63

5 The implementation of the WS-QoS framework

This chapter describes the prototypic implementation of the WS-QoS framework
introduced in Chapter 4. Figure 32 shows the implementation of the WS-QoS
framework, which supports both wired and mobile devices. It encompasses the
Offer Broker, the Requirement Manager, and the Base and Supporting
Functions.

The first subsection of this chapter introduces a scenario for QoS-aware service
selection. Section 5.2 discusses the WS-QoS XML schema, which is the core of the
whole architecture. Section 5.3 introduces the WS-QoS editor for editing QoS
requirements. Section 5.4 and 5.5 deal with the WS-QoS monitor and the
Requirement Manager. Section 5.6 discusses the Web service broker, which
improved the lookup and selection of services. Section 5.7 focuses on the mapping
of the QoS requirements from the higher layer onto the network layer. Section
5.8 highlights our proposal that all participating domains of Web service
communication should take QoS into consideration. Section 5.9 demonstrates
how to apply the WS-QoS framework in order to support mobile Web service
communication. Section 5.10 gives a conclusion of this chapter. All the
implementation is based on .NET and Windows platforms including Windows XP
and Windows Server 2003.

5 The implementation of the WS-QoS framework

WS-QoS framework
Support for mobile devices

Web service broker Requirements manager

Process
Reflecti
Remote Broker Local Broker
Logging Auto Update

Base and supporting functions
WS-QoS WS-QoS WS-QoS

Figure 32. Implementation of the WS-QoS framework

Due to the requirements discussed in Section 4.1, we implemented the WS-QoS
framework with the following objectives:

e The WS-QoS API that allows C# and ASP .NET application developers to
define WS-QoS requirements for both client applications and Web service
offers

e The WS-QoS Editor that allows the editing of the QoS parameters through a
graphic user interface (GUI)

e The Requirement Manager that is responsible for retrieving clients’
requirements

e The WSB, which is responsible for the QoS-aware service selection

e The WS-QoS Monitor, which is used for examining the compliance of offers

64

65 5 The implementation of the WS-QoS framework

5.1 A scenario for QoS-aware service selection

From the client point of view, a client application can use one or more types
(tModel) of Web services. The interfaces described in WSDL of Web services are
known at the implementation time. A proxy class (in the context of Microsoft
Visual Studio .NET also known as a Web Reference) is generated from the
tModel’s WSDL description for each service type. Static WS-QoS custom
attributes or import attributes referencing dynamic requirements in a WS-QoS
XML file can now be assigned to the newly created proxy class and its methods
(known as web methods in Visual Studio .NET). Finally, the proxy class is
handed over to an instance of the WS-QoS Requirement Manager, which will
retrieve the attributes through the reflection technique and thus holds a
representation of the current client requirements. One can also use the
Requirement Manager to adjust the QoS requirements at runtime without
recompiling any code.

The process flow of a dynamic QoS-aware service selection is depicted in Figure
33. On initialization, the client application creates an instance of a WS-QoS
Requirement Manager. A WS-QoS Broker (WSB) is already running in the same
network. Before the service invocation, the client application will use the
Requirement Manager to state its current QoS requirements and then inquire
the WSB for the most appropriate service offer available that fulfills its
requirements. The WSB selects the most appropriate offer on behalf of the client
from the WSBs local database. (Note we assume in this case that the WSB has
already a local and up-to-date cache of the services the client is asking for).
Therefore, the WSB does not contact any UDDI and service providers for
searching the required service. This model results in a short response time. Once
the client gets the required offer from the WSB, the client will invoke the service
with the desired QoS properties.

The QoS properties are transmitted in the SOAP header to the service provider
that can treat the request based on the QoS properties. For example, it could set
the thread priority or, as a load balancer, forward it to one of various possible
application servers. Yet, the information is not only intended for the Web service
provider: A WS-QoS proxy is able to interpret the desired transport QoS
priorities and mark the outgoing packets accordingly so that the higher layer
applications can take advantages of the QoS support that the underlying QoS-
aware transport technologies provide. Furthermore, the information in the SOAP
headers can be used to perform encryption or digital signatures.

Having processed the client’s request, the service provider will send the response
back to the client. The service provider has to ensure that it can carry out the
client’s requirements about the transport and security. The service provider
should set the requirements in the SOAP header so that they can be evaluated
and carried out by the participating components on the way back to the client.
The components are e.g. the QoS proxy on the server side, WS-QoS-aware routers
in the network, or an access point for mobile devices.

5 The implementation of the WS-QoS framework 66
Requirement Client Service Service
Manager Application Broker Provider
: update
offers
update requirements
get current offers

get current requirements

update requirements

B e st e

get best offer (requirements)

update offers

B St

'If"""""'JL""'

return selected offer

invoke (selected offer)

check offers against

requirements

Sy W, - A ——

respond

process

>request

Figure 33. Scenario for the initial request of offers for a specific service type

5.2 WS-QoS XML schema

Figure 34 illustrates the implemented classes of the WS-QoS XML schema. Users
can declare WS-QoS elements with static custom attributes which are assigned to
a service proxy class generated from a WSDL file. QoS elements for specific
operations of a service can be assigned to the corresponding Web method. All WS-
QoS attributes inherit the abstract class WSQoSAttribute, which provides a basic
infrastructure for managing the WS-QoS information. In a concrete class the
method getlnnerXML() has to be overridden in order to provide an XML
representation of the attribute. The method updateProperties(XMLElement) has
to be overridden as well in order to create attributes from an XML source.

According to the WS-QoS XML schema, the WS-QoS API provides the following

cust

om attributes:

ServerQoSMetricsAttribute and CustomServerQoSMetricAttribute,

Transport@QoSPrioritiesAttribute and
CustomTransportQoSPriorityAttribute,

SecurityAndTransactionAttribute and ProtocolSupportAttribute,

ContractAndMonitoringAttribute and ThirdPartyAttribute,

PriceAtiribute.

67 5 The implementation of the WS-QoS framework

Furthermore, instances of the classes DefaultQoSInfo and OperationQoSInfo
(both inheriting the class QoSInfo) and a QoSRequirements object (which is
derived from the class QoSDefinition) are created to hold the attributes retrieved
from the proxy class. Apart from holding the values for certain WS-QoS elements,
these objects implement the functionality deciding whether one object provides
an equal or better QoS level. The function Includes() is invoked from the WSB
when testing an offer against a client requirement definition.

While the values of most WS-QoS elements can be compared in a simple way, the
custom attribute PriceAttribute implements a function IsCheaper(), which calls a
currency converter object in case that two price statements are declared with
distinct currencies. The WS-QoS API defines the abstract class
CurrencyConverter, which holds a static property ActiveCurrencyConverter. This
property has to be set to an instance of a class implementing this abstract class
before the WSB can make use of the currency converter. The package WS-
QoSUtil provides the class WebServiceXCurrencyConverter, which uses a Web
service from the service provider WebserviceX.NET [46] to obtain current
exchange rates.

Furthermore, the import attribute is defined to reference WS-QoS XML files
containing further requirements, which can be changed dynamically at runtime.
When an import attribute is initiated, the imported file is read and a
corresponding QoS definition object is built using the attribute’s getInnerXML()
method. Then a thread is initiated to perform regular checks on whether (the
content of) the imported file has been changed. If so, the Requirement Manager is
informed and the overall requirement object is rebuilt using the updated
representation of the dynamic attributes.

5 The implementation of the WS-QoS framework

Fricelnfo Protocol Supportinfo QoSParameterinfo
ServiceModel List
) . +ourrenoystring +compliant:bool +waluefloat
-Senices:Senicehlodel]] +valuefloat +protocalMame:sting
P
1.7
ServiceModel QoSinfos
.) 1 W
+seniceName:sting +qosinfos:Qasinfo UoSinfo
+operationz:Operation Qo Sinfos]]
+qosinfo:QoSinfos 4 w1 t+deseription:string

1 o OperationGoSinfos
> . - 1 1
+operationMame:string =

+qosinfos: QoS Infos

ServiceQoSReqlnfo
QoS Requirements

+seniceName:sting 1 W
+0perationQoSinfos:OperationQoSRequirements]

————= +name:sting

QoSRequiremernt

+relativelmport double . +description:sting
+requirements: QoS Requi ntf oy +rel ati

Impartance:double

+qosreqinfo:QoSRequirements OperstionGosRequirements
1 1

1 8.7
——= +operationMame:string
-QoSReqinfo:QoSRequirements

FriceReq Protocol Support Req
+bound:float +name:string
+required:bool

+getRanking:double
+getRanking:double

Figure 34. Classes of the WS-QoS API

5.3 WS-QoS editor

The WS-QoS Editor allows both the service client and the service provider to
easily edit their QoS requirements or offers, respectively. They neither need to
know the details of the WS-QoS XML schema nor have any programming skill.
One or more XML-based .wsqos files are generated automatically. The WSDL
files are normally generated automatically by a tool such as wsdl.exe in case of
the .NET runtime. In case of a service offer, one or more references of the .wsqos
files are added manually into the WSDL file of the service. In case of a service
request, the WS-QoS Requirement Manager will retrieve the values defined in

a .wsqos file.

— HyetRgnhing double

QoSFarameterfeq
+bound:float
+qualifierstring

+name:string

+getRanking:double

Figure 35 shows the GUI for defining custom QoS properties. One can define

* the name of the requirement,

» the scope in which the requirements are valid, possible scopes are individual

operation of a service or the whole service,

» the standard metrics of standard QoS aspects such as processing time,

request per second, availability, and reliability as server QoS metrics,

» the price for the service usage the client is willing to pay or the service

provider is going to charge, and

68

69 5 The implementation of the WS-QoS framework

» custom metrics (shown in the GUI on the left side of Figure 35) by applying
ontology.

[®ws-gos Editor 1Ol x|
File add sml About
Name: — Price
IM}IH equirements Brics IW
% add new Custom QoS Metric i] 4 Scope: Eiiikies Im‘j
) |D efault L‘
Ontolagy:
|http: waw.inf.fu-berlin.de;"insta’ag-techx’wsqosx’ontﬂ —Seryer Qo5 Metri —Transport QoS Priorities————
|M i J Processing Time I 05 Delay | q
CPU_Share *| addontola | E
= Requests / Sec I 10 Jitter | a
B B Availability I 077 Throughput | a
Direction ;. inoreasing Fercentile 285 Rieliabilty I—D? Bk I—?
Unit : PERCENT
CustomMetrics: Custom Priorities :
Data Owner : aff Data Scope: pog el AT ROIRICS,
BT o I e |no metnz selacted ;l IATM_ELH@http:Nwww.inf.f;l

ick “ add new metic l Temoye | add new priority | Temoye |

e exaculion of S sendce Type \-"alueI Type Walue I3 vl
< cli

Add Cancel | —Security and Transaction Support
4 .
|encryptlon Ll add definition | TEMOYE |
|><mI_Enc@http:.-’a’www.inf.fu-berlin.dej add pratocal | TErnOYE |

Figure 35. Defining custom QoS properties

5.4 WS-QoS requirement manager

On initialization, the WS-QoS Requirement Manager obtains a reference to the
service proxy class to which either requirement attributes have been assigned or
a reference to a .wsqos file is given. The Requirement Manager retrieves the QoS
attributes either from the proxy class or from a .wsqos file. It then collects all
import attributes, builds WS-QoS definition objects and sets their parent
property to receive update messages in case that a .wsqos file has been changed.
Finally, the newly built WS-QoS definition objects are added to those retrieved
from the static attributes.

5.5 WS-Qo0S monitor

We have developed the WS-QoS Monitor, which examines all available offers and
the current client requirements, making it possible to check the compliance of
offers. If no appropriate offer can be found, the overview of possible offers will
help users to evaluate what requirements might be inappropriate and users could
then make adjustments needed in order to find a match.

Moreover, the WS-QoS Requirement Manager can be configured to log current
requirements. Once this file is registered in the monitor, requirements can be
viewed in the requirement watch window or directly in the offer window of the

5 The implementation of the WS-QoS framework

GUI. Finally, the package WS-QoS Util provides a SOAP extension attribute,
which can be assigned to the proxy’s web methods. The SOAP extension will log
WS-QoS SOAP headers of all service requests and responses. One can register
this file in the monitor as well use it to survey WS-QoS SOAP headers in the
SOAP header watch window of the GUI. Figure 36 shows the main window with
two watch windows in the lower right corner and a QoS-aware client application
to the upper right [47].

BEE [y o

Exit Visw Preferences Exit Service Broker About
Tie WEGoS Afiribute fest anpication reftaves dafaul (oS requiamants fom sitibutes deciared on & proxy class for 3 Wab lected offer invoke selected service——
Senaca # & ending fo vsa and fesfs sendce offers it a udd ragriiy agairt them fa sedect the mosf aoproprale rence. dffier caling sanize
" - StandasrdSimpie input output :
Fer Fulfill Lid L
select offer: oferiuliting i

[Premium@PremiumM ultiplyOnline =l offer: StancwdSimpia service:
E i i i SimpieMubiplOnioe doubl wippl
§lancjalljﬁlmp!e@ﬁrl‘mplgMuIllp!yl] Hling service : SimpfatfulipiOning nep’e

PoshSimple@SimpleMultiplyOnline
QickPrecise@PreciseMull Online
B mium @ PremiumMultiplyOnline ol
offername: Sremts prees e s - Galling Mulipl, OnineS ervices oap at 10,07 2003 2014.35. |
service name: FrammiulinyOnine bestbefore: 37,08 2003 72:00:00 -Hod header value is: <WSHo550apHeadsr
mmlrs="http:// grammm. de/MultiplOnline"s < selectedO ffers StandardSimple< /selec)
service access pomt : tedOffer: <qoslnfos < operation@ oS Info name="Double"
" mins="""> < serverlloSMetrices <processingTime? B< /processingTime> <requestsPe
| Aifp:1a63 pepooi/MutiplOnioaPremimSenica asmy 15 econd: 10¢equestsPers econds < availabilitys 0,77 < favailabilie < reliabilite: 0,88
service descripbion : < /reliabiliy< A serverloS Metrics> <transportloS Priorities> <delay> 3</delays <jitter>
B< /jitter> <throughputs B< throughput> < pack etloss» 7</packetloss> < transportl)
[itp44a63 pcpoct Metio Dniines FremiunService wedl 05 Friorities><securiyindT ransactions < protocol version="1.2"

ontology=""http: /v inf fu-berlin dedinst! ag-tech wsqos/ont/custom wagos"> 5

Douhl - 04P< Aprotocol: <protocol version="0,7"

ontology=""http: /v inf fu-berin dedinst/ag-tech/wsgos/ont/custom. wsqos™ M
[VE ne:< /protocols < Asecuritpdnd T ransactions < foperationd oS nfos </gosinfo> < AwS

solctscope: i i1 x]

< qoaDefirition =
ame="MultiplyOrlineS ervices oap-A squirements’s < defaulQoSinfa
name="defaLlt'"> <serverllaSMetrics> < processing Time> 6</processing Time> <requ
= estsPerSecond: 10< requestsPerS econd: < avwailability: 0,77 < /avail shiliby < reliabilit
|y 0,77 < Aeliabilityy < /serverf oS Metricss <transportG oS Prioritiess < delays < Adelays
server metrics [1) wansport priorities [3) <jitter> B¢ jitters <throughput> 8¢ /throughput> <packetloss> 7< /packetloss: < Mtran
;I :I spuria oS F’uuml\jﬁ)<secu'ﬂ:yA‘.:d‘Tladnsfcli?‘n)(pmﬁcu\ verfiun;‘ﬂ 2 5
8 o Thog ontology="http: /v inl. u-berlin.de/inst/ag-tech Awsqos /ant/custom, wsgas'">
D . I el i gl DAP< /pralocals <protocal version="0.7"

8 - g e b e e ontology="http: /v int. fu-berlin. de/inst/ ag-tech wsgqos font/ custom. wegos'>M
T P L s [VE ne</protacals < /securitpdndTransactions < /defauld oS Info> < operationGoS Info

ST ek e Ceda ek Vel et o o derizct name="T ripple""> < serverllnGhatrics>< customatiic lype="CPU_Share'"
7 Fi

QoS5 info for
security and iansaction support [2)

[joink with default requirsments

ontology="http: /v in fusberin, deirst ag-tech Awsqosont/ custam, wsaos''> 68
< feustomb strics < dserverl oS Metrics: <transpartd a5 Priaritiess < delays 7</delays <
ransportCloS Prioritiess < /operationd o5 Info: < operationd o5 nfo

name="Double"> <serverloSMeticss <processing Times B /processingT imes <ielia
= - bility 0, 88< Areliabilitys < AserverloS Metrics: < foperationfl oS Infox < price
currency="ELR">001 < /pricex < /qosDefinition:

Figure 36. WS-QoS Monitor surveying the service selection of a sample client

5.6 Web service broker

The WS-QoS Broker (WSB) holds up-to-date information on offers currently
available for a group of services, which have been requested recently. Offers are
grouped by the interface (tModel) that the services providing them implement.
The first time a client requests a service implementing a certain interface the
WSB will consult one or more UDDI registries. The WSDL files for these services
are then checked for WS-QoS extensions and available offers are built. From this
time the WSB will consult the newly created offer list in order to find the best
match for clients and their requirements, allowing an accelerated lookup process.

To keep offer lists up-to-date, the WSB inquires the UDDI periodically in order to
find new offers. Once an offer expires, the WSB removes it from its local cache. If
the validity of the offer is extended, the WSB will be re-detected it during the
next check.

When a client application inquires the WSB for the cheapest available offer, it
sends its QoS requirements as a part of the request. In the order of their price,
the WSB then tests the available offers whether they fulfill the client’s

70

71 5 The implementation of the WS-QoS framework

requirements. The first compliant offer is returned to the client. It is worth
noting that one can implement an own strategy for defining the QoS parameters
and the selection of the appropriate services. We just give here an idea of how the
selection could be done.

There are two implementations of the WSB. One is a local object running within
the application. This ensures a good performance of the service selection and
detailed information on available offers, as needed for the WS-QoS Monitor. The
other implementation uses a remote Web service to obtain the access point of the
most appropriate service. This version is mainly intended as a light process for
multiple client applications that use a single private WSB that runs as a Web
service within a network domain. The WSB could well be used by any other WS-
QoS compliant implementation.

5.7 QoS mapping

QoS-aware service invocation is the third step of Web service communication
from the client’s point of view. The client has defined its QoS requirements and
got the most appropriate offer from the WSB. It is now going to invoke the service.

The WS-QoS parameters are placed in the SOAP header. We have implemented
QoS Proxies to map the QoS requirements regarding the network QoS support for
the DiffServ network, which supports QoS classes. We have implemented a QoS
Proxy for each client side and server side, called QoSProxyC for the client side
and QoSProxyS for the server side. The QoSProxies are located between the Web
service and the network layer.

The QoSProxies classify the IP packets by marking the DSCP in the IP packets.
The routers in a DiffServ domain forward the IP packets according to the DSCP
and network policies.

5.7.1 QoSProxy for the client side

As Figure 37 shows the QosProxyC is placed between the client application and
its network interface. When the client sends SOAP messages the QoSProxyC
picks the QoS requirements, analyses them, and marks the DSCP values of the
outgoing IP packets. the QoS requirements are located in the SOAP header.
When responses arrive, the QosProxyC just passes them to the client application.

5 The implementation of the WS-QoS framework

Request: H
Eielay=3 CI_Ient_
fitter=2 application
Pick Forward
requirement: response
QoSProxyC
Set
requirements
Network
Interface _

Service Requestor

Figure 37. QoSProxy on the client side

Placing the QoSProxyC between the application and network layer has several
practical advantages:

The application may not always possess sufficient system privileges to
perform the required actions, since manipulating IP packets requires
normally more system rights.

Application developers need not have in depth knowledge of the underlying
network technologies and need not include any program code of the low
level network API.

The system stability is not affected since the high-level application does
not call any low-level APIs.

The error handling and maintenance of applications are improved.

The definition of QoS requirements is independent of the underlying
transport technology and network interface, respectively.

5.7.2 QoSProxy for the server side

When a client request (in form of packets) arrives at the server, the Web service
will process it, and then send the response back to the client. In the normal case,
the response would not obtain any QoS support, and the IP packets would be sent
with the “Best Effort” model. In this case, the QoS support would be given only in
one direction: from the client to the server. It would not make sense when the
network (in the DiffServ domain) supported the packets only on their way from

72

73 5 The implementation of the WS-QoS framework

the client to the server, while the packets transmitted from the server to the
client would be under the mercy of the current network status.

When packets sent by the client will obtain a specific DiffServ support, packets
sent by the server should obtain the same DiffServ support in order to preserve
the same level of network support. Therefore, we have implemented QoSProxyS
for the web server side for the QoS mapping. As we know, the client will define
its requirements in the SOAP message it sends to the server. The server should
consequently define QoS requirements in the response SOAP message returning
to the client.

Actually, there are two approaches for setting the values of these transport
parameters on the server side:

» The server uses the same values defined by the client in the request
message

» The server defines its own values irrespective of the values present in the
received SOAP message

Each approach has its characteristics. When the server receives a SOAP message
in which the client has defined a specific support level which does not currently
suit the server or which the server cannot ensure at the moment, the server will
then set its own QoS parameters. However, this may not be practical because the
packets sent by the server should obtain the same support level as the received
packets have obtained. When the packets will be sent with a lower support level,
this may endanger the fulfillment of the client requirements. They may get lost
or dropped, and this would contradict the goals of the whole approach. Therefore,
1t seems to be more reasonable to use the same parameter values as those set by
the client.

As on the client side, we have placed the QoSProxyS between the server
application and its network interface which has several advantages:

= Disburden the server from additional work

* QoSProxyS is independent from web servers hosting Web services

5 The implementation of the WS-QoS framework

Response:

delay=3 .
jitter=2 Web service

Pick Forward
requirement N request
(QoSProxyS)
Set N~ -1

requirements

A

Network
Interface

Service Provider

Figure 38. QoSProxy on the server side

As Figure 38 depicts, the QoSProxyS does not process the incoming messages.
When the SOAP messages are sent, the QoSProxyS marks the DSCP of the IP
packets due to the QoS requirements located in the SOAP header.

The main difference between the QoSProxyC and QoSProxyS stems from the
different implementations. Since a server has to serve different clients
simultaneously, the QoSProxyS has to maintain flows to different clients
resulting in a more complex implementation. Details about how to maintaining
different flows on the server machine are given in [48].

For the marking of the DSCP, both the client and the server QoS proxy applies a

mapping table which is introduced in the following subsection.

5.7.3 Mapping table

QoS requirements for the network are mapped to the DSCP by applying a
mapping table shown in Table 3. The standard metrics for the network are delay,
jitter, throughput, and packet loss rate. The priorities set for that metrics are
dimensionless. But metrics are measured in:

= Delay [s]
= Jitter [s]
» Throughput [bit/s]

» PacketLoss [%]

74

75 5 The implementation of the WS-QoS framework

The priority ranges from 1 to 10. The smaller the priority value the higher the
priority. E.g. delay=1 means the lowest possible delay is required.

Table 3. Mapping table for DiffServ

Priority |1 2 3 4 5 6 7 8 9 10

DSCP 46 46 10 12 18 20 26 28 34 36
(decimal)

DiffServ | PS PS AF1 | AF1 |AF2 |AF2 | AF3 | AF3 | AF4 | AF4

Service
class

Since Premium Service (PS) should provide a special support to the application,
and especially in delay and jitter (because PS means low delay and low jitter
values), it is reasonable to assign PS to the first 2 priority values (i.e. to priorities
1 and 2).

We assume that the priorities should be “homogenous” which means that an
application would not set a very high value for one metric and very low values for
another metrics.

There are four classes of assured forwarding (AF): AF1, AF2, AF3, and AF4,
whereby AF1 has a higher priority and AF4 has the lowest one.

One can specify the minimum bandwidth (referred to as min_BW) and the
maximum bandwidth (referred to as max_BW) in the QoSProxy. The min_BW
and max_BW are required to subdivide the maximal allowed bandwidth to each
application into ten segments, which i1s the number of possible bandwidth
priority values (from 1 to 10). Accordingly, a throughput priority of 1 corresponds
to max_BW, and throughput priority of 10 corresponds to min_BW. We divide a
segment with a length of max_BW into 10 pieces on a “bandwidth axis”, and each
segment will correspond to a throughput priority value.

Mathematically, we have a linear equation between a priority value and the real
bandwidth amount. We can calculate the increasing factor of this equation with
the help of Equation 1:

max_BW — min_BW
9

factor =

Equation 1. Factor calculation

The real bandwidth value that will be assigned to an application can be obtained
with the help of Equation 2:

BW =[(10 — priority _ BW) * factor + min_BW |

Equation 2. Bandwidth calculation

5 The implementation of the WS-QoS framework

(Whereas priority_BW is the throughput priority value set by the application).

Figure 39 shows an example for such a mapping process:

Min_BW Max_BW

/

0 50 200 350 500 650 800 950 1100 1250 1400 [kbit/s]

10 9 8 7 6 5 4 3 2 1 priority
>

Factor=150

Figure 39. Example showing the different BW values

In the example, the user has specified the two following values:

e min_BW =50 kbit/s
e max_BW = 1400 kbit/s
By using Equation 1 we get: factor = 150

Taking a throughput priority of 4 as an example, and by using Equation 2 we get:
assigned bandwidth = [(10 — 4)*150 + 50] kbit/s = 950 kbit/s

When multiple applications on the same host are running with Premium Service
support, then all assigned bandwidth values will be added together and the sum
must not be greater than total BW. When an application requires more
bandwidth than available, two possibilities exist to handle it: either the QoS
proxy application will reject the request and return an error message to the
requesting application, or the data will be sent with best effort model (i.e. with no
DiffServ support). We use the first method in our application since the user
should be informed when her requirements can’t be satisfied.

5.7.4 QoS proxies

Figure 40 depicts the participating components and the data flows during the
interaction between a Web service client and the service provider at runtime. The
QoS requirements regarding the network performance specified by each the
client and the server will be declared in the SOAP headers, which will be parsed
by the corresponding QoS proxies on both the client and the server side. Based on
the QoS parameters, the proxies mark the DiffServ specific DSCP in the IP
packets. DiffServ routers in the DiffServ domain will treat the traffic between
client and server depending on the DSCP value set in the packet headers.

76

77 5 The implementation of the WS-QoS framework

Request: H Response:
delay=3 C“ent delay=3

jitter=2 appllcatlon jitter=2 Web service

Pick y Forward Pick Forward
requirement: response requirement =\ request
QoSProxyC (QoSProxyS)
Set _Set ™~ >~
requirements requirements

ﬂ

P

Network \ Network
Interface ‘/ \ Interface
Imserv

Router

Service Requestor Service Provider

Figure 40. Proxy applications on both sides

In Section 7.3, we will present of performance measurement of the QoS proxies.
The measurement results will prove the advantages of the QoS proxies. The QoS
mapping of traffic parameters is one of many QoS aspects during Web service
communication. In the following subsections, we introduce how to apply the WS-
QoS framework in order to enable the adaptive server performance and adaptive
message load compression for mobile devices.

5.8 Adaptive server performance

The server@QoSMetrics element of a WS-QoS definition shown in Figure 14 in
Section 4.2.1 specifies server performance in terms of processing time,
throughput, availability, and reliability.

Figure 41 shows an example of the definition of the server performance. The
processing time should be 5ms, the throughput of the server should be 30
requests per second, the reliability of the server should be 99%, and the
availability of the server should be 98%.

5 The implementation of the WS-QoS framework

<?xml version="1.0" encoding="utf-8" ?>

<wsqos xmIns="http://wsqos.org/">

<operationQoSInfo name="MyOperation”>

<serverQoSMetrics>
<processingTime>5</processingTime>
<requestsPerSecond>30</requestsPerSecond>
<reliability>0.99</reliability>
<availability>0.98</availability>

</serverQoSMetrics>

</operationQoSinfo>

</wsqos>

Figure 41. A WS-QoS serverQoSMetrics element

A service offer defines a distinct level of service performance. Request
differentiation can take place on various levels. In the current implementation,
we perform request differentiation on application level. Response times are
influenced by setting the priority of the thread processing the request according
to the clients’ requirements.

While we pursue a simple prioritization mechanism, more elaborate approaches
of request differentiation could be applied in order to distinguish levels of server
performance. The availability of different resources provided by a web server can
be differentiated on OS level [17][18][39]. Such an approaches guarantee
prioritized access to a limited scope of resources even in overloaded servers.

5.9 End-to-end QoS support for adaptive message load
compression

It is easy to extend our WS-QoS framework in order to support mobile devices
that access Web services over the air. Due to our experiments introduced in
Section 7.1, compression of data 1s attractive for mobile users. Wireless
transmission of a bit can require 1000 times more energy than a single 32-bit
computation [43]. Compression and decompression on mobile devices need not be
performed by the same algorithm. Energy consumption can be reduced up to 30%
by choosing the lowest-energy compressor and decompressor on a mobile device
[43].

In order to signal which compression algorithm is to be used we extend the
securityAndTransaction node of the operationQoSInfo element in our WS-QoS

78

79 5 The implementation of the WS-QoS framework

XML schema with two sub nodes compression and decompression, as shown in
Figure 42. Since compression and decompression are custom defined QoS aspects,
we have specified ontology references for them, also shown in Figure 42.

<?xml version="1.0" encoding="utf-8" ?>

<wsqos xmIns="http://wsqos.org/">

<operationQoSInfo name="MyOperation’>

<securityAndTransaction name="compression” requires="one’>

<protocol name="zlib”
ontology="http://www._.mydomain.com/compression.wsqos” />

<protocol name=""bzip2”
ontology=""http://www.mydomain.com/compression.wsqos” />

</securityAndTransaction>
<securityAndTransaction name=decompression” requires="one”’>

<protocol name="bzip2”
ontology="http://www.mydomain.com/compression.wsqos” />

<protocol name="zlib”
ontology="http://www._.mydomain.com/compression.wsqos” />

</securityAndTransaction>

</operationQoSInfo>

</wsqos>

Figure 42. securityAndTransaction entries for compression and decompression
algorithms

Server providers announce which (de) compression algorithms they support.
Clients define which compression algorithm a service provider has to use to
compress responses. Algorithms are listed in the order of preference, so the most
appropriate match can be found.

5.10Conclusion and discussion

This chapter presented the implementation of the WS-QoS architecture. The
QoS-aware Web services communication consists of three steps from the client’s
point of view. After introducing a scenario of QoS-aware Web service selection,
we first introduced the WS-QoS XML schema, which is the core of the whole
architecture. All components participating in a WS-QoS aware communication
apply this schema. The second step for the client is the QoS-aware service
discovery and selection. Users can apply the WS-QoS Editor, Requirement
Manager, and Monitor to edit, manage and monitor their QoS requirements.
WSB is responsible for selecting the most appropriate offer available regarding to

5 The implementation of the WS-QoS framework

80

client’s requirements. When having the most appropriate service provider, the
client invoked the service directly at the service provider in the third step. At this
time, the specified transport QoS metrics are mapped by the QoS proxies on both
the client and the server side. Web server will consider metrics defined in the
server@QoSMetrics element to performance request differentiation. Finally, we
introduced the notion of adaptive message load compression, which is useful for
mobile devices that access Web services over the air.

In the next chapter, we introduce how to apply the WS-QoS framework.

