
 41

4 The design of the WS-QoS architecture

The fundamental goal of the design of the WS-QoS architecture is QoS support
during the whole communication process. Standard conformity, scalability,
extensibility have to be supported as well as QoS mapping between different
layers in terms of the Internet model.

This chapter describes the design of the WS-QoS framework. The framework is
fully compatible to standard Web service protocols such as SOAP, WSDL, and
UDDI. The WS-QoS framework specific elements are integrated into WSDL in a
standard conform way.

Section 4.1 examines the requirements for QoS-aware Web service
communication. Section 4.2 presents the WS-QoS XML schema which is applied
to define both QoS requirements and offers. Section 4.3 focuses on the QoS-aware
service discovery and selection based on the QoS requirements and offers. Section
4.4 discusses the design issues for QoS-aware service invocation. A discussion
and evaluation of the architecture presented in the chapter can be found in 4.5.

4.1 Requirements for QoS-aware Web services

As stated in the previous chapter, QoS support is required in all stages of a Web
service communication life cycle to enable true QoS support. A QoS-aware Web
service communication process consists of three phases from the client’s point of
view. First of all is the QoS specification of QoS requirements. QoS-aware service
discovery and selection regarding to the QoS requirements has to be supported in
the second phase. The specified QoS is performed at service invocation in a third
phase.

4 The design of the WS-QoS architecture 42

The standard Web service architecture depends on the invocation of operations
by sending and receiving messages [25]. WSDL describes functional aspects of a
Web service, but not non-functional aspects such as QoS. As more and more
companies offer competing Web services, QoS aspects of Web services will become
the decisive factor for the success of competitors. Specifications of both QoS
aspects and parameters specific to Web service offers and requirements are
essential in order to ensure their compatibility and therewith comparability.
UDDI is designed for publication and discovery of Web services. Yellow, white,
and green page information of Web services such as contact information of a
company or industry categories can be stored and viewed there. Since non-
functional properties of a service such as price and performance parameters are
subjects to frequent changes, repeated requests to a huge UDDI registry may
prove to be a bottleneck for the performance of service lookups and selection.
Therefore, a more sophisticated mechanism is required to improve service
discovery and selection.
Many domains and layers in terms of the Internet Model participate in a Web
service communication process. Figure 10 shows possible participating domains
such as a client (device), an access point, a network, routers in the network, and a
web server hosting Web services. The participating domains should provide QoS
support actively, resulting in an overall performance gain. The layers are e.g.
application layer and transport layer. If the Web services are also considered as a
layer, it could be placed between the application and network layer, as depicted
in Figure 2. In Chapter 7, we will demonstrate how our WS-QoS framework can
be applied in order to support QoS through the different layers and domains.

Figure 10. Participating domains

Our WS-QoS framework targets the following main requirements

• designing an architecture that allows both service clients and service
providers to specify requests and offers with QoS properties and QoS classes,

• enabling an efficient service lookup and selection in order to accelerate the
overall lookup process for service requestors,

• providing a flexible way for service providers to publish and update their
service offers with different QoS aspects and parameters, as well as

43 4 The design of the WS-QoS architecture

• considering the QoS requirements regarding different layers and
participating domains of a Web service communication process at runtime in
order to achieve overall performance gains.

4.2 WS-QoS XML schema for QoS specification

For service providers and consumers it is essential to agree on a common
language for defining QoS. Furthermore, an agreement ensures the compatibility
and comparability of both offers and requirements, resulting in easy and prompt
lookup and selection of services.

Service providers can specify the price for the service usage, supported protocols
for management and monitoring as well as statements about different QoS levels
of the offered operations of a service. Statements about the server performance,
transport priorities, and references to offered security mechanisms can either be
declared on operation or service level. A service consists of one or more operations.

The root element of a WS-QoS document is wsqos, which contains another
element definition. As shown in Figure 11, a definition element can contain a
requirement, offers or ontology element.

Figure 11. Structure of a wsqos element

The element requirements is of type tQoSDefinition and describes the QoS
requirements of a service client. The values declared here represent the
minimum requirements a service provider has to support.

QoS offers in form of a qosOffer element can be stated in an offers element. A QoS
offer describes the minimum QoS level a service provider shall guarantee for the
event that the client is willing to pay for the service. qosOffer is of type
tQoSDefinition, ensuring that both offers and requirements have the same
structure. This allows easy checking whether an offer fulfills a declaration of
requirements.

4 The design of the WS-QoS architecture 44

The qosOffers element is extended with an expire attribute indicating the expire
time of a service offer. The include element of the offers allows including QoS
offers defined in other documents, and therefore allows for dynamically adjusting
offers without changing the WSDL file. Furthermore, an offer can be referenced
from multiple WSDL files and thus be reused for different services.

The ontology element defines QoS parameters and protocol references that are
used in elements of type tQoSDefinition.

Standard QoS aspects such as serverQoSMetrics, transportQoSPriorities, or
securityAndTransaction and their parameters are predefined. These can be
enhanced by custom parameters, referring to a public WS-QoS ontology.
Therefore, a WSQoSOntology element has been designed to hold references to
QoS parameters and protocol (refer to section 4.2.2).

WS-QoS allows service providers to specify various QoS classes for the same
service e.g. platinum, gold, and bronze, as shown in Table 2. Different QoS
classes of Web services enable clients to choose the service that meets their best
requirements. Classes of service may differ in any QoS aspects such as server
performance, network performance, security including access rights, and
consequently price [36].

Table 2. Example of different QoS classes

Class of service Platinum Gold Bronze

Processing time 0.3ms 0.7ms 0.9ms

Throughput 200 request/s 150 request/s 100 request/s

… … … …

Price per call 0.05€ 0.03€ 0.01€

WS-QoS also supports different QoS classes for operations of a service. The
service provider can assign different QoS classes to an operation inside a service.
Figure 12 shows an example of a service, which is composed of service operations
with possibly different QoS classes.

45 4 The design of the WS-QoS architecture

service
QoS-class 1

QoS-class 2

QoS-class 3

QoS-class 4

op1

op2

op3

service
QoS-class 1

QoS-class 2

QoS-class 3

QoS-class 4

op1

op2

op3

Figure 12. Assignment of QoS classes to a service or its operations

4.2.1 QoS Info

Central to the WS-QoS framework’s XML Schema are elements of type tQoSInfo,
shown in Figure 13. A qosInfo element holds information on the level of QoS
regarding the server performance, transport and protocols. In a serverQoSMetrics
element, values for the standard parameters such as processing time, requests
per second, reliability, and availability can be declared. Moreover, custom server
QoS metrics can be declared in a customMetric element as a child node of the
serverQoSMetrics element, as shown in Figure 14.

Figure 13. Structure of a qosInfo element

4 The design of the WS-QoS architecture 46

Figure 14. Structure of a serverQoSMetrics element

A transportQoSPriorities element, depicted in Figure 15, encapsulates
information on priorities that can be declared for four standard transport
parameters delay, jitter, throughput, and packet loss rate. Similar to the server
QoS metrics, custom transport QoS priorities can be declared in a customPriority
element added to a transportQoSPriorities element.

Figure 15. Structure of a transportQoSPriorities element

In most cases, neither the client nor the service provider knows in advance what
kind of network technology will be used to exchange messages. Therefore, it is
not appropriate to declare explicit values for metrics such as delay and jitter. In
stead of absolute values priorities are declared for transport QoS. The priorities
are mapped onto specific metrics of the underlying network at runtime helping to
provide a distinct transport service level. (Refer to Section 4.4.1)

47 4 The design of the WS-QoS architecture

Security and transaction management for Web Services is realized by a variety of
protocols. Most of them already have sophisticated mechanisms for negotiation of
key and session information. Thus, security and transaction support at this level
will be restricted to listing protocols needed for a successful service execution.
The securityAndTransaction element of a QoSinfo element can hold several
protocol elements, each referencing a specific protocol. A reference to a protocol in
a qosInfo element can either require or offer compliance with a protocol in
question. In the first case, another qosInfo element will not be compliant with the
first specification if it does not at least offer using this protocol as well. In the
later case, the protocol is offered in case the other party expects it, but
interaction without the protocol is also allowed. The qosInfo element also allows
the definition of custom QoS aspects in the extensibilityElement.

4.2.2 WS-QoS ontology

customMetrics, customPriority and protocolSupport statements all have an
attribute ontology, which references a file containing a WS-QoS Ontology where
the referenced types are defined respectively. Figure 16 shows the structure of
such ontology. By using a combination of the ontology’s URL and a parameter
name, the reference will be unique.

Figure 16. Structure of a QoSOntology element

A custom transport QoS priority is defined by a distinct name and a human
readable definition of what metric the priority refers to in a priorityDefinition
element. A custom server QoS metric defined in a metricDefinition element, as
shown in Figure 17, also has a name and a human readable description of what is
measured. It also includes information on the unit it is measured in and the
scope of service invocations the metric is aggregated on, that is, whether the
value is valid for the port on which the service is invoked, the whole service or
even all services of the provider. Furthermore, it has to be stated whether the
value is valid for all service executions or only for executions requested by the
user. Finally, the direction of how values are to be compared is declared, which is
essential for an automated comparison of whether an offer fulfills a set of
requirements. Accordingly, in a protocolDefinition element, a protocol is defined

4 The design of the WS-QoS architecture 48

by its name, a human readable description of the purposes of using this protocol
and the URL of an overview document.

<xs:complexType name="tMetricDefinition" abstract="false">

<xs:simpleContent>

 <xs:e4xtension base="xs:string">

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="direction" type="wsqos:tDirection"
use="required"/>

 <xs:attribute name="unit" type="wsqos:tUnit" use="required"/>

 <xs:attribute name="percentile" type="wsqos:tPercentage"
use="optional"/>

 <xs:attribute name="dataOwner" type="wsqos:tDataOwner"
use="required"/>

 <xs:attribute name="dataScope" type="wsqos:tDataScope"
use="required"/>

 <xs:attribute name="measurementIntervalLengthInSec"
type="xs:float" use="required"/>

 <xs:attribute name="description" type="xs:string"
use="optional"/>

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

Figure 17. tMetricDefinition

4.2.3 QoS definition

An element of type tQoSDefinition, as illustrated in Figure 18, holds one or more
QoS info elements, plus specifications of the contract and management support
and a specific price. QoS information can be defined for specific operations either
in explicit operationQoSInfo elements or, for the scope of all operations of a
service, in a defaultQoSInfo element. Both, the defaultQoSInfo and the
operationQoSInfo elements are of the type tQoSInfo. The contractAndMonitoring
node can hold references to protocols needed for service management, SLA,
and/or QoS monitoring as well as entries of third parties that one side would be
willing to trust. Finally, the price element relates the specified QoS level to the
cost of service usage per invocation.

49 4 The design of the WS-QoS architecture

Figure 18. Structure of a tQosDefinition element

Elements of type tQoSDefinition are either instantiated as a
WSQoSRequirementDefinition element expressing a client’s QoS requirements or
as a qosOffer element representing a minimal QoS level a service provider
guarantees to provide for all requests.

4.2.4 WS-QoS offer definition

Offers for one service can be declared in a WSQoSOfferDefinition element as
shown in Figure 19. The qosOffer element is extended by an attribute expires,
denoting a point in time until which the offer will be valid.

4 The design of the WS-QoS architecture 50

Figure 19. Structure of a WSQoSOfferDefinition element

The WSQoSOfferDefinition element is introduced into the Web service’s WSDL
file as an extension element of the service description’s service node. Apart from
defining offers in a WSQoSOfferDefinition element, offers in further WS-QoS files
can be referenced in an include element, as shown in Figure 20. This allows for
dynamically adjusting offers without changing the WSDL file. Furthermore, an
offer can be referenced from multiple WSDL files and thus be reused for different
services.

</wsqos>

<wsqos xmlns="http://wsqos.org/">

 <definition>

 <offers>

 <include url = "http://lab3.pcpool/StockQuoteServices/
CurrentOffersForFastStockQuoteService.wsqos" />

 </offers>

 </definition>

Figure 20. Further WS-QoS definition references in an include element

4.3 QoS-aware service discovery and selection

The UDDI registry defined by UDDI.org does not support QoS-aware service
lookup. One mechanism to extend UDDI with QoS-awareness would be to
augment UDDI with corresponding business logics. However, then UDDI would
become proprietary; both client and server applications have to be re-
implemented.

Due to these disadvantages, we have introduced a Web service broker (WSB),
which is located outside UDDI. The WSB is WS-QoS aware. Its main task is to

51 4 The design of the WS-QoS architecture

accelerate the client lookup process for appropriate services. Figure 21 depicts
the participating roles service providers, clients, UDDI registries, and the WSB.
Note that there are no service brokers defined in the standard Web service model
[38].

Figure 21. Interactions between the four participating roles

When the WSB does not have any information about a required service, the
interactions between the roles are as follows.

1. Service providers publish their Web services to UDDI registries. Web
services available in UDDI registries are identified uniquely by an
interface key (tModel).

2. Clients ask the WSB for services that implement a certain interface and
accomplish the QoS requirements.

3. If the WSB does not already hold up-to-date information on offers that
accomplish clients’ requirements, the WSB will request Web services
according to the interface key from one or more UDDI registries. Note that
we would prefer the model in which the WSB prefetches information of
offers that clients could be interested in. This would accelerate the lookup
phase significantly.

4. The UDDI registries return a list of services that implement the interface
key.

4 The design of the WS-QoS architecture 52

5. The WSB asks the service providers for service descriptions, e.g. WSDL
files.

6. The service providers return their service descriptions with QoS offers.

7. The WSB tests the offers against the clients’ requirements, which the
client sent in step 2.

8. The WSB returns the most appropriate service to the client.

9. The client directly invokes the service with the original QoS requirements.
At this time, the QoS requirements regarding the network performance are
actively mapped onto the underlying transport technology, as described in
Section 4.4.1.

We assume that service brokers normally analyze the market and interesting
service offers in advance. The WSB holds up-to-date information on offers
currently available for a group of services. Therefore, a Web service client will
contact the WSB for looking up a service instead of doing this with a UDDI
registry. That means the interaction model from the client’s point of view is
reduced from 9 steps to 4 steps (step 2, 7, 8, and 9) as shown in Figure 22. The
reduction of the interaction steps results in short lookup time. Section 7.2
presents our performance measurements proving this statement.

Figure 22. Reduced interactions between the four participating roles

53 4 The design of the WS-QoS architecture

There are two options to apply the WSB. One is to run it as a local object within
the (client) application. This ensures a highly performing service selection and
detailed information on available offers. The other possibility is to use it as a
remote Web service to obtain the access point of the most appropriate service.
This version is mainly intended as a (Web) service for multiple client applications
that could use a single private WSB running within their network domain. This
WSB could be used by any other WS-QoS compliant implementation, too.

4.4 QoS-aware service invocation

After defining QoS requirements and the selection of the appropriate service
provider, the client invokes the service. Whereby, it is important that QoS-
awareness is supported by all participating domains and layers along the whole
communication path. QoS requirements specified by the clients are placed as a
WS-QoS element in the SOAP header. Since the SOAP header is a part of SOAP
messages it can be parsed, evaluated, modified, and mapped by WS-QoS aware
components along the communication process enabling cross-layer
communication. Figure 23 shows an example of WS-QoS requirements located in
the SOAP header.

4 The design of the WS-QoS architecture 54

 <resultsize>0</resultsize>

 </DynamicResultString>

 </soap:Body>

</soap:Envelope>

 <delay>9</delay>

 <jitter>8</jitter>

 <throughput>8</throughput>

 <packetLoss>7</packetLoss>

 </transportQoSPriorities>

 <securityAndTransaction name="general" requires="none">

 <protocol name="SOAP" />

 </securityAndTransaction>

 <securityAndTransaction name="Compression" requires="one">

 <protocol name="ZIP" ontology=
"http://localhost/BookInformationServices/CustomOntology.wsqos" />

 </securityAndTransaction>

 </operationQoSInfo>

 </qosInfo>

 </WSQoSSoapHeader>

 </soap:Header>

 <soap:Body>

 <DynamicResultString xmlns="http://www.wsqos.net/BookInformation">

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <soap:Header>

 <WSQoSSoapHeader xmlns="http://www.wsqos.net/BookInformation">

 <selectedOffer>Quick</selectedOffer>

 <qosInfo>

 <operationQoSInfo xmlns="">

 <serverQoSMetrics>

 <processingTime>0.5</processingTime>

 <requestsPerSecond>10</requestsPerSecond>

 <availability>0.77</availability>

 <reliability>0.77</reliability>

 </serverQoSMetrics>

 <transportQoSPriorities>

Figure 23. QoS requirement in the SOAP header

55 4 The design of the WS-QoS architecture

In the following subsections, we discuss the QoS mapping between the
application and transport layer, QoS support in web server, and load reduction
through message load compression.

4.4.1 Mapping transport priorities to QoS-aware network technologies

Since different network technologies have different properties and QoS metrics
respectively, we have decided to define priorities ranging from 1 to 10 in a
transportQoSPriorities element whereby 1 represents the highest priority. The
smaller the priority value the higher the requirement. A so called Adaptation
Layer placed between the Web service layer and communication network layer is
responsible for the mapping. As shown in Figure 24 the Adaptation Layer
evaluates and maps the specified requirements from the higher layer onto a
corresponding traffic class or properties, which are specific to a transport
technology.

Figure 24. QoS mapping in the Adaptation Layer

Figure 25 shows a transportQoSPriorities entry in a WS-QoS operation
information element defined in the WS-QoS XML schema for MyOperation(). In
this case, the operation expects low data rate, high reliability, and low jitter. One
could for example think of a low quality voice stream.

4 The design of the WS-QoS architecture 56

<?xml version="1.0" encoding="utf-8" ?>

<wsqos xmlns="http://wsqos.org/">

 ...

 <operationQoSInfo name=”MyOperation”>

 ...

 <transportQoSPriorities>

 <delay>5</delay>

 <jitter>3</jitter>

 <throughput>8</throughput>

 <packetLoss>3</packetLoss>

 </transportQoSPriorities>

 ...

 </operationQoSInfo>

 ...

</wsqos>

Figure 25. A WS-QoS transportQoSPriorities entry

Figure 26 shows an example of how mobile Web services could benefit from the
QoS mapping [40]. The scenario consisting of a mobile client, a wireless network
such as UMTS/3G or GPRS, an access point, a QoS-enabled wired network such
as DiffServ and a WS-QoS-aware Web service server. The adaptation layer
running on the mobile client translates the QoS requirements according to the
transport QoS priorities to the corresponding UMTS QoS class and performs
signaling with the UMTS system. Since both DiffServ and UMTS support QoS
classes, the access point (AP) can now map the UMTS QoS class to a
corresponding DiffServ class (DiffServ code point, DSCP). This task is performed
without any knowledge of the WS-QoS framework. Optionally, if the AP
supported WS-QoS, it could map the client’s requirement to a corresponding
DSCP by evaluating the WS-QoS information located in the SOAP header. The
advantage of this option is that the mapping would be fine-granular. However,
the disadvantage is the performance loss due to processing the SOAP header.
Since this header is only present in the first of several IP packets carrying a
SOAP message, the AP has to perform per-flow management. This would cause
scalability problems as experienced in the Integrated Services technology
(IntServ). Therefore, the simple mapping of UMTS and DSCP classes should be
preferred when the AP experiences high traffic load.

57 4 The design of the WS-QoS architecture

Figure 26. A mobile Web service scenario

The intermediate DiffServ-enabled routers treat the traffic depending on the
DSCP. Upon receiving the client’s request, the server processes the response. The
server has to consider the client’s requirements for the server performance
defined in the serverQoSMetrics (refer to the next subsection). When the server
sends the response, it will put the client’s QoS requirements into the SOAP
header again. A server side Adaptation Layer will then evaluate the QoS
information and mark the DSCP in each IP packets accordingly. The
intermediate routers will treat the IP packets according to the DSCP. The AP
will map the DiffServ class to a corresponding UMTS class.

The concrete implementation of the Adaptation Layer for DiffServ will be
discussed in Section 5.7.

4.4.2 Adaptive server performance

Service differentiation can take place on various levels at a web server, such as
on the TCP [18], HTTP [18], end systems [17] or application level. One simple
solution on the application level is to set the priority of the thread processing the
request according to the clients’ requirements. More elaborate approaches of
request differentiation could be applied in order to distinguish levels of server
performance. The availability of different resources provided by a web server can
be differentiated on the OS level [39]. Such an approach guarantees prioritized
access to a limited scope of resources even in overloaded servers.

The serverQoSMetrics element of a WS-QoS definition shown in Figure 27
specifies server performance in terms of processing time, throughput, availability
and reliability. This definition can be applied to service offers or requirements. In

4 The design of the WS-QoS architecture 58

contrast to the values set for the transportQoSPriorities element absolute values
are set here.

<?xml version="1.0" encoding="utf-8" ?>

<wsqos xmlns="http://wsqos.org/">

 ...

 <operationQoSInfo name=”MyOperation”>

 ...

 <serverQoSMetrics>

 <processingTime>5</processingTime>

 <requestsPerSecond>30</requestsPerSecond>

 <reliability>0.99</reliability>

 <availability>0.98</availability>

 ...

 </serverQoSMetrics>

 ...

 </operationQoSInfo>

 ...

</wsqos>

Figure 27. A WS-QoS serverQoSMetrics element.

4.4.2.1 Processing time

The processing time is defined as the time interval between the point when a
request arrives at the server process and the point when the server process sends
the response.

Servers become overloaded when one or several critical resources become scarce.
Server overload affects the server processing time. Figure 28 schematically
illustrates the processing time as functions of the request rate. It demonstrates
how the processing time increases with the server load. The processing time is
low as long as no server resource is over utilized. However, when the server
resource bottleneck becomes over utilized, i.e., the bottleneck resource cannot
keep up with the arrival rate of requests, the queue length to the resource
bottleneck and thus the response time theoretically increases to infinity. This is
depicted by the sudden increase of the response time [18].

59 4 The design of the WS-QoS architecture

Figure 28. Impact of server load on processing time [18]

4.4.2.2 Throughput

Throughput means the amount of requests a server can process in certain time
unit.

Sever overload affects either server throughput. Figure 29 depicts how the server
throughput increases with the request rate until the request rate exceeds the
capacity of the web server. At this point, the throughput decreases due to the
additional and unproductive time the CPU spends on processing incoming
connection requests that are dropped when the listen queue is full. Moreover, the
high rate of network interrupts prevents the web server application from making
fast progress, which contributes to the lower throughput. Lower server
throughput leads to loss of revenue, while long delays cause user frustration and
decrease task success and efficiency. Users’ tolerance for delay is application
dependent, but often a threshold of 10 seconds for web interaction is mentioned
in the literature [18].

Figure 29. Impact of server load on throughput [18]

4.4.2.3 Reliability

Reliability refers to the general likelihood of an error occurring in a running
server system. A perfectly reliable server will enjoy 100% availability, but when
errors occur, availability can be influenced in different ways depending on the
nature of the problems.

4.4.2.4 Availability

Availability means the probability that the system is operating properly when it
is requested for use at a given time. The definition of availability is largely based
on what types of downtimes, e.g. server overloading or malfunction, results in
system unavailability.

4 The design of the WS-QoS architecture 60

4.4.3 End-to-end QoS support for adaptive message load compression

It is well known that SOAP messages are verbose in comparison to binary
protocols. The overhead of Web services stems mainly from the XML usage
producing human readable text. Mani and Nagaranja have compared the XML’s
way to represent information with binary encoding. They quantified the overhead
as 400% [41]. The growth of the Web service message size, which results in
higher transmission time, creates a critical problem for delay sensitive
applications, especially when XML data is transferred over the air and mobile
devices are involved.

Although mobile devices are resource-constrained, the capability of mobile
hardware in terms of CPU power and memory is increasing rapidly. But the
improvement and increase of the battery life-time and the data rate for wireless
transmission are still challenging issues in active research. Therefore,
considering both aspects in mobile computing is essential.

When sending small amounts of content using SOAP on HTTP, such as sending
an ISBN for querying book information, the major part of the entire conversation
will consist of HTTP headers, SOAP headers including the XML schema as well
as brackets. In a test case, a Web service accepts the ISBN of a book as input
parameter and returns the book information in form of a dataset. The actual
content of both the request and the response consists of a total of 589 bytes,
thereof 10 bytes for the ISBN and the rest for the information about the book.
But more than 3900 bytes have to be sent and received for the entire
conversation. Figure 30 depicts the bytes on the wire for the actual content and
the overhead when it is transmitted as HTML or XML. The disproportion is not
as big for traditional web interaction with HTML (referred to as “ASP overhead”
in Figure 30). The total amount of the request and response for transferring the
same information value is about 1200 bytes.

589 589 589

593

3363

0

500

1000

1500

2000

2500

3000

3500

4000

4500

data

by
te

s

content ASP overhead WS overhead

Figure 30. XML overhead for a simple request

61 4 The design of the WS-QoS architecture

Due to the verbosity of Web services, compressing the SOAP content before the
wireless transmission is attractive. As shown in [42], compression is one way of
dealing with the problem of large message sizes of Web services. Furthermore,
compression is useful for poorly connected clients with resource-constrained
devices despite the CPU time required for decompressing the responses.
Compression and decompression on mobile devices need not be performed by the
same algorithm. Energy consumption can be reduced up to 30% by choosing the
lowest-energy compressor and decompressor on a mobile device [43].
Furthermore, wireless transmission of a bit can require 1000 times more energy
than a single 32-bit computation [43].

The energy consumed for (de)compression on servers is almost for free. Therefore,
mobile clients should request data from the server in a format which facilitates
low-energy decompression in order to reduce decompression energy [43].

In order to signal which compression algorithm is to be used the
securityAndTransaction of the operationQoSInfo element in the WS-QoS XML
schema is extended with two sub nodes compression and decompression. Server
providers announce which compression algorithms they support. Clients define
which compression algorithm a server has to use to compress responses.
Algorithms are listed in the order of preference, so the most appropriate match
can be found. Figure 31 shows example of the extension of the
securityAndTransaction node with the new QoS parameters compression and
decompression.

<?xml version="1.0" encoding="utf-8" ?>

<wsqos xmlns="http://wsqos.org/">

 ...

 <operationQoSInfo name=”MyOperation”>

 ...

 <securityAndTransaction name=”compression” requires=”one”>

 <protocol name=”zlib”
ontology=”http://www.mydomain.com/compression.wsqos” />

 <protocol name=”bzip2”
ontology=”http://www.mydomain.com/compression.wsqos” />

 </securityAndTransaction>

 <securityAndTransaction name=”decompression” requires=”one”>

 <protocol name=”bzip2”
ontology=”http://www.mydomain.com/compression.wsqos” />

 <protocol name=”zlib”
ontology=”http://www.mydomain.com/compression.wsqos” />

 </securityAndTransaction>

 ...

 </operationQoSInfo>

 ...

</wsqos>

4 The design of the WS-QoS architecture 62

Figure 31. securityAndTransaction entries for compression and decompression
algorithms.

Compression generally decreases server performance due to the additional CPU
time required. A lightly loaded server can afford the extra cost of compressing
responses. We will present measurements in Section 7.1 that show that the
throughput of a heavily loaded server can decrease substantially when it is
required to compress Web service responses. At the same time the response times
experienced by the clients increase. We will propose a simple scheme that allows
clients to specify whether they want to receive data compressed when requesting
a Web service. Depending on the current server load, the server compresses only
the requests of the clients that required such a service. We will present
experiments that demonstrate that this approach works well. Both servers and
clients with poor connectivity benefit during high server demand, while the
server is protected from overload due to compression.

4.5 Conclusion

The WS-QoS XML schema is the core of the WS-QoS architecture. The WS-QoS
XML schema enables the specification and thus the compatibility and
comparability of QoS statements defined by both service clients and servers. All
components participating in Web service communication such as WSB,
Adaptation Layer, web servers apply the WS-QoS XML schema in order to
provide QoS support in different layers and domains.

Three steps are defined in a Web service communication process from the client’s
point of view. They are the definition of requirements, service discovery and
selection, and service invocation. The WS-QoS architecture ensures QoS-
awareness during the whole Web service communication process resulting in a
QoS-aware cross-layer communication.

In contrast to the classical ISO/OSI layered architecture that does not consider
the inter-working of different layers, the cross-layer communication model has
several advantages:

• Higher layers have knowledge about the parameters and routing
algorithms of underlying network technologies

• Higher layers have knowledge about the current communication structures
and their dynamics

• Resulting in higher layers can actively consume the QoS support of the low
layers

• Lower layers have knowledge about the specific requirements from the
higher layers

• All the knowledge can be merged in respect to QoS parameters of different
aspects in order to support application-dependent requirements.

