.

Id texture The id texture stores the information about the local one-ring neighborhood
of a site in the luminance channel of a 3D floating point texture. To build this texture,
we traverse all sites of the sample mesh. The site’s id determines the position i, j in
the 3D texture where then its local neighborhood is stored in z-direction. If n is the
number of samples or Voronoi sites, we set the texture size to d

√
n e × d

√
n e × 16.

The depth of 16 is a fixed value and ensures enough memory for the whole one-ring
neighborhood. Actually, the texture’s depth depends on the degree (or valence) of the
vertex v that represents the current Voronoi site. Consequently, a few texels will not
contain any information and, thus, are superfluous. They are labeled as invalid, that is,
i = −1. When traversing the neighbors of a site, hence, an id of i = −1 indicates that
all neighbors of the current site have been considered.
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Figure 6.4: GPU data structures for the computation of Voronoi cells. The id texture stores the
ids of the current sample’s one-ring neighborhood. The attribute texture stores the corresponding
3D coordinates and tensors. (r, s, t) denote texture coordinates.

Attribute texture The attribute texture stores the coordinates and the metric tensor
of a site in the RGB-channels of a 3D floating point texture. The first texture layer
stores the coordinates, where R1 = x, G1 = y, B1 = z. The second and third texture
layers store the tensor components, where R2 = m11, G2 = m22, B2 = m33 and R3 =
m12, G3 = m13, B3 = m23. We set the size of the metric texture to d

√
n e × d

√
n e × 3,

for 3D metric tensors, and d
√
n e × d

√
n e × 2, for 2D metric tensors.

6.3.2 Voronoi Cell Computation

Given all the data needed (Sec. 6.3.1) to draw the Voronoi cells on the original surface,
the cells are computed in the vertex and fragment stages. All geometry information
(vertex positions, normals, site ids) of the enriched original mesh is uploaded in a vertex
buffer object. Surface rendering then is initiated by rendering X .

The vertex stage mainly processes the information of the enriched original mesh.
Besides the regular operations that are performed in the vertex stage, the interpolated
vertex coordinates and the flat site ids are passed to the fragment shader.

The fragment stage then computes the Voronoi cells on a per-fragment basis. In
addition to the interpolated vertex coordinates and the site id of the current vertex, the
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id texture and the attribute texture are provided as input. With this information, we
can determine - for the current fragment - which site the interpolated vertex position
is nearest to using the distance measure given in Equation (6.2). Depending on this
assignment, the fragment is colored or texturized.

6.3.3 Texturing of Voronoi Cells

To compute the texture coordinates of the current Voronoi cell, we need the interpolated
vertex coordinate p̂i, the coordinates of the current site pi and the metric tensor at
the current site M(pi). The computation of the texture coordinates is done in the
fragment shader.

The coordinates of the current vertex position are transformed into the local coordi-
nate system of the current Voronoi cell Ωi, i.e., the coordinate system that is distorted
by the local metric and with pi lying in the center

pΩi = (M(pi)−1 · (p̂i − pi)) + w

2 . (6.3)

Here, w is the width of the input texture and w = h is assumed. Up to this stage, all
computations were performed in R3. To get the 2D texture coordinates puv ∈ [0, 1], pΩi

is projected into the 2D parameter space of the cell and normalized to the [0, 1]-range

pu = 〈pΩi , e1〉
w

; pv = 〈pΩi , e2〉
w

. (6.4)

Here, the projection vectors e1 and e2 are the major and medium eigenvectors of the
projected metric tensor M̂ (Equation (2.27)).

6.4 Results and Discussion

To demonstrate the potential of our approach, we present Voronoi-based visualizations
of several examples for the planar as well as the two-manifold case. To show results in
the planar domain, we used color images as input from which we derived a metric tensor
field. See Section 5.3.4 for further details on how the metric tensor field is generated.
We also show Voronoi-based visualizations of slices that were extracted from 3D tensor
fields (see Appendix A).

Considering the performance, anisotropic Voronoi-cell rendering is achieved at interac-
tive frame rates once a valid sample set is computed. In the current implementation, we
have used quadratic textures as GPU data structures, which results in some redundant
storage and, thus, a higher memory consumption than actually needed. In the future
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(a) Random (b) Initial (c) Relaxed

(d) Random (e) Initial (f) Relaxed

Figure 6.5: Input sample sets (a), (b), (c) and the corresponding Voronoi cell rendering (d), (e), (f).
The zooms show that holes and overlaps in the sample distribution result in artifacts and erroneous
cells in the Voronoi visualization. For well-defined sample distributions such as in (e) and (f) also
the anisotropic Voronoi diagram is of high quality.

we will improve this through the use of independent texture fetches and index buffer
objects. However, for the examples presented in this work, memory consumption was
not an issue. For good visualization results, a lower number of samples is preferable
over a higher number, since many samples result in many small Voronoi cells that are
difficult to perceive by a human observer.

Figure 6.5 demonstrates the effect of the input sample distribution on the final image.
Using a random sample distribution as input, artifacts occur in the Voronoi-based
visualization that are caused by holes and clutter in the initial sample distribution.
For a good approximation of anisotropic Voronoi diagrams, a well-distributed sample
set is required as input. While the initial sample set already produces good results,
an even higher quality is achieved with the relaxed sample set. For the generation
of Figure 6.5 and Figure 6.6, the input sample sets were generated via the triangle-
based approach that was presented in Section 5.5. To create the relaxed sample set
that was used as input for Figure 6.6, 100 relaxation steps were carried out in 1.5 sec-
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onds. That is, a single relaxation step in the planar domain took 15 ms for this example.

Figure 6.6: Mosaic-like image generated with anisotropic Voronoi cell rendering.

Figure 6.7 shows example renderings using different input textures. Drawing the bor-
ders of the Voronoi cells results in mosaic-like images (Figure 6.7a). If an input texture
with a single point is used as input, the resulting image is similar to a glyph-based
visualization (Figure 6.7c). Mapping a hatch pattern onto the anisotropic Voronoi cells
creates an image that has a painterly character emphasizing the major eigenvector field
(Figure 6.7d). The input sample set was generated via the particle-based approach
presented in Section 5.4. To create the relaxed sample set, 1000 iterations were carried
out.

Figure 6.8 shows example renderings using different input textures for an analytic
tensor field that has one degenerate point in the center. The images show texturized
Voronoi cells using two different line textures as input (Figures 6.8b, 6.8c). The color is
more transparent in isotropic regions where directions are not defined. The LIC texture
(Figure 6.8a) is shown for a comparison. The input sample set was generated via the
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(a) Voronoi cells with border (b) Voronoi cells

(c) Texturized Voronoi cells (d) Texturized Voronoi cells

Figure 6.7: Anisotropic Voronoi cells with and with no border (a, b). A point input texture (c) and
a hatch pattern (d) mapped to anisotropic Voronoi cells.

particle-based approach presented in Section 5.4. To create the relaxed sample set, 100
iterations were needed.

Figure 6.9 shows renderings for a slice extracted from the two-point-load dataset
(see Appendix A.1). Using a point as input texture, the resulting image (Figure 6.9b)
is similar to a glyph-based rendering (Figure 6.9a). Using a line as input texture, an
image is created that reveals similar information like LIC textures (Figure 6.9c).

To show results in the two-manifold domain, we applied our method to several analytic
surfaces (Figure 6.10). In these examples, the metric tensor fields were generated
randomly. We further visualize the formation of endothelia cells of a blood vessel in
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(a) LIC texture (b) Texturized Voronoi cells (c) Texturized Voronoi cells

Figure 6.8: Two different hatch patterns applied to anisotropic Voronoi cells (b, c) and a LIC
texture (a) for comparison.

(a) Glyph rendering (b) Texturized Voronoi cells (c) Texturized Voronoi cells

Figure 6.9: Glyph rendering of a slice of the two-point-load dataset (a). A point (b) and a hatch
pattern (c) applied to anisotropic Voronoi cells extracted on the same slice.

accordance with the simulation of blood flow in an aneurysm (Figure 6.11). Since
endothelia cells naturally have shapes that are similar to anisotropic Voronoi cells
(Figure 6.12), this is an application that directly benefits from our approach.
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(a) (b) (c)

(d) (e) (f)

Figure 6.10: Anisotropic Voronoi diagrams for several analytic surfaces (sphere (a-c) and calypso
(d-f)). The metric tensor fields in these examples were generated randomly. See Figure 5.19 in
Chapter 5 for the timings that were needed for the sample generation. Rendering of these surfaces
performs at interactive rates (≈ 100 fps).
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Figure 6.11: Visualizations generated via anisotropic Voronoi cell rendering. Voronoi cells were
generated on the basis of a surface vector field that represents the wall shear stress. The input
texture was designed so that it resembles a schematic depiction of the endothelia cells of a blood
vessel (see Figure 6.12 below). The Voronoi cells align with the blood flow.

Figure 6.12: Schematic depiction of endothelia cells motivated by a depiction in the work of Malek
et al. [1999].





7
Conclusion and Outlook

In this chapter, the thesis concludes with a summary of the major contributions
(Section 7.1), an outlook into possible future work (Section 7.2), and some final remarks
(Section 7.3).

7.1 Summary

The major motivation of this thesis was to develop visualization and analysis methods to
investigate 3D indefinite tensor fields. The major goals that were revealed in Section 1.3
were the development of an undirected visualization concept, the possibility to extract
specific tensor properties on-the-fly and the development of algorithms to generate
anisotropic sample distributions on two-manifold domains. To achieve this, the thesis
presented algorithmic as well as conceptual solutions that build upon ideas from
information visualization, scientific visualization, data analysis and computer graphics.

Categorization and analysis of previous work Besides conceptual and technical
contributions, the thesis also faced the following question: What are the challenges
for the visualization of tensors that are not positive definite? In Chapter 3 and with
the state-of-the-art report [Kratz et al., 2013a], we highlighted the major challenges
for tensors that are not symmetric and positive definite. Moreover, we presented and
classified existing research work.

Visual data exploration In Chapter 4, we presented a concept that adapts the idea
of multiple linked views to stress tensor fields. With the resulting framework, we
presented a tool to visualize and analyze stress tensor fields. By combining a wealth of
visualization methods, we were able to generate new insights into the data. In close
collaboration with domain experts from the field of engineering, we could also generate
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novel, promising hypotheses concerning stress tensor fields. Various discussions with our
cooperation partners led to the impression that the directional information contained
in stress tensors might be very valuable. Although looking at the major eigenvector
field is common in the field of DTI, this is a new finding for stress tensor fields from
engineering. We believe that with the simultaneous depiction of the major and the
minor eigenvector fields of stress tensors from structure simulations, badly designed
construction elements can be identified. As a consequence, a new hypothesis is that
the visualization of directional information might also have the potential to guide an
optimal design of construction elements. Hence, the visualizations that were presented
in this thesis have created new hypotheses about the data. Now, these need more
investigation on the engineering side.

Anisotropic sampling In Chapter 5, we presented two approaches for the generation
of anisotropic sample distributions in 2D domains. Especially with the triangle-based
approach (Section 5.5), we contribute with an algorithm that is easy-to-implement,
time efficient and leads to stable results even if sample sizes vary strongly across the
given domain Ω. We demonstrated that such sample distributions guide an optimal
placement of glyphs to improve the quality of fabric textures and to compute anisotropic
Voronoi cells for texturization. Furthermore, the triangle-based approach can be used
in conjunction with slicing, which enables interactive exploration of three-dimensional
tensor fields.

Texturing of anisotropic Voronoi cells In Chapter 6, we introduced a novel visual-
ization algorithm for tensor fields. Once a sample set has been generated with one of
the two methods presented in Chapter 5, the rendering and texturing of anisotropic
Voronoi cells works at interactive frame rates. With this approach, the usage of textures
to encode the six degrees of freedom of a 3D second-order tensor becomes possible.

7.2 Future Work

Despite the contributions that are summarized in Section 7.1, many fundamental
questions and technical problems remain or evolved within the scope of this thesis.

Visual data exploration Although we could create new insights into the data and
were able to reveal interesting structures in stress tensor fields from engineering, feature
definition for (stress) tensors remains an open problem. Compared to scalar, vector
and flow visualization, rarely any feature definitions exist. For example, in most flow
fields, regardless of the application field, the extraction of vortices is of interest. For
tensor fields, there is no comparable structure. This becomes even worse when looking
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at tensor fields in diverse application areas. As long as there is a lack of clear feature
definitions, visual data exploration is a necessity. Here, multiple view visualization
systems can significantly help, because they offer the possibility to combine 2D plots
and diagrams - which users are familiar with - with 3D visualizations and advanced
glyph representations. Hence, they enable the identification of interesting features.
Once new features of interest have been identified, advanced visualization techniques
can be developed specifically for these features.

Texture-based approaches for tensor fields Anisotropic Voronoi cell rendering is
very flexible and can be applied to many more applications than those that were
presented in this work. We believe that the use of textures within the field of tensor
visualization is very powerful. Future work to extend the presented anisotropic Voronoi
cell rendering may include the design of more specific textures and the development of
texture synthesis methods for the visualization of tensor fields.

7.3 Concluding Remarks

The major course of this thesis was to investigate 3D tensor fields through interactive
visual exploration, either by combining a multitude of visualization methods that are
interactively steered and exchanged, by various textures that highlight specific tensor
properties, or via slicing through 3D tensor fields. Keeping in mind the tensor’s six
degrees of freedom and the difficultly to interpret them, interactive methods to explore
indefinite tensor fields are a promising field.





A
Datasets

The following list introduces the datasets that were used in this thesis.

A.1 Two-Point Load

This dataset resulted from a FEM simulation of a block on which loads in two directions
were applied that cause tensile and compressive stresses. To produce the results that
are presented in this thesis, the data was resampled on a uniform grid with a resolution
of 30× 30× 30. Despite this very low resolution, the dataset describes the most typical
characteristics of stress tensor fields and, therefore, is well suited to understand very
basic properties of these fields. We thank Boris Jeremic from the University of California,
Davis, for providing this dataset.

A.2 One-Point Load

This dataset is similar to the two-point load (Section A.1) and also the result of a FEM
simulation. In this case, a load in one direction was applied that causes tensile stresses.
To produce the results that are presented in this thesis, the data was resampled on
a uniform grid with a resolution of 30 × 30 × 30. We thank Boris Jeremic from the
University of California, Davis, for providing this dataset.

A.3 Rotating Neutron Star

This time-dependent dataset resulted from an astrophysical simulation of a rotating
neutron star’s dynamics. Analyzing the evolution of such systems plays a major role for
the understanding of the fundamental processes involved in core collapse supernovae
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and gravitational wave production. The simulation results consist of (complex) scalar-,
vector- and tensor fields. In this work, we focus on the resulting tensor fields. The 3D
data is initially given on a grid with spatially varying resolution (AMR). To produce
the results that are presented in this thesis, the data was resampled on a uniform grid
with a resolution of 128× 128× 128 samples.

Note that, due to the high gravitational forces inside the star, only compressive
stresses occur. According to our sign convention (Equation (2.8)) this means that all
stresses are negative. In such a case it is common in the respective application areas to
consider only the absolute value of the stresses. Hence, the principal stresses are ordered
according to their magnitude, i.e., |σ1| ≥ |σ2| ≥ |σ3|. As a consequence, the dataset
reveals positive-definite behavior. We thank Luca Baiotti from the Albert Einstein
Institute (AEI), Potsdam, for providing this dataset.

A.4 Aneurysm

The aneurysm dataset resulted from a blood flow simulation. The images that are
presented in Chapter 5 and in Chapter 6 were computed on the basis of a metric tensor
field. This metric tensor field was generated on the basis of an input surface vector
field (Figure A.1) that represents the wall shear stress. The data is given on the nodes
of a triangulated surface field with 112088 nodes. See Section 5.3.4 for the details how
the metric tensor field is derived. The dataset was provided by Leonid Goubergrits and
Jens Schaller from Charité Berlin.

Figure A.1: Aneurysm dataset. The surface vector field is color-coded according to the magnitude
of the wall shear stress.
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A.5 Cube

This dataset is the result of a FEM simulation of a cube on which loads in two directions
were applied. The magnitude of the implemented loads was 5N in x-direction and
10N in y-direction. Opposite to this local forces, the cube was fixed at exactly three
stationary points. Due to the different directions of load, tension and pressure are
created in this cubic structure. To apply the presented tensor visualization methods to
this dataset, the data was resampled on a uniform grid of size 64× 64× 64. We thank
Prof. Dr. Markus Stommel from Saarland University for providing this dataset.

(a) (b)

Figure A.2: Cube dataset. Color-coding according to the von Mises stress.

A.6 Beam Profile

This dataset is the result of a FEM simulation of a construction element. The material
has the properties of a polymer. We have considered three variants of this simulation,
which are described in the following:

Asymmetric force In this simulation, the force that acts on one side of this material
is a surface tension. On the opposite vertical surface, the element was fixed. Besides an
expected bending in z-direction, the construction element gets twisted by the resulting
torsion forces due to the asymmetric force transmission in this example.

Symmetric forces In this simulation, the force that acts on one side of the element is
a surface tension, too, but it is applied directly in the middle. On the opposite vertical
surface, the element was fixed. Here, only a bending in z-direction occurs due to the
symmetric force transmission in this example.
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Filled with air An alternative simulation used the same forces but parts of the
construction element were modeled to resemble the behavior of air. The data is given
on the nodes of a tetrahedral mesh with 14643 nodes. We thank Marc Schöneich from
Saarland University for providing this dataset.

(a) (b)

Figure A.3: Beam profile. Color-coding according to the von Mises stress.

A.7 Shear Specimen

This dataset is the result of a FEM simulation. It shows a part of a construction
element in which shear happens. Similar to the beam profile described in Section A.6,
one vertical side was fixed. On the opposite vertical surface, a surface load was applied.
This type of load most closely corresponds to real experiments in which both sides are
clamped and, hence, are fixed. The geometry has two notches, which are the interesting
parts of this dataset. Here, the generated shear forces can be evaluated. The data is
given on the nodes of a tetrahedral mesh with 20770 nodes. We thank Marc Schöneich
from Saarland University for providing this dataset.

(a) (b)

Figure A.4: Shear specimen. Color-coding according to the von Mises stress.
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