
 81

6 Applying the WS-QoS framework

This chapter describes how to apply the implementation of the WS-QoS
framework introduced in Chapter 5.

When implementing a WS-QoS compliant Web service three issues have to be
taken into consideration: First, the service should implement a generic service
interface (e.g. tModel), which already defines the use of an optional WS-QoS
SOAP header to transport QoS information within service requests and
responses. Second, the service has to implement a strategy to provide WS-QoS
offers, which should be adjustable to changing situations of service utilization.
Finally, to achieve the QoS level(s) associated with distinct offers, the selected
offer and further QoS requirements have to be evaluated when receiving a
request. Apart from developing new services one can also qualify existing service
implementations as WS-QoS compliant by making just a few alterations to the
code [44].

6.1 Implementing an abstract service description

To make the service available for dynamic look-up through the WSB, one should
implement a specific tModel, which specifies a WS-QoS compliant Web service
with the functionality of the service. The more common a tModel is, the more
attractive it is for a client to search services implementing the tModel. Therefore,

6 Applying the WS-QoS framework 82

we encourage reusing an abstract service description rather than inventing a
redundant interface.

If no such tModel exists, one has to specify a new one. The easiest way to create a
tModel is to implement a dummy service featuring a WS-QoS SOAP header as
described below and call up the WSDL file for this service. Clients will be able to
generate a proxy object from this interface and use the proxy for various services
only by setting the proxy’s access point URI to the location of a concrete
implementation. In any case, concrete services should use the same XML
namespace as used in the service interface.

6.2 Managing WS-QoS offers

The QoS level provided by a service is part of its nature. WS-QoS offer definitions
are therefore expected to be held in a WS-QoS extension to the service’s WSDL
file. This allows for a fast discovery of WS-QoS offers, since a service’s description
file is commonly referenced from its entry in a UDDI registry along with further
information such as the service access point. The WS-API provides several ways
to publish WS-QoS offers, depending on the personal strategies and requirements.
It should be decided whether

 WS-QoS offers are held directly in WSDL or a further WS-QoS file is
referenced from the WSDL’s WS-QoS extension,

 the validity period of WS-QoS offers is updated manually or by the WS-
QoS Offer Manager Object provided by the WS-QoS API,

 the service description referenced is a static WSDL file or XML generated
by a server-side engine.

6.2.1 Including WS-QoS files from WSDL extension elements

To enable changes to QoS offers, offers should only be valid for a restricted period
of time and then be renewed regularly. Frequent changes of a WSDL file are
inappropriate, since most clients use the service description once to build a proxy
object and then expect the service to keep its functionality stable. By defining an
include element, an external WS-QoS file can be referenced from a WS-QoS
extension, as the following code sample from a WSDL file MyService.wsdl
referencing an external WS-QoS definition in a file MyOffer.wsqos shows:

83 6 Applying the WS-QoS framework

<?XML version="1.0" encoding="utf-8"?>

<definitions XMLns="http://schemas.XMLsoap.org/wsdl/">

 ...

 <service name="MyService">

 <port name="MyServiceSoap" binding="s0:MyServiceSoap">

 <soap:address

 location="http://www.mydomain.com/MyServices/MyService.asmx"/>

 </port>

 <wsqos XMLns="http://www.wsqos.net/schemas/">

 <definition>

 <offers>

 <include url =
"http://www.mydomain.com/MyServices/MyOffer.wsqos"/>

 </offers>

 </definition>

 </wsqos>

 </service>

</definitions>

This way, changes are applied to the wsqos file rather than the WSDL file.
Changes to WS-QoS offers can be made either manually or by employing the WS-
QoS Offer Manager. Note that in some cases accessing *.wsqos files from a server
has to be explicitly permitted in the server configuration.

6.2.2 Updating WS-QoS offers with the WS-QoS offer manager

Updating offers manually can become tiresome if service providers want to keep
validity periods short to adjust the offers to changing situations. For the purpose
of an automated offer update the WS-QoS API provides the class
WSQoSAPI.WSQoSOfferManager. Its constructor receives three parameters:

As a first parameter, the type of the service is passed on. This type is used to
retrieve custom attributes declared on the Web service class by means of
reflection. These attributes hold information on paths to source files specifying
QoS levels. While an ImportOffers attribute provides offers, which are merely to
be copied into an assembly of up-to-date offers, an ImportQoSDeclaration
attribute specifies a QoS level in the form of a tQoSDefinition, which has to be
turned into a WS-QoS offer by applying a validity period.

The second parameter specifies the path of a file, which is to hold up-to-date WS-
QoS offers. If the file is WSDL, it is extended by a WS-QoS extension. Should
such an extension already exist, its content is overridden. This way one can
either directly manipulate a WSDL file, update a WS-QoS file, which is
referenced from the WSDL file, or change a WS-QoS file that is used as a source
file for the WS-QoS extension to the WSDL generator engine.

6 Applying the WS-QoS framework 84

The third parameter of the type int specifies the time period of an update interval.
This interval is also used as the validity period of updated offers.

In the following example three files each hold the QoS level specification for one
offer in a requirements element. These definitions are updated manually and
changes will be applied on the next offer update. To allow for additional files to
be added, all files are referenced from the following file AvailableOffers.wsqos:

<?XML version="1.0" encoding="utf-8"?>

<wsqos XMLns="http://www.wsqos.net/schemas/">

 <definition>

 <offers>

 <include url="C:/Inetpub/wwwroot/MyService/offer1.wsqos"/>

 <include url="C:/Inetpub/wwwroot/MyService/offer2.wsqos"/>

 <include url="C:/Inetpub/wwwroot/MyService/offer3.wsqos"/>

 </offers>

 </definition>

</wsqos>

The location of this file is declared in a WSQoSAPI.ImportQoSDeclaration
attribute, which is applied to the service class. This custom attribute is evaluated
by the WSQoSAPI.WSQoSOfferManager object to gather QoS level definitions,
turn them into WS-QoS offers and then place them into a wsqos extension
element of the WSDL file, of which the location is passed to the Offer Manager.
Note that when using this mechanism, services need to be ‘triggered’ once by an
initial service invocation to start the offer update process, before they can be
discovered on the basis of up-to-date WS-QoS offers. The following code sample
shows how the components introduced are defined on a Web service class:

[ImportQoSDeclaration(Location="C:/Inetpub/wwwroot/MyServices/AvailableOf
fers.wsqos")]
public class MyService : System.Web.Services.WebService

 private static WSQoSAPI.WSQoSOfferManager MyOfferManager =

new WSQoSAPI.WSQoSOfferManager(typeof(MyService),

"C:/Inetpub/wwwroot/MyServices/MyService.wsdl",

120000);

 public MyService() { ... }

 // public Web methods ...

} // end class MyService

85 6 Applying the WS-QoS framework

6.2.3 Using the WS-QoS extension to the .NET WSDL generator engine

A WSDL description can either be defined as a static file or it can be generated
on demand. The ASP/.NET environment provides a tool wsdl.exe to generate a
service description. The engine is called by adding the suffix ?WSDL to the
services URL, e.g. http://www.mydomain.com/MyService/MyService.asmx?WSDL.
To insert the WS-QoS extension to the generated WSDL one needs to register the
WSQoSAPI.WSQoSExtension in the project’s web.config file, as the following
example shows:

<?XML version="1.0" encoding="utf-8" ?>

<configuration>

 <system.web>

 <webServices>

 <serviceDescriptionFormatExtensionTypes>

 <add type="WSQoSAPI.WSQoSExtension, WSQoSAPI"/>

 </serviceDescriptionFormatExtensionTypes>

 </webServices>

 ...

 </system.web>

</configuration>

The WSQoSAPI.ImportOffers attribute has to be declared on the Web service
class to specify a file holding up-to-date WS-QoS offers for the service. Note that
in the following code sample, the Offer Manager now updates the WS-QoS file
that is used as a source for the WSDL generator extension rather than a static
WSDL file.

[ImportQoSDeclaration(Location="C:/Inetpub/wwwroot/MyServices/AvailableOf
fers.wsqos")]
[ImportOffers(Path="C:/Inetpub/wwwroot/MyServices/CurrentOffers.wsqos")
]

public class MyService : System.Web.Services.WebService

{
 private static WSQoSAPI.WSQoSOfferManager MyOfferManager =

new WSQoSAPI.WSQoSOfferManager(typeof(MyService),

"C:/Inetpub/wwwroot/MyServices/CurrentOffers.wsqos", 120000);

 public MyService() { ... }

 // web methods ...

} // end class MyService

The WSQoSAPI.ImportOffers attribute is then evaluated by means of reflection
every time the generator engine is called. The WS-QoS extension to the engine
then ensures that offers defined in the specified file are included to the generated
WSDL in a wsqos extension element. Again, services need to be ‘triggered’ once
by an initial service invocation to start the offer update process. Note that for an

6 Applying the WS-QoS framework 86

automated update of offers the right to write the files holding these offers has to
be granted to the server process, in our case the IIS.

6.3 Adaptation of client’s QoS requirements

A WS-QoS compliant Web service needs to define a member of the type
WSQoSAPI.WSQoSSoapHeader so that QoS information passed to the service by
a WS-QoS compliant client can be taken into account by the service instance.
This WS-QoS SOAP header is referenced in a SOAP header attribute on each
Web method, as the following code extract shows:

public class MyService : System.Web.Services.WebService

{

 public WSQoSAPI.WSQoSSoapHeader MyWSQoSHeader;

 [SoapHeader("MyWSQoSHeader", Direction=SoapHeaderDirection.InOut)]

 [WebMethod()]

 public foo MyMethod(foo MyParam)

 {

 if (this.MyWSQoSHeader != null) // apply QoS level according to
requirements

 else // apply default (lowest) QoS level

 return magicOperation(MyParameter);

 }

}

The level of QoS applied could be decided on the basis of the selected offer as in
the following example which differentiates processing time by setting distinct
priorities for the worker thread serving a request:

87 6 Applying the WS-QoS framework

// handle WSQoS requirements

if (this.MyWSQoSHeader != null)

{

 switch (this.MyWSQoSHeader.selectedOffer)

 {

 case "Posh" : System.Threading.Thread.CurrentThread.Priority =

 System.Threading.ThreadPriority.AboveNormal; break;

case "Standard" : System.Threading.Thread.CurrentThread.Priority
= System.Threading.ThreadPriority.BelowNormal; break;

 default : System.Threading.Thread.CurrentThread.Priority =

 System.Threading.ThreadPriority.Lowest; break;

 }

}

else System.Threading.Thread.CurrentThread.Priority =

 System.Threading.ThreadPriority.Lowest;

Yet, since we receive the whole WS-QoS SOAP header, we can also treat clients
on a more differentiated approach considering their individual parameters, as the
following example shows:

6 Applying the WS-QoS framework 88

// handle WSQoS requirements

if (this.MyWSQoSHeader != null)

{

WSQoSAPI.QoSInfo requirements = new
WSQoSAPI.QoSInfo(this.MyWSQoSHeader.qosInfo);

 if (requirements != null)

 {

 if (requirements.ServerQoSMetrics != null)

 {

 double processingTime =
requirements.ServerQoSMetrics.ProcessingTime;

 if (processingTime < 2) currentThread.Priority =

 System.Threading.ThreadPriority.Highest;

 else if (processingTime < 4) currentThread.Priority =

 System.Threading.ThreadPriority.AboveNormal;

 else if (processingTime < 6) currentThread.Priority =

 System.Threading.ThreadPriority.Normal;

 else if (processingTime < 8) currentThread.Priority =

 System.Threading.ThreadPriority.BelowNormal;

else currentThread.Priority = System.Threading.ThreadPriority.Lowest;

 }

 else currentThread.Priority =
System.Threading.ThreadPriority.Lowest;

 }

 else currentThread.Priority =
System.Threading.ThreadPriority.Lowest;

}

else currentThread.Priority = System.Threading.ThreadPriority.Lowest;

A more complex strategy could consider individual requirements as long as they
are conformant with certain threshold values associated with the selected offer.

89 6 Applying the WS-QoS framework

6.4 Setting up a WSB

The full functionality of a WSB is implemented as part of the WS-QoS API.
Therefore, implementing an own offer broker service is fairly easy: The first step
is to create a new Web service on the local server. Instead of extending the class
System.Web.Services.WebService it should rather inherit the abstract class
WSQoSAPI.WSQoSOfferBrokerWebService provided by the WS-QoS API. The
name space for the new Web service should be set to http://wsqos.org/ in order to
comply with the abstract service description of a WS-QoS offer broker.

In order to get the WSB working, two functions have to be overridden by the
concrete instance. GetConfigFilePath() should return a string containing the path
of a configuration file. Note that the path should be an absolute path (i.e.
NOT ./myfile.config !), since the working directory changes for local and remote
service invocation. The file should hold information on the location of the UDDI
registry to be used as well as the business-keys for trusted service providers as
shown in the following sample configuration file:

<?XML version="1.0" encoding="utf-8" ?>

<config>

 <UDDIRegistryUrl>http://UDDI.ibm.com/ubr/inquiryapi</UDDIRegistryUrl>

 <TrustedProviders>

 <trustedProvider name="My Service Provider"

 UDDIBusinessKey="f1a66f68-39ca-4e3e-9786-7c2e11f3ed26" />

 </TrustedProviders>

</config>

Note that several trusted provider entries are possible. Restricting the scope of
providers is important when working with a public UDDI registry to avoid the
automated selection of fraud service providers.

The function CreateCurrencyConverter() returns a concrete instance of a
WSQoSAPI.CurrencyConverter. One can either implement an own currency
converter by extending the WSQoSAPI.CurrencyConverter abstract class or use
the WebServiceXCurrencyConverter provided by the package WS-QoS Util. This
object uses a Web service from the service provider WebserviceX.NET to obtain
current exchange rates. The package can be found in the WebServicesXUtil.dll,
which is part of the WS-QoS Stock Quote demo downloadable from the WS-QoS
homepage [45].

6.5 Creating WS-QoS compliant client applications

Three steps are necessary to implement a WS-QoS compliant client application:
First, the client has to become aware of its own QoS requirements. This task is
taken care of by the WS-QoS Requirement Manager object provided by the WS-

6 Applying the WS-QoS framework 90

QoS API. Furthermore, clients need to request either a local or a remote instance
of a WSB to discover the service offering the most appropriate QoS level. Upon
service invocation, the client application is expected to send its current QoS
requirements in a WS-QoS SOAP header along with each service request.

6.5.1 Defining client side QoS requirements

A convenient possibility to define client side QoS requirements at the
implementation time is to apply WS-QoS custom attributes to the client’s service
proxy class a.k.a. the Web reference. However, this static declaration of QoS
requirements in the program code does not permit any alteration of these
specifications at runtime. Yet for some parameters such as a maximal acceptable
price as means to dynamically adjust threshold values at run-time is desirable.
Therefore, requirements in external WS-QoS files can be included with an
ImportQoSDeclaration attribute. These files are then monitored and any changes
to the files are integrated into the current client requirement objects held by the
clients WS-QoS Requirement Manager object. Static and dynamic specifications
can be combined.

6.5.2 Creating a proxy class

First of all, a service proxy class should be generated by defining a Web reference
from the tModel the service is going to implement. In our example, the Web
reference is called GenericService:

// proxy object for the WS-QoS compliant service to be used

private GenericService.WSQoSAwareService MyService =

 new GenericService.WSQoSAwareService();

Since the QoS proxy introduced in Section 5.7 is used to perform packet marking
based on the transport QoS level specified in the WS-QoS SOAP header, the QoS
proxy is to be registered with the service proxy in the client application’s
constructor:

this.MyService.Proxy = new WebProxy("localhost", 7777);

6.5.3 Declaring custom attributes on the proxy class

WS-QoS elements can be declared with static custom attributes assigned to a
service proxy class generated from a WSDL file. Editing of a generated proxy
class is not recommended because changes will be lost in the case of updating.
Elements for specific operations can be assigned to the corresponding Web
method, as the following code samples shows.

91 6 Applying the WS-QoS framework

[ServerQoSMetrics(ProcessingTime=0.5, Availability=0.98)]

[TransportQoSPriorities(Delay=8, PacketLoss=5)]

[ImportQoSDeclaration(Location="./maxprice.wsqos")]

public class MyWSQoSAwareService :
System.Web.Services.Protocols.SoapHttpClientProtocol {

 public WSQoSSoapHeader WSQoSSoapHeaderValue;

 public WSQoSAwareStockQuoteService() { ... }

[TransportQoSPriorities(Delay=5, Jitter=5)]

[CustomServerQoSMetric(Name="CPU_Share",

Ontology="http://mydomain.com/myontology.wsqos", Value="0.2")]

[System.Web.Services.Protocols.SoapHeaderAttribute(...)]

[System.Web.Services.Protocols.SoapDocumentMethodAttribute(...)]

 public foo MyOperation() { ... }

}

Figure 43 gives an overview of the classes of the WS-QoS API representing
elements of the WS-QoS XML schema. While the application of a (single) Price
attribute is restricted to the scope of the whole service, the following custom
attributes can be applied either directly to the service proxy class or on specific
methods:

• ServerQoSMetrics and CustomServerQoSMetric,

• TransportQoSPriorities and CustomTransportQoSPriority,

• SecurityAndTransaction and ProtocolSupport,

• ContractAndMonitoring and ThirdParty

6 Applying the WS-QoS framework 92

Figure 43. Classes of the WS-QoS API representing WS-QoS elements

Instances of the classes DefaultQoSInfo and OperationQoSInfo (both inheriting
the class QoSInfo) and a QoSRequirements object (which is derived from the class
QoSDefinition) are created to hold the attributes retrieved from the proxy class.
WS-QoS custom attributes declared on the proxy class will be added to the
DefaultQoSInfo element of the requirements object. If WS-QoS custom attributes
are applied to a specific Web method within the proxy class, they will be added to
an OperationQoSInfo element for this operation. Apart from holding the values
for certain WS-QoS elements, these objects implement the functionality of
whether one object provides an equal or better QoS level. Their function Includes()

93 6 Applying the WS-QoS framework

is invoked by the WSB when testing an offer against a client requirement
definition.

ImportQoSDeclaration attributes can be defined in order to reference XML WS-
QoS files containing further requirements, which can be changed dynamically at
runtime. When an import attribute is initiated, the import file is read and a
corresponding QoS definition object is built by using the attributes’
getInnerXML() method. Then a thread is initiated to perform regular checks on
whether the import file has been changed. If so, the requirement manager is
informed and the overall requirement object is rebuilt using the updated
representation of the dynamic attributes. The following code sample shows how
static and dynamic WS-QoS declarations are combined (the file name of this code
is maxprice.wsqos.

<?XML version="1.0" encoding="utf-8"?>

<wsqos XMLns="http://www.wsqos.net/schemas">

 <definition>

 <requirements name="Dynamic maximum price for my client application">

 <price currency="EUR">0.49</price>

 </requirements>

 </definition>

One can include this file by applying an ImportQoSDeclaration attribute to the
service proxy class MyWSQoSAwareService. We also declare a selection of static
QoS requirements on the class and one sample method:

6 Applying the WS-QoS framework 94

[ServerQoSMetrics(ProcessingTime=0.5, Availability=0.98)]

[TransportQoSPriorities(Delay=8, PacketLoss=5)]

[ImportQoSDeclaration(Location="./maxprice.wsqos")]

public class MyWSQoSAwareService :
System.Web.Services.Protocols.SoapHttpClientProtocol {

 public WSQoSSoapHeader WSQoSSoapHeaderValue;

 public WSQoSAwareStockQuoteService() { ... }

[TransportQoSPriorities(Delay=5, Jitter=5)]

[CustomServerQoSMetric(Name="CPU_Share",

Ontology="http://mydomain.com/myontology.wsqos", Value="0.2")]

[System.Web.Services.Protocols.SoapHeaderAttribute(...)]

[System.Web.Services.Protocols.SoapDocumentMethodAttribute(...)]

 public foo MyOperation() { ... }

}

The WS-QoS requirement manager will now generate an equivalent WS-QoS
XML as follows:

95 6 Applying the WS-QoS framework

<?XML version="1.0" encoding="utf-8"?>

<wsqos XMLns="http://www.wsqos.net/schemas">

 <definition>

 <requirements name="My Requirements for StockQuote Client">

 <defaultQoSInfo>

 <serverQoSMetrics>

 <processingTime>0.5</processingTime>

 <availability>0.98</availability>

 </serverQoSMetrics>

 <transportQoSPriorities>

 <delay>8</delay>

 <packetLoss>5</packetLoss>

 </transportQoSPriorities>

 </defaultQoSInfo>

 <operationQoSInfo name="MyOperation">

 <serverQoSMetrics>

 <customMetric name="CPU_Share"

 ontology="http://mydomain.com/myontology.wsqos">0.2</customMetric>

 </serverQoSMetrics>

 <transportQoSPriorities>

 <delay>5</delay>

 <jitter>5</jitter>

 </transportQoSPriorities>

 </operationQoSInfo>

 <price currency="EUR">0.49</price>

 </requirements>

 </definition>

</wsqos>

6.5.4 Adjusting WS-QoS files with the WS-QoS editor

If one decides to use WS-QoS XML files to specify dynamic requirements there is
no need to directly edit the XML code. The WS-QoS editor provides a comfortable
GUI to edit WS-QoS specifications. Using the editor also ensures that the XML
code is compliant with the WS-QoS XML schema. Figure 44 shows how a custom
metric (CPU_Share in this case) is added to the Operation QoS info element for
an operation GetStockQuote().

6 Applying the WS-QoS framework 96

Figure 44. Adding a custom server metric declaration with the WS-QoS Editor

6.5.5 The WS-QoS requirement manager

The WS-QoS Requirement Manager is used by the client application before the
service selection and service invocation take place. Therefore, the following
declaration should be made in the client application class:

// WS-QoS requirement manager used to survey current client requirements

private WSQoSAPI.WSQoSRequirementManager MyRequirementManager;

To get the Requirement Manager working, it has to be instantiated when the
client application’s constructor is called. A reference to the service proxy should
be passed on as a parameter. Therefore, the following code has to be added to the
client application’s constructor:

// create requirement manager

this.MyRequirementManager = new
WSQoSAPI.WSQoSRequirementManager(this.MyService);

97 6 Applying the WS-QoS framework

Upon instantiation, the Requirement Manager collects WS-QoS custom
attributes that have been assigned to the proxy class and builds a WS-QoS
requirement definition object. It then collects all ImportQoSDeclaration
attributes, builds WS-QoS definition objects from the specified XML and sets
their parent property to receive update messages in the case that a file has been
changed. Finally, the newly built WS-QoS definition objects are added to those
retrieved from the static attributes. From now on, current client QoS
requirements can be retrieved from the WS-QoS Requirement Manager, e.g. for
service selection, by requesting its CurrentRequirements property.

If desired, the current client QoS requirements can be recorded in a log file by
calling the StartLogging() method on the Requirement Manager object. To start
the logging of current requirements, the following code has to be added to the
client application’s constructor:

this.MyRequirementManager.StartLogging();

6.6 QoS-aware service selection with the WSB

The WSB holds up-to-date information on offers currently available for a group of
services, which have been requested in recent time. The WSB categorizes offers
by their interface that the services providing them implement. To keep an up-to-
date list of all services implementing a given interface, the WSB consults one or
more UDDI registries regularly. The WSB checks the availability of services
regularly. Once an offer expires, the WSB deletes it from its registry. If the
validity of the offer is extended, it will be re-detected during the next check.

When a client application inquires the WSB for the cheapest offer available, it
sends its QoS requirements as a parameter of the request. In the order of their
price, the WSB then tests available offers whether they fulfill the client’s
requirements. The first compliant offer is returned.

6.6.1 Instantiation of the WSB

There are two implementations of the WSB. One is a local object running within
the application. This ensures a highly performing service selection and detailed
information on available offers, as needed for the WS-QoS Monitor described
below. The other implementation uses a remote Web service to obtain the access
point of the most appropriate service. This version is mainly intended as a light
process for multiple client applications that could use a single private WSB
running as a Web service within their network domain. This WSB could well be
used by any other implementation of WS-QoS. Using the generic interface
WSQoSAPI.WSQoSOfferBroker one can leave the choice of the implementation
for later or even change it at runtime. The following code sample shows how the
WSB should be declared in the client application class:

6 Applying the WS-QoS framework 98

// UDDI registry key of the tModel the service implements

private string MyUDDITModelKey = "uuid: ... ";

// WS-QoS service broker used for QoS aware dynamic service discovery

private WSQoSAPI.WSQoSOfferBroker MyOfferBroker;

// best offer currently available

private WSQoSAPI.QoSOffer CurrentOffer = null;

Instead of specifying the tModel key directly in the code, a configuration file could
be used to adjust to changes. Now, the WSB object has to be instantiated in the
constructor of the client application, which is the easiest way to use a remote
Web service broker. In this case one has to create a new
WSQoSAPI.RemoteOfferBroker object:

// create offer broker

this.MyOfferBroker = new WSQoSAPI.RemoteOfferBroker();

The remote WSB object expects to load a configuration file named
RemoteBroker.config in the application’s working directory. This file is used to
specify the URL of the WSB to be used. The file should show the following XML:

<?XML version="1.0" encoding="utf-8" ?>

<config>

<BrokerServiceUrl>http://mydomain.com/MyWSQoSOfferBroker.asmx</Brok
erServiceUrl>

</config>

Some applications, such as the WS-QoS Monitor introduced later, might prefer a
local instance of the WSB in order to avoid the time consuming contacting of yet
another Web service for offer selection or to retrieve more detailed information on
available offers. Yet, this also means that all service providers and offers have to
be watched while using a single WSB helps to restrict network traffic. The local
WSB object makes use of the predefined static field
WSQoSAPI.CurrencyConverter.ActiveCurrencyConverter. This abstract currency
converter has to be initiated with an instance of a concrete converter to allow for
the comparison of prices given in different currencies. One can either implement
an own version or use the one provided with the WebServicesXUtil.dll. The
following code shows how a currency converter is instantiated in the client
application:

99 6 Applying the WS-QoS framework

// create new currency converter

if (WSQoSAPI.CurrencyConverter.ActiveCurrencyConverter == null)

{

 WSQoSAPI.CurrencyConverter.ActiveCurrencyConverter =

new WebServicesXUtil.WebServiceXCurrencyConverter();

}

The local WSB object expects to load a configuration file named
LocalBroker.config in the application’s working directory. This file is used to
specify the URL of the UDDI registry to be consulted as well as a list of trusted
service providers whose services are considered for service selection. This way,
automated selection of fraud services can be avoided. The configuration file
should show the following XML:

<?XML version="1.0" encoding="utf-8" ?>

<config>

<UDDIRegistryUrl>http://mydomain.com/UDDIpublic/inquire.asmx</UDDIR
egistryUrl>

 <TrustedProviders>

 <trustedProvider name="Provider A" UDDIBusinessKey=" ... " />

 <trustedProvider name="Provider B" UDDIBusinessKey=" ... " />

 </TrustedProviders>

</config>

6.6.2 Updating the most appropriate WS-QoS offer

To update the most appropriate WS-QoS offer, a separate thread will be started
to consult the WSB at intervals. The client’s current QoS requirements and the
tModel of the desired service type are passed to the WSB as parameters. The
following lines of code show how the service access point of the service proxy is
updated:

public void UpdateOffer()

{

 this.CurrentOffer = this.CurrentOfferBroker.GetBestOffer(

this.MyRequirementManager.CurrentRequirements,

this.MyUDDITModelKey);

// set new service access point

this.MyService.Url = this.CurrentOffer.Service.AccessPointUrl;

}

6 Applying the WS-QoS framework 100

6.6.3 Comparing available offers with the WS-QoS monitor

Whenever one automates important decisions, the need to monitor the
correctness of the automation arises. Therefore, we have developed the WS-QoS
Monitor, which monitors and shows all available offers and the current client
requirements. This way it makes possible to check on the compliance of offers. If
no appropriate offer can be found, the overview of possible offers will help a user
to see what requirements might be inappropriate and he or she could make the
adjustments needed in order to make their application work again. Moreover,
detailed information on services can be retrieved by following the links to the
services’ access points and description documents.

Figure 45. An instance of the WS-QoS Monitor surveying the service selection for a WS-

QoS compliant client

The WS-QoS Monitor, shown in Figure 45, allows users to register both a file
containing current client requirements as well as a file containing a log of all WS-
QoS SOAP headers exchanged between the client application and the service.
One can monitor these files in the separate windows: Requirement Watch and
WS-QoS SOAP Header Watch. If the files are changed, the corresponding views
will be updated. Moreover, once requirements are registered, the detailed view of
an offer informs the user whether the offer currently viewed is compliant with
the client requirements or not.

The WS-QoS Monitor uses a local offer broker to show detailed information on
available offers. Therefore, the configuration files provided with the program
should be adjusted accordingly. If one uses a remote WSB, the monitor will
request the URL of the UDDI registry used directly from the remote WSB to
simulate its behavior.

101 6 Applying the WS-QoS framework

6.7 Service invocation

Before calling an operation such as MyOperation, the specific QoS requirements
for this operation have to be retrieved. The GetJointOperationQoSInfo() function
is invoked on the CurrentRequirements property of the Requirement Manager.
The function’s name is passed on as a parameter. This way, we receive a joint
definition of default values extended and overridden by definitions made in
specific operationQoSInfo. The following code shows the joint requirements for
the operation MyOperation.

<operationQoSInfo name="MyOperation">

 <serverQoSMetrics>

 <processingTime>0.5</processingTime>

 <availability>0.98</availability>

 <customMetric name="CPU_Share"

ontology="http://mydomain.com/myontology.wsqos">0.2</customMetric>

 </serverQoSMetrics>

 <transportQoSPriorities>

 <delay>5</delay>

 <packetLoss>5</packetLoss>

 <jitter>5</jitter>

 </transportQoSPriorities>

 </defaultQoSInfo>

The XML representation of this current QoS info object is placed in the WS-QoS
SOAP header, along with the name of the WS-QoS offer currently selected. The
SOAP header is finally associated with the service proxy through which the
service invocation is initiated. The following code demonstrates the necessary
steps to prepare a WS-QoS compliant service invocation:

// build wsqos header

this.MyWSQoSHeader.qosInfo = (XMLElement)this.MyRequirementManager.

CurrentRequirements.GetJointOperationQoSInfo("MyOperation").XML;

this.MyWSQoSHeader.selectedOffer = this.CurrentOffer.Name;

this.MyService.WSQoSSoapHeaderValue = this.MyWSQoSHeader;

// invoke service operation

foo f = this.MyService.MyOperation();

6.7.1 Logging of WS-QoS SOAP headers

WS-QoS SOAP headers communicated between client and server can be logged
by declaring a WSQoSAPI.WSQoSHeaderLogExtension on the operation in
question in the service proxy class as the following code sample shows. Note that

6 Applying the WS-QoS framework 102

after adding attributes to the proxy class an automated update of the Web
reference would destroy the changes.

public class MyWSQoSAwareService :
System.Web.Services.Protocols.SoapHttpClientProtocol {

 public WSQoSSoapHeader WSQoSSoapHeaderValue;

 public WSQoSAwareStockQuoteService() { ... }

[WSQoSAPI.WSQoSHeaderLogExtension(ServiceName="MyWSQoSAwareService"
)]

 [System.Web.Services.Protocols.SoapHeaderAttribute("WSQoSSoapHeader
Value",
Direction=System.Web.Services.Protocols.SoapHeaderDirection.InOut,

Required=false)]

[System.Web.Services.Protocols.SoapDocumentMethodAttribute(...)]

public foo MyOperation() {

 object[] results = this.Invoke("MyOperation", new object[]
{Symbol});

 return ((foo)(results[0]));

}

}

To get the SOAP extension running, it has to be registered in the client
application’s web.config file as the following code extract shows:

<?XML version="1.0" encoding="utf-8" ?>

<configuration>

 <system.web>

 <webServices>

 <soapExtensionReflectorTypes>

 <add type="WSQoSAPI.WSQoSReflector, WSQoSAPI"/>

 </soapExtensionReflectorTypes>

 </webServices>

 ...

 </system.web>

</configuration>

The client application’s log file can be registered with the WS-QoS Monitor to be
viewed in a separate window. The content of this WS-QoS SOAP Header Watch
view is updated each time the client initiates a further service invocation. And by
monitoring WS-QoS SOAP headers being exchanged the user will know that she
has succeeded in building a WS-QoS compliant Web services project.

103 6 Applying the WS-QoS framework

6.8 Conclusion

In this chapter, we described how to apply the implementation of our WS-QoS
framework. Implementing a WS-QoS aware Web service application requires
mainly three steps. First, the service should implement a generic service
interface (e.g. tModel), which already defines the use of an optional WS-QoS
SOAP header to transport QoS information within service requests and
responses. Second, the service has to implement a strategy to provide WS-QoS
offers, which should be adjustable to changing situations of service utilization.
Finally, to achieve the QoS level(s) associated with distinct offers, the selected
offer and further QoS requirements have to be evaluated when receiving a
request. Apart from developing new services one can also qualify existing service
implementations as WS-QoS compliant by making just a few alterations to the
code.

In the next chapter, we demonstrate our performance measurements of to Web
service performance in general and the performance of our implementation.
Furthermore, we show the advantages for both clients and servers when the WS-
QoS framework is applied.

