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7 Performance measurements 

In this Chapter, we present our performance measurements. In the first 
measurement, we determine the impact of the Web service overhead on web 
servers and mobile clients. We present our solutions that improve the 
performance of mobile Web service access. In the second measurement, we 
demonstrate the advantages of the WSB when the lookup and selection of a Web 
service offer from many competing offers is processed at runtime. In the third 
measurement, we demonstrate the performance gain achieved through our 
QoSProxy that maps clients’ QoS requirements of transport network at runtime. 
In the last measurement, we demonstrate the advantage of our WS-QoS 
framework that prevents Web service server from overload through adaptive WS-
QoS offers. 

7.1 Performance impact of Web service overhead 

In contrast to traditional web interaction, Web services incorporate some 
additional overhead. In particular, due to the usage of XML, requests and replies 
are larger compared to traditional web interactions and the need for parsing the 
XML code in the requests adds additional server overhead. We present a typical 
web application that requires the transmission of four to five times more bytes if 
implemented as a Web service compared to the same service implemented as a 
traditional dynamic program, in our case as an Active Server Page (ASP) 
application. Therefore, compression of Web service interactions is attractive. It is 
easy to imagine that in the future clients using mobile devices will generate a 
large percentage of all Web service requests. Although the computing power of 
handheld devices is increasing rapidly the CPU time required for decompression 



7 Performance measurements  106 

 

might eliminate the benefits of compression for these types of devices. In this 
section, we present experiments that quantify the decompression overhead on a 
handheld computing device with constraint processing capabilities. As expected, 
mobile clients benefit from compression when the available bandwidth is scarce, 
for example when the client is connected via GPRS. But even when resource-
constrained devices have better connectivity, the performance loss caused by 
decompression is almost negligible. Note that mobile clients also might prefer 
compressed responses since they are often charged by volume rather than by 
connection time, e.g. in the case of GPRS [49]. 

A lightly loaded server can afford the extra cost of compressing responses. We 
present measurements that show that the throughput of a heavily loaded server 
can decrease substantially when it is required to compress Web service responses. 
At the same time the response times experienced by the clients increase. We 
propose a simple scheme that allows clients to specify whether they want to 
receive data compressed when requesting a Web service. Depending on the 
current server load, the server compresses only the requests of the clients that 
required such a service. We present experiments that demonstrate that this 
approach works as expected and that both servers and clients with poor 
connectivity benefit during high server demand. 

7.1.1 Web Service overhead  

Since both SOAP and WSDL are XML-based, XML messages have to be parsed 
on both the server and the client side and proxies have to be generated on the 
client side before any communication can take place. The XML parsing at 
runtime requires additional processing time, which may result in longer response 
time of the server hosting Web services. 

In order to demonstrate the quantity of the additional bytes Web services 
generate for transfer, we have implemented the same "service" both as a 
traditional dynamic program, in our case as an Active Server Page (ASP) 
application, and as a Web service. The implemented application is an electronic 
book inventory system. The clients send the ISBN of a book to the server and the 
server returns information about the book such as the title, author name, price, 
and so on.  

When sending small amounts of content using SOAP on HTTP, such as sending 
an ISBN for querying book information, the major part of the entire conversation 
will consist of HTTP headers, SOAP headers including the XML schema as well 
as brackets. In our case, the Web service accepts the ISBN of a book as input 
parameter and returns the book information in form of a dataset. The actual 
content of both the request and the response consists of a total of 589 bytes, 
thereof 10 bytes for the ISBN and the rest for the information about the book. 
But more than 3900 bytes have to be sent and received for the entire 
conversation. Figure 30 depicts the bytes on the wire for the actual content and 
the overhead when it is transmitted as HTML or XML. The disproportion is not 
as big for traditional web interaction with HTML. The total amount of the 
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request and response for transferring the same information value is about 1200 
bytes. 

The overhead of the Web service stems mainly from the usage of XML producing 
human readable text and is employed since the interoperability with other Web 
services and applications is essential [50]. Others have compared XML’s way of 
representing data with binary encodings. They quantify the overhead as 400% 
[41]. 

7.1.2 A dynamic approach for reduction of Web service responses 

The growth of the Web service message size, which results in higher data 
transmission time, creates a critical problem for delay sensitive applications. One 
way to achieve a compact and efficient representation is to compress XML − 
especially when the CPU overhead required for compression is less than the 
network latency [50]. Compression is both useful for clients that are poorly 
connected as well as for clients that are charged by volume and not by connection 
time by their providers. The latter group comprises mobile users connected with 
handheld devices such as people accessing a service via GPRS. This group of 
users is expected to increase rapidly in the next years. However, the Web service 
application on the server does not have any information about the delay, for 
example the current round trip time estimated by TCP, and about the available 
bandwidth between client and server. 

Thus, we have decided to let the Web service users specify whether they want the 
response compressed. Mobile users usually know if they are charged by volume 
and often know how they are connected. Thus, it seems reasonable to let them 
decide whether they want the server to compress the response. In our current 
design we let users (or the clients’ software) decide between three options: 

 Do not compress the response 

 Compress the response 

 Compress the response if possible 

If users choose the last option, the server is free to choose what the server 
considers best. To give users an incentive to choose this option, commercial Web 
service providers could decide to charge a lower price for this option. The choice of 
the users is reflected in the request. When the last option is chosen and the 
server demand is low, the server compresses the responses to all clients that have 
asked for compressed replies and to those clients that have not specified a 
preference. During high server demand, the server compresses only responses to 
clients that have asked for compressed data. Since compression requires mainly 
CPU time, we regard the server demand as high when the CPU utilization of the 
server exceeds a certain threshold. 

Note that in this approach, the server can still become overloaded. Mechanisms 
for server overload protection have been studied elsewhere [18]. 
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7.1.3 Experiments 

In this section we describe our experimental setup and the application we have 
implemented. We introduce the experiments and the corresponding results in the 
next section. 

7.1.3.1 Testbed 

Our testbed consists of three 1GHz Pentium III machines with 256 MB memory, 
a Pentium III laptop with 700MHz and 384 MB RAM and an iPAQ Pocket PC 
3970 running Windows CE 3.0 with a 400MHz XScale Processor (see Figure 46). 
Our Internet server is a standard Internet Information Server version 5.0 with 
the default configuration. The other two Pentiums run Linux. One is running the 
sclient traffic generator (see below) and the other runs NIST Net [51]. NIST Net 
emulates a wide variety of network conditions such as low bandwidth and large 
round trip times. The iPAQ handheld device is connected to the server via the 
laptop and the machine running NIST Net. 

 

Figure 46. Testbed: measurement of Web service overhead 

For background load generation, we use the sclient traffic generator [52]. Sclient 
is able to generate client request rates that exceed the capacity of the Internet 
server. This is done by aborting requests that do not establish a connection to the 
server in a specified amount of time. This timeout is set to 50 milliseconds in our 
experiments. The exact timeout value does not impact the results, as long as it is 
chosen small enough to avoid that TCP SYNs dropped by the server are 
retransmitted. However, the larger the value, the higher the risk that the request 
generator runs out of socket buffers. Sclient does not take the aborted requests 
into account when calculating the average response time. 

In order to emulate poorly connected clients we use the host running NISTNet to 
add additional delays and decrease the available bandwidth. We emulate a GRPS 
network based on the results from measurements in a real GPRS network by 
Chakravorty et al. [53]. They measure the delay on the uplink to about 500 ms 
and on the downlink to about 800ms. We do not take the variations into account 
in our experiments. For the bandwidth the theoretical values are 40.2 kbit/s on 
the downlink and 13.4 kbit/s on the uplink meaning that the mobile device listens 
simultaneously on three downlink channels while sending on one uplink channel 
as many mobile telephones do. The values measured by Chakravorty vary 
substantially based on the current network conditions with the best conditions 
coming very close to the maximum values. We use both the theoretical values as 
the best case from the clients’ point of view as well as the values they measured 
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when link conditions were poor. The latter are 12.8 kbit/s on the downlink and 4 
kbit/s on the uplink. 

7.1.3.2 Test application 

The implemented application is a modification of our electronic book inventory 
system described in Section 7.1.1 that returns responses of different sizes 
depending on the request. The additional requests are for a small Hello World 
service, and more detailed (“heavy”) information (including more detailed 
information, user ratings and hints on similar books etc.) about one, two, three 
and five books. The corresponding sizes of the SOAP body in both compressed 
and uncompressed form are shown in Table 4. Note that additional bytes are 
needed for the SOAP header (approx. 150 Bytes), the SOAP envelope (approx. 
200 Bytes) and the HTTP header. We only compress the SOAP body in our 
experiments. We see that except for the small response the compression factor is 
about three. 

The Web service running on a Microsoft IIS is implemented with the .NET 
framework 1.1 beta [54]. The Web service client is implemented with the .NET 
compact framework and is deployed on the iPAQ. Since SOAP is used for the 
client server interaction, we have extended the SOAP headers with the 
SOAPExtension class of the .NET framework class library in order to modify (on 
the client side) and inspect (on the server side) SOAP messages. The client sets a 
parameter instructing the server either to compress or not to compress the data 
part of the SOAP response or to let the server decide by it. For compression we 
use the SharpZipLib library [55], but other compression algorithms or strategies 
may be used [56]. 
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Table 4. Response size without and with compression and decompression 

 Original data 
size (byte) 

Data size 
after 

compression 
(byte) 

Compression 
time on 

server (ms) 

Decompressi
on time on 
client (ms) 

“Hello world!“ response 209 256 1 41 

Lite information for 1 
book  

3366 1390 12 200 

Heavy information for 1 
book 

16055 6038 24 497 

Heavy information for 2 
books 

28153 10222 36 747 

Heavy information for 3 
books 

36049 12350 79 877 

Heavy information for 5 
books 

50205 15470 89 1122 

7.1.4 Experimental results 

In this section, we present three different sets of experiments. In the first 
subsection we evaluate the performance of Web services for different wireless 
networks. These experiments show that mobile clients can gain from compression 
when their connectivity is poor. However, compression requires server resources 
and, therefore, we quantify the server overhead for compression. In the second 
subsection we demonstrate that compression can degrade server performance 
severely. The experiments in the final subsection validate our dynamic approach, 
where during high server load the server compresses only responses for clients 
that have indicated that they want the server to compress the response.  

7.1.4.1 Web service performance for handheld devices 

Due to the large message sizes of Web services we assume that compressing Web 
service responses is useful. However, the cost of decompression on resource-
constrained devices may invalidate this assumption.  

In the following we investigate the performance of Web services on handheld 
devices when connected to different networks, namely with 802.11b wireless LAN, 
Bluetooth as well as GPRS networks with both good and poor connectivity, as 
described in 7.1.3.1. The server in this scenario is lightly loaded because the 
client is the single user. Table 4 shows the compression times on the server and 
the decompression times on the client for different data sizes. The results 
indicate that the compression time on the server is much lower than the 
decompression time on the resource-constrained handheld device. On the iPAQ, 
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the decompression time is more than one second for the largest response while 
compressing on the server requires less than 90 ms. 

Figure 47 to Figure 50 show the experimental results with different network 
connections. The x-axis shows the original message size of Web service responses 
ranging from 0 to 50000 bytes. The y-axis is the service time in millisecond. The 
service time denotes the time interval between the moment the client requests 
the service, e.g. by clicking on a button and the moment the client has received 
and processed the result. We expect that mobile clients will benefit from 
compression when the bandwidth is scarce but experience small performance 
degradation when the available bandwidth is larger, i.e. when the service is 
requested over the wireless LAN or Bluetooth. 

Since the available bandwidth in a wireless LAN is higher than in a Bluetooth 
network, we expect the service time in the wireless LAN to be lower than the 
service time over Bluetooth. Indeed, as shown in Figure 47 and Figure 48 the 
service time in the wireless LAN scenario is about 2 seconds shorter than in the 
Bluetooth scenario for all message sizes. There is no significant difference 
between service time for compression and no compression when the iPAQ is 
connected via a wireless LAN or Bluetooth network. At its maximum, the time 
difference for receiving compressed or non-compressed responses is about 4% for 
the largest request over the wireless LAN. This shows that the overhead caused 
by compression is not severe in these scenarios. 
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Figure 47. iPAQ service time over wireless LAN 
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Figure 48. iPAQ service time over Bluetooth 

When the personal digital assistant (PDA) iPAQ is connected via a low 
bandwidth network such as GPRS, the service time is lower for larger response 
sizes when the response is compressed. This means that the benefit of 
compression is higher than the cost of decompressing the response. As Figure 50 
shows, when connectivity is poor the service time is halved when compressing the 
largest response. 

These experiments demonstrate that compressing Web service responses is 
useful when the available bandwidth is scarce even for clients using resource-
constrained devices.  
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Figure 49. iPAQ service time over emulated GPRS network 
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Figure 50. iPAQ service time over emulated GPRS with poor connectivity 

7.1.4.2 Impact of compression on server performance 

Compression requires also CPU time at the server. In this section, we evaluate 
the impact of compression on server performance. We use the sclient workload 
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generator to sustain a certain request rate independent of the load on the server. 
The traffic generator makes requests at a certain rate for the electronic book Web 
service described in the previous section. 

The test scenario increases the request rate across runs and conducts three runs 
for each request rate with each of the runs lasting for three minutes. We measure 
the average throughput and response time. We expect that the response time will 
be quite low when the request rate is below the capacity of the server, no matter 
whether compression is used or not. However, using compression we expect that 
the server will reach its maximum capacity at a lower request rate. When the 
request rate is above the capacity of the server, the response time will increase 
rapidly due to the waiting time that requests spend queuing before they can be 
processed. Also, the throughput will increase with the request rate until the 
maximum server capacity is reached. When the request rate is higher than the 
capacity of the server, the throughput will not increase anymore. During severe 
overload the throughput might even decrease since CPU time is wasted on 
requests that cannot be processed and are eventually discarded [52]. 

For compression we use the SharpZipLib library. This way, we can reduce the 
overall number of bytes for the “lite information” scenario from more than four 
kbyte to around two kbyte (refer to Table 4). Without compression, three TCP 
segments are needed for the response while the compressed response fits into two 
TCP segments. Note that in our experiments the client, i.e. the traffic generator, 
is not required to decompress or to process the received data in some other way. 

Due to the additional CPU time the server spends on compressing data, we 
assume that the response time increases and the throughput (measured in 
connections per second) decreases when the response is compressed. Figure 51 
depicts that it is indeed the case. The response time during overload is about 
three seconds higher and the throughput is about 45 conn/sec lower when 
compression is used. Figure 52 shows that the maximum server throughput 
decreases from about 135 conn/sec to 90 conn/sec when compression is used. 
These experiments show that when a server compresses all replies, the maximum 
server throughput decreases substantially and the response time experienced by 
the clients is affected negatively. This gives reason for our approach that is based 
on the assumption that servers should only compress replies to clients that can 
benefit from compression. 
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Figure 51. Comparison of response time with and without compressing the response 
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Figure 52. Comparison of throughput with and without compressing the response 
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7.1.4.3 Dynamic server compression 

The first experiments have shown that mobile clients with poor connectivity 
benefit from compression while the experiments in the previous section have 
demonstrated that compression reduces server performance during high demand. 
In the experiment in this section, we investigate if the dynamic compression 
approach described in last subsection is able to give us the best of both worlds, i.e. 
compressed data for clients that wish to receive compressed data while achieving 
high server throughput. 

The next experiment compares the server performance when 

 all responses are compressed, 

 no responses are compressed and 

 the server decides which responses to compress. 

As in the experiment in previous section, we use sclient to request the 
information on a book. Sclient first requests that all responses are to be 
compressed, then that no responses are compressed and finally 50% of the 
responses to be uncompressed and for the other 50%, the server is asked to decide. 
In the latter setting, which we call dynamic, when no compression indication is 
given for a request, the server compresses the response when the CPU utilization 
of the server is below a threshold of 80%. If the CPU utilization is higher than 
80% it does not compress such a response in order to save processing time. Using 
this approach, the performance should be almost as high as without compression. 
Figure 53 and Figure 54 show the response time and the throughput, respectively. 
As expected, using the dynamic approach the server performance is almost as 
high as when the server does not use compression. Further inspection of the 
results reveals that the server compresses all responses it is allowed to compress 
(50% of the requests that have indicated that they do not have any preferences) 
until a request rate of 60 request/s is reached. When the request rate reaches 120 
request/s only 20% of the requests without preference indication are compressed 
while no requests are compressed at request rates larger than 140 request/s. 

However, the performance gap should be smaller, i.e. the difference between the 
dynamic approach and no compression should be almost nothing, since the only 
extra task required from the server is to check the current CPU utilization when 
processing a request that has not indicated any preference. This indicates that 
this task is more expensive than one would expect. 

In the next experiments we want to validate that a client with a poor connection 
to the server may indeed benefit from this approach. In these experiments, the 
sclient varies the request rate and requests the "lite information for one book" for 
two different scenarios. In the first scenario sclient requests compressed 
responses while in the second scenario sclient requests 50% of the responses as 
compressed and 50% of the responses without compression preference. In both 
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scenarios, the iPAQ requests the "heavy information for one book". The mobile 
client is connected via the emulated GPRS network to the server. 
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Figure 53. Response time of the dynamic approach 
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Figure 54. Throughput of the dynamic approach 
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The results shown in Table 5 indicate that our dynamic approach is beneficial for 
both the server and for mobile clients with poor connectivity. As expected for 
some sclient request rates, the service time experienced by the mobile client is 
much better when the server uses the dynamic approach, namely when the 
sclient request rates are between 100 and 140 requests/s, which corresponds to 
the results in Figure 53. This is the request range where the CPU time required 
for processing would overload the server and would degrade performance but the 
server still performs well when it does not need to compress the responses. 

Table 5. Impact of the dynamic approach on the response time of the mobile client 

Sclient rate 
(request/s) 

80 100 120 140 160 

All compressed 
(ms) 

9985 10495 16492 17104 17176 

Dynamic (ms) 9370 9850 10468 10538 17131 

7.2 Performance measurement of the Web service broker 

In this section, we discuss the performance of the WSB. In the first test run, the 
WSB compares available service offers inside the application codes, while a data 
base containing the available offer information is applied in the second test run. 
The WSB achieves a much better result in the second scenario. 

7.2.1 Testbed and test application 

Our testbed for both scenarios consists of three 3GHz Pentium IV HT machines 
with 1GB RAM as shown in Figure 55. Lab1 runs Sclient on Debian Linux with 
kernel 2.6.9. The traffic generation tool Sclient simulates Web service clients in 
order to stress the WSB. The WSB on Lab2 runs Windows server 2003 with 
standard configuration. The Web services providers are hosted on Lab3 running 
Windows server 2003 with standard configuration. Four Web service providers 
with 22 services and 27 offers run on Lab3. 

 
Figure 55. Testbed: measurements of WSB 
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7.2.2 WSB without database support 

The Sclient simulates clients requests’ sent to the WSB at different request rates. 
The WSB has already available offers in its local cache, so it needs not to contact 
any UDDI or service providers to update its local cache. The information of the 
available offers is hold in the random access memory (RAM). Figure 56 shows the 
response time of the WSB at request rates ranging from 10 to 300 requests per 
second. 
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Figure 56. Response time of the WSB at different request rate 

The response time is short at low request rate until 30 requests per second. From 
this point the response time increases fast and remains constantly on a high 
level. 

Figure 57 shows the throughput of the WSB. The maximum throughput is 
approximately 25 conn/s. The throughput does increase with the request rate, 
since the CPU usage is almost 100% at the request rate of 30 conn/s. 

The reason of the poor performance of the WSB is due to its prototypic 
implementation. The WSB holds information about available offers of different 
service providers in RAM resulting in low-performance when comparison is 
performed. In the next subsection, we show the performance improvement when 
a database is applied. 
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Figure 57. Throughput of the WSB at different request rate 

7.2.3 WSB with database support 

Due to the low-performance of the performance measurement described in the 
previous subsection, we have reimplemented the WSB with database support. We 
applied the Microsoft SQL Server 2000 with default configuration. As Figure 58 
and Figure 59 show the performance of the WSB can be improved significantly. 
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Figure 58. Response time of the WSB with database support at different request rate 

The response time is lower than 21ms for the request rate until 50 requests per 
second. With higher request rate the response time increases up to 
approximately 15 seconds and remains stable, which is much better than the 
scenario before. 
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Figure 59. Throughput of the WSB with database support at different request rate 

The throughput increases with the increasing request rate up to 65 requests per 
second linearly. The maximum throughput is reached at the request rate of 100 
requests per second. The reason is that the CPU usage is fast 100% at this 
request rate, as depicted in Figure 60. 
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Figure 60. The CPU usage of the server hosting the WSB 

Note that the implementation with the database support is still a prototype 
demonstrating the feasibility of the WSB. One can implement an own strategy for 
the WSB. The most important issue is that the WSB is located outside a UDDI 
server making the usage of the WSB more flexible and independent of any 
UDDIs. 
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7.3 Performance measurement of the QoSProxy 

In this section, we discuss our testbed, test application, experiments and the 
corresponding results of the QoSProxy. The goal of this measurement is to certify 
the functionality and the performance of the QoSProxy. Since it consumes 
resources, it is important to know if the QoSProxy contributes to the overall 
performance of Web service communication. 

7.3.1 Testbed and test application 

Our testbed consists of five 3GHz Pentium IV HT machines with 1GB RAM as 
shown in Figure 61. Lab7 and Lab8 run Windows Server 2003 with standard IIS 
version 6.0 hosting our Web service applications. The other three machines (Lab3, 
Lab5, and Lab6) run Debian Linux with kernel 2.6.9. We use Lab3 and Lab8 to 
measure the performance of our Web services and Lab5 and Lab7 to generate 
background traffic in order to stress the network. 

Lab6 is configured as a DiffServ router simulating a DiffServ network. All traffic 
between the clients and servers passes it. The DiffServ router uses the traffic 
control features of the Linux kernel. To shape the traffic according to our 
requirements we attach the Hierarchical Token Bucket queuing discipline to the 
network interface. The maximum bandwidth in the simulated network is limited 
to 1024 kilobyte/s. We define only two traffic classes: Assured Forwarding (AF) 
and Best Effort (BE) for our measurements. For the first one we reserve 30% of 
the available bandwidth, for the second one we reserve 70%. If there is no BE 
traffic the AF traffic may use up to 100% of the available bandwidth. All 
forwarded IP packets are investigated on the existence of DSCP marks. Packets 
marked with DSCP value 0x0A are assigned to the class AF, all other are 
assigned as default to the class BE. 

The implemented Web service application is a simple electronic book inventory 
system. The client sends the ISBN of a book to the server and the server returns 
information about the book such as the title, author name, price and so on. The 
application applies the WS-QoS framework in order to define the QoS metrics for 
the transportQoSPriorities. 

The application runs on Lab8 with the IIS. A QoSProxy marking the DSCP of all 
outgoing IP packets runs on the same machine. The DSCP values are marked 
according to the WS-QoS definition located in the SOAP headers. The size of the 
SOAP message with the book details and the SOAP headers is 8830 bytes. Note 
that additional bytes are needed for the HTTP header (approx. 270 bytes). 

Another Web service application without any QoS issues runs on Lab7. 

Lab3 and Lab5 run sclient traffic generator. The timeout is set to 50 ms in our 
experiments. Lab3 sends SOAP requests with QoS requirements in the SOAP 
header to the Web service running on Lab8 while Lab5 sends the SOAP requests 
to Lab7 without any QoS issues. 
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Figure 61. Testbed: performance measurement of QoSProxy 

7.3.2 Test results 

In this section, we present three sets of experiments. In the first subsection, we 
evaluate the performance impact of our prototypically implemented QoSProxy on 
the Web service. In the second subsection we evaluate the total performance 
gains by applying our QoSProxy when the (DiffServ) network is on high demand. 
The experiments in the last subsection demonstrate the theoretically achievable 
performance gains by applying an ideal QoSProxy. 

7.3.2.1 Performance impact of the QoSProxy 

We assume that the mapping of the QoS requirements results in an overall 
performance gain in a Web service communication process, especially when the 
network and the server are overloaded. However, the additional cost of the 
QoSProxy may invalidate this assumption. 

In the following we investigate the impact of the QoSProxy on the server 
performance. We use the sclient traffic generator on Lab3 to generate a certain 
request rate on the server. The traffic generator makes requests for the electronic 
book Web service hosted on Lab8 as described in the previous section. The 
DiffServ router on Lab6 is disabled and no traffic shaping is performed in these 
test series. 

In this test scenario the request rate is increased across runs and three runs are 
conducted for each request rate with each of the runs lasting for thirty seconds. 
During the first experiment we do not use the QoSProxy and do not overload both 
the network and the IIS. In the second experiment the QoSProxy is active and 
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processes the SOAP responses from the Web service and marks the outgoing IP 
packets. 

In both cases we measure the average throughput of the Web service (response 
per second). 

We expect that the overall performance of the web server is lower when the 
QoSProxy is applied. At low request rates there should be no significant 
difference between the two scenarios. However at high request rates the 
throughput should decrease when the QoSProxy is used. 

Figure 62 shows the results of our experiments. The x-axis represents the request 
rates ranging from 20 to 70 requests per second. The y-axis shows the resulting 
throughput of the Web service. 

Up to the request rate of 50 requests per second the throughput of the web server 
is equal in both cases. As expected, the QoSProxy is overloaded when more than 
50 requests per second are submitted and the throughput is getting worse. 
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Figure 62. Performance impact of QoSProxy on the web server 

There are many reasons for the negative impact of the QoSProxy on the server 
performance: 

o The QoSProxy has to cache server SOAP messages, to parse, and 
evaluate them in order to find the WS-QoS-specific parameters. 

o It has to mark all outgoing IP packets according to the mapping table. 

o The QoSProxy has to manage the TCP/IP connections between the 
clients and the server. At high request rates multiple TCP connections 
and more dedicated threads have to be maintained simultaneously. 

All these tasks result in performance loss. 
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7.3.2.2 Total Web service performance improvement due to QoSProxy 

In the last subsection we have shown that the QoSProxy has performance impact 
on Web services. We assume that the use of the QoSProxy results in an overall 
performance gains in case of overloaded (DiffServ) network and Web service 
servers. 

In our test scenario we use Lab5 and Lab7 to generate background best effort 
traffic in order to overload the DiffServ router and therewith the simulated 
DiffServ network. Similar to the first experiments we use sclient as traffic 
generator running on Lab3 to measure the throughput of the Web services 
running on Lab8. 

During the first run the QoSProxy is not used and thus no packet marking is 
performed. The SOAP responses from the Web service are assigned to the BE 
class on the router and share the bandwidth with other BE traffic between Lab 5 
and Lab7. 

In the second run we activate the QoSProxy running on Lab8. All IP packets sent 
from Lab8 are marked with the DSCP value 0x0A and the DiffServ router 
handles them as Assured Forwarding (AF) class. 

We run two test series with different background BE traffic (800 kbyte/s and 
1024 kbyte/s) on the network, which is generated between the Lab5 and Lab7. 

Figure 63 and Figure 64 show the experimental results for the different network 
load. In almost every case the use of the QoSProxy ensures slightly better 
performance. As expected, the benefit of the QoS mapping performed by the 
QoSProxy is higher than the additional cost of the QoSProxy. 
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Figure 63. Performance gains with QoSProxy, background traffic: 800 kilobyte/s 
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Figure 64. Performance gains with QoSProxy, background traffic: 1024 kilobyte/s 

The experiments demonstrate that the QoSProxy is useful in a DiffServ domain 
and guarantees performance gains when the network is on high demand. 

However, the performance gains are not as significant as expected. In the best 
case we can identify an improvement of 2.8 response per second (refer to Figure 
63 at 60 request per second). Therefore, we present further test series with an 
ideal QoSProxy in the next subsection. 

7.3.3 Performance of an ideal QoSProxy 

The current implementation of the QoSProxy is a proof of concept 
implementation having potentials of improvement. E.g. it starts a thread for each 
connection resulting in significant additional costs when many connections are 
open simultaneously. We believe that the cost of the QoSProxy could be reduced 
substantially by an improved implementation. In order to demonstrate the 
maximum achievable benefit of the QoS mapping concept we simulate an ideal 
QoSProxy implementation – with no performance impact on the server, no delays 
and proper handling of limited bandwidth – in the following experiment. 

Since we host our WS-QoS-aware Web service on the server Lab8 we disable the 
QoSProxy and modify the DiffServ router to handle all IP traffic coming from 
Lab8 as AF. The test scenarios are similar to that of the last subsection, but we 
investigate the performance of the ideal QoSProxy. 

Figure 65 and Figure 66 show the total performance gains at different 
background traffic (800 kbyte/s and 1024 kbyte/s). As expected, the ideal 
QoSProxy performs much better than our prototypic implementation. The 
performance difference is more significant when the background traffic is higher, 
i.e. the network is more overloaded. The throughput of the AF traffic is in both 
cases the same when the ideal QoSProxy is applied while the throughput of the 
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best effort traffic is about 10 responses per second lower when the background 
traffic is higher when no QoSProxy is applied. 
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Figure 65. Performance gains with ideal QoSProxy, background traffic: 800 kbyte/s 
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Figure 66. Performance gains with ideal QoSProxy, background traffic: 1024 kbyte/s 

7.4 Protecting servers from overload with adaptive WS-QoS offers 

In this section, we show the advantages of our WS-QoS framework for service 
providers. Service providers always strive to serve customers with high 
performance on the one side and to keep their operating expenses low on the 
other side. In order to save the server capacity, one could either limit the number 
of customers or expand the server capacity with new hardware. In the first case, 
the customer satisfaction can be jeopardized when customers’ inquiries are 
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refused resulting in losing customers. In the second case, server capacity could be 
unused when less customers use the service than forecasted. 

We demonstrate in this experiment that service providers can use our WS-QoS 
framework in order to control the customers’ access. The criteria of the decision 
can be based on several factors and can be defined by service providers. All QoS 
metrics can be modified at runtime. The pricing decision for a service with a 
certain QoS level can be based on the current server load, average response time 
or the queue length of the Web service server or application server. The latest 
information about the server state can be published as an integrated part of 
service offers in order to inform potential customs. This way, the customers 
receive always the latest information about the server and can make decisions 
based on that information. 

It is worth noting that the test scenario is based on the assumption that the 
customers always want the latest information about a service offer before 
invoking the offer. An analogy can be experienced in a stock market where people 
buy or sell shares. 

7.4.1 Test application 

We demonstrate in this performance measurement how our WS-QoS framework 
can be applied to protect the server from overload. We simulate several clients, 
which dynamically make decision whether or not to use a service. The decision is 
only based on the current price of the service. The service provider applies our 
WS-QoS framework to adjust the price depending on the current server load. The 
WSB that is located on each service client always informs the client about the 
latest price development. 

In order to simplify the test scenario and to strengthen the advantage of the WS-
QoS framework, we simulate a network with several clients and a service 
provider. The clients make decision only based on the price of the service offer. 
The server changes the price dynamically only depending on the server load. It is 
worth noting that both the client and the server could make decisions on much 
more factors, such as network load, average server response time, queue length of 
the web and application server. 

The Web service accepts the ISBN of a book and provides information of inquired 
books such as title, review, authors, and price. The Web service is implemented 
with .NET version 1.1 and C#. The cost of the service is 0 EUR at the beginning, 
as far as the 80% threshold of the CPU time is not reached. A thread in the 
background observes and logs the CPU load and the average CPU load of the 
passed 30 sec. If the threshold of the average CPU load reaches 80% the price is 
increased by 10 Cent. If the threshold is decreased to 70% the price decreases by 
10 Cent. The pricing information is always updated by using the XML schema of 
the WS-QoS framework.  

The clients only accept a preset price. If the service price becomes higher than 
the preset one, the client will not invoke the service. When the service price 
becomes lower or equal the preset one, the client will use the service once again. 
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The WSB matches the client’s requirement against the service offer and informs 
the clients whether to use the service or not. 

The goal of this experiment is to demonstrate the usability of the WS-QoS 
framework. The framework is applied to protect the server from overloading. The 
framework is used for informing the clients about the current server state and 
QoS offers. In case of over loading, the server could not serve the clients with the 
promised QoS. We expect that the number of customers using the service will 
shift with the server last. 

7.4.2 Testbed 

We use six Pentium IV HT machines, each with 1GB RAM, as shown in Figure 
67. All machines are connected to a 100Mbit switch and form a LAN. Both Lab7 
and Lab8 run Windows 2003 Server, .NET 1.1, and ASP.NET 1.1. Lab7 hosts a 
UDDI server. Lab8 hosts the Web service. 

Lab2, 3, 5, and 6, run Windows XP with .NET 1.1 and SP 2. We ported the Linux 
tool sclient to .NET, called Sclient.NET. Sclient.NET runs on each of the client 
machines, which generate requests to the Web service server running on Lab8. 
Each of the clients uses a local WSB for lookup. In this performance 
measurement, the clients only look for the book information service with pricing 
as the single QoS metric. The offered price should be lower than the client’s 
definition. When an offer is found the Sclient.NET, which is integrated in the 
client, begins to send requests to the Web service. This way, the server load is 
increased. 

 
Figure 67. Testbed: adaptive WS-QoS offers 
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Table 6 shows the configuration of the four clients. Maximal price denotes the 
highest price the client is willing to pay. Request per second means the number of 
requests the Sclient.NET will send to the server per second when a suitable offer 
is found. 

Table 6. Client configuration 

Client Max. price Request per second 

Lab2 0.10 € 15 

Lab3 0.40 € 15 

Lab5 0.50 € 15 

Lab6 0.70 € 15 

In the following, we will present our measurements in three parts. The first part 
shows that the increasing number of clients leads to higher server load, resulting 
in higher price. In the second part, we demonstrate that the server uses the WS-
QoS framework to keep the server load stable. The last part shows when the 
number of clients decease, the server is hold back from over load. In this case, the 
server uses the WS-QoS framework to announce a lower price in order to gain 
customers again. It is worth noting that we assume that the clients always ask 
their WSB for the cheapest price before sending each request. 

Part I 

Figure 68 depicts the measurement result of the first part. The cost of the service 
is 0 Cent at the beginning (00:00 sec.). After 20 sec. the clients begin to send 
requests to the server. The CPU load begins to increase up to 30%. The increase 
of the average CPU load follows. However, the price remains 0 Cent since the 
threshold of 80% CPU load is not reached. After 1 min more and more clients 
send requests to the server. The server loads increases continuously. After 2 min 
the CPU load reaches 90%. At the point 02:12 the average CPU load reaches the 
threshold of 80%. Therefore, the server increases the price up to 10 Cent by 
changing the offer. The price increases another 4 times up to 50 Cent. The CPU 
load falls few seconds later. That means the price of 50 Cent is too high for most 
of the customers (refer to Table 6). Therefore, the WSB does not return the Web 
service to the clients. This way, the Web service is protected from overloading. At 
this point, the CPU load begins to decrease and the price will go down. New 
customers are expected. 
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Figure 68. Behaviour of the system in case of increasing CPU load 

Part II 

In this phase, we present the measurement result that proves that the server 
load can be controlled by using the WS-QoS framework. As Figure 69 depicts, the 
price directly influences the server load. Looking at the interval 11:00 to 12:20, 
the increase of the prices results in the decrease of the server load because less 
users accept the higher price. After the average CPU load reaches 50% (y-axis), 
the server begins to reduce the price in order to gain more customers. 
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Figure 69. Server in a stable state 

In this measurement, we choose a simple model in order to simplify the test and 
to demonstrate the advantage of the WS-QoS framework. The criteria for 
changing the price are only based on the CPU load. However, other factors such 
as the length of the ASP.NET queue, the length of the IIS or the processing time 
of requests could also be considered. Using these parameters, one can describe 
the server performance more precisely. The first two parameters can be read out 
from the so called Performance Counter of Windows 2003 Server. The processing 
time of requests has to be calculated. 

It is worth noting that it is hard to forecast the number and behaviors of clients 
and the request rate. The WS-QoS framework is the solution to control and 
adjust the server load dynamically. 

Part III 

In the last part, we present the behavior of the server when the number of 
requests decreases. In this case, the server has to make its offer more attractive 
by decreasing the price. Of course, one can apply other parameters in order 
attract users. 
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Figure 70. Behavior of the server in case of deceasing number of requests 

The Sclient.NET on Lab2, 3, and 5 stops to send requests to the server between 
20:00 and 20:20 because the service price is too high for their clients. At the point 
20:20 the CPU load on the server decreases down to 70%. Therefore, the server 
decreases the price in order to gain more clients. In case of no more requests, the 
price continuously falls down to 0 Cent. New customers are expected. 

7.4.3 Conclusion 

In this Chapter, we presented four series of performance measurements. In the 
first measurement, we determined the impact of Web service overhead on web 
servers and mobile clients. Compression is one way of dealing with the problem of 
large message sizes of Web services. We showed that compression is useful for 
poorly connected clients with resource-constrained devices despite the CPU time 
required for decompressing the responses. Compression also decreases server 
performance due to the additional CPU time required. In the approach presented 
in this measurement, we let the clients decide whether they want their responses 
compressed. During low demand, the server compresses the responses for all 
clients that have asked for compressed responses as well as for clients that have 
not indicated any preference. During high server demand, only responses to 
clients that have asked for compressed response are compressed. Our 
experiments have shown that both the server and the clients, in particular clients 
that are poorly connected, benefit from this approach. 

In the second measurement, we demonstrated the performance of the WSB. The 
WSB serves Web service clients to lookup and select a Web service offer according 
to various QoS requirements. We have shown that the performance of ‘WSB can 
be increased significantly when a database is applied. 
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In the third part, we measured the performance of the QoSProxy. We ascertained 
the cost of the QoSProxy in the first part. The second part showed that the 
overall performance of Web service communication is always better when a 
QoSProxy is applied. However, the performance gain is not that much as 
expected. We think that a reimplementation of the QoSProxy could result in 
better performance. Therefore, we conducted the third measurement in order to 
reveal the theoretical performance improvement when an ideal QoSProxy was 
applied, i.e. the ideal QoSProxy consumes no or very few resources. In this case, 
we can observe a significant performance improvement. 

In last measurement series, we demonstrated the advantages of our WS-QoS 
framework for web service providers. Service providers can easily use our 
framework in order to control the customers’ access. The criteria of the decision 
can be based on several factors and can be defined by service providers 
themselves. All QoS metrics can be modified dynamically at runtime. The pricing 
decision for a service with a certain QoS level can be based on the current server 
load, average response time or the queue length of the application server. This 
way, service provider can always prevent their servers from overloading in order 
to service clients efficiently. 




